JP2000323173A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2000323173A
JP2000323173A JP11129920A JP12992099A JP2000323173A JP 2000323173 A JP2000323173 A JP 2000323173A JP 11129920 A JP11129920 A JP 11129920A JP 12992099 A JP12992099 A JP 12992099A JP 2000323173 A JP2000323173 A JP 2000323173A
Authority
JP
Japan
Prior art keywords
material layer
electrode active
active material
hardness
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11129920A
Other languages
Japanese (ja)
Other versions
JP4664455B2 (en
Inventor
Toru Yajima
亨 矢嶋
Takayuki Nakajima
孝之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
AT Battery KK
Original Assignee
A&T Battery Corp
AT Battery KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Battery Corp, AT Battery KK filed Critical A&T Battery Corp
Priority to JP12992099A priority Critical patent/JP4664455B2/en
Publication of JP2000323173A publication Critical patent/JP2000323173A/en
Application granted granted Critical
Publication of JP4664455B2 publication Critical patent/JP4664455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of preventing a reduction of a discharge capacity caused by a repeating charge and discharge without causing a capacity reduction per unit volume and a generation of an internal short. SOLUTION: This secondary battery is provided with a generation element 3 in which a positive electrode in which a positive electrode active substance layer is formed on at least one surface of a current-collector and a negative electrode 6 in which a negative electrode active substance layer is formed on at least one surface of the current-collector are interposed through a separator 5, and a nonaqueous electrolyte solution. In this case, the separator 5 has a lower hardness than any hardness of the positive electrode active substance layer and the negative electrode active substance layer and has a porosity of 70% or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、移動通信機、ノートブック型パソ
コン、パームトップ型パソコン、一体型ビデオカメラ、
ポータブルCD(MD)プレーヤー、コードレス携帯電
話等の電子機器の小型化、軽量化を図る上でこれら電子
機器の電源として小形で大容量の電池が求められてい
る。
2. Description of the Related Art In recent years, mobile communication devices, notebook computers, palmtop computers, integrated video cameras,
In order to reduce the size and weight of electronic devices such as portable CD (MD) players and cordless mobile phones, small and large-capacity batteries are required as power supplies for these electronic devices.

【0003】前記電子機器の電源として普及している電
池としては、アルカリマンガン電池のような一次電池
や、ニッケルカドミウム電池、鉛畜電池のような二次電
池が知られている。その中で、正極活物質にリチウム複
合酸化物、負極にリチウムを吸蔵・放出する炭素質材料
を用いた非水電解液二次電池は、小型、軽量で単電池電
圧が高く、かつ高エネルギー密度を有することから、注
目されている。
[0003] As batteries widely used as power supplies for the electronic equipment, primary batteries such as alkaline manganese batteries and secondary batteries such as nickel cadmium batteries and lead-acid batteries are known. Among them, non-aqueous electrolyte secondary batteries that use lithium composite oxide as the positive electrode active material and carbonaceous materials that occlude and release lithium as the negative electrode are small, lightweight, have high single-cell voltage, and have high energy density. Is attracting attention.

【0004】前述した非水電解液二次電池は、非水電解
液のイオン伝導性が低いために、大電流を取り出すには
水系二次電池に比べて正極活物質および負極活物質の面
積を大きくする必要がある。このため、薄いシート状の
正極および負極をセパレータを挟んで積層し、これを円
筒形または長楕円型の渦巻き状に捲回して発電要素を構
成することが行われている。前記薄いシート状の正極お
よび負極は、一般的に集電体である金属箔に正極活物質
および負極活物質を含む混合物の層をそれぞれ担持する
方法により作製される。
[0004] The non-aqueous electrolyte secondary battery described above requires a smaller area of the positive electrode active material and the negative electrode active material than a water-based secondary battery to extract a large current because the non-aqueous electrolyte has low ionic conductivity. Need to be bigger. For this reason, a thin sheet-like positive electrode and a negative electrode are laminated with a separator interposed therebetween, and this is wound into a cylindrical or oblong spiral shape to form a power generating element. The thin sheet-like positive electrode and negative electrode are generally manufactured by a method in which a metal foil as a current collector carries a layer of a mixture containing a positive electrode active material and a negative electrode active material, respectively.

【0005】非水電解液二次電池は、前記発電要素を電
解液の保持、電気絶縁、形状保持等の目的で容器内に収
納し、この発電要素を収納した容器内に非水電解液を注
入し、前記発電要素を構成する正極、負極およびセパレ
ータに非水電解液を含浸させた構造を有する。
In a non-aqueous electrolyte secondary battery, the power generation element is housed in a container for the purpose of holding the electrolyte, electrical insulation, shape retention, and the like, and the non-aqueous electrolyte is stored in the container in which the power generation element is housed. It has a structure in which a positive electrode, a negative electrode and a separator constituting the power generating element are injected and a non-aqueous electrolyte is impregnated.

【0006】[0006]

【発明が解決しようとする課題】前述した非水電解液二
次電池は、一般に、充放電を多数繰り返すと、放電でき
る容量が徐々に減少し、それに伴なって電池が装填され
た電子機器の作動時間が短くなる。この放電容量の減少
の原因は、種々考えられている。一つの原因としては、
負極活物質に用いる炭素質材料が充電時に膨張し、放電
時に収縮するため、その体積変化の繰り返しによって負
極活物質層の構造が崩壊し、炭素質材料が集電体から脱
落したり、炭素質材料同士の間の電気的な接続が低下す
るという現象が考えられる。また、正極活物質に用いら
れるリチウム複合酸化物も、同様に充電時に膨張し、放
電時に収縮するため、正極活物質層の構造が崩壊し、活
物質そのもの、または導電性を高めるために添加された
カーボン粒子が脱落して容量が低下することが考えられ
る。
In the above-described non-aqueous electrolyte secondary battery, generally, when charging and discharging are repeated a number of times, the capacity that can be discharged gradually decreases. The operating time is shortened. Various causes have been considered for the decrease in the discharge capacity. One cause is that
Since the carbonaceous material used for the negative electrode active material expands during charging and contracts during discharging, the structure of the negative electrode active material layer collapses due to repeated volume changes, and the carbonaceous material falls off the current collector, The phenomenon that the electrical connection between the materials is reduced is considered. In addition, the lithium composite oxide used for the positive electrode active material also expands during charging and contracts during discharging, so that the structure of the positive electrode active material layer collapses and is added to increase the active material itself or conductivity. It is conceivable that the carbon particles fall off and the capacity decreases.

【0007】このような活物質層の崩壊を防止するため
に、例えば活物質層に添加されるカーボン粒子や結着剤
として添加される樹脂の種類、量を種々変更したり、活
物質層を形成する際の条件を変更する等の検討がなされ
ている。しかしながら、このような手段を講じても活物
質層の崩壊を効果的に防止することが困難であった。
In order to prevent the active material layer from collapsing, for example, the types and amounts of carbon particles added to the active material layer and the resin added as a binder are variously changed, or the active material layer is changed. Investigations have been made to change the conditions for formation. However, it has been difficult to effectively prevent the active material layer from collapsing even if such measures are taken.

【0008】一方、活物質層の構造が崩壊するのは、充
電により活物質が膨張した時に生じる圧力が、逃げるこ
となく発電要素の内部に蓄積されることが原因であると
考えられている。これを回避するために発電要素の内部
に空間を設けたり、セパレータに気孔率の大きな多孔性
材料を用いること等の方法により圧力を逃がすことが考
えられている。しかしながら、これらの方法では二次電
池の体積が大きくなるため、単位体積当たりの充放電容
量が低下する。特に、後者の方法(セパレータの気孔率
を大きくする)では活物質層表面の凹凸等がセパレータ
を貫通して内部短絡を起こす恐れがある。内部短絡を回
避するためにセパレータの厚さを厚くすると、同様に単
位体積当たりの充放電容量が低下する。
On the other hand, it is considered that the collapse of the structure of the active material layer is caused by the fact that pressure generated when the active material expands due to charging is accumulated inside the power generating element without escaping. In order to avoid this, it is considered to release the pressure by a method such as providing a space inside the power generating element or using a porous material having a high porosity for the separator. However, in these methods, since the volume of the secondary battery is increased, the charge / discharge capacity per unit volume is reduced. In particular, in the latter method (to increase the porosity of the separator), there is a possibility that irregularities on the surface of the active material layer penetrate the separator and cause an internal short circuit. When the thickness of the separator is increased to avoid an internal short circuit, the charge / discharge capacity per unit volume similarly decreases.

【0009】本発明は、単位体積当たりの容量低下およ
び内部短絡の発生を招くことなく、充放電の繰り返しに
よる放電容量の減少を防止することが可能な非水電解液
二次電池を提供しようとするものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of preventing a reduction in discharge capacity due to repetition of charging and discharging without causing a reduction in capacity per unit volume and occurrence of an internal short circuit. Is what you do.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明に係わる非水電解液二次電池は、集電体の少な
くとも片面に正極活物質層を形成した正極と集電体の少
なくとも片面に負極活物質層を形成した負極とをセパレ
ータを介して積層した発電要素、および非水電解液を備
えた非水電解液二次電池であって、前記セパレータは、
前記正極活物質層および前記負極活物質層の硬度のいず
れよりも低い硬度を有し、かつ70%以下の気孔率を有
することを特徴とするものである。
A non-aqueous electrolyte secondary battery according to the present invention for achieving the above object has at least one of a positive electrode having a positive electrode active material layer formed on at least one surface of a current collector and a current collector. A power generating element in which a negative electrode having a negative electrode active material layer formed on one surface thereof is stacked via a separator, and a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte, wherein the separator is
It has a hardness lower than any of the hardnesses of the positive electrode active material layer and the negative electrode active material layer, and has a porosity of 70% or less.

【0011】このような構成の非水電解液二次電池にお
いては、充電時に正極活物質および負極活物質の膨張に
よって生じる圧力を前記正負極の活物質層の硬度より低
い硬度を有する柔軟なセパレータの変形により吸収する
ことができる。このため、正極活物質層および負極活物
質層の構造崩壊を防止することができる。また、前記セ
パレータの気孔率を70%以下にすることによって、正
負極間の内部短絡を防止することができる。したがっ
て、単位体積当たりの容量低下および内部短絡の発生を
招くことなく、充放電の繰り返しによる放電容量の減少
を防止した長寿命の非水電解液二次電池を得ることがで
きる。
In the non-aqueous electrolyte secondary battery having such a configuration, the pressure generated by the expansion of the positive electrode active material and the negative electrode active material during charging is controlled by a flexible separator having a hardness lower than the hardness of the positive and negative electrode active material layers. Can be absorbed by deformation. For this reason, structural collapse of the positive electrode active material layer and the negative electrode active material layer can be prevented. By setting the porosity of the separator to 70% or less, an internal short circuit between the positive and negative electrodes can be prevented. Therefore, it is possible to obtain a long-life non-aqueous electrolyte secondary battery in which a reduction in discharge capacity due to repetition of charging and discharging is prevented without causing a reduction in capacity per unit volume and occurrence of an internal short circuit.

【0012】本発明に係わる別の非水電解液二次電池
は、集電体の少なくとも片面に正極活物質層を形成した
正極と集電体の少なくとも片面に負極活物質層を形成し
た負極とをセパレータを介して積層した発電要素、およ
び非水電解液を備えた非水電解液二次電池であって、前
記セパレータは、互いに硬度の異なる2つ以上の材料層
を積層した構造を有し、かつ前記正極活物質層に接する
前記材料層が該正極活物質層の硬度より低い硬度を有
し、前記負極活物質層と接する前記材料層が該負極活物
質層の硬度より低い硬度を有することを特徴とするもの
である。
Another non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode having a positive electrode active material layer formed on at least one surface of a current collector and a negative electrode having a negative electrode active material layer formed on at least one surface of the current collector. A power generating element laminated with a separator interposed therebetween, and a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte, wherein the separator has a structure in which two or more material layers having different hardnesses are laminated. And, the material layer in contact with the positive electrode active material layer has a hardness lower than the hardness of the positive electrode active material layer, and the material layer in contact with the negative electrode active material layer has a hardness lower than the hardness of the negative electrode active material layer. It is characterized by the following.

【0013】このような構成の非水電解液二次電池にお
いては、セパレータは互いに硬度の異なる2つ以上の材
料層を積層した構造を有し、正極活物質層に接する前記
材料層(第1材料層)が該正極活物質層の硬度より低い
硬度を有するため、充電時の正極活物質の膨張によって
生じる圧力を前記第1材料層により吸収することができ
る。一方、負極活物質層と接する前記セパレータの材料
層(第2材料層)は該負極活物質層の硬度より低い硬度
を有するため、充電時の負極活物質の膨張によって生じ
る圧力を前記第2材料により吸収することができる。そ
の結果、正極活物質層および負極活物質層の構造崩壊を
防止することができる。
In the non-aqueous electrolyte secondary battery having such a configuration, the separator has a structure in which two or more material layers having different hardnesses are laminated, and the material layer (the first material layer) in contact with the positive electrode active material layer is used. Since the material layer has a hardness lower than the hardness of the positive electrode active material layer, the pressure generated by the expansion of the positive electrode active material during charging can be absorbed by the first material layer. On the other hand, since the material layer (second material layer) of the separator in contact with the negative electrode active material layer has a hardness lower than the hardness of the negative electrode active material layer, the pressure generated by the expansion of the negative electrode active material during charging is reduced by the second material layer. Can be absorbed. As a result, structural collapse of the positive electrode active material layer and the negative electrode active material layer can be prevented.

【0014】また、前記第1、第2の材料層の間に70
%以下の気孔率を有する第3材料層を配置してセパレー
タを構成することによって、正負極間の内部短絡を防止
することができる。
[0014] Further, 70 between the first and second material layers.
By arranging the third material layer having a porosity of not more than 0.1% to constitute the separator, an internal short circuit between the positive and negative electrodes can be prevented.

【0015】したがって、単位体積当たりの容量低下お
よび内部短絡の発生を招くことなく、充放電の繰り返し
による放電容量の減少を防止した長寿命の非水電解液二
次電池を得ることができる。
Therefore, it is possible to obtain a long-life non-aqueous electrolyte secondary battery in which a decrease in discharge capacity due to repetition of charging and discharging is prevented without causing a reduction in capacity per unit volume and occurrence of internal short circuit.

【0016】[0016]

【発明の実施の形態】以下、本発明に係わる非水電解液
二次電池(例えば円筒形非水電解液二次電池)を図1を
参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery (for example, a cylindrical non-aqueous electrolyte secondary battery) according to the present invention will be described in detail with reference to FIG.

【0017】例えばステンレスからなる有底円筒状の容
器1は、底部に絶縁体2が配置されている。発電要素3
は、前記容器1内に収納されている。前記発電要素3
は、正極4、セパレ―タ5及び負極6をこの順序で積層
した積層体を例えば前記負極6が外側に位置するように
渦巻き状に巻回した構造になっている。
A bottomed cylindrical container 1 made of, for example, stainless steel has an insulator 2 disposed at the bottom. Power generation element 3
Are stored in the container 1. The power generating element 3
Has a structure in which a laminated body in which a positive electrode 4, a separator 5 and a negative electrode 6 are laminated in this order is spirally wound so that the negative electrode 6 is located outside.

【0018】前記容器1内には、電解液が収容されてい
る。中央部が開口された絶縁紙7は、前記容器1内の前
記電極群3の上方に載置されている。絶縁封口板8は、
前記容器1の上部開口部に配置され、かつ前記上部開口
部付近を内側にかしめ加工することにより前記封口板8
は前記容器1に液密に固定されている。正極端子9は、
前記絶縁封口板8の中央には嵌合されている。正極リ―
ド10の一端は、前記正極4に、他端は前記正極端子9
にそれぞれ接続されている。前記負極6は、図示しない
負極リ―ドを介して負極端子である前記容器1に接続さ
れている。
The container 1 contains an electrolytic solution. The insulating paper 7 having a central portion opened is placed above the electrode group 3 in the container 1. The insulating sealing plate 8
The sealing plate 8 is disposed at the upper opening of the container 1 and caulked in the vicinity of the upper opening inward.
Is fixed to the container 1 in a liquid-tight manner. The positive terminal 9 is
The insulating sealing plate 8 is fitted at the center. Positive lead
One end of the cathode 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9.
Connected to each other. The negative electrode 6 is connected to the container 1 as a negative terminal via a negative lead (not shown).

【0019】前記正極は、集電体の少なくとも片面に活
物質を含む正極活物質層を形成した構造を有する。
The positive electrode has a structure in which a positive electrode active material layer containing an active material is formed on at least one surface of a current collector.

【0020】前記集電体としては、例えばアルミニウ
ム、ニッケルまたはステンレスの板、アルミニウム、ニ
ッケルまたはステンレスのメッシュ等を挙げることがで
きる。
Examples of the current collector include a plate of aluminum, nickel or stainless steel, and a mesh of aluminum, nickel or stainless steel.

【0021】前記正極活物質としては、種々の酸化物、
例えば二酸化マンガン、リチウムマンガン複合酸化物、
リチウム含有ニッケル酸化物、リチウム含有コバルト化
合物、リチウム含有ニッケルコバルト酸化物、リチウム
含有鉄酸化物、リチウムを含むバナジウム酸化物や、二
硫化チタン、二硫化モリブデンなどのカルコゲン化合物
などを挙げることができる。中でも、リチウムコバルト
酸化物(LiCoO2)、リチウムニッケル酸化物(L
iNiO2 )、リチウムマンガン酸化物(LiMn2
4 またはLiMnO2 )を用いると、高電圧が得られる
ために好ましい。
As the positive electrode active material, various oxides,
For example, manganese dioxide, lithium manganese composite oxide,
Examples include lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel-cobalt oxide, lithium-containing iron oxide, lithium-containing vanadium oxide, and chalcogen compounds such as titanium disulfide and molybdenum disulfide. Among them, lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (L
iNiO 2 ), lithium manganese oxide (LiMn 2 O)
4 or LiMnO 2 ) is preferable because a high voltage can be obtained.

【0022】前記正極活物質層は、結着剤および導電剤
を含有することが好ましい。
The positive electrode active material layer preferably contains a binder and a conductive agent.

【0023】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)等
を用いることができる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). it can.

【0024】前記導電剤としては、例えばアセチレンブ
ラック、カーボンブラック、黒鉛等を挙げることができ
る。
Examples of the conductive agent include acetylene black, carbon black, graphite and the like.

【0025】前記負極は、集電体の少なくとも片面に活
物質を含む負極活物質層を形成した構造を有する。
The negative electrode has a structure in which a negative electrode active material layer containing an active material is formed on at least one surface of a current collector.

【0026】前記負極活物質は、特に限定されないが、
金属リチウム、リチウム合金、または充放電時にリチウ
ムイオンを可逆的に吸蔵・放出、もしくはインターカレ
ート・ディスインターカレートするコークス、炭素繊
維、黒鉛、メソフェーズピッチ系炭素、熱分解気相炭素
質物、樹脂焼成体等の炭素質材料等を挙げることができ
る。
The negative electrode active material is not particularly limited.
Metallic lithium, lithium alloy, or coke, carbon fiber, graphite, mesophase pitch-based carbon, pyrolytic gas phase carbonaceous material, resin that reversibly occupy / release, or intercalate / disintercalate lithium ions during charge / discharge Examples thereof include carbonaceous materials such as fired bodies.

【0027】前記正極活物質層は、例えば結着剤を含有
することが好ましい。
The positive electrode active material layer preferably contains, for example, a binder.

【0028】前記結着剤としては、例えばポリテトラフ
ルオロエチレン、ポリビニリデンフルオロライド、エチ
レン−プロピレン−ジエン共重合体、スチレン−ブタジ
エンゴム、カルボキシメチルセルロース等の結着剤を含
有することが好ましい。
The binder preferably contains, for example, a binder such as polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene copolymer, styrene-butadiene rubber, and carboxymethyl cellulose.

【0029】前記非水電解液は、電解質を非水溶媒で溶
解した組成を有する。
The non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.

【0030】電解質としては、例えば過塩素酸リチウム
(LiClO4)、ホウフッ化リチウム(LiBF4)、
六フッ化燐酸リチウム(LiPF6)、六フッ化砒素酸
リチウム(LiAsF6)、トリフルオロメタンスルホ
ン酸リチウム(LiCF3SO 3)、LiN(CF3
22等を用いることができる。
As the electrolyte, for example, lithium perchlorate
(LiClOFour), Lithium borofluoride (LiBFFour),
Lithium hexafluorophosphate (LiPF6), Arsenic hexafluoride
Lithium (LiAsF)6), Trifluoromethanesulfo
Lithium phosphate (LiCFThreeSO Three), LiN (CFThreeS
OTwo)TwoEtc. can be used.

【0031】非水溶媒としては、例えばエチレンカーボ
ネート、プロピレンカーボネート、ブチレンカーボネー
トなどの環状カーボネート;γ−ブチロラクトン等の環
状エステル;テトラメチルスルホラン、ジメチルスルホ
キシド、N−メチルピロリドン、ジメチルフォルムアミ
ドまたはこれらの誘導体などの他の非水溶媒;等を用い
ることができる。これらの非水溶媒は、1種または2種
以上の混合物の形態で用いることができる。さらに、こ
れらの非水溶媒にジメチルカーボネート、メチルエチル
カーボネート、ジエチルカーボネートのような鎖状カー
ボネートやアセトニトリル、酢酸エチル、酢酸メチル、
トルエン、キシレン等の溶媒を混合することにより非水
電解液の粘度を下げることが可能になる。
Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; cyclic esters such as γ-butyrolactone; tetramethylsulfolane, dimethylsulfoxide, N-methylpyrrolidone, dimethylformamide and derivatives thereof. And other non-aqueous solvents; and the like. These non-aqueous solvents can be used in the form of one kind or a mixture of two or more kinds. In addition, dimethyl carbonate, methyl ethyl carbonate, chain carbonate such as diethyl carbonate and acetonitrile, ethyl acetate, methyl acetate, these non-aqueous solvents
By mixing a solvent such as toluene and xylene, the viscosity of the non-aqueous electrolyte can be reduced.

【0032】前記非水溶媒中の前記電解質の濃度は、
0.5モル/L以上にすることが好ましい。
The concentration of the electrolyte in the non-aqueous solvent is as follows:
It is preferable to set it to 0.5 mol / L or more.

【0033】前記セパレータは、次のような(1),
(2)に説明する構造を有する。
The separator has the following (1),
It has the structure described in (2).

【0034】(1)セパレータ このセパレータは、前記正極活物質層および前記負極活
物質層の硬度のいずれよりも低い硬度を有し、かつ70
%以下の気孔率を有する。
(1) Separator The separator has a hardness lower than that of each of the positive electrode active material layer and the negative electrode active material layer, and
% Or less.

【0035】前記セパレータは、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレン共重合体、エチレン−
ブテン共重合体からなる微多孔性膜またはこれら材料の
繊維を有する織布、不織布により作られる。特に、微多
孔性膜が好ましい。
The separator is made of polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-
It is made of a microporous membrane made of a butene copolymer or a woven or nonwoven fabric having fibers of these materials. In particular, a microporous membrane is preferred.

【0036】電池組立前の前記セパレータの硬度は、例
えば硬度試験機(株式会社エリオニクス製商品名;EN
T−1100)を用いた時の前記正極活物質層および前
記負極活物質層の硬度に対する差が0.2〜40である
ことが好ましい。
The hardness of the separator before assembling the battery may be determined, for example, by using a hardness tester (trade name, manufactured by Elionix Inc .; EN).
The difference between the hardness of the positive electrode active material layer and the hardness of the negative electrode active material layer when T-1100) is used is preferably 0.2 to 40.

【0037】電池に組み込んで使用した後の前記セパレ
ータの硬度は、例えば硬度試験機(株式会社エリオニク
ス製商品名;ENT−1100)を用いた時の前記正極
活物質層および前記負極活物質層の硬度に対する差が
0.1〜30であることが好ましい。
The hardness of the separator after being used after being incorporated in a battery can be determined, for example, by measuring the hardness of the positive electrode active material layer and the negative electrode active material layer when using a hardness tester (trade name: ENT-1100, manufactured by Elionix Inc.). The difference with respect to the hardness is preferably 0.1 to 30.

【0038】前記セパレータの気孔率が70%を超える
と、正負極活物質層の表面の凹凸に起因して内部短絡を
生じる恐れがある。より好ましいセパレータの気孔率は
30〜60%である。
If the porosity of the separator exceeds 70%, an internal short circuit may occur due to unevenness on the surface of the positive and negative electrode active material layers. More preferably, the porosity of the separator is 30 to 60%.

【0039】(2)セパレータ このセパレータは、互いに硬度の異なる2つ以上の材料
層を積層した構造を有し、かつ前記正極活物質層に接す
る前記材料層(第1材料層)が該正極活物質層の硬度よ
り低い硬度を有し、前記負極活物質層と接する前記材料
層(第2材料層)が該負極活物質層の硬度より低い硬度
を有する。このようなセパレータは、正負極活物質層の
硬度に則した硬度を持つ材料層を選択できるため、正負
極活物質の膨張により生じた圧力を効果的に吸収してそ
れら正負極活物質層の構造崩壊を防止することが可能に
なる。
(2) Separator This separator has a structure in which two or more material layers having different hardnesses are laminated, and the material layer (first material layer) in contact with the positive electrode active material layer is formed of the positive electrode active material layer. The material layer (second material layer) having a hardness lower than the hardness of the material layer and being in contact with the negative electrode active material layer has a hardness lower than the hardness of the negative electrode active material layer. For such a separator, a material layer having a hardness in accordance with the hardness of the positive and negative electrode active material layers can be selected, so that the pressure generated by the expansion of the positive and negative electrode active materials can be effectively absorbed and these positive and negative electrode active material layers can be selected. It is possible to prevent structural collapse.

【0040】前記セパレータの各材料層は、ポリエチレ
ン、ポリプロピレン、エチレン−プロピレン共重合体、
エチレン−ブテン共重合体からなる微多孔性膜またはこ
れら材料の繊維を有する織布、不織布により作られる。
特に、微多孔性膜が好ましい。
Each material layer of the separator is made of polyethylene, polypropylene, ethylene-propylene copolymer,
It is made of a microporous membrane made of an ethylene-butene copolymer or a woven or nonwoven fabric having fibers of these materials.
In particular, a microporous membrane is preferred.

【0041】電池組立前の前記第1材料層の硬度は、例
えば硬度試験機(株式会社エリオニクス製商品名;EN
T−1100)を用いた時の前記正極活物質層の硬度に
対する差が0.2〜40であることが好ましい。
The hardness of the first material layer before assembling the battery may be determined, for example, by using a hardness tester (trade name, manufactured by Elionix Inc .; EN)
The difference in hardness of the positive electrode active material layer when (T-1100) is used is preferably 0.2 to 40.

【0042】電池組立前の前記第2材料層の硬度は、例
えば硬度試験機(株式会社エリオニクス製商品名;EN
T−1100)を用いた時の前記負極活物質層の硬度に
対する差が0.2〜40であることが好ましい。
The hardness of the second material layer before assembling the battery may be determined, for example, by using a hardness tester (trade name, manufactured by Elionix Inc .; EN)
The difference in hardness of the negative electrode active material layer when (T-1100) is used is preferably 0.2 to 40.

【0043】電池に組み込んで使用した後の前記第1材
料層の硬度は、例えば硬度試験機(株式会社エリオニク
ス製商品名;ENT−1100)を用いた時の前記正極
活物質層の硬度に対する差が0.1〜30であることが
好ましい。
The hardness of the first material layer after being used by being incorporated in a battery is, for example, a difference from the hardness of the positive electrode active material layer when a hardness tester (trade name: ENT-1100 manufactured by Elionix Inc.) is used. Is preferably 0.1 to 30.

【0044】電池に組み込んで使用した後の前記第2材
料層の硬度は、例えば硬度試験機(株式会社エリオニク
ス製商品名;ENT−1100)を用いた時の前記負極
活物質層の硬度に対する差が0.1〜30であることが
好ましい。
The hardness of the second material layer after being used after being incorporated in a battery is, for example, a difference from the hardness of the negative electrode active material layer when a hardness tester (trade name: ENT-1100 manufactured by Elionix Inc.) is used. Is preferably 0.1 to 30.

【0045】前記セパレータの各材料層のうち、少なく
一方の材料層の気孔率は、70%以下であることが好ま
しい。
The porosity of at least one of the material layers of the separator is preferably 70% or less.

【0046】前記セパレータにおいて、前記第1、第2
の材料層の間に70%以下の気孔率を有する第3材料層
を介在させることが好ましい。特に、前記第1、第2の
材料層の硬度を下げる、つまり柔軟性を高めるために、
それらを70%を超える気孔率にした場合、それら材料
層の間に70%以下の気孔率を有する第3材料層を介在
させることは正負極の内部短絡を防止する上で好適であ
る。より好ましい前記第3材料層の気孔率は30〜60
%である。
In the separator, the first and second
It is preferable to interpose a third material layer having a porosity of 70% or less between the material layers. In particular, in order to reduce the hardness of the first and second material layers, that is, to increase the flexibility,
When the porosity exceeds 70%, it is preferable to interpose a third material layer having a porosity of 70% or less between the material layers in order to prevent an internal short circuit between the positive and negative electrodes. More preferably, the porosity of the third material layer is 30 to 60.
%.

【0047】前記セパレータは、前記各材料層を圧着一
体化したり、接着剤を用いた接合したり、または単に重
ねた状態で使用することができる。
The separator can be used in a state in which the respective material layers are integrated by pressure bonding, joined using an adhesive, or simply stacked.

【0048】[0048]

【実施例】以下、本発明の実施例を前述した図1に示す
非水電解液二次電池を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the above-mentioned non-aqueous electrolyte secondary battery shown in FIG.

【0049】(実施例1) <正極の作製>まず、活物質としてのLiCoO2粉末
にアセチレンブラック5重量%添加し、この混合物にポ
リフッ化ビニリデン樹脂の5%ジメチルホルムアミド溶
液を添加してペーストを調製した。このペーストを幅5
5mm、厚さ20μmのアルミニウム箔の片面に塗布
し、乾燥して厚さ90μmの活物質層を形成することに
より正極を作製した。
Example 1 <Preparation of Positive Electrode> First, 5% by weight of acetylene black was added to LiCoO 2 powder as an active material, and a 5% dimethylformamide solution of polyvinylidene fluoride resin was added to this mixture to form a paste. Prepared. This paste is width 5
A positive electrode was prepared by applying the solution to one side of a 5 mm, 20 μm thick aluminum foil and drying to form a 90 μm thick active material layer.

【0050】得られた正極の活物質層の硬度を硬度試験
機(株式会社エリオニクス製商品名;ENT−110
0)を用いて測定したところ、10.0であった。ま
た、前記正極活物質層の気孔率および平均気孔径を水銀
圧入法により測定したところ、気孔率が43%、平均気
孔径が0.5μmであった。
The hardness of the obtained active material layer of the positive electrode was measured using a hardness tester (trade name: ENT-110, manufactured by Elionix Inc.).
It was 10.0 when measured using 0). The porosity and the average pore diameter of the positive electrode active material layer were measured by a mercury porosimetry, and the porosity was 43% and the average pore diameter was 0.5 μm.

【0051】<負極の作製>まず、メソフェーズピッチ
系炭素繊維にポリフッ化ビニリデン樹脂の5%ジメチル
ホルムアミド溶液を添加して同炭素繊維を60重量%含
むペーストを調製した。このペーストを幅57mm、厚
さ12μmの銅箔の片面に塗布し、乾燥して厚さ90μ
mの活物質層を形成することにより負極を作製した。
<Preparation of Negative Electrode> First, a 5% dimethylformamide solution of polyvinylidene fluoride resin was added to mesophase pitch-based carbon fiber to prepare a paste containing the carbon fiber at 60% by weight. This paste was applied to one side of a copper foil having a width of 57 mm and a thickness of 12 μm, and dried to a thickness of 90 μm.
The negative electrode was produced by forming an active material layer of m.

【0052】得られた負極の活物質層の硬度を硬度試験
機(株式会社エリオニクス製商品名;ENT−110
0)を用いて測定したところ、2.7であった。また、
前記負極活物質層の気孔率および平均気孔径を水銀圧入
法により測定したところ、気孔率が39%、平均気孔径
が3μmであった。
The hardness of the active material layer of the obtained negative electrode was measured using a hardness tester (trade name, manufactured by Elionix Inc .; ENT-110).
0) was 2.7. Also,
When the porosity and the average pore diameter of the negative electrode active material layer were measured by a mercury intrusion method, the porosity was 39% and the average pore diameter was 3 μm.

【0053】<非水電解液>エチレンカーボネートとメ
チルエチルカーボネートを1:2の体積比で混合した混
合溶媒に六フッ化燐酸リチウム(LiPF6)を1モル
/L溶解して非水電解液を調製した。
<Non-aqueous electrolyte> Lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / L in a mixed solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2 to prepare a non-aqueous electrolyte. Prepared.

【0054】次いで、前記正負極の間に気孔率45%、
平均気孔径0.3μm、硬度2.4[硬度試験機(株式
会社エリオニクス製商品名;ENT−1100)を用い
て測定]、厚さ25μmのポリエチレン製微多孔膜を挟
んだ後、捲回機により渦巻き状に捲回して直径17mm
の発電要素を作製した。ひきつづき、この発電要素を表
面をニッケルメッキした鉄製の有底円筒状容器(直径1
8mm、長さ65mm)内に挿入し、前記非水電解液を
注入した後、前記容器の開口部に正極端子を有する絶縁
封口板を配置し、前記容器の上部開口部付近を内側にか
しめ加工して液密に固定することにより前述した図1に
示す構造の非水電解液二次電池を組立てた。
Next, a porosity of 45% is provided between the positive and negative electrodes.
An average pore diameter of 0.3 μm, a hardness of 2.4 [measured using a hardness tester (trade name: ENT-1100, manufactured by Elionix Inc.)], a 25 μm-thick polyethylene microporous membrane, and a winding machine Spirally wound with a diameter of 17 mm
Was produced. Subsequently, this power-generating element was made of an iron-bottomed cylindrical container with a nickel-plated surface (diameter 1).
8 mm, length 65 mm), and after injecting the non-aqueous electrolyte, an insulating sealing plate having a positive terminal is placed in the opening of the container, and the vicinity of the upper opening of the container is caulked inward. Then, the non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 was assembled.

【0055】(実施例2)気孔率75%、平均気孔径
0.4μm、硬度1.3[硬度試験機(株式会社エリオ
ニクス製商品名;ENT−1100)を用いて測定]、
厚さ7.5μmの第1、第2のポリエチレン製微多孔膜
の中間に気孔率45%、平均気孔径0.2μm、硬度1
1.3[硬度試験機(株式会社エリオニクス製商品名;
ENT−1100)を用いて測定]、厚さ10μmの第
3ポリエチレン製微多孔膜を介在して一体化することに
より厚さ25μmセパレータを作製した。このセパレー
タを用いた以外、実施例1と同様で、前述した図1に示
す構造の非水電解液二次電池を組立てた。
(Example 2) A porosity of 75%, an average pore diameter of 0.4 µm, and a hardness of 1.3 [measured using a hardness tester (trade name, manufactured by Elionix Inc .; ENT-1100)],
Porosity of 45%, average pore diameter of 0.2 μm, hardness of 1 between the first and second polyethylene microporous membranes having a thickness of 7.5 μm.
1.3 [hardness tester (brand name manufactured by Elionix Inc .;
ENT-1100)] and a 10 μm-thick third polyethylene microporous membrane was interposed and integrated to produce a 25 μm-thick separator. A non-aqueous electrolyte secondary battery having the above-described structure shown in FIG. 1 was assembled in the same manner as in Example 1 except that this separator was used.

【0056】(比較例1)セパレータとして気孔率40
%、平均気孔径0.09μm、硬度7.6[硬度試験機
(株式会社エリオニクス製商品名;ENT−1100)
を用いて測定]、厚さ25μmのポリエチレン製微多孔
膜からなるものを用いた以外、実施例1と同様で、前述
した図1に示す構造の非水電解液二次電池を組立てた。
(Comparative Example 1) Porosity of 40 as separator
%, Average pore diameter 0.09 μm, hardness 7.6 [hardness tester (trade name, manufactured by Elionix Inc .; ENT-1100)]
And a non-aqueous electrolyte secondary battery having the above-described structure shown in FIG. 1 was assembled in the same manner as in Example 1 except that a microporous polyethylene membrane having a thickness of 25 μm was used.

【0057】(比較例2)セパレータとして気孔率62
%、平均気孔径0.07μm、硬度15.3[硬度試験
機(株式会社エリオニクス製商品名;ENT−110
0)を用いて測定]、厚さ25μmのポリエチレン製微
多孔膜からなるものを用いた以外、実施例1と同様で、
前述した図1に示す構造の非水電解液二次電池を組立て
た。
(Comparative Example 2) Porosity of 62 as separator
%, Average pore diameter 0.07 μm, hardness 15.3 [hardness tester (trade name, manufactured by Elionix Inc .; ENT-110)
0), except that a 25 μm-thick polyethylene microporous membrane was used.
A non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 was assembled.

【0058】(比較例3)セパレータとして気孔率75
%、平均気孔径0.4μm、硬度1.3[硬度試験機
(株式会社エリオニクス製商品名;ENT−1100)
を用いて測定]、厚さ25μmのポリエチレン製微多孔
膜からなるものを用いた以外、実施例1と同様で、前述
した図1に示す構造の非水電解液二次電池を組立てた。
(Comparative Example 3) Porosity of 75 as separator
%, Average pore diameter 0.4 μm, hardness 1.3 [hardness tester (brand name manufactured by Elionix Inc .; ENT-1100)
And a non-aqueous electrolyte secondary battery having the above-described structure shown in FIG. 1 was assembled in the same manner as in Example 1 except that a microporous polyethylene membrane having a thickness of 25 μm was used.

【0059】得られた実施例1,2および比較例1〜3
の非水電解液二次電池について、電流値1400mAh
の定電流充電を行い、電圧が4.2Vに達した後に4.
2Vの電圧を維持するように電流値を制御して合計3時
間充電を行ない、その後電流値1400mAhの定電流
放電を行なって電圧が3.0Vに達した時点で放電を終
了する充放電を繰り返し、充放電の繰り返し回数と放電
容量維持率(1回目の放電容量を100%とする)との
関係を調べた。その結果を図2に示す。
The obtained Examples 1 and 2 and Comparative Examples 1 to 3
Current value of the non-aqueous electrolyte secondary battery of 1400 mAh
After the voltage reaches 4.2 V, the constant current charging of
The charging is performed for a total of 3 hours while controlling the current value so as to maintain the voltage of 2 V, and thereafter, the constant current discharging at the current value of 1400 mAh is performed, and the discharging is terminated when the voltage reaches 3.0 V. The relationship between the number of charge / discharge repetitions and the discharge capacity retention ratio (the first discharge capacity was set to 100%) was examined. The result is shown in FIG.

【0060】また、実施例1,2および比較例1〜3の
非水電解液二次電池について前述したのと同様な充放電
を行なった時の単位体積当たりの放電容量および内部短
絡の発生個数(100個中)を調べた。これらの結果を
下記表1に示す。
The discharge capacity per unit volume and the number of occurrences of internal short-circuits when the same charge / discharge was performed as described above for the non-aqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 (Out of 100) were examined. The results are shown in Table 1 below.

【0061】[0061]

【表1】 [Table 1]

【0062】図2から明らかなように正極活物質層およ
び負極活物質層の硬度より小さい硬度を有するポリエチ
レン製微多孔膜からなるセパレータを用いた実施例1お
よび比較例3の二次電池、気孔率の低い第3ポリエチレ
ン製微多孔膜の両面に正極活物質層および負極活物質層
の硬度より小さい硬度を有する第1、第2のポリエチレ
ン製微多孔膜を配置した実施例2の二次電池は、負極活
物質層の硬度より大きな硬度を有するポリエチレン製微
多孔膜からなるセパレータを用いた比較例1の二次電
池、および正極活物質層および負極活物質層の硬度より
いずも大きな硬度を有するポリエチレン製微多孔膜から
なるセパレータを用いた比較例2の二次電池に比べて充
放電の繰り返しに伴う放電容量の低下が少ないことがわ
かる。
As is apparent from FIG. 2, the secondary batteries of Example 1 and Comparative Example 3 using a separator made of a microporous polyethylene film having a hardness smaller than the hardness of the positive electrode active material layer and the negative electrode active material layer, The secondary battery of Example 2 in which first and second polyethylene microporous films having hardnesses smaller than the hardness of the positive electrode active material layer and the negative electrode active material layer are disposed on both surfaces of the third polyethylene microporous film having a low ratio. Is a secondary battery of Comparative Example 1 using a separator made of a polyethylene microporous membrane having a hardness greater than the hardness of the negative electrode active material layer, and a hardness that is greater than the hardness of each of the positive electrode active material layer and the negative electrode active material layer It can be seen that the decrease in discharge capacity due to repetition of charging and discharging is smaller than that of the secondary battery of Comparative Example 2 using a separator made of a polyethylene microporous membrane having the following.

【0063】一方、前記表1から明らかなように実施例
1,2および比較例1,2の二次電池は、比較例3に比
べて単位体積当たりの放電容量が高いことがわかる。
On the other hand, as is apparent from Table 1, the secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2 have higher discharge capacities per unit volume than Comparative Example 3.

【0064】また、実施例1,2および比較例1の二次
電池は、いずれも内部短絡の発生がなく高い信頼性を有
する。これに対し、前述した図2において充放電の繰り
返しに伴う放電容量の低下が少ない比較例3の二次電池
は、内部短絡の発生が個数が高く、信頼性の低いもので
あることがわかる。
The secondary batteries of Examples 1 and 2 and Comparative Example 1 have high reliability without any internal short circuit. On the other hand, in FIG. 2 described above, it can be seen that the secondary battery of Comparative Example 3 in which the decrease in the discharge capacity due to the repetition of charge / discharge is low in the number of occurrences of internal short-circuits and low in reliability.

【0065】なお、前記実施例では円筒形の非水電解液
二次電池を例にして説明したが、角形、平板形の非水電
解液二次電池にも同様に適用することができる。
In the above embodiment, a cylindrical non-aqueous electrolyte secondary battery has been described as an example. However, the present invention can be similarly applied to a square or flat non-aqueous electrolyte secondary battery.

【0066】[0066]

【発明の効果】以上詳述したように、本発明によれば単
位体積当たりの容量低下および内部短絡の発生を招くこ
となく、充放電の繰り返しによる放電容量の減少を防止
した高性能、高信頼性の非水電解液二次電池を提供でき
る。
As described above in detail, according to the present invention, high performance and high reliability without reducing the discharge capacity due to repetition of charging / discharging without causing a reduction in capacity per unit volume and occurrence of internal short circuit. The non-aqueous electrolyte secondary battery of the present invention can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる非水電解液二次電池を示す半載
図。
FIG. 1 is a half-mount diagram showing a non-aqueous electrolyte secondary battery according to the present invention.

【図2】本発明の実施例1,2および比較例1〜3の二
次電池における充放電の繰り返し回数と放電容量維持率
との関係を示す線図。
FIG. 2 is a diagram showing the relationship between the number of charge / discharge repetitions and the discharge capacity retention ratio in the secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 of the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 3…発電要素、 4…正極、 5…セパレータ、 6…負極 8…絶縁封口板。 DESCRIPTION OF SYMBOLS 1 ... Container, 3 ... Power generation element, 4 ... Positive electrode, 5 ... Separator, 6 ... Negative electrode 8 ... Insulating sealing plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 集電体の少なくとも片面に正極活物質層
を形成した正極と集電体の少なくとも片面に負極活物質
層を形成した負極とをセパレータを介して積層した発電
要素、および非水電解液を備えた非水電解液二次電池で
あって、 前記セパレータは、前記正極活物質層および前記負極活
物質層の硬度のいずれよりも低い硬度を有し、かつ70
%以下の気孔率を有することを特徴とする非水電解液二
次電池。
1. A power generating element in which a positive electrode having a positive electrode active material layer formed on at least one surface of a current collector and a negative electrode having a negative electrode active material layer formed on at least one surface of the current collector are laminated with a separator interposed therebetween. A nonaqueous electrolyte secondary battery including an electrolyte, wherein the separator has a hardness lower than any of the hardness of the positive electrode active material layer and the hardness of the negative electrode active material layer, and
% Non-aqueous electrolyte secondary battery having a porosity of not more than 0.1%.
【請求項2】 集電体の少なくとも片面に正極活物質層
を形成した正極と集電体の少なくとも片面に負極活物質
層を形成した負極とをセパレータを介して積層した発電
要素、および非水電解液を備えた非水電解液二次電池で
あって、 前記セパレータは、互いに硬度の異なる2つ以上の材料
層を積層した構造を有し、かつ前記正極活物質層に接す
る前記材料層が該正極活物質層の硬度より低い硬度を有
し、前記負極活物質層と接する前記材料層が該負極活物
質層の硬度より低い硬度を有することを特徴とする非水
電解液二次電池。
2. A power generating element in which a positive electrode having a positive electrode active material layer formed on at least one surface of a current collector and a negative electrode having a negative electrode active material layer formed on at least one surface of the current collector are laminated with a separator interposed therebetween. A nonaqueous electrolyte secondary battery including an electrolyte, wherein the separator has a structure in which two or more material layers having different hardnesses are stacked, and the material layer in contact with the positive electrode active material layer is A non-aqueous electrolyte secondary battery having a hardness lower than the hardness of the positive electrode active material layer, and wherein the material layer in contact with the negative electrode active material layer has a hardness lower than the hardness of the negative electrode active material layer.
【請求項3】 前記セパレータは、前記正極活物質層に
接する材料層と前記負極活物質層に接する材料層との間
に70%以下の気孔率を有する材料層が配置されること
を特徴とする請求項2記載の非水電解液二次電池。
3. The separator according to claim 1, wherein a material layer having a porosity of 70% or less is disposed between a material layer in contact with the positive electrode active material layer and a material layer in contact with the negative electrode active material layer. The non-aqueous electrolyte secondary battery according to claim 2.
JP12992099A 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery Expired - Lifetime JP4664455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12992099A JP4664455B2 (en) 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12992099A JP4664455B2 (en) 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000323173A true JP2000323173A (en) 2000-11-24
JP4664455B2 JP4664455B2 (en) 2011-04-06

Family

ID=15021679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12992099A Expired - Lifetime JP4664455B2 (en) 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4664455B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100450A (en) * 2001-06-20 2003-04-04 Semiconductor Energy Lab Co Ltd Light emitting equipment and its producing method
JP2008016210A (en) * 2006-07-03 2008-01-24 Sony Corp Secondary battery and its manufacturing method
US7728326B2 (en) 2001-06-20 2010-06-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US7952101B2 (en) 2001-06-20 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2013229300A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3731306A1 (en) 2019-04-25 2020-10-28 SK Innovation Co., Ltd. Separator for secondary battery and electrochemical device using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325865A (en) * 1989-06-21 1991-02-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO1997008763A1 (en) * 1995-08-28 1997-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Cell and production method thereof
JPH0992257A (en) * 1995-09-27 1997-04-04 Sony Corp Nonaqueous electrolyte secondary battery
JPH09161757A (en) * 1995-12-12 1997-06-20 Sony Corp Multilayered nonaqueous electrolyte secondary battery
JPH10284045A (en) * 1997-03-31 1998-10-23 Japan Storage Battery Co Ltd Manufacture of porous polymer electrolyte and nonaqueous electrolyte battery
JPH10302842A (en) * 1997-04-30 1998-11-13 Shin Kobe Electric Mach Co Ltd Winding type secondary battery
JPH1126019A (en) * 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325865A (en) * 1989-06-21 1991-02-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO1997008763A1 (en) * 1995-08-28 1997-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Cell and production method thereof
JPH0992257A (en) * 1995-09-27 1997-04-04 Sony Corp Nonaqueous electrolyte secondary battery
JPH09161757A (en) * 1995-12-12 1997-06-20 Sony Corp Multilayered nonaqueous electrolyte secondary battery
JPH10284045A (en) * 1997-03-31 1998-10-23 Japan Storage Battery Co Ltd Manufacture of porous polymer electrolyte and nonaqueous electrolyte battery
JPH10302842A (en) * 1997-04-30 1998-11-13 Shin Kobe Electric Mach Co Ltd Winding type secondary battery
JPH1126019A (en) * 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100450A (en) * 2001-06-20 2003-04-04 Semiconductor Energy Lab Co Ltd Light emitting equipment and its producing method
US7728326B2 (en) 2001-06-20 2010-06-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US7952101B2 (en) 2001-06-20 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8415660B2 (en) 2001-06-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8822982B2 (en) 2001-06-20 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US9166180B2 (en) 2001-06-20 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having an organic light emitting diode that emits white light
US9178168B2 (en) 2001-06-20 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. White light emitting device
US9276224B2 (en) 2001-06-20 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device having dual flexible substrates
JP2008016210A (en) * 2006-07-03 2008-01-24 Sony Corp Secondary battery and its manufacturing method
JP2013229300A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery

Also Published As

Publication number Publication date
JP4664455B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
EP0991132B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
US20060240290A1 (en) High rate pulsed battery
JP2002042889A (en) Nonaqueous electrolyte secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP2003282148A (en) Thin lithium ion secondary battery
JP2000149997A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2002015771A (en) Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
US20030068555A1 (en) Non-aqueous electrolyte secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP2002334690A (en) Solid electrolyte battery and its manufacturing method
JP2002083630A (en) LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JPH1167273A (en) Lithium secondary battery
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2001084987A (en) Electrochemical device
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JPH08213049A (en) Lithium secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2004193139A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

EXPY Cancellation because of completion of term