JP2005340028A - Activator particle for nonaqueous electrolyte secondary battery - Google Patents

Activator particle for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005340028A
JP2005340028A JP2004158310A JP2004158310A JP2005340028A JP 2005340028 A JP2005340028 A JP 2005340028A JP 2004158310 A JP2004158310 A JP 2004158310A JP 2004158310 A JP2004158310 A JP 2004158310A JP 2005340028 A JP2005340028 A JP 2005340028A
Authority
JP
Japan
Prior art keywords
active material
metal
silicon
electrode
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004158310A
Other languages
Japanese (ja)
Other versions
JP4829483B2 (en
Inventor
Yoshiki Sakaguchi
坂口善樹
Yoshihiko Honda
本田仁彦
Kiyotaka Yasuda
安田清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004158310A priority Critical patent/JP4829483B2/en
Priority to PCT/JP2005/008777 priority patent/WO2005117168A1/en
Publication of JP2005340028A publication Critical patent/JP2005340028A/en
Application granted granted Critical
Publication of JP4829483B2 publication Critical patent/JP4829483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide activator particles for a nonaqueous electrolyte secondary battery having high electron conductivity, in a simple manufacturing method. <P>SOLUTION: The activator particles for the nonaqueous electrolyte secondary battery are composed of core particles made of silicon or a silicon alloy, on the surface of which a metal deposited by chemical plating is adhered. The activator particles are obtained by adding the core particles made of silicon or a silicon alloy in alkaline solution of pH7 or higher containing metal in an ionic state, and depositing the metal on the surface of the core particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液二次電池用活物質粒子に関する。また本発明は、該活物質粒子をはじめとする無電解めっき物の製造方法に関する。   The present invention relates to active material particles for non-aqueous electrolyte secondary batteries. The present invention also relates to a method for producing an electroless plated article including the active material particles.

現在、携帯電話やパーソナルコンピュータの二次電池には、リチウムイオン二次電池が主に使用されている。この理由は、同電池が他の二次電池と比較して高いエネルギー密度を有しているからである。近年の携帯電話やパーソナルコンピュータの多機能化に伴いこれらの消費電力が著しく増加しており、大容量の二次電池がますます必要となっている。しかし、現状の電極活物質を用いている限り、近い将来そのニーズに応えるのは困難となると予想される。   Currently, lithium ion secondary batteries are mainly used as secondary batteries for mobile phones and personal computers. This is because the battery has a higher energy density than other secondary batteries. With the recent increase in functionality of mobile phones and personal computers, their power consumption has increased remarkably, and large capacity secondary batteries are increasingly required. However, as long as the current electrode active material is used, it will be difficult to meet the needs in the near future.

リチウムイオン二次電池の負極活物質には、一般にグラファイトが使用されている。現在では、グラファイトの5〜10倍の容量ポテンシャルを有しているSi系物質からなる活物質の開発が活発になされている。しかし、Si系物質は電子伝導性が乏しいので、その使用に当たっては、集電体と活物質との間の電子伝導性を付与する目的で導電助剤が添加されている。   In general, graphite is used as a negative electrode active material of a lithium ion secondary battery. Currently, active materials composed of Si-based materials having a capacity potential 5 to 10 times that of graphite are being actively developed. However, since Si-based materials have poor electron conductivity, a conductive additive is added for the purpose of imparting electron conductivity between the current collector and the active material.

また、Si系活物質それ自体の電子伝導性を高めることで、集電体と活物質との間の電子伝導性を確保することが提案されている。例えばSi系活物質粒子の表面に粒径0.0005〜10μmの金属材料の粒子を付着させることが提案されている(特許文献1参照)。また、ケイ素を含む核粒子の周囲をMg2Si、CoSi、NiSi等のケイ素固溶体によって被覆し、更にその表面を黒鉛やアセチレンブラック等の導電性材料で被覆することが提案されている(特許文献2参照)。 In addition, it has been proposed to secure the electron conductivity between the current collector and the active material by increasing the electron conductivity of the Si-based active material itself. For example, it has been proposed that metal material particles having a particle size of 0.0005 to 10 μm are attached to the surface of Si-based active material particles (see Patent Document 1). Further, it has been proposed that the core particles containing silicon are coated with a silicon solid solution such as Mg 2 Si, CoSi, NiSi, and the surface thereof is further coated with a conductive material such as graphite or acetylene black (Patent Document). 2).

これらの提案によればSi系活物質粒子の電子伝導性は高まるが、その製造が複雑であり経済的でない。   According to these proposals, the electronic conductivity of the Si-based active material particles is increased, but the production is complicated and not economical.

特開平11−250896号公報JP-A-11-250896 特開2000−285919号公報JP 2000-285919 A

従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得るSi系活物質を提供することにある。   Accordingly, an object of the present invention is to provide a Si-based active material that can eliminate various drawbacks of the above-described prior art.

本発明は、シリコン又はシリコン合金からなるコア粒子の表面に、無電解めっきによって析出した金属が付着してなることを特徴とする非水電解液二次電池用活物質粒子を提供することにより前記目的を達成したものである。   The present invention provides the active material particles for a non-aqueous electrolyte secondary battery, characterized in that a metal deposited by electroless plating is attached to the surface of core particles made of silicon or a silicon alloy. The goal has been achieved.

また本発明は、金属がイオンの状態で存在しているpH7以上のアルカリ性溶液中に、シリコン又はシリコン合金からなる母材を投入して、該母材の表面に前記金属を析出させることを特徴とする無電解めっき物の製造方法を提供するものである。   Further, the present invention is characterized in that a base material made of silicon or a silicon alloy is introduced into an alkaline solution having a pH of 7 or more in which the metal exists in an ionic state, and the metal is deposited on the surface of the base material. A method for producing an electroless plated product is provided.

本発明によれば、電子伝導性が高い非水電解液二次電池用活物質粒子を簡便な製造方法で製造することができる。また本発明によれば、無電解めっきを行うことが容易でないシリコン又はシリコン系母材の表面に、各種金属を析出させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the active material particle for nonaqueous electrolyte secondary batteries with high electronic conductivity can be manufactured with a simple manufacturing method. Moreover, according to this invention, various metals can be deposited on the surface of the silicon | silicone or silicon-type base material which is not easy to perform electroless plating.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の非水電解液二次電池用活物質粒子(以下、単に活物質粒子ともいう)は、シリコン又はシリコン合金からなるコア粒子の表面に、金属が付着して構成されているものである(以下、この金属を付着金属という)。付着金属はコア粒子の表面に無電解めっきによって析出したものである。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The active material particles for a non-aqueous electrolyte secondary battery of the present invention (hereinafter also simply referred to as active material particles) are configured by attaching metal to the surface of core particles made of silicon or a silicon alloy. (Hereinafter, this metal is referred to as an attached metal). The deposited metal is deposited on the surface of the core particle by electroless plating.

シリコン又はシリコン系合金からなるコア粒子は、無電解めっきによって金属を析出させることが容易でない。その理由は、シリコンはアルカリ性の液に溶解するが、その他の金属はアルカリ性の液中で水酸化物を形成してしまい、シリコンとのイオン化傾向の差を利用した無電解めっきによる析出が生じないからである。これに対して本発明においては、後述する無電解めっき法を用いることによってシリコン又はシリコン系合金からなるコア粒子の表面に金属を付着させることができる。   Core particles made of silicon or a silicon-based alloy cannot easily deposit metal by electroless plating. The reason for this is that silicon dissolves in an alkaline solution, but other metals form hydroxides in the alkaline solution, and precipitation due to electroless plating utilizing the difference in ionization tendency from silicon does not occur. Because. On the other hand, in this invention, a metal can be made to adhere to the surface of the core particle which consists of a silicon | silicone or a silicon-type alloy by using the electroless-plating method mentioned later.

付着金属は、コア粒子の表面全域を完全に被覆しているのではなく、付着金属の超微粒子がコア粒子表面にランダムに付着し、コア粒子の表面の一部が露出するように付着していることが好ましい。付着金属がコア粒子の表面を完全に被覆してしまうと、電解液がコア粒子と接触できず、所望の電気化学反応を起こすことができない。しかし、付着金属の付着量が少なすぎると、活物質粒子に所望の電子伝導性を付与することができない。これらの観点から、担持された付着金属を活物質中の含有量で表すと、1〜40重量%、特に5〜25重量%であることが好ましい。   The attached metal does not completely cover the entire surface of the core particle, but the attached metal is attached so that ultrafine particles of the attached metal are randomly attached to the surface of the core particle and a part of the surface of the core particle is exposed. Preferably it is. If the adhered metal completely covers the surface of the core particle, the electrolyte cannot contact the core particle and a desired electrochemical reaction cannot be caused. However, if the amount of the attached metal is too small, the desired electron conductivity cannot be imparted to the active material particles. From these viewpoints, when the supported adhered metal is represented by the content in the active material, it is preferably 1 to 40% by weight, particularly 5 to 25% by weight.

付着金属としては、後述する無電解メッキ法によってコア粒子の表面に析出可能なものであればその種類に特に制限はない。活物質粒子を例えばリチウムイオン二次電池用の負極活物質として用いる場合には、付着金属は、リチウム化合物の形成能の低いものであることが好ましい。そのような金属としては、例えばニッケル、銅、鉄、コバルト等が挙げられる。また付着金属としてこれらの金属の合金を用いることもできる。   There are no particular limitations on the type of the attached metal as long as it can be deposited on the surface of the core particles by the electroless plating method described later. When the active material particles are used as, for example, a negative electrode active material for a lithium ion secondary battery, it is preferable that the deposited metal has a low ability to form a lithium compound. Examples of such metals include nickel, copper, iron, cobalt, and the like. An alloy of these metals can also be used as the deposited metal.

コア粒子としては、先に述べた通りシリコン又はシリコン合金が用いられる。シリコン合金を用いることで、活物質粒子の電子伝導性を一層高めることができるので有利である。またコア粒子の酸化を防止することもできる。   As the core particle, silicon or a silicon alloy is used as described above. Use of a silicon alloy is advantageous because it can further increase the electronic conductivity of the active material particles. It is also possible to prevent the core particles from being oxidized.

コア粒子の構成材料であるシリコンやシリコン系合金の密度は、付着金属の密度よりも小さいものであり且つ付着金属はコア粒子の表面を薄く不連続に被覆するものである。従って、コア粒子の表面に付着金属が析出していても、本発明の活物質粒子の粒径とコア粒子の粒径に大きな差はない。両者はその最大粒径が好ましくは50μm以下であり、更に好ましくは20μm以下である。また粒子の粒径をD50値で表すと0.1〜8μm、特に1〜5μmであることが好ましい。最大粒径が50μm超であると、電極からの粒子の脱落が起こりやすくなり、電極の寿命が短くなる場合がある。粒径の下限値に特に制限はなく小さいほど好ましい。該粒子の製造方法に鑑みると、下限値は0.01μm程度である。粒子の粒径は、マイクロトラック、電子顕微鏡観察(SEM観察)によって測定される。 The density of silicon or silicon-based alloy, which is a constituent material of the core particle, is smaller than the density of the deposited metal, and the deposited metal coats the surface of the core particle thinly and discontinuously. Therefore, even if the deposited metal is deposited on the surface of the core particle, there is no significant difference between the particle size of the active material particle of the present invention and the particle size of the core particle. Both have a maximum particle size of preferably 50 μm or less, more preferably 20 μm or less. Moreover, when the particle diameter of the particle is expressed by a D 50 value, it is preferably 0.1 to 8 μm, particularly preferably 1 to 5 μm. When the maximum particle size is more than 50 μm, the particles are likely to fall off from the electrode, and the life of the electrode may be shortened. There is no particular limitation on the lower limit of the particle size, and the smaller the better. In view of the method for producing the particles, the lower limit is about 0.01 μm. The particle size of the particles is measured by microtrack and electron microscope observation (SEM observation).

コア粒子がシリコン系合金からなる場合、該合金に含まれる金属としては例えばNi、Cu、Fe、Co、Cr、Ag、Zn、B、Al、Ge、Sn、Li、In、V、Ti、Y、Zr、Nb、Ta、W、La、Ce、Pr、Pd、Nd等の一種又は2種以上が用いられる。特にNi、Cu、Fe、Coが好ましい。シリコン系合金におけるシリコンの量は40〜90重量%であることが好ましい。一方、合金に含まれる金属の量は10〜60重量%であることが好ましい。   When the core particle is made of a silicon-based alloy, examples of the metal contained in the alloy include Ni, Cu, Fe, Co, Cr, Ag, Zn, B, Al, Ge, Sn, Li, In, V, Ti, and Y. , Zr, Nb, Ta, W, La, Ce, Pr, Pd, Nd, or the like is used. Ni, Cu, Fe, and Co are particularly preferable. The amount of silicon in the silicon-based alloy is preferably 40 to 90% by weight. On the other hand, the amount of metal contained in the alloy is preferably 10 to 60% by weight.

シリコン系合金は、例えば鋳型鋳造法やロール鋳造法などの急冷法によって製造されることが、合金の結晶子が微細なサイズとなり且つ均質分散されることにより、活物質粒子の微粉化が抑制され、電子伝導性が保持される点から好ましい。急冷法に代えて、ガスアトマイズ法やアーク溶解法、メカニカルミリング法を用いることもできる。   Silicon-based alloys are manufactured by, for example, a rapid cooling method such as a mold casting method or a roll casting method, so that the crystallites of the alloy have a fine size and are uniformly dispersed, so that the pulverization of active material particles is suppressed. From the viewpoint of maintaining electronic conductivity. Instead of the rapid cooling method, a gas atomizing method, an arc melting method, or a mechanical milling method can also be used.

本発明の活物質粒子は、特にリチウムイオン二次電池用の負極活物質として有用である。本発明の活物質粒子を用いて電極を製造するには、例えば該活物質粒子をバインダや導電助剤と混合してなる負極合剤を形成し、該合剤を集電体の一面又は両面に塗工すればよい。この場合、活物質粒子自体の電子伝導性が高いので、負極合剤に配合される導電助剤の量を、従来の負極よりも低減できる。導電助剤の量を低減できる結果、活物質の配合量を従来の負極よりも増やすことができ、その結果、電池の容量が増加し、またエネルギー密度も高まるという利点がある。   The active material particles of the present invention are particularly useful as a negative electrode active material for a lithium ion secondary battery. In order to produce an electrode using the active material particles of the present invention, for example, a negative electrode mixture formed by mixing the active material particles with a binder or a conductive auxiliary agent is formed, and the mixture is used on one side or both sides of the current collector. You just apply to. In this case, since the electronic conductivity of the active material particles per se is high, the amount of the conductive auxiliary compounded in the negative electrode mixture can be reduced as compared with the conventional negative electrode. As a result of reducing the amount of the conductive additive, the amount of the active material can be increased as compared with the conventional negative electrode. As a result, there is an advantage that the capacity of the battery is increased and the energy density is also increased.

本発明の活物質粒子は、図1に示す電極10に適用することもできる。なお図1においては、電極10の一方の面側のみが示されており他方の面側は示されていないが、他方の面側の構造もほぼ同様となっている。図1に示す電極10は、リチウムイオン二次電池用の負極として特に有用なものであり、電解液と接する表裏一対の面である第1の面及び第2の面(図示せず)を有している。電極10は、両面間に活物質粒子5を含む活物質層4を備えている。活物質層4は、該層4の各面にそれぞれ形成された一対の集電用表面層(一方の集電用表面層は図示せず)3によって連続的に被覆されている。各表面層は、第1の面及び第2の面をそれぞれ含んでいる。また図1から明らかなように電極10は、従来の電極に用いられてきた集電体と呼ばれる集電用の厚膜導電体(例えば金属箔)を有していない。   The active material particles of the present invention can also be applied to the electrode 10 shown in FIG. In FIG. 1, only one surface side of the electrode 10 is shown and the other surface side is not shown, but the structure of the other surface side is substantially the same. The electrode 10 shown in FIG. 1 is particularly useful as a negative electrode for a lithium ion secondary battery, and has a first surface and a second surface (not shown) which are a pair of front and back surfaces in contact with the electrolytic solution. doing. The electrode 10 includes an active material layer 4 including active material particles 5 between both surfaces. The active material layer 4 is continuously covered with a pair of current collecting surface layers 3 (one current collecting surface layer is not shown) 3 formed on each surface of the layer 4. Each surface layer includes a first surface and a second surface, respectively. Further, as is apparent from FIG. 1, the electrode 10 does not have a current collecting thick film conductor (for example, a metal foil) called a current collector, which has been used for conventional electrodes.

集電用表面層3は、電極10における集電機能を担っている。また表面層3は、活物質層4に含まれる活物質が電極反応によって膨張及び/又は収縮することに起因して脱落することを防止するためにも用いられている。表面層3は、二次電池の集電体となり得る金属から構成されている。かかる金属としては、リチウム化合物の形成能の低いものが用いられる。例を挙げればCu、Ni、Fe、Co又はこれらの合金等が挙げられる。耐食性を向上させるために、Crを添加してもよい。2つの表面層は、その構成材料が同じであってもよく、或いは異なっていてもよい。   The current collecting surface layer 3 has a current collecting function in the electrode 10. The surface layer 3 is also used to prevent the active material contained in the active material layer 4 from falling off due to expansion and / or contraction due to an electrode reaction. The surface layer 3 is made of a metal that can be a current collector of a secondary battery. As such a metal, one having a low ability to form a lithium compound is used. Examples include Cu, Ni, Fe, Co, or alloys thereof. In order to improve the corrosion resistance, Cr may be added. The two surface layers may have the same constituent material or may be different.

各表面層3は、従来の電極に用いられている集電用の厚膜導電体よりもその厚みが薄いものである。具体的には0.3〜20μm程度、特に0.3〜10μm程度、とりわけ0.5〜5μm程度の薄層であることが好ましい。これによって、必要最小限の厚みで活物質層4をほぼ万遍なく連続的に被覆することができる。その結果、活物質粒子5の脱落を防止することができる。またこの程度の薄層とすること、及び集電用の厚膜導電体を有していないことで、電極全体に占める活物質の割合が相対的に高くなり、単位体積当たり及び単位重量当たりのエネルギー密度を高めることができる。従来の電極では、電極全体に占める集電用の厚膜導電体の割合が高かったので、エネルギー密度を高めることに限界があった。前記範囲の薄い表面層3は、電解めっきによって形成されることが好ましい。なお2つの表面層3はその厚みが同じでもよく、或いは異なっていてもよい。   Each surface layer 3 is thinner than the thick film conductor for current collection used in conventional electrodes. Specifically, a thin layer of about 0.3 to 20 μm, particularly about 0.3 to 10 μm, particularly about 0.5 to 5 μm is preferable. As a result, the active material layer 4 can be continuously covered almost uniformly with the minimum necessary thickness. As a result, it is possible to prevent the active material particles 5 from falling off. In addition, by making such a thin layer and not having a thick film conductor for current collection, the ratio of the active material to the entire electrode becomes relatively high, and per unit volume and unit weight. Energy density can be increased. In the conventional electrode, the ratio of the thick film conductor for current collection to the entire electrode is high, so there is a limit to increasing the energy density. The thin surface layer 3 in the above range is preferably formed by electrolytic plating. The two surface layers 3 may have the same thickness or may be different.

先に述べた通り、電極10は第1の面及び第2の面をそれぞれ含んでいる。電極10が電池に組み込まれた場合、第1の面及び第2の面は電解液と接する面となり電極反応に関与する。これとは対照的に、従来の電極における集電用の厚膜導電体は、その両面に活物質層が形成されている場合には電解液と接することはなく電極反応に関与せず、また片面に活物質層が形成されている場合であっても一方の面しか電解液と接しない。つまり電極10には、従来の電極で用いられていた集電用の厚膜導電体が存在せず、電極の最外面に位置する層、即ち表面層3が電極反応に関与すると共に集電機能と活物質の脱落を防止する機能とを兼ねている。   As described above, the electrode 10 includes a first surface and a second surface, respectively. When the electrode 10 is incorporated in a battery, the first surface and the second surface are in contact with the electrolytic solution and participate in the electrode reaction. In contrast, a thick film conductor for collecting current in a conventional electrode is not in contact with the electrolyte solution when the active material layer is formed on both sides thereof, and does not participate in the electrode reaction. Even when an active material layer is formed on one side, only one side is in contact with the electrolyte. In other words, the electrode 10 does not have the current collecting thick film conductor used in the electrode, and the layer located on the outermost surface of the electrode, that is, the surface layer 3 is involved in the electrode reaction and the current collecting function. And the function of preventing the active material from falling off.

第1の面及び第2の面をそれぞれ含む各表面層3は何れも集電機能を有しているので、電極10を電池に組み込んだ場合には、何れの表面層3にも電流取り出し用のリード線を接続することができるという利点がある。   Each surface layer 3 including each of the first surface and the second surface has a current collecting function. Therefore, when the electrode 10 is incorporated in a battery, any surface layer 3 is used for current extraction. There is an advantage that lead wires can be connected.

図1に示すように電極10は、第1の面及び第2の面において開孔し且つ活物質層4と通ずる多数の微細空隙5を有している。微細空隙6は各集電用表面層3の厚さ方向へ延びるように該表面層3中に存在している。微細空隙6が形成されていることで、電解液が活物質層4へ十分に浸透することができ、活物質粒子5との反応が十分に起こる。微細空隙6は、表面層3を断面観察した場合にその幅が約0.1μmから約10μm程度の微細なものである。微細であるものの、微細空隙6は電解液の浸透が可能な程度の幅を有している。微細空隙6は、好ましくは表面層3を電解めっきで形成する際に同時に形成される。   As shown in FIG. 1, the electrode 10 has a large number of fine voids 5 that are open in the first surface and the second surface and communicate with the active material layer 4. The fine gap 6 exists in the surface layer 3 so as to extend in the thickness direction of each current collecting surface layer 3. By forming the fine voids 6, the electrolytic solution can sufficiently penetrate into the active material layer 4, and the reaction with the active material particles 5 occurs sufficiently. The fine void 6 is a fine one having a width of about 0.1 μm to about 10 μm when the surface layer 3 is observed in cross section. Although it is fine, the fine gap 6 has a width that allows the electrolyte solution to penetrate. The fine voids 6 are preferably formed simultaneously with the formation of the surface layer 3 by electrolytic plating.

第1の面及び第2の面を電子顕微鏡観察により平面視したとき、少なくとも一方の面における微細空隙6の平均開孔面積は、好ましくは0.1〜100μm2程度であり、更に好ましくは1〜10μm2程度である。この範囲の開孔面積とすることで、電解液の十分な浸透を確保しつつ、活物質粒子5の脱落を効果的に防止することができる。また充放電の初期段階から充放電容量を高めることができる。活物質粒子5の脱落を一層効果的に防止する観点から、前記の平均開孔面積は、活物質粒子5の最大断面積の5〜70%、特に10〜40%であることが好ましい。 When the first surface and the second surface are viewed in plan by electron microscope observation, the average pore area of the fine void 6 on at least one surface is preferably about 0.1 to 100 μm 2 , more preferably 1 About 10 μm 2 . By setting the opening area within this range, it is possible to effectively prevent the active material particles 5 from falling off while ensuring sufficient permeation of the electrolytic solution. Further, the charge / discharge capacity can be increased from the initial stage of charge / discharge. From the viewpoint of more effectively preventing the active material particles 5 from dropping off, the average pore area is preferably 5 to 70%, particularly 10 to 40% of the maximum cross-sectional area of the active material particles 5.

第1の面及び第2の面間に位置する活物質層4は、本発明の活物質粒子5を含んでいる。活物質層4は2つの表面層3によって被覆されているので、活物質粒子5が電極反応によって膨張及び/又は収縮することに起因して脱落することが効果的に防止される。活物質粒子5は微細空隙6を通じて電解液と接することができるので、電極反応が妨げられることもない。   The active material layer 4 located between the first surface and the second surface contains the active material particles 5 of the present invention. Since the active material layer 4 is covered with the two surface layers 3, it is effectively prevented that the active material particles 5 fall off due to expansion and / or contraction due to the electrode reaction. Since the active material particles 5 can come into contact with the electrolytic solution through the fine gaps 6, the electrode reaction is not hindered.

電極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向上させにくく、逆に多すぎると活物質の脱落が起こりやすくなる傾向にある。これらを勘案すると、活物質粒子5の量は電極全体に対して好ましくは10〜90重量%であり、更に好ましくは20〜80重量%、一層好ましくは40〜80重量%である。活物質層4の厚みは、電極全体に対する活物質粒子5の量の割合や活物質粒子5の粒径に応じて適宜調節することができ、本実施形態においては特に臨界的なものではない。概ね1〜200μm、特に10〜100μm程度である。活物質層4は、活物質粒子5を含む導電性スラリーを塗布することによって形成されることが好ましい。表面層3及び活物質層4を含む電極全体の厚みは、電極の強度やエネルギー密度を高めること考慮すると、1〜500μm、特に1〜250μm、とりわけ10〜150μm程度であることが好ましい。   If the amount of the active material relative to the entire electrode is too small, it is difficult to sufficiently improve the energy density of the battery. Conversely, if the amount is too large, the active material tends to fall off. Considering these, the amount of the active material particles 5 is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, and still more preferably 40 to 80% by weight with respect to the entire electrode. The thickness of the active material layer 4 can be appropriately adjusted according to the ratio of the amount of the active material particles 5 to the whole electrode and the particle size of the active material particles 5, and is not particularly critical in the present embodiment. It is about 1 to 200 μm, particularly about 10 to 100 μm. The active material layer 4 is preferably formed by applying a conductive slurry containing the active material particles 5. The total thickness of the electrode including the surface layer 3 and the active material layer 4 is preferably about 1 to 500 μm, particularly about 1 to 250 μm, especially about 10 to 150 μm, in consideration of increasing the strength and energy density of the electrode.

活物質層4においては、第1の面1及び第2の面をそれぞれ含む各表面層3を構成する材料が活物質層4の厚み方向全域に亘って浸透していることが好ましい。そして浸透した該材料中に活物質粒子5が存在していることが好ましい。つまり活物質粒子5は電極10の表面に実質的に露出しておらず表面層3の内部に包埋されていることが好ましい。これによって、活物質層4と表面層3との密着性が強固なものとなり、活物質の脱落が一層防止される。また活物質層4中に浸透した前記材料を通じて表面層3と活物質粒子5との間に電子伝導性が確保されるので、電気的に孤立した活物質が生成すること、特に活物質層4の深部に電気的に孤立した活物質が生成することが効果的に防止され集電機能が保たれる。その結果、電極としての機能低下が抑えられる。更に電極の長寿命化も図られる。特に、活物質粒子5はその表面に付着金属を有しているので、表面層3と活物質粒子5との電子伝導性が一層高くなる。   In the active material layer 4, it is preferable that the material constituting each surface layer 3 including each of the first surface 1 and the second surface penetrates over the entire thickness direction of the active material layer 4. The active material particles 5 are preferably present in the permeated material. That is, it is preferable that the active material particles 5 are not substantially exposed on the surface of the electrode 10 and are embedded in the surface layer 3. As a result, the adhesion between the active material layer 4 and the surface layer 3 becomes strong, and the falling off of the active material is further prevented. In addition, since electronic conductivity is ensured between the surface layer 3 and the active material particles 5 through the material that has penetrated into the active material layer 4, it is possible to generate an electrically isolated active material, in particular, the active material layer 4 The generation of an electrically isolated active material in the deep part of the substrate is effectively prevented, and the current collecting function is maintained. As a result, the function deterioration as an electrode is suppressed. In addition, the life of the electrode can be extended. In particular, since the active material particles 5 have an attached metal on the surface thereof, the electron conductivity between the surface layer 3 and the active material particles 5 is further increased.

集電用表面層3を構成する材料は、活物質層4をその厚み方向に貫いており、両表面層3とつながっていることが好ましい。それによって2つの表面層3は前記材料を通じて電気的に導通することになり、電極全体としての電子伝導性が一層高くなる。つまり図1に示す電極10は、電極全体が一体として集電機能を有する。集電用表面層3を構成する材料が活物質層の厚み方向全域に亘って浸透して両表面層どうしがつながっていることは、該材料を測定対象とした電子顕微鏡マッピングによって求めることができる。   The material constituting the current collecting surface layer 3 preferably penetrates the active material layer 4 in the thickness direction and is connected to both surface layers 3. As a result, the two surface layers 3 are electrically connected through the material, and the electron conductivity of the entire electrode is further increased. That is, the electrode 10 shown in FIG. 1 has a current collecting function as a whole. The fact that the material constituting the current collecting surface layer 3 penetrates over the entire thickness direction of the active material layer and the two surface layers are connected to each other can be obtained by electron microscope mapping using the material as a measurement object. .

本発明の活物質粒子を前述した各種負極に適用する場合、該負極を用いた非水電解液二次電池の構成は次の通りとなる。即ち該負極と対で用いられる正極は、正極活物質並びに必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち抜きすることにより得られる。正極活物質としては、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物等の従来公知の正極活物質が用いられる。負極と正極の間に配置されるセパレーターとしては、合成樹脂製不織布、ポリエチレン又はポリプロピレン多孔質フイルム等が好ましく用いられる。非水電解液は、リチウム二次電池の場合、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。リチウム塩としては、例えば、LiC1O4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiSCN、LiC1、LiBr、LiI、LiCF3SO3、LiC49SO3等が例示される。 When the active material particles of the present invention are applied to the various negative electrodes described above, the configuration of a non-aqueous electrolyte secondary battery using the negative electrode is as follows. That is, the positive electrode used in a pair with the negative electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying this to a current collector, and drying. It is obtained by roll rolling, pressing, further cutting and punching. As the positive electrode active material, conventionally known positive electrode active materials such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used. As the separator disposed between the negative electrode and the positive electrode, a synthetic resin nonwoven fabric, polyethylene, polypropylene porous film, or the like is preferably used. In the case of a lithium secondary battery, the nonaqueous electrolytic solution is a solution in which a lithium salt that is a supporting electrolyte is dissolved in an organic solvent. The lithium salt, for example, LiC1O 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiSCN, LiC1, LiBr, LiI, etc. LiCF 3 SO 3, LiC 4 F 9 SO 3 are exemplified.

次に、本発明の活物質粒子の好ましい製造方法を以下に説明する。なお以下に説明する製造方法は、本発明の活物質粒子の製造方法として好ましいものであるが、それ以外の対象物、即ち、シリコン又はシリコン合金からなる各種形状の母材の表面に各種金属が付着してなる無電解めっき物の製造方法としても有用である。   Next, the preferable manufacturing method of the active material particle of this invention is demonstrated below. The production method described below is preferable as the production method of the active material particles of the present invention. However, other objects, that is, various metals are formed on the surface of various shapes of the base material made of silicon or silicon alloy. It is also useful as a method for producing an electroless plated product that adheres.

本製造方法におけるめっき浴としては、金属がイオンの状態で存在しているpH7以上のアルカリ性溶液が用いられる。金属としては、先に述べた銅、ニッケル、鉄、コバルト等が挙げられる。これらの金属は一般に水酸化アルカリ金属や水酸化アルカリ土類金属によってアルカリ性となっている溶液中では水酸化物を形成してしまい無電解めっきに供し得ない。そこで本製造方法においては、pHがアルカリ領域であってもこれらの金属が水酸化物を形成することのない溶液系を用いている。この点に本製造方法の特徴がある。   As the plating bath in this production method, an alkaline solution having a pH of 7 or more in which the metal exists in an ionic state is used. Examples of the metal include copper, nickel, iron, cobalt and the like described above. These metals generally form hydroxides in a solution made alkaline by an alkali metal hydroxide or an alkaline earth metal hydroxide and cannot be used for electroless plating. Therefore, in this production method, a solution system in which these metals do not form hydroxides even when the pH is in the alkaline region is used. This is a feature of the present manufacturing method.

アルカリ領域において金属が水酸化物を形成することのない溶液系として、本製造方法では、弱酸の塩の水溶液を用いることが好ましい。弱酸の塩としては、酢酸又はピロリン酸の塩などを用いることができる。該塩はナトリウム塩や、カリウム塩であることが好ましい。特に弱酸の塩の水溶液として、酢酸ナトリウム水溶液を用いると不純物が生成されない点で好ましい。弱酸の塩、例えば酢酸ナトリウムは水に溶解してアルカリ性を示す。この溶液に金属塩を溶解させると、金属は水酸化物を生成せず、イオンの状態で溶液中に存在することが本発明者らの検討の結果判明した。ここで「イオンの状態で存在する」とは、金属が錯イオンの状態で存在することも包含する。   In this production method, it is preferable to use an aqueous solution of a salt of a weak acid as a solution system in which the metal does not form a hydroxide in the alkaline region. As the salt of the weak acid, a salt of acetic acid or pyrophosphoric acid can be used. The salt is preferably a sodium salt or a potassium salt. In particular, it is preferable to use an aqueous sodium acetate solution as an aqueous solution of a weak acid salt because no impurities are produced. A salt of a weak acid, such as sodium acetate, dissolves in water and exhibits alkalinity. As a result of the examination by the present inventors, it was found that when a metal salt is dissolved in this solution, the metal does not form a hydroxide and exists in the solution in an ionic state. Here, “exists in an ionic state” includes that the metal exists in a complex ion state.

前記の金属塩としては、例えば金属がニッケルの場合には、塩化ニッケル、硫酸ニッケル等を用いることができる。銅の場合には、塩化銅、硫酸銅等を用いることができる。鉄の場合には、塩化鉄、硫酸鉄等を用いることができる。コバルトの場合には、塩化コバルト、硫酸コバルト等を用いることができる。   As the metal salt, for example, when the metal is nickel, nickel chloride, nickel sulfate, or the like can be used. In the case of copper, copper chloride, copper sulfate, etc. can be used. In the case of iron, iron chloride, iron sulfate, etc. can be used. In the case of cobalt, cobalt chloride, cobalt sulfate, etc. can be used.

金属がイオンの状態で存在しているアルカリ性溶液にコア粒子を添加することによって、コア粒子中のシリコンが溶液中に溶解し電子を放出する。これとの置換反応によって金属イオンが電子を受け取りコア粒子の表面に還元析出する。金属イオンを首尾良く還元析出させる観点から、溶液のpHは6.5〜12、特に7.0〜9.0であることが好ましい。溶液中の金属イオンの濃度に関しては、所定量の金属付着量に相当する金属塩を溶解させれば良い。付着金属量は、シリコンまたはシリコン系合金の重量に対して5〜25重量%であることが望ましい。   By adding the core particles to an alkaline solution in which the metal exists in an ionic state, silicon in the core particles dissolves in the solution and emits electrons. By a substitution reaction with this, metal ions receive electrons and are reduced and deposited on the surfaces of the core particles. From the viewpoint of successfully reducing and precipitating metal ions, the pH of the solution is preferably 6.5 to 12, particularly preferably 7.0 to 9.0. As for the concentration of metal ions in the solution, a metal salt corresponding to a predetermined amount of metal adhesion may be dissolved. The amount of deposited metal is desirably 5 to 25% by weight with respect to the weight of silicon or silicon-based alloy.

反応は溶液を撹拌しながら行うことが好ましい。使用する金属の種類によってはその還元析出反応の他に不純物析出反応が進行する場合がある。そこで、その不純物析出を抑制し、還元析出反応を促進させるために、例えば40〜60℃から反応を開始し、1〜10℃/minの昇温速度にて加温し、70〜90℃にて5分〜4時間保持することが好ましい。この操作によって適切な処理がなされる。   The reaction is preferably carried out while stirring the solution. Depending on the type of metal used, an impurity precipitation reaction may proceed in addition to the reduction precipitation reaction. Therefore, in order to suppress the impurity precipitation and promote the reduction precipitation reaction, for example, the reaction is started from 40 to 60 ° C., and heated at a rate of temperature increase of 1 to 10 ° C./min, to 70 to 90 ° C. For 5 minutes to 4 hours. Appropriate processing is performed by this operation.

コア粒子の表面に所定量の金属が析出して所望の活物質粒子が得られたら、該粒子をろ別、水洗する。得られた粒子は表面酸化物が溶解してフレッシュな状態となっており、大気中に暴露すると逆に酸化されやすい状態にある。その再酸化を抑制するために、水洗後、ベンゾトリアゾール(BTA)処理を行うと再酸化が抑制され、一層効果的である。   When a predetermined amount of metal is deposited on the surface of the core particles and desired active material particles are obtained, the particles are filtered and washed with water. The obtained particles are in a fresh state in which the surface oxide is dissolved, and on the contrary, they are easily oxidized when exposed to the atmosphere. In order to suppress the reoxidation, a benzotriazole (BTA) treatment after washing with water is effective because the reoxidation is suppressed.

以上の製造方法は、金属が還元析出する母材として前記のコア粒子を用いた場合のものであるが、本製造方法はコア粒子以外の各種粒状体からなる母材に適用することができる。また先に述べた通り、本製造方法は粒状体以外の形状を有する母材にも適用することができる。例えば板状体や棒状体をはじめとする各種バルク体を母材として本製造方法を適用することができる。   The manufacturing method described above is for the case where the core particles are used as a base material on which metal is reduced and deposited. However, this manufacturing method can be applied to a base material made of various granular materials other than the core particles. Further, as described above, the present manufacturing method can be applied to a base material having a shape other than the granular material. For example, this manufacturing method can be applied using various bulk bodies including a plate-shaped body and a rod-shaped body as a base material.

本製造方法の別法として、水溶液をpH7以上のアルカリ性にする剤として、水酸化アルカリ金属や水酸化アルカリ土類金属を用いることもできる。尤も、先に述べた通り、水酸化アルカリ金属や水酸化アルカリ土類金属で液のpHを以上とすると、通常の条件では金属は水酸化物となってしまい還元析出されない。しかし、めっき液を所定の温度に加熱することで金属の水酸化物が溶解して液中に金属がイオンの状態で存在するようになる。その状態下にコア粒子を投入することで、金属の還元析出が起こり金属がコア粒子の表面に付着する。   As another method of this production method, an alkali metal hydroxide or an alkaline earth metal hydroxide can be used as an agent for making the aqueous solution alkaline with a pH of 7 or higher. However, as described above, if the pH of the liquid is higher than that of an alkali metal hydroxide or an alkaline earth metal hydroxide, the metal becomes a hydroxide under normal conditions and is not reduced and precipitated. However, when the plating solution is heated to a predetermined temperature, the metal hydroxide is dissolved and the metal is present in an ion state in the solution. By introducing the core particles under the state, reduction precipitation of the metal occurs and the metal adheres to the surface of the core particle.

以下、実施例により本発明を更に詳細に説明する。特に断らない限り、「%」は「重量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” means “% by weight”.

〔実施例1〕
ロール鋳造法によって平均粒径D50が1.5μmであるSi80%−Ni20%の組成を有するコア粒子を得た。酢酸ナトリウムを10g/l、硫酸ニッケルを2.5g/l含み、pH7.8である水溶液に、該水溶液を攪拌しながらコア粒子を投入した。液温は投入時50℃であった。投入量は5g/lであった。その後1℃/minの昇温速度にて加温し、80℃となったところで30分間保持した。そのときのpHは5.6であった。
これによってコア粒子の表面にニッケルを還元析出させ活物質粒子を得た。得られた活物質粒子におけるニッケルの含有量は10%であった。
[Example 1]
Core particles having a composition of Si 80% -Ni 20% having an average particle diameter D 50 of 1.5 μm were obtained by a roll casting method. The core particles were charged into an aqueous solution containing 10 g / l sodium acetate and 2.5 g / l nickel sulfate and having a pH of 7.8 while stirring the aqueous solution. The liquid temperature was 50 ° C. at the time of charging. The input amount was 5 g / l. Thereafter, the mixture was heated at a rate of temperature increase of 1 ° C./min. The pH at that time was 5.6.
As a result, nickel was reduced and deposited on the surfaces of the core particles to obtain active material particles. The content of nickel in the obtained active material particles was 10%.

〔実施例2〜5〕
コア粒子の種類及びニッケルの含有量を表1に示す通りとする以外は実施例1と同様にして活物質粒子を得た。なお、Si80Co20及びSiの粒子は、実施例1と同様にロール鋳造法で製造した。
[Examples 2 to 5]
Active material particles were obtained in the same manner as in Example 1 except that the types of core particles and the nickel content were as shown in Table 1. Si 80 Co 20 and Si particles were produced by the roll casting method in the same manner as in Example 1.

〔実施例6〕
ピロリン酸カリウムを2.5g/l、塩化ニッケルを2.0g/l含み、pHが9.0である水溶液に、該水溶液を撹拌しながらコア粒子を投入した。コア粒子は、平均粒径D50が1.5μmで、Si80%−Ni20%の組成を有するものであった。液温は80℃に保った。これによってコア粒子の表面にニッケルを還元析出させ活物質粒子を得た。得られた活物質粒子におけるニッケルの含有量は10%であった。
Example 6
Core particles were charged into an aqueous solution containing 2.5 g / l potassium pyrophosphate and 2.0 g / l nickel chloride and having a pH of 9.0 while stirring the aqueous solution. The core particles had an average particle diameter D 50 of 1.5 μm and a composition of Si 80% -Ni 20%. The liquid temperature was kept at 80 ° C. As a result, nickel was reduced and deposited on the surfaces of the core particles to obtain active material particles. The content of nickel in the obtained active material particles was 10%.

〔実施例7〜10〕
コア粒子の種類及びニッケルの含有量を表1に示す通りとする以外は実施例1と同様にして活物質粒子を得た。
[Examples 7 to 10]
Active material particles were obtained in the same manner as in Example 1 except that the types of core particles and the nickel content were as shown in Table 1.

〔性能評価〕
各実施例で得られた活物質粒子を用い、図2に示す方法でリチウムイオン二次電池用負極を作製した。作製した負極を用い、以下の方法でリチウムイオン二次電池を作製した。この電池の200サイクル時の容量維持率を以下の方法で測定、算出した。これらの結果を以下の表1に示す。
[Performance evaluation]
Using the active material particles obtained in each Example, a negative electrode for a lithium ion secondary battery was produced by the method shown in FIG. A lithium ion secondary battery was produced by the following method using the produced negative electrode. The capacity maintenance rate at 200 cycles of this battery was measured and calculated by the following method. These results are shown in Table 1 below.

(1)剥離層の形成
図2(a)に示すように、厚さ35μmの電解銅箔をキャリア箔1として用いた。キャリア箔1を、室温において30秒間酸洗液中で洗浄した。引き続き室温において30秒間純水洗浄した。次いで、40℃に保たれた3g/lのカルボキシベンゾトリアゾール溶液中にキャリア箔1を30秒間浸漬して図2(b)に示すように剥離層2を形成した。更に、室温において15秒間純水洗浄した。
(1) Formation of Release Layer As shown in FIG. 2A, an electrolytic copper foil having a thickness of 35 μm was used as the carrier foil 1. The carrier foil 1 was washed in a pickling solution at room temperature for 30 seconds. Subsequently, it was washed with pure water at room temperature for 30 seconds. Next, the carrier foil 1 was immersed for 30 seconds in a 3 g / l carboxybenzotriazole solution kept at 40 ° C. to form a release layer 2 as shown in FIG. Further, it was washed with pure water for 15 seconds at room temperature.

(2)第1の表面層の形成
以下の浴組成を有するニッケルめっき浴にキャリア箔1を浸漬させて電解を行い、図2(c)に示すように、極薄ニッケル箔からなる第1の表面層3aを形成した。第1の表面層3aは、キャリア箔における光沢面側に形成された剥離層2上に形成した。電流密度は5A/dm2、浴温は50℃とした。陽極にはニッケル電極を用いた。電源は直流電源を使用した。第1の表面層3aの膜厚は3μmであった。
(2) Formation of first surface layer The carrier foil 1 is immersed in a nickel plating bath having the following bath composition for electrolysis, and as shown in FIG. A surface layer 3a was formed. The first surface layer 3a was formed on the release layer 2 formed on the glossy surface side of the carrier foil. The current density was 5 A / dm 2 and the bath temperature was 50 ° C. A nickel electrode was used as the anode. A DC power source was used as the power source. The film thickness of the first surface layer 3a was 3 μm.

スラリー組成は、活物質:アセチレンブラック:PVdF=94:1:5であった。
NiSO4・6H2O 250g/l
NiCl2・6H2O 45g/l
3BO3 30g/l
The slurry composition was active material: acetylene black: PVdF = 94: 1: 5.
NiSO 4 · 6H 2 O 250g / l
NiCl 2 · 6H 2 O 45g / l
H 3 BO 3 30 g / l

(3)活物質層の形成
第1の表面層3aの形成後、30秒間純水洗浄を行い、次いで大気中で乾燥させた。次に、第1の表面層3a上に、各実施例で得られた活物質粒子5を含むスラリーを塗布して、図2(d)に示すように、膜厚15μmの活物質層4を形成した。スラリーは、活物質粒子5、アセチレンブラック及びポリビニリデンフルオライド(以下PVdFという)を含むものであった。スラリー組成は、活物質粒子:アセチレンブラック:PVdF=94:1:5であった。
(3) Formation of active material layer After the formation of the first surface layer 3a, it was washed with pure water for 30 seconds and then dried in the atmosphere. Next, on the first surface layer 3a, the slurry containing the active material particles 5 obtained in the respective examples is applied, and as shown in FIG. 2D, the active material layer 4 having a film thickness of 15 μm is formed. Formed. The slurry contained the active material particles 5, acetylene black and polyvinylidene fluoride (hereinafter referred to as PVdF). The slurry composition was active material particles: acetylene black: PVdF = 94: 1: 5.

(4)第2の表面層の形成
図2(e)に示すように、活物質層4上に、極薄ニッケル箔からなる第2の表面層3bを電解によって形成した。電解の条件は第1の表面層3aの形成条件と同様とした。膜厚は3μmであった。
(4) Formation of Second Surface Layer As shown in FIG. 2 (e), a second surface layer 3 b made of an ultrathin nickel foil was formed on the active material layer 4 by electrolysis. The electrolysis conditions were the same as the formation conditions of the first surface layer 3a. The film thickness was 3 μm.

(5)電極の剥離
このようにして得られた電極10を、図2(f)に示すように、キャリア箔1から剥離して負極を得た。
(5) Peeling of the electrode The electrode 10 thus obtained was peeled from the carrier foil 1 as shown in FIG. 2 (f) to obtain a negative electrode.

(6)リチウムイオン二次電池の作製
前記で得られた負極を作用極とし、対極としてLiCoO2を用い、両極をセパレーターを介して対向させた。非水電解液としてLiPF6/エチレンカーボネートとジエチルカーボネートの混合液(1:1容量比)を用いて通常の方法によってリチウムイオン二次電池を作製した。
(6) Production of Lithium Ion Secondary Battery The negative electrode obtained above was used as a working electrode, LiCoO 2 was used as a counter electrode, and both electrodes were opposed via a separator. A lithium ion secondary battery was produced by a conventional method using a mixed solution (1: 1 volume ratio) of LiPF 6 / ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte.

〔200サイクル時の容量維持率〕
200サイクル目の放電容量を測定し、その値を最大負極放電容量で除し、100を乗じて算出した。
[Capacity maintenance rate at 200 cycles]
The discharge capacity at the 200th cycle was measured, the value was divided by the maximum negative electrode discharge capacity, and multiplied by 100.

Figure 2005340028
Figure 2005340028

表1に示す結果から明らかなように、各実施例の活物質粒子を用いたリチウムイオン二次電池は、200サイクル時の容量維持率が高いことが判る。   As is clear from the results shown in Table 1, it can be seen that the lithium ion secondary battery using the active material particles of each example has a high capacity retention rate at 200 cycles.

本発明の活物質粒子を含む電極の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrode containing the active material particle of this invention. 図2(a)〜図2(f)は、本発明の活物質粒子を含む電極の製造方法の一例を示す工程図である。FIG. 2A to FIG. 2F are process diagrams showing an example of a method for producing an electrode including active material particles of the present invention.

符号の説明Explanation of symbols

1 キャリア箔
2 剥離層
3,3a,3b 集電用表面層
4 活物質層
5 活物質粒子
6 微細空隙
DESCRIPTION OF SYMBOLS 1 Carrier foil 2 Release layer 3, 3a, 3b Current collecting surface layer 4 Active material layer 5 Active material particle 6 Fine void

Claims (10)

シリコン又はシリコン合金からなるコア粒子の表面に、無電解めっきによって析出した金属が付着してなることを特徴とする非水電解液二次電池用活物質粒子。   An active material particle for a nonaqueous electrolyte secondary battery, wherein a metal deposited by electroless plating is attached to the surface of a core particle made of silicon or a silicon alloy. 請求項1記載の活物質粒子を含む非水電解液二次電池用負極。   The negative electrode for nonaqueous electrolyte secondary batteries containing the active material particle of Claim 1. 請求項2記載の負極を備えた非水電解液二次電池。   A non-aqueous electrolyte secondary battery comprising the negative electrode according to claim 2. 金属がイオンの状態で存在しているpH7以上のアルカリ性溶液中に、シリコン又はシリコン合金からなる母材を投入して、該母材の表面に前記金属を析出させることを特徴とする無電解めっき物の製造方法。   Electroless plating characterized by introducing a base material made of silicon or a silicon alloy into an alkaline solution having a pH of 7 or more in which the metal exists in an ionic state, and depositing the metal on the surface of the base material Manufacturing method. 前記アルカリ性溶媒が弱酸の塩を含有していることによってpH7以上となされている請求項4記載の製造方法。   The production method according to claim 4, wherein the alkaline solvent contains a salt of a weak acid and has a pH of 7 or more. 前記弱酸の塩が、酢酸又はピロリン酸の塩である請求項5記載の製造方法。   6. The process according to claim 5, wherein the salt of the weak acid is a salt of acetic acid or pyrophosphoric acid. 前記母材が粒状体である請求項4ないし6の何れかに記載の製造方法。   The manufacturing method according to claim 4, wherein the base material is a granular material. 前記母材が板状体である請求項4ないし6の何れかに記載の製造方法。   The manufacturing method according to claim 4, wherein the base material is a plate-like body. 前記金属がニッケル、銅、鉄又はコバルトである請求項4ないし8の何れかに記載の製造方法。   The manufacturing method according to claim 4, wherein the metal is nickel, copper, iron, or cobalt. 前記アルカリ性溶液を50〜100℃に保ち前記金属を析出させる請求項4ないし9の何れかに記載の製造方法。
The manufacturing method according to claim 4, wherein the alkaline solution is kept at 50 to 100 ° C. to deposit the metal.
JP2004158310A 2004-05-27 2004-05-27 Method for producing electroless plating Expired - Lifetime JP4829483B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004158310A JP4829483B2 (en) 2004-05-27 2004-05-27 Method for producing electroless plating
PCT/JP2005/008777 WO2005117168A1 (en) 2004-05-27 2005-05-13 Active material particle for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158310A JP4829483B2 (en) 2004-05-27 2004-05-27 Method for producing electroless plating

Publications (2)

Publication Number Publication Date
JP2005340028A true JP2005340028A (en) 2005-12-08
JP4829483B2 JP4829483B2 (en) 2011-12-07

Family

ID=35451179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158310A Expired - Lifetime JP4829483B2 (en) 2004-05-27 2004-05-27 Method for producing electroless plating

Country Status (2)

Country Link
JP (1) JP4829483B2 (en)
WO (1) WO2005117168A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034266A (en) * 2006-07-28 2008-02-14 Canon Inc Manufacturing method of negative electrode material for lithium secondary battery
JP2009187765A (en) * 2008-02-06 2009-08-20 Tottori Univ Alloy negative electrode for lithium-ion secondary battery, manufacturing method for the same, and lithium-ion secondary battery using the same
US9350011B2 (en) 2010-11-29 2016-05-24 Hitachi Metals, Ltd. Secondary battery negative electrode material, secondary battery negative electrode, method for manufacturing secondary battery negative electrode material, and method for manufacturing secondary battery negative electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201805131D0 (en) * 2018-03-29 2018-05-16 Imperial Innovations Ltd Metal fabrics and membranes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2001131758A (en) * 1999-11-01 2001-05-15 Shin Etsu Chem Co Ltd Method of forming metal pattern
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610213B2 (en) * 2003-06-19 2011-01-12 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2001131758A (en) * 1999-11-01 2001-05-15 Shin Etsu Chem Co Ltd Method of forming metal pattern
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034266A (en) * 2006-07-28 2008-02-14 Canon Inc Manufacturing method of negative electrode material for lithium secondary battery
JP2009187765A (en) * 2008-02-06 2009-08-20 Tottori Univ Alloy negative electrode for lithium-ion secondary battery, manufacturing method for the same, and lithium-ion secondary battery using the same
US9350011B2 (en) 2010-11-29 2016-05-24 Hitachi Metals, Ltd. Secondary battery negative electrode material, secondary battery negative electrode, method for manufacturing secondary battery negative electrode material, and method for manufacturing secondary battery negative electrode

Also Published As

Publication number Publication date
JP4829483B2 (en) 2011-12-07
WO2005117168A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
KR100659814B1 (en) Negative Electrode for Nonaqueous Electrolyte Secondary Battery, Method for Manufacturing Same and Nonaqueous Electrolyte Secondary Battery
JP3799049B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP4053576B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2004051768A1 (en) Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
WO2009087791A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
JP3612669B1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR100953804B1 (en) Secondary battery-use electrode and production method therefor and secondary battery
JP2008016196A (en) Negative electrode for polymer electrolyte secondary battery
WO2005117168A1 (en) Active material particle for nonaqueous electrolyte secondary battery
JP4746328B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2013008540A (en) Collector for nonaqueous electrolyte secondary battery and electrode using the same
JP3906342B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP4298578B2 (en) Porous metal foil with carrier foil and method for producing the same
JP4546740B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP2006228512A (en) Anode for nonaqueous electrolyte secondary battery
RU2303318C2 (en) Negative plate for nonaqueous secondary battery, negative plate manufacturing process, and nonaqueous secondary battery
JP5146652B2 (en) Alloy negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery
JP2008066272A (en) Anode for nonaqueous electrolyte secondary battery
JP2005093331A (en) Negative electrode for nonaqueous electrolytic solution secondary battery, method of manufacturing same, and nonaqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250