WO2005117168A1 - Active material particle for nonaqueous electrolyte secondary battery - Google Patents

Active material particle for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2005117168A1
WO2005117168A1 PCT/JP2005/008777 JP2005008777W WO2005117168A1 WO 2005117168 A1 WO2005117168 A1 WO 2005117168A1 JP 2005008777 W JP2005008777 W JP 2005008777W WO 2005117168 A1 WO2005117168 A1 WO 2005117168A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
metal
particles
electrode
silicon
Prior art date
Application number
PCT/JP2005/008777
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiki Sakaguchi
Hitohiko Honda
Kiyotaka Yasuda
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2005117168A1 publication Critical patent/WO2005117168A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to active material particles for a non-aqueous electrolyte secondary battery. Further, the present invention relates to a method for producing an electroless plated material including the active material particles.
  • lithium ion secondary batteries are mainly used as secondary batteries for mobile phones and personal computers. The reason is that this battery has a higher energy density than other secondary batteries. In recent years, the power consumption of these mobile phones and personal computers has increased significantly due to their multifunctionality, and large-capacity secondary batteries are increasingly required. However, as long as the current electrode active material is used, it is expected that it will be difficult to meet the needs in the near future.
  • Graphite is generally used as a negative electrode active material of a lithium ion secondary battery.
  • the electron conductivity between the current collector and the active material be ensured by increasing the electron conductivity of the Si-based active material itself.
  • particles of a metal material having a particle diameter of 0.0005 to 10 m on the surface of Si-based active material particles (see Japanese Patent Application Laid-Open No. 11-250896).
  • Mg Si, CoSi, NiSi Mg Si, CoSi, NiSi
  • an object of the present invention is to provide a Si-based active material capable of solving the above-mentioned various disadvantages of the related art. Disclosure of the invention
  • the present invention provides an active material particle for a nonaqueous electrolyte secondary battery, characterized in that a metal precipitated by electroless plating adheres to the surface of a core particle which also has a silicon or silicon alloy force. This object has been achieved by providing a child.
  • a base material having a silicon or silicon alloy force is introduced into an alkaline solution having a pH of 7 or more which exists in a state of a metal force ion, and the metal is precipitated on the surface of the base material. It is intended to provide a method for producing an electroless plated product characterized by the above.
  • FIG. 1 is a schematic diagram showing a structure of an electrode including active material particles of the present invention.
  • FIGS. 2 (a) to 2 (f) are process diagrams showing an example of a method for producing an electrode containing active material particles of the present invention.
  • the active material particles for a non-aqueous electrolyte secondary battery of the present invention are formed by attaching a metal to the surface of a core particle which also has a silicon or silicon alloy force. (Hereinafter, this metal is referred to as an adhering metal). The deposited metal was deposited on the surface of the core particles by electroless plating.
  • Silicon or silicon-based alloy core particles cannot easily deposit metal by electroless plating. The reason is that silicon dissolves in an alkaline solution, and other metals form hydroxides in an alkaline solution. This is because no precipitation due to is caused.
  • the metal can be attached to the surface of the core particle which also has silicon or a silicon-based alloy by using an electroless plating method described later.
  • the adhered metal does not completely cover the entire surface of the core particle, but ultra-fine particles of the adhered metal adhere randomly to the core particle surface and adhere so that a part of the core particle surface is exposed. U, then prefer. If the adhered metal completely covers the surface of the core particles, the electrolyte cannot contact the core particles, and a desired electrochemical reaction cannot be caused. However, if the amount of the attached metal is too small, the desired electron conductivity is given to the active material particles. Can not do it. From these viewpoints, when the amount of the deposited adhered metal is represented by the content in the active material, it is preferably 1 to 40% by weight, particularly preferably 5 to 25% by weight.
  • the type of the adhering metal is not particularly limited as long as it can be deposited on the surface of the core particle by an electroless plating method described later.
  • the adhered metal preferably has a low ability to form a lithium compound. Examples of such a metal include nickel, copper, iron, and cobalt. Also, alloys of these metals can be used as the adhering metal.
  • silicon or a silicon alloy is used as the core particles.
  • the use of a silicon alloy is advantageous because the electron conductivity of the active material particles can be further increased. It is also possible to prevent the core particles from being oxidized.
  • the density of silicon or a silicon-based alloy, which is a constituent material of the core particles, is smaller than the density of the adhered metal, and the adhered metal thinly and discontinuously coats the surface of the core particles. Therefore, even if the adhered metal is deposited on the surface of the core particles, there is no significant difference between the particle size of the active material particles of the present invention and the particle size of the core particles. Both have a maximum particle size of preferably 50 m or less, more preferably 20 m or less. When the particle size is represented by the D value, 0
  • the maximum particle size is more than 50 ⁇ m, particles may easily fall off from the electrode, and the life of the electrode may be shortened.
  • the lower limit of the particle size is about 0.01 ⁇ m.
  • the particle size of the particles is measured by a laser diffraction scattering method and electron microscope observation (SEM observation).
  • examples of metals contained in the alloy include Ni, Cu, Fe, Co, Cr, Ag, Zn, B, Al, Ge, Sn, Li, In, V, One or more of Ti, Y, Zr, Nb, Ta, W, La, Ce, Pr, Pd, Nd and the like are used. Particularly, Ni, Cu, Fe and Co are preferable.
  • the amount of silicon in the silicon-based alloy is preferably 40 to 90% by weight. On the other hand, the amount of metal contained in the alloy is preferably 10 to 60% by weight.
  • silicon-based alloys are manufactured by a quenching method such as a ⁇ -type manufacturing method or a roll-type manufacturing method, the crystallites of the alloy have a fine size and are uniformly dispersed. It is preferable because the pulverization of the material particles is suppressed and the electron conductivity is maintained.
  • a gas atomizing method, an arc melting method, or a mechanical milling method can be used.
  • the active material particles of the present invention are particularly useful as a negative electrode active material for a lithium ion secondary battery.
  • a negative electrode mixture is prepared by mixing the active material particles with a binder and a conductive auxiliary, and the mixture is formed on one or both surfaces of a current collector. It is good to apply to.
  • the amount of the conductive auxiliary compounded in the negative electrode mixture can be reduced as compared with the conventional negative electrode.
  • the active material particles of the present invention can also be applied to the electrode 10 shown in FIG. In FIG. 1, only one side of the electrode 10 is shown and the other side is not shown, but the structure of the other side is almost the same.
  • the electrode 10 shown in FIG. 1 is particularly useful as a negative electrode for a lithium ion secondary battery, and has a first surface and a second surface (not shown), which are a pair of front and back surfaces that are in contact with the electrolyte. are doing.
  • the electrode 10 has an active material layer 4 containing active material particles 5 between both surfaces.
  • the active material layer 4 is continuously covered by a pair of current collecting surface layers 3 (one current collecting surface layer is not shown) 3 formed on each surface of the layer 4.
  • Each surface layer includes a first surface and a second surface.
  • the electrode 10 has a thick current collector (eg, a metal foil) for current collection called a current collector that has been used for a conventional electrode!
  • the current collecting surface layer 3 has a current collecting function in the electrode 10.
  • the surface layer 3 is also used to prevent the active material contained in the active material layer 4 from falling off due to expansion and / or contraction due to an electrode reaction.
  • the surface layer 3 is made of a metal that can be a current collector of a secondary battery. As such a metal, a metal having a low ability to form a lithium compound is used. Examples include Cu, Ni, Fe, Co or alloys thereof. Cr may be added to improve the corrosion resistance.
  • the two surface layers may be made of the same material or different materials.
  • Each surface layer 3 has a thickness S thinner than that of a thick current collector for current collection used in a conventional electrode. Specifically, about 0.3 to 20 / ⁇ , especially about 0.3 to: LO / zm, The thickness is preferably about 0.5 to 5 m.
  • the active material layer 4 can be coated almost uniformly and continuously with a minimum necessary thickness. As a result, it is possible to prevent the active material particles 5 from falling off.
  • the ratio of the active material to the entire electrode becomes relatively high, so that the weight per unit volume and the unit weight is increased. Per unit energy density can be increased.
  • the ratio of the thick film conductor for current collection to the entire electrode was high, so that there was a limit in increasing the energy density. It is preferable that the thin surface layer 3 in the above range is formed by electrolytic plating. Note that the two surface layers 3 may have the same thickness or may have different thicknesses.
  • the electrode 10 includes the first surface and the second surface, respectively.
  • the first surface and the second surface become surfaces that come into contact with the electrolytic solution and participate in the electrode reaction.
  • the thick film conductor for current collection in the conventional electrode does not come into contact with the electrolytic solution when the active material layer is formed on both surfaces thereof and does not participate in the electrode reaction, and Even when the active material layer is formed on one side, only one side is in contact with the electrolyte. That is, the electrode 10 does not have a thick-film conductor for current collection used in the conventional electrode, and the layer located on the outermost surface of the electrode, that is, the surface layer 3 participates in the electrode reaction and collects. It has both an electrical function and a function to prevent the active material from falling off.
  • Each of the surface layers 3 including the first surface and the second surface has a current collecting function. Therefore, when the electrode 10 is incorporated in a battery, any of the surface layers 3 Also, there is an advantage that a lead wire for extracting current can be connected.
  • the electrode 10 has a large number of fine voids 5 that are open on the first surface and the second surface and communicate with the active material layer 4.
  • the fine voids 6 are present in the surface layer 3 so as to extend in the thickness direction of each current collecting surface layer 3.
  • the formation of the fine voids 6 allows the electrolytic solution to sufficiently penetrate into the active material layer 4 and sufficiently reacts with the active material particles 5.
  • the fine voids 6 have a width of about 0: L m to about 10 IX m when the cross section of the surface layer 3 is observed. Although it is fine, the minute gap 6 has a width that allows the electrolyte to penetrate.
  • the fine voids 6 are preferably formed at the same time when the surface layer 3 is formed by electroplating.
  • the average open area of the fine voids 6 on at least one surface is preferably about 0.1 to: LOO / zm 2 . There, the more preferably 1: 2 approximately LO / zm.
  • the opening area is preferably 5 to 70%, particularly preferably 10 to 40% of the maximum cross-sectional area of the active material particles 5.
  • the active material layer 4 located between the first surface and the second surface contains the active material particles 5 of the present invention. Since the active material layer 4 is covered with the two surface layers 3, the active material particles 5 are effectively prevented from falling off due to expansion and Z or contraction due to an electrode reaction. Since the active material particles 5 can come into contact with the electrolytic solution through the fine voids 6, the electrode reaction is not hindered.
  • the amount of the active material particles 5 is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, and still more preferably 40 to 80% by weight based on the whole electrode.
  • the thickness of the active material layer 4 can be appropriately adjusted according to the ratio of the amount of the active material particles 5 to the entire electrode and the particle size of the active material particles 5, and is not particularly critical in the present embodiment. .
  • the active material layer 4 is preferably formed by applying a conductive slurry containing the active material particles 5.
  • the total thickness of the electrode including the surface layer 3 and the active material layer 4 should be 1 to 500 / ⁇ , particularly 1 to 250 111, and especially about 10 to 150 m, considering the strength and energy density of the electrode.
  • the material constituting each surface layer 3 including the first surface 1 and the second surface may penetrate throughout the thickness of the active material layer 4.
  • the active material particles 5 exist in the permeated material. That is, it is preferable that the active material particles 5 are not substantially exposed to the surface of the electrode 10 but are embedded in the surface layer 3.
  • the adhesion between the active material layer 4 and the surface layer 3 becomes strong, Material shedding is further prevented.
  • electron conductivity is ensured between the surface layer 3 and the active material particles 5 through the material penetrated into the active material layer 4, so that an electrically isolated active material is generated. Generation of an electrically isolated active material in the deep part of 4 is effectively prevented, and the current collecting function is maintained.
  • the life of the electrode can be extended.
  • the active material particles 5 have an attached metal on the surface, the electron conductivity between the surface layer 3 and the active material particles 5 is further increased.
  • the material constituting the current-collecting surface layer 3 penetrates the active material layer 4 in the thickness direction and is connected to both surface layers 3. Thereby, the two surface layers 3 become electrically conductive through the material, and the electron conductivity of the electrode as a whole is further increased. That is, the electrode 10 shown in FIG. 1 has a current collecting function as a whole as a whole. The fact that the material constituting the current-collecting surface layer 3 penetrates over the entire area in the thickness direction of the active material layer and that the two surface layers are connected to each other is determined by electron microscope mapping using the material as a measurement target. It comes out.
  • the configuration of a non-aqueous electrolyte secondary battery using the negative electrodes is as follows. That is, the positive electrode used as a pair with the negative electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying the mixture to a current collector, and drying the mixture. , Roll rolling, pressing, and further cutting and punching.
  • the positive electrode active material a conventionally known positive electrode active material such as a lithium nickel composite oxide, a lithium manganese composite oxide, and a lithium cobalt composite oxide is used.
  • the nonaqueous electrolyte is composed of a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • lithium salts include LiCIO, LiAlCl, LiPF, LiAsF,
  • LiSbF, LiSCN, LiCl, LiBr, Lil, LiCFSO, LiCFSO and the like are exemplified.
  • the production method described below is preferable as the method for producing the active material particles of the present invention.
  • various metals are formed on the surface of the base material having various shapes of silicon or silicon alloy. It is also useful as a method for producing an electroless plated product having the particles adhered thereto.
  • an alkaline solution having a pH of 7 or more in which a metal exists in an ion state is used as a plating bath in the present production method.
  • the metal include copper, nickel, iron, cobalt, and the like described above.
  • These metals generally form hydroxides in a solution rendered alkaline by an alkali metal hydroxide or an alkaline earth metal hydroxide and cannot be subjected to electroless plating. Therefore, in the present production method, even if the pH is in an alkaline range, these metals do not form hydroxides, and a solution system is used. This is a feature of this manufacturing method.
  • an aqueous solution of a salt of a weak acid as a solution system in which the metal does not form a hydroxide in the alkaline region.
  • a salt of acetic acid or pyrophosphoric acid can be used as the salt of the weak acid.
  • the salt is preferably a sodium salt or a potassium salt.
  • an aqueous solution of sodium acetate as an aqueous solution of a salt of a weak acid since impurities are not generated. Salts of weak acids, such as sodium acetate, dissolve in water and exhibit alkaline properties.
  • the present inventors found that the metal did not form a hydroxide and was present in the solution in an ion state.
  • “existing in the ion state” includes that the metal exists in a complex ion state.
  • metal salt for example, when the metal is nickel, nickel chloride, nickel sulfate, or the like can be used.
  • copper copper chloride, copper sulfate or the like can be used.
  • iron iron chloride, iron sulfate or the like can be used.
  • cobalt chloride, cobalt sulfate or the like can be used.
  • the silicon in the core particles dissolves in the solution and emits electrons.
  • the metal ions receive the electrons and are reduced and deposited on the surface of the core particles.
  • the pH of the solution is preferably 6.5 to 12, particularly preferably 7.0 to 9.0, from the viewpoint of successfully reducing and depositing metal ions.
  • a metal salt corresponding to a predetermined amount of the deposited metal may be dissolved. It is desirable that the amount of deposited metal is 5 to 25% by weight based on the weight of silicon or silicon-based alloy.
  • the reaction is preferably performed while stirring the solution.
  • an impurity precipitation reaction may proceed in addition to the reduction precipitation reaction. So, that impure
  • start the reaction at 40 to 60 ° C heat at a rate of 1 to 10 ° C Zmin, and heat at 70 to 90 ° C. U, preferably to hold for minutes to 4 hours. Appropriate processing is performed by this operation.
  • the above-described production method is a force when the above-described core particles are used as the base material on which the metal is reduced and precipitated.
  • This production method can be applied to a base material having various granular strengths other than the core particles.
  • the present manufacturing method can be applied to a base material having a shape other than the granular material.
  • the present manufacturing method can be applied to various kinds of barta bodies such as plate bodies and rod bodies as base materials.
  • an aqueous solution as agent for the P H7 or alkaline it may be used Mizusani ⁇ alkali metal or Mizusani ⁇ alkaline earth metals.
  • the pH of the solution is made higher than that of the alkali metal hydroxide or the alkaline earth metal, the metal becomes a hydroxide under normal conditions and is not reduced and precipitated.
  • the plating solution is heated to a predetermined temperature, the hydroxide of the metal is dissolved, and the metal is present in the solution in an ionic state. When the core particles are put in this state, reduction precipitation of the metal occurs, and the metal adheres to the surface of the core particle.
  • % means “% by weight”.
  • the obtained core particles were obtained.
  • the core particles were added to an aqueous solution containing 10 gZl of sodium acetate and 2.5 gZl of nickel sulfate and having a pH of 7.8 while stirring the aqueous solution.
  • the liquid temperature was 50 ° C at the time of introduction.
  • the input amount was 5 gZl.
  • heat at the heating rate of CZmin, 8 When the temperature reached 0 ° C, the temperature was maintained for 30 minutes.
  • the pH at that time was 5.6.
  • nickel was reduced and precipitated on the surfaces of the core particles to obtain active material particles.
  • the nickel content in the obtained active material particles was 10%.
  • Active material particles were obtained in the same manner as in Example 1, except that the type of the core particles and the nickel content were as shown in Table 1.
  • the particles of Si Co and Si were prepared as in Example 1.
  • the core particles were added to an aqueous solution containing 2.5 gZl of potassium pyrophosphate and 2.OgZl of nickel chloride and having ⁇ of 9.0 while stirring the aqueous solution.
  • the core particles have an average particle size D of 1.
  • the liquid temperature was kept at 80 ° C.
  • nickel was reduced and precipitated on the surface of the core particles to obtain active material particles.
  • the nickel content in the obtained active material particles was 10%.
  • Active material particles were obtained in the same manner as in Example 1, except that the type of the core particles and the nickel content were as shown in Table 1.
  • a negative electrode for a lithium ion secondary battery was produced by the method shown in FIG.
  • a lithium ion secondary battery was produced in the following manner.
  • the capacity retention of the battery at 200 cycles was measured and calculated by the following method. The results are shown in Table 1 below.
  • an electrolytic copper foil having a thickness of 35 ⁇ m was used as the carrier foil 1.
  • Carrier foil 1 was washed in a pickling solution at room temperature for 30 seconds. Subsequently, pure water washing was performed at room temperature for 30 seconds. Next, the carrier foil 1 was immersed in a 3 gZl carboxybenzotriazole solution kept at 40 ° C. for 30 seconds to form a release layer 2 as shown in FIG. 2 (b). Further, the resultant was washed with pure water at room temperature for 15 seconds.
  • the carrier foil 1 was immersed in a nickel plating bath having the following bath composition, and electrolysis was performed to form a first surface layer 3a of an ultra-thin nickel foil as shown in FIG. 2 (c).
  • the first surface layer 3a was formed on the release layer 2 formed on the glossy side of the carrier foil.
  • the current density was 5AZdm 2 and the bath temperature was 50 ° C.
  • a nickel electrode was used for the anode.
  • DC power supply was used.
  • the thickness of the first surface layer 3a was 3 m.
  • the substrate was washed with pure water for 30 seconds and then dried in the air.
  • a slurry containing the active material particles 5 obtained in each example was applied on the first surface layer 3a, and as shown in FIG. Formed four.
  • the slurry contained active material particles 5, acetylene black, and polyvinylidene fluoride (hereinafter referred to as PVdF!).
  • a second surface layer 3b which is also a very thin nickel foil, was formed by electrolysis.
  • the conditions for the electrolysis were the same as the conditions for forming the first surface layer 3a.
  • the film thickness was 3 m.
  • the electrode 10 thus obtained was peeled off from the carrier foil 1 as shown in FIG. 2 (f) to obtain a negative electrode.
  • the negative electrode obtained above was used as the working electrode, LiCoO was used as the counter electrode, and both electrodes were used as separators.
  • LiPF as non-aqueous electrolyte
  • a lithium ion secondary battery was fabricated by a conventional method using a mixed solution of 6Z ethylene carbonate and getyl carbonate (1: 1 volume ratio). [Capacity maintenance rate at 200 cycles]
  • the discharge capacity at the 200th cycle was measured, the value was divided by the maximum negative electrode discharge capacity, and multiplied by 100 to calculate.
  • active material particles for a nonaqueous electrolyte secondary battery having high electron conductivity can be manufactured by a simple manufacturing method.
  • various metals can be deposited on the surface of silicon or a silicon-based base material, which facilitates electroless plating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

Active material particles for nonaqueous electrolyte secondary batteries are characterized by having such a constitution wherein a metal deposited by electroless plating adheres to the surfaces of core particles which are composed of silicon or an silicon alloy. Such active material particles can be obtained by putting core particles composed of silicon or an silicon alloy in an alkaline solution having a pH of not less than 7 in which a metal is present in the form of ions, and having the metal deposit on the surfaces of the core particles. The alkaline solution preferably contains a weak acid salt so as to have a pH of not less than 7, and a salt of acetic acid or pyrophoric acid is preferably used as the weak acid salt.

Description

明 細 書  Specification
非水電解液二次電池用活物質粒子  Active material particles for non-aqueous electrolyte secondary batteries
技術分野  Technical field
[0001] 本発明は、非水電解液二次電池用活物質粒子に関する。また本発明は、該活物 質粒子をはじめとする無電解めつき物の製造方法に関する。  The present invention relates to active material particles for a non-aqueous electrolyte secondary battery. Further, the present invention relates to a method for producing an electroless plated material including the active material particles.
背景技術  Background art
[0002] 現在、携帯電話やパーソナルコンピュータの二次電池には、リチウムイオン二次電 池が主に使用されている。この理由は、同電池が他の二次電池と比較して高いエネ ルギー密度を有して 、るからである。近年の携帯電話やパーソナルコンピュータの多 機能化に伴いこれらの消費電力が著しく増カロしており、大容量の二次電池がますま す必要となっている。しかし、現状の電極活物質を用いている限り、近い将来その- ーズに応えるのは困難となると予想される。  [0002] Currently, lithium ion secondary batteries are mainly used as secondary batteries for mobile phones and personal computers. The reason is that this battery has a higher energy density than other secondary batteries. In recent years, the power consumption of these mobile phones and personal computers has increased significantly due to their multifunctionality, and large-capacity secondary batteries are increasingly required. However, as long as the current electrode active material is used, it is expected that it will be difficult to meet the needs in the near future.
[0003] リチウムイオン二次電池の負極活物質には、一般にグラフアイトが使用されている。  [0003] Graphite is generally used as a negative electrode active material of a lithium ion secondary battery.
現在では、グラフアイトの 5〜 10倍の容量ポテンシャルを有している Si系物質力もなる 活物質の開発が活発になされている。しかし、 Si系物質は電子伝導性が乏しいので 、その使用に当たっては、集電体と活物質との間の電子伝導性を付与する目的で導 電助剤が添加されている。  At present, active materials with Si-based material strength, which has a capacity potential 5 to 10 times that of graphite, are being actively developed. However, since the Si-based material has poor electron conductivity, a conductive assistant is added for the purpose of imparting electron conductivity between the current collector and the active material when using the Si-based material.
[0004] また、 Si系活物質それ自体の電子伝導性を高めることで、集電体と活物質との間の 電子伝導性を確保することが提案されて ヽる。例えば Si系活物質粒子の表面に粒径 0. 0005〜10 mの金属材料の粒子を付着させることが提案されている(特開平 11 250896号公報参照)。また、ケィ素を含む核粒子の周囲を Mg Si、 CoSi、 NiSi  [0004] Further, it has been proposed that the electron conductivity between the current collector and the active material be ensured by increasing the electron conductivity of the Si-based active material itself. For example, it has been proposed to attach particles of a metal material having a particle diameter of 0.0005 to 10 m on the surface of Si-based active material particles (see Japanese Patent Application Laid-Open No. 11-250896). In addition, Mg Si, CoSi, NiSi
2  2
等のケィ素固溶体によって被覆し、更にその表面を黒鉛やアセチレンブラック等の導 電性材料で被覆することが提案されている(US6, 548, 208参照)。  It has been proposed to cover the surface with a silicon solid solution such as that described above, and further cover the surface with a conductive material such as graphite or acetylene black (see US Pat. No. 6,548,208).
[0005] これらの提案によれば Si系活物質粒子の電子伝導性は高まるが、その製造が複雑 であり経済的でない。 [0005] According to these proposals, the electron conductivity of the Si-based active material particles is increased, but the production thereof is complicated and not economical.
[0006] 従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る Si系 活物質を提供することにある。 発明の開示 [0006] Accordingly, an object of the present invention is to provide a Si-based active material capable of solving the above-mentioned various disadvantages of the related art. Disclosure of the invention
[0007] 本発明は、シリコン又はシリコン合金力もなるコア粒子の表面に、無電解めつきによ つて析出した金属が付着してなることを特徴とする非水電解液二次電池用活物質粒 子を提供することにより前記目的を達成したものである。  [0007] The present invention provides an active material particle for a nonaqueous electrolyte secondary battery, characterized in that a metal precipitated by electroless plating adheres to the surface of a core particle which also has a silicon or silicon alloy force. This object has been achieved by providing a child.
[0008] また本発明は、金属力イオンの状態で存在している pH7以上のアルカリ性溶液中 に、シリコン又はシリコン合金力もなる母材を投入して、該母材の表面に前記金属を 析出させることを特徴とする無電解めつき物の製造方法を提供するものである。  [0008] In the present invention, a base material having a silicon or silicon alloy force is introduced into an alkaline solution having a pH of 7 or more which exists in a state of a metal force ion, and the metal is precipitated on the surface of the base material. It is intended to provide a method for producing an electroless plated product characterized by the above.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明の活物質粒子を含む電極の構造を示す模式図である。 FIG. 1 is a schematic diagram showing a structure of an electrode including active material particles of the present invention.
[図 2]図 2 (a)〜図 2 (f)は、本発明の活物質粒子を含む電極の製造方法の一例を示 す工程図である。  FIGS. 2 (a) to 2 (f) are process diagrams showing an example of a method for producing an electrode containing active material particles of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下本発明を、その好ましい実施形態に基づき説明する。本発明の非水電解液二 次電池用活物質粒子(以下、単に活物質粒子ともいう)は、シリコン又はシリコン合金 力もなるコア粒子の表面に、金属が付着して構成されているものである(以下、この金 属を付着金属という)。付着金属はコア粒子の表面に無電解めつきによって析出した ものである。 [0010] Hereinafter, the present invention will be described based on preferred embodiments. The active material particles for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, also simply referred to as active material particles) are formed by attaching a metal to the surface of a core particle which also has a silicon or silicon alloy force. (Hereinafter, this metal is referred to as an adhering metal). The deposited metal was deposited on the surface of the core particles by electroless plating.
[0011] シリコン又はシリコン系合金力 なるコア粒子は、無電解めつきによって金属を析出 させることが容易でない。その理由は、シリコンはアルカリ性の液に溶解する力 その 他の金属はアルカリ性の液中で水酸ィ匕物を形成してしまい、シリコンとのイオンィ匕傾 向の差を利用した無電解めつきによる析出が生じないからである。これに対して本発 明においては、後述する無電解めつき法を用いることによってシリコン又はシリコン系 合金力もなるコア粒子の表面に金属を付着させることができる。  [0011] Silicon or silicon-based alloy core particles cannot easily deposit metal by electroless plating. The reason is that silicon dissolves in an alkaline solution, and other metals form hydroxides in an alkaline solution. This is because no precipitation due to is caused. On the other hand, in the present invention, the metal can be attached to the surface of the core particle which also has silicon or a silicon-based alloy by using an electroless plating method described later.
[0012] 付着金属は、コア粒子の表面全域を完全に被覆しているのではなぐ付着金属の 超微粒子がコア粒子表面にランダムに付着し、コア粒子の表面の一部が露出するよ うに付着して 、ることが好ま U、。付着金属がコア粒子の表面を完全に被覆してしまう と、電解液がコア粒子と接触できず、所望の電気化学反応を起こすことができない。 しかし、付着金属の付着量が少なすぎると、活物質粒子に所望の電子伝導性を付与 することができない。これらの観点から、担持された付着金属を活物質中の含有量で 表すと、 1〜40重量%、特に 5〜25重量%であることが好ましい。 [0012] The adhered metal does not completely cover the entire surface of the core particle, but ultra-fine particles of the adhered metal adhere randomly to the core particle surface and adhere so that a part of the core particle surface is exposed. U, then prefer. If the adhered metal completely covers the surface of the core particles, the electrolyte cannot contact the core particles, and a desired electrochemical reaction cannot be caused. However, if the amount of the attached metal is too small, the desired electron conductivity is given to the active material particles. Can not do it. From these viewpoints, when the amount of the deposited adhered metal is represented by the content in the active material, it is preferably 1 to 40% by weight, particularly preferably 5 to 25% by weight.
[0013] 付着金属としては、後述する無電解メツキ法によってコア粒子の表面に析出可能な ものであればその種類に特に制限はな 、。活物質粒子を例えばリチウムイオン二次 電池用の負極活物質として用いる場合には、付着金属は、リチウム化合物の形成能 の低いものであることが好ましい。そのような金属としては、例えばニッケル、銅、鉄、 コバルト等が挙げられる。また付着金属としてこれらの金属の合金を用いることもでき る。 [0013] The type of the adhering metal is not particularly limited as long as it can be deposited on the surface of the core particle by an electroless plating method described later. When the active material particles are used, for example, as a negative electrode active material for a lithium ion secondary battery, the adhered metal preferably has a low ability to form a lithium compound. Examples of such a metal include nickel, copper, iron, and cobalt. Also, alloys of these metals can be used as the adhering metal.
[0014] コア粒子としては、先に述べた通りシリコン又はシリコン合金が用いられる。シリコン 合金を用いることで、活物質粒子の電子伝導性を一層高めることができるので有利 である。またコア粒子の酸ィ匕を防止することもできる。  [0014] As described above, silicon or a silicon alloy is used as the core particles. The use of a silicon alloy is advantageous because the electron conductivity of the active material particles can be further increased. It is also possible to prevent the core particles from being oxidized.
[0015] コア粒子の構成材料であるシリコンやシリコン系合金の密度は、付着金属の密度よ りも小さいものであり且つ付着金属はコア粒子の表面を薄く不連続に被覆するもので ある。従って、コア粒子の表面に付着金属が析出していても、本発明の活物質粒子 の粒径とコア粒子の粒径に大きな差はない。両者はその最大粒径が好ましくは 50 m以下であり、更に好ましくは 20 m以下である。また粒子の粒径を D 値で表すと 0  [0015] The density of silicon or a silicon-based alloy, which is a constituent material of the core particles, is smaller than the density of the adhered metal, and the adhered metal thinly and discontinuously coats the surface of the core particles. Therefore, even if the adhered metal is deposited on the surface of the core particles, there is no significant difference between the particle size of the active material particles of the present invention and the particle size of the core particles. Both have a maximum particle size of preferably 50 m or less, more preferably 20 m or less. When the particle size is represented by the D value, 0
50  50
. 1〜8 μ m、特に 1〜5 μ mであることが好ましい。最大粒径が 50 μ m超であると、電 極からの粒子の脱落が起こりやすくなり、電極の寿命が短くなる場合がある。粒径の 下限値に特に制限はなく小さいほど好ましい。該粒子の製造方法に鑑みると、下限 値は 0. 01 μ m程度である。粒子の粒径は、レーザー回折散乱法、電子顕微鏡観察 (SEM観察)によって測定される。  It is preferably from 1 to 8 μm, particularly preferably from 1 to 5 μm. If the maximum particle size is more than 50 μm, particles may easily fall off from the electrode, and the life of the electrode may be shortened. There is no particular limitation on the lower limit of the particle size, and the smaller the value, the better. In view of the method for producing the particles, the lower limit is about 0.01 μm. The particle size of the particles is measured by a laser diffraction scattering method and electron microscope observation (SEM observation).
[0016] コア粒子がシリコン系合金力もなる場合、該合金に含まれる金属としては例えば Ni 、 Cu、 Fe、 Co、 Cr、 Ag、 Zn、 B、 Al、 Ge、 Sn、 Li、 In、 V、 Ti、 Y、 Zr、 Nb、 Ta、 W、 La、 Ce、 Pr、 Pd、 Nd等の一種又は 2種以上が用いられる。特に Ni、 Cu、 Fe、 Coが 好ましい。シリコン系合金におけるシリコンの量は 40〜90重量%であることが好まし い。一方、合金に含まれる金属の量は 10〜60重量%であることが好ましい。  [0016] When the core particles also have a silicon-based alloy force, examples of metals contained in the alloy include Ni, Cu, Fe, Co, Cr, Ag, Zn, B, Al, Ge, Sn, Li, In, V, One or more of Ti, Y, Zr, Nb, Ta, W, La, Ce, Pr, Pd, Nd and the like are used. Particularly, Ni, Cu, Fe and Co are preferable. The amount of silicon in the silicon-based alloy is preferably 40 to 90% by weight. On the other hand, the amount of metal contained in the alloy is preferably 10 to 60% by weight.
[0017] シリコン系合金は、例えば铸型铸造法やロール铸造法などの急冷法によって製造 されることが、合金の結晶子が微細なサイズとなり且つ均質分散されることにより、活 物質粒子の微粉化が抑制され、電子伝導性が保持される点から好ましい。急冷法に 代えて、ガスアトマイズ法やアーク溶解法、メカ-カルミリング法を用いることもできる。 [0017] Since silicon-based alloys are manufactured by a quenching method such as a 铸 -type manufacturing method or a roll-type manufacturing method, the crystallites of the alloy have a fine size and are uniformly dispersed. It is preferable because the pulverization of the material particles is suppressed and the electron conductivity is maintained. Instead of the rapid cooling method, a gas atomizing method, an arc melting method, or a mechanical milling method can be used.
[0018] 本発明の活物質粒子は、特にリチウムイオン二次電池用の負極活物質として有用 である。本発明の活物質粒子を用いて電極を製造するには、例えば該活物質粒子を バインダゃ導電助剤と混合してなる負極合剤を形成し、該合剤を集電体の一面又は 両面に塗工すればよい。この場合、活物質粒子自体の電子伝導性が高いので、負 極合剤に配合される導電助剤の量を、従来の負極よりも低減できる。導電助剤の量 を低減できる結果、活物質の配合量を従来の負極よりも増やすことができ、その結果 、電池の容量が増加し、またエネルギー密度も高まるという利点がある。  The active material particles of the present invention are particularly useful as a negative electrode active material for a lithium ion secondary battery. To produce an electrode using the active material particles of the present invention, for example, a negative electrode mixture is prepared by mixing the active material particles with a binder and a conductive auxiliary, and the mixture is formed on one or both surfaces of a current collector. It is good to apply to. In this case, since the electron conductivity of the active material particles themselves is high, the amount of the conductive auxiliary compounded in the negative electrode mixture can be reduced as compared with the conventional negative electrode. As a result of being able to reduce the amount of the conductive auxiliary agent, it is possible to increase the compounding amount of the active material as compared with the conventional negative electrode. As a result, there is an advantage that the capacity of the battery increases and the energy density also increases.
[0019] 本発明の活物質粒子は、図 1に示す電極 10に適用することもできる。なお図 1にお いては、電極 10の一方の面側のみが示されており他方の面側は示されていないが、 他方の面側の構造もほぼ同様となっている。図 1に示す電極 10は、リチウムイオン二 次電池用の負極として特に有用なものであり、電解液と接する表裏一対の面である 第 1の面及び第 2の面(図示せず)を有している。電極 10は、両面間に活物質粒子 5 を含む活物質層 4を備えている。活物質層 4は、該層 4の各面にそれぞれ形成された 一対の集電用表面層(一方の集電用表面層は図示せず) 3によって連続的に被覆さ れている。各表面層は、第 1の面及び第 2の面をそれぞれ含んでいる。また図 1から 明らかなように電極 10は、従来の電極に用いられてきた集電体と呼ばれる集電用の 厚膜導電体 (例えば金属箔)を有して!/ヽな ヽ。  The active material particles of the present invention can also be applied to the electrode 10 shown in FIG. In FIG. 1, only one side of the electrode 10 is shown and the other side is not shown, but the structure of the other side is almost the same. The electrode 10 shown in FIG. 1 is particularly useful as a negative electrode for a lithium ion secondary battery, and has a first surface and a second surface (not shown), which are a pair of front and back surfaces that are in contact with the electrolyte. are doing. The electrode 10 has an active material layer 4 containing active material particles 5 between both surfaces. The active material layer 4 is continuously covered by a pair of current collecting surface layers 3 (one current collecting surface layer is not shown) 3 formed on each surface of the layer 4. Each surface layer includes a first surface and a second surface. As is clear from FIG. 1, the electrode 10 has a thick current collector (eg, a metal foil) for current collection called a current collector that has been used for a conventional electrode!
[0020] 集電用表面層 3は、電極 10における集電機能を担っている。また表面層 3は、活物 質層 4に含まれる活物質が電極反応によって膨張及び/又は収縮することに起因し て脱落することを防止するためにも用いられている。表面層 3は、二次電池の集電体 となり得る金属から構成されている。かかる金属としては、リチウム化合物の形成能の 低いものが用いられる。例を挙げれば Cu、 Ni、 Fe、 Co又はこれらの合金等が挙げら れる。耐食性を向上させるために、 Crを添加してもよい。 2つの表面層は、その構成 材料が同じであってもよぐ或いは異なって 、てもよ 、。  The current collecting surface layer 3 has a current collecting function in the electrode 10. The surface layer 3 is also used to prevent the active material contained in the active material layer 4 from falling off due to expansion and / or contraction due to an electrode reaction. The surface layer 3 is made of a metal that can be a current collector of a secondary battery. As such a metal, a metal having a low ability to form a lithium compound is used. Examples include Cu, Ni, Fe, Co or alloys thereof. Cr may be added to improve the corrosion resistance. The two surface layers may be made of the same material or different materials.
[0021] 各表面層 3は、従来の電極に用いられている集電用の厚膜導電体よりもその厚み 力 S薄 、ものである。具体的には 0. 3〜20 /ζ πι程度、特に 0. 3〜: LO /z m程度、とりわ け 0. 5〜5 m程度の薄層であることが好ましい。これによつて、必要最小限の厚み で活物質層 4をほぼ万遍なく連続的に被覆することができる。その結果、活物質粒子 5の脱落を防止することができる。またこの程度の薄層とすること、及び集電用の厚膜 導電体を有して 、な 、ことで、電極全体に占める活物質の割合が相対的に高くなり、 単位体積当たり及び単位重量当たりのエネルギー密度を高めることができる。従来の 電極では、電極全体に占める集電用の厚膜導電体の割合が高かったので、ェネル ギー密度を高めることに限界があった。前記範囲の薄い表面層 3は、電解めつきによ つて形成されることが好ましい。なお 2つの表面層 3はその厚みが同じでもよぐ或い は異なっていてもよい。 [0021] Each surface layer 3 has a thickness S thinner than that of a thick current collector for current collection used in a conventional electrode. Specifically, about 0.3 to 20 / ζπι, especially about 0.3 to: LO / zm, The thickness is preferably about 0.5 to 5 m. Thus, the active material layer 4 can be coated almost uniformly and continuously with a minimum necessary thickness. As a result, it is possible to prevent the active material particles 5 from falling off. In addition, having a thin layer of such a degree and having a thick film conductor for current collection, the ratio of the active material to the entire electrode becomes relatively high, so that the weight per unit volume and the unit weight is increased. Per unit energy density can be increased. In the conventional electrode, the ratio of the thick film conductor for current collection to the entire electrode was high, so that there was a limit in increasing the energy density. It is preferable that the thin surface layer 3 in the above range is formed by electrolytic plating. Note that the two surface layers 3 may have the same thickness or may have different thicknesses.
[0022] 先に述べた通り、電極 10は第 1の面及び第 2の面をそれぞれ含んでいる。電極 10 が電池に組み込まれた場合、第 1の面及び第 2の面は電解液と接する面となり電極 反応に関与する。これとは対照的に、従来の電極における集電用の厚膜導電体は、 その両面に活物質層が形成されている場合には電解液と接することはなく電極反応 に関与せず、また片面に活物質層が形成されている場合であっても一方の面しか電 解液と接しない。つまり電極 10には、従来の電極で用いられていた集電用の厚膜導 電体が存在せず、電極の最外面に位置する層、即ち表面層 3が電極反応に関与す ると共に集電機能と活物質の脱落を防止する機能とを兼ねている。  [0022] As described above, the electrode 10 includes the first surface and the second surface, respectively. When the electrode 10 is incorporated in a battery, the first surface and the second surface become surfaces that come into contact with the electrolytic solution and participate in the electrode reaction. In contrast to this, the thick film conductor for current collection in the conventional electrode does not come into contact with the electrolytic solution when the active material layer is formed on both surfaces thereof and does not participate in the electrode reaction, and Even when the active material layer is formed on one side, only one side is in contact with the electrolyte. That is, the electrode 10 does not have a thick-film conductor for current collection used in the conventional electrode, and the layer located on the outermost surface of the electrode, that is, the surface layer 3 participates in the electrode reaction and collects. It has both an electrical function and a function to prevent the active material from falling off.
[0023] 第 1の面及び第 2の面をそれぞれ含む各表面層 3は何れも集電機能を有して 、る ので、電極 10を電池に組み込んだ場合には、何れの表面層 3にも電流取り出し用の リード線を接続することができるという利点がある。  Each of the surface layers 3 including the first surface and the second surface has a current collecting function. Therefore, when the electrode 10 is incorporated in a battery, any of the surface layers 3 Also, there is an advantage that a lead wire for extracting current can be connected.
[0024] 図 1に示すように電極 10は、第 1の面及び第 2の面において開孔し且つ活物質層 4 と通ずる多数の微細空隙 5を有している。微細空隙 6は各集電用表面層 3の厚さ方向 へ延びるように該表面層 3中に存在している。微細空隙 6が形成されていることで、電 解液が活物質層 4へ十分に浸透することができ、活物質粒子 5との反応が十分に起 こる。微細空隙 6は、表面層 3を断面観察した場合にその幅が約 0.: L mから約 10 IX m程度の微細なものである。微細であるものの、微細空隙 6は電解液の浸透が可 能な程度の幅を有している。微細空隙 6は、好ましくは表面層 3を電解めつきで形成 する際に同時に形成される。 [0025] 第 1の面及び第 2の面を電子顕微鏡観察により平面視したとき、少なくとも一方の面 における微細空隙 6の平均開孔面積は、好ましくは 0. 1〜: LOO /z m2程度であり、更 に好ましくは 1〜: LO /z m2程度である。この範囲の開孔面積とすることで、電解液の十 分な浸透を確保しつつ、活物質粒子 5の脱落を効果的に防止することができる。また 充放電の初期段階力 充放電容量を高めることができる。活物質粒子 5の脱落を一 層効果的に防止する観点から、前記の平均開孔面積は、活物質粒子 5の最大断面 積の 5〜70%、特に 10〜40%であることが好ましい。 As shown in FIG. 1, the electrode 10 has a large number of fine voids 5 that are open on the first surface and the second surface and communicate with the active material layer 4. The fine voids 6 are present in the surface layer 3 so as to extend in the thickness direction of each current collecting surface layer 3. The formation of the fine voids 6 allows the electrolytic solution to sufficiently penetrate into the active material layer 4 and sufficiently reacts with the active material particles 5. The fine voids 6 have a width of about 0: L m to about 10 IX m when the cross section of the surface layer 3 is observed. Although it is fine, the minute gap 6 has a width that allows the electrolyte to penetrate. The fine voids 6 are preferably formed at the same time when the surface layer 3 is formed by electroplating. When the first surface and the second surface are viewed in plan by electron microscope observation, the average open area of the fine voids 6 on at least one surface is preferably about 0.1 to: LOO / zm 2 . There, the more preferably 1: 2 approximately LO / zm. By setting the opening area in this range, it is possible to effectively prevent the active material particles 5 from falling off while ensuring sufficient penetration of the electrolytic solution. In addition, the initial stage charge / discharge capacity of charge / discharge can be increased. From the viewpoint of more effectively preventing the active material particles 5 from falling off, the average opening area is preferably 5 to 70%, particularly preferably 10 to 40% of the maximum cross-sectional area of the active material particles 5.
[0026] 第 1の面及び第 2の面間に位置する活物質層 4は、本発明の活物質粒子 5を含ん でいる。活物質層 4は 2つの表面層 3によって被覆されているので、活物質粒子 5が 電極反応によって膨張及び Z又は収縮することに起因して脱落することが効果的に 防止される。活物質粒子 5は微細空隙 6を通じて電解液と接することができるので、電 極反応が妨げられることもな 、。  The active material layer 4 located between the first surface and the second surface contains the active material particles 5 of the present invention. Since the active material layer 4 is covered with the two surface layers 3, the active material particles 5 are effectively prevented from falling off due to expansion and Z or contraction due to an electrode reaction. Since the active material particles 5 can come into contact with the electrolytic solution through the fine voids 6, the electrode reaction is not hindered.
[0027] 電極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向 上させにくぐ逆に多すぎると活物質の脱落が起こりやすくなる傾向にある。これらを 勘案すると、活物質粒子 5の量は電極全体に対して好ましくは 10〜90重量%であり 、更に好ましくは 20〜80重量%、一層好ましくは 40〜80重量%である。活物質層 4 の厚みは、電極全体に対する活物質粒子 5の量の割合や活物質粒子 5の粒径に応 じて適宜調節することができ、本実施形態においては特に臨界的なものではない。 概ね1〜200 111、特に 10〜: LOO /z m程度である。活物質層 4は、活物質粒子 5を含 む導電性スラリーを塗布することによって形成されることが好ましい。表面層 3及び活 物質層 4を含む電極全体の厚みは、電極の強度やエネルギー密度を高めること考慮 すると、 1〜500 /ζ πι、特に1〜250 111、とりわけ 10〜150 m程度であること力 子 ましい。  [0027] When the amount of the active material relative to the entire electrode is too small, the energy density of the battery is not sufficiently improved, whereas when it is too large, the active material tends to fall off. Considering these, the amount of the active material particles 5 is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, and still more preferably 40 to 80% by weight based on the whole electrode. The thickness of the active material layer 4 can be appropriately adjusted according to the ratio of the amount of the active material particles 5 to the entire electrode and the particle size of the active material particles 5, and is not particularly critical in the present embodiment. . About 1 to 200 111, especially about 10: LOO / zm. The active material layer 4 is preferably formed by applying a conductive slurry containing the active material particles 5. The total thickness of the electrode including the surface layer 3 and the active material layer 4 should be 1 to 500 / ζπι, particularly 1 to 250 111, and especially about 10 to 150 m, considering the strength and energy density of the electrode. Riko
[0028] 活物質層 4においては、第 1の面 1及び第 2の面をそれぞれ含む各表面層 3を構成 する材料が活物質層 4の厚み方向全域に亘つて浸透して 、ることが好ま 、。そして 浸透した該材料中に活物質粒子 5が存在して ヽることが好まし ヽ。つまり活物質粒子 5は電極 10の表面に実質的に露出しておらず表面層 3の内部に包埋されていること が好ましい。これによつて、活物質層 4と表面層 3との密着性が強固なものとなり、活 物質の脱落が一層防止される。また活物質層 4中に浸透した前記材料を通じて表面 層 3と活物質粒子 5との間に電子伝導性が確保されるので、電気的に孤立した活物 質が生成すること、特に活物質層 4の深部に電気的に孤立した活物質が生成するこ とが効果的に防止され集電機能が保たれる。その結果、電極としての機能低下が抑 えられる。更に電極の長寿命化も図られる。特に、活物質粒子 5はその表面に付着 金属を有しているので、表面層 3と活物質粒子 5との電子伝導性が一層高くなる。 In the active material layer 4, the material constituting each surface layer 3 including the first surface 1 and the second surface may penetrate throughout the thickness of the active material layer 4. Like,. It is preferable that the active material particles 5 exist in the permeated material. That is, it is preferable that the active material particles 5 are not substantially exposed to the surface of the electrode 10 but are embedded in the surface layer 3. As a result, the adhesion between the active material layer 4 and the surface layer 3 becomes strong, Material shedding is further prevented. Further, electron conductivity is ensured between the surface layer 3 and the active material particles 5 through the material penetrated into the active material layer 4, so that an electrically isolated active material is generated. Generation of an electrically isolated active material in the deep part of 4 is effectively prevented, and the current collecting function is maintained. As a result, a decrease in the function of the electrode is suppressed. Further, the life of the electrode can be extended. In particular, since the active material particles 5 have an attached metal on the surface, the electron conductivity between the surface layer 3 and the active material particles 5 is further increased.
[0029] 集電用表面層 3を構成する材料は、活物質層 4をその厚み方向に貫いており、両 表面層 3とつながっていることが好ましい。それによつて 2つの表面層 3は前記材料を 通じて電気的に導通することになり、電極全体としての電子伝導性が一層高くなる。 つまり図 1に示す電極 10は、電極全体が一体として集電機能を有する。集電用表面 層 3を構成する材料が活物質層の厚み方向全域に亘つて浸透して両表面層どうしが つながって 、ることは、該材料を測定対象とした電子顕微鏡マッピングによって求め ることがでさる。 It is preferable that the material constituting the current-collecting surface layer 3 penetrates the active material layer 4 in the thickness direction and is connected to both surface layers 3. Thereby, the two surface layers 3 become electrically conductive through the material, and the electron conductivity of the electrode as a whole is further increased. That is, the electrode 10 shown in FIG. 1 has a current collecting function as a whole as a whole. The fact that the material constituting the current-collecting surface layer 3 penetrates over the entire area in the thickness direction of the active material layer and that the two surface layers are connected to each other is determined by electron microscope mapping using the material as a measurement target. It comes out.
[0030] 本発明の活物質粒子を前述した各種負極に適用する場合、該負極を用いた非水 電解液二次電池の構成は次の通りとなる。即ち該負極と対で用いられる正極は、正 極活物質並びに必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を 作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち 抜きすること〖こより得られる。正極活物質としては、リチウムニッケル複合酸ィ匕物、リチ ゥムマンガン複合酸化物、リチウムコバルト複合酸ィ匕物等の従来公知の正極活物質 が用いられる。負極と正極の間に配置されるセパレーターとしては、合成樹脂製不織 布、ポリエチレン又はポリプロピレン多孔質フィルム等が好ましく用いられる。非水電 解液は、リチウム二次電池の場合、支持電解質であるリチウム塩を有機溶媒に溶解し た溶液からなる。リチウム塩としては、例えば、 LiCIO、 LiAlCl、 LiPF、 LiAsF、  When the active material particles of the present invention are applied to the above-described various types of negative electrodes, the configuration of a non-aqueous electrolyte secondary battery using the negative electrodes is as follows. That is, the positive electrode used as a pair with the negative electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying the mixture to a current collector, and drying the mixture. , Roll rolling, pressing, and further cutting and punching. As the positive electrode active material, a conventionally known positive electrode active material such as a lithium nickel composite oxide, a lithium manganese composite oxide, and a lithium cobalt composite oxide is used. As the separator disposed between the negative electrode and the positive electrode, a synthetic resin nonwoven fabric, a polyethylene or polypropylene porous film, or the like is preferably used. In the case of a lithium secondary battery, the nonaqueous electrolyte is composed of a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. Examples of lithium salts include LiCIO, LiAlCl, LiPF, LiAsF,
4 4 6 6 4 4 6 6
LiSbF、 LiSCN、 LiCl、 LiBr、 Lil、 LiCF SO、 LiC F SO等が例示される。 LiSbF, LiSCN, LiCl, LiBr, Lil, LiCFSO, LiCFSO and the like are exemplified.
6 3 3 4 9 3  6 3 3 4 9 3
[0031] 次に、本発明の活物質粒子の好ましい製造方法を以下に説明する。なお以下に説 明する製造方法は、本発明の活物質粒子の製造方法として好ましいものであるが、 それ以外の対象物、即ち、シリコン又はシリコン合金力 なる各種形状の母材の表面 に各種金属が付着してなる無電解めつき物の製造方法としても有用である。 [0032] 本製造方法におけるめっき浴としては、金属がイオンの状態で存在している pH7以 上のアルカリ性溶液が用いられる。金属としては、先に述べた銅、ニッケル、鉄、コバ ルト等が挙げられる。これらの金属は一般に水酸化アルカリ金属や水酸化アルカリ土 類金属によってアルカリ性となっている溶液中では水酸ィ匕物を形成してしまい無電解 めっきに供し得ない。そこで本製造方法においては、 pHがアルカリ領域であってもこ れらの金属が水酸化物を形成することのな 、溶液系を用いて 、る。この点に本製造 方法の特徴がある。 Next, a preferred method for producing the active material particles of the present invention will be described below. The production method described below is preferable as the method for producing the active material particles of the present invention. However, other objects, that is, various metals are formed on the surface of the base material having various shapes of silicon or silicon alloy. It is also useful as a method for producing an electroless plated product having the particles adhered thereto. [0032] As a plating bath in the present production method, an alkaline solution having a pH of 7 or more in which a metal exists in an ion state is used. Examples of the metal include copper, nickel, iron, cobalt, and the like described above. These metals generally form hydroxides in a solution rendered alkaline by an alkali metal hydroxide or an alkaline earth metal hydroxide and cannot be subjected to electroless plating. Therefore, in the present production method, even if the pH is in an alkaline range, these metals do not form hydroxides, and a solution system is used. This is a feature of this manufacturing method.
[0033] アルカリ領域において金属が水酸ィ匕物を形成することのない溶液系として、本製造 方法では、弱酸の塩の水溶液を用いることが好ましい。弱酸の塩としては、酢酸又は ピロリン酸の塩などを用いることができる。該塩はナトリウム塩や、カリウム塩であること が好ましい。特に弱酸の塩の水溶液として、酢酸ナトリウム水溶液を用いると不純物 が生成されない点で好ましい。弱酸の塩、例えば酢酸ナトリウムは水に溶解してアル カリ性を示す。この溶液に金属塩を溶解させると、金属は水酸化物を生成せず、ィォ ンの状態で溶液中に存在することが本発明者らの検討の結果判明した。ここで「ィォ ンの状態で存在する」とは、金属が錯イオンの状態で存在することも包含する。  [0033] In the present production method, it is preferable to use an aqueous solution of a salt of a weak acid as a solution system in which the metal does not form a hydroxide in the alkaline region. As the salt of the weak acid, a salt of acetic acid or pyrophosphoric acid can be used. The salt is preferably a sodium salt or a potassium salt. In particular, it is preferable to use an aqueous solution of sodium acetate as an aqueous solution of a salt of a weak acid since impurities are not generated. Salts of weak acids, such as sodium acetate, dissolve in water and exhibit alkaline properties. When the metal salt was dissolved in this solution, the present inventors found that the metal did not form a hydroxide and was present in the solution in an ion state. Here, “existing in the ion state” includes that the metal exists in a complex ion state.
[0034] 前記の金属塩としては、例えば金属がニッケルの場合には、塩化ニッケル、硫酸- ッケル等を用いることができる。銅の場合には、塩化銅、硫酸銅等を用いることができ る。鉄の場合には、塩化鉄、硫酸鉄等を用いることができる。コノ レトの場合には、塩 化コバルト、硫酸コバルト等を用いることができる。  [0034] As the above-mentioned metal salt, for example, when the metal is nickel, nickel chloride, nickel sulfate, or the like can be used. In the case of copper, copper chloride, copper sulfate or the like can be used. In the case of iron, iron chloride, iron sulfate or the like can be used. In the case of konoleto, cobalt chloride, cobalt sulfate or the like can be used.
[0035] 金属力イオンの状態で存在して 、るアルカリ性溶液にコア粒子を添加することによ つて、コア粒子中のシリコンが溶液中に溶解し電子を放出する。これとの置換反応に よって金属イオンが電子を受け取りコア粒子の表面に還元析出する。金属イオンを首 尾良く還元析出させる観点から、溶液の pHは 6. 5〜12、特に 7. 0〜9. 0であること が好ましい。溶液中の金属イオンの濃度に関しては、所定量の金属付着量に相当す る金属塩を溶解させれば良い。付着金属量は、シリコンまたはシリコン系合金の重量 に対して 5〜25重量%であることが望まし 、。  [0035] By adding the core particles to the alkaline solution that exists in the state of metal ions, the silicon in the core particles dissolves in the solution and emits electrons. By the substitution reaction with this, the metal ions receive the electrons and are reduced and deposited on the surface of the core particles. The pH of the solution is preferably 6.5 to 12, particularly preferably 7.0 to 9.0, from the viewpoint of successfully reducing and depositing metal ions. Regarding the concentration of the metal ion in the solution, a metal salt corresponding to a predetermined amount of the deposited metal may be dissolved. It is desirable that the amount of deposited metal is 5 to 25% by weight based on the weight of silicon or silicon-based alloy.
[0036] 反応は溶液を撹拌しながら行うことが好ましい。使用する金属の種類によってはそ の還元析出反応の他に不純物析出反応が進行する場合がある。そこで、その不純 物析出を抑制し、還元析出反応を促進させるために、例えば 40〜60°C力 反応を 開始し、 l〜10°CZminの昇温速度にて加温し、 70〜90°Cにて 5分〜 4時間保持す ることが好ま U、。この操作によって適切な処理がなされる。 [0036] The reaction is preferably performed while stirring the solution. Depending on the type of metal used, an impurity precipitation reaction may proceed in addition to the reduction precipitation reaction. So, that impure In order to suppress precipitation and promote the reduction precipitation reaction, for example, start the reaction at 40 to 60 ° C, heat at a rate of 1 to 10 ° C Zmin, and heat at 70 to 90 ° C. U, preferably to hold for minutes to 4 hours. Appropriate processing is performed by this operation.
[0037] コア粒子の表面に所定量の金属が析出して所望の活物質粒子が得られたら、該粒 子をろ別、水洗する。得られた粒子は表面酸ィ匕物が溶解してフレッシュな状態となつ ており、大気中に暴露すると逆に酸化されやすい状態にある。その再酸化を抑制す るために、水洗後、ベンゾトリアゾール (BTA)処理を行うと再酸ィ匕が抑制され、一層 効果的である。 [0037] When a predetermined amount of metal is precipitated on the surface of the core particles to obtain desired active material particles, the particles are separated by filtration and washed with water. The obtained particles are in a fresh state by dissolving the surface oxidized substance, and are in a state easily oxidized when exposed to the air. If benzotriazole (BTA) treatment is carried out after washing with water to suppress the reoxidation, reoxidation is suppressed, which is more effective.
[0038] 以上の製造方法は、金属が還元析出する母材として前記のコア粒子を用いた場合 のものである力 本製造方法はコア粒子以外の各種粒状体力 なる母材に適用する ことができる。また先に述べた通り、本製造方法は粒状体以外の形状を有する母材 にも適用することができる。例えば板状体や棒状体をはじめとする各種バルタ体を母 材として本製造方法を適用することができる。  [0038] The above-described production method is a force when the above-described core particles are used as the base material on which the metal is reduced and precipitated. This production method can be applied to a base material having various granular strengths other than the core particles. . Further, as described above, the present manufacturing method can be applied to a base material having a shape other than the granular material. For example, the present manufacturing method can be applied to various kinds of barta bodies such as plate bodies and rod bodies as base materials.
[0039] 本製造方法の別法として、水溶液を PH7以上のアルカリ性にする剤として、水酸ィ匕 アルカリ金属や水酸ィ匕アルカリ土類金属を用いることもできる。尤も、先に述べた通り 、水酸化アルカリ金属や水酸化アルカリ土類金属で液の pHを以上とすると、通常の 条件では金属は水酸ィ匕物となってしまい還元析出されない。しかし、めっき液を所定 の温度に加熱することで金属の水酸化物が溶解して液中に金属がイオンの状態で 存在するようになる。その状態下にコア粒子を投入することで、金属の還元析出が起 こり、金属がコア粒子の表面に付着する。 [0039] As an alternative to the present manufacturing method, an aqueous solution as agent for the P H7 or alkaline it may be used Mizusani匕alkali metal or Mizusani匕alkaline earth metals. However, as described above, when the pH of the solution is made higher than that of the alkali metal hydroxide or the alkaline earth metal, the metal becomes a hydroxide under normal conditions and is not reduced and precipitated. However, when the plating solution is heated to a predetermined temperature, the hydroxide of the metal is dissolved, and the metal is present in the solution in an ionic state. When the core particles are put in this state, reduction precipitation of the metal occurs, and the metal adheres to the surface of the core particle.
実施例  Example
[0040] 以下、実施例により本発明を更に詳細に説明する。特に断らない限り、「%」は「重 量%」を意味する。  Hereinafter, the present invention will be described in more detail with reference to Examples. Unless otherwise specified, “%” means “% by weight”.
[0041] 〔実施例 1〕 Example 1
ロール铸造法によって平均粒径 D が 1. 5 mである Si80%—Ni20%の組成を  The composition of Si80% -Ni20% with an average particle size D of 1.5 m
50  50
有するコア粒子を得た。酢酸ナトリウムを 10gZl、硫酸ニッケルを 2. 5gZl含み、 PH 7. 8である水溶液に、該水溶液を攪拌しながらコア粒子を投入した。液温は投入時 5 0°Cであった。投入量は 5gZlであった。その後 CZminの昇温速度にて加温し、 8 0°Cとなったところで 30分間保持した。そのときの pHは 5. 6であった。これによつてコ ァ粒子の表面にニッケルを還元析出させ活物質粒子を得た。得られた活物質粒子に おけるニッケルの含有量は 10%であった。 The obtained core particles were obtained. The core particles were added to an aqueous solution containing 10 gZl of sodium acetate and 2.5 gZl of nickel sulfate and having a pH of 7.8 while stirring the aqueous solution. The liquid temperature was 50 ° C at the time of introduction. The input amount was 5 gZl. Then heat at the heating rate of CZmin, 8 When the temperature reached 0 ° C, the temperature was maintained for 30 minutes. The pH at that time was 5.6. As a result, nickel was reduced and precipitated on the surfaces of the core particles to obtain active material particles. The nickel content in the obtained active material particles was 10%.
[0042] 〔実施例 2〜5〕 [Examples 2 to 5]
コア粒子の種類及びニッケルの含有量を表 1に示す通りとする以外は実施例 1と同 様にして活物質粒子を得た。なお、 Si Co 及び Siの粒子は、実施例 1と同様にロー  Active material particles were obtained in the same manner as in Example 1, except that the type of the core particles and the nickel content were as shown in Table 1. The particles of Si Co and Si were prepared as in Example 1.
80 20  80 20
ル铸造法で製造した。  Manufactured by the Ruzo method.
[0043] 〔実施例 6〕 Example 6
ピロリン酸カリウムを 2. 5gZl、塩化ニッケルを 2. OgZl含み、 ρΗが 9. 0である水溶 液に、該水溶液を撹拌しながらコア粒子を投入した。コア粒子は、平均粒径 D が 1.  The core particles were added to an aqueous solution containing 2.5 gZl of potassium pyrophosphate and 2.OgZl of nickel chloride and having ρΗ of 9.0 while stirring the aqueous solution. The core particles have an average particle size D of 1.
50 で、 Si80%—Ni20%の組成を有するものであった。液温は 80°Cに保った。こ れによってコア粒子の表面にニッケルを還元析出させ活物質粒子を得た。得られた 活物質粒子におけるニッケルの含有量は 10%であった。  50 and had a composition of 80% Si—20% Ni. The liquid temperature was kept at 80 ° C. As a result, nickel was reduced and precipitated on the surface of the core particles to obtain active material particles. The nickel content in the obtained active material particles was 10%.
[0044] 〔実施例 7〜10〕 [Examples 7 to 10]
コア粒子の種類及びニッケルの含有量を表 1に示す通りとする以外は実施例 1と同 様にして活物質粒子を得た。  Active material particles were obtained in the same manner as in Example 1, except that the type of the core particles and the nickel content were as shown in Table 1.
[0045] 〔性能評価〕 [Performance evaluation]
各実施例で得られた活物質粒子を用い、図 2に示す方法でリチウムイオン二次電 池用負極を作製した。作製した負極を用い、以下の方法でリチウムイオン二次電池を 作製した。この電池の 200サイクル時の容量維持率を以下の方法で測定、算出した 。これらの結果を以下の表 1に示す。  Using the active material particles obtained in each of the examples, a negative electrode for a lithium ion secondary battery was produced by the method shown in FIG. Using the produced negative electrode, a lithium ion secondary battery was produced in the following manner. The capacity retention of the battery at 200 cycles was measured and calculated by the following method. The results are shown in Table 1 below.
[0046] (1)剥離層の形成 (1) Formation of Release Layer
図 2 (a)に示すように、厚さ 35 μ mの電解銅箔をキャリア箔 1として用いた。キャリア 箔 1を、室温において 30秒間酸洗液中で洗浄した。引き続き室温において 30秒間 純水洗浄した。次いで、 40°Cに保たれた 3gZlのカルボキシベンゾトリアゾール溶液 中にキャリア箔 1を 30秒間浸漬して図 2 (b)に示すように剥離層 2を形成した。更に、 室温にぉ 、て 15秒間純水洗浄した。  As shown in FIG. 2A, an electrolytic copper foil having a thickness of 35 μm was used as the carrier foil 1. Carrier foil 1 was washed in a pickling solution at room temperature for 30 seconds. Subsequently, pure water washing was performed at room temperature for 30 seconds. Next, the carrier foil 1 was immersed in a 3 gZl carboxybenzotriazole solution kept at 40 ° C. for 30 seconds to form a release layer 2 as shown in FIG. 2 (b). Further, the resultant was washed with pure water at room temperature for 15 seconds.
[0047] (2)第 1の表面層の形成 以下の浴組成を有するニッケルめっき浴にキャリア箔 1を浸漬させて電解を行い、 図 2 (c)に示すように、極薄ニッケル箔カ なる第 1の表面層 3aを形成した。第 1の表 面層 3aは、キャリア箔における光沢面側に形成された剥離層 2上に形成した。電流 密度は 5AZdm2、浴温は 50°Cとした。陽極にはニッケル電極を用いた。電源は直流 電源を使用した。第 1の表面層 3aの膜厚は 3 mであった。 (2) Formation of First Surface Layer The carrier foil 1 was immersed in a nickel plating bath having the following bath composition, and electrolysis was performed to form a first surface layer 3a of an ultra-thin nickel foil as shown in FIG. 2 (c). The first surface layer 3a was formed on the release layer 2 formed on the glossy side of the carrier foil. The current density was 5AZdm 2 and the bath temperature was 50 ° C. A nickel electrode was used for the anode. DC power supply was used. The thickness of the first surface layer 3a was 3 m.
[0048] スラリー組成は、活物質:アセチレンブラック: PVdF = 94 : 1 : 5であった。 [0048] The slurry composition was: active material: acetylene black: PVdF = 94: 1: 5.
Figure imgf000013_0001
Figure imgf000013_0001
[0049] (3)活物質層の形成  (3) Formation of Active Material Layer
第 1の表面層 3aの形成後、 30秒間純水洗浄を行い、次いで大気中で乾燥させた。 次に、第 1の表面層 3a上に、各実施例で得られた活物質粒子 5を含むスラリーを塗 布して、図 2 (d)に示すように、膜厚 15 mの活物質層 4を形成した。スラリーは、活 物質粒子 5、アセチレンブラック及びポリビ-リデンフルオライド(以下 PVdFと!、う)を 含むものであった。スラリー組成は、活物質粒子:アセチレンブラック: PVdF = 94 : 1 : 5であった。  After the formation of the first surface layer 3a, the substrate was washed with pure water for 30 seconds and then dried in the air. Next, a slurry containing the active material particles 5 obtained in each example was applied on the first surface layer 3a, and as shown in FIG. Formed four. The slurry contained active material particles 5, acetylene black, and polyvinylidene fluoride (hereinafter referred to as PVdF!). The slurry composition was as follows: active material particles: acetylene black: PVdF = 94: 1: 5.
[0050] (4)第 2の表面層の形成 (4) Formation of Second Surface Layer
図 2 (e)に示すように、活物質層 4上に、極薄ニッケル箔カもなる第 2の表面層 3bを 電解によって形成した。電解の条件は第 1の表面層 3aの形成条件と同様とした。膜 厚は 3 mであった。  As shown in FIG. 2E, on the active material layer 4, a second surface layer 3b, which is also a very thin nickel foil, was formed by electrolysis. The conditions for the electrolysis were the same as the conditions for forming the first surface layer 3a. The film thickness was 3 m.
[0051] (5)電極の剥離 (5) Separation of electrodes
このようにして得られた電極 10を、図 2 (f)に示すように、キャリア箔 1から剥離して 負極を得た。  The electrode 10 thus obtained was peeled off from the carrier foil 1 as shown in FIG. 2 (f) to obtain a negative electrode.
[0052] (6)リチウムイオン二次電池の作製 (6) Production of Lithium Ion Secondary Battery
前記で得られた負極を作用極とし、対極として LiCoOを用い、両極をセパレーター  The negative electrode obtained above was used as the working electrode, LiCoO was used as the counter electrode, and both electrodes were used as separators.
2  2
を介して対向させた。非水電解液として LiPF  Were opposed to each other. LiPF as non-aqueous electrolyte
6 Zエチレンカーボネートとジェチルカ ーボネートの混合液(1 : 1容量比)を用いて通常の方法によってリチウムイオン二次 電池を作製した。 [0053] 〔200サイクル時の容量維持率〕 A lithium ion secondary battery was fabricated by a conventional method using a mixed solution of 6Z ethylene carbonate and getyl carbonate (1: 1 volume ratio). [Capacity maintenance rate at 200 cycles]
200サイクル目の放電容量を測定し、その値を最大負極放電容量で除し、 100を 乗じて算出した。  The discharge capacity at the 200th cycle was measured, the value was divided by the maximum negative electrode discharge capacity, and multiplied by 100 to calculate.
[0054] [表 1] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[0055] 表 1に示す結果から明らかなように、各実施例の活物質粒子を用いたリチウムィォ ン二次電池は、 200サイクル時の容量維持率が高 、ことが判る。 As is clear from the results shown in Table 1, it is understood that the lithium ion secondary battery using the active material particles of each of the examples has a high capacity retention rate at 200 cycles.
産業上の利用可能性  Industrial applicability
[0056] 以上詳述した通り、本発明によれば、電子伝導性が高い非水電解液二次電池用活 物質粒子を簡便な製造方法で製造することができる。また本発明によれば、無電解 めっきを行うことが容易でな 、シリコン又はシリコン系母材の表面に、各種金属を析 出させることができる。 As described above in detail, according to the present invention, active material particles for a nonaqueous electrolyte secondary battery having high electron conductivity can be manufactured by a simple manufacturing method. Further, according to the present invention, various metals can be deposited on the surface of silicon or a silicon-based base material, which facilitates electroless plating.

Claims

請求の範囲 The scope of the claims
[1] シリコン又はシリコン合金力もなるコア粒子の表面に、無電解めつきによって析出し た金属が付着してなることを特徴とする非水電解液二次電池用活物質粒子。  [1] An active material particle for a non-aqueous electrolyte secondary battery, wherein a metal precipitated by electroless plating adheres to the surface of a core particle which also has a silicon or silicon alloy force.
[2] 請求の範囲第 1項記載の活物質粒子を含む非水電解液二次電池用負極。  [2] A negative electrode for a non-aqueous electrolyte secondary battery, comprising the active material particles according to claim 1.
[3] 請求の範囲第 2項記載の負極を備えた非水電解液二次電池。  [3] A non-aqueous electrolyte secondary battery comprising the negative electrode according to claim 2.
[4] 金属力イオンの状態で存在している pH7以上のアルカリ性溶液中に、シリコン又は シリコン合金カゝらなる母材を投入して、該母材の表面に前記金属を析出させることを 特徴とする無電解めつき物の製造方法。  [4] A base material made of silicon or silicon alloy powder is put into an alkaline solution having a pH of 7 or more that exists in the state of a metal ion, and the metal is deposited on the surface of the base material. A method for producing an electroless plating.
[5] 前記アルカリ性溶液が弱酸の塩を含有して 、ることによって pH7以上となされて ヽ る請求の範囲第 4項記載の製造方法。 5. The production method according to claim 4, wherein the alkaline solution contains a salt of a weak acid, whereby the pH is adjusted to 7 or more.
[6] 前記弱酸の塩が、酢酸又はピロリン酸の塩である請求の範囲第 5項記載の製造方 法。 6. The method according to claim 5, wherein the salt of the weak acid is a salt of acetic acid or pyrophosphoric acid.
[7] 前記母材が粒状体である請求の範囲第 4項記載の製造方法。  7. The method according to claim 4, wherein the base material is a granular material.
[8] 前記母材が板状体である請求の範囲第 4項記載の製造方法。 [8] The method according to claim 4, wherein the base material is a plate.
[9] 前記金属がニッケル、銅、鉄又はコバルトである請求の範囲第 4項記載の製造方法 [9] The method according to claim 4, wherein the metal is nickel, copper, iron or cobalt.
[10] 前記アルカリ性溶液を 50〜100°Cに保ち前記金属を析出させる請求の範囲第 4項 記載の製造方法。 [10] The method according to claim 4, wherein the metal is deposited while keeping the alkaline solution at 50 to 100 ° C.
PCT/JP2005/008777 2004-05-27 2005-05-13 Active material particle for nonaqueous electrolyte secondary battery WO2005117168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004158310A JP4829483B2 (en) 2004-05-27 2004-05-27 Method for producing electroless plating
JP2004-158310 2004-05-27

Publications (1)

Publication Number Publication Date
WO2005117168A1 true WO2005117168A1 (en) 2005-12-08

Family

ID=35451179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008777 WO2005117168A1 (en) 2004-05-27 2005-05-13 Active material particle for nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP4829483B2 (en)
WO (1) WO2005117168A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186188A1 (en) * 2018-03-29 2019-10-03 Imperial College Of Science, Technology And Medicine Metal-containing fabrics and membranes, and method of manufacturing thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034266A (en) * 2006-07-28 2008-02-14 Canon Inc Manufacturing method of negative electrode material for lithium secondary battery
JP5146652B2 (en) * 2008-02-06 2013-02-20 国立大学法人鳥取大学 Alloy negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP5755246B2 (en) 2010-11-29 2015-07-29 日立金属株式会社 Anode material for secondary battery, anode for secondary battery, method for producing anode material for secondary battery, and method for producing anode for secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2001131758A (en) * 1999-11-01 2001-05-15 Shin Etsu Chem Co Ltd Method of forming metal pattern
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2005190977A (en) * 2003-06-19 2005-07-14 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2001131758A (en) * 1999-11-01 2001-05-15 Shin Etsu Chem Co Ltd Method of forming metal pattern
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2005190977A (en) * 2003-06-19 2005-07-14 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186188A1 (en) * 2018-03-29 2019-10-03 Imperial College Of Science, Technology And Medicine Metal-containing fabrics and membranes, and method of manufacturing thereof

Also Published As

Publication number Publication date
JP2005340028A (en) 2005-12-08
JP4829483B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP3799049B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP3750117B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR100659814B1 (en) Negative Electrode for Nonaqueous Electrolyte Secondary Battery, Method for Manufacturing Same and Nonaqueous Electrolyte Secondary Battery
JP5192710B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4053576B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2009087791A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2005063767A (en) Negative electrode material for nonaqueous electrolyte solution secondary battery
JPH1092424A (en) Lithium secondary battery negative electrode and lithium secondary battery using it
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
JP2008016195A (en) Anode for nonaqueous electrolyte secondary battery
JP3612669B1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2005117168A1 (en) Active material particle for nonaqueous electrolyte secondary battery
JP2008016196A (en) Negative electrode for polymer electrolyte secondary battery
JP2008066279A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP3906342B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2008016192A (en) Anode for nonaqueous electrolyte secondary battery
JP4546740B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery
TW200532973A (en) Electrode for nonaqueous electrolyte secondary battery
RU2303318C2 (en) Negative plate for nonaqueous secondary battery, negative plate manufacturing process, and nonaqueous secondary battery
JP2008251255A (en) Negative electrode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase