JPH1092424A - Lithium secondary battery negative electrode and lithium secondary battery using it - Google Patents

Lithium secondary battery negative electrode and lithium secondary battery using it

Info

Publication number
JPH1092424A
JPH1092424A JP8240729A JP24072996A JPH1092424A JP H1092424 A JPH1092424 A JP H1092424A JP 8240729 A JP8240729 A JP 8240729A JP 24072996 A JP24072996 A JP 24072996A JP H1092424 A JPH1092424 A JP H1092424A
Authority
JP
Japan
Prior art keywords
negative electrode
aluminum
secondary battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8240729A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Marumoto
光弘 丸本
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP8240729A priority Critical patent/JPH1092424A/en
Publication of JPH1092424A publication Critical patent/JPH1092424A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an internal short-circuit, and maintain a function as negative electrode active material by using aluminum powder having conductive inorganic coating layers on the surfaces thereof as the negative electrode active material. SOLUTION: By forming conductive inorganic coating layers on the surfaces of aluminum powder, in a coating layer forming process, one part of or the most part of ready made aluminum oxide on the surfaces of the aluminum powder is removed, and after the formation of the coating layers, the new producing of the aluminum oxide is suppressed. Thereby, the aluminum powder maintains initial mechanical rigidity, and deals with a pulverization issue resulting from the repeated charge and discharge of a secondary battery so as to improve the same. As an aluminum simple substance, the same of purity of 99 percentage by weight or more is preferable, and the purity of 99.9 percentage by weight or more is particularly preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用負極およびそれを用いたリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】リチウム二次電池用の負極活物質として
は、従来、金属リチウムや各種のリチウム合金が一般的
であるが、かかるリチウム系の負極活物質を使用した場
合には充電によりデンドライトを生じて内部短絡を惹起
する問題がある。さらにリチウム系の負極活物質は一枚
の板状で使用されるが、二次電池の充放電を繰り返すう
ちに比較的短期間内に該負極活物質が漸次粉末化してそ
の機能を喪失する問題もある。一方、リチウム系の負極
活物質に代わってカーボンを負極活物質として使用する
ことも行われているが、この負極活物質は単位体積あた
りの容量が十分でない問題がある。
2. Description of the Related Art Conventionally, as a negative electrode active material for a lithium secondary battery, metallic lithium and various lithium alloys are generally used. When such a lithium-based negative electrode active material is used, dendrite is charged by charging. There is a problem of causing an internal short circuit. In addition, the lithium-based negative electrode active material is used in the form of a single plate, but the charge / discharge of the secondary battery is repeated and the negative electrode active material is gradually powdered within a relatively short period of time, losing its function. There is also. On the other hand, although carbon has been used as a negative electrode active material instead of a lithium-based negative electrode active material, there is a problem that the capacity per unit volume of this negative electrode active material is not sufficient.

【0003】負極活物質として、アルミニウム系粉末を
使用する提案がある。アルミニウム系粉末は、一般的に
リチウムを吸蔵放出する能力が大きいので、単位体積あ
たりの容量が大きく、しかも粉末であるので単位重量あ
たりの表面積がリチウム系の負極活物質のそれの数倍〜
数百倍と大きいために、単位表面積あたりのリチウムの
反応量が相対的に低くなって、この結果、デンドライト
が生じ難い長所もある。しかしながら、アルミニウム系
粉末の負極活物質を使用したリチウム二次電池は、アル
ミニウム系粉末表面での酸化アルミニウム量の経時的な
生成増大により使用中に漸次電池の内部抵抗が増大して
起電力が低下する問題がある。さらに酸化アルミニウム
を生成することにより脆くなったアルミニウム系粉末
は、二次電池が充放電を繰り返すうちに破壊してさらに
微粉化し、負極から離脱してその機能を喪失する問題も
ある。
There is a proposal to use an aluminum-based powder as a negative electrode active material. Aluminum-based powders generally have a large capacity for inserting and extracting lithium, and therefore have a large capacity per unit volume, and since they are powders, the surface area per unit weight is several times that of lithium-based negative electrode active materials.
Since it is as large as several hundred times, the reaction amount of lithium per unit surface area becomes relatively low. As a result, there is an advantage that dendrite is hardly generated. However, in a lithium secondary battery using an aluminum-based powder negative electrode active material, the internal resistance of the battery gradually increases during use due to an increase in the amount of aluminum oxide generated over time on the surface of the aluminum-based powder, and the electromotive force decreases. There is a problem to do. Further, there is also a problem that the aluminum-based powder which has become brittle due to the generation of aluminum oxide is broken and further pulverized while the secondary battery is repeatedly charged and discharged, detaches from the negative electrode, and loses its function.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、リチ
ウム二次電池の内部抵抗増大の問題および上記の微粉化
の問題が改善されたアルミニウム系粉末の負極活物質か
らなるリチウム二次電池用負極およびそれを用いたリチ
ウム二次電池を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium secondary battery comprising a negative electrode active material of an aluminum-based powder in which the problem of increasing the internal resistance of the lithium secondary battery and the problem of pulverization are improved. An object of the present invention is to provide a negative electrode and a lithium secondary battery using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、次の特徴を有
する。 1.表面に導電性の無機被覆層を有するアルミニウム系
粉末を負極活物質として用いることを特徴とするリチウ
ム二次電池用負極。 2.アルミニウム系粉末が、アルミニウム、アルミニウ
ム合金からなる群から選ばれた少なくとも1種である上
記1記載のリチウム二次電池用負極。 3.導電性の無機被覆層の構成材料がSn、Zn、I
n、Pb、Mn、Mo、Co、Cu、Fe、Ni、それ
らの2種以上の合金、Sn酸化物、およびIn酸化物か
らなる群から選ばれた少なくとも1種である上記1また
は2記載のリチウム二次電池用負極。 4.上記1〜3のいずれかに記載のリチウム二次電池用
負極、該負極との電位差が少なくとも1Vである正極活
物質を有する正極、およびリチウム塩を有する非水電解
質またはリチウムイオン伝導性固体電解質からなること
を特徴とするリチウム二次電池。 5.正極活物質がリチウム含有遷移金属酸化物である上
記4記載のリチウム二次電池。
The present invention has the following features. 1. A negative electrode for a lithium secondary battery, wherein an aluminum-based powder having a conductive inorganic coating layer on the surface is used as a negative electrode active material. 2. 2. The negative electrode for a lithium secondary battery according to the above 1, wherein the aluminum-based powder is at least one selected from the group consisting of aluminum and an aluminum alloy. 3. The constituent material of the conductive inorganic coating layer is Sn, Zn, I
3. The method according to the above 1 or 2, which is at least one selected from the group consisting of n, Pb, Mn, Mo, Co, Cu, Fe, Ni, two or more alloys thereof, Sn oxide, and In oxide. Negative electrode for lithium secondary batteries. 4. The negative electrode for a lithium secondary battery according to any one of the above 1 to 3, a positive electrode having a positive electrode active material having a potential difference of at least 1 V from the negative electrode, and a nonaqueous electrolyte or a lithium ion conductive solid electrolyte having a lithium salt. A rechargeable lithium battery. 5. 5. The lithium secondary battery according to the above item 4, wherein the positive electrode active material is a lithium-containing transition metal oxide.

【0006】[0006]

【作用】アルミニウム系粉末の表面に導電性の無機被覆
層を形成することにより、上記した本発明の課題がつぎ
に述べる理由により解決される。即ち、該被覆層を形成
する過程において、アルミニウム系粉末表面上の既成の
アルミニウム酸化物の一部あるいは大部分が除去され、
該被覆層の形成後においては該被覆層によりアルミニウ
ム酸化物の新規生成が抑制または防止される。またその
ためにアルミニウム系粉末は、初期の機械的堅牢性を保
持して二次電池の繰り返される充放電に基づく微粉化問
題も改善される。
By forming a conductive inorganic coating layer on the surface of the aluminum-based powder, the above-mentioned object of the present invention can be solved for the following reasons. That is, in the process of forming the coating layer, part or most of the existing aluminum oxide on the surface of the aluminum-based powder is removed,
After the formation of the coating layer, new generation of aluminum oxide is suppressed or prevented by the coating layer. For this reason, the aluminum-based powder retains the initial mechanical robustness and improves the problem of pulverization due to repeated charging and discharging of the secondary battery.

【0007】[0007]

【発明の実施の形態】本発明においてアルミニウム系粉
末は、アルミニウム単体やアルミニウム合金などの粉末
であってよい。アルミニウム単体としては、純度99重
量%以上、特に純度99.9重量%以上のものが好まし
い。アルミニウム合金としては、Al−M系合金が例示
される。該Al−M系合金におけるMは、Si、Zn、
In、Ag、Te、Mg、Pb、Bi、Snなどより選
ばれる一種または二種以上の合金成分であって、Al:
M(重量比)は30:70〜99:1、特に50:50
〜80:20であるものである。それらアルミニウム系
粉末の平均粒径は、0.1〜50μm、好ましくは5〜
20μmである。上記のアルミニウム単体粉末の少なく
とも1種、アルミニウム合金粉末の少なくとも1種、あ
るいはアルミニウム単体とアルミニウム合金との混合物
粉末などが用いられ、特にアルミニウム単体:アルミニ
ウム合金(重量比)が1:9〜3:7の混合物粉末が好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the aluminum-based powder may be a powder of aluminum alone or an aluminum alloy. As the simple substance of aluminum, a substance having a purity of 99% by weight or more, particularly preferably 99.9% by weight or more is preferable. Examples of the aluminum alloy include an Al-M alloy. M in the Al-M alloy is Si, Zn,
One or more alloy components selected from In, Ag, Te, Mg, Pb, Bi, Sn and the like, and Al:
M (weight ratio) is 30:70 to 99: 1, particularly 50:50.
~ 80: 20. The average particle size of the aluminum-based powder is 0.1 to 50 μm, preferably 5 to 50 μm.
20 μm. At least one kind of the above-mentioned simple aluminum powder, at least one kind of aluminum alloy powder, or a mixed powder of simple aluminum and an aluminum alloy is used. In particular, a simple aluminum: aluminum alloy (weight ratio) of 1: 9 to 3: 7 is preferred.

【0008】導電性の無機被覆層の構成材料としては、
リチウム二次電池用負極に通常要求される導電性、例え
ば室温において少なくとも1×104 Ωm-1の導電性を
具備する各種の金属、合金、金属酸化物、あるいはリチ
ウムと合金化する金属などが挙げられる。リチウムと合
金化する金属としては、Sn、Zn、In、Pb、Cu
などが例示され、それらは、酸化アルミニウムの除去や
生成防止作用の他に、充電時にアルミニウム系粉末の表
面に析出するリチウムと合金化してリチウムをアルミニ
ウム系粉末の内部に拡散して該粉末の微細化を防止する
作用をもなす。リチウムと非反応性の金属、例えばM
n、Mo、Co、Cu、Fe、Niなどは、それ自体で
被覆層を形成して酸化アルミニウムの除去や生成防止の
作用をなす。被覆用の合金としては、例えばAg−C
u、Ag−In、Pb−Sn、Ag−Mn−Snなど、
リチウムの該被覆用合金中で拡散係数がアルミニウム中
でのリチウムの拡散係数に近いか、あるいはそれ以上の
ものが好ましい。またSnやInの酸化物は、それら自
体が導電性であるので、SnやInの層を形成後に適当
な酸化処理を施すことにより形成され得る。
[0008] As a constituent material of the conductive inorganic coating layer,
Conductivity generally required for a negative electrode for a lithium secondary battery, for example, various metals, alloys, metal oxides, or metals alloyed with lithium having a conductivity of at least 1 × 10 4 Ωm −1 at room temperature. No. Examples of the metal to be alloyed with lithium include Sn, Zn, In, Pb, and Cu.
In addition to the action of removing and preventing the formation of aluminum oxide, they are alloyed with lithium precipitated on the surface of the aluminum-based powder during charging, and diffuse lithium into the inside of the aluminum-based powder to reduce the fineness of the powder. Also has the effect of preventing the formation. Metals that are not reactive with lithium, such as M
n, Mo, Co, Cu, Fe, Ni, and the like form a coating layer by themselves to remove aluminum oxide and prevent the formation of aluminum oxide. As the coating alloy, for example, Ag-C
u, Ag-In, Pb-Sn, Ag-Mn-Sn, etc.
Preferably, the diffusion coefficient of lithium in the coating alloy is close to or greater than the diffusion coefficient of lithium in aluminum. Since the oxides of Sn and In are conductive in themselves, they can be formed by performing an appropriate oxidation treatment after forming the layers of Sn and In.

【0009】導電性の無機被覆層は、無電解メッキ法、
電気メッキ法、沈着法、蒸着法あるいはその他の方法に
より形成することができる。無電解メッキ法や電気メッ
キ法においては、通常アルカリ性メッキ液が使用される
ので、このメッキ液のアルカリ性によりアルミニウム系
粉末表面の酸化アルミニウムはメッキ時に溶解除去され
る。沈着法や蒸着法においては、導電性無機被覆材の沈
着や蒸着時のエネルギーにより酸化アルミニウムが除去
され、代わって該無機被覆材が被覆される。導電性無機
被覆層の厚さは、少なくとも0.05μm程度とするこ
とが好ましく、特に0.1〜1μm程度とすると一層好
ましい。
The conductive inorganic coating layer is formed by an electroless plating method,
It can be formed by electroplating, deposition, vapor deposition or other methods. In an electroless plating method or an electroplating method, an alkaline plating solution is usually used, and aluminum oxide on the surface of the aluminum-based powder is dissolved and removed at the time of plating due to the alkalinity of the plating solution. In the deposition method and the vapor deposition method, aluminum oxide is removed by energy during deposition and vapor deposition of the conductive inorganic coating material, and the inorganic coating material is coated instead. The thickness of the conductive inorganic coating layer is preferably at least about 0.05 μm, and more preferably about 0.1 to 1 μm.

【0010】表面に導電性の無機被覆層を有するアルミ
ニウム系粉末の負極活物質は、通常の結着剤と共に通常
の方法にてリチウム二次電池用負極とされる。結着剤と
しては、ポリテトラフルオロエチレン、ポリビニリデン
フルオリド、ポリエチレンなどが例示される。結着剤:
導電性無機被覆層を有するアルミニウム系粉末との混合
比は、1:99〜20:80、好ましくは5:95〜1
5:85である。
The negative electrode active material of an aluminum-based powder having a conductive inorganic coating layer on the surface is used together with a usual binder to form a negative electrode for a lithium secondary battery by a usual method. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Binder:
The mixing ratio with the aluminum-based powder having the conductive inorganic coating layer is 1:99 to 20:80, preferably 5:95 to 1
5:85.

【0011】本発明のリチウム二次電池は、上記したリ
チウム二次電池用負極、正極活物質を有する正極、およ
び液体あるいは固体の非水電解質とから構成される。正
極活物質としては、該負極との電位差が少なくとも1V
であるもの、例えばV2 5 、MnO2 、LiMn2
4 、LiCoO2 、LiNi0.5 Co0.5 2 、LiN
iO2 、Li−Co−P系複合酸化物(LiCo0.5
0.5 2 、LiCo0.4 0.6 2 、LiCo0.6 0.
4 2 、LiCo0.3 Ni0.3 0.42 、LiCo
0.2 Ni0.2 0.6 2 など)、TiS2 、MoS2
MoO3などのリチウム含有遷移金属酸化物が好まし
い。これらのうちでも、二次電池の起電力や充放電電圧
を特に高くすることができるLi−Co−P系複合酸化
物が特に好ましい。
[0011] The lithium secondary battery of the present invention comprises the above-described rechargeable battery.
Negative electrode for a lithium secondary battery, a positive electrode having a positive electrode active material, and
And a liquid or solid non-aqueous electrolyte. Correct
As the polar active material, the potential difference from the negative electrode is at least 1 V
, For example, VTwoOFive, MnOTwo, LiMnTwoO
Four, LiCoOTwo, LiNi0.5Co0.5O Two, LiN
iOTwo, Li-Co-P-based composite oxide (LiCo0.5P
0.5OTwo, LiCo0.4P0.6OTwo, LiCo0.6P0.
FourOTwo, LiCo0.3Ni0.3P0.4OTwo, LiCo
0.2Ni0.2P0.6OTwoEtc.), TiSTwo, MoSTwo,
MoOThreePreferred are lithium-containing transition metal oxides such as
No. Among these, the electromotive force and charge / discharge voltage of secondary batteries
-Co-P-based composite oxidation that can particularly increase
Are particularly preferred.

【0012】非水電解質としては、塩類を有機溶媒に溶
解させた電解液や固体電解質が使用できる。電解液に使
用される塩類としては、LiClO4 、LiBF4 、L
iPF6 、LiAsF6 、LiAlCl4 、Li(CF
3 SO2 2 Nなどが例示され、それらの一種または二
種以上の混合物が使用される。有機溶媒としては、エチ
レンカーボネート、プロピレンカーボネート、ジメチル
スルホキシド、スルホラン、γ−ブチロラクトン、1,
2−ジメトキシエタン、N,N−ジメチルホルムアミ
ド、テトラヒドロフラン、1,3−ジオキソラン、2−
メチルテトラヒドロフラン、ジエチルエーテルなどが例
示され、それらの一種または二種以上の混合物が使用さ
れる。また電解液中における上記塩類の濃度は、0.1
〜3モル/リットル程度の濃度で溶解して使用される。
固体電解質としては、ポリエチレンオキシド、ポリホス
ファゼン、ポリアジリジン、ポリエチレンスルフィドあ
るいはそれらの各誘導体、それらの二種以上の混合物な
どに上記の塩類の一種または二種以上が混合されたもの
が例示される。固体電解質は、電池の正負極間のセパレ
ータを兼ねる。
As the non-aqueous electrolyte, an electrolyte in which salts are dissolved in an organic solvent or a solid electrolyte can be used. Salts used in the electrolyte include LiClO 4 , LiBF 4 , L
iPF 6, LiAsF 6, LiAlCl 4 , Li (CF
3 SO 2 ) 2 N and the like, and one kind or a mixture of two or more kinds thereof is used. Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone,
2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolan, 2-
Examples thereof include methyltetrahydrofuran and diethyl ether, and one or a mixture of two or more thereof is used. The concentration of the salt in the electrolyte is 0.1
It is used after being dissolved at a concentration of about 3 mol / liter.
Examples of the solid electrolyte include those obtained by mixing one or more of the above salts with polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide or a derivative thereof, or a mixture of two or more thereof. The solid electrolyte also functions as a separator between the positive and negative electrodes of the battery.

【0013】[0013]

【実施例】以下、本発明を実施例により一層詳細に説明
し、比較例を示して本発明の顕著な効果をも示す。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, and comparative examples will be shown to show the remarkable effects of the present invention.

【0014】実施例1 純度99.95重量%、平均粒径20μmのアルミニウ
ム粉末を4℃に保持した亜鉛置換剤(日本化学工業社製
のDI−470)の10重量%水溶液に投入し、120
秒間攪拌下に放置後引き上げ、純水にて洗浄し、80℃
で3時間、真空中で乾燥してZnメッキアルミニウム粉
末を得た。該メッキ粉末のZn層の平均厚さは、電子顕
微鏡にて観察測定したところ1μmであった。かくして
得たZnメッキアルミニウム粉末の負極活物質と結着剤
たるポリビニリデンフルオリドの5重量%N−メチル−
2−ピロリドン溶液とを1:1の重量比で混合した。つ
ぎにこの混合液を厚さ15μmの銅基板の上に塗布し、
120℃で3時間、真空中で乾燥して厚さ30μmの負
極活物質層を片面に有する銅基板からなるリチウム二次
電池用負極を得た。
Example 1 An aluminum powder having a purity of 99.95% by weight and an average particle diameter of 20 μm was put into a 10% by weight aqueous solution of a zinc displacing agent (DI-470 manufactured by Nippon Chemical Industry Co., Ltd.) maintained at 4 ° C.
After standing under stirring for 2 seconds, pull up, wash with pure water, 80 ℃
For 3 hours in a vacuum to obtain Zn-plated aluminum powder. The average thickness of the Zn layer of the plating powder was 1 μm when observed and measured with an electron microscope. The thus obtained negative electrode active material of the Zn-plated aluminum powder and 5 wt% N-methyl-polyvinylidene fluoride as a binder
The 2-pyrrolidone solution was mixed at a 1: 1 weight ratio. Next, this mixed solution was applied on a copper substrate having a thickness of 15 μm,
It was dried in vacuum at 120 ° C. for 3 hours to obtain a negative electrode for a lithium secondary battery comprising a copper substrate having a negative electrode active material layer having a thickness of 30 μm on one side.

【0015】実施例2 純度99.95重量%、平均粒径20μmのアルミニウ
ム粉末を実施例1と同様の方法並びに条件にてZn置換
の後、5℃に保持した高純度化学社製のSnメッキ原液
の10重量%水溶液に投入し、120秒間攪拌下に放置
後引き上げ、純水にて洗浄し、80℃で3時間、真空中
で乾燥してSnメッキアルミニウム粉末を得た。該メッ
キ粉末のSn層の平均厚さは、電子顕微鏡にて観察測定
したところ1μmであった。かくして得たSnメッキア
ルミニウム粉末の負極活物質を用い、実施例1と同じ方
法および条件にて厚さ30μmの負極活物質層を片面に
有する銅基板からなるリチウム二次電池用負極を得た。
Example 2 An aluminum powder having a purity of 99.95% by weight and an average particle diameter of 20 μm was replaced with Zn by the same method and under the same conditions as in Example 1, and then kept at 5 ° C. by Sn plating manufactured by Kojundo Chemical Co. The solution was poured into a 10% by weight aqueous solution of the stock solution, left standing under stirring for 120 seconds, pulled up, washed with pure water, and dried in vacuum at 80 ° C. for 3 hours to obtain Sn-plated aluminum powder. The average thickness of the Sn layer of the plating powder was 1 μm when observed and measured with an electron microscope. Using the negative electrode active material of the Sn-plated aluminum powder thus obtained, a negative electrode for a lithium secondary battery comprising a copper substrate having a 30 μm-thick negative electrode active material layer on one side was obtained in the same manner and under the same conditions as in Example 1.

【0016】実施例3 アルミニウム粉末に代わって、Al−12%Siの合金
組成の平均粒径17μmのアルミニウム合金粉末を用い
た以外は実施例1と同じ方法並びに条件にてZnメッキ
層の平均厚さ1μmのアルミニウム合金粉末を得た。か
くして得たZnメッキアルミニウム合金粉末の負極活物
質を用い、実施例1と同じ方法および条件にて厚さ30
μmの負極活物質層を片面に有する銅基板からなるリチ
ウム二次電池用負極を得た。
Example 3 The average thickness of a Zn plating layer was obtained in the same manner and under the same conditions as in Example 1 except that an aluminum alloy powder having an average particle diameter of 17 μm having an alloy composition of Al-12% Si was used instead of the aluminum powder. An aluminum alloy powder having a thickness of 1 μm was obtained. Using the negative electrode active material of the Zn-plated aluminum alloy powder thus obtained, a thickness of 30 was obtained in the same manner and under the same conditions as in Example 1.
A negative electrode for a lithium secondary battery comprising a copper substrate having a μm negative electrode active material layer on one side was obtained.

【0017】実施例4 アルミニウム粉末に代わって、Al−12%Siの合金
組成の平均粒径17μmのアルミニウム合金粉末を用い
た以外は実施例2と同じ方法並びに条件にてSnメッキ
層の平均厚さ1μmのアルミニウム合金粉末を得た。か
くして得たSnメッキアルミニウム合金粉末の負極活物
質を用い、実施例1と同じ方法および条件にて厚さ30
μmの負極活物質層を片面に有する銅基板からなるリチ
ウム二次電池用負極を得た。
Example 4 The average thickness of the Sn plating layer was obtained in the same manner and under the same conditions as in Example 2 except that an aluminum alloy powder having an average particle diameter of 17 μm having an alloy composition of Al-12% Si was used instead of the aluminum powder. An aluminum alloy powder having a thickness of 1 μm was obtained. Using the negative electrode active material of the Sn-plated aluminum alloy powder thus obtained, a thickness of 30 was obtained in the same manner and under the same conditions as in Example 1.
A negative electrode for a lithium secondary battery comprising a copper substrate having a μm negative electrode active material layer on one side was obtained.

【0018】実施例5 純度99.95重量%、平均粒径20μmのアルミニウ
ム粉末を実施例1と同様の方法並びに条件にてZn置換
の後に70℃に保持し、その後に銀の無電解メッキ原液
の10重量%水溶液に投入し、120秒間攪拌下に放置
後引き上げ、純水にて洗浄し、80℃で3時間、真空中
で乾燥してAgメッキアルミニウム粉末を得た。該メッ
キ粉末のZn層の平均厚さは、電子顕微鏡にて観察測定
したところ1μmであった。かくして得たAgメッキア
ルミニウム粉末の負極活物質と結着剤たるポリビニリデ
ンフルオリドの5重量%N−メチル−2−ピロリドン溶
液とを1:1の重量比で混合した。つぎにこの混合液を
厚さ15μmの銅基板の上に塗布し、120℃で3時
間、真空中で乾燥して厚さ30μmの負極活物質層を片
面に有する銅基板からなるリチウム二次電池用負極を得
た。
Example 5 Aluminum powder having a purity of 99.95% by weight and an average particle diameter of 20 μm was maintained at 70 ° C. after Zn substitution by the same method and under the same conditions as in Example 1, and thereafter a silver electroless plating stock solution was prepared. Was left under stirring for 120 seconds, pulled up, washed with pure water, and dried in vacuum at 80 ° C. for 3 hours to obtain an Ag-plated aluminum powder. The average thickness of the Zn layer of the plating powder was 1 μm when observed and measured with an electron microscope. The thus obtained negative electrode active material of the Ag-plated aluminum powder and a 5% by weight N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder were mixed at a weight ratio of 1: 1. Next, this mixed solution is applied on a copper substrate having a thickness of 15 μm and dried in a vacuum at 120 ° C. for 3 hours to form a lithium secondary battery comprising a copper substrate having a negative electrode active material layer having a thickness of 30 μm on one surface. A negative electrode was obtained.

【0019】実施例6 アルミニウム粉末に代わって、Al−12%Siの合金
組成の平均粒径17μmのアルミニウム合金粉末を用い
た以外は実施例6と同じ方法並びに条件にてAgメッキ
層の平均厚さ1μmのアルミニウム合金粉末を得た。か
くして得たZnメッキアルミニウム合金粉末の負極活物
質を用い、実施例6と同じ方法および条件にて厚さ30
μmの負極活物質層を片面に有する銅基板からなるリチ
ウム二次電池用負極を得た。
Example 6 The average thickness of the Ag plating layer was obtained in the same manner and under the same conditions as in Example 6, except that an aluminum alloy powder having an average particle diameter of 17 μm having an alloy composition of Al-12% Si was used instead of the aluminum powder. An aluminum alloy powder having a thickness of 1 μm was obtained. Using the negative electrode active material of the Zn-plated aluminum alloy powder thus obtained, a thickness of 30 was obtained by the same method and conditions as in Example 6.
A negative electrode for a lithium secondary battery comprising a copper substrate having a μm negative electrode active material layer on one side was obtained.

【0020】比較例1 実施例1で使用したアルミニウム粉末をメッキ処理する
ことなく負極活物質として用い、実施例1と同じ方法お
よび条件にて厚さ30μmの負極活物質層を片面に有す
る銅基板からなるリチウム二次電池用負極を得た。
Comparative Example 1 The aluminum powder used in Example 1 was used as a negative electrode active material without plating, and a copper substrate having a negative electrode active material layer having a thickness of 30 μm on one side under the same method and conditions as in Example 1 , A negative electrode for a lithium secondary battery comprising:

【0021】比較例2 実施例2で使用したアルミニウム合金粉末をメッキ処理
することなく負極活物質として用い、実施例1と同じ方
法および条件にて厚さ30μmの負極活物質層を片面に
有する銅基板からなるリチウム二次電池用負極を得た。
COMPARATIVE EXAMPLE 2 The aluminum alloy powder used in Example 2 was used as a negative electrode active material without plating, and copper having a negative electrode active material layer having a thickness of 30 μm on one surface was formed in the same manner and under the same conditions as in Example 1. A negative electrode for a lithium secondary battery comprising a substrate was obtained.

【0022】実施例7〜12、比較例3〜4 正極活物質としての平均粒径30μmのLiNiO2
導電剤としての鱗片状カーボン、および結着剤たるポリ
ビニリデンフルオリドの5重量%N−メチル−2−ピロ
リドン溶液とを9:1:9の重量比で混合し、得られた
混合液を厚さ25μmのアルミニウム基板上に塗布し、
120℃で3時間、真空中で乾燥して厚さ80μmの正
極活物質層を片面に有するアルミニウム基板からなるリ
チウム電池用正極を得た。かくして得たリチウム電池用
正極並びに上記の各実施例および比較例のリチウム電池
用負極から直径15mmの円盤を得、円盤状の両極間に
直径19mmの円盤状で且つ厚さ25μmの多孔性ポリ
プロピレンフィルムを挟持し、ついでプロピレンカーボ
ネートとジエチルカーボネートとの1:1体積比の混合
溶液1リットルあたり1モルのLiPF6 を溶解して得
た電解液を含浸してコイン型のリチウム二次電池を得
た。
Examples 7 to 12, Comparative Examples 3 and 4 LiNiO 2 having an average particle diameter of 30 μm as a positive electrode active material,
The flaky carbon as a conductive agent and a 5% by weight N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder were mixed at a weight ratio of 9: 1: 9, and the obtained mixed solution was thickened. On a 25 μm aluminum substrate,
It was dried in vacuum at 120 ° C. for 3 hours to obtain a lithium battery positive electrode comprising an aluminum substrate having a positive electrode active material layer having a thickness of 80 μm on one surface. A disk having a diameter of 15 mm was obtained from the positive electrode for a lithium battery thus obtained and the negative electrode for a lithium battery of each of the above Examples and Comparative Examples, and a disk-like porous polypropylene film having a diameter of 19 mm and a thickness of 25 μm was formed between the disk-shaped electrodes. And then impregnated with an electrolyte obtained by dissolving 1 mol of LiPF 6 per liter of a mixed solution of propylene carbonate and diethyl carbonate at a volume ratio of 1: 1 to obtain a coin-type lithium secondary battery. .

【0023】実施例7〜12および比較例3〜4のコイ
ン型リチウム二次電池のそれぞれについて、放電容量が
充放電初期における放電容量の80%に低下するまでの
充放電繰り返し回数Nを測定した。その結果を表1に示
す。同表から、本発明のリチウム電池用負極を用いたリ
チウム二次電池は比較例の電池より格段に優れた長寿命
を有することがわかる。
For each of the coin-type lithium secondary batteries of Examples 7 to 12 and Comparative Examples 3 and 4, the number N of charge / discharge repetitions until the discharge capacity decreased to 80% of the discharge capacity at the beginning of charge / discharge was measured. . Table 1 shows the results. The table shows that the lithium secondary battery using the negative electrode for a lithium battery of the present invention has a much longer life than the battery of the comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】アルミニウム系粉末の表面に導電性の無
機被覆層を形成することにより、アルミニウム系粉末表
面上での忌むべきアルミニウム酸化物生成の問題が改善
されるので、負極活物質としてアルミニウム系粉末が本
来有する大容量や耐デンドライト性の長所が活かされ
る。しかして、本発明のアルミニウム系粉末の負極活物
質からなるリチウム二次電池用負極を用いた本発明のリ
チウム二次電池からは、長寿命のものが得られる。
By forming a conductive inorganic coating layer on the surface of the aluminum-based powder, the problem of the generation of awful aluminum oxide on the surface of the aluminum-based powder is improved. The advantages of large capacity and dendrite resistance inherent in powder are utilized. Thus, the lithium secondary battery of the present invention using the negative electrode for a lithium secondary battery comprising the negative electrode active material of the aluminum-based powder of the present invention has a long life.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に導電性の無機被覆層を有するアル
ミニウム系粉末を負極活物質として用いることを特徴と
するリチウム二次電池用負極。
1. A negative electrode for a lithium secondary battery, wherein an aluminum-based powder having a conductive inorganic coating layer on the surface is used as a negative electrode active material.
【請求項2】 アルミニウム系粉末が、アルミニウム、
アルミニウム合金からなる群から選ばれた少なくとも1
種である請求項1記載のリチウム二次電池用負極。
2. The method according to claim 1, wherein the aluminum-based powder is aluminum,
At least one selected from the group consisting of aluminum alloys
The negative electrode for a lithium secondary battery according to claim 1, which is a seed.
【請求項3】 導電性の無機被覆層の構成材料がSn、
Zn、In、Pb、Mn、Mo、Co、Cu、Fe、N
i、それらの2種以上の合金、Sn酸化物、およびIn
酸化物からなる群から選ばれた少なくとも1種である請
求項1または2記載のリチウム二次電池用負極。
3. The conductive inorganic coating layer is made of Sn,
Zn, In, Pb, Mn, Mo, Co, Cu, Fe, N
i, their two or more alloys, Sn oxide, and In
3. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode is at least one selected from the group consisting of oxides.
【請求項4】 請求項1〜3のいずれかに記載のリチウ
ム二次電池用負極、該負極との電位差が少なくとも1V
である正極活物質を有する正極、およびリチウム塩を有
する非水電解質またはリチウムイオン伝導性固体電解質
からなることを特徴とするリチウム二次電池。
4. The negative electrode for a lithium secondary battery according to claim 1, wherein a potential difference between the negative electrode and the negative electrode is at least 1 V.
And a non-aqueous electrolyte or a lithium ion conductive solid electrolyte having a lithium salt.
【請求項5】 正極活物質がリチウム含有遷移金属酸化
物である請求項4記載のリチウム二次電池。
5. The lithium secondary battery according to claim 4, wherein the positive electrode active material is a lithium-containing transition metal oxide.
JP8240729A 1996-09-11 1996-09-11 Lithium secondary battery negative electrode and lithium secondary battery using it Pending JPH1092424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8240729A JPH1092424A (en) 1996-09-11 1996-09-11 Lithium secondary battery negative electrode and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8240729A JPH1092424A (en) 1996-09-11 1996-09-11 Lithium secondary battery negative electrode and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JPH1092424A true JPH1092424A (en) 1998-04-10

Family

ID=17063844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8240729A Pending JPH1092424A (en) 1996-09-11 1996-09-11 Lithium secondary battery negative electrode and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JPH1092424A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033402A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and its charging method
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO2000033403A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and its charging method
WO2000033401A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2000173608A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173607A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2007026926A (en) * 2005-07-19 2007-02-01 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery
JP2011233539A (en) * 2011-07-19 2011-11-17 Nec Corp Negative electrode for secondary battery and secondary battery using the same
CN104701508A (en) * 2013-12-05 2015-06-10 天津赫维科技有限公司 Making method for rechargeable 3V button type lithium battery
WO2015107648A1 (en) * 2014-01-16 2015-07-23 株式会社日立製作所 Negative electrode for lithium ion secondary cell and lithium ion secondary cell
WO2019230723A1 (en) * 2018-05-28 2019-12-05 国立大学法人大阪大学 Aluminum precipitation method, cell electrolyte, and cell
JPWO2020075616A1 (en) * 2018-10-10 2021-02-15 住友化学株式会社 Non-aqueous electrolyte Negative electrode for secondary batteries Active material, negative electrode, battery and aluminum clad metal laminate

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2013191578A (en) * 1998-05-13 2013-09-26 Ube Ind Ltd Nonaqueous secondary battery
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP4534263B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2000173607A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
EP1052713A1 (en) * 1998-12-02 2000-11-15 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and its charging method
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173608A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2000033401A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
EP1052713A4 (en) * 1998-12-02 2005-03-30 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary cell and its charging method
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO2000033403A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and its charging method
WO2000033402A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and its charging method
JP4534266B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4534264B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4534265B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2007026926A (en) * 2005-07-19 2007-02-01 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2011233539A (en) * 2011-07-19 2011-11-17 Nec Corp Negative electrode for secondary battery and secondary battery using the same
CN104701508A (en) * 2013-12-05 2015-06-10 天津赫维科技有限公司 Making method for rechargeable 3V button type lithium battery
WO2015107648A1 (en) * 2014-01-16 2015-07-23 株式会社日立製作所 Negative electrode for lithium ion secondary cell and lithium ion secondary cell
WO2019230723A1 (en) * 2018-05-28 2019-12-05 国立大学法人大阪大学 Aluminum precipitation method, cell electrolyte, and cell
JPWO2020075616A1 (en) * 2018-10-10 2021-02-15 住友化学株式会社 Non-aqueous electrolyte Negative electrode for secondary batteries Active material, negative electrode, battery and aluminum clad metal laminate
EP3866231A4 (en) * 2018-10-10 2022-07-27 Sumitomo Chemical Company Limited Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, battery, and aluminum clad metal laminate

Similar Documents

Publication Publication Date Title
JP7063653B2 (en) All-solid-state secondary battery
US7258950B2 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery
EP1635417B1 (en) Lithium secondary battery and method for producing same
CN102024950B (en) Positive active material and preparation method thereof, anode and nonaqueous electrolyte battery
US7875388B2 (en) Electrodes including polyacrylate binders and methods of making and using the same
JP4453111B2 (en) Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery
US20060046144A1 (en) Anode composition for lithium ion battery
JPH1092424A (en) Lithium secondary battery negative electrode and lithium secondary battery using it
EP1787341A1 (en) Electrode active material with multi -element based oxide layers and preparation method thereof
WO2000060681A1 (en) Nonaqueous electrolyte secondary cell and its negative plate
EP1711971A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP2007149604A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JPH08153541A (en) Lithium secondary battery
JP4270894B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
US20230275261A1 (en) All-solid-state secondary battery and manufacturing method therefor
JP2002270156A (en) Lithium secondary battery electrode and lithium secondary battery
KR20170086114A (en) Anode materials for lithium ion batteries and methods of making and using same
JP4422417B2 (en) Anode for non-aqueous electrolyte secondary battery
JP3670938B2 (en) Lithium secondary battery
JP7335024B2 (en) Lithium secondary battery
JP2008530747A (en) Method for modifying a lithium-based oxide containing at least one transition metal, positive electrode comprising the oxide, and lithium secondary battery
US20090202913A1 (en) Negative electrode for nonaqueous secondary battery
KR20200134126A (en) All solid lithium secondary battery and charging method for the same
CN115443558A (en) All-solid-state secondary battery
JP2001250559A (en) Lithium secondary cell