JP2008016196A - Negative electrode for polymer electrolyte secondary battery - Google Patents

Negative electrode for polymer electrolyte secondary battery Download PDF

Info

Publication number
JP2008016196A
JP2008016196A JP2006182831A JP2006182831A JP2008016196A JP 2008016196 A JP2008016196 A JP 2008016196A JP 2006182831 A JP2006182831 A JP 2006182831A JP 2006182831 A JP2006182831 A JP 2006182831A JP 2008016196 A JP2008016196 A JP 2008016196A
Authority
JP
Japan
Prior art keywords
active material
particles
negative electrode
secondary battery
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006182831A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Matsushima
智善 松島
Shinji Ishii
信治 石井
Yoshiki Sakaguchi
善樹 坂口
Kiyotaka Yasuda
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006182831A priority Critical patent/JP2008016196A/en
Priority to PCT/JP2007/058245 priority patent/WO2008001537A1/en
Publication of JP2008016196A publication Critical patent/JP2008016196A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a polymer electrolyte secondary battery having enhanced cycle characteristics. <P>SOLUTION: The negative electrode 10 for the polymer electrolyte secondary battery is equipped with an active material layer 12 containing particles 12a of an active material. At least a part of the surface of the particle 12a is covered with a metallic material 13 having low lithium compound forming property. Pores are formed between the particles 12a covered with the metallic material 13. The porosity of the active material layer is 15-45%. Preferably, the metallic materials 13 are present on the surfaces of the particles over the whole area in the thickness direction of the active material layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムポリマー二次電池などの高分子電解質二次電池用の負極に関する。   The present invention relates to a negative electrode for a polymer electrolyte secondary battery such as a lithium polymer secondary battery.

本出願人は先に、表面が電解液と接する一対の集電用表面層と、該表面層間に介在配置された、リチウム化合物の形成能の高い活物質の粒子を含む活物質層とを備えた非水電解液二次電池用負極を提案した(特許文献1参照)。この負極の活物質層には、リチウム化合物の形成能の低い金属材料が浸透しており、浸透した該金属材料中に活物質の粒子が存在している。活物質層がこのような構造になっているので、この負極においては、充放電によって該粒子が膨張収縮することに起因して微粉化しても、その脱落が起こりづらくなる。その結果、この負極を用いると、電池のサイクル寿命が長くなるという利点がある。   The present applicant previously includes a pair of current collecting surface layers whose surfaces are in contact with the electrolytic solution, and an active material layer including active material particles having a high ability to form a lithium compound interposed between the surface layers. In addition, a negative electrode for a nonaqueous electrolyte secondary battery was proposed (see Patent Document 1). A metal material having a low lithium compound forming ability is infiltrated into the active material layer of the negative electrode, and active material particles are present in the infiltrated metal material. Since the active material layer has such a structure, even if the particles are pulverized due to expansion and contraction of the particles due to charge and discharge, the active material layer is unlikely to fall off. As a result, when this negative electrode is used, there is an advantage that the cycle life of the battery becomes long.

ところでリチウムイオンの吸蔵放出を利用した二次電池には、前記の非水電解液二次電池の他に、ポリマーゲル電解質を用いた高分子電解質二次電池が知られている。高分子電解質二次電池に用いられるポリマーゲル電解質は低流動性のものである。従って、流動性の高い液である非水電解液を用いた二次電池用の負極を、そのまま高分子電解質二次電池用の負極に転用しても、所望の特性を有する電池を得ることはできない。   By the way, as the secondary battery using the occlusion and release of lithium ions, a polymer electrolyte secondary battery using a polymer gel electrolyte is known in addition to the non-aqueous electrolyte secondary battery. The polymer gel electrolyte used for the polymer electrolyte secondary battery has a low fluidity. Therefore, even if a negative electrode for a secondary battery using a non-aqueous electrolyte, which is a liquid with high fluidity, is directly converted to a negative electrode for a polymer electrolyte secondary battery, a battery having desired characteristics can be obtained. Can not.

特許第3612669号公報Japanese Patent No. 3612669

従って本発明の目的は、前述した従来技術の負極よりも性能が一層向上した高分子電解質二次電池用負極を提供することにある。   Accordingly, an object of the present invention is to provide a negative electrode for a polymer electrolyte secondary battery whose performance is further improved as compared with the above-described negative electrode of the prior art.

本発明は、活物質の粒子を含む活物質層を備え、該粒子の表面の少なくとも一部がリチウム化合物の形成能の低い金属材料で被覆されていると共に、該金属材料で被覆された該粒子どうしの間に空隙が形成されており、水銀圧入法(JIS R 1655)に準拠して測定された該活物質層の空隙率が15〜45%であることを特徴とする高分子電解質二次電池用負極を提供するものである。   The present invention includes an active material layer containing particles of an active material, and at least a part of the surface of the particles is coated with a metal material having a low ability to form a lithium compound, and the particles coated with the metal material A polymer electrolyte secondary characterized in that voids are formed between the active material layers and the porosity of the active material layer is 15 to 45% measured in accordance with a mercury intrusion method (JIS R 1655) A negative electrode for a battery is provided.

本発明によれば、流動性の低いポリマーゲル電解質であってもその流通が可能な経路が活物質層内に必要且つ十分に形成され、ポリマーゲル電解質が活物質層内へ容易に到達するので、活物質層の厚み方向全域が電極反応に利用される。その結果、サイクル特性が向上する。その上、充放電によって該粒子が膨張収縮することに起因して微粉化しても、その脱落が起こりづらくなる。   According to the present invention, even if it is a polymer gel electrolyte having low fluidity, a path through which it can flow is formed in the active material layer, and the polymer gel electrolyte easily reaches the active material layer. The entire thickness direction of the active material layer is used for the electrode reaction. As a result, cycle characteristics are improved. In addition, even if the particles are pulverized due to expansion and contraction due to charging / discharging, the particles do not easily fall off.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には本発明の高分子電解質二次電池用負極の一実施形態の断面構造の模式図が示されている。本実施形態の負極10は、集電体11と、その少なくとも一面に形成された活物質層12を備えている。なお図1においては、便宜的に集電体11の片面にのみ活物質層12が形成されている状態が示されているが、活物質層は集電体の両面に形成されていてもよい。   The present invention will be described below based on preferred embodiments with reference to the drawings. FIG. 1 shows a schematic diagram of a cross-sectional structure of an embodiment of a negative electrode for a polymer electrolyte secondary battery of the present invention. The negative electrode 10 of this embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof. 1 shows a state in which the active material layer 12 is formed only on one side of the current collector 11 for convenience, the active material layer may be formed on both sides of the current collector. .

活物質層12は、活物質の粒子12aを含んでいる。活物質としては、リチウムイオンの吸蔵放出が可能な材料が用いられる。そのような材料としては、例えばシリコン系材料やスズ系材料、アルミニウム系材料、ゲルマニウム系材料が挙げられる。スズ系材料としては、例えばスズと、コバルトと、炭素と、ニッケル及びクロムのうちの少なくとも一方とを含む合金が好ましく用いられる。負極重量あたりの容量密度を向上させる上では、特にシリコン系材料が好ましい。   The active material layer 12 includes active material particles 12a. As the active material, a material capable of occluding and releasing lithium ions is used. Examples of such materials include silicon-based materials, tin-based materials, aluminum-based materials, and germanium-based materials. As the tin-based material, for example, an alloy containing tin, cobalt, carbon, and at least one of nickel and chromium is preferably used. In order to improve the capacity density per weight of the negative electrode, a silicon-based material is particularly preferable.

シリコン系材料としては、リチウムの吸蔵が可能で且つシリコンを含有する材料、例えばシリコン単体、シリコンと金属との合金、シリコン酸化物などを用いることができる。これらの材料はそれぞれ単独で、或いはこれらを混合して用いることができる。前記の金属としては、例えばCu、Ni、Co、Cr、Fe、Ti、Pt、W、Mo及びAuからなる群から選択される1種類以上の元素が挙げられる。これらの金属のうち、Cu、Ni、Coが好ましく、特に電子伝導性に優れる点、及びリチウム化合物の形成能の低さの点から、Cu、Niを用いることが望ましい。また、負極を電池に組み込む前に、又は組み込んだ後に、シリコン系材料からなる活物質に対してリチウムを吸蔵させてもよい。特に好ましいシリコン系材料は、リチウムの吸蔵量の高さの点からシリコン又はシリコン酸化物である。   As the silicon-based material, a material that can occlude lithium and contains silicon, for example, silicon alone, an alloy of silicon and metal, silicon oxide, or the like can be used. These materials can be used alone or in combination. Examples of the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Among these metals, Cu, Ni, and Co are preferable, and Cu and Ni are preferably used from the viewpoint of excellent electronic conductivity and a low ability to form a lithium compound. Further, lithium may be occluded in an active material made of a silicon-based material before or after the negative electrode is incorporated in the battery. A particularly preferable silicon-based material is silicon or silicon oxide in view of the high occlusion amount of lithium.

活物質層12においては、粒子12aの表面の少なくとも一部が、リチウム化合物の形成能の低い金属材料で被覆されている。この金属材料13は、粒子12aの構成材料と異なる材料である。該金属材料で被覆された該粒子12aの間には空隙が形成されている。つまり該金属材料は、ポリマーゲル電解質が粒子12aへ到達可能なような隙間を確保した状態で該粒子12aの表面を被覆している。図1中、金属材料13は、粒子12aの周囲を取り囲む太線として便宜的に表されている。なお同図においては、活物質層12に含まれる粒子12aのうち、他の粒子との間に接触がないように描かれているものが存在するが、これは活物質層12を二次元的にみたことに起因するものであり、実際は各粒子は他の粒子と直接ないし金属材料13を介して接触している。「リチウム化合物の形成能の低い」とは、リチウムと金属間化合物若しくは固溶体を形成しないか、又は形成したとしてもリチウムが微量であるか若しくは非常に不安定であることを意味する。   In the active material layer 12, at least a part of the surface of the particle 12a is covered with a metal material having a low lithium compound forming ability. The metal material 13 is a material different from the constituent material of the particles 12a. Gaps are formed between the particles 12a coated with the metal material. That is, the metal material covers the surface of the particle 12a in a state in which a gap is provided such that the polymer gel electrolyte can reach the particle 12a. In FIG. 1, the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a. In the figure, among the particles 12a included in the active material layer 12, there are particles that are drawn so that there is no contact with other particles. In fact, each particle is in direct contact with other particles or through the metal material 13. “Low lithium compound forming ability” means that lithium does not form an intermetallic compound or solid solution, or even if formed, lithium is in a very small amount or very unstable.

金属材料13は導電性を有するものであり、その例としては銅、ニッケル、鉄、コバルト又はこれらの金属の合金などが挙げられる。特に金属材料13は、活物質の粒子12aが膨張収縮しても該粒子12aの表面の被覆が破壊されにくい延性の高い材料であることが好ましい。そのような材料としては銅を用いることが好ましい。   The metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, and alloys of these metals. In particular, the metal material 13 is preferably a highly ductile material in which even if the active material particles 12a expand and contract, the coating on the surface of the particles 12a is not easily broken. It is preferable to use copper as such a material.

金属材料13は、活物質層12の厚み方向全域にわたって活物質の粒子12aの表面に存在していることが好ましい。そして金属材料13のマトリックス中に活物質の粒子12aが存在していることが好ましい。これによって、充放電によって該粒子12aが膨張収縮することに起因して微粉化しても、その脱落が起こりづらくなる。また、金属材料13を通じて活物質層12全体の電子伝導性が確保されるので、電気的に孤立した活物質の粒子12aが生成すること、特に活物質層12の深部に電気的に孤立した活物質の粒子12aが生成することが効果的に防止される。このことは、活物質として半導体であり電子伝導性の乏しい材料、例えばシリコン系材料を用いる場合に特に有利である。金属材料13が活物質層12の厚み方向全域にわたって活物質の粒子12aの表面に存在していることは、該材料13を測定対象とした電子顕微鏡マッピングによって確認できる。   The metal material 13 is preferably present on the surface of the active material particles 12 a over the entire thickness direction of the active material layer 12. The active material particles 12 a are preferably present in the matrix of the metal material 13. Thus, even if the particles 12a are pulverized due to expansion and contraction due to charge / discharge, the particles are less likely to fall off. In addition, since the electronic conductivity of the entire active material layer 12 is ensured through the metal material 13, the electrically isolated active material particles 12 a are generated, and in particular, the electrically isolated active material is deep in the active material layer 12. Generation of the particles 12a of the substance is effectively prevented. This is particularly advantageous when a material that is a semiconductor and has poor electron conductivity, such as a silicon-based material, is used as the active material. The presence of the metal material 13 on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12 can be confirmed by electron microscope mapping using the material 13 as a measurement target.

金属材料13は、粒子12aの表面を連続に又は不連続に被覆している。金属材料13が粒子12aの表面を連続に被覆している場合には、金属材料13の被覆に、ポリマーゲル電解質の流通が可能な微細な空隙を形成することが好ましい。金属材料13が粒子12aの表面を不連続に被覆している場合には、粒子12aの表面のうち、金属材料13で被覆されていない部位を通じて該粒子12aへポリマーゲル電解質が供給される。このような構造の金属材料13の被覆を形成するためには、例えば後述する条件に従う電解めっきによって金属材料13を粒子12aの表面に析出させればよい。   The metal material 13 coats the surface of the particle 12a continuously or discontinuously. When the metal material 13 continuously covers the surfaces of the particles 12a, it is preferable to form fine voids in the coating of the metal material 13 in which the polymer gel electrolyte can flow. When the metal material 13 discontinuously coats the surface of the particle 12a, the polymer gel electrolyte is supplied to the particle 12a through a portion of the surface of the particle 12a that is not covered with the metal material 13. In order to form the coating of the metal material 13 having such a structure, the metal material 13 may be deposited on the surfaces of the particles 12a by, for example, electrolytic plating in accordance with conditions described later.

活物質の粒子12aの表面を被覆している金属材料13は、その厚みの平均が好ましくは0.05〜2μm、更に好ましくは0.1〜0.25μmという薄いものである。つまり金属材料13は最低限の厚みで以て活物質の粒子12aの表面を被覆している。これによって、エネルギー密度を高めつつ、充放電によって粒子12aが膨張収縮して微粉化することに起因する脱落を防止している。ここでいう「厚みの平均」とは、活物質の粒子12aの表面のうち、実際に金属材料13が被覆している部分に基づき計算された値である。従って活物質の粒子12aの表面のうち金属材料13で被覆されていない部分は、平均値の算出の基礎にはされない。   The average thickness of the metal material 13 covering the surface of the active material particles 12a is preferably 0.05 to 2 μm, more preferably 0.1 to 0.25 μm. That is, the metal material 13 covers the surface of the active material particles 12a with a minimum thickness. As a result, while the energy density is increased, the particles 12a are prevented from falling off due to expansion / contraction and pulverization due to charge / discharge. Here, the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12 a that is actually covered with the metal material 13. Accordingly, the portion of the surface of the active material particle 12a that is not covered with the metal material 13 is not used as a basis for calculating the average value.

金属材料13で被覆された粒子12a間に形成された空隙は、ポリマーゲル電解質の流通の経路としての働きを有している。この空隙の存在によってポリマーゲル電解質が活物質層12の厚み方向へ円滑に流通するので、サイクル特性を向上させることができる。更に、粒子12a間に形成されている空隙は、充放電で活物質の粒子12aが体積変化することに起因する応力を緩和するための空間としての働きも有する。充電によって体積が増加した活物質の粒子12aの体積の増加分は、この空隙に吸収される。その結果、該粒子12aの微粉化が起こりづらくなり、また負極10の著しい変形が効果的に防止される。前記空隙内にポリマーゲル電解質が存在していることで、該ポリマーゲル電解質が、粒子12aの膨張収縮によって発生する応力を緩和するクッション材として作用するという利点もある。   The voids formed between the particles 12a coated with the metal material 13 serve as a flow path for the polymer gel electrolyte. Since the polymer gel electrolyte smoothly circulates in the thickness direction of the active material layer 12 due to the presence of the voids, the cycle characteristics can be improved. Further, the voids formed between the particles 12a also have a function as a space for relieving stress caused by the volume change of the active material particles 12a due to charge and discharge. The increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed by the voids. As a result, pulverization of the particles 12a is difficult to occur, and significant deformation of the negative electrode 10 is effectively prevented. The presence of the polymer gel electrolyte in the voids also has the advantage that the polymer gel electrolyte acts as a cushion material that relieves stress generated by the expansion and contraction of the particles 12a.

活物質層12に形成されている空隙について本発明者らが検討したところ、活物質層12の空隙率を15〜45%、好ましくは20〜40%、更に好ましくは25〜35%に設定すると、活物質層12内におけるポリマーゲル電解質の流通が極めて良好になり、また活物質の粒子12aの膨張収縮に伴う応力緩和に極めて有効であることが判明した。更に、空隙内におけるポリマーゲル電解質の保液性が良好になることが判明した。特に、上限を35%とすることで活物質層内の導電性の向上と強度維持に極めて効果的であり、下限を25%とすることで電解液の選択の幅を広げることができる。この範囲の空隙率は、従来の負極活物質層における空隙率、例えば先に述べた特許文献1に記載の負極における空隙率よりも高い値である。このような高空隙率の活物質層を備えた負極10を用いることで、流動性の低い材料であるポリマーゲル電解質を用いることが可能になる。   When the present inventors examined the voids formed in the active material layer 12, the porosity of the active material layer 12 is set to 15 to 45%, preferably 20 to 40%, and more preferably 25 to 35%. It has been found that the distribution of the polymer gel electrolyte in the active material layer 12 becomes extremely good, and is extremely effective for stress relaxation accompanying expansion and contraction of the particles 12a of the active material. Furthermore, it has been found that the liquid retention of the polymer gel electrolyte in the voids is improved. In particular, setting the upper limit to 35% is extremely effective in improving the conductivity and maintaining the strength in the active material layer, and setting the lower limit to 25% can widen the range of selection of the electrolyte. The porosity in this range is higher than the porosity in the conventional negative electrode active material layer, for example, the porosity in the negative electrode described in Patent Document 1 described above. By using the negative electrode 10 having such a high porosity active material layer, it is possible to use a polymer gel electrolyte which is a material having low fluidity.

活物質層12の空隙量は、水銀圧入法(JIS R 1655)で測定される。水銀圧入法は、固体中の細孔の大きさやその容積を測定することによって、その固体の物理的形状の情報を得るための手法である。水銀圧入法の原理は、水銀に圧力を加えて測定対象物の細孔中へ圧入し、その時に加えた圧力と、押し込まれた(浸入した)水銀容積の関係を測定することにある。この場合、水銀は活物質層12内に存在する大きな空隙から順に浸入していく。   The void amount of the active material layer 12 is measured by a mercury intrusion method (JIS R 1655). The mercury intrusion method is a method for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid. The principle of the mercury intrusion method is to apply a pressure to mercury to inject it into the pores of the object to be measured, and to measure the relationship between the pressure applied at that time and the volume of mercury that has been pushed in (intruded). In this case, mercury enters sequentially from the large voids present in the active material layer 12.

本発明においては、圧力90MPaで測定した空隙量を全体の空隙量とみなしている。本発明において、活物質層12の空隙率(%)は、前記の方法で測定された単位面積当たりの空隙量を、単位面積当たりの活物質層12の見かけの体積で除し、それに100を乗じることにより求める。   In the present invention, the void amount measured at a pressure of 90 MPa is regarded as the entire void amount. In the present invention, the porosity (%) of the active material layer 12 is obtained by dividing the void amount per unit area measured by the above-mentioned method by the apparent volume of the active material layer 12 per unit area, and dividing it by 100. Find by multiplying.

活物質層12は、好適には粒子12a及び結着剤を含むスラリーを集電体上に塗布し乾燥させて得られた塗膜に対し、所定のめっき浴を用いた電解めっきを行い、粒子12a間に金属材料13を析出させることで形成される。金属材料13の析出の程度は、活物質層12の空隙率の値に影響を及ぼす。所望の空隙率を達成するためには、前記の塗膜中に、めっき液の浸透が可能な空間が形成されている必要がある。めっき液の浸透が可能な空間を塗膜内に必要且つ十分に形成するためには、活物質の粒子12aの粒度分布が大きな要因となっていることが本発明者らの検討の結果判明した。詳細には、活物質の粒子12aとしてD10/D90で表される粒度分布が好ましくは0.05〜0.5、更に好ましくは0.1〜0.3であるものを採用することで、塗膜内に所望とする程度の空間が形成され、めっき液の浸透が十分となることが判明した。また電解めっき時に塗膜の剥がれ落ちを効果的に防止し得ることが判明した。D10/D90が1に近ければ近いほど、粒子12aの粒径が単分散に近くなるから、前記の範囲の粒度分布はシャープなものであることが判る。つまり本実施形態においては粒度分布がシャープな粒子12aを用いることが好ましい。粒度分布がシャープな粒子12aを用いることで、該粒子12aを高密度充填した場合に、粒子間の空隙を大きくすることができる。逆に粒度分布がブロードな粒子を用いると、大きな粒子間に小さな粒子が入り込み易くなり、粒子間の空隙を大きくすることが容易でない。また、粒度分布がシャープな粒子12aを用いると、反応にばらつきが生じにくくなるという利点もある。 The active material layer 12 is preferably formed by subjecting a coating obtained by applying a slurry containing particles 12a and a binder onto a current collector and drying it, and performing electrolytic plating using a predetermined plating bath. It is formed by depositing a metal material 13 between 12a. The degree of precipitation of the metal material 13 affects the value of the porosity of the active material layer 12. In order to achieve a desired porosity, it is necessary that a space in which the plating solution can permeate is formed in the coating film. As a result of the examination by the present inventors, it was found that the particle size distribution of the active material particles 12a is a large factor in order to form a space in which the plating solution can penetrate into the coating film as necessary and sufficient. . Specifically, by adopting particles having a particle size distribution represented by D 10 / D 90 of preferably 0.05 to 0.5, more preferably 0.1 to 0.3, as the active material particles 12a. It was found that a desired space was formed in the coating film, and the plating solution was sufficiently permeated. It was also found that the coating film can be effectively prevented from peeling off during electrolytic plating. It can be seen that the closer the D 10 / D 90 is to 1, the closer the particle size of the particles 12a is to monodisperse, so the particle size distribution in the above range is sharper. That is, in this embodiment, it is preferable to use the particles 12a having a sharp particle size distribution. By using the particles 12a having a sharp particle size distribution, the voids between the particles can be increased when the particles 12a are packed at a high density. On the other hand, when particles having a broad particle size distribution are used, small particles easily enter between large particles, and it is not easy to increase the voids between the particles. In addition, the use of the particles 12a having a sharp particle size distribution has an advantage that variations in reaction are less likely to occur.

サイクル特性に優れた負極を得るためには、活物質の粒子12aの粒度分布が上述の範囲内であることに加えて該粒子12a自体の粒径も重要である。活物質の粒子12aの粒径が過度に大きい場合には、粒子12aが膨張収縮を繰り返すことで微粉化しやすくなり、それによって電気的に孤立した粒子12gの生成が頻発する。また活物質の粒子12aの粒径が小さすぎる場合には、該粒子12a間の空隙が小さくなりすぎて、後述する浸透めっきによって空隙が埋められてしまうおそれがある。このことはサイクル特性の向上の点からはマイナスに作用する。そこで本実施形態においては、活物質の粒子12aとしてその平均粒径がD50で表して0.1〜5μm、特に0.2〜3μmであることが好ましい。 In order to obtain a negative electrode having excellent cycle characteristics, in addition to the particle size distribution of the active material particles 12a being in the above range, the particle size of the particles 12a itself is also important. When the particle size of the active material particles 12a is excessively large, the particles 12a are easily pulverized by repeating expansion and contraction, thereby frequently generating electrically isolated particles 12g. If the particle size of the active material particles 12a is too small, the gaps between the particles 12a may be too small, and the gaps may be filled by penetration plating described later. This has a negative effect on the improvement of cycle characteristics. Therefore, in this embodiment, it is preferable that the average particle diameter of the active material particles 12a is 0.1 to 5 μm, particularly 0.2 to 3 μm, expressed as D 50 .

活物質の粒子12aの粒度分布D10/D90及び平均粒径D50の値は、レーザー回折散乱式粒度分布測定や、電子顕微鏡観察(SEM観察)によって測定される。 The values of the particle size distribution D 10 / D 90 and the average particle size D 50 of the active material particles 12a are measured by laser diffraction scattering type particle size distribution measurement or electron microscope observation (SEM observation).

活物質層12の空隙率を前記の範囲内とするためには、前記の塗膜内にめっき液を十分浸透させることが好ましい。これに加えて、該めっき液を用いた電解めっきによって金属材料13を析出させるための条件を適切なものとすることが好ましい。めっきの条件にはめっき浴の組成、めっき浴のpH、電解の電流密度などがある。めっき浴のpHに関しては、これを7超11以下、特に7.1以上11以下に調整することが好ましい。pHをこの範囲内とすることで、活物質の粒子12aの溶解が抑制されつつ、該粒子12aの表面が清浄化されて、粒子表面へのめっきが促進され、同時に粒子12a間に適度な空隙が形成される。pHの値は、めっき時の温度において測定されたものである。   In order to set the porosity of the active material layer 12 within the above range, it is preferable that the plating solution is sufficiently permeated into the coating film. In addition to this, it is preferable to make conditions suitable for depositing the metal material 13 by electrolytic plating using the plating solution. The plating conditions include the composition of the plating bath, the pH of the plating bath, and the current density of electrolysis. Regarding the pH of the plating bath, it is preferable to adjust it to more than 7 and 11 or less, particularly 7.1 or more and 11 or less. By controlling the pH within this range, the dissolution of the active material particles 12a is suppressed, the surface of the particles 12a is cleaned, and plating on the particle surface is promoted. Is formed. The value of pH is measured at the temperature at the time of plating.

めっきの金属材料13として銅を用いる場合には、ピロリン酸銅浴を用いることが好ましい。また該金属材料としてニッケルを用いる場合には、例えばアルカリニッケル浴を用いることが好ましい。特に、ピロリン酸銅浴を用いると、活物質層12を厚くした場合であっても、該層の厚み方向全域にわたって、前記の空隙を容易に形成し得るので好ましい。また、活物質の粒子12aの表面には金属材料13が析出し、且つ該粒子12a間では金属材料13の析出が起こりづらくなるので、該粒子12a間の空隙が首尾良く形成されるという点でも好ましい。ピロリン酸銅浴を用いる場合、その浴組成、電解条件及びpHは次の通りであることが好ましい。
・ピロリン酸銅三水和物:85〜120g/l
・ピロリン酸カリウム:300〜600g/l
・硝酸カリウム:15〜65g/l
・浴温度:45〜60℃
・電流密度:1〜7A/dm2
・pH:アンモニア水とポリリン酸を添加してpH7.1〜9.5になるように調整する。
When using copper as the metal material 13 for plating, it is preferable to use a copper pyrophosphate bath. When nickel is used as the metal material, for example, an alkaline nickel bath is preferably used. In particular, it is preferable to use a copper pyrophosphate bath, even if the active material layer 12 is thick, because the voids can be easily formed over the entire thickness direction of the layer. Further, since the metal material 13 is deposited on the surface of the active material particles 12a and the metal material 13 is less likely to be deposited between the particles 12a, the voids between the particles 12a are also successfully formed. preferable. When using a copper pyrophosphate bath, the bath composition, electrolysis conditions and pH are preferably as follows.
Copper pyrophosphate trihydrate: 85-120 g / l
-Potassium pyrophosphate: 300-600 g / l
-Potassium nitrate: 15-65 g / l
-Bath temperature: 45-60 ° C
・ Current density: 1 to 7 A / dm 2
PH: Ammonia water and polyphosphoric acid are added to adjust the pH to 7.1 to 9.5.

ピロリン酸銅浴を用いる場合には特に、P27の重量とCuの重量との比(P27/Cu)で定義されるP比が5〜12であるものを用いることが好ましい。P比が5未満のものを用いると、活物質の粒子12aを被覆する金属材料13が厚くなる傾向となり、粒子12a間に所望の空隙を形成させづらい場合がある。また、P比が12を超えるものを用いると、電流効率が悪くなり、ガス発生などが生じやすくなることから生産安定性が低下する場合がある。更に好ましいピロリン酸銅浴として、P比が6.5〜10.5であるものを用いると、活物質の粒子12a間に形成される空隙のサイズ及び数が、活物質層12内でのポリマーゲル電解質の流通に非常に有利になる。 In particular, when a copper pyrophosphate bath is used, it is preferable to use one having a P ratio defined by a ratio of P 2 O 7 weight to Cu weight (P 2 O 7 / Cu) of 5 to 12. . When the P ratio is less than 5, the metal material 13 covering the active material particles 12a tends to be thick, and it may be difficult to form desired voids between the particles 12a. Further, when a P ratio exceeding 12 is used, current efficiency is deteriorated, and gas generation is likely to occur, so that production stability may be lowered. When a copper pyrophosphate bath having a P ratio of 6.5 to 10.5 is used as a more preferable copper pyrophosphate bath, the size and number of voids formed between the active material particles 12a may be reduced. This is very advantageous for the distribution of the gel electrolyte.

アルカリニッケル浴を用いる場合には、その浴組成、電解条件及びpHは次の通りであることが好ましい。
・硫酸ニッケル:100〜250g/l
・塩化アンモニウム:15〜30g/l
・ホウ酸:15〜45g/l
・浴温度:45〜60℃
・電流密度:1〜7A/dm2
・pH:25重量%アンモニア水:100〜300g/lの範囲でpH8〜11となるように調整する。
このアルカリニッケル浴と前述のピロリン酸銅浴とを比べると、ピロリン酸銅浴を用いた場合の方が活物質層12内に適度な空隙が形成される傾向があり、負極の長寿命化を図りやすいので好ましい。
When an alkaline nickel bath is used, the bath composition, electrolysis conditions and pH are preferably as follows.
Nickel sulfate: 100 to 250 g / l
Ammonium chloride: 15-30 g / l
・ Boric acid: 15-45 g / l
-Bath temperature: 45-60 ° C
・ Current density: 1 to 7 A / dm 2
-PH: 25% by weight ammonia water: Adjust to pH 8-11 within the range of 100-300 g / l.
When this alkaline nickel bath and the above-described copper pyrophosphate bath are compared, there is a tendency that an appropriate void is formed in the active material layer 12 when the copper pyrophosphate bath is used, thereby extending the life of the negative electrode. It is preferable because it is easy to plan.

前記の各種めっき浴に、タンパク質、活性硫黄化合物、セルロース等の銅箔製造用電解液に用いられる各種添加剤を加えることにより、金属材料13の特性を適宜調整することも可能である。   The characteristics of the metal material 13 can be appropriately adjusted by adding various additives used in the electrolytic solution for producing copper foil such as protein, active sulfur compound, and cellulose to the above various plating baths.

本実施形態の負極10においては、水銀圧入法で測定された活物質層12の空隙量から算出された空隙率が前記の範囲内であることに加えて、10MPaにおいて水銀圧入法で測定された活物質層12の空隙量から算出された空隙率が10〜40%であることが好ましい。また、1MPaにおいて水銀圧入法で測定された活物質層12の空隙量から算出された空隙率が0.5〜15%であることが好ましい。更に、5MPaにおいて水銀圧入法で測定された活物質層12の空隙量から算出された空隙率が1〜35%であることが好ましい。上述した通り、水銀圧入法よる測定では、水銀の圧入条件を次第に高くしていく。そして低圧の条件下では大きな空隙に水銀が圧入され、高圧の条件下では小さな空隙に水銀が圧入される。従って圧力1MPaにおいて測定された空隙率は、主として大きな空隙に由来するものである。一方、圧力10MPaにおいて測定された空隙率は、小さな空隙の存在も反映されたものである。   In the negative electrode 10 of the present embodiment, the porosity calculated from the void amount of the active material layer 12 measured by the mercury intrusion method was within the above range, and was measured by the mercury intrusion method at 10 MPa. The porosity calculated from the void amount of the active material layer 12 is preferably 10 to 40%. Moreover, it is preferable that the porosity calculated from the void amount of the active material layer 12 measured by the mercury intrusion method at 1 MPa is 0.5 to 15%. Furthermore, it is preferable that the porosity calculated from the void amount of the active material layer 12 measured by the mercury intrusion method at 5 MPa is 1 to 35%. As described above, in the mercury intrusion measurement, mercury intrusion conditions are gradually increased. Under low pressure conditions, mercury is pressed into large gaps, and under high pressure conditions, mercury is pressed into small gaps. Therefore, the porosity measured at a pressure of 1 MPa is mainly derived from large voids. On the other hand, the porosity measured at a pressure of 10 MPa reflects the presence of small voids.

先に述べた通り、活物質層12は、好適には粒子12a及び結着剤を含むスラリーを塗布し乾燥させて得られた塗膜に対し、所定のめっき浴を用いた電解めっきを行い、粒子12a間に金属材料13を析出させることで形成されるものである。従って、図2に示すように、上述した大きな空隙S1は、主として粒子12a間の空間に由来するものであり、一方、上述した小さな空隙S2は、主として粒子12aの表面に析出する金属材料13の結晶粒14間の空間に由来するものであると考えられる。大きな空隙S1は、主として粒子12aの膨張収縮に起因する応力を緩和するための空間としての働きを有している。一方、小さな空隙S2は、主としてポリマーゲル電解質を粒子12aに供給する経路としての働きを有している。これら大きな空隙S1と小さな空隙S2の存在量をバランスさせることで、サイクル特性が一層向上する。   As described above, the active material layer 12 is preferably subjected to electrolytic plating using a predetermined plating bath on the coating film obtained by applying and drying the slurry containing the particles 12a and the binder, It is formed by depositing a metal material 13 between the particles 12a. Therefore, as shown in FIG. 2, the large void S1 described above is mainly derived from the space between the particles 12a, while the small void S2 described above is mainly formed of the metal material 13 deposited on the surface of the particles 12a. It is thought that it originates in the space between the crystal grains 14. The large void S1 mainly functions as a space for relieving stress caused by the expansion and contraction of the particles 12a. On the other hand, the small void S2 mainly serves as a path for supplying the polymer gel electrolyte to the particles 12a. By balancing the abundance of these large voids S1 and small voids S2, the cycle characteristics are further improved.

負極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向上させにくく、逆に多すぎると強度が低下し活物質の脱落が起こりやすくなる傾向にある。これらを勘案すると、活物質層12の厚みは、好ましくは10〜40μm、更に好ましくは15〜30μm、一層好ましくは18〜25μmである。   If the amount of the active material relative to the whole negative electrode is too small, it is difficult to sufficiently improve the energy density of the battery. Conversely, if the amount is too large, the strength decreases and the active material tends to fall off. Considering these, the thickness of the active material layer 12 is preferably 10 to 40 μm, more preferably 15 to 30 μm, and still more preferably 18 to 25 μm.

本実施形態の負極10においては、活物質層12の表面に薄い表面層(図示せず)が形成されていてもよい。また負極10はそのような表面層を有していなくてもよい。表面層の厚みは、0.25μm以下、好ましくは0.1μm以下という薄いものである。表面層の厚みの下限値に制限はない。表面層を形成することで、微粉化した活物質の粒子12aの脱落を一層防止することができる。尤も、本実施形態においては、活物質層12の空隙率を上述した範囲内に設定することによって、表面層を用いなくても微粉化した活物質の粒子12aの脱落を十分に防止することが可能である。   In the negative electrode 10 of the present embodiment, a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer. The thickness of the surface layer is 0.25 μm or less, preferably 0.1 μm or less. There is no restriction | limiting in the lower limit of the thickness of a surface layer. By forming the surface layer, the pulverized active material particles 12a can be further prevented from falling off. However, in the present embodiment, by setting the porosity of the active material layer 12 within the above-described range, it is possible to sufficiently prevent the pulverized active material particles 12a from dropping without using a surface layer. Is possible.

負極10が前記の厚みの薄い表面層を有するか又は該表面層を有していないことによって、負極10を用いて二次電池を組み立て、当該電池の初期充電を行うときの過電圧を低くすることができる。このことは、二次電池の充電時に負極10の表面でリチウムが還元することを防止できることを意味する。リチウムの還元は、両極の短絡の原因となるデンドライトの発生につながる。   When the negative electrode 10 has the thin surface layer or does not have the surface layer, a secondary battery is assembled using the negative electrode 10 to reduce the overvoltage when the battery is initially charged. Can do. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause a short circuit between the two electrodes.

負極10が表面層を有している場合、該表面層は活物質層12の表面を連続又は不連続に被覆している。表面層が活物質層12の表面を連続に被覆している場合、該表面層は、その表面において開孔し且つ活物質層12と通ずる多数の微細空隙(図示せず)を有していることが好ましい。微細空隙は表面層の厚さ方向へ延びるように表面層中に存在していることが好ましい。微細空隙はポリマーゲル電解質の流通が可能なものである。微細空隙の役割は、活物質層12内にポリマーゲル電解質を供給することにある。微細空隙は、負極10の表面を電子顕微鏡観察により平面視したとき、金属材料13で被覆されている面積の割合、即ち被覆率が95%以下、特に80%以下、とりわけ60%以下となるような大きさであることが好ましい。   When the negative electrode 10 has a surface layer, the surface layer covers the surface of the active material layer 12 continuously or discontinuously. When the surface layer continuously covers the surface of the active material layer 12, the surface layer has a large number of microscopic voids (not shown) that are open at the surface and communicate with the active material layer 12. It is preferable. The fine voids are preferably present in the surface layer so as to extend in the thickness direction of the surface layer. The fine voids allow the polymer gel electrolyte to flow. The role of the fine voids is to supply the polymer gel electrolyte into the active material layer 12. When the surface of the negative electrode 10 is viewed in plan by electron microscope observation, the fine voids are such that the ratio of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, especially 60% or less. It is preferable that the size is large.

表面層は、リチウム化合物の形成能の低い金属材料から構成されている。この金属材料は、活物質層12中に存在している金属材料13と同種でもよく、或いは異種でもよい。また表面層は、異なる2種以上の金属材料からなる2層以上の構造であってもよい。負極10の製造の容易さを考慮すると、活物質層12中に存在している金属材料13と、表面層を構成する金属材料とは同種であることが好ましい。   The surface layer is made of a metal material having a low lithium compound forming ability. This metal material may be the same as or different from the metal material 13 present in the active material layer 12. The surface layer may have a structure of two or more layers made of two or more different metal materials. Considering the ease of manufacture of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.

本実施形態の負極10は、活物質層12中の空隙率が高い値になっているので、折り曲げに対する耐性が高いものである。具体的には、JIS C 6471に従い測定されたMIT耐折性が好ましくは30回以上、更に好ましくは50回以上という高耐折性を有している。耐折性が高いことは、負極10を折り畳んだり巻回したりして電池容器内に収容する場合に、負極10に折れが生じにくくなることから極めて有利である。MIT耐折装置としては、例えば東洋精機製作所製の槽付フィルム耐折疲労試験機(品番549)が用いられ、屈曲半径0.8mm、荷重0.5kgf、サンプルサイズ15×150mmで測定することができる。   Since the porosity in the active material layer 12 has a high value, the negative electrode 10 of this embodiment has high resistance to bending. Specifically, the MIT folding resistance measured according to JIS C 6471 is preferably 30 times or more, and more preferably 50 times or more. High folding resistance is extremely advantageous since the negative electrode 10 is less likely to be folded when the negative electrode 10 is folded or wound and accommodated in a battery container. As the MIT folding endurance device, for example, a film folding endurance fatigue tester (product number 549) manufactured by Toyo Seiki Seisakusho is used, and measurement can be performed with a bending radius of 0.8 mm, a load of 0.5 kgf and a sample size of 15 × 150 mm. it can.

負極10における集電体11としては、高分子電解質二次電池用負極の集電体として従来用いられているものと同様のものを用いることができる。集電体11は、先に述べたリチウム化合物の形成能の低い金属材料から構成されていることが好ましい。そのような金属材料の例は既に述べた通りである。特に、銅、ニッケル、ステンレス等からなることが好ましい。また、コルソン合金箔に代表されるような銅合金箔の使用も可能である。更に集電体として、常態抗張力(JIS C 2318)が好ましくは500MPa以上である金属箔、例えば前記のコルソン合金箔の少なくとも一方の面に銅被膜層を形成したものを用いることもできる。更に集電体として常態伸度(JIS C 2318)が4%以上のものを用いることも好ましい。抗張力が低いと活物質が膨張した際の応力によりシワが生じ、伸び率が低いと該応力により集電体に亀裂が入ることがあるからである。これらの集電体を用いることで、上述した負極10の耐折性を一層高めることが可能となる。集電体11の厚みは、負極10の強度維持と、エネルギー密度向上とのバランスを考慮すると、9〜35μmであることが好ましい。なお、集電体11として銅箔を使用する場合には、クロメート処理や、トリアゾール系化合物及びイミダゾール系化合物などの有機化合物を用いた防錆処理を施しておくことが好ましい。   As the current collector 11 in the negative electrode 10, the same one as conventionally used as a current collector of a negative electrode for a polymer electrolyte secondary battery can be used. The current collector 11 is preferably made of a metal material having a low lithium compound forming ability as described above. Examples of such metallic materials are as already described. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by a Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used. Furthermore, it is preferable to use a current collector having a normal elongation (JIS C 2318) of 4% or more. This is because when the tensile strength is low, wrinkles are generated due to stress when the active material expands, and when the elongation is low, the current collector may crack. By using these current collectors, it is possible to further improve the folding resistance of the negative electrode 10 described above. The thickness of the current collector 11 is preferably 9 to 35 μm considering the balance between maintaining the strength of the negative electrode 10 and improving the energy density. In addition, when using copper foil as the electrical power collector 11, it is preferable to give the rust prevention process using organic compounds, such as a chromate process and a triazole type compound and an imidazole type compound.

次に、本実施形態の負極10の好ましい製造方法について、図3を参照しながら説明する。本製造方法では、活物質の粒子及び結着剤を含むスラリーを用いて集電体11上に塗膜を形成し、次いでその塗膜に対して電解めっきを行う。   Next, the preferable manufacturing method of the negative electrode 10 of this embodiment is demonstrated, referring FIG. In this manufacturing method, a coating film is formed on the current collector 11 using a slurry containing particles of an active material and a binder, and then electrolytic plating is performed on the coating film.

先ず図3(a)に示すように集電体11を用意する。そして集電体11上に、活物質の粒子12aを含むスラリーを塗布して塗膜15を形成する。集電体11における塗膜形成面の表面粗さは、輪郭曲線の最大高さで0.5〜4μmであることが好ましい。最大高さが4μmを超えると塗膜15の形成精度が低下する上、凸部に浸透めっきの電流集中が起こりやすい。最大高さが0.5μmを下回ると、活物質層12の密着性が低下しやすい。活物質の粒子12aとしては、好適に上述した粒度分布及び平均粒径を有するものを用いる。   First, a current collector 11 is prepared as shown in FIG. Then, a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film 15. The surface roughness of the coating film forming surface of the current collector 11 is preferably 0.5 to 4 μm at the maximum height of the contour curve. If the maximum height exceeds 4 μm, the formation accuracy of the coating film 15 is lowered and current concentration of the permeation plating tends to occur on the convex portions. When the maximum height is less than 0.5 μm, the adhesion of the active material layer 12 tends to be lowered. As the active material particles 12a, those having the above-described particle size distribution and average particle size are preferably used.

スラリーは、活物質の粒子の他に、結着剤及び希釈溶媒などを含んでいる。またスラリーはアセチレンブラックやグラファイトなどの導電性炭素材料の粒子を少量含んでいてもよい。特に、活物質の粒子12aがシリコン系材料から構成されている場合には、該活物質の粒子12aの重量に対して導電性炭素材料を1〜3重量%含有することが好ましい。導電性炭素材料の含有量が1重量%未満であると、スラリーの粘度が低下して活物質の粒子12aの沈降が促進されるため、良好な塗膜15及び均一な空隙を形成しにくくなる。また導電性炭素材料の含有量が3重量%を超えると、該導電性炭素材料の表面にめっき核が集中し、良好な被覆を形成しにくくなる。   The slurry contains a binder and a diluting solvent in addition to the active material particles. The slurry may contain a small amount of conductive carbon material particles such as acetylene black and graphite. In particular, when the active material particles 12a are made of a silicon-based material, the conductive carbon material is preferably contained in an amount of 1 to 3% by weight based on the weight of the active material particles 12a. When the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry is lowered and the sedimentation of the active material particles 12a is promoted, so that it is difficult to form a good coating film 15 and uniform voids. . On the other hand, if the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and it becomes difficult to form a good coating.

結着剤としてはスチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)、ポリエチレン(PE)、エチレンプロピレンジエンモノマー(EPDM)などが用いられる。希釈溶媒としてはN−メチルピロリドン、シクロヘキサンなどが用いられる。スラリー中における活物質の粒子12aの量は30〜70重量%程度とすることが好ましい。結着剤の量は0.4〜4重量%程度とすることが好ましい。これらに希釈溶媒を加えてスラリーとする。   As the binder, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM), or the like is used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used. The amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. A dilution solvent is added to these to form a slurry.

形成された塗膜15は、粒子12a間に多数の微小空間を有する。塗膜15が形成された集電体11を、リチウム化合物の形成能の低い金属材料を含むめっき浴中に浸漬する。めっき浴への浸漬によって、めっき液が塗膜15内の前記微小空間に浸入して、塗膜15と集電体11との界面にまで達する。その状態下に電解めっきを行い、めっき金属種を粒子12aの表面に析出させる(以下、このめっきを浸透めっきともいう)。浸透めっきは、集電体11をカソードとして用い、めっき浴中にアノードとしての対極を浸漬し、両極を電源に接続して行う。   The formed coating film 15 has a large number of minute spaces between the particles 12a. The current collector 11 on which the coating film 15 is formed is immersed in a plating bath containing a metal material having a low lithium compound forming ability. By immersion in the plating bath, the plating solution enters the minute space in the coating film 15 and reaches the interface between the coating film 15 and the current collector 11. Under this condition, electrolytic plating is performed to deposit plating metal species on the surfaces of the particles 12a (hereinafter, this plating is also referred to as permeation plating). The osmotic plating is performed by using the current collector 11 as a cathode, immersing a counter electrode as an anode in a plating bath, and connecting both electrodes to a power source.

浸透めっきによる金属材料の析出は、塗膜15の一方の側から他方の側に向かって進行させることが好ましい。具体的には、図3(b)ないし(d)に示すように、塗膜15と集電体11との界面から塗膜の表面に向けて金属材料13の析出が進行するように電解めっきを行う。金属材料13をこのように析出させることで、活物質の粒子12aの表面を金属材料13で首尾よく被覆することができると共に、金属材料13で被覆された粒子12a間に空隙を首尾よく形成することができる。しかも、該空隙の空隙率を前述した好ましい範囲にすることが容易となる。   The deposition of the metal material by the osmotic plating is preferably progressed from one side of the coating film 15 to the other side. Specifically, as shown in FIGS. 3B to 3D, electrolytic plating is performed so that deposition of the metal material 13 proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film. I do. By precipitating the metal material 13 in this way, the surface of the active material particles 12a can be successfully coated with the metal material 13, and a void is successfully formed between the particles 12a coated with the metal material 13. be able to. In addition, it becomes easy to set the void ratio of the voids to the above-described preferable range.

前述のように金属材料13を析出させるための浸透めっきの条件には、めっき浴の組成、めっき浴のpH、電解の電流密度などがある。このような条件については既に述べた通りである。   As described above, the conditions of the infiltration plating for depositing the metal material 13 include the composition of the plating bath, the pH of the plating bath, the current density of electrolysis, and the like. Such conditions are as already described.

図3(b)ないし(d)に示されているように、塗膜15と集電体11との界面から塗膜の表面に向けて金属材料13の析出が進行するようにめっきを行うと、析出反応の最前面部においては、ほぼ一定の厚みで金属材料13のめっき核からなる微小粒子13aが層状に存在している。金属材料13の析出が進行すると、隣り合う微小粒子13aどうしが結合して更に大きな粒子となり、更に析出が進行すると、該粒子どうしが結合して活物質の粒子12aの表面を連続的に被覆するようになる。   As shown in FIGS. 3B to 3D, when plating is performed so that the deposition of the metal material 13 proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film. In the forefront portion of the precipitation reaction, fine particles 13a made of plating nuclei of the metal material 13 are present in layers with a substantially constant thickness. As the deposition of the metal material 13 proceeds, adjacent microparticles 13a combine to form larger particles, and when the deposition proceeds further, the particles combine to continuously cover the surface of the active material particles 12a. It becomes like this.

浸透めっきは、塗膜15の厚み方向全域に金属材料13が析出した時点で終了させる。めっきの終了時点を調節することで、活物質層12の上面に表面層(図示せず)を形成することができる。このようにして、図3(d)に示すように、目的とする負極が得られる。   The permeation plating is terminated when the metal material 13 is deposited on the entire thickness direction of the coating film 15. By adjusting the end point of plating, a surface layer (not shown) can be formed on the upper surface of the active material layer 12. In this way, the target negative electrode is obtained as shown in FIG.

浸透めっき後、負極10を防錆処理することも好ましい。防錆処理としては、例えばベンゾトリアゾール、カルボキシベンゾトリアゾール、トリルトリアゾール等のトリアゾール系化合物及びイミダゾール等を用いる有機防錆や、コバルト、ニッケル、クロメート等を用いる無機防錆を採用できる。   It is also preferable to subject the negative electrode 10 to rust prevention after the osmotic plating. As the rust prevention treatment, for example, organic rust prevention using triazole compounds such as benzotriazole, carboxybenzotriazole, tolyltriazole, and imidazole, and inorganic rust prevention using cobalt, nickel, chromate and the like can be employed.

このようにして得られた負極10は、例えばリチウムイオンポリマー二次電池等の高分子電解質二次電池用の負極として好適に用いられる。この場合、電池の正極は、正極活物質並びに必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、更に裁断、打ち抜きすることにより得られる。正極の活物質層にはポリマーゲル電解質を予め含浸させ複合化しておく。正極活物質としては、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物等の含リチウム金属複合酸化物を始めとする従来公知の正極活物質が用いられる。また、正極活物質として、LiCoO2に少なくともZrとMgの両方を含有させたリチウム遷移金属複合酸化物と、層状構造を有し、少なくともMnとNiの両方を含有するリチウム遷移金属複合酸化物と混合したものも好ましく用いることができる。かかる正極活物質を用いることで充放電サイクル特性及び熱安定性の低下を伴うことなく、充電終止電圧を高めることが期待できる。正極活物質の一次粒子径の平均値は5μm以上10μm以下であることが、充填密度と反応面積との兼ね合いから好ましく、正極に使用する結着剤の重量平均分子量は350,000 以上2,000,000以下のポリフッ化ビニリデンであることが好ましい。低温環境での放電特性を向上させることが期待できるからである。 The negative electrode 10 thus obtained is suitably used as a negative electrode for a polymer electrolyte secondary battery such as a lithium ion polymer secondary battery. In this case, the positive electrode of the battery is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in a suitable solvent to prepare a positive electrode mixture, applying this to a current collector, drying, roll rolling, It is obtained by pressing, further cutting and punching. The active material layer of the positive electrode is impregnated with a polymer gel electrolyte in advance to be combined. As the positive electrode active material, conventionally known positive electrode active materials such as lithium-containing metal composite oxides such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used. Further, as the positive electrode active material, a lithium transition metal composite oxide in which LiCoO 2 contains at least both Zr and Mg, a lithium transition metal composite oxide having a layered structure and containing at least both Mn and Ni, A mixture thereof can also be preferably used. The use of such a positive electrode active material can be expected to increase the end-of-charge voltage without deteriorating charge / discharge cycle characteristics and thermal stability. The average value of the primary particle diameter of the positive electrode active material is preferably 5 μm or more and 10 μm or less in view of the packing density and the reaction area, and the weight average molecular weight of the binder used for the positive electrode is 350,000 or more and 2,000. It is preferable that the polyvinylidene fluoride is 1,000 or less. This is because it can be expected to improve discharge characteristics in a low temperature environment.

ポリマーゲル電解質は、マトリクスポリマー、有機溶媒及びリチウム塩を含むものである。マトリクスポリマーとしては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリアクリル酸、ポリメタクリル酸、ポリアクリロニトリル、ポリカーボネート、ポリエチレングリコール等を用いることができる。リチウム塩としては、LiC1O4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiBF4、LiSCN、LiC1、LiBr、LiI、LiCF3SO3、LiC49SO3等が例示される。有機溶媒としては、例えばエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等が挙げられる。 The polymer gel electrolyte includes a matrix polymer, an organic solvent, and a lithium salt. As the matrix polymer, polyethylene oxide, polypropylene oxide, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyacrylic acid, polymethacrylic acid, polyacrylonitrile, polycarbonate, polyethylene glycol and the like can be used. The lithium salt, LiC1O 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiBF 4, LiSCN, LiC1, LiBr, LiI, etc. LiCF 3 SO 3, LiC 4 F 9 SO 3 are exemplified. Examples of the organic solvent include ethylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〕
厚さ18μmの電解銅箔からなる集電体を室温で30秒間酸洗浄した。処理後、15秒間純水洗浄した。集電体上にSiの粒子を含むスラリーを膜厚15μmになるように塗布し塗膜を形成した。スラリーの組成は、粒子:スチレンブタジエンラバー(結着剤):アセチレンブラック=100:1.7:2(重量比)であった。Siの粒子の平均粒径D50は2.5μmであった。粒度分布D10/D90は0.07であった。平均粒径D50及び粒度分布D10/D90は、日機装(株)製のマイクロトラック粒度分布測定装置(No.9320−X100)を使用して測定した。
[Example 1]
A current collector made of an electrolytic copper foil having a thickness of 18 μm was acid washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds. A slurry containing Si particles was applied on the current collector to a thickness of 15 μm to form a coating film. The composition of the slurry was particles: styrene butadiene rubber (binder): acetylene black = 100: 1.7: 2 (weight ratio). The average particle diameter D 50 of the Si particles was 2.5 μm. The particle size distribution D 10 / D 90 was 0.07. The average particle size D 50 and the particle size distribution D 10 / D 90 were measured using a Microtrac particle size distribution measuring device (No. 9320-X100) manufactured by Nikkiso Co., Ltd.

塗膜が形成された集電体を、以下の浴組成を有するピロリン酸銅浴に浸漬させ、電解により、塗膜に対して銅の浸透めっきを行い、活物質層を形成した。電解の条件は以下の通りとした。陽極にはDSEを用いた。電源は直流電源を用いた。
・ピロリン酸銅三水和物:105g/l
・ピロリン酸カリウム:450g/l
・硝酸カリウム:30g/l
・P比:7.7
・浴温度:50℃
・電流密度:3A/dm2
・pH:アンモニア水とポリリン酸を添加してpH8.2になるように調整した。
The current collector on which the coating film was formed was immersed in a copper pyrophosphate bath having the following bath composition, and copper was permeated to the coating film by electrolysis to form an active material layer. The electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source.
Copper pyrophosphate trihydrate: 105 g / l
-Potassium pyrophosphate: 450 g / l
・ Potassium nitrate: 30 g / l
-P ratio: 7.7
・ Bath temperature: 50 ° C
・ Current density: 3 A / dm 2
-PH: Ammonia water and polyphosphoric acid were added to adjust to pH 8.2.

浸透めっきは、塗膜の厚み方向全域にわたって銅が析出した時点で終了させ、水洗、ベンゾトリアゾール(BTA)による防錆処理を施して目的とする負極を得た。   The permeation plating was terminated when copper was deposited over the entire thickness direction of the coating film, and was washed with water and subjected to rust prevention treatment with benzotriazole (BTA) to obtain a target negative electrode.

〔実施例2〜5〕
Siの粒子として、表1に示す平均粒径D50及び粒度分布D10/D90を有するものを用いる以外は実施例1と同様にして負極を得た。
[Examples 2 to 5]
A negative electrode was obtained in the same manner as in Example 1 except that Si particles having the average particle size D 50 and the particle size distribution D 10 / D 90 shown in Table 1 were used.

〔比較例1及び2〕
Siの粒子として、表1に示す平均粒径D50及び粒度分布D10/D90を有するものを用いた。また、実施例1で用いたピロリン酸銅浴に代えて、以下の組成を有する硫酸銅の浴を用いた。電流密度は5A/dm2、浴温は40℃であった。陽極にはDSE電極を用いた。電源は直流電源を用いた。これら以外は実施例1と同様にして負極を得た。
・CuSO4・5H2O 250g/l
・H2SO4 70g/l
[Comparative Examples 1 and 2]
As the Si particles, those having the average particle size D 50 and the particle size distribution D 10 / D 90 shown in Table 1 were used. Further, instead of the copper pyrophosphate bath used in Example 1, a copper sulfate bath having the following composition was used. The current density was 5 A / dm 2 and the bath temperature was 40 ° C. A DSE electrode was used as the anode. A DC power source was used as the power source. A negative electrode was obtained in the same manner as Example 1 except for these.
・ CuSO 4・ 5H 2 O 250g / l
・ H 2 SO 4 70 g / l

〔比較例3及び4〕
Siの粒子として、表1に示す平均粒径D50及び粒度分布D10/D90を有するものを用いる以外は実施例1と同様にして負極を得た。
[Comparative Examples 3 and 4]
A negative electrode was obtained in the same manner as in Example 1 except that Si particles having the average particle size D 50 and the particle size distribution D 10 / D 90 shown in Table 1 were used.

〔評価〕
実施例及び比較例で得られた負極について、水銀ポロシメータによる測定を行った。その結果を表1に示す。これとは別に、実施例及び比較例で得られた負極を用いてリチウムイオンポリマー二次電池を製造した。正極としてはLiCo1/3Ni1/3Mn1/32を用いた。正極活物質層に以下のポリマーゲル電解質を含浸複合化させた。ポリマーゲル電解質としては、ポリアクリロニトリルを6重量%、エチレンカーボネートを40重量%、ジエチルカーボネートを44重量%、LiPF6を10重量%含むものを用いた。得られた二次電池について100サイクルまでの容量維持率を測定した。容量維持率は、各サイクル目の放電容量を測定し、それらの値を初期放電容量で除し、100を乗じて算出した。充電条件は0.5C、4.2Vで、定電流・定電圧(CCCV)とした。放電条件は0.5C、2.7Vで、定電流(CC)とした。但し、1サイクル目は0.05Cとし、2〜4サイクル目は0.1C、5〜7サイクル目は0.5C、8〜10サイクル目は1Cとした。結果を表1に示す。
[Evaluation]
About the negative electrode obtained by the Example and the comparative example, the measurement by a mercury porosimeter was performed. The results are shown in Table 1. Separately, lithium ion polymer secondary batteries were manufactured using the negative electrodes obtained in Examples and Comparative Examples. LiCo 1/3 Ni 1/3 Mn 1/3 O 2 was used as the positive electrode. The positive electrode active material layer was impregnated with the following polymer gel electrolyte. As the polymer gel electrolyte, one containing 6% by weight of polyacrylonitrile, 40% by weight of ethylene carbonate, 44% by weight of diethyl carbonate, and 10% by weight of LiPF 6 was used. The capacity retention rate up to 100 cycles was measured for the obtained secondary battery. The capacity retention rate was calculated by measuring the discharge capacity at each cycle, dividing those values by the initial discharge capacity, and multiplying by 100. The charging conditions were 0.5 C, 4.2 V, and a constant current / constant voltage (CCCV). The discharge conditions were 0.5 C, 2.7 V, and a constant current (CC). However, the first cycle was 0.05 C, the second to fourth cycles were 0.1 C, the fifth to seventh cycles were 0.5 C, and the eighth to tenth cycles were 1 C. The results are shown in Table 1.

表1に示す結果から明らかなように、実施例の負極を備えた二次電池は、比較例の負極を備えた二次電池に比べてサイクル特性が良好であることが判る。なお表には示していないが、各実施例の負極においては、表裏間において電気的導通がとれていることが確認された。   As apparent from the results shown in Table 1, it can be seen that the secondary battery including the negative electrode of the example has better cycle characteristics than the secondary battery including the negative electrode of the comparative example. Although not shown in the table, it was confirmed that electrical conductivity was obtained between the front and back surfaces of the negative electrode of each example.

本発明の高分子電解質二次電池用負極の一実施形態の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of one Embodiment of the negative electrode for polymer electrolyte secondary batteries of this invention. 図1に示す負極における活物質層の断面の要部を拡大して示す模式図である。FIG. 2 is a schematic diagram illustrating an enlarged main part of a cross section of an active material layer in the negative electrode illustrated in FIG. 1. 図1に示す負極の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the negative electrode shown in FIG.

符号の説明Explanation of symbols

10 高分子電解質二次電池用負極
11 集電体
12 活物質層
12a 活物質の粒子
13 リチウム化合物の形成能の低い金属材料
15 塗膜
DESCRIPTION OF SYMBOLS 10 Negative electrode for polymer electrolyte secondary batteries 11 Current collector 12 Active material layer 12a Active material particle 13 Metal material with low lithium compound forming ability 15 Coating film

Claims (9)

活物質の粒子を含む活物質層を備え、該粒子の表面の少なくとも一部がリチウム化合物の形成能の低い金属材料で被覆されていると共に、該金属材料で被覆された該粒子どうしの間に空隙が形成されており、該活物質層の空隙率が15〜45%であることを特徴とする高分子電解質二次電池用負極。   An active material layer including particles of the active material, wherein at least a part of the surface of the particles is coated with a metal material having a low ability to form a lithium compound, and between the particles coated with the metal material A negative electrode for a polymer electrolyte secondary battery, wherein voids are formed, and the porosity of the active material layer is 15 to 45%. 前記金属材料が、前記活物質層の厚み方向全域にわたって前記粒子の表面に存在している請求項1記載の高分子電解質二次電池用負極。   The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the metal material is present on the surface of the particles over the entire thickness direction of the active material layer. 前記粒子の粒度分布が、D10/D90で表して0.05〜0.5である請求項1又は2記載の高分子電解質二次電池用負極。 3. The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the particle size distribution of the particles is 0.05 to 0.5 in terms of D 10 / D 90 . 前記粒子の平均粒径がD50で表して0.1〜5μmである請求項1ないし3の何れかに記載の高分子電解質二次電池用負極。 4. The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the average particle diameter of the particles is 0.1 to 5 μm in terms of D 50 . 前記活物質の粒子がシリコン系材料で構成されており、前記活物質層中に導電性炭素材料を該活物質の粒子の重量に対して1〜3重量%含む請求項1ないし4の何れかに記載の高分子電解質二次電池用負極。   The active material particles are made of a silicon-based material, and the active material layer contains a conductive carbon material in an amount of 1 to 3% by weight based on the weight of the active material particles. A negative electrode for a polymer electrolyte secondary battery as described in 1. 前記金属材料の被覆が、pHが7超11以下のめっき浴を用いた電解めっきによって形成されている請求項1ないし5の何れかに記載の高分子電解質二次電池用負極。   The negative electrode for a polymer electrolyte secondary battery according to any one of claims 1 to 5, wherein the coating of the metal material is formed by electrolytic plating using a plating bath having a pH of more than 7 and 11 or less. 10MPaにおいて水銀圧入法(JIS R 1655)で測定された前記活物質層の空隙率が10〜40%であり、1MPaにおいて水銀圧入法(JIS R 1655)で測定された前記活物質層の空隙率が0.5〜15%である請求項1ないし6の何れかに記載の高分子電解質二次電池用負極。   The porosity of the active material layer measured by mercury intrusion method (JIS R 1655) at 10 MPa is 10 to 40%, and the porosity of the active material layer measured by mercury intrusion method (JIS R 1655) at 1 MPa. The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the content is 0.5 to 15%. 水銀圧入法(JIS R 1655)で測定された前記活物質層の空隙の細孔径分布の最大ピーク値が100〜2000nmの間にある請求項1ないし7の何れかに記載の高分子電解質二次電池用負極。   The polymer electrolyte secondary according to any one of claims 1 to 7, wherein a maximum peak value of pore size distribution of voids in the active material layer measured by a mercury intrusion method (JIS R 1655) is between 100 and 2000 nm. Battery negative electrode. 請求項1ないし8の何れかに記載の高分子電解質二次電池用負極を備えた高分子電解質二次電池。
A polymer electrolyte secondary battery comprising the negative electrode for a polymer electrolyte secondary battery according to claim 1.
JP2006182831A 2006-06-30 2006-06-30 Negative electrode for polymer electrolyte secondary battery Withdrawn JP2008016196A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006182831A JP2008016196A (en) 2006-06-30 2006-06-30 Negative electrode for polymer electrolyte secondary battery
PCT/JP2007/058245 WO2008001537A1 (en) 2006-06-30 2007-04-16 Negative electrode for polymeric electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182831A JP2008016196A (en) 2006-06-30 2006-06-30 Negative electrode for polymer electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008016196A true JP2008016196A (en) 2008-01-24

Family

ID=38845309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182831A Withdrawn JP2008016196A (en) 2006-06-30 2006-06-30 Negative electrode for polymer electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2008016196A (en)
WO (1) WO2008001537A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252580A (en) * 2008-04-08 2009-10-29 Sony Corp Negative electrode and secondary battery
US20110104568A1 (en) * 2009-11-04 2011-05-05 Min-Seok Sung Negative Electrode For Rechargeable Lithium Battery and Rechargeable Lithium Battery Including Same
JP2011154901A (en) * 2010-01-27 2011-08-11 Sony Corp Lithium ion secondary battery and negative electrode for the same
US8859149B2 (en) 2010-06-03 2014-10-14 Sony Corporation Anode for lithium ion secondary battery, lithium ion secondary battery, electric power tool, electrical vehicle, and electric power storage system
US9431146B2 (en) 2009-06-23 2016-08-30 A123 Systems Llc Battery electrodes and methods of manufacture
KR20190042700A (en) * 2016-08-30 2019-04-24 와커 헤미 아게 The anode of a lithium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619000B2 (en) * 1997-01-28 2005-02-09 キヤノン株式会社 Electrode structure, secondary battery, and manufacturing method thereof
JP4422417B2 (en) * 2003-02-07 2010-02-24 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP4953557B2 (en) * 2004-03-30 2012-06-13 三洋電機株式会社 Negative electrode for lithium secondary battery and lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252580A (en) * 2008-04-08 2009-10-29 Sony Corp Negative electrode and secondary battery
US9012066B2 (en) 2008-04-08 2015-04-21 Sony Corporation Anode and secondary battery
KR20150124435A (en) * 2008-04-08 2015-11-05 소니 주식회사 Anode and secondary battery
KR101686350B1 (en) 2008-04-08 2016-12-13 소니 주식회사 Anode and secondary battery
US9431146B2 (en) 2009-06-23 2016-08-30 A123 Systems Llc Battery electrodes and methods of manufacture
US20110104568A1 (en) * 2009-11-04 2011-05-05 Min-Seok Sung Negative Electrode For Rechargeable Lithium Battery and Rechargeable Lithium Battery Including Same
JP2011154901A (en) * 2010-01-27 2011-08-11 Sony Corp Lithium ion secondary battery and negative electrode for the same
US8859149B2 (en) 2010-06-03 2014-10-14 Sony Corporation Anode for lithium ion secondary battery, lithium ion secondary battery, electric power tool, electrical vehicle, and electric power storage system
KR20190042700A (en) * 2016-08-30 2019-04-24 와커 헤미 아게 The anode of a lithium ion battery
KR102240050B1 (en) 2016-08-30 2021-04-16 와커 헤미 아게 Anode of lithium ion battery

Also Published As

Publication number Publication date
WO2008001537A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
JP5192710B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4219391B2 (en) Non-aqueous electrolyte secondary battery
WO2009087791A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4053576B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4944648B2 (en) Anode for non-aqueous electrolyte secondary battery
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2008047308A (en) Nonaqueous electrolyte secondary battery
JP2009176703A (en) Negative electrode for nonaqueous electrolytic secondary battery
JP2009104900A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2008016195A (en) Anode for nonaqueous electrolyte secondary battery
JP2008016196A (en) Negative electrode for polymer electrolyte secondary battery
WO2008018204A1 (en) Non-aqueous electrolyte secondary battery
JP2008047306A (en) Nonaqueous electrolyte secondary battery
JP2010097832A (en) Negative electrode for non-aqueous electrolytic secondary battery
JP2008066279A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2009272243A (en) Nonaqueous electrolyte secondary battery
JP2008047307A (en) Nonaqueous electrolyte secondary battery
JP2008016192A (en) Anode for nonaqueous electrolyte secondary battery
JP2008016191A (en) Anode for nonaqueous electrolyte secondary battery
WO2009084329A1 (en) Positive electrode for nonaqueous electrolyte secondary battery
JP4954902B2 (en) Non-aqueous electrolyte secondary battery
JP2008016194A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2009104901A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120521