JP2008184633A - Method for surface-treating metal foil - Google Patents
Method for surface-treating metal foil Download PDFInfo
- Publication number
- JP2008184633A JP2008184633A JP2007017283A JP2007017283A JP2008184633A JP 2008184633 A JP2008184633 A JP 2008184633A JP 2007017283 A JP2007017283 A JP 2007017283A JP 2007017283 A JP2007017283 A JP 2007017283A JP 2008184633 A JP2008184633 A JP 2008184633A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- plating
- metal foil
- foil
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Fuses (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
本発明は、金属箔の表面処理方法に関し、特にリセッタブルフューズ用材料として好適な金属箔の表面処理方法に関するものである。 The present invention relates to a metal foil surface treatment method, and more particularly to a metal foil surface treatment method suitable as a resettable fuse material.
小型電子機器の普及と共に充電式の電池であるリチュウムイオン二次電池の普及が近年急速に伸びており、ノートブック型パソコンや携帯電話機にはその搭載が不可欠なものとなっている。そしてリチュウムイオン二次電池の過充電防止用の保護部品としてのリセッタブルフューズ(以後単に、フューズと記す)も必要となっており、しかもその搭載は現在不可欠な部品の位置づけとなっている。このフューズはまた、電子回路基板における過電流過電圧防止のための回路保護用にも複数個使用され、最近ではUSBジャック部分にも組み込まれる程の電子回路専用と言っても過言ではない用途に使用されているフューズである。
このフューズの構成は過電流過電圧が印加された場合に該フューズを構成する上下の導電性金属間に挟まれた導電性樹脂が絶縁樹脂に変化して回路を遮断する特性を利用したもので、過電流過電圧が解消されると再び回路は通電状態に復帰するので、半永久的に回路を保護することが可能な部品である。
With the spread of small electronic devices, lithium ion secondary batteries, which are rechargeable batteries, have grown rapidly in recent years, and their installation is indispensable for notebook computers and mobile phones. A resettable fuse (hereinafter simply referred to as a fuse) is also required as a protective component for preventing overcharge of a lithium ion secondary battery, and its mounting is currently positioned as an indispensable component. This fuse is also used for circuit protection to prevent overcurrent overvoltage in electronic circuit boards, and it is used for applications that are not exaggerated even if it is dedicated to electronic circuits that are recently incorporated in the USB jack part. It is a fuse that has been.
The structure of this fuse utilizes the characteristic that when an overcurrent overvoltage is applied, the conductive resin sandwiched between the upper and lower conductive metals constituting the fuse changes to an insulating resin and shuts off the circuit. When the overcurrent overvoltage is eliminated, the circuit returns to the energized state again, so that the circuit can be semipermanently protected.
近年リチュウムイオン二次電池の用途もHEV車への搭載を前提にした高容量タイプが開発され安全性にも一層の配慮が必要となってきている。また民生用途のノートブック型パソコンや携帯電話分野に於いても情報処理速度と回路幅の細線化に伴い、該回路に過電流過電圧が印加される場合も想定されることから従来以上の高品質のフューズが必要になってきている。 In recent years, the use of lithium ion secondary batteries has been developed for high capacity types on the premise of being mounted on HEV vehicles, and further consideration is required for safety. Also in the field of notebook PCs and mobile phones for consumer use, it is assumed that overcurrent overvoltage may be applied to the circuit as the information processing speed and circuit width become thinner. The fuse is becoming necessary.
従来、フューズを構成する導電性金属材としては、30〜50μm程度の電解銅箔が用いられ、この電解銅箔と導電性および絶縁性の両特性を有する機能樹脂(以後単に機能樹脂と記す)との高温プレス成型時の密着性を維持するために、機能樹脂と接着する銅箔の密着面側は銅の表面が露出しない程度までにニッケル粗化処理を施したものが採用されている。ニッケルが粗化処理金属として選択される理由は、耐熱性に優れるばかりでなく機能樹脂との化学的な密着性に相性がよいことも関係している。 Conventionally, as the conductive metal material constituting the fuse, an electrolytic copper foil of about 30 to 50 μm is used, and this electrolytic copper foil and a functional resin having both conductive and insulating properties (hereinafter simply referred to as functional resin). In order to maintain the adhesion at the time of high-temperature press molding, a copper foil that has been subjected to a nickel roughening treatment to the extent that the copper surface is not exposed is employed on the adhesion surface side of the copper foil adhered to the functional resin. The reason why nickel is selected as a roughened metal is related not only to excellent heat resistance but also to good compatibility with chemical adhesion to functional resins.
このようにニッケル粗化処理を施した銅箔をフューズ部材として採用し、近年の出力アップが図られる回路を想定した過電流過電圧に対応し得るフューズの設計をした場合、銅箔の厚みをアップさせることが最もコスト的に無難な策ではあるが、設計回路の軽薄短小の要求に対してはそぐわないものとなる。 Copper foil with nickel roughening treatment is used as a fuse member, and when designing a fuse that can handle overcurrent overvoltages assuming circuits that can increase output in recent years, the thickness of the copper foil is increased. Although it is the safest measure in terms of cost, it does not meet the requirements of design circuits for lightness, thinness, and smallness.
近年の出力がアップした回路の保護部品としてのフューズを、銅箔の厚みをアップさせることなく過大な過電流過電圧に対応し得る材料として、相応の厚みのニッケル箔を用いる提案、銅箔の樹脂と接合する面に相応の厚さのニッケル粗化処理層を公知の浴組成を用いてニッケルの健全なヤケメッキにより施したもので代替対応する提案が既になされている。しかし、ニッケル金属は高価であるため、材料費のコストが高くなるばかりでなく、ニッケル箔は、ロールからロールへの連続生産工程において、その物性の面で取り扱いが難しいとの問題点が指摘されている。一方、銅箔表面にニッケルを厚くメッキする方法は、ニッケル粗化処理をヤケメッキとニッケル平滑メッキとの組み合わせで施しているが、健全なニッケルのヤケメッキは公知の浴組成を用いた場合には、その通電する電流密度は大きな値を必要とすることから電流消費量が大きく、メッキ処理が高価となるとの問題点が指摘されている。
そのため、ハンドリング性と経済性とを備え、ヒユーズ材料としての要求特性を満足する金属材料が求められていた。
Proposal to use nickel foil with appropriate thickness as a material that can cope with excessive overcurrent overvoltage without increasing the thickness of copper foil as a fuse for circuit protection components with increased output in recent years, copper foil resin A proposal has already been made to replace the nickel roughening layer having a suitable thickness on the surface to be bonded to the surface by applying a healthy burnt nickel plating using a known bath composition. However, since nickel metal is expensive, not only is the material cost high, but it is pointed out that nickel foil is difficult to handle in terms of its physical properties in the continuous production process from roll to roll. ing. On the other hand, the method of plating nickel thickly on the copper foil surface is performed by a combination of nickel roughening and nickel smooth plating, but when using a known bath composition for healthy nickel burn plating, It has been pointed out that the current density for energization requires a large value, so that the current consumption is large and the plating process is expensive.
Therefore, there has been a demand for a metal material that has handling properties and economy and satisfies the required characteristics as a fuse material.
本発明はかかる従来の問題点を解消し、製造工程が容易で、コストを低減でき、フューズ材料として好適な金属箔を提供することを目的に、ハンドリング性に富む市販の金属箔の内から圧延または電解により製造製箔されたアルミ箔、銅箔、ステンレス箔、鉄箔を選び、その少なくとも一方の面に下地となる金属箔が十分に覆われる程度に先ずニッケル平滑メッキを施し、次に該表面にニッケル粗化処理を経済的に優れた工法により可能とするニッケルメッキ浴組成条件の検討を行い、本発明を完成した。 The present invention eliminates the above-mentioned conventional problems, facilitates the manufacturing process, reduces costs, and provides a metal foil suitable as a fuse material. Or choose aluminum foil, copper foil, stainless steel foil, iron foil manufactured and produced by electrolysis, first apply nickel smooth plating so that at least one of the surfaces is sufficiently covered with the underlying metal foil, The present invention was completed by examining nickel plating bath composition conditions that enable nickel roughening treatment on the surface by an economically superior method.
本発明の金属箔の表面処理方法は、金属箔の少なくとも一方の面に、陰極電解ニッケルメッキ処理を施してニッケル平滑メッキ層を設け、該ニッケル平滑メッキ層の表面にニッケル粗化処理を施して微細ニッケル粒子層を設けることを特徴とする。 In the surface treatment method for a metal foil of the present invention, at least one surface of the metal foil is subjected to a cathodic electrolytic nickel plating treatment to provide a nickel smooth plating layer, and the nickel smooth plating layer is subjected to a nickel roughening treatment. A fine nickel particle layer is provided.
前記金属箔は、圧延または電解により製造製箔されたアルミ箔、銅箔、ステンレス箔、鉄箔の何れかであることが好ましい。 It is preferable that the metal foil is any one of an aluminum foil, a copper foil, a stainless steel foil, and an iron foil manufactured and manufactured by rolling or electrolysis.
前記ニッケル粗化処理は、硫酸浴にニッケル化合物が溶解され、更に添加金属として微量の銅、クロム、鉄の少なくとも一種類が添加されている電解浴で電解処理することが好ましく、前記添加金属の添加量は、硫酸に溶解した金属ニッケル量の1/10〜1/20の範囲であることが好ましい。
前記微細ニッケル粒子層を金属箔表面により強固に固定するために、前記微細ニッケル粒子層の表面に陰極電解ニッケルメッキ処理を施してニッケルカプセルメッキ層を設けることが好ましい。
The nickel roughening treatment is preferably performed in an electrolytic bath in which a nickel compound is dissolved in a sulfuric acid bath and at least one kind of a small amount of copper, chromium and iron is added as an additional metal. The addition amount is preferably in the range of 1/10 to 1/20 of the amount of metallic nickel dissolved in sulfuric acid.
In order to more firmly fix the fine nickel particle layer on the surface of the metal foil, it is preferable to provide a nickel capsule plating layer by performing a cathodic electrolytic nickel plating process on the surface of the fine nickel particle layer.
本発明によれば、製造工程が容易で、コストを低減でき、フューズ材料として好適な金属箔の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, a manufacturing process is easy, cost can be reduced, and the manufacturing method of metal foil suitable as a fuse material can be provided.
以下、本発明をその実施形態により詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments thereof.
本発明において、フーズ用金属箔としては圧延製箔されたアルミ箔、銅箔、ステンレス箔、鉄箔または電解銅箔(以下、これらの箔を区別する必要がないときは単に金属箔と言うことがある)を採用することができる。これら金属箔にニッケル平滑メッキを施し、該ニッケル平滑メッキ層の表面にニッケル粗化処理を施し、微細ニッケル粒子層を形成する。 In the present invention, the metal foil for foods is a rolled foil made aluminum foil, copper foil, stainless steel foil, iron foil or electrolytic copper foil (hereinafter referred to simply as metal foil when it is not necessary to distinguish between these foils) Can be adopted). These metal foils are subjected to nickel smooth plating, and nickel roughening treatment is applied to the surface of the nickel smooth plating layer to form a fine nickel particle layer.
前記各金属箔表面へのニッケル粗化処理条件はヤケメッキ処理で行う。しかし、量産を前提とした公知のニッケルメッキ浴組成を用いた普通浴やワット浴を用いてヤケメッキを生じさせる電流密度条件は、大きな値となってしまいメッキ処理上でコスト高になる。
通常ヤケメッキが開始される電流条件は限界電流密度近傍である。この限界電流密度は電解浴の濃度条件により決まってくる。即ち、電解浴中のニッケル濃度を下げることで限界電流密度を容易にさげることができる。しかし、電解浴中のニッケル濃度を下げることは、工業的な量産設備においては電解浴の濃度管理が繁多になるばかりか、健全なヤケメッキが施せる電流範囲が狭くなることから、処理後の表面形状の均一性にも欠けるという問題点を含んでいる。
Nickel roughening treatment conditions on the surface of each metal foil are performed by burnt plating. However, the current density condition that causes burn-off plating using a normal bath or a watt bath using a known nickel plating bath composition premised on mass production becomes a large value, resulting in high cost in the plating process.
Normally, the current condition for starting the burnt plating is near the limit current density. This limit current density is determined by the concentration condition of the electrolytic bath. That is, the limiting current density can be easily reduced by reducing the nickel concentration in the electrolytic bath. However, reducing the nickel concentration in the electrolytic bath not only increases the concentration control of the electrolytic bath in industrial mass production facilities, but also reduces the current range that can be used for healthy burnt plating. The problem of lacking in uniformity is also included.
そこで、本発明は先ず、ヤケメッキの電流条件を低域しても容易に健全なヤケメッキが達成される工法を求めることから研究を進めた。
本発明者等は、50〜70μm厚みを有する前記各金属箔の少なくとも一方の表面に平滑なニッケルメッキを施す手法として、公知のニッケルメッキ浴である普通浴またはワット浴を用いて、該金属箔の表面が十分に被覆されるまでのニッケル平滑メッキ処理を行った。
ニッケル平滑メッキを施す圧延金属箔の殆どの表面粗度は、JISB06012に規定される測定方法で測定したRzが1μm以下であるために、該圧延金属箔の表面が十分にニッケルで被覆されるまでに施すニッケル平滑メッキ厚さは1.5μm程度であることを確認した。
In view of this, the present invention has been studied from the viewpoint of finding a method that can easily achieve sound burn plating even when the current condition of burn plating is low.
The present inventors have used a known nickel plating bath, a normal bath or a watt bath, as a method for performing smooth nickel plating on at least one surface of each metal foil having a thickness of 50 to 70 μm. The nickel smooth plating process was performed until the surface was sufficiently covered.
Since most of the surface roughness of the rolled metal foil subjected to nickel smooth plating is 1 μm or less as measured by the measuring method specified in JISB06012, the surface of the rolled metal foil is sufficiently covered with nickel. It was confirmed that the nickel smooth plating thickness applied to was about 1.5 μm.
一方、電解銅箔の場合には、次工程の密着強度を得る目的から製箔時の液面側に該ニッケル平滑メッキ層を施した。50〜70μm厚みの電解銅箔の一般的な製箔直後の表面粗度Rzは3.5〜7.5μm程度であり、圧延銅箔より粗度が粗いが、この電解銅箔表面をニッケル平滑メッキにて完全に被覆する厚さは圧延銅箔と大差なく、1.5〜3.5μm厚さを施すことで充分であることを確認した。
上記の確認実験で、対象とした金属箔へのニッケル平滑メッキ層の厚みを1.5μm以上とすれば、圧延、電解いずれの製法で製箔した金属箔でも、その表面がニッケルメッキで十分に被覆されることを確認した。
On the other hand, in the case of electrolytic copper foil, the nickel smooth plating layer was applied on the liquid surface side during the foil production for the purpose of obtaining the adhesion strength in the next step. The surface roughness Rz of an electrolytic copper foil having a thickness of 50 to 70 μm immediately after the production of the foil is about 3.5 to 7.5 μm, and the roughness is rougher than that of the rolled copper foil. The thickness completely covered by plating was not much different from that of rolled copper foil, and it was confirmed that a thickness of 1.5 to 3.5 μm was sufficient.
In the above confirmation experiment, if the thickness of the nickel smooth plating layer on the target metal foil is 1.5 μm or more, the surface of the metal foil made by either rolling or electrolysis is sufficiently plated with nickel. It was confirmed that it was coated.
平滑メッキをする浴組成には、ニッケル化合物よりニッケルとして35〜50g/l、ホウ酸(H3BO3として)を25g/lないしそれ以上飽和程度までとし、浴温条件を30〜50℃、pHを2.5〜4.0に調整した浴を用いた。
ニッケル化合物としては硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケルの何れでも良いが、pHのコントロールと残留応力の関係から硫酸化合物を用いるのが好ましい。
The bath composition for smooth plating is 35-50 g / l as nickel from nickel compounds, boric acid (as H 3 BO 3 ) is 25 g / l or more to a saturation level, and the bath temperature condition is 30-50 ° C. A bath with pH adjusted to 2.5-4.0 was used.
The nickel compound may be any of nickel sulfate, nickel chloride, and nickel sulfamate, but it is preferable to use a sulfate compound from the relationship between pH control and residual stress.
本発明においては、ニッケル平滑メッキ層表面にヤケメッキによりニッケル粗化処理を施す。
従来、このニッケル粗化処理工程は、ニッケルとして15〜25g/l程度が溶解されたニッケル浴を用いるのが、工業生産的にもコスト的にも適しており、更に効率よく健全なニッケルヤケメッキを行うために、浴温を上げ、pHをコントロールし、添加薬剤に硫酸アンモニュウムを加えることなどの手法が一般的に用いられていた。しかし、この場合のヤケメッキの開始される電流密度は、概して45〜55A/dm2程度を必要とし、これは製造設備上で電圧と電流容量の大きな整流器を必要とする。
In the present invention, the nickel smooth plating layer surface is subjected to nickel roughening by burnt plating.
Conventionally, in this nickel roughening treatment step, it is suitable for industrial production and cost to use a nickel bath in which about 15 to 25 g / l is dissolved as nickel. In general, techniques such as increasing the bath temperature, controlling the pH, and adding ammonium sulfate to the additive are generally used. However, in this case, the current density at which burning plating is started generally requires about 45 to 55 A / dm 2 , which requires a rectifier having a large voltage and current capacity on the manufacturing facility.
本発明は、上記浴組成条件を変えることなくヤケメッキの開始される電流値(電流密度)を低くすべく鋭意検討を重ねた結果、ニッケル濃度を変えることなく添加金属として硫酸化合物である硫酸銅、硫酸クロム、硫酸鉄の少なくとも一種類の金属を、またはこれらの内の複数化合物をニッケル粗化処理浴中に添加することで、より好ましくは、金属ニッケル濃度の1/10〜1/20の範囲で溶解添加することにより、ヤケメッキを開始させる電流値を5〜15A/dm2の範囲で引き下げることを可能とした。この電解浴でニッケル粗化処理した表面の粗化形状は、従来の処理方法による場合と略同等であり、ヤケメッキでの特徴である樹枝状の微結晶粒であり、該微結晶粒には添加金属が著しく析出することも無く完全にニッケルメッキで覆われており、実用上では何ら不具合をもたらすことはなかった。 The present invention, as a result of intensive studies to reduce the current value (current density) to start burning plating without changing the bath composition conditions, as a result, copper sulfate which is a sulfate compound as an additive metal without changing the nickel concentration, By adding at least one kind of metal such as chromium sulfate and iron sulfate, or a plurality of compounds thereof, to the nickel roughening treatment bath, more preferably in the range of 1/10 to 1/20 of the nickel metal concentration. It was possible to lower the current value for starting the burnt plating in the range of 5 to 15 A / dm 2 by dissolving and adding at. The roughening shape of the nickel-roughened surface in this electrolytic bath is substantially the same as in the case of the conventional processing method, and it is dendritic microcrystalline grains that are characteristic of burnt plating, and is added to the microcrystalline grains. The metal was completely covered with nickel plating without any significant precipitation, and there was no problem in practical use.
本発明は、導電性のある金属箔の特には35μm厚さ以上の金属箔の表面に数μmのニッケルを平滑メッキ処理した後に、微細粒状のニッケル粗化処理をしたもので、フューズ用材料として好適に用いることができる金属箔である。 In the present invention, a conductive metal foil, in particular, a surface of a metal foil having a thickness of 35 μm or more is subjected to a smooth plating treatment with nickel of several μm, followed by a fine grained nickel roughening treatment. A metal foil that can be suitably used.
本発明は、金属箔の少なくとも一方の面に陰極電解ニッケルメッキ処理を施し、更に該箔のニッケルメッキ表面に微細なニッケル粗化処理を施す方法であり、その金属箔が圧延または電解により製造製箔されたアルミ箔、銅箔、ステンレス箔、鉄箔の何れかである。選定された金属箔の表面に微細粒子のニッケル粗化処理を施すために用いる電解浴は、硫酸酸性浴にニッケル化合物が溶解され、更に添加金属として微量の銅、クロム、鉄の少なくとも一種類以上が添加され、好ましくは添加金属の添加量が、硫酸に溶解した金属ニッケル量の1/10〜1/20の範囲にすることで、健全なニッケル粗化処理が達成されるばかりでなく、該処理に必要とする電流値を引き下げることを可能とした。 The present invention is a method of subjecting at least one surface of a metal foil to a cathodic electrolytic nickel plating treatment and further subjecting the nickel plating surface of the foil to a fine nickel roughening treatment, and the metal foil is manufactured by rolling or electrolysis. It is one of foiled aluminum foil, copper foil, stainless steel foil, and iron foil. The electrolytic bath used for the nickel roughening treatment of fine particles on the surface of the selected metal foil is such that a nickel compound is dissolved in a sulfuric acid acid bath, and at least one kind of a small amount of copper, chromium, iron as an additive metal. Is added, and preferably the amount of added metal is in the range of 1/10 to 1/20 of the amount of metallic nickel dissolved in sulfuric acid, whereby not only a sound nickel roughening treatment is achieved, but also It was possible to reduce the current value required for processing.
なお、圧延金属箔にニッケル平滑メッキを施す場合、圧延金属箔表面に残留する圧延油を除去する脱脂処理が必要となる場合がある。またアルミ箔では脱脂後の表面をアルマイト処理する必要もあり処理工程的には工数を要する。
一方、電解銅箔は圧延油を使用しないので脱脂処理の必要性がなく、かつ、製造コスト、取り扱いやすさの点でも優れるので、以下、本発明の表面処理方法を電解銅箔に施す実施形態につき説明する。しかし、前記検討材料(金属箔)の全てに本発明が適用でき、フューズ材料として好適に採用できることは実験により確認しているが、その詳細については記載を省略する。
In addition, when nickel smooth plating is given to rolled metal foil, the degreasing process which removes the rolling oil which remains on the rolled metal foil surface may be needed. Moreover, in the case of an aluminum foil, it is necessary to anodize the surface after degreasing, and man-hours are required for the treatment process.
On the other hand, since the electrolytic copper foil does not use rolling oil, there is no need for degreasing treatment, and it is excellent in terms of manufacturing cost and ease of handling. I will explain. However, although it has been confirmed by experiments that the present invention can be applied to all of the study materials (metal foils) and can be suitably used as a fuse material, the details thereof are omitted.
以下本発明の一実施形態につき説明する。
金属箔の少なくとも一方の面に陰極電解ニッケルメッキ処理を施す浴組成としては、硫酸ニッケル化合物をニッケルとして40g/l、ホウ酸(H3BO3として)25g/lを溶解し、
該浴のpHを希硫酸により2.5に調整し、浴温を35℃とした。この浴の条件で電流密度を10〜15A/dm2、通電時間を30〜60秒に設定することで、健全なニッケル平滑メッキ層を得ることができた。
Hereinafter, an embodiment of the present invention will be described.
As a bath composition for subjecting at least one surface of the metal foil to cathodic electrolysis nickel plating, 40 g / l of nickel sulfate compound as nickel and 25 g / l of boric acid (as H 3 BO 3 ) are dissolved,
The pH of the bath was adjusted to 2.5 with dilute sulfuric acid, and the bath temperature was 35 ° C. A healthy nickel smooth plating layer could be obtained by setting the current density to 10 to 15 A / dm 2 and the energization time to 30 to 60 seconds under the bath conditions.
次に該ニッケル平滑メッキ層の表面に微結晶粒のニッケル粗化処理を施す浴組成として、硫酸ニッケル化合物をニッケルとして18±2g/l、硫酸アンモニウム20g/l、添加金属化合物として硫酸銅化合物を銅として1.5±0.5g/lを溶解し、浴のpHを希硫酸により3.0〜4.0に調整し、浴温を30℃前後とした。この浴の条件で電流密度を35〜40A/dm2、通電時間を15〜20秒に設定することで、健全なニッケルヤケメッキ処理ができ、微細ニッケル粒子層を形成することができた。
なお、この浴に添加金属である銅を添加しない場合には、電流密度を45〜55A/dm2と大きく上げなければ同様な健全なるニッケルヤケメッキ処理を施すことができなかった。
Next, as a bath composition for subjecting the nickel smooth plating layer to a nickel roughening treatment of fine crystal grains, nickel sulfate compound as nickel is 18 ± 2 g / l, ammonium sulfate is 20 g / l, and copper sulfate compound is added as an additive metal compound to copper. 1.5 ± 0.5 g / l was dissolved, and the pH of the bath was adjusted to 3.0 to 4.0 with dilute sulfuric acid, and the bath temperature was set to about 30 ° C. By setting the current density to 35 to 40 A / dm 2 and the energization time to 15 to 20 seconds under the conditions of this bath, a sound nickel burnt plating treatment could be performed and a fine nickel particle layer could be formed.
In addition, when copper which is an additional metal was not added to this bath, the same healthy nickel burn plating treatment could not be performed unless the current density was increased to 45 to 55 A / dm 2 .
前記ニッケル粗化処理により微細ニッケル粒子層が施された金属箔表面は、樹枝状に付着したニッケル微細粒子であるために、該微細粒子が容易に脱落してしまう危険性がある。このためニッケル平滑メッキ工程で用いた浴組成で前記微細ニッケル粒子層表面を微厚なニッケル平滑メッキ(ニッケルカプセルメッキ)で適宜処理することが好ましい。またその処理表面に市販のシランカップリング剤を適宜濃度にて処理することにより、導電性樹脂との密着性の向上が図れる。特にアミノ系シラン、エポキシ系シランによるシランカップリング処理は効果が顕著である。 Since the surface of the metal foil to which the fine nickel particle layer has been applied by the nickel roughening treatment is nickel fine particles adhering in a dendritic shape, there is a risk that the fine particles will easily fall off. For this reason, it is preferable to appropriately treat the surface of the fine nickel particle layer with a fine nickel smooth plating (nickel capsule plating) with the bath composition used in the nickel smooth plating step. Further, by treating the treated surface with a commercially available silane coupling agent at an appropriate concentration, the adhesion with the conductive resin can be improved. In particular, the silane coupling treatment with amino silane and epoxy silane is remarkable.
以下、本発明を実施例で具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.
[実施例1]
電解製造方法にて製箔した公称厚さ70μmの電解銅箔の電解製箔時に液面側であったマット面側に、下記に示す浴組成および陰極電解メッキ条件により2.0μm相当厚さのニッケル平滑メッキ処理を施した。
[ニッケル平滑メッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 40g/l
ホウ酸 25g/l
pH 2.5
浴温 35℃
[陰極電解条件]
陰極電解電流密度 10A/dm2
処理時間 50秒
[Example 1]
On the mat surface side, which was the liquid surface side when electrolytic copper foil having a nominal thickness of 70 μm manufactured by the electrolytic manufacturing method was applied, the thickness corresponding to 2.0 μm was obtained depending on the bath composition and cathodic electrolytic plating conditions shown below. Nickel smooth plating treatment was performed.
[Nickel smooth plating bath composition]
Nickel sulfate compound 40g / l as nickel
Boric acid 25g / l
pH 2.5
Bath temperature 35 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 10A / dm 2
Processing time 50 seconds
続いて、ニッケル平滑メッキされた処理面に下記に示す浴組成および陰極電解メッキ条件によりニッケルヤケメッキ処理を施した。
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸銅化合物 銅として 1.5g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 38A/dm2
処理時間 15秒
この場合のヤケメッキの程度は、限界電流密度の近傍を用いるために微細なニッケル金属粒が脱落しやすい状態にあるので、次いで先のニッケル平滑メッキ浴組成を用いて容易に脱落しないように、電流密度10A/dm2で20秒間のニッケルカプセルメッキを施した。
得られた表面処理銅箔につき電流条件の改善と樹脂基板との密着性につき評価した。評価条件は後述する。評価結果は表−1に記載した。
Subsequently, a nickel burn plating treatment was performed on the treated surface plated with nickel smooth according to the bath composition and cathodic electrolytic plating conditions described below.
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Copper sulfate compound As copper, 1.5 g / l
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 38A / dm 2
Processing time 15 seconds Since the degree of burnt plating in this case is near the limit current density, fine nickel metal particles are in a state of being easily dropped off, and then the nickel smooth plating bath composition is not easily dropped off. As described above, nickel capsule plating was performed at a current density of 10 A / dm 2 for 20 seconds.
The obtained surface-treated copper foil was evaluated for improvement in current conditions and adhesion to the resin substrate. Evaluation conditions will be described later. The evaluation results are shown in Table-1.
[実施例2]
実施例1で使用した電解銅箔を下記条件でニッケルヤケメッキ処理を施した以外は、実施例1に記載のニッケル平滑メッキ処理およびニッケルカプセルメッキ処理を同様に施した。
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸銅化合物 銅として 1.0g/l
硫酸鉄化合物 鉄として 1.0g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 38A/dm2
処理時間 15秒
得られた表面処理銅箔につき実施例1と同じ評価を行い、その評価結果は表−1に併記した。
[Example 2]
The nickel smooth plating process and the nickel capsule plating process described in Example 1 were performed in the same manner except that the electrolytic copper foil used in Example 1 was subjected to nickel burn plating treatment under the following conditions.
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Copper sulfate compound 1.0 g / l as copper
Iron sulfate compound 1.0 g / l as iron
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 38A / dm 2
Treatment time 15 seconds The obtained surface-treated copper foil was subjected to the same evaluation as in Example 1, and the evaluation results are also shown in Table 1.
[実施例3]
実施例1で使用した電解銅箔を下記条件でニッケルヤケメッキ処理を施した以外は、実施例1に記載のニッケル平滑メッキ処理およびニッケルカプセルメッキ処理を同様に施した。
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸銅化合物 銅として 0.5g/l
硫酸鉄化合物 鉄として 0.5g/l
硫酸クロム合物 クロムとして 0.5g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 38A/dm2
処理時間 15秒
得られた表面処理銅箔につき実施例1と同じ評価を行い、その評価結果は表−1に併記した。
[Example 3]
The nickel smooth plating process and the nickel capsule plating process described in Example 1 were performed in the same manner except that the electrolytic copper foil used in Example 1 was subjected to nickel burn plating treatment under the following conditions.
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Copper sulfate compound As copper, 0.5g / l
Iron sulfate compound As iron 0.5g / l
Chromium sulfate compound 0.5 g / l as chromium
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 38A / dm 2
Treatment time 15 seconds The obtained surface-treated copper foil was subjected to the same evaluation as in Example 1, and the evaluation results are also shown in Table 1.
[実施例4]
実施例1で使用した電解銅箔を25μmの圧延銅箔に代えて下記条件でニッケルヤケメッキ処理を施した以外は、実施例1に記載のニッケル平滑メッキ処理およびニッケルカプセルメッキ処理を同様に施した。
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸銅化合物 銅として 1.5g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 35A/dm2
処理時間 8秒
得られた表面処理銅箔につき実施例1と同じ評価を行い、その評価結果は表−1に併記した。
[Example 4]
The nickel smooth plating treatment and nickel capsule plating treatment described in Example 1 were similarly performed except that the electrolytic copper foil used in Example 1 was replaced with a rolled copper foil of 25 μm and subjected to nickel burn plating under the following conditions. did.
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Copper sulfate compound As copper, 1.5 g / l
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 35A / dm 2
Treatment time 8 seconds The obtained surface-treated copper foil was evaluated in the same manner as in Example 1, and the evaluation results are also shown in Table 1.
[比較例1]
実施例1で使用した電解銅箔を下記条件でニッケルヤケメッキ処理を施した以外は、実施例1に記載のニッケル平滑メッキ処理およびニッケルカプセルメッキ処理を同様に施した。
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 38A/dm2
処理時間 15秒
得られた表面処理銅箔につき実施例1と同じ評価を行い、その評価結果は表−1に併記した。
[Comparative Example 1]
The nickel smooth plating process and the nickel capsule plating process described in Example 1 were performed in the same manner except that the electrolytic copper foil used in Example 1 was subjected to nickel burn plating treatment under the following conditions.
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 38A / dm 2
Treatment time 15 seconds The obtained surface-treated copper foil was subjected to the same evaluation as in Example 1, and the evaluation results are also shown in Table 1.
[比較例2]
実施例1で使用した電解銅箔を下記の陰極電解電流密度に変更した条件でニッケルヤケメッキ処理を施した以外は、実施例1に記載のニッケル平滑メッキ処理およびニッケルカプセルメッキ処理を同様に施した。
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 46A/dm2
処理時間 15秒
得られた表面処理銅箔につき実施例1と同じ評価を行い、その評価結果は表−1に併記した。
[Comparative Example 2]
The nickel smooth plating process and the nickel capsule plating process described in Example 1 were similarly performed except that the electrolytic copper foil used in Example 1 was subjected to nickel burn plating under the conditions where the cathode electrolysis current density was changed to the following. did.
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 46A / dm 2
Treatment time 15 seconds The obtained surface-treated copper foil was subjected to the same evaluation as in Example 1, and the evaluation results are also shown in Table 1.
[比較例3]
実施例1で使用した電解銅箔を25μmの圧延銅箔に代え,更に下記電流条件でニッケルヤケメッキ処理を施した以外は、実施例1に記載のニッケル平滑メッキ処理およびニッケルカプセルメッキ処理を同様に施した。
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 35A/dm2
処理時間 8秒
得られた表面処理銅箔につき実施例1と同じ評価を行い、その評価結果は表−1に併記した。
[Comparative Example 3]
The nickel smooth plating process and the nickel capsule plating process described in Example 1 were the same except that the electrolytic copper foil used in Example 1 was replaced with a rolled copper foil of 25 μm and nickel burn plating was performed under the following current conditions. I gave it.
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 35A / dm 2
Treatment time 8 seconds The obtained surface-treated copper foil was evaluated in the same manner as in Example 1, and the evaluation results are also shown in Table 1.
[比較例4]
実施例1で使用した電解銅箔を25μmの圧延銅箔に代え,更に下記電流条件でニッケルヤケメッキ処理を施した以外は、実施例1に記載のニッケル平滑メッキ処理およびニッケルカプセルメッキ処理を同様に施した
[ニッケルヤケメッキ浴組成]
硫酸ニッケル化合物 ニッケルとして 20g/l
硫酸アンモニュウム 20g/l
pH 3.5
浴温 30℃
[陰極電解条件]
陰極電解電流密度 44A/dm2
処理時間 8秒
得られた表面処理銅箔につき実施例1と同じ評価を行い、その評価結果は表−1に併記した。
[Comparative Example 4]
The nickel smooth plating process and the nickel capsule plating process described in Example 1 were the same except that the electrolytic copper foil used in Example 1 was replaced with a rolled copper foil of 25 μm and nickel burn plating was performed under the following current conditions. Applied to
[Nickel burn plating bath composition]
Nickel sulfate compound 20g / l as nickel
Ammonium sulfate 20g / l
pH 3.5
Bath temperature 30 ° C
[Cathode electrolysis conditions]
Cathodic electrolysis current density 44A / dm 2
Treatment time 8 seconds The obtained surface-treated copper foil was evaluated in the same manner as in Example 1, and the evaluation results are also shown in Table 1.
[評価項目]
1.ニッケルヤケメッキが施せる電流条件;
公知の浴組成(比較例−2)をベースとした硫酸酸性のニッケル浴組成でのニッケルヤケメッキ処理が開始される電流密度を100として電流密度の増減値を指数値に換算した。
[Evaluation item]
1. Current conditions for nickel burnt plating;
The increase / decrease value of the current density was converted into an index value with the current density at which nickel burn plating treatment was started in a sulfuric acid acidic nickel bath composition based on a known bath composition (Comparative Example-2) as 100.
2.密着強度;
実施例1〜4、比較例1〜4で得られた表面処理銅箔と機能樹脂との密着性の程度を評価する手法として、該表面処理銅箔と市販のエポキシ樹脂基材(FR−4基材)とを積層温度180℃、面圧15kg/cm2の加熱加圧条件で60分プレス後、引き剥がし強度測定器により10mm幅での表面処理銅箔とエポキシ樹脂との密着強度を測定した。
2. Adhesion strength;
As a method for evaluating the degree of adhesion between the surface-treated copper foil obtained in Examples 1 to 4 and Comparative Examples 1 to 4 and the functional resin, the surface-treated copper foil and a commercially available epoxy resin substrate (FR-4) The substrate is pressed for 60 minutes under a heating and pressing condition of a lamination temperature of 180 ° C. and a surface pressure of 15 kg / cm 2 , and then the adhesion strength between the surface-treated copper foil and the epoxy resin with a 10 mm width is measured by a peel strength measuring instrument. did.
上記実施例によれば、ニッケルヤケメッキ浴に添加金属として、銅、鉄、クロムの少なくとも一種類の金属をニッケル浴のニッケル濃度の1/10〜1/20を添加することにより、限界電流密度電流値を17%引き下げることができた。各実施例の条件で粗化処理されたものは、健全なヤケメッキが達成されており、エポキシ樹脂との密着強度は満足の行くものであった。また表−1には示していないが、ニッケル粗化処理後の表面に適宜な濃度のシランカップリング剤を選択、被着することで、好ましくはエポキシシランカップリング剤で表面処理することで、FR−4基材との密着強度を更に0.5〜1.5kN/m程度向上させることができた。 According to the above-described embodiment, the limiting current density is obtained by adding 1/10 to 1/20 of the nickel concentration of the nickel bath to at least one kind of metal of copper, iron, and chromium as the additive metal to the nickel burn plating bath. The current value could be reduced by 17%. Those subjected to the roughening treatment under the conditions of each Example achieved satisfactory burn-off plating, and the adhesion strength with the epoxy resin was satisfactory. Although not shown in Table 1, by selecting and depositing a silane coupling agent having an appropriate concentration on the surface after the nickel roughening treatment, preferably by surface treatment with an epoxy silane coupling agent, The adhesion strength with the FR-4 base material could be further improved by about 0.5 to 1.5 kN / m.
上述したように本発明のニッケル粗化処理方法によれば、公知のニッケルメッキ浴の組成を大幅に変更することなく、ニッケルヤケメッキ電流値を低くすることができ、大幅な陰極電解処理のコスト低減を達成できた。 As described above, according to the nickel roughening treatment method of the present invention, the nickel burn plating current value can be lowered without significantly changing the composition of the known nickel plating bath, and the cost of the cathodic electrolysis treatment can be greatly reduced. Reduction was achieved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017283A JP4934443B2 (en) | 2007-01-29 | 2007-01-29 | Metal foil surface treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017283A JP4934443B2 (en) | 2007-01-29 | 2007-01-29 | Metal foil surface treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008184633A true JP2008184633A (en) | 2008-08-14 |
JP4934443B2 JP4934443B2 (en) | 2012-05-16 |
Family
ID=39727875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007017283A Active JP4934443B2 (en) | 2007-01-29 | 2007-01-29 | Metal foil surface treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4934443B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101914795A (en) * | 2010-07-30 | 2010-12-15 | 福建师范大学 | Method for controlling diameters of coating grains on nickel-plated aluminum polar ear |
WO2011007704A1 (en) * | 2009-07-14 | 2011-01-20 | 古河電気工業株式会社 | Copper foil with resistive layer, production method therefor, and layered substrate |
JP2013095991A (en) * | 2011-11-04 | 2013-05-20 | Fukuda Metal Foil & Powder Co Ltd | Metal foil with high emissivity |
US9707738B1 (en) | 2016-01-14 | 2017-07-18 | Chang Chun Petrochemical Co., Ltd. | Copper foil and methods of use |
CN110257870A (en) * | 2019-07-27 | 2019-09-20 | 益阳市菲美特新材料有限公司 | A kind of anti-fingerprint corrosion resistant nickel-clad copper band and preparation method thereof |
JP2020145339A (en) * | 2019-03-07 | 2020-09-10 | 住友電工プリントサーキット株式会社 | Wiring board |
KR20210032397A (en) * | 2018-07-19 | 2021-03-24 | 도요 고한 가부시키가이샤 | Artificial nickel plated plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002241989A (en) * | 2000-11-27 | 2002-08-28 | Furukawa Circuit Foil Kk | Metallic composite sheet and laminate for circuit board using the sheet |
JP2004237294A (en) * | 2003-02-04 | 2004-08-26 | Furukawa Techno Research Kk | Copper foil for laser boring |
JP2004238647A (en) * | 2003-02-04 | 2004-08-26 | Furukawa Techno Research Kk | Smoothened copper foil, and production method therefor |
JP2005197205A (en) * | 2003-12-12 | 2005-07-21 | Mitsui Mining & Smelting Co Ltd | Negative electrode current collector for nonaqueous electrolytic solution secondary battery |
-
2007
- 2007-01-29 JP JP2007017283A patent/JP4934443B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002241989A (en) * | 2000-11-27 | 2002-08-28 | Furukawa Circuit Foil Kk | Metallic composite sheet and laminate for circuit board using the sheet |
JP2004237294A (en) * | 2003-02-04 | 2004-08-26 | Furukawa Techno Research Kk | Copper foil for laser boring |
JP2004238647A (en) * | 2003-02-04 | 2004-08-26 | Furukawa Techno Research Kk | Smoothened copper foil, and production method therefor |
JP2005197205A (en) * | 2003-12-12 | 2005-07-21 | Mitsui Mining & Smelting Co Ltd | Negative electrode current collector for nonaqueous electrolytic solution secondary battery |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011007704A1 (en) * | 2009-07-14 | 2011-01-20 | 古河電気工業株式会社 | Copper foil with resistive layer, production method therefor, and layered substrate |
JP2011021216A (en) * | 2009-07-14 | 2011-02-03 | Furukawa Electric Co Ltd:The | Copper foil with resistive layer, production method therefor, and layered substrate |
KR101387907B1 (en) * | 2009-07-14 | 2014-04-23 | 후루카와 덴끼고교 가부시키가이샤 | Copper foil with resistive layer, production method therefor, and layered substrate |
CN101914795A (en) * | 2010-07-30 | 2010-12-15 | 福建师范大学 | Method for controlling diameters of coating grains on nickel-plated aluminum polar ear |
JP2013095991A (en) * | 2011-11-04 | 2013-05-20 | Fukuda Metal Foil & Powder Co Ltd | Metal foil with high emissivity |
JP2017125259A (en) * | 2016-01-14 | 2017-07-20 | 長春石油化學股▲分▼有限公司 | Copper foil and method of application |
US9707738B1 (en) | 2016-01-14 | 2017-07-18 | Chang Chun Petrochemical Co., Ltd. | Copper foil and methods of use |
KR101855811B1 (en) * | 2016-01-14 | 2018-05-09 | 장 춘 페트로케미컬 컴퍼니 리미티드 | Copper foil and methods of use |
KR20210032397A (en) * | 2018-07-19 | 2021-03-24 | 도요 고한 가부시키가이샤 | Artificial nickel plated plate |
KR102684520B1 (en) | 2018-07-19 | 2024-07-11 | 도요 고한 가부시키가이샤 | Harmonized nickel plated plate |
JP2020145339A (en) * | 2019-03-07 | 2020-09-10 | 住友電工プリントサーキット株式会社 | Wiring board |
JP7193133B2 (en) | 2019-03-07 | 2022-12-20 | 住友電工プリントサーキット株式会社 | wiring board |
CN110257870A (en) * | 2019-07-27 | 2019-09-20 | 益阳市菲美特新材料有限公司 | A kind of anti-fingerprint corrosion resistant nickel-clad copper band and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4934443B2 (en) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4934443B2 (en) | Metal foil surface treatment method | |
JP5417458B2 (en) | Copper foil for secondary battery negative electrode current collector | |
TWI704048B (en) | Surface-treated copper foil and copper clad laminate made of it | |
TW201228818A (en) | Surface treated copper foil | |
KR20140041804A (en) | Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector | |
US20120135266A1 (en) | Copper Foil and Method for Producing Same | |
JP3644542B1 (en) | Anode current collector for non-aqueous electrolyte secondary battery | |
JP6582156B1 (en) | Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate and printed wiring board using the electrolytic copper foil | |
KR102378297B1 (en) | Electrodeposited copper foil, current collectors for negative electrode of lithium-ion secondary batteries and lithium-ion secondary batteries | |
JP5752301B2 (en) | Electrolytic copper foil and method for producing the electrolytic copper foil | |
KR102655111B1 (en) | Electrodeposited copper foil with its surfaceprepared, process for producing the same and usethereof | |
JP4324503B2 (en) | Folding resistant copper foil and method for producing the same | |
JP7085394B2 (en) | Laminated electrolytic foil | |
JP5145092B2 (en) | Aluminum material for printed wiring board and method for producing the same | |
JP5075099B2 (en) | Surface-treated copper foil, surface treatment method thereof, and laminated circuit board | |
JP2009215604A (en) | Copper foil and manufacturing method thereof | |
CN102899520A (en) | Rolled copper foil and the method to make it, negative electrode for lithium ion secondary battery using it | |
WO1996025838A1 (en) | Copper foil and high-density multi-layered printed circuit board using the copper foil for inner layer circuit | |
JP2006202635A (en) | Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery | |
CN102939800A (en) | Surface-roughened copper foil and copper-clad laminated substrate | |
CN114929944A (en) | Surface-treated copper foil and method for producing same | |
KR20130028848A (en) | Negative electrode current collecting copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing negative electrode current collecting copper foil for lithium ion secondary battery | |
CN102548202B (en) | Roughly-processed copper foil and manufacture method thereof | |
JP2013069684A (en) | Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery | |
JP4948656B2 (en) | Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080624 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080801 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20090106 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090413 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120220 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4934443 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |