JP2013095991A - Metal foil with high emissivity - Google Patents

Metal foil with high emissivity Download PDF

Info

Publication number
JP2013095991A
JP2013095991A JP2011242032A JP2011242032A JP2013095991A JP 2013095991 A JP2013095991 A JP 2013095991A JP 2011242032 A JP2011242032 A JP 2011242032A JP 2011242032 A JP2011242032 A JP 2011242032A JP 2013095991 A JP2013095991 A JP 2013095991A
Authority
JP
Japan
Prior art keywords
nickel
foil
emissivity
roughened
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011242032A
Other languages
Japanese (ja)
Other versions
JP5898462B2 (en
Inventor
Masato Takami
正人 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2011242032A priority Critical patent/JP5898462B2/en
Publication of JP2013095991A publication Critical patent/JP2013095991A/en
Application granted granted Critical
Publication of JP5898462B2 publication Critical patent/JP5898462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metallic foil for heat dissipation which is excellent in heat dissipation property, thermal conductivity, and flexibility, and applicable for electric, electronic components, and the like.SOLUTION: A base metal of the metallic foil is copper, aluminum, nickel, iron, and stainless steel and at least one side surface thereof is roughened by attaching nickel with sticking property or nickel alloy particles and their aggregate. On the roughened surface, a layer comprising nickel and sulphur or/and phosphorus is coated to obtain a surface-roughened metallic foil having an emissivity of 0.35 or more.

Description

本発明は、電気、電子関連機器における放熱基板用材料、放熱伝導材料としての金属箔に関するものである。   The present invention relates to a heat radiating substrate material and a metal foil as a heat radiating conductive material in electrical and electronic equipment.

金属は通常、熱伝導性が極めて高く、その特徴を活かしてあらゆる放熱手段に使用されているが、一方でその表面については熱放射性が極めて低いという特徴をもつ。たとえば銅は熱伝導率として金属において銀に次いで2番目の元素となるが、放射率は極めて低く、研磨面、光沢面ではおよそ0.02〜0.05である。熱伝導性の良さから放熱基板用としてよく使用されているが、熱放射性が低いためその高熱伝導率性能が十分にいかされていない。アルミニウムにおいても同様で、熱伝導性が非常に高く、一般によく使用されているものの、熱放射率が研磨面、光沢面ではやはり0.02〜0.06と低い。他の金属も同様である。また、表面を少し粗し、半光沢面、艶消し面としたところでもこの放射率にはあまり変化がなく、0.05〜0.1程度である。   Metals usually have a very high thermal conductivity, and are used for all heat dissipation means by taking advantage of their characteristics. On the other hand, the surface has a characteristic of extremely low thermal radiation. For example, copper is the second element in the metal after silver in terms of thermal conductivity, but the emissivity is extremely low, and is about 0.02 to 0.05 on the polished and glossy surfaces. Although it is often used as a heat dissipation board because of its good thermal conductivity, its high thermal conductivity performance is not fully utilized due to its low thermal radiation. The same applies to aluminum, which has a very high thermal conductivity and is commonly used, but its thermal emissivity is still low at 0.02 to 0.06 on the polished and glossy surfaces. The same applies to other metals. Further, even when the surface is slightly roughened to make a semi-glossy surface and a matte surface, the emissivity is not so changed, and is about 0.05 to 0.1.

熱放散性においては最近ではLED基板をはじめとして、パワーモジュール基板、自動車電装用基板、有機EL基板、大電流基板など放熱基板の需要が益々増大してきている。従来からは放熱基板、大電流基板用としてメタルコア基板、メタルベース基板があり、具体的には銅基板、アルミ基板、鉄基板など各種の金属基板がある。   In terms of heat dissipation, the demand for heat dissipation boards such as LED boards, power module boards, automobile electrical boards, organic EL boards, and large current boards has been increasing. Conventionally, there are metal core substrates and metal base substrates for heat dissipation substrates and large current substrates, and specifically, there are various metal substrates such as copper substrates, aluminum substrates, and iron substrates.

特許文献1には10〜500μmのステンレス箔の片面に形成した銅を主成分とする層5〜50μmを設け、絶縁層によって銅箔と接着した金属基板が提案されている。また、特許文献2には銅箔、絶縁層、金属板からなる金属基板においてその金属基板の表面の吸収率(放射率)が0.5以上の酸化膜を設けた、すなわち、5〜100μmの酸化アルミニウム膜をつくるものが提案されている。
特許文献3には、放熱用シートにおいてカーボングラファイトシートの横方向(シート面)には熱伝導が良好で熱拡散が良好であるものの、縦方向(厚さ方向)には熱伝導が極めて低く、問題があるため、カーボングラファイトの上にさらにセラミックフィラシートを重ねるということが提案されている。
Patent Document 1 proposes a metal substrate in which 5 to 50 μm of a copper-based layer formed on one side of a 10 to 500 μm stainless steel foil is provided and bonded to the copper foil by an insulating layer. Patent Document 2 discloses that a metal substrate made of copper foil, an insulating layer, and a metal plate is provided with an oxide film having an absorptivity (emissivity) of 0.5 or more on the surface of the metal substrate, that is, 5 to 100 μm aluminum oxide. Proposals have been made to make membranes.
In Patent Document 3, although heat conduction is good and heat diffusion is good in the transverse direction (sheet surface) of the carbon graphite sheet in the heat dissipation sheet, heat conduction is extremely low in the longitudinal direction (thickness direction), Because of the problems, it has been proposed to stack a ceramic filler sheet on top of carbon graphite.

さらにLEDは近年省エネ製品として注目され急速に実用化され、光源として応用されてきている。液晶表示装置のバックライト用としても急速に拡大し、利用されている。白熱電球と比較してLEDは使用電力が少なく、省エネではあるが、発光効率としてはあまり高くはなく、やはりエネルギーが発熱として放出される。装置の高輝度化や大型化が進んでおりLEDの実装数が増加したり入力電流が増大するなどますます発熱対策が要求されている。熱が蓄積されるとLED自身も熱によって劣化してしまい、発光効率が低下し、寿命も短くなる。この発熱に対する除去対策は重要な課題である。最近では、熱伝導性フィラーを充填し、室温での折り曲げ性も良好な放熱性を有する絶縁材などを使用して10 〜 70μm の銅箔、アルミ箔を使用した金属ベース回路基板が開発されてきている。   In addition, LEDs have recently attracted attention as energy-saving products and have been rapidly put into practical use and applied as light sources. It is also rapidly expanding and used as a backlight for liquid crystal display devices. Compared to incandescent bulbs, LEDs use less power and save energy, but their luminous efficiency is not very high, and energy is released as heat. Increasing the brightness and size of the equipment is increasing, and countermeasures against heat generation are increasingly required, such as an increase in the number of LEDs mounted and an increase in input current. When heat is accumulated, the LED itself is also deteriorated by heat, the luminous efficiency is lowered, and the lifetime is shortened. Countermeasures against this heat generation are an important issue. Recently, metal-based circuit boards using copper foil and aluminum foil of 10 to 70 μm have been developed using insulating materials that are filled with heat conductive filler and have good heat dissipation at room temperature. ing.

このように近年の回路基板においては軽量化、薄厚化の点からもその熱対策が非常に重要な課題となっている。   Thus, in recent circuit boards, countermeasures against heat are very important from the viewpoint of weight reduction and thickness reduction.

特開2010−98246号公報JP 2010-98246 A 特許第2529780号公報Japanese Patent No. 2529780 特開2007−108547号公報JP 2007-108547 A

本発明は電気、電子部品などに応用できる熱放射性の高い金属材料を提供することを課題とする。   It is an object of the present invention to provide a metal material having high thermal radiation that can be applied to electric and electronic parts.

従来技術、すなわち半導体やLEDなど発熱体のある回路に対して絶縁材を介し、ただ単に銅やアルミニウムの金属箔、板を貼り合わせるだけでは不十分である。熱伝導性は優れているものの、その金属表面に加工などを施さない場合は表面からの熱放散性がきわめて低く、放熱基板としては問題がある。そのため、金属の厚さを厚くすることや表面に放射率の高い有機系、セラミック系などの物質をコーティングするか、あるいは放熱フィンなどヒートシンクを設けることなどが必要であった。   It is not sufficient to simply bond a copper or aluminum metal foil or plate through an insulating material to a conventional technology, that is, a circuit having a heating element such as a semiconductor or LED. Although the thermal conductivity is excellent, if the metal surface is not processed, the heat dissipation from the surface is extremely low, and there is a problem as a heat dissipation substrate. Therefore, it has been necessary to increase the thickness of the metal, coat the surface with an organic or ceramic material having high emissivity, or provide a heat sink such as a heat radiating fin.

金属放熱板が厚い場合は熱容量が大きく熱放散性が高まるが、価格高騰している銅などの場合は製品における価格が課題となり、重量も増加し、問題である。厚くなると比重が大きいため重量が著しく増加するだけでなく、折り曲げができなくなり、フレキシブル特性を断念せざるをえなくなる。本発明においては従来のようにアルミニウムや銅、鉄などの厚板ではなく、箔という形態によって薄肉化、軽量化をはかるものである。熱伝導率は金属固有の値そのままにしながら熱放射特性を向上したものである。   When the metal heat sink is thick, the heat capacity is large and the heat dissipation is improved. However, when the price of copper is high, the price of the product becomes a problem and the weight increases, which is a problem. When the thickness is increased, the specific gravity is increased, so that not only the weight is remarkably increased, but also the bending cannot be performed, and the flexible characteristics must be abandoned. In the present invention, it is not a thick plate such as aluminum, copper, and iron as in the prior art, but a thin foil and a light weight are achieved by a form of a foil. The thermal conductivity improves the heat radiation characteristics while maintaining the value inherent to the metal.

銅の場合、銅を酸化させることにより表面の放射率は高くなるが、たとえば酸化処理としていわゆる黒化処理があるが、沸点近い高温の酸化剤の入った水溶液中に浸漬処理することが必要であり、作業環境として好ましくなく、また、高温であるため箔などをしわなく処理することが困難である。   In the case of copper, the surface emissivity is increased by oxidizing copper. For example, there is a so-called blackening treatment as an oxidation treatment, but it is necessary to immerse it in an aqueous solution containing a high-temperature oxidizing agent close to the boiling point. In addition, it is not preferable as a work environment, and it is difficult to treat the foil without wrinkles because of the high temperature.

アルミニウムについてはその表面を陽極酸化する方法があるが、厚めの板が必要であり、薄い箔を利用することは難しい。また、その処理工程は所要時間として数十分を要するなど、長時間を必要とするためロールツウロールなどに適用することや、箔について量産性を得ることが実用上難しい。   There is a method of anodizing the surface of aluminum, but a thick plate is required, and it is difficult to use a thin foil. In addition, since the treatment process requires a long time such as several tens of minutes, it is practically difficult to apply to a roll-to-roll roll or the like and to obtain mass productivity for the foil.

さらにカーボンを金属板、箔に塗布する方法もあるが、膜厚方向の熱伝導性が不十分であり、カーボン材料及び、塗布の別工程が必要である。カーボン膜上にさらにセラミックシートを重ねることは熱拡散が優れるが多くの工程を必要とする。   Furthermore, there is a method of applying carbon to a metal plate or foil, but the thermal conductivity in the film thickness direction is insufficient, and a carbon material and a separate process of application are required. Stacking a ceramic sheet on the carbon film is excellent in thermal diffusion but requires many steps.

本発明においてはフレキシブル性を持つ箔形態に適用でき、金属以外の別材料を使用せずに金属箔表面に改良を加えることで熱放射率を向上し、放熱基板用として提供できる金属箔を提案するものである。   In the present invention, a metal foil that can be applied to a flexible foil form, improves the thermal emissivity by adding improvements to the surface of the metal foil without using another material other than metal, and can be provided as a heat dissipation substrate is proposed. To do.

本発明は、このような従来の問題点を解決するため、すなわち、少なくとも一方の面が粒子径0.1〜2μmの固着性ニッケル又はニッケル合金微粒子、及びその集合体で粗面化された放射率0.35以上の有機物やセラミックを含まない金属箔であり、ニッケル又はニッケル合金微粒子及びその集合体の上にニッケルとリン又は/及び硫黄からなる合金層を被覆したことを特徴とする粗面化された金属箔である。基体金属箔は銅、アルミニウム、ニッケル、鉄、ステンレスであることを特徴とする。また、この粗面化が水溶液電気分解により得られることを特徴とする金属箔である。   The present invention solves such a conventional problem, that is, at least one surface has an emissivity of 0.35 roughened with adhesive nickel or nickel alloy fine particles having a particle diameter of 0.1 to 2 μm and aggregates thereof. A metal foil containing no organic matter or ceramic as described above, and having a roughened metal coated with an alloy layer of nickel and phosphorus or / and sulfur on nickel or nickel alloy fine particles and aggregates thereof It is a foil. The base metal foil is copper, aluminum, nickel, iron, or stainless steel. Further, the metal foil is characterized in that the roughening is obtained by aqueous electrolysis.

本発明の金属箔は熱放射性、熱伝導性が高く、放熱を必要とする特にフレキシブル性を考慮した電気、電子基板用途に好適である。そして本発明材料は箔の形態をとるためロールツウロールの連続的な製造が可能であって、大量生産に極めて対応しやすい。   The metal foil of the present invention has high thermal radiation and thermal conductivity, and is suitable for electrical and electronic board applications that require heat dissipation and particularly flexible. And since this invention material takes the form of foil, continuous manufacture of a roll toe roll is possible, and it is very easy to respond to mass production.

実施例、比較例において熱放散に関する温度測定に使用した試験の断面図と平面図を示す。Sectional views and plan views of tests used for temperature measurement regarding heat dissipation in Examples and Comparative Examples are shown. 実施例2で得られた粗化処理面のSEM観察写真を示す。The SEM observation photograph of the roughening process surface obtained in Example 2 is shown. 実施例3で得られた粗化処理面のSEM観察写真を示す。The SEM observation photograph of the roughening process surface obtained in Example 3 is shown.

放射率の高い金属箔を得るためにはまず、銅、アルミニウム、鉄、ステンレス、ニッケルなどの箔を使い、厚さは10〜100μmが好適である。原箔製造から表面粗化までを連続製造とすることは理想的であり電気分解で製造する電解銅箔、電解ニッケル箔、電解鉄箔などは脱脂の必要がなく、ある程度の表面粗化析出面が形成されているため有効である。しかしながら圧延箔でも問題はなく、限定されるものではない。   In order to obtain a metal foil with high emissivity, first, a foil of copper, aluminum, iron, stainless steel, nickel or the like is used, and the thickness is preferably 10 to 100 μm. It is ideal that continuous production from raw foil production to surface roughening is required, and electrolytic copper foil, electrolytic nickel foil, electrolytic iron foil, etc. produced by electrolysis do not require degreasing and have some surface roughening precipitation surface Is effective because it is formed. However, there is no problem with the rolled foil, and it is not limited.

これらの金属箔表面上にニッケル又はニッケル合金の微粒子及びその集合体を付け粗化するが、その形成方法としては水溶液電気分解法で行う。液組成としてはニッケルの水溶性塩、及びアンモニアを使い、ニッケルの水溶性塩としては硫酸ニッケル、硫酸ニッケルアンモニウム、塩化ニッケル、炭酸ニッケルなどが良い。ニッケル濃度は金属濃度で15〜30g/lが好ましい。アンモニアは5〜30g/lが好ましく、アンモニア水以外にも硫酸アンモニウム、塩化アンモニウムなどの塩で添加しても良い。水溶液のpHは4〜7が好ましい。pHの調整は硫酸および水酸化ナトリウムを使用する。温度は30〜60℃が好ましい。電流密度は10〜30A/dm2 が良く、電気量として150〜500クーロン/dm2 が好ましい。この粗化ニッケル又はニッケル合金粒子の析出量はおよそ3〜15g/m2である。少ない場合は放射率が不十分であり、放熱性が低い。多い場合は放射率は高いものの、電気量を増加させても放射率の上昇がなくなり、生産性として効率が低い。ニッケル合金微粒子とする場合は主成分であるNiと、Co、Fe、Cu、Sn、Mo、W、Zn、P、Sなどの元素のうちの1種以上を少量含んでも良い。またさらに粉落ちを抑えるために必要に応じてその粗化粒子を被覆めっきすると良い。被覆めっきはニッケルまたはニッケル合金めっきを行う。なお、ニッケル粗化後ニッケルで被覆することは固着性を上げることでは効果があるが、あまり被覆量を増加すると、放射率が低下し、放熱性が低下する。電気量としては20〜200クーロン/dm2 が好ましい。ニッケル量は0.6〜6g/m2である。 Nickel or nickel alloy fine particles and aggregates thereof are applied and roughened on the surface of these metal foils, and the formation is performed by an aqueous electrolysis method. As a liquid composition, nickel water-soluble salt and ammonia are used, and nickel water-soluble salt is preferably nickel sulfate, nickel ammonium sulfate, nickel chloride, nickel carbonate or the like. The nickel concentration is preferably 15 to 30 g / l in terms of metal concentration. Ammonia is preferably 5 to 30 g / l, and in addition to aqueous ammonia, it may be added as a salt such as ammonium sulfate or ammonium chloride. The pH of the aqueous solution is preferably 4-7. To adjust the pH, sulfuric acid and sodium hydroxide are used. The temperature is preferably 30 to 60 ° C. The current density is preferably 10 to 30 A / dm 2 and the amount of electricity is preferably 150 to 500 coulomb / dm 2 . The amount of the rough nickel or nickel alloy particles deposited is about 3 to 15 g / m 2 . If it is small, the emissivity is insufficient and the heat dissipation is low. In many cases, the emissivity is high, but even if the amount of electricity is increased, the emissivity does not increase, and the productivity is low. In the case of nickel alloy fine particles, a small amount of Ni as a main component and one or more of elements such as Co, Fe, Cu, Sn, Mo, W, Zn, P, and S may be included. Further, in order to further prevent powder falling, the roughened particles may be coated and plated as necessary. The coating plating is nickel or nickel alloy plating. Note that coating with nickel after nickel roughening is effective in increasing the adhesion, but if the coating amount is increased too much, the emissivity decreases and the heat dissipation decreases. The amount of electricity is preferably 20 to 200 coulomb / dm 2 . The amount of nickel is 0.6-6 g / m 2 .

このニッケルによる被覆の代わりにニッケルとリン及び/又は硫黄の合金めっき層を施すことによってさらに放射率が高いものが得られる。この場合、ニッケル粗化後、ニッケルとリンまたは/及び硫黄のめっき層を連続的に行うのが良い。この被覆めっきを行うにはニッケルとリンの合金めっきの場合はニッケルの水溶性塩と、次亜リン酸、次亜リン酸ナトリウム、亜リン酸、亜リン酸ナトリウムなどを添加した水溶液でめっきする。硫黄を含有するニッケルめっきの場合はニッケル水溶性塩とこれにチオ硫酸ナトリウム、チオ尿素、芳香族スルフォン酸など硫黄を含有する添加剤を加えることにより、ニッケルと同時析出させる。   A higher emissivity can be obtained by applying an alloy plating layer of nickel and phosphorus and / or sulfur instead of the nickel coating. In this case, after nickel roughening, a nickel and phosphorus or / and sulfur plating layer may be continuously performed. In order to perform this coating plating, in the case of nickel-phosphorus alloy plating, plating is performed with an aqueous solution to which a water-soluble salt of nickel and hypophosphorous acid, sodium hypophosphite, phosphorous acid, sodium phosphite and the like are added. . In the case of nickel plating containing sulfur, a nickel water-soluble salt and a sulfur-containing additive such as sodium thiosulfate, thiourea, and aromatic sulfonic acid are added to the nickel water-soluble salt to co-precipitate with nickel.

ニッケル量は0.5〜5g/m2、リン量は50〜500mg/m2で、硫黄量は30〜200mg/m2 である。リンおよび硫黄を両者混合させて加えてもよい。このニッケル被覆めっき層中のリン又は/及び硫黄含有量は 2〜20%である。 Amount of nickel is 0.5 to 5 g / m 2, in phosphorus content is 50 to 500 mg / m 2, the sulfur content is 30 to 200 mg / m 2. Phosphorus and sulfur may be mixed and added. The phosphorus or / and sulfur content in this nickel-coated plating layer is 2 to 20%.

結果として得られるニッケル微粒子サイズは0.1〜2μm程度がよく、また互いに粒子が固着した集合体状として存在してもよく、この時は集合体として0.5〜5μm程度のサイズとなる。   The resulting nickel fine particle size is preferably about 0.1 to 2 μm, and may exist as an aggregate in which the particles are fixed to each other. In this case, the aggregate has a size of about 0.5 to 5 μm.

粗化された表面の粗さとしては素地の粗さにもよるが、光沢面などに対してはRzjisで1.5μm〜5μmが好ましい。粗面に対しては粗面粗さにRzjisとして2〜6μmの粗度上昇が好ましい。銅箔粗面に公知の0.2〜2μm程度の銅粒子による粗化処理を施し、一例として硫酸-硫酸銅水溶液中で限界電流密度かそれ以上の電流密度により樹枝状銅を析出させ、この上に銅を被覆めっきをして、さらにその上に本発明のニッケル又はニッケル合金微粒子を形成させてもよい。但し、表面粗さが大きいほど放射率は高くなる傾向にはあるが、比例するものではなく、粗化量、粗化粒子形状、付着元素、基体箔などによって大きく変わる。   The roughness of the roughened surface depends on the roughness of the substrate, but it is preferably 1.5 μm to 5 μm in terms of Rzjis for glossy surfaces. For rough surfaces, it is preferable to increase the roughness by 2 to 6 μm as Rzjis. The rough surface of the copper foil is subjected to a roughening treatment with a known copper particle of about 0.2 to 2 μm. As an example, dendritic copper is deposited at a current density higher than or equal to the limit current density in a sulfuric acid-copper sulfate aqueous solution. Copper may be plated and the nickel or nickel alloy fine particles of the present invention may be further formed thereon. However, although the emissivity tends to increase as the surface roughness increases, it is not proportional and varies greatly depending on the amount of roughening, the shape of the roughened particles, the adhering elements, the substrate foil, and the like.

なお、アルミニウムまたはアルミニウム合金箔の場合はそのままではニッケル又はニッケル合金粗化粒子の形成は難しいので、前処理として一般的な2回亜鉛置換処理し、その後ニッケルの0.5〜1.5μm程度の薄いめっき層を設け、この上にニッケル又はニッケル合金粗化を行い、次いでニッケルとリン又は/及び硫黄の合金めっき層を施す。   In the case of aluminum or aluminum alloy foil, it is difficult to form coarse particles of nickel or nickel alloy as it is, so a general zinc replacement treatment is performed twice as a pretreatment, and then a thin plating layer of about 0.5 to 1.5 μm of nickel. And nickel or nickel alloy roughening is performed thereon, and then an alloy plating layer of nickel and phosphorus or / and sulfur is applied.

電解銅箔など電解箔の場合、通常粗面と光沢面とあるが、このような場合、粗面側に樹脂と接着性の高い公知の粗化処理などを加え、一方で光沢面側は本発明のニッケル粗化処理および被覆めっきすることで放熱性の樹脂密着性の両者を兼ねそなえた金属箔が得られる。   In the case of electrolytic foil such as electrolytic copper foil, there are usually rough surface and glossy surface. In such a case, a known roughening treatment with high adhesion to the resin is added to the rough surface side, while the glossy surface side is the main surface. By carrying out the nickel roughening treatment and the coating plating of the invention, a metal foil having both heat radiation resin adhesion can be obtained.

放射率を向上させる面について、たとえば銅箔の粗面側に上記にも記載したが公知の銅粒子による粗化処理を施し、さらにこの上にニッケルとリン又は/及び硫黄の合金めっき被覆をしてもあまり放射率の改善にはならない。   As for the surface to improve the emissivity, for example, the rough surface side of the copper foil is also described above, but a roughening treatment with a known copper particle is performed, and an alloy plating coating of nickel and phosphorus or / and sulfur is further formed thereon. However, it does not improve the emissivity much.

以下に実施例を示す。但し本発明はこれらに限定されるものではない。   Examples are shown below. However, the present invention is not limited to these.

(実施例1)
35μm厚さの電解銅箔を酸洗浴(A)(硫酸5%水溶液)に10秒間浸漬し、次いで水洗し、その光沢面にニッケル粗化処理浴(B)において19A/dm2、15秒間陰極電解処理した。次いで水洗後その面をニッケルめっき浴(C)において4A/dm2、20秒間被覆めっきし、水洗し、乾燥した。
Example 1
An electrolytic copper foil with a thickness of 35 μm is immersed in a pickling bath (A) (5% sulfuric acid aqueous solution) for 10 seconds, then washed with water, and its glossy surface is 19 A / dm 2 in a nickel roughening treatment bath (B) for 15 seconds. Electrolytically treated. Next, after washing with water, the surface was coated and plated at 4 A / dm 2 for 20 seconds in a nickel plating bath (C), washed with water and dried.

(B) 硫酸ニッケル(六水塩) 90 g/l
アンモニア 18 g/l
pH 6.0
温度 45℃

(C) 硫酸ニッケル(六水塩) 250 g/l
塩化ニッケル(六水塩) 50 g/l
ホウ酸 20 g/l
pH 4.0
温度 40℃
(B) Nickel sulfate (hexahydrate) 90 g / l
Ammonia 18 g / l
pH 6.0
Temperature 45 ℃

(C) Nickel sulfate (hexahydrate) 250 g / l
Nickel chloride (hexahydrate) 50 g / l
Boric acid 20 g / l
pH 4.0
40 ℃

このニッケル粗化処理銅箔の表面粗さはRzjis 3.3μm、放射率を測定すると0.48であった。表面粗さはサーフコーダSE500(小坂研究所製)を用いて測定し、放射率はD&S AERD 放射率計(京都電子工業製)を用いて測定した。以下の実施例、比較例においても同じ測定を行った。また蛍光X線分析(RIX2000理学電機製)で付着元素量を調べた。Niの付着量は 7.92 g/m2であった。以下の実施例、比較例においても同様に分析した。 The surface roughness of this nickel-roughened copper foil was Rzjis 3.3 μm, and the emissivity was 0.48. The surface roughness was measured using Surfcoder SE500 (manufactured by Kosaka Laboratory), and the emissivity was measured using a D & S AERD emissometer (manufactured by Kyoto Electronics Industry). The same measurement was performed in the following examples and comparative examples. The amount of adhering elements was examined by fluorescent X-ray analysis (RIX2000 manufactured by Rigaku Denki). The amount of Ni deposited was 7.92 g / m 2 . The following examples and comparative examples were similarly analyzed.

一方、20μm厚さのSUS304ステンレス箔を幅3mm、長さ11cmに切り取り、この両面に5.5×5.5cm、厚さ50μmの粘着性ポリイミドフィルムを貼り付け、さらに片側にこの粗化処理銅箔を処理面側を外側にして5×5cmの大きさで貼り付け、これを図1に示したように断熱材上に設置した。そして、ステンレス箔線に10cmの端子間距離をとり、整流器で2.5Aの一定電流を連続的に通電し、5のポイント(試料表面上)の発熱による温度を調べた。15分間の通電によりおよそ安定し、その温度は57℃であった。なお、試料を貼り付けない場合は同じ電流を通電し、15分間後安定した温度は69℃であった。 以下の実施例、比較例においても同じ測定を行った。   On the other hand, SUS304 stainless steel foil with a thickness of 20 μm is cut into a width of 3 mm and a length of 11 cm, an adhesive polyimide film with a thickness of 5.5 × 5.5 cm and a thickness of 50 μm is pasted on both sides, and this roughened copper foil is further processed on one side. The surface side was affixed with a size of 5 × 5 cm, and this was placed on a heat insulating material as shown in FIG. Then, a distance between terminals of 10 cm was taken on the stainless steel foil wire, a constant current of 2.5 A was continuously applied with a rectifier, and the temperature due to heat generation at 5 points (on the sample surface) was examined. The temperature was stabilized by energization for 15 minutes and the temperature was 57 ° C. When the sample was not attached, the same current was applied, and after 15 minutes, the stable temperature was 69 ° C. The same measurement was performed in the following examples and comparative examples.

以後の実施例、比較例を含めて結果を表1に示す。   The results are shown in Table 1 including the following examples and comparative examples.

(実施例2)
35μm厚さの電解銅箔を酸洗浴(A)で酸洗し、水洗後、その光沢面にニッケル粗化処理浴(B)において19A/dm2、15秒間陰極電解処理した。次いで水洗後、その面をニッケルリンめっき浴(D)において2.5A/dm2、20秒間被覆めっきし、水洗し、乾燥した。
(Example 2)
An electrolytic copper foil having a thickness of 35 μm was pickled in a pickling bath (A), washed with water, and the glossy surface was subjected to cathodic electrolysis at 19 A / dm 2 in a nickel roughening bath (B) for 15 seconds. Next, after washing with water, the surface was coated with 2.5 A / dm 2 for 20 seconds in a nickel phosphorus plating bath (D), washed with water, and dried.

(D) 硫酸ニッケル(六水塩) 60 g/l
次亜リン酸ナトリウム(一水塩) 55 g/l
pH 4.0
温度 30℃
(D) Nickel sulfate (hexahydrate) 60 g / l
Sodium hypophosphite (monohydrate) 55 g / l
pH 4.0
Temperature 30 ℃

このニッケル粗化処理銅箔の表面粗さはRzjis 2.3μm、放射率を測定すると0.66であった。またその表面のSEM観察を行い、その写真を図2に示す。
このニッケル粗化処理銅箔のNiの付着量は 6.56 g/m2、Pの付着量は 0.18 g/m2であった。ここで同じ(B)浴による同じ条件でニッケル粗化処理をしただけの箔についてはNi量は5.50 g/m2であったので、この実施例におけるニッケルリン被覆めっき層中のNi量は1.06 g/m2であり、リン量は約15%であった。次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は54℃であった。
The surface roughness of this nickel-roughened copper foil was Rzjis 2.3 μm, and the emissivity was 0.66. Moreover, SEM observation of the surface was performed, and the photograph is shown in FIG.
This nickel roughening-treated copper foil had an adhesion amount of Ni of 6.56 g / m 2 and an adhesion amount of P of 0.18 g / m 2 . Here, since the Ni amount was 5.50 g / m 2 for the foil which was just nickel roughened under the same conditions in the same (B) bath, the Ni amount in the nickel phosphorus-coated plating layer in this example was 1.06. a g / m 2, the phosphorus content was about 15%. Next, this copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 54 ° C.

(実施例3)
35μm厚さの電解銅箔を酸洗浴(A)で酸洗し、水洗後、その光沢面にニッケル粗化処理浴(B)において19A/dm2、15秒間陰極電解処理した。次いでその面をニッケル硫黄めっき浴(E)において2.5A/dm2、20秒間被覆めっきした。
(Example 3)
An electrolytic copper foil having a thickness of 35 μm was pickled in a pickling bath (A), washed with water, and the glossy surface was subjected to cathodic electrolysis at 19 A / dm 2 in a nickel roughening bath (B) for 15 seconds. Then, the surface was coated and plated at 2.5 A / dm 2 for 20 seconds in a nickel sulfur plating bath (E).

(E) 硫酸ニッケル(六水塩) 150g/l
チオ硫酸ナトリウム(五水塩) 40g/l
pH 4.5
温度 30℃
(E) Nickel sulfate (hexahydrate) 150g / l
Sodium thiosulfate (pentahydrate) 40g / l
pH 4.5
Temperature 30 ℃

このニッケル粗化処理銅箔の表面粗さはRzjis 2.1μm、放射率を測定すると0.65であった。またその表面のSEM観察を行い、その写真を図3に示す。またNiの付着量は 6.51 g/m2、Sの付着量は 0.08 g/m2であった。ニッケル硫黄被覆めっき層中の硫黄量は、約7 %であった。次にこの銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は56℃であった。 The surface roughness of this nickel-roughened copper foil was Rzjis 2.1 μm, and the emissivity was 0.65. Moreover, SEM observation of the surface was performed, and the photograph is shown in FIG. The adhesion amount of Ni was 6.51 g / m 2 and the adhesion amount of S was 0.08 g / m 2 . The amount of sulfur in the nickel sulfur coating layer was about 7%. Next, this copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 56 ° C.

(実施例4)
30μm厚さの1N30アルミニウム箔を用意し、両面を脱脂浴(F)(NaOH10g/l水溶液)に30秒間浸漬し、水洗し、酸洗浴(G)(硝酸20%水溶液)に15秒間浸漬し、次いで水洗後、亜鉛置換浴(H)(ZnO 9g/l、NaOH80g/l、ロッセル塩25g/l、塩化第二鉄四水塩2g/l)に30秒間浸漬し、次いで酸洗浴(G)に20秒間浸漬後、水洗し、次に再び亜鉛置換浴(H)に30秒間浸漬した。
Example 4
Prepare 30μm-thick 1N30 aluminum foil, dip both sides in a degreasing bath (F) (NaOH 10 g / l aqueous solution) for 30 seconds, wash with water, and soak in a pickling bath (G) (20% nitric acid aqueous solution) for 15 seconds. Next, after washing with water, immerse in a zinc replacement bath (H) (ZnO 9 g / l, NaOH 80 g / l, Rossell salt 25 g / l, ferric chloride tetrahydrate 2 g / l) for 30 seconds, then in the pickling bath (G) After dipping for 20 seconds, it was washed with water, and then dipped again in the zinc replacement bath (H) for 30 seconds.

次いで水洗後、その片面をニッケルめっき浴(C)で7 A/dm2、60秒間陰極電解してニッケルめっきした後、水洗後、ニッケル粗化処理浴(B)において19 A/dm2 15秒間陰極電解処理した。次いで水洗後、ニッケルめっき浴(C)において2.5A/dm2、20秒間被覆めっきした。このニッケル粗化処理アルミ箔の表面粗さはRzjis 3.2μm、放射率を測定すると0.39であった。このアルミ箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は62℃であった。 Next, after washing with water, one side of the nickel plating bath (C) is 7 A / dm 2 for 60 seconds by cathodic electrolysis and nickel plating, then after washing with water, 19 A / dm 2 for 15 seconds in the nickel roughening treatment bath (B) Cathodic electrolysis was performed. Subsequently, after washing with water, coating plating was carried out in a nickel plating bath (C) at 2.5 A / dm 2 for 20 seconds. The surface roughness of the nickel-roughened aluminum foil was Rzjis 3.2 μm, and the emissivity was 0.39. This aluminum foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 62 ° C.

(実施例5)
30μm厚さの1N30アルミニウム箔を用意し、その光沢面を実施例4における最後のニッケル被覆浴(C)をニッケルリンめっき浴(D)2.5A/dm2、20秒間とした以外すべて同じ方法で処理、めっきした。このニッケル粗化処理アルミ箔の表面粗さはRzjis 2.9μm、放射率を測定すると0.64であった。このアルミ箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は57℃であった。
(Example 5)
Prepare 1N30 aluminum foil with a thickness of 30 μm, and use the same method except that the glossy surface was nickel phosphate bath (D) 2.5 A / dm 2 for 20 seconds as the last nickel coating bath (C) in Example 4. Processed and plated. The surface roughness of the nickel-roughened aluminum foil was Rzjis 2.9 μm, and the emissivity was 0.64. This aluminum foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 57 ° C.

(実施例6)
20μm厚さのステンレス箔SUS304を用意し、脱脂浴(I)(NaOH50g/l)で3A/dm2、30秒間陰極脱脂、水洗後酸洗浴(A)で5A/dm2、60秒間陰極電解し、その片面にニッケル粗化処理浴(A)において23A/dm2 15秒間陰極電解処理した。次いでその面をニッケルリンめっき浴(D)において2.5A/dm2、20秒間被覆めっきした。
(Example 6)
Prepare stainless steel foil SUS304 with a thickness of 20μm, degrease bath (I) (NaOH 50g / l) at 3A / dm 2 , cathode degrease for 30 seconds, water wash and 5A / dm 2 in acid bath (A) for 60 seconds. Then, one side was subjected to cathodic electrolysis in a nickel roughening bath (A) at 23 A / dm 2 for 15 seconds. Then, the surface was coated and plated at 2.5 A / dm 2 for 20 seconds in a nickel phosphorus plating bath (D).

このニッケル粗化処理銅箔の表面粗さはRzjis 1.6μm、放射率を測定すると0.46であった。このステンレス箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は62℃であった。   The surface roughness of this nickel-roughened copper foil was Rzjis 1.6 μm, and the emissivity was 0.46. This stainless steel foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 62 ° C.

(実施例7)
35μm厚さの電解銅箔をその光沢面について実施例2においてニッケル-リンめっき浴(D)を浴(J)2.5A/dm2、20秒間としたこと以外すべて同じ方法で処理した。
(Example 7)
The electrolytic copper foil having a thickness of 35 μm was treated on the glossy surface in the same manner except that the nickel-phosphorous plating bath (D) was bath (J) 2.5 A / dm 2 for 20 seconds in Example 2.

(J) 硫酸ニッケル(六水塩) 60g/l
次亜リン酸ナトリウム(一水塩) 15g/l
pH 4.0
温度 30℃
(J) Nickel sulfate (hexahydrate) 60g / l
Sodium hypophosphite (monohydrate) 15g / l
pH 4.0
Temperature 30 ℃

このニッケル粗化処理銅箔の表面粗さはRzjis 2.4μm、放射率を測定すると0.60であった。またNiの付着量は 6.63 g/m2、Pの付着量は 0.13 g/m2であった。ニッケル-リン被覆めっき層中のリンは、約10%であった。この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は57℃であった。 The surface roughness of this nickel-roughened copper foil was Rzjis 2.4 μm, and the emissivity was 0.60. The adhesion amount of Ni was 6.63 g / m 2 and the adhesion amount of P was 0.13 g / m 2 . Phosphorus in the nickel-phosphorus coating layer was about 10%. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 57 ° C.

(実施例8)
35μm厚さの電解銅箔をその光沢面について、実施例3においてニッケル硫黄めっき浴(E)を浴(K)としたこと以外すべて同じ方法で処理した。
(Example 8)
The electrolytic copper foil having a thickness of 35 μm was treated on the glossy surface in the same manner except that the nickel-sulfur plating bath (E) was used as the bath (K) in Example 3.

(K) 硫酸ニッケル(六水塩) 150g/l
チオ硫酸ナトリウム(五水塩) 20g/l
pH 4.5
温度 30℃
(K) Nickel sulfate (hexahydrate) 150g / l
Sodium thiosulfate (pentahydrate) 20g / l
pH 4.5
Temperature 30 ℃

このニッケル粗化処理銅箔の表面粗さはRzjis 2.5μm、放射率を測定すると0.68であった。またNiの付着量は 6.70 g/m2、Sの付着量は0.04 g/m2であった。ニッケル硫黄被覆めっき層中の硫黄は、約3%であった。この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は56℃であった。 The surface roughness of this nickel roughened copper foil was Rzjis 2.5 μm, and the emissivity was 0.68. The adhesion amount of Ni was 6.70 g / m 2 , and the adhesion amount of S was 0.04 g / m 2 . The sulfur in the nickel sulfur coating layer was about 3%. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 56 ° C.

(実施例9)
35μm厚さの電解銅箔を用意し、実施例2において表面処理を粗面側としたこと以外すべて同じ方法で処理した。このニッケル粗化処理銅箔の表面粗さはRzjis 8.1μm、放射率を測定すると0.58であった。またNiの付着量は 6.65 g/m2、Pの付着量は0.13 g/m2であった。ニッケル-リン被覆めっき層中のリンは、約10%であった。この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は58 ℃であった。
Example 9
An electrolytic copper foil having a thickness of 35 μm was prepared, and all the treatments were performed in the same manner except that the surface treatment was changed to the rough side in Example 2. The surface roughness of this nickel roughening-treated copper foil was Rzjis 8.1 μm, and the emissivity was 0.58. The adhesion amount of Ni was 6.65 g / m 2 , and the adhesion amount of P was 0.13 g / m 2 . Phosphorus in the nickel-phosphorus coating layer was about 10%. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 58 ° C.

(実施例10)
35μm厚さの電解銅箔を用意し、実施例2においてニッケル粗化処理浴を(B)の代わりに
(L)とし、電解時間を20秒間とし、(D)浴のNi-P被覆めっきを2.5A/dm2、40秒間としたこと以外すべて同じ方法で処理した。
(Example 10)
Prepare an electrolytic copper foil with a thickness of 35μm. In Example 2, the nickel roughening treatment bath was set to (L) instead of (B), the electrolysis time was set to 20 seconds, and the Ni-P coating of the (D) bath was applied. All were processed in the same way except 2.5A / dm 2 , 40 seconds.

(L) 硫酸ニッケル六水塩 110 g/l
アンモニア 25 g/l
pH 5.7
温度 40℃
(L) Nickel sulfate hexahydrate 110 g / l
Ammonia 25 g / l
pH 5.7
40 ℃

このニッケル粗化処理銅箔の表面粗さはRzjis 2.7μm、放射率を測定すると0.61であった。またNiの付着量は 9.90 g/m2、Pの付着量は 0.27 g/m2であった。ここで同じ(L)浴による同じ条件でニッケル粗化処理をしただけの箔についてはNi量は7.30 g/m2であったので、この実施例におけるニッケル-リン被覆めっき層中のリンは、約9%であった。
この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は57℃であった。
The surface roughness of the nickel-roughened copper foil was Rzjis 2.7 μm, and the emissivity was 0.61. The adhesion amount of Ni was 9.90 g / m 2 and the adhesion amount of P was 0.27 g / m 2 . Here, since the amount of Ni was 7.30 g / m 2 for the foil that was just nickel roughened under the same conditions in the same (L) bath, the phosphorus in the nickel-phosphorous-coated plating layer in this example was About 9%.
This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 57 ° C.

(実施例11)
35μm厚さの電解銅箔を用意し、実施例2においてニッケルリン被覆めっきをニッケル-硫黄-リン被覆めっき(M)浴としたこと以外すべて同じ方法で処理した。
(Example 11)
An electrolytic copper foil having a thickness of 35 μm was prepared, and all the treatments were performed in the same manner except that the nickel phosphorus-coated plating was changed to a nickel-sulfur-phosphorus-coated (M) bath in Example 2.

(M) 硫酸ニッケル(六水塩) 80g/l
次亜リン酸ナトリウム(一水塩) 25g/l
チオ硫酸ナトリウム(五水塩) 5g/l
pH 4.0
温度 30℃
(M) Nickel sulfate (hexahydrate) 80g / l
Sodium hypophosphite (monohydrate) 25g / l
Sodium thiosulfate (pentahydrate) 5g / l
pH 4.0
Temperature 30 ℃

このニッケル粗化処理銅箔の表面粗さはRzjis 2.4μm、放射率を測定すると0.57であった。 またNiの付着量は 6.25 g/m2、Pの付着量は 0.01 g/m2 Sの付着量は 0.03 g/m2であった。ニッケル硫黄-リン被覆めっき層中の硫黄は約4%、リンは約1%であった。この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は58 ℃であった。 The surface roughness of this nickel-roughened copper foil was Rzjis 2.4 μm, and the emissivity was 0.57. The adhesion amount of Ni was 6.25 g / m 2 , and the adhesion amount of P was 0.01 g / m 2 S. The adhesion amount of S was 0.03 g / m 2 . The sulfur in the nickel sulfur-phosphorus coating layer was about 4% and phosphorus was about 1%. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 58 ° C.

(比較例1)
35μm厚さの電解銅箔を用意し、光沢面側の表面粗さ、放射率を調べた。表面粗さはRzjis 1.9μm、放射率は0.02であった。この銅箔について実施例1と同じ方法でポリイミドフィルムにはりつけ、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は68℃であった。
(Comparative Example 1)
An electrolytic copper foil having a thickness of 35 μm was prepared, and the surface roughness and emissivity on the glossy side were examined. The surface roughness was Rzjis 1.9 μm and the emissivity was 0.02. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 68 ° C.

(比較例2)
35μm厚さの電解銅箔を用意し、その光沢面にめっき浴(D)により2.5A/dm2、20秒間でニッケルリンめっきし、水洗、乾燥した。表面粗さはRzjis 1.8μm、放射率は0.16であった。またNiの付着量は 1.07 mg/m2、Pの付着量は0.24 mg/m2であった。ニッケルリンめっき中のリン量は約18%であった。この銅箔について実施例1と同じ方法でポリイミドフィルムにはりつけ、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は66℃であった。
(Comparative Example 2)
An electrolytic copper foil having a thickness of 35 μm was prepared, and the glossy surface thereof was plated with nickel phosphorous in a plating bath (D) at 2.5 A / dm 2 for 20 seconds, washed with water and dried. The surface roughness was Rzjis 1.8 μm and the emissivity was 0.16. The adhesion amount of Ni was 1.07 mg / m 2 and the adhesion amount of P was 0.24 mg / m 2 . The amount of phosphorus in the nickel phosphorus plating was about 18%. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 66 ° C.

(比較例3)
30μm厚さの1N30アルミニウム箔を用意し、表面粗さ、放射率を調べた。表面粗さはRzjis 0.2μm、放射率は0.03であった。この銅箔について実施例1と同じ方法でポリイミドフィルムにはりつけ、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は68℃であった。
(Comparative Example 3)
A 30 μm thick 1N30 aluminum foil was prepared, and the surface roughness and emissivity were examined. The surface roughness was Rzjis 0.2 μm and the emissivity was 0.03. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 68 ° C.

(比較例4)
35μm厚さの電解銅箔を用意し、その光沢面を黒化処理浴(N)
(N) NaOH 15g/l NaClO2 40g/l リン酸三ナトリウム(12水塩) 5g/l 90℃
の水溶液中に浸漬し、150秒間の表面酸化を行った。この面の表面粗さ、放射率を調べた。表面粗さはRzjis 2.0μm、放射率は0.07であった。この銅箔について実施例1と同じ方法でポリイミドフィルムにはりつけ、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は64℃であった。
(Comparative Example 4)
Prepare electrolytic copper foil with a thickness of 35μm and blacken the glossy surface (N)
(N) NaOH 15g / l NaClO 2 40g / l Trisodium phosphate (12 hydrate) 5g / l 90 ° C
Was immersed in an aqueous solution and surface oxidation was performed for 150 seconds. The surface roughness and emissivity of this surface were examined. The surface roughness was Rzjis 2.0 μm and the emissivity was 0.07. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 64 ° C.

(比較例5)
35μm厚さの電解銅箔を用意し、この粗面側を処理浴(O)
(O) 硫酸100 g/L、硫酸銅(五水塩) 50 g/L
において10A/dm2、8秒間陰極電解した。次いで処理浴(P)
(P) 硫酸100 g/L、硫酸銅(五水塩) 220 g/L
において粗面側を5A/dm2、70秒間陰極電解した。次に水洗後めっき浴(D)で2.5A/dm2、20秒間ニッケルリンめっきし、水洗し、乾燥した。この銅箔の処理面表面粗さはRzjis 9.8μmであった。放射率は0.16であった。この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べた。15分間の通電により安定した温度は65℃であった。
(Comparative Example 5)
Prepare electrolytic copper foil with a thickness of 35μm, and treat this rough side with a treatment bath (O).
(O) Sulfuric acid 100 g / L, Copper sulfate (pentahydrate) 50 g / L
At 10 A / dm 2 for 8 seconds. Then treatment bath (P)
(P) Sulfuric acid 100 g / L, Copper sulfate (pentahydrate) 220 g / L
Was subjected to cathodic electrolysis at 5 A / dm 2 for 70 seconds. Next, after washing with water, nickel phosphorous plating was carried out in a plating bath (D) at 2.5 A / dm 2 for 20 seconds, washed with water and dried. The treated surface roughness of this copper foil was Rzjis 9.8 μm. The emissivity was 0.16. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. The temperature stabilized by energization for 15 minutes was 65 ° C.

以上から本発明の実施例においては比較例と比べて格段に高い放射率が測定され、ポリイミドフィルムを介して発熱に対して放熱効率が良く、発熱回路による温度上昇も低いことが確認された。   From the above, in the examples of the present invention, the emissivity was remarkably higher than that of the comparative example, and it was confirmed that the heat dissipation efficiency was good for the heat generation through the polyimide film, and the temperature rise by the heat generation circuit was also low.

本発明材料は熱放射率、熱伝導性に優れ、かつ箔の形態であるため軽量であり、フレキシブル性があるため、LED基板、自動車電装用基板、パワーモジュール基板、有機EL基板などの放熱基板用、プリント配線板用としてはもとより、その他の放熱板や電気伝導性材料などその形状、特性を発揮できる分野に広範囲に応用できる。   The material of the present invention is excellent in thermal emissivity and thermal conductivity, is lightweight because it is in the form of a foil, and has flexibility, so that heat dissipation substrates such as LED substrates, automotive electronics substrates, power module substrates, organic EL substrates, etc. It can be applied to a wide range of fields that can exhibit its shape and characteristics, such as for heat sinks and printed wiring boards, as well as other heat sinks and electrically conductive materials.

1 試料箔
2 ポリイミドフィルム
3 ステンレス箔
4 断熱材
5 測定ポイント
1 Sample foil 2 Polyimide film 3 Stainless steel foil 4 Heat insulation material 5 Measurement point

Claims (4)

少なくとも基体金属箔の一方の面が粒子径0.1〜2μmの固着性ニッケル又はニッケル合金微粒子及びその集合体を付着した放射率0.35以上であることを特徴とする粗面化された金属箔。   A roughened metal foil characterized in that at least one surface of a base metal foil has an emissivity of 0.35 or more to which adherent nickel or nickel alloy fine particles having a particle diameter of 0.1 to 2 μm and an aggregate thereof are adhered. 固着性ニッケル又はニッケル合金微粒子及びその集合体の上にニッケルとリン又は/及び硫黄からなる合金層を被覆したことを特徴とする請求項1に記載の粗面化された金属箔。   2. The roughened metal foil according to claim 1, wherein an alloy layer comprising nickel and phosphorus or / and sulfur is coated on the sticking nickel or nickel alloy fine particles and aggregates thereof. 基体金属箔が銅、アルミニウム、ニッケル、鉄、ステンレスであることを特徴とする請求項1又は請求項2に記載の粗面化された金属箔。   The roughened metal foil according to claim 1 or 2, wherein the base metal foil is copper, aluminum, nickel, iron, or stainless steel. 粗面化が水溶液電気分解により得られることを特徴とする請求項1乃至請求項3のいずれか1項に記載の粗面化された金属箔。   The roughened metal foil according to any one of claims 1 to 3, wherein the roughening is obtained by aqueous electrolysis.
JP2011242032A 2011-11-04 2011-11-04 High emissivity metal foil Active JP5898462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011242032A JP5898462B2 (en) 2011-11-04 2011-11-04 High emissivity metal foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242032A JP5898462B2 (en) 2011-11-04 2011-11-04 High emissivity metal foil

Publications (2)

Publication Number Publication Date
JP2013095991A true JP2013095991A (en) 2013-05-20
JP5898462B2 JP5898462B2 (en) 2016-04-06

Family

ID=48618265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242032A Active JP5898462B2 (en) 2011-11-04 2011-11-04 High emissivity metal foil

Country Status (1)

Country Link
JP (1) JP5898462B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084528A (en) * 2014-10-22 2016-05-19 Jx金属株式会社 Copper heat releasing material, copper foil with carrier, connector, terminal, laminate, shield material, printed wiring board, metal processing member, electronic apparatus and manufacturing method of printed wiring board
CN105714345A (en) * 2016-04-14 2016-06-29 中山品高电子材料有限公司 Method of silver electroplating on nickel of LED bracket
JP2017089004A (en) * 2015-11-06 2017-05-25 株式会社ワールドメタル Bonding member
KR101929635B1 (en) * 2013-08-29 2018-12-14 제이엑스금속주식회사 Surface-treated metal material, carrier-attached metal foil, connector, terminal, laminated article, shield tape, shield material, printed wiring board, worked metal member, electronic device, and method for manufacturing printed wiring board
US10333100B2 (en) 2014-08-29 2019-06-25 Sumitomo Chemical Company, Limited Organic electroluminescent device
WO2020017655A1 (en) * 2018-07-19 2020-01-23 東洋鋼鈑株式会社 Roughened nickel-plated sheet
WO2020250946A1 (en) * 2019-06-12 2020-12-17 東洋鋼鈑株式会社 Roughened plated sheet
JP7499763B2 (en) 2019-06-12 2024-06-14 東洋鋼鈑株式会社 Rough-plated sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198294A (en) * 1981-05-29 1982-12-04 Matsushita Electric Works Ltd Solar heat absorber and its production
JPS5822845A (en) * 1981-07-31 1983-02-10 Matsushita Electric Works Ltd Solar heat adsorbing body
US4894125A (en) * 1988-05-20 1990-01-16 Martin Marietta Corporation Optically black pliable foils
JP2008184633A (en) * 2007-01-29 2008-08-14 Furukawa Circuit Foil Kk Method for surface-treating metal foil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198294A (en) * 1981-05-29 1982-12-04 Matsushita Electric Works Ltd Solar heat absorber and its production
JPS5822845A (en) * 1981-07-31 1983-02-10 Matsushita Electric Works Ltd Solar heat adsorbing body
US4894125A (en) * 1988-05-20 1990-01-16 Martin Marietta Corporation Optically black pliable foils
JP2008184633A (en) * 2007-01-29 2008-08-14 Furukawa Circuit Foil Kk Method for surface-treating metal foil

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101929635B1 (en) * 2013-08-29 2018-12-14 제이엑스금속주식회사 Surface-treated metal material, carrier-attached metal foil, connector, terminal, laminated article, shield tape, shield material, printed wiring board, worked metal member, electronic device, and method for manufacturing printed wiring board
US10333100B2 (en) 2014-08-29 2019-06-25 Sumitomo Chemical Company, Limited Organic electroluminescent device
JP2016084528A (en) * 2014-10-22 2016-05-19 Jx金属株式会社 Copper heat releasing material, copper foil with carrier, connector, terminal, laminate, shield material, printed wiring board, metal processing member, electronic apparatus and manufacturing method of printed wiring board
JP2017089004A (en) * 2015-11-06 2017-05-25 株式会社ワールドメタル Bonding member
CN105714345A (en) * 2016-04-14 2016-06-29 中山品高电子材料有限公司 Method of silver electroplating on nickel of LED bracket
JP7330187B2 (en) 2018-07-19 2023-08-21 東洋鋼鈑株式会社 Roughened nickel plated sheet
CN112424400A (en) * 2018-07-19 2021-02-26 东洋钢钣株式会社 Roughened nickel plated sheet
JPWO2020017655A1 (en) * 2018-07-19 2021-08-02 東洋鋼鈑株式会社 Roughened nickel plated plate
WO2020017655A1 (en) * 2018-07-19 2020-01-23 東洋鋼鈑株式会社 Roughened nickel-plated sheet
US11760063B2 (en) 2018-07-19 2023-09-19 Toyo Kohan Co., Ltd. Roughened nickel-plated sheet
CN112424400B (en) * 2018-07-19 2023-12-05 东洋钢钣株式会社 Roughened nickel plated board
WO2020250946A1 (en) * 2019-06-12 2020-12-17 東洋鋼鈑株式会社 Roughened plated sheet
US11732376B2 (en) 2019-06-12 2023-08-22 Toyo Kohan Co., Ltd. Roughened plated sheet
JP7499763B2 (en) 2019-06-12 2024-06-14 東洋鋼鈑株式会社 Rough-plated sheet

Also Published As

Publication number Publication date
JP5898462B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5898462B2 (en) High emissivity metal foil
JP5977488B2 (en) Method for producing multilayer plated aluminum or aluminum alloy foil
CN104593841B (en) Aluminum-based copper-plated graphene film composite material with high heat-conducting property and preparation method thereof
CN103221583A (en) Surface treated copper foil
TWI449809B (en) Electrical and electronic components for the use of composite materials and electrical and electronic components
JP5281732B2 (en) Surface processing method of aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having a surface processed by the method
JP6529684B2 (en) Surface-treated copper foil and copper-clad laminate using the same
JP4159897B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
TW200934892A (en) Electrolytic copper foil and circuit board
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
KR20010102562A (en) Surface treated copper foil and method for preparing the same and copper-clad laminate using the same
CN102548202B (en) Roughly-processed copper foil and manufacture method thereof
JP2017122274A (en) Surface-treated copper foil
WO2015099156A1 (en) Composite metal foil, composite metal foil with carrier, metal-clad laminate obtained using said composite metal foil or said composite metal foil with carrier, and printed wiring board
JP2006342369A (en) SURFACE TREATED Al SHEET
JP6045235B2 (en) High emissivity metal foil
JP7421208B2 (en) Surface treated copper foil and its manufacturing method
JP2016141823A (en) Surface-treated copper foil and laminate sheet
US20140308538A1 (en) Surface treated aluminum foil for electronic circuits
JP4409356B2 (en) Manufacturing method of surface-treated Al plate for heat sink
TWI415742B (en) A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool
TWI405510B (en) Roughening-treated copper foil and manufacturing method thereof
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250