JP5145092B2 - Aluminum material for printed wiring board and method for producing the same - Google Patents

Aluminum material for printed wiring board and method for producing the same Download PDF

Info

Publication number
JP5145092B2
JP5145092B2 JP2008075217A JP2008075217A JP5145092B2 JP 5145092 B2 JP5145092 B2 JP 5145092B2 JP 2008075217 A JP2008075217 A JP 2008075217A JP 2008075217 A JP2008075217 A JP 2008075217A JP 5145092 B2 JP5145092 B2 JP 5145092B2
Authority
JP
Japan
Prior art keywords
oxide film
printed wiring
acid compound
acrylic acid
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008075217A
Other languages
Japanese (ja)
Other versions
JP2009228064A (en
Inventor
長谷川真一
倉田正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2008075217A priority Critical patent/JP5145092B2/en
Publication of JP2009228064A publication Critical patent/JP2009228064A/en
Application granted granted Critical
Publication of JP5145092B2 publication Critical patent/JP5145092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、表面処理を施したアルミニウム材に関し、プリント配線基板用として用いられる樹脂密着性、耐食性及び熱伝導性に優れたアルミニウム材及びその製造方法に関する。 The present invention relates to an aluminum material subjected to a surface treatment, and relates to an aluminum material excellent in resin adhesion, corrosion resistance, and thermal conductivity used for a printed wiring board and a method for producing the same.

純アルミニウム板又はアルミニウム合金板(アルミニウム板)は、軽量で適度な機械的特性を有し、かつ美感、成形加工性、耐食性等に優れた特徴を有しているため、各種容器類、構造材、機械部品等に広く使われている。   Pure aluminum plates or aluminum alloy plates (aluminum plates) are lightweight, have appropriate mechanical properties, and have excellent aesthetics, moldability, corrosion resistance, etc. Widely used in machine parts.

近年、アルミニウム板の持つ高い熱伝導性に注目し、プリント配線基板としての用途が急速に増加している。すなわち、近年の電機・電子機器の小型化、軽量化に伴い、プリント配線基板には従来以上の多層化、高集積化及び高密度化が要求されるようになっている。そして、従来の絶縁体を用いた基板では、高密度に実装された電子部品から発する熱を放散しきれず回路の不安定化を招いていた。これに対し、熱伝導性に優れたアルミニウム板を基板として採用することにより、基板自身による電子部品の冷却が可能となり、回路全体の性能を向上させることができる。   In recent years, attention has been focused on the high thermal conductivity of an aluminum plate, and its use as a printed wiring board is rapidly increasing. In other words, with the recent reduction in size and weight of electric and electronic devices, printed wiring boards are required to have more layers, higher integration, and higher density than ever before. A conventional substrate using an insulator cannot dissipate heat generated from electronic components mounted at high density, resulting in circuit instability. On the other hand, by adopting an aluminum plate having excellent thermal conductivity as the substrate, the electronic components can be cooled by the substrate itself, and the performance of the entire circuit can be improved.

一般にアルミニウム板を用いたプリント配線基板は、アルミニウム板に銅箔等の金属箔を貼り付けて製造される。その際、接着剤としてエポキシ系樹脂やポリイミド系樹脂等が用いられるのであるが、これらの樹脂とアルミニウム板表面の密着性を向上させるため、従来さまざまな処理方法が提案されてきた。   Generally, a printed wiring board using an aluminum plate is manufactured by attaching a metal foil such as a copper foil to an aluminum plate. At that time, epoxy resin, polyimide resin, or the like is used as an adhesive, and various treatment methods have been proposed in the past in order to improve the adhesion between these resins and the aluminum plate surface.

例えば特許文献1には、貫通孔を設けたアルミニウム板を液温40〜90℃のアルカリ性溶液を用いて電気量80〜250C/dmにて交流波形により8〜30秒間の電解処理し、貫通孔に樹脂を充填して孔埋めした後、このアルミニウム板に回路体を積層する方法が示されている。 For example, in Patent Document 1, an aluminum plate provided with a through hole is subjected to electrolytic treatment for 8 to 30 seconds with an AC waveform at an electric quantity of 80 to 250 C / dm 2 using an alkaline solution having a liquid temperature of 40 to 90 ° C. A method of laminating a circuit body on this aluminum plate after filling a hole with resin and filling the hole is shown.

また特許文献2には、アルミニウム板の少なくとも片面に厚さが50〜3000オングストロームの無孔質陽極酸化皮膜を形成し、さらにこの無孔質陽極酸化皮膜の上にシランカップリング剤等の処理塗膜層を形成し、この塗膜層の上に熱可塑性樹脂被覆膜を形成する方法が示されている。   In Patent Document 2, a nonporous anodic oxide film having a thickness of 50 to 3000 angstroms is formed on at least one surface of an aluminum plate, and a treatment coating such as a silane coupling agent is applied on the nonporous anodic oxide film. A method for forming a film layer and forming a thermoplastic resin coating film on the coating layer is shown.

特開平09−18140号公報Japanese Patent Laid-Open No. 09-18140 特開2002−155397号公報JP 2002-155397 A

しかし、上記のような従来技術には、以下のような問題があった。
すなわち、近年の電機・電子製品の急速な小型化に伴い、プリント配線基板の熱伝導性の重要性はますます増大している。アルミニウム板と銅箔等を貼り合せるための接着剤層は熱伝導性が劣ることから、より薄層化される方向となっているが、こうした技術的動向に対し、特許文献1のようなアルミニウム酸化膜自体の樹脂密着性を向上させる方法では、密着力が不足する事例が多発している。また特許文献2のようにアルミニウム酸化膜の上にシランカップリング剤等を塗布する方法は、樹脂密着力こそ保たれるものの、熱伝導性に劣る結果となっている。
However, the conventional techniques as described above have the following problems.
That is, with the rapid miniaturization of electrical and electronic products in recent years, the importance of thermal conductivity of printed wiring boards is increasing. The adhesive layer for bonding an aluminum plate and copper foil or the like is in the direction of being made thinner because of its poor thermal conductivity. In the method of improving the resin adhesion of the oxide film itself, there are many cases where the adhesion is insufficient. Moreover, the method of applying a silane coupling agent or the like on the aluminum oxide film as in Patent Document 2 results in inferior thermal conductivity although the resin adhesion is maintained.

本発明者は、上記課題を解決すべく検討を重ねた結果、アルミニウム素地側の緻密なバリア層とその反対側のポア構造とを有する酸化膜をアルミニウム基材に設け、しかもそのポア構造における小孔の中にアクリル酸化合物重合体が取り込まれた構造を形成させることが極めて有効であることを見出した。具体的には、酸化膜全体の厚みを50nm〜500nmとし、バリア層の厚みを3nm〜30nmとし、ポア構造は直径5nm〜20nmの小孔を有するものとした。またポア構造の小孔中には、重量平均分子量500につき1個以上のカルボキシル基を含有するアクリル酸化合物重合体が取り込まれている。そして、酸化膜に取り込まれているアクリル酸化合物重合体量としては、ポア構造の全小孔容積に対するアクリル酸化合物重合体の体積比において5%〜100%とし、かつ、酸化膜の表面に付着するアクリル酸化合物重合体量は1mg/m未満とするのが好ましいことを見出した。 As a result of repeated studies to solve the above problems, the present inventor provided an oxide film having a dense barrier layer on the aluminum substrate side and a pore structure on the opposite side on the aluminum base material, and the small pore size in the pore structure. It has been found that it is extremely effective to form a structure in which an acrylic acid compound polymer is incorporated in the pores. Specifically, the thickness of the entire oxide film is 50 nm to 500 nm, the thickness of the barrier layer is 3 nm to 30 nm, and the pore structure has small holes with a diameter of 5 nm to 20 nm. In addition, an acrylic acid compound polymer containing one or more carboxyl groups per weight average molecular weight of 500 is incorporated into the pores having a pore structure. The amount of the acrylic acid compound polymer taken into the oxide film is 5% to 100% in the volume ratio of the acrylic acid compound polymer to the total pore volume of the pore structure, and adheres to the surface of the oxide film. It has been found that the amount of the acrylic acid compound polymer is preferably less than 1 mg / m 2 .

このような酸化膜を形成することにより、バリア層により耐食性がもたらされる。また、ポア構造により酸化膜の表面積が増大し、ポア構造の小孔中にアクリル酸化合物重合体が取り込まれた構造により酸化膜とアクリル酸化合物重合体の接触面積がきわめて大きくなる。その結果、酸化膜とアクリル酸化合物重合体との密着力が増大するとともに、アクリル酸化合物重合体と接着剤層等との樹脂密着性も向上する。更に、アルミニウム素地−酸化膜−アクリル酸化合物重合体の厚みが極めて薄いので、熱伝導性にも優れる。   By forming such an oxide film, the barrier layer provides corrosion resistance. Further, the surface area of the oxide film is increased by the pore structure, and the contact area between the oxide film and the acrylic acid compound polymer becomes extremely large by the structure in which the acrylic acid compound polymer is taken into the pores of the pore structure. As a result, the adhesion between the oxide film and the acrylic acid compound polymer is increased, and the resin adhesion between the acrylic acid compound polymer and the adhesive layer is also improved. Furthermore, since the aluminum base-oxide film-acrylic acid compound polymer is extremely thin, the thermal conductivity is excellent.

すなわち本発明は請求項1において、アルミニウム基材とその少なくとも一方の表面に形成した酸化膜を有するプリント配線基板用アルミニウム材であって、前記酸化膜は50nm〜500nmの厚みを有し、かつ、アルミニウム素地側の3nm〜30nmの厚みを有するバリア層とその反対側のポア構造とを備え、当該ポア構造は、アクリル酸化合物重合体を取り込む5nm〜20nmの直径を有する小孔を有し、前記アクリル酸化合物重合体は、重量平均分子量500につき1個以上のカルボキシル基を含有し、アルカリ交流電解によって電解溶液中のアクリル酸化合物重合体がその重量平均分子量を変えることなく析出して前記小孔中に取り込まれており、上塗り樹脂層と金属とを含むプリント配線を、上塗り樹脂層が前記酸化膜に接する状態で当該プリント配線基板用アルミニウム材に加熱圧着し、前記アクリル酸化合物重合体と上塗り樹脂層の溶融接着層を形成することによりプリント配線基板とするために使用されることを特徴とするプリント配線基板用アルミニウム材とした。 That is, the present invention is the aluminum material for a printed wiring board having an aluminum base material and an oxide film formed on at least one surface thereof in claim 1, wherein the oxide film has a thickness of 50 nm to 500 nm, and comprising a barrier layer having a thickness of 3nm~30nm aluminum matrix side and the pore structure of the opposite side, the pore structure has a small hole having a diameter of 5nm~20nm incorporating acrylic acid compound polymer, wherein The acrylic acid compound polymer contains one or more carboxyl groups per weight average molecular weight of 500, and the acrylic acid compound polymer in the electrolytic solution precipitates without changing its weight average molecular weight by alkaline alternating current electrolysis. The printed wiring including the top coat resin layer and the metal is incorporated into the top coat resin layer and the oxide film. That thermocompression bonding to the printed circuit aluminum material for the substrate in the state, characterized in that it is used for a printed wiring board by forming a melt adhesive layer of the acrylic acid compound polymer and the topcoat resin layer printed It was set as the aluminum material for wiring boards .

また本発明は請求項2において、前記酸化膜のポア構造の小孔に取り込まれているアクリル酸化合物重合体の量を、全小孔の容積に対するアクリル酸化合物重合体の体積の比において5%〜100%とし、かつ、ポア構造に取り込まれておらず酸化膜表面に付着するアクリル酸化合物重合体の量を1mg/m未満とした。 In the present invention, the amount of the acrylic acid compound polymer taken into the pores of the pore structure of the oxide film is preferably 5% in the ratio of the volume of the acrylic acid compound polymer to the total pore volume. The amount of the acrylic acid compound polymer that was not taken into the pore structure and adhered to the surface of the oxide film was less than 1 mg / m 2 .

更に本発明は請求項3において、請求項1又は2に記載のプリント配線基板用アルミニウム材の製造方法であって、アルミニウム基材を電極とし、pH9〜13で液温35℃〜80℃であり、重量平均分子量が500〜5000で重量平均分子量500につき1個以上のカルボキシル基を含有する水溶性アクリル酸化合物重合体を0.1重量%〜10重量%溶解したアルカリ性水溶液を電解溶液とし、周波数20Hz〜100Hz、電流密度4A/dm〜50A/dm及び電解時間5秒〜60秒の条件下でアルカリ交流電解することを特徴とするプリント配線基板用アルミニウム材の製造方法とした。 Furthermore, the present invention is the method for producing an aluminum material for a printed wiring board according to claim 1 or 2, wherein the aluminum substrate is an electrode, and the liquid temperature is 35 ° C to 80 ° C at pH 9 to 13. An alkaline aqueous solution in which 0.1 to 10% by weight of a water-soluble acrylic acid compound polymer having a weight average molecular weight of 500 to 5,000 and containing one or more carboxyl groups per weight average molecular weight of 500 is used as an electrolytic solution. 20Hz~100Hz, and a current density of 4A / dm 2 ~50A / dm 2 and a manufacturing method of a printed wiring board for aluminum material, characterized in that the alkali alternating current electrolysis under conditions of electrolysis time 5 seconds to 60 seconds.

本発明により、ポア構造を有する酸化膜ならびにポア構造に取り込まれたアクリル樹脂の作用に基づき、樹脂密着性、耐食性及び熱伝導性に優れたプリント配線基板用アルミニウム材を提供することができる。 According to the present invention, it is possible to provide an aluminum material for a printed wiring board that is excellent in resin adhesion, corrosion resistance, and thermal conductivity based on the action of an oxide film having a pore structure and an acrylic resin incorporated into the pore structure.

以下、本発明の詳細を順に説明する。
本発明は、アルミニウム酸化膜のポア構造の小孔中に、特定条件を満たすアクリル酸化合物の重合体(以下「アクリル樹脂」と呼称する)を取り込ませることにより、プリント配線基板用アルミニウム材の樹脂密着性、耐食性及び熱伝導性を向上及び確保するものである。
Hereinafter, details of the present invention will be described in order.
The present invention provides a resin of an aluminum material for a printed wiring board by incorporating a polymer of an acrylic acid compound satisfying specific conditions (hereinafter referred to as “acrylic resin”) into the pores of the pore structure of the aluminum oxide film. It improves and ensures adhesion, corrosion resistance, and thermal conductivity.

A.アルミニウム基材について
本発明で用いるアルミニウム基材としては、純アルミニウム又はアルミニウム合金からなる基材(以下、これらを「アルミニウム基材」と呼称する)が用いられ、用途や要求特性に応じて適宜選択することができる。アルミニウム合金としては、1000系、3000系、5000系及び6000系等が好適に用いられる。アルミニウム基材は、通常、0.5〜2.0mmの厚さのアルミニウム板が好適に用いられる。
A. About the aluminum base material As the aluminum base material used in the present invention, a base material made of pure aluminum or an aluminum alloy (hereinafter referred to as “aluminum base material”) is used, and is appropriately selected according to the use and required characteristics. can do. As the aluminum alloy, 1000 series, 3000 series, 5000 series, 6000 series and the like are preferably used. Usually, an aluminum plate having a thickness of 0.5 to 2.0 mm is suitably used as the aluminum substrate.

B.酸化膜の構造について
本発明者らは、従来技術におけるアルカリ交流電解処理に注目し、TEM(透過型電子顕微鏡)及びFT―IR(赤外吸収分光法)等により酸化膜の性状評価を行った。その結果、以下に示す要件を達成することにより、極めて優れた特性が得られることを見出したものである。
B. Regarding the structure of the oxide film, the present inventors paid attention to the alkaline alternating current electrolytic treatment in the prior art, and evaluated the property of the oxide film by TEM (transmission electron microscope) and FT-IR (infrared absorption spectroscopy). . As a result, it has been found that extremely excellent characteristics can be obtained by achieving the following requirements.

酸化膜は、アルミニウム素地側の緻密なバリア層とその反対側のポア構造から構成される。酸化膜全体の厚みは50nm〜500nmである。50nm未満では、ポア構造の厚さが十分でないことから樹脂密着性が不足するためである。一方、500nmを超えると、酸化膜自体が凝集破壊を生じ易くなり、これまた樹脂密着性が低下するためである。   The oxide film is composed of a dense barrier layer on the aluminum substrate side and a pore structure on the opposite side. The total thickness of the oxide film is 50 nm to 500 nm. If it is less than 50 nm, the resin adhesion is insufficient because the thickness of the pore structure is not sufficient. On the other hand, when the thickness exceeds 500 nm, the oxide film itself is liable to cause cohesive failure, and this also decreases the resin adhesion.

バリア層は緻密な酸化膜層であり、その厚みは3nm〜30nmとする。このバリア層はアルミニウム素地に強固な耐食性をもたらす他、このバリア層を介してポア構造とアルミニウム素地の強固な結合が達成される。バリア層が3nm未満では、ポア構造から水分が浸入した際の耐食性が確保できず、30nmを超えると、その緻密性ゆえに熱伝導率が低下してしまう。   The barrier layer is a dense oxide film layer having a thickness of 3 nm to 30 nm. This barrier layer provides strong corrosion resistance to the aluminum substrate, and a strong bond between the pore structure and the aluminum substrate is achieved through this barrier layer. If the barrier layer is less than 3 nm, the corrosion resistance when moisture enters from the pore structure cannot be ensured, and if it exceeds 30 nm, the thermal conductivity decreases due to the denseness.

また、酸化膜はその表面から深さ方向に向かう小孔を備えたポア構造を有し、小孔の直径は5nm〜20nmである。ポア構造とは、酸化膜の表面全体にわたって形成され深さ方向においてバリア層に達する多数の小孔から成る構造を指す。このポア構造は、後述するアクリル樹脂と酸化膜との接触面積を増大させ、本発明の樹脂密着性を発揮するために重要なものである。ポア構造の小孔の直径が5nm未満の場合には、アクリル樹脂との接触面積が十分に確保されない。一方、20nmを超える場合には、酸化膜自身の強度が失われることによる凝集破壊が発生し易くなる。したがって、いずれの場合も樹脂密着性が低下してしまう。   The oxide film has a pore structure with small holes extending from the surface in the depth direction, and the diameter of the small holes is 5 nm to 20 nm. The pore structure refers to a structure composed of a large number of small holes that are formed over the entire surface of the oxide film and reach the barrier layer in the depth direction. This pore structure is important for increasing the contact area between an acrylic resin and an oxide film, which will be described later, and exhibiting the resin adhesion of the present invention. When the diameter of the pore having the pore structure is less than 5 nm, a sufficient contact area with the acrylic resin is not ensured. On the other hand, when the thickness exceeds 20 nm, cohesive failure is likely to occur due to the loss of the strength of the oxide film itself. Therefore, in any case, the resin adhesion is deteriorated.

なお、酸化膜の表面積に対するポア構造の小孔の全孔面積の比については特に制限されるものではないが、酸化膜の見かけ上の表面積(表面の微小な凹凸等を考慮せず、長さと幅の乗算で表される面積)に対し25%〜75%が好ましい。25%未満ではアクリル樹脂との接触面積が十分に確保できず、75%を超えると酸化膜自身の強度が失われることによる凝集破壊が発生し易くなる。また、ポア構造の酸化膜表面からの深さについては、酸化膜厚みとバリア層厚みとの関係にも依存するが、30nm以上、好ましくは35nm以上である。30nm未満では、アクリル樹脂との接触面積が十分に確保できないからである。   The ratio of the total pore area of the pores having the pore structure to the surface area of the oxide film is not particularly limited. 25% to 75% is preferable with respect to the area expressed by multiplication of the width. If it is less than 25%, a sufficient contact area with the acrylic resin cannot be ensured, and if it exceeds 75%, cohesive failure due to loss of the strength of the oxide film itself tends to occur. The depth of the pore structure from the oxide film surface is 30 nm or more, preferably 35 nm or more, although it depends on the relationship between the oxide film thickness and the barrier layer thickness. This is because if the thickness is less than 30 nm, a sufficient contact area with the acrylic resin cannot be secured.

C.アクリル樹脂について
本発明において、ポア構造の小孔に取り込まれる物質としては、重量平均分子量500につき1個以上のカルボキシル基を含有するアクリル樹脂が用いられる。これは、アクリル樹脂に含まれるカルボキシル基が、アルミニウム酸化膜と水素結合して強固に結びつくとともに、樹脂の骨格部が上塗り樹脂成分と溶融接着層を形成することにより、アルミニウム酸化膜と上塗り樹脂の双方に対して強力な結合作用を発揮するためである。カルボキシル基の量が、重量平均分子量500につき1個未満のアクリル樹脂の場合、上述の結合作用のうちアルミニウム酸化膜に対する作用が不足するため、樹脂密着性が不足する。なお、ポア構造の小孔に取り込まれるアクリル樹脂の重量平均分子量は、後述のアルカリ交流電解で用いるアクリル樹脂電解質の分子量に依存する。通常、電解質がその分子量を変えずにそのまま析出する。
C. Regarding the acrylic resin In the present invention, an acrylic resin containing one or more carboxyl groups per weight average molecular weight of 500 is used as the substance taken into the pores having a pore structure. This is because the carboxyl group contained in the acrylic resin is firmly bonded to the aluminum oxide film by hydrogen bonding, and the skeleton of the resin forms a molten adhesive layer with the overcoat resin component, so that the aluminum oxide film and the overcoat resin This is to exert a strong binding action on both. In the case of an acrylic resin having a carboxyl group amount of less than 1 per 500 weight average molecular weights, the resin adhesion is insufficient because the above-mentioned bonding action is insufficient for the aluminum oxide film. Note that the weight average molecular weight of the acrylic resin taken into the pores having the pore structure depends on the molecular weight of the acrylic resin electrolyte used in alkaline alternating current electrolysis described later. Usually, the electrolyte is deposited as it is without changing its molecular weight.

本発明におけるアクリル樹脂の量は、酸化膜に取り込まれる量としては、全小孔容積に対するアクリル樹脂の体積比として5%〜100%であり、酸化膜表面に付着している量としては0.1g/m未満であることが好ましい。小孔容積に対するアクリル樹脂量の体積比を5%以上とすることにより、酸化膜とアクリル樹脂との結合の影響が顕著に発現し始めるためである。このような結びつき効果は上記体積比が増加するほど増加し、体積比が100%、すなわちポア容積がアクリル樹脂で完全に満たされることにより最大となる。そして酸化膜表面に付着しているアクリル樹脂の量は、熱伝導性を良好にするためにより少ないことが望ましい。具体的には、付着量にして1mg/m未満とすることにより、熱伝導性の低下を回避することができる。 The amount of the acrylic resin in the present invention is 5% to 100% as the volume ratio of the acrylic resin to the total pore volume as the amount taken into the oxide film, and the amount adhering to the surface of the oxide film is 0. It is preferably less than 1 g / m 2 . This is because, by setting the volume ratio of the acrylic resin amount to the small pore volume to be 5% or more, the influence of the bond between the oxide film and the acrylic resin starts to appear remarkably. Such a binding effect increases as the volume ratio increases, and is maximized when the volume ratio is 100%, that is, the pore volume is completely filled with the acrylic resin. The amount of acrylic resin adhering to the oxide film surface is desirably smaller in order to improve the thermal conductivity. Specifically, a decrease in thermal conductivity can be avoided by setting the adhesion amount to less than 1 mg / m 2 .

以上の要件を満たす限りにおいて、本発明においてポア構造の小孔内に取り込まれたアクリル樹脂には、公知のものがそのまま適用できる。具体的には、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸エステル、ポリヒドロキシアクリル酸、ポリヒドロキシアクリル酸エステル及びそれらの共重合体などが好適に用いられる。加えて、アンモニア、アミン類、或いは、アルカリ金属水酸化物等でpH調整したアクリル樹脂も、同様に好適に用いることができる。さらに、メラミン系化合物及びユリア系化合物を架橋剤として添加したアクリル樹脂も、同様に好適に用いることができる。これらのアクリル樹脂は、ポア構造の小孔内に取り込まれた状態において、重量平均分子量500〜100000であることが望ましい。   As long as the above requirements are satisfied, a publicly known resin can be applied as it is to the acrylic resin taken into the pores of the pore structure in the present invention. Specifically, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid ester, polyhydroxyacrylic acid, polyhydroxyacrylic acid ester and copolymers thereof are preferably used. In addition, an acrylic resin whose pH is adjusted with ammonia, amines, alkali metal hydroxides, or the like can be used as well. Furthermore, an acrylic resin to which a melamine compound and a urea compound are added as a crosslinking agent can also be suitably used. These acrylic resins desirably have a weight average molecular weight of 500 to 100,000 in a state of being taken into pores having a pore structure.

D.製造方法について
本発明に係るプリント配線基板用アルミニウム材は、pH9〜13で液温35℃〜80℃であり、重量平均分子量が500〜5000の水溶性アクリル樹脂を0.1重量%〜10重量%溶解したアルカリ性水溶液を電解溶液とし、アルミニウム基材を電極として、周波数20Hz〜100Hz、電流密度4A/dm〜50A/dm、電解時間5秒〜60秒条件下においてアルカリ交流電解を行う方法によって製造される。なお、他方の電極としては、黒鉛電極等が用いられる。
D. About the manufacturing method The aluminum material for printed wiring boards according to the present invention has a pH of 9 to 13, a liquid temperature of 35 ° C. to 80 ° C., and a water-soluble acrylic resin having a weight average molecular weight of 500 to 5000 of 0.1 wt% to 10 wt. A method in which alkaline alternating current electrolysis is carried out under the conditions of a frequency of 20 Hz to 100 Hz, a current density of 4 A / dm 2 to 50 A / dm 2 , and an electrolysis time of 5 seconds to 60 seconds, using an alkaline aqueous solution dissolved in an amount of 1% as an electrolytic solution and an aluminum substrate as an electrode. Manufactured by. A graphite electrode or the like is used as the other electrode.

電解溶液として用いるアルカリ性水溶液は、りん酸ナトリウム、りん酸水素カリウム、ピロりん酸ナトリウム、ピロりん酸カリウム及びメタりん酸ナトリウム等のりん酸塩や;水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物や;水酸化アンモニウム溶液;或いは、これらの混合物の水溶液を用いることができる。後述するように電解溶液のpHを特定の範囲に保つ必要があることから、バッファー効果の期待できるりん酸塩系物質を含有するアルカリ水溶液を用いるのが好ましい。このようなアルカリ成分の濃度は、電解液溶液のpHが所望の値になるように調整される。なお、これらのアルカリ性水溶液には、汚れ成分に対する除去能力の向上のために界面活性剤を添加してもよい。   Alkaline aqueous solutions used as electrolytic solutions include phosphates such as sodium phosphate, potassium hydrogen phosphate, sodium pyrophosphate, potassium pyrophosphate and sodium metaphosphate; and alkali metal water such as sodium hydroxide and potassium hydroxide. An oxide or ammonium hydroxide solution; or an aqueous solution of a mixture thereof can be used. Since it is necessary to keep the pH of the electrolytic solution in a specific range as will be described later, it is preferable to use an alkaline aqueous solution containing a phosphate-based substance that can be expected to have a buffer effect. The concentration of the alkali component is adjusted so that the pH of the electrolyte solution becomes a desired value. In addition, you may add surfactant to these alkaline aqueous solution for the improvement of the removal capability with respect to a soil component.

電解溶液のpHは9〜13とする必要があり、9.5〜12とするのが好ましい。pHが9未満の場合には、電解溶液のアルカリエッチング力が弱いため酸化膜が不定形皮膜となる。その結果、ポア構造及びバリア層が形成されない。一方、pHが13を超えると、アルカリエッチング力が過剰になるため酸化膜が成長し難くなり、更にバリア層形成も阻害される。   The pH of the electrolytic solution needs to be 9 to 13, and preferably 9.5 to 12. When the pH is less than 9, the oxide film becomes an amorphous film because the alkaline etching power of the electrolytic solution is weak. As a result, the pore structure and the barrier layer are not formed. On the other hand, when the pH exceeds 13, the alkali etching power becomes excessive, and therefore, the oxide film is difficult to grow, and the barrier layer formation is also inhibited.

電解溶液温度は35℃〜80℃とする必要があり、40℃〜70℃とするのが好ましい。電解溶液温度が35℃未満では、アルカリエッチング力が不足するため酸化膜のポア構造が不完全となる。一方、80℃を超えるとアルカリエッチング力が過剰になるため、バリア層及びポア構造ともに成長が阻害される。   The electrolytic solution temperature needs to be 35 ° C to 80 ° C, preferably 40 ° C to 70 ° C. When the electrolytic solution temperature is less than 35 ° C., the alkaline etching power is insufficient, and the pore structure of the oxide film becomes incomplete. On the other hand, when the temperature exceeds 80 ° C., the alkali etching force becomes excessive, and thus the growth of both the barrier layer and the pore structure is inhibited.

酸化膜のポア構造の中にアクリル樹脂が取り込まれた構造を達成するために、上記の電解処理液中には電解質として、重量平均分子量が500〜5000で重量平均分子量500につき1個以上のカルボキシル基を含有する水溶性アクリル樹脂を0.1重量%〜10重量%の濃度で含有させる必要がある。水溶性アクリル樹脂の濃度をこの範囲に保ちつつアルカリ交流電解を行うことにより、酸化膜におけるポア構造の小孔中にアクリル樹脂が取り込まれた本発明の構造を達成することができる。   In order to achieve a structure in which an acrylic resin is incorporated in the pore structure of the oxide film, the electrolytic treatment solution has an electrolyte having a weight average molecular weight of 500 to 5000 and one or more carboxyls per 500 weight average molecular weight. It is necessary to contain a water-soluble acrylic resin containing a group at a concentration of 0.1 wt% to 10 wt%. By carrying out alkaline alternating current electrolysis while keeping the concentration of the water-soluble acrylic resin within this range, the structure of the present invention in which the acrylic resin is taken into the small pores of the pore structure in the oxide film can be achieved.

重量平均分子量が500未満では、水溶性が比較的高度となりポア構造に取り込まれ難い。一方、重量平均分子量が5000を超えると、濃度に依存するものの電気分解界面における電解溶液の粘度増加をもたらして、酸化膜の成長速度が低下する虞がある。濃度が0.1重量%未満では、低濃度過ぎるためアクリル樹脂が取り込まれないままポア構造が形成されてしまう。一方、濃度が10重量%を超えると、ポア構造の小孔中に取り込まれるアクリル樹脂量は十分であるものの、小孔中に取り込まれず酸化膜表面に存在するアクリル樹脂まで増加することになり、更に液調製において多量の水溶性アクリル樹脂が消費されるため不経済である。なお、添加するアクリル樹脂は、重量平均分子量500につき1個以上のカルボキシル基を含有したものでなければならない。   If the weight average molecular weight is less than 500, the water solubility is relatively high and it is difficult to incorporate into the pore structure. On the other hand, if the weight average molecular weight exceeds 5000, although depending on the concentration, the viscosity of the electrolytic solution at the electrolysis interface increases, and the growth rate of the oxide film may decrease. If the concentration is less than 0.1% by weight, the pore structure is formed without the acrylic resin being taken in because the concentration is too low. On the other hand, when the concentration exceeds 10% by weight, the amount of the acrylic resin taken into the pores of the pore structure is sufficient, but the acrylic resin existing on the oxide film surface without being taken into the pores increases. Furthermore, since a large amount of water-soluble acrylic resin is consumed in liquid preparation, it is uneconomical. The acrylic resin to be added must contain one or more carboxyl groups per weight average molecular weight of 500.

このような水溶性アクリル樹脂としては、上述の、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸エステル、ポリヒドロキシアクリル酸、ポリヒドロキシアクリル酸エステル及びそれらの共重合体;アンモニア、アミン類、或いは、アルカリ金属水酸化物等でpH調整したアクリル樹脂;メラミン系化合物及びユリア系化合物を架橋剤として添加したアクリル樹脂;を好適に用いることができる。   Examples of such a water-soluble acrylic resin include polyacrylic acid, polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid ester, polyhydroxyacrylic acid, polyhydroxyacrylic acid ester, and copolymers thereof; ammonia, An acrylic resin whose pH is adjusted with an amine or an alkali metal hydroxide; an acrylic resin to which a melamine compound and a urea compound are added as a crosslinking agent can be preferably used.

アルカリ交流電解においては、バリア層とポア構造を含めた酸化膜全体の厚みは電気量、すなわち電流密度と電解時間の積によって制御され、基本的に電気量が多いほど酸化膜全体の厚みが増加する。一定の電解条件の下に、電解の初期において電極上にバリア層が形成され、次いで、形成されたバリア層上にポア層が形成されるものと考えられる。電解条件は以下の通りである。   In alkaline alternating current electrolysis, the thickness of the entire oxide film including the barrier layer and pore structure is controlled by the quantity of electricity, that is, the product of the current density and the electrolysis time. Basically, the greater the quantity of electricity, the greater the total thickness of the oxide film. To do. Under certain electrolytic conditions, it is considered that a barrier layer is formed on the electrode at the initial stage of electrolysis, and then a pore layer is formed on the formed barrier layer. The electrolysis conditions are as follows.

用いる周波数は20Hz〜100Hzである。これは、20Hz未満では、電気分解としては直流的要素が高まる結果、ポア構造の直径が小さくなり過ぎ、5nm以上のポア直径が達成されない。一方、100Hzを超えると、陽極と陰極の反転が速すぎるために粗大なポアが形成され、20nm以下のポア直径が達成されない。   The frequency used is 20 Hz to 100 Hz. This is because if the frequency is less than 20 Hz, the direct current element increases as the electrolysis, and as a result, the diameter of the pore structure becomes too small to achieve a pore diameter of 5 nm or more. On the other hand, when the frequency exceeds 100 Hz, since the anode and the cathode are reversed too quickly, coarse pores are formed, and a pore diameter of 20 nm or less is not achieved.

電流密度は4A/dm〜50A/dmとする必要がある。電流密度が4A/dm未満では、バリア層のみが優先的に形成されるためにポア構造が得られない。一方、50A/dmを超えると、電流が過大になるため酸化膜の厚みの制御が困難となり処理ムラが起こり易い。 Current density is required to be 4A / dm 2 ~50A / dm 2 . When the current density is less than 4 A / dm 2 , only the barrier layer is formed preferentially, and therefore a pore structure cannot be obtained. On the other hand, if it exceeds 50 A / dm 2 , the current becomes excessive, so that it is difficult to control the thickness of the oxide film, and uneven processing tends to occur.

電解時間は5秒〜60秒とする必要がある。5秒未満の処理時間では、酸化膜の形成が急激過ぎるためポア構造もバリア層も十分に形成されず、不定形のアルミ酸化物から構成される酸化膜となるためである。一方、60秒を超えると、酸化膜が厚くなり過ぎたり再溶解する虞があるだけでなく、更に生産性も低下する。   The electrolysis time needs to be 5 to 60 seconds. When the processing time is less than 5 seconds, the formation of the oxide film is too rapid, so that neither the pore structure nor the barrier layer is sufficiently formed, resulting in an oxide film composed of amorphous aluminum oxide. On the other hand, if it exceeds 60 seconds, the oxide film may become too thick or may be re-dissolved, and the productivity is further reduced.

本発明に係るプリント配線基板用アルミニウム材における酸化膜のポア構造を確認するためには断面TEM観察が、酸化膜表面に付着しているアクリル樹脂量を測定するためには反射FT−IR測定が、それぞれ好適に用いられる。断面TEM観察は、観察対象物をウルトラミクロトーム等で薄片に加工することにより実施される。また、断面TEM観察により小孔に取り込まれたアクリル樹脂量も同時に測定できる。 In order to confirm the pore structure of the oxide film in the aluminum material for printed wiring boards according to the present invention, cross-sectional TEM observation is required, and in order to measure the amount of acrylic resin adhering to the oxide film surface, reflection FT-IR measurement is required. Are preferably used. Cross-sectional TEM observation is performed by processing an observation object into a thin piece with an ultramicrotome or the like. In addition, the amount of acrylic resin taken into the small holes by cross-sectional TEM observation can be measured simultaneously.

このような交流電解処理によってアルミニウム基材電極に析出するアクリル樹脂は、通常、電解質として用いた水溶性アクリル樹脂がその分子量を変えずにそのまま析出したものである。なお、アクリル樹脂の種類や電解条件を選択することによって、電解質であるアクリル樹脂が幾つか会合しつつ析出したものや、電解重合したもの、分解しつつ析出したものとすることもできる。   The acrylic resin deposited on the aluminum base electrode by such an alternating current electrolytic treatment is usually a water-soluble acrylic resin used as an electrolyte deposited as it is without changing its molecular weight. It should be noted that by selecting the type of acrylic resin and the electrolysis conditions, some of the acrylic resin as an electrolyte may be precipitated while associating, electrolytically polymerized, or decomposed and precipitated.

ところで、従来技術において人為的にアルミニウム酸化膜を形成させる方法として、陽極酸化処理(いわゆるアルマイト処理)がある。これは、主に酸性の処理浴を用いるとともに、被処理アルミニウムを陽極として直流電気分解する手法であるが、この手法を用いる限りにおいては、本発明の要請事項の達成は極めて困難である。すなわち、これらアルマイトにおける酸化膜厚みは数μm前後が常識的であり、50nm〜500nmという膜厚の制御は困難であり、加えて、アルニウム素地との界面にバリア層、その上にポア構造を有する酸化膜を作り込むことは不可能に近い。従って、本発明を実施するにあたっては、上述の方法が最善である。   Incidentally, as a method for artificially forming an aluminum oxide film in the prior art, there is an anodic oxidation treatment (so-called alumite treatment). This is a technique in which an acidic treatment bath is mainly used and direct current electrolysis is performed using aluminum to be treated as an anode. However, as long as this technique is used, it is extremely difficult to achieve the requirements of the present invention. That is, the oxide film thickness in these alumites is a common sense around several μm, and it is difficult to control the film thickness of 50 nm to 500 nm, and in addition, it has a barrier layer at the interface with the aluminium substrate and a pore structure on it. It is almost impossible to build an oxide film. Therefore, the above-described method is the best for practicing the present invention.

本発明では、酸化膜はアルミニウム基材の両面のうち少なくとも一方に形成される。すなわち、片面に酸化膜が形成された場合には、その酸化膜のポア構造の小孔内にアクリル樹脂が取り込まれる。一方、両面に酸化膜が形成された場合には、それぞれの酸化膜においてポア構造の小孔内にアクリル樹脂が取り込まれる。酸化膜を片面に形成するか両面に形成するかは、用途等に応じて適宜選択される。   In the present invention, the oxide film is formed on at least one of both surfaces of the aluminum substrate. That is, when an oxide film is formed on one side, acrylic resin is taken into the small holes of the pore structure of the oxide film. On the other hand, when oxide films are formed on both surfaces, acrylic resin is taken into the pores of the pore structure in each oxide film. Whether the oxide film is formed on one side or both sides is appropriately selected depending on the application.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
実施例1〜16及び比較例1〜12
アルミニウム基材として、アルミニウム合金板(板厚1.0mmのJIS5052合金板)を使用した。このアルミニウム合金板を電極に用い(対電極には黒鉛電極を用い)、ピロりん酸ナトリウムを主成分とするアルカリ水溶液を電解溶液として用いた。ピロりん酸ナトリウムなどのアルカリ成分の濃度は、所望のpHが得られるように適宜選択された。表1に示す電解条件にて、交流電解処理を実施した。なお、比較例12では、アルカリ交流電解処理に代わって、従来技術に基づいた硫酸アルマイト処理(厚さ2.5μm、封孔処理あり)を実施した。
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.
Examples 1-16 and Comparative Examples 1-12
As the aluminum substrate, an aluminum alloy plate (JIS 5052 alloy plate having a plate thickness of 1.0 mm) was used. This aluminum alloy plate was used as an electrode (a graphite electrode was used as a counter electrode), and an alkaline aqueous solution containing sodium pyrophosphate as a main component was used as an electrolytic solution. The concentration of the alkali component such as sodium pyrophosphate was appropriately selected so as to obtain a desired pH. Under the electrolysis conditions shown in Table 1, alternating current electrolysis was performed. In Comparative Example 12, a sulfuric acid alumite treatment (thickness: 2.5 μm, with sealing treatment) based on the prior art was performed instead of the alkaline alternating current electrolysis treatment.

Figure 0005145092
Figure 0005145092

アクリル樹脂としては、A(水溶性ポリアクリル酸エステル、重量平均分子量1000、カルボキシル基含有量=2個/500重量平均分子量)、B(水溶性ポリメタクリル酸、重量平均分子量1000、カルボキシル基含有量=5個/500重量平均分子量)、及びC(水溶性ポリアクリル酸エステル、重量平均分子量1000、カルボキシル基含有量=0.5個/500重量平均分子量)を用いた。   As acrylic resin, A (water-soluble polyacrylic acid ester, weight average molecular weight 1000, carboxyl group content = 2 units / 500 weight average molecular weight), B (water-soluble polymethacrylic acid, weight average molecular weight 1000, carboxyl group content = 5/500 weight average molecular weight) and C (water-soluble polyacrylate, weight average molecular weight 1000, carboxyl group content = 0.5 / 500 weight average molecular weight) were used.

上記アルカリ電解処理によって作成したサンプルの表面分析結果を、表2に示す。   Table 2 shows the results of the surface analysis of the sample prepared by the alkaline electrolytic treatment.

Figure 0005145092
Figure 0005145092

上記処理によって作製したサンプルの片面に、エポキシ樹脂を20μmの厚さに塗布し、厚さ35μmの電解銅箔を積層した後、ホットプレスにて165℃×90分の加熱圧着を行い、プリント配線基板のサンプルを作製した。   After applying an epoxy resin to a thickness of 20 μm on one side of the sample prepared by the above treatment and laminating an electrolytic copper foil with a thickness of 35 μm, thermocompression bonding is performed at 165 ° C. × 90 minutes with a hot press, and printed wiring A sample of the substrate was prepared.

このようにして作製したプリント配線基板サンプルに対し、以下の評価を実施した。
(耐熱接着性試験)
上記のプリント配線基板サンプルを55mm×25mmの大きさに切断し、オートクレーブ中にて121℃×16時間吸湿処理した。次いで、サンプルを260℃の溶融はんだ浴上に30秒間フロートし、銅箔を引き剥がした後のアルミニウム素地露出面積率により、樹脂に対するアルミニウム板の耐熱接着性を評価した。評価判定は以下の通りであり、◎、○、△を合格とし、××、×を不合格とした。
露出面積率0% ・・・◎
露出面積率0%を超えて10%以下 ・・・○
露出面積率10%を超えて25%以下 ・・・△
露出面積率25%を超えて50%以下 ・・・×
露出面積率50%を超える ・・・××
The following evaluations were performed on the printed wiring board samples thus produced.
(Heat resistant adhesion test)
The above printed wiring board sample was cut into a size of 55 mm × 25 mm and subjected to moisture absorption treatment in an autoclave at 121 ° C. × 16 hours. Subsequently, the sample was floated on a molten solder bath at 260 ° C. for 30 seconds, and the heat-resistant adhesion of the aluminum plate to the resin was evaluated based on the exposed area ratio of the aluminum substrate after the copper foil was peeled off. Evaluation evaluation was as follows, and ◎, ○, and Δ were acceptable, and xx and x were unacceptable.
Exposed area rate 0%
Exposed area ratio exceeding 0% and 10% or less
Exposed area ratio exceeding 10% and 25% or less ・ ・ ・ △
Exposed area ratio exceeding 25% and 50% or less ・ ・ ・ ×
Exposed area ratio exceeds 50% ・ ・ ・ XX

(耐食性試験)
上記のプリント配線基板サンプルを50mm×100mmの大きさに切断した後、カッターを用いて銅箔接着面からアルミニウム素地に達する深さの、長さ40mmのクロスカットを入れた。次いで、サンプルを、クエン酸−水和物(濃度=1重量%)と塩化ナトリウム(濃度=0.5重量%)の70℃混合溶液に72時間浸漬し、クロスカット端面に発生した耐食を評価した。評価判定は以下の通りであり、◎、○、△を合格とし、××、×を不合格とした。
腐食発生率0% ・・・◎
腐食発生率0%を超えて10%以下 ・・・○
腐食発生率10%を超えて25%以下 ・・・△
腐食発生率25%を超えて50%以下 ・・・×
腐食発生率50%を超える ・・・××
(Corrosion resistance test)
The printed wiring board sample was cut into a size of 50 mm × 100 mm, and then a 40 mm long crosscut was made using a cutter to reach the aluminum substrate from the copper foil adhesion surface. Next, the sample was immersed in a 70 ° C. mixed solution of citric acid-hydrate (concentration = 1% by weight) and sodium chloride (concentration = 0.5% by weight) for 72 hours to evaluate the corrosion resistance generated on the crosscut end face. did. Evaluation evaluation was as follows, and ◎, ○, and Δ were acceptable, and xx and x were unacceptable.
Corrosion rate 0% ・ ・ ・ ◎
Corrosion occurrence rate exceeding 0% and 10% or less
More than 10% corrosion rate and 25% or less ・ ・ ・ △
Corrosion rate exceeding 25% and 50% or less ・ ・ ・ ×
Corrosion rate exceeding 50% ・ ・ ・ XX

(熱伝導性試験)
上記のプリント配線基板サンプルを55mm×25mmの大きさに切断し、銅箔接着面を上、非接着面を下として架台に設置し、非接着面に熱電対を取り付けた。次に、260℃雰囲気にて十分加熱した熱源(鋳鉄製、10mm角の立方体)を上面に乗せて、下面の温度が200℃に達するまでの時間を測定した。評価判定は以下の通りであり、◎、○、△を合格とし、×を不合格とした。
20秒未満 ・・・◎
20秒以上40秒未満 ・・・○
40秒以上60秒未満 ・・・△
60秒以上 ・・・×
(Thermal conductivity test)
The printed wiring board sample was cut into a size of 55 mm × 25 mm, placed on a gantry with the copper foil bonding surface up and the non-bonding surface down, and a thermocouple was attached to the non-bonding surface. Next, a heat source (made of cast iron, 10 mm square cube) sufficiently heated in an atmosphere of 260 ° C. was placed on the upper surface, and the time until the temperature of the lower surface reached 200 ° C. was measured. The evaluation judgment is as follows, and 、, ○, and Δ are acceptable and × is unacceptable.
Less than 20 seconds
20 seconds or more and less than 40 seconds ・ ・ ・ ○
40 seconds or more and less than 60 seconds ・ ・ ・ △
60 seconds or longer

耐熱接着性試験、耐食性試験及び熱伝導性試験の評価結果を、表3に示す。表3において、評価項目全てが◎の場合は総合評価を◎とし、評価項目に◎と○が含まれる場合は総合評価を○とした。また、評価項目に××、×が含まれる場合は、そのうち最も悪い評価を総合評価をとした。   Table 3 shows the evaluation results of the heat-resistant adhesion test, the corrosion resistance test, and the thermal conductivity test. In Table 3, when all the evaluation items are ◎, the overall evaluation is ◎, and when the evaluation items include ◎ and ○, the overall evaluation is ○. Moreover, when xx and x were included in the evaluation items, the worst evaluation was taken as the overall evaluation.

Figure 0005145092
Figure 0005145092

表3から明らかなように、実施例1〜16は、本発明要件を満たすため、耐熱接着性試験、耐食性試験及び熱伝導性試験とも良好な評価結果を示した。   As is apparent from Table 3, Examples 1 to 16 showed good evaluation results in the heat-resistant adhesion test, the corrosion resistance test, and the thermal conductivity test in order to satisfy the requirements of the present invention.

一方、比較例1〜12は、本発明の要件を満たしていないため、耐熱密着性試験、耐食性試験及び熱伝導率評価が劣る結果となった。
比較例1では、電解溶液のpHが高過ぎ、かつ、電解溶液の温度も高温過ぎたため酸化膜が薄過ぎた。その結果、耐熱接着性と耐食性が不十分であった。
比較例2では、電解溶液のpHが低過ぎたため、ポア構造が形成されなかった。その結果、熱伝導性が不十分であった。
比較例3では、電解溶液の温度が低過ぎたため、ポア構造が形成されなかった。その結果、耐熱接着性と熱伝導性が不十分であった。
比較例4では、電解時間が長過ぎたため酸化膜が厚過ぎた。その結果、熱伝導性が不十分であった。
比較例5では、電解周波数が低過ぎたためポア構造の小孔直径が小さ過ぎた。その結果、耐熱接着性が不十分であった。
比較例6では、電解周波数が高過ぎたためポア構造の直径が大きくなり過ぎた。その結果、酸化膜が脆くなって耐熱接着性が不十分であった。
比較例7では、電流密度が高過ぎ、かつ、電解時間が短過ぎたため、一種のアモルファス状の不安定な酸化膜が生成してしまった。その結果、耐熱接着性が不十分であった。
比較例8では、電流密度が低過ぎたためポア構造が形成されず、分厚いバリア層が形成された。その結果、耐熱接着性と熱伝導性が不十分であった。
比較例9では、添加したアクリル樹脂に含有されるカルボキシル基の量が不足しており、耐熱接着性が不十分であった。
比較例10では、電解溶液に含有されるアクリル樹脂量が多過ぎたため、酸化膜の最表層にアクリル樹脂が多量に付着し過ぎた。その結果、熱伝導性が不十分であった。
比較例11では、電解溶液にアクリル樹脂が含有されておらず、したがって酸化膜にアクリル樹脂が取り込まれなかった。その結果、耐熱接着性が不十分であった。
比較例12では、単なる硫酸アルマイト処理が施されているので、耐熱接着性及び熱伝導性に劣っていた。
On the other hand, since Comparative Examples 1-12 did not satisfy the requirements of the present invention, the heat resistance adhesion test, the corrosion resistance test, and the thermal conductivity evaluation were inferior.
In Comparative Example 1, since the pH of the electrolytic solution was too high and the temperature of the electrolytic solution was too high, the oxide film was too thin. As a result, the heat resistant adhesiveness and the corrosion resistance were insufficient.
In Comparative Example 2, the pore structure was not formed because the pH of the electrolytic solution was too low. As a result, the thermal conductivity was insufficient.
In Comparative Example 3, the pore structure was not formed because the temperature of the electrolytic solution was too low. As a result, the heat resistant adhesiveness and thermal conductivity were insufficient.
In Comparative Example 4, since the electrolysis time was too long, the oxide film was too thick. As a result, the thermal conductivity was insufficient.
In Comparative Example 5, the pore diameter of the pore structure was too small because the electrolysis frequency was too low. As a result, the heat resistant adhesiveness was insufficient.
In Comparative Example 6, the diameter of the pore structure was too large because the electrolysis frequency was too high. As a result, the oxide film became brittle and the heat resistant adhesiveness was insufficient.
In Comparative Example 7, since the current density was too high and the electrolysis time was too short, a kind of amorphous unstable oxide film was generated. As a result, the heat resistant adhesiveness was insufficient.
In Comparative Example 8, since the current density was too low, the pore structure was not formed, and a thick barrier layer was formed. As a result, the heat resistant adhesiveness and thermal conductivity were insufficient.
In Comparative Example 9, the amount of carboxyl groups contained in the added acrylic resin was insufficient, and the heat resistant adhesiveness was insufficient.
In Comparative Example 10, since the amount of the acrylic resin contained in the electrolytic solution was too large, an excessive amount of acrylic resin adhered to the outermost layer of the oxide film. As a result, the thermal conductivity was insufficient.
In Comparative Example 11, no acrylic resin was contained in the electrolytic solution, and therefore no acrylic resin was taken into the oxide film. As a result, the heat resistant adhesiveness was insufficient.
In Comparative Example 12, since simple sulfite alumite treatment was performed, the heat resistant adhesiveness and thermal conductivity were inferior.

以上のように、本発明の請求項に従って作られたプリント配線基板用アルミニウム材は、ポア構造を有する酸化膜ならびにポア構造に取り込まれたアクリル樹脂の働きにより、樹脂密着性、耐食性及び熱伝導性に優れた特性を有する。
As described above, the printed wiring board aluminum material made according to the claims of the present invention has the resin adhesion, corrosion resistance, and thermal conductivity by the action of the oxide film having a pore structure and the acrylic resin incorporated into the pore structure. It has excellent characteristics.

Claims (3)

アルミニウム基材とその少なくとも一方の表面に形成した酸化膜を有するプリント配線基板用アルミニウム材であって、
前記酸化膜は50nm〜500nmの厚みを有し、かつ、アルミニウム素地側の3nm〜30nmの厚みを有するバリア層とその反対側のポア構造とを備え、当該ポア構造は、アクリル酸化合物重合体を取り込む5nm〜20nmの直径を有する小孔を有し、
前記アクリル酸化合物重合体は、重量平均分子量500につき1個以上のカルボキシル基を含有し、アルカリ交流電解によって電解溶液中のアクリル酸化合物重合体がその重量平均分子量を変えることなく析出して前記小孔中に取り込まれており、
上塗り樹脂層と金属とを含むプリント配線を、上塗り樹脂層が前記酸化膜に接する状態で当該プリント配線基板用アルミニウム材に加熱圧着し、前記アクリル酸化合物重合体と上塗り樹脂層の溶融接着層を形成することによりプリント配線基板とするために使用されることを特徴とするプリント配線基板用アルミニウム材。
An aluminum material for a printed wiring board having an aluminum base and an oxide film formed on at least one surface thereof,
The oxide film has a thickness of 50 nm to 500 nm, and includes a barrier layer having a thickness of 3 nm to 30 nm on the aluminum substrate side and a pore structure on the opposite side, and the pore structure is made of an acrylic acid compound polymer. Having small pores with a diameter of 5 nm to 20 nm to capture;
The acrylic acid compound polymer contains one or more carboxyl groups per weight average molecular weight of 500, and the acrylic acid compound polymer in the electrolytic solution is precipitated without changing its weight average molecular weight by alkaline alternating current electrolysis. In the hole,
A printed wiring including a top coat resin layer and a metal is heat-pressed to the aluminum material for the printed wiring board in a state where the top coat resin layer is in contact with the oxide film, and the molten adhesive layer of the acrylic acid compound polymer and the top coat resin layer is formed. An aluminum material for a printed wiring board, which is used for forming a printed wiring board by forming.
前記酸化膜の小孔中に取り込まれているアクリル酸化合物重合体の量が、小孔の全容積に対するアクリル酸化合物重合体の体積比において5%〜100%であり、かつ、小孔中に取り込まれておらず酸化膜表面に付着するアクリル酸化合物重合体の量が1mg/m未満である、請求項1に記載のプリント配線基板用アルミニウム材。 The amount of the acrylic acid compound polymer taken into the small holes of the oxide film is 5% to 100% in the volume ratio of the acrylic acid compound polymer to the total volume of the small holes, and The aluminum material for printed wiring boards according to claim 1, wherein the amount of the acrylic acid compound polymer that is not taken in and adheres to the oxide film surface is less than 1 mg / m 2 . 請求項1又は2に記載のプリント配線基板用アルミニウム材の製造方法であって、アルミニウム基材を電極とし、pH9〜13で液温35℃〜80℃であり、重量平均分子量が500〜5000で重量平均分子量500につき1個以上のカルボキシル基を含有する水溶性アクリル酸化合物重合体を0.1重量%〜10重量%溶解したアルカリ性水溶液を電解溶液とし、周波数20Hz〜100Hz、電流密度4A/dm〜50A/dm及び電解時間5秒〜60秒の条件下でアルカリ交流電解することを特徴とするプリント配線基板用アルミニウム材の製造方法
It is a manufacturing method of the aluminum material for printed wiring boards of Claim 1 or 2, Comprising: An aluminum base material is used as an electrode, The liquid temperature is 35 to 80 degreeC by pH 9-13, The weight average molecular weight is 500-5000. An alkaline aqueous solution in which a water-soluble acrylic acid compound polymer containing one or more carboxyl groups per weight average molecular weight of 500 is dissolved in an amount of 0.1 wt% to 10 wt% is used as an electrolytic solution. 2. A method for producing an aluminum material for a printed wiring board, comprising performing alkaline alternating current electrolysis under conditions of 2 to 50 A / dm 2 and an electrolysis time of 5 seconds to 60 seconds .
JP2008075217A 2008-03-24 2008-03-24 Aluminum material for printed wiring board and method for producing the same Active JP5145092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075217A JP5145092B2 (en) 2008-03-24 2008-03-24 Aluminum material for printed wiring board and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075217A JP5145092B2 (en) 2008-03-24 2008-03-24 Aluminum material for printed wiring board and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009228064A JP2009228064A (en) 2009-10-08
JP5145092B2 true JP5145092B2 (en) 2013-02-13

Family

ID=41243796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075217A Active JP5145092B2 (en) 2008-03-24 2008-03-24 Aluminum material for printed wiring board and method for producing the same

Country Status (1)

Country Link
JP (1) JP5145092B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959804B2 (en) * 2011-06-07 2016-08-02 株式会社Uacj Method for producing aluminum tube used for aluminum joined body
JP5642640B2 (en) 2011-09-12 2014-12-17 トヨタ自動車株式会社 Internal combustion engine and manufacturing method thereof
WO2013118870A1 (en) * 2012-02-12 2013-08-15 古河スカイ株式会社 Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
JP6570168B2 (en) * 2015-02-12 2019-09-04 株式会社Uacj Surface-treated aluminum material and method for producing the same
JP6829961B2 (en) * 2015-08-13 2021-02-17 株式会社Uacj Surface-treated aluminum material with excellent resin adhesion and its manufacturing method, and surface-treated aluminum material / resin joint
JP7093607B2 (en) * 2017-02-22 2022-06-30 株式会社Uacj Surface-treated aluminum material and its manufacturing method, and surface-treated aluminum material / joined member made of surface-treated aluminum material and a member to be joined such as resin, and a method for manufacturing the same.
CN110312824B (en) * 2017-02-22 2022-03-22 株式会社Uacj Preparation method of surface-treated aluminum material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297698A (en) * 1988-10-04 1990-04-10 Minoru Mitani Surface treatment of aluminum or alloy thereof
JP2579234B2 (en) * 1990-04-25 1997-02-05 スカイアルミニウム株式会社 Aluminum fin material for heat exchanger and method for producing the same
JP2000355795A (en) * 1999-06-15 2000-12-26 Aisin Seiki Co Ltd Surface treatment of aluminum and aluminum alloy

Also Published As

Publication number Publication date
JP2009228064A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5275701B2 (en) Aluminum material for printed wiring board and method for producing the same
JP5145092B2 (en) Aluminum material for printed wiring board and method for producing the same
CN103857833B (en) Excellent copper foil, its manufacturing method and printed wiring board or negative electrode battery material using the electrolytic copper foil with resin adhesiveness
JP5545707B2 (en) Aluminum substrate and manufacturing method thereof
JP5588607B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
CN1256236C (en) Electrolytic copper foil with carrier foil, process for producing the same, and copper-clad laminate using the electrolytic copper foil
TWI359212B (en)
KR101574475B1 (en) Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
TWI704048B (en) Surface-treated copper foil and copper clad laminate made of it
JP5281732B2 (en) Surface processing method of aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having a surface processed by the method
CN105556004A (en) Copper foil copper foil with carrier foil, and copper-clad laminate
CN1571867A (en) Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board
KR102098576B1 (en) Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
JP4159897B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
JP5752301B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
WO1996025838A1 (en) Copper foil and high-density multi-layered printed circuit board using the copper foil for inner layer circuit
JP2008184633A (en) Method for surface-treating metal foil
JPWO2019188837A1 (en) Manufacturing method of surface-treated copper foil, copper-clad laminate, and printed wiring board
CN1234890C (en) Copper alloy foil for laminated board
CN102548202B (en) Roughly-processed copper foil and manufacture method thereof
JP2007046095A (en) Copper foil, and surface treatment method therefor
JP2006269706A (en) Laminate substrate and its manufacturing method
TWI405510B (en) Roughening-treated copper foil and manufacturing method thereof
CN112805413A (en) Conductive material, molded article, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5145092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250