JP2006269706A - Laminate substrate and its manufacturing method - Google Patents

Laminate substrate and its manufacturing method Download PDF

Info

Publication number
JP2006269706A
JP2006269706A JP2005085251A JP2005085251A JP2006269706A JP 2006269706 A JP2006269706 A JP 2006269706A JP 2005085251 A JP2005085251 A JP 2005085251A JP 2005085251 A JP2005085251 A JP 2005085251A JP 2006269706 A JP2006269706 A JP 2006269706A
Authority
JP
Japan
Prior art keywords
foil
etching
copper
circuit board
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005085251A
Other languages
Japanese (ja)
Other versions
JP4593331B2 (en
Inventor
Yuji Suzuki
裕二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP2005085251A priority Critical patent/JP4593331B2/en
Publication of JP2006269706A publication Critical patent/JP2006269706A/en
Application granted granted Critical
Publication of JP4593331B2 publication Critical patent/JP4593331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate substrate using conductive paste having a low melting point metal, which does not cause a void on an interface between copper foil and the conductive paste having the low melting point metal and is highly reliable in connection. <P>SOLUTION: The laminate substrate is composed of a laminate of roughened copper foil with a surface of copper or copper-alloy-based foil with surface roughness on at least one of faces having a roughness of 0.1-5 μm by etching to form a protrusions with a height of 0.3 μm or higher distributed approximately uniformly and a surface roughness Rz of 0.5-10 μm; and a substrate filled with the conductive paste having the low melting point metal in a through-hole formed at a resin substrate. A method of manufacturing the laminate substrate includes a step of laminating the roughened copper foil on the substrate filled with the conductive paste having the low melting point metal in the through-hole formed at the resin substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、積層回路基板(多層プリント配線板)において、表裏に設けられた配線の導通を導電性組成物(導電性ペースト)によって行う積層回路基板に関するものである。   The present invention relates to a laminated circuit board (multilayer printed wiring board) that conducts wiring provided on the front and back surfaces with a conductive composition (conductive paste).

従来の積層回路基板には、多層配線基板用基材を多層に積層後、絶縁層にスルーホールを開口し、該スルーホールの内周面をめっき処理しためっき層によって層間導通を取るスルーホールめっき法によるものがある。該スルーホールめっき法による積層回路基板は、各層の回路を低く安定した接続抵抗で接続できる利点をもつが、工程が複雑で、工数も多いため、コストが高くなり、積層回路基板の用途を制限する要因となっている。
また、スルーホールめっき法による積層回路基板では、スルーホールの直上には部品を実装できず、配線の自由度が低いと云う欠点もある。
この欠点を解消するために、スルーホールめっき法による積層回路基板において、実装部品の配置位置を避けるように、スルーホールを基板表面に対して傾斜させて形成する手法も採用されている。
In conventional multilayer circuit boards, through-hole plating is performed by laminating multilayer wiring board base materials in multiple layers, opening through holes in the insulating layer, and providing interlayer conduction with a plating layer on the inner surface of the through holes. There is a law. The multilayer circuit board by the through-hole plating method has the advantage that the circuit of each layer can be connected with a low and stable connection resistance, but the process is complicated and the man-hours are high, so the cost is high and the use of the multilayer circuit board is limited. Is a factor.
In addition, the laminated circuit board by the through-hole plating method has a drawback in that a component cannot be mounted immediately above the through-hole and the degree of freedom of wiring is low.
In order to eliminate this drawback, a method of forming a through hole in an inclined manner with respect to the surface of the substrate in a laminated circuit board by a through hole plating method is adopted so as to avoid the placement position of the mounted components.

また近年、スルーホールめっき法に代わる層間接続法として、スルーホールに導電性ペーストを充填したIVH(Interstitial Via Hole)による積層回路基板が実用化されている。この導電性ペーストを用いた積層回路基板は、スルーホールめっき法によるものに比して製造工程が簡素化され、低コスト化を図ることができる。導電性ペーストを使用した多層配線基板としては、松下グループのALIVH(Any Layer Interstitial Via Hole)基板が知られている。
しかしながら現代ではさらなる工程の短縮などの要求から、一括プレスにより積層回路基板の製造方法も開発されており、この製造方法においても導電性ペーストが用いられている。
積層回路基板の層間接続に用いられる導電性ペーストはAgペースト、銅ペーストを主成分とし、製造工程の安定性向上及び時間短縮のために、該主成分に低融点金属を含有させ多層配線基板を形成するプレス温度に近い温度で軟化し圧着させやすい状態にしている。
上記、Agペースト、銅ペーストに添加するの低融点金属は導電率、積層回路基板を形成する時のプレス温度を考慮にいれて低融点金属の種類、量を決めている。
In recent years, as an interlayer connection method replacing the through-hole plating method, a laminated circuit board using IVH (Interstitial Via Hole) in which a through-hole is filled with a conductive paste has been put into practical use. The laminated circuit board using this conductive paste has a simplified manufacturing process and can be reduced in cost as compared with a through-hole plating method. As a multilayer wiring board using a conductive paste, an ALIVH (Any Layer Interstitial Via Hole) board of Matsushita Group is known.
However, in recent years, a method for manufacturing a laminated circuit board has also been developed by batch pressing due to demands such as further shortening of the process, and conductive paste is also used in this manufacturing method.
The conductive paste used for the interlayer connection of the multilayer circuit board is mainly composed of Ag paste and copper paste, and in order to improve the stability of the manufacturing process and shorten the time, a low-melting-point metal is contained in the main component to form a multilayer wiring board. It is softened at a temperature close to the press temperature to be formed, and is in a state where it is easy to press.
The low melting point metal added to the Ag paste and the copper paste determines the kind and amount of the low melting point metal in consideration of the electrical conductivity and the press temperature when forming the laminated circuit board.

特許第2740768号公報Japanese Patent No. 2740768 特開平10−96088号公報Japanese Patent Laid-Open No. 10-96088

しかしながら、この低融点金属を含有した導電性ペーストを使用してプレスにより積層回路基板を成形する場合、銅箔表面に銅と低融点金属の拡散層が生成し、銅箔と導電性ペーストとの界面にボイドまたは亀裂が発生し、銅箔と導電性ペーストとの接続部に不具合が発生し、接続信頼性が損なわれる問題が発生することがある。   However, when a laminated circuit board is formed by pressing using a conductive paste containing this low melting point metal, a diffusion layer of copper and a low melting point metal is formed on the surface of the copper foil, and the copper foil and the conductive paste In some cases, voids or cracks are generated at the interface, a defect occurs in the connection portion between the copper foil and the conductive paste, and the connection reliability is impaired.

本発明は、低融点金属を含む導電性ペーストを使用した積層回路基板において、銅箔と低融点金属を含む導電性ペーストとの界面にボイドが発生せず、接続信頼性の高い積層回路基板を提供することを目的とする。   The present invention relates to a multilayer circuit board using a conductive paste containing a low melting point metal, in which no void is generated at the interface between the copper foil and the conductive paste containing the low melting point metal and the connection reliability is high. The purpose is to provide.

本発明の積層基板は、少なくとも片面の表面粗さが0.1μm〜5μmの銅または銅合金元箔の前記表面をエッチングによる粗化処理で高さ0.3μm以上の突起物が略均一に分布し、表面粗さRzが0.5〜10μmとした粗化処理銅箔と、樹脂基板に穿設した貫通孔に低融点金属を含有する導電性ペーストを充填した基板とを積層したものである。   In the laminated substrate of the present invention, projections having a height of 0.3 μm or more are distributed substantially uniformly by roughening treatment of the copper or copper alloy base foil having a surface roughness of at least one surface of 0.1 μm to 5 μm by etching. Then, a roughened copper foil having a surface roughness Rz of 0.5 to 10 μm and a substrate filled with a conductive paste containing a low melting point metal in a through hole formed in the resin substrate are laminated. .

本発明の積層回路基板の製造方法は、少なくとも片面が粒状晶であり、表面粗さが0.1μm〜5μmであり、該表面から少なくとも深さXまでの領域の平均粒径が0.3μm以上である銅または銅合金元箔を、該元箔表面を深さXまでの領域以内をエッチングにより高さ0.3μm以上の突起物が略均一に分布し、表面粗さRzが0.5〜10μmとする粗化処理を施し、該粗化処理銅箔と、樹脂基板に穿設した貫通孔に低融点金属を含有する導電性ペーストを充填した基板とを積層する製造方法である。   In the method for producing a laminated circuit board of the present invention, at least one surface is a granular crystal, the surface roughness is 0.1 μm to 5 μm, and the average particle size in the region from the surface to at least the depth X is 0.3 μm or more. In the copper or copper alloy base foil, protrusions having a height of 0.3 μm or more are distributed substantially uniformly by etching within the region up to the depth X on the surface of the base foil, and the surface roughness Rz is 0.5 to This is a manufacturing method in which a roughening treatment of 10 μm is performed, and the roughened copper foil is laminated with a substrate filled with a conductive paste containing a low melting point metal in a through hole formed in a resin substrate.

本発明の積層回路基板の製造方法において、前記銅または銅合金元箔に加熱処理を施し、少なくともエッチングする方の粒状晶表面を、該表面から少なくとも深さXまでの領域を平均粒径0.3μm以上とすることが好ましい。   In the method for manufacturing a laminated circuit board according to the present invention, the copper or copper alloy base foil is subjected to a heat treatment, and at least the granular crystal surface to be etched is averaged in a region from the surface to at least the depth X. The thickness is preferably 3 μm or more.

前記銅または銅合金元箔が電解箔であることが好ましく、前記銅または銅合金元箔の少なくともエッチングする方の表面が粒状晶であることか特に好ましい。   The copper or copper alloy base foil is preferably an electrolytic foil, and it is particularly preferable that at least the surface of the copper or copper alloy base foil to be etched is a granular crystal.

前記エッチングは、化学エッチングまたは電解エッチングで施すことが好ましい。   The etching is preferably performed by chemical etching or electrolytic etching.

本発明は、低融点金属を含む導電性ペーストを使用した積層回路基板において、銅箔と低融点金属を含む導電性ペーストとの界面にボイドや亀裂が発生せず、接続信頼性の高い積層回路基板を提供することができる。   The present invention relates to a multilayer circuit board using a conductive paste containing a low melting point metal, and has no connection voids or cracks at the interface between the copper foil and the conductive paste containing the low melting point metal, and has high connection reliability. A substrate can be provided.

本発明は、元箔(銅箔又は銅合金箔。特に限定しない場合は単に元箔または銅箔ということがある)表面をエッチング粗化した粗化処理銅箔と樹脂基板に貫通孔を設け、該貫通孔に低融点金属を含有する導電性ペーストを充填した絶縁(樹脂)基板に積層して構成した積層回路基板である。   The present invention provides a through-hole in a roughened copper foil and a resin substrate obtained by etching and roughing the surface of a base foil (copper foil or copper alloy foil, which may be simply referred to as a base foil or a copper foil if not specifically limited), It is a laminated circuit board configured by laminating an insulating (resin) substrate in which the through holes are filled with a conductive paste containing a low melting point metal.

本発明で用いる粗化処理銅箔は、樹脂基板、例えばエポキシ樹脂フィルム、ポリイミドフィルム、吸湿性が著しく低いために誘電特性の変化が少なく半田付けに耐えられる耐熱性を有する液晶ポリマーフィルム、ポリエーテルエーテルケトン系樹脂フィルム等と張り合わせた際、密着強度が大きく、ファインパターン化が可能で、銅箔と低融点金属含有導電性ペーストとの界面においてボイドや亀裂が発生するようなことのない銅箔である。
特に、樹脂基板としては、エポキシ樹脂・ポリイミドフィルム・液晶ポリマーを50%以上含む組成物からなるフィルム状のものが適している。
The roughened copper foil used in the present invention is a resin substrate such as an epoxy resin film, a polyimide film, a liquid crystal polymer film having a heat resistance that can withstand soldering with little change in dielectric properties due to its extremely low hygroscopicity, and polyether. Copper foil with high adhesion strength, fine patterning, and no voids or cracks at the interface between copper foil and low-melting-point metal-containing conductive paste when bonded to an etherketone resin film It is.
In particular, as the resin substrate, a film substrate made of a composition containing 50% or more of an epoxy resin, a polyimide film, and a liquid crystal polymer is suitable.

本発明者等は、銅箔表面と低融点金属含有導電性ペーストとの界面におけるボイド発生の原因につき鋭意研究し、ボイドが、低融点金属が粗化処理銅箔の粗化処理層に拡散する時に生じることを突き止め、拡散する低融点金属の量と粗化層に拡散する厚み(深さ)に依存することを解明し、元箔表面の表面粗さ、エッチングによる表面処理で形成する導電性ペーストを設ける面の表面粗さにつき、ボイド発生の有無、亀裂発生の有無、樹脂基板との接着性を検討し、本発明に至った。   The present inventors diligently studied the cause of void generation at the interface between the copper foil surface and the low melting point metal-containing conductive paste, and the voids diffused into the roughened layer of the roughened copper foil. Occasionally, it is clarified that it depends on the amount of low melting point metal diffused and the thickness (depth) diffused into the roughened layer, and the surface roughness of the original foil, the conductivity formed by the surface treatment by etching With regard to the surface roughness of the surface on which the paste is provided, the presence or absence of voids, the presence or absence of cracks, and the adhesiveness with the resin substrate were studied, and the present invention was achieved.

本発明は、少なくとも片面(導電性ペーストと接合する方の面)の表面粗さが0.1μm〜5μmの元箔表面をエッチング処理して、エッチング処理面を高さ0.3μmの突起物が略均一に分布し、表面粗さRzが0.3〜10μmとし、低融点金属含有導電性ペーストを使用しても粗化処理銅箔と導電性ペーストとの境界においてボイドや亀裂が発生しない粗化処理銅箔を使用した積層回路基板である。   In the present invention, at least one surface (the surface to be joined to the conductive paste) is etched on the surface of the original foil having a surface roughness of 0.1 μm to 5 μm, and the protrusion has a height of 0.3 μm on the etched surface. Roughly distributed, with a surface roughness Rz of 0.3 to 10 μm and no voids or cracks at the boundary between the roughened copper foil and the conductive paste even when a low melting point metal-containing conductive paste is used. It is a laminated circuit board using a chemical conversion treatment copper foil.

本発明では元箔は、電解もしくは圧延によって製造された銅箔または銅合金箔である。元箔の厚さは1μm〜200μmで、少なくとも片面の表面粗さが、Rz:0.1μm〜5μmであることが好ましい。
元箔の厚みは1〜200μmのものが好ましい。このような限定は、厚さが1μm以下の元箔では、その表面上に粗化処理を施すことは非常に難しく、また、実用性を考慮すると、例えば高周波プリント配線板用に使用する元箔としては、200μm以上の箔は現実的でないと考えられるためである。
In the present invention, the base foil is a copper foil or a copper alloy foil produced by electrolysis or rolling. The thickness of the original foil is preferably 1 μm to 200 μm, and the surface roughness of at least one side is preferably Rz: 0.1 μm to 5 μm.
The thickness of the original foil is preferably 1 to 200 μm. Such a limitation is that it is very difficult to roughen the surface of the original foil having a thickness of 1 μm or less, and considering the practicality, for example, the original foil used for a high-frequency printed wiring board is used. This is because a foil of 200 μm or more is considered unrealistic.

元箔の表面粗さを、Rz:0.1μm〜5μmに規定するのは、Rzが0.1μm以下の箔は現実的に製造も困難であり、もし製造できたとしても製造コストがかかることから現実的に不適である。また、Rz:5.0μm以上の元箔を使用してもよいが、高周波特性及びファインパターン化を考えると5.0μm以下であることが好ましく、表面粗さが2μm以下であると更に好ましい。   The surface roughness of the original foil is defined as Rz: 0.1 μm to 5 μm. A foil having an Rz of 0.1 μm or less is actually difficult to manufacture, and if it can be manufactured, the manufacturing cost is high. It is unsuitable for practical use. Further, an original foil having Rz of 5.0 μm or more may be used, but considering high frequency characteristics and fine patterning, 5.0 μm or less is preferable, and surface roughness is more preferably 2 μm or less.

また、この元箔は、導電性ペーストを使用し積層回路基板を形成する際、高温におけるプレス工程がはいるため銅箔に柔軟性がないとプレス時に破断が生じる可能性があるため、銅箔に柔軟性が要求される。銅箔に柔軟性を付与するためには粒状晶で構成されている銅箔が好ましい。特に、粒状結晶のサイズは平均0.3μm以上が好ましく、1μm以上の結晶サイズのものが銅箔断面の10%以上を占めているものが特に好ましい。   In addition, since this original foil uses a conductive paste to form a laminated circuit board, since there is a pressing process at a high temperature, if the copper foil is not flexible, it may break during pressing. Flexibility is required. In order to impart flexibility to the copper foil, a copper foil composed of granular crystals is preferable. In particular, the average size of the granular crystals is preferably 0.3 μm or more, and those having a crystal size of 1 μm or more occupy 10% or more of the copper foil cross section are particularly preferable.

本発明においては、上記した元箔に表面処理を行う。元箔表面の表面粗化処理は、電解エッチングあるいは化学エッチングにより元箔表面に少なくとも片面の表面粗さRzが0.5〜10μmになるように粗化を施す。このように規定する理由は、粗化処理による表面粗さRzが0.5μm未満では、ピール強度が低いためその目的を果たす表面粗化処理銅箔としては満足でなく、また、Rz:10μmより大きいと、高周波特性が低下するうえにファインパターン化に不向きとなるためである。なお、高周波特性・ファインパターン化を考えると表面粗さは3μm以下にすることが好ましい。   In the present invention, the above-described base foil is subjected to surface treatment. The surface roughening treatment on the surface of the original foil is performed by electrolytic etching or chemical etching so that the surface roughness Rz on at least one surface is 0.5 to 10 μm on the surface of the original foil. The reason for specifying in this way is that when the surface roughness Rz by the roughening treatment is less than 0.5 μm, the peel strength is low, so it is not satisfactory as a surface roughened copper foil that fulfills its purpose, and Rz: from 10 μm If it is large, the high frequency characteristics are deteriorated and it is not suitable for fine patterning. In view of high frequency characteristics and fine patterning, the surface roughness is preferably 3 μm or less.

本発明では、元箔は電解もしくは圧延によって製造され、その厚さは1μm〜200μmであり、少なくとも片面の表面粗さが、Rz:0.1μm〜5μmの銅もしくは銅合金箔であることが好ましい。
元箔は、圧延銅箔または電解銅箔どちらでも使用可能であるが、製造コスト及び結晶サイズなどを考慮にいれると電解銅箔の方が好ましい。
銅箔の結晶状態は粒状晶と柱状晶があり、本発明においては、どちらの結晶状態の箔も使用することは可能であるが、エッチング粗化の均一性を考えると少なくともエッチング粗化を行なう表層は、結晶粒が粒状晶であることが望ましい。エッチング性・柔軟性を考慮にいれると銅箔全体が粒状晶の結晶組織で構成されていることが更に好ましい。
In the present invention, the base foil is produced by electrolysis or rolling, and the thickness thereof is preferably 1 μm to 200 μm, and at least one surface is preferably a copper or copper alloy foil having a surface roughness Rz: 0.1 μm to 5 μm. .
The original foil can be either a rolled copper foil or an electrolytic copper foil, but the electrolytic copper foil is more preferable in consideration of the manufacturing cost and the crystal size.
The crystal state of the copper foil includes a granular crystal and a columnar crystal. In the present invention, it is possible to use either crystal state foil, but at least etching roughening is performed in consideration of the uniformity of etching roughening. In the surface layer, the crystal grains are preferably granular crystals. In consideration of etching property and flexibility, it is more preferable that the entire copper foil is composed of a crystal structure of granular crystals.

また、エッチング処理する深さをXとすると、元箔のエッチングする表面から少なくとも深さXまで、あるいはそれ以上の深さまでの領域の平均粒径が0.3μm以上25μm以下である元箔であることが好ましい。平均粒径が、0.3μm以下であると満足するピール強度が得られる表面粗さにすることができず、また略均一な粗化処理を施すことができない。
本明細書で、「略均一に分布する」「略均一に粗化処理する」とは、粗化処理表面の少なくとも25μm×25μmの視野内に高さ0.3μm以上の突起物が少なくとも4個以上存在する処理面をいう。
また、結晶粒径が25μm以上であると表面の凹凸のピッチが大きくなりすぎファインパターン化に不向きになるため好ましくない。
また、本発明において、表面から深さXとまで、とはXが4μm以下であることが好ましい。エッチング粗化を行なう場合、結晶粒径を考えると4μm以上溶かす(エッチングする)ことは殆んどなく、したがって、エッチング粗化で重要になるのは深さ4μm以内の部分の結晶粒径である。
In addition, when the etching depth is X, the original foil has an average particle diameter of 0.3 μm or more and 25 μm or less from the surface of the original foil to the depth X or at least the depth X. It is preferable. When the average particle size is 0.3 μm or less, it is impossible to obtain a surface roughness that provides satisfactory peel strength, and it is impossible to perform a substantially uniform roughening treatment.
In this specification, “substantially uniformly distributed” and “substantially uniformly roughen” means at least four protrusions having a height of 0.3 μm or more in a visual field of at least 25 μm × 25 μm on the roughened surface. The processing surface which exists above is said.
Further, if the crystal grain size is 25 μm or more, the pitch of the unevenness on the surface becomes too large, which is not suitable for fine patterning.
In the present invention, from the surface to the depth X, X is preferably 4 μm or less. In the case of etching roughening, considering the crystal grain size, there is almost no melting (etching) of 4 μm or more. Therefore, what is important for etching roughening is the crystal grain size within a depth of 4 μm. .

元箔の結晶粒径の大きさ及び大きさの均一性を得るために、元箔に加熱処理を行なうと安定したエッチング処理が行なえる箔とすることができる。
元箔の加熱処理は、エッチング領域の平均粒径が0.3μm以上でありエッチング粗化に適した均一性のある結晶粒をもつ銅箔を作成することにある。元箔の加熱処理条件は、温度50℃以上の雰囲気中に製箔された元箔を保持する。特に、50℃以上で、式1に示すLMP値が7000以上となる加熱処理を施すことにより優れた銅箔(元箔)とすることができる。
式1:LMP=(T+273)×(20+Logt)
ここで、Tは温度(℃)、tは時間(Hr)である。
ここで、加熱処理温度を50℃以上とするのは、生産性、特に熱処理時間を考慮した設定であり、工業生産に適した時間内で、粒状晶で、平均結晶粒径0.3μm以上を生成させるためである。
In order to obtain the crystal grain size and uniformity of the original foil, when the original foil is subjected to a heat treatment, a foil capable of performing a stable etching process can be obtained.
The heat treatment of the original foil is to produce a copper foil having uniform crystal grains suitable for etching roughening, in which the average grain size in the etching region is 0.3 μm or more. The heat treatment condition of the original foil is to hold the original foil that has been formed in an atmosphere having a temperature of 50 ° C. or higher. In particular, an excellent copper foil (original foil) can be obtained by performing heat treatment at 50 ° C. or higher so that the LMP value shown in Formula 1 is 7000 or higher.
Formula 1: LMP = (T + 273) × (20 + Logt)
Here, T is temperature (° C.), and t is time (Hr).
Here, the heat treatment temperature is set to 50 ° C. or more in consideration of productivity, particularly heat treatment time, and within a time suitable for industrial production, the crystal grain size is set to an average crystal grain size of 0.3 μm or more. It is for generating.

電解銅箔または圧延銅箔、それら銅箔を加熱処理した元箔を、化学エッチングまたは電解エッチングにて粗化を行なう。
化学エッチングについては、塩酸、硫酸、有機酸系などのエッチング溶液を使用してエッチング粗化を行なうことができる。また、さまざまな市販のエッチング液を使用してもよい。一例としてあげると特許文献1(特許第2740768号公報)には、無機酸+過酸化水素+トリアゾールなどの腐食防止剤+界面活性剤が開示されている。また、特許文献2(特開平10−96088号公報)には、無機酸+過酸化物+アゾール+ハロゲン化物を含有するエッチング液が示されている。
Electrolytic copper foil or rolled copper foil, and the original foil obtained by heat-treating these copper foils are roughened by chemical etching or electrolytic etching.
As for chemical etching, etching roughening can be performed using etching solutions such as hydrochloric acid, sulfuric acid, and organic acids. Various commercially available etching solutions may also be used. As an example, Patent Document 1 (Japanese Patent No. 2740768) discloses a corrosion inhibitor such as an inorganic acid + hydrogen peroxide + triazole + a surfactant. Patent Document 2 (Japanese Patent Laid-Open No. 10-96088) discloses an etching solution containing inorganic acid + peroxide + azole + halide.

電解エッチングの浴としては、硫酸、塩酸、スルファミン酸などの酸性浴が、ピロリン酸、水酸化ナトリウム、水酸化カリウム、シアン浴などのアルカリ浴が上げられる。
これらの酸またはアルカリ系の溶液に必要により添加剤を加える。添加剤は化学エッチングに使用されているものと同様のもの、または通常光沢めっき液に使用する市販の添加剤等々が使用できる。
電解エッチング方法としては、粗化する銅箔を陽極とし、対極のカソード(銅が析出する側)を陰極とし銅箔表面をエッチング(溶解)し、元箔表面の粗化を行なう。
Examples of the electrolytic etching bath include acidic baths such as sulfuric acid, hydrochloric acid, and sulfamic acid, and alkaline baths such as pyrophosphoric acid, sodium hydroxide, potassium hydroxide, and cyan bath.
If necessary, additives are added to these acid or alkaline solutions. As the additive, those similar to those used for chemical etching, commercially available additives usually used for bright plating solutions, and the like can be used.
As the electrolytic etching method, the surface of the original foil is roughened by etching (dissolving) the surface of the copper foil using the copper foil to be roughened as the anode and the cathode of the counter electrode (side on which copper is deposited) as the cathode.

浴種・浴濃度などによって流す電流量・浴温は、一概にはいえないが、粗化の均一性及び生産性を考慮すると電流量は、電流密度が3A/dm〜70A/dmの範囲で処理することが好ましい。電流密度が3A/dm以下であると生産性も悪くまた均一な粗化ができない恐れがためである。また、70A/dm以上であると溶けすぎてしまうか、もしくは銅箔表面上に過電流を流しすぎて過剰なガス発生を引き起こし満足にエッチングできないことがあるためである。 The amount of current and bath temperature that flow depending on the bath type and bath concentration cannot be generally specified, but the current amount is 3 A / dm 2 to 70 A / dm 2 in consideration of the uniformity of roughening and productivity. It is preferable to process in the range. This is because if the current density is 3 A / dm 2 or less, the productivity is poor and uniform roughening cannot be performed. Moreover, it is because it will melt | dissolve too much that it is 70 A / dm < 2 > or more, or an overcurrent will flow over the copper foil surface, an excessive gas generation | occurrence | production will be produced, and it cannot etch satisfactorily.

エッチング粗化を行った表面に、更に粗化粒子を付着させるとピール強度がアップして好適である。この場合の粗化粒子の付着量は、ボイドを考慮すると150mg/dm以下であることが好ましい。150mg/dm以上付着させると低融点金属を含有する導電性ペーストを設ける際に低融点金属の拡散によりボイドや亀裂を発生する恐れがあり好ましくない。エッチングした表面処理箔上に付着する粗化粒子としては、Cu又はCuとMoの合金粒子、あるいはCuとNi、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含んでいるものが好適である。 If roughened particles are further adhered to the surface subjected to etching roughening, the peel strength is preferably increased. In this case, the adhesion amount of the roughened particles is preferably 150 mg / dm 2 or less in consideration of voids. If it is made to adhere 150 mg / dm 2 or more, voids and cracks may be generated due to diffusion of the low melting point metal when a conductive paste containing a low melting point metal is provided. The roughening particles adhering to the etched surface-treated foil include Cu or alloy particles of Cu and Mo, or Cu and at least one element selected from the group consisting of Ni, Co, Fe, Cr, V and W. It is preferable that

導電性ペーストに添加する低融点金属としては、金属単体の融点が460℃以下の金属であり、具体的にはZn、Sn、Pb、Bi、Inまたはそれらの金属が含有する合金が上げられる。   The low melting point metal added to the conductive paste is a metal having a melting point of a single metal of 460 ° C. or lower, and specifically includes Zn, Sn, Pb, Bi, In or alloys containing these metals.

エッチング表面またはエッチング後に粗化粒子を付着させた表面に耐熱性及び防錆を目的にNi、Zn、Crおよび/またはクロメート被膜を設けるとよく、必要に応じシランカップリング処理または防錆処理+シランカップリングを施すことが好ましい。特に液晶ポリマー樹脂フィルム等はNi金属またはNi合金と化学結合しピール強度を高めるため、効果がある。
上記表面処理を行った表面粗化処理箔に、液晶ポリマーフィルム、ポリエーテルエーテルケトンフィルム等の樹脂基板に貫通孔を穿設し、該貫通孔に低融点金属を含有する導電性ペーストを充填した基板を貼り付けて積層基板を作成し、該積層基板を複数枚積層して積層回路基板を作成する。
Ni, Zn, Cr and / or chromate film may be provided on the etched surface or the surface to which roughened particles are attached after etching for the purpose of heat resistance and rust prevention. If necessary, silane coupling treatment or rust prevention treatment + silane It is preferable to perform coupling. In particular, a liquid crystal polymer resin film or the like is effective because it chemically bonds with Ni metal or Ni alloy to increase the peel strength.
The surface-roughened foil subjected to the above surface treatment was provided with a through hole in a resin substrate such as a liquid crystal polymer film or a polyether ether ketone film, and the through hole was filled with a conductive paste containing a low melting point metal. A substrate is attached to form a laminated substrate, and a plurality of the laminated substrates are laminated to form a laminated circuit substrate.

以下に、本発明を実施形態に基づいて更に詳しく説明するが、本発明はこれらの実施形態に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on embodiments, but the present invention is not limited to these embodiments.

Ti板をバフ研磨にてRz=1.5μmとしたチタンドラムをカソードとして、それぞれのめっき浴・条件にて12μmの電解銅箔を製箔した。
この後、化学エッチングまたは電解エッチングで粗化処理を行った。
Using a titanium drum having a Rz = 1.5 μm as a cathode by buffing a Ti plate, a 12 μm electrolytic copper foil was produced in each plating bath and conditions.
Thereafter, roughening treatment was performed by chemical etching or electrolytic etching.

〔電解銅箔製箔〕
粒状晶結晶銅箔:元箔1
硫酸銅五水和物280g/L、硫酸80g/L、塩素イオン35ppmを含む硫酸酸性硫酸銅電解液に平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス3ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電解液温度40℃、流速0.2m/分、電流密度50A/dmの条件で、厚さ:12μm、エッチングする面の表面粗さRz:1.24μmの電解銅箔を製箔した。得られた銅箔は粒状晶をもち、エッチングする面から2μmまでの範囲(エッチング領域)の結晶粒径は平均で0.5μm、この範囲の結晶粒径1μm以上のものは12%であった。
[Electrolytic copper foil]
Granular crystal copper foil: original foil 1
Copper sulfate pentahydrate 280 g / L, sulfuric acid 80 g / L, sulfuric acid acidic copper sulfate electrolyte containing 35 ppm chloride ion, low molecular weight gelatin 15 ppm with an average molecular weight of 3000, hydroxyethyl cellulose 3 ppm, 3-mercapto-1-propane Electrolysis with the addition of 1 ppm sodium sulfonate, electrolyte temperature of 40 ° C., flow rate of 0.2 m / min, current density of 50 A / dm 2 , thickness: 12 μm, surface roughness Rz of etching surface: 1.24 μm Copper foil was made. The obtained copper foil had granular crystals, and the average crystal grain size in the range (etching region) from the etching surface to 2 μm was 0.5 μm, and the crystal grain size in this range was 1 μm or more was 12%. .

柱状晶結晶銅箔:元箔2
電解液として、銅90g/L 、硫酸100g/L 、塩素イオン20ppm、加水分解したニカワ300ppmを含む電解液に更に加水分解前のニカワを2ppm添加したものを使用し、液温度55℃、電流密度は55A/dm の条件で、厚さ:12μm、表面粗さRz:2.1μmの柱状晶の電解銅箔を製箔した。
Columnar crystal copper foil: original foil 2
As an electrolytic solution, an electrolytic solution containing 90 g / L of copper, 100 g / L of sulfuric acid, 20 ppm of chlorine ions and 300 ppm of hydrolyzed glue was further added with 2 ppm of glue before hydrolysis, and the liquid temperature was 55 ° C. and the current density. Columnar electrolytic copper foil having a thickness of 12 μm and a surface roughness Rz of 2.1 μm under the condition of 55 A / dm 2 .

〔実施例1〕
元箔1を使用し、化学エッチングを行なった。
化学エッチングはエッチング液としてメック社製CZ8101を用い、スプレー式で行った。処理時間:1分、その後Ni:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。
上記で得られた表面粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスして貼り付け、ピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
[Example 1]
The original foil 1 was used and chemical etching was performed.
The chemical etching was performed by a spray method using CZ8101 manufactured by MEC as an etchant. Treatment time: 1 minute, and then Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , Cr: 0.1 mg / dm 2 were adhered, and a silane coupling agent was adhered to the outermost layer.
The surface-roughened copper foil obtained above was pressed and pasted on a liquid crystal polymer film and a polyether ether ketone resin film, and the peel strength was confirmed.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔実施例2〕
元箔2を使用し、化学エッチングを行なった。
化学エッチングはエッチング液としてメック社製CZ8101を用い、スプレー式で行った。処理時間:2分その後Ni0.1mg/dm、Zn0.1mg/dm、Cr0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。上記で得られた粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
[Example 2]
The original foil 2 was used and chemical etching was performed.
The chemical etching was performed by a spray method using CZ8101 manufactured by MEC as an etchant. Treatment time: 2 minutes Thereafter, Ni 0.1 mg / dm 2 , Zn 0.1 mg / dm 2 and Cr 0.1 mg / dm 2 were adhered, and a silane coupling agent was adhered to the outermost layer. The roughened copper foil obtained above was attached to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔実施例3〕
元箔1を使用し、電解エッチングを行なった。
エッチング液 硫酸100g/L、平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス5ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電流密度50A/dm、処理時間:15秒行い、その後Ni:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。上記で得られた粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
Example 3
The original foil 1 was used and electrolytic etching was performed.
Etching solution 100 g / L of sulfuric acid, 15 ppm of low molecular weight gelatin having an average molecular weight of 3000, 5 ppm of hydroxyethyl cellulose, 1 ppm of sodium 3-mercapto-1-propanesulfonate, current density 50 A / dm 2 , treatment time: 15 seconds Thereafter, Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , and Cr: 0.1 mg / dm 2 were attached, and a silane coupling agent was attached to the outermost layer. The roughened copper foil obtained above was attached to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔実施例4〕
元箔1を150℃、5時間加熱処理した。加熱後の箔のエッチングする面から2μmまでの範囲(エッチング領域)の結晶粒径は、平均で0.6μm、この範囲の1μm以上の結晶粒は28%であった。この加熱処理箔に化学エッチングを施した。エッチング液としてメック社製CZ8101を用い、スプレー式で行った。処理時間は1分。その後Ni:0.1mg/dm Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。上記で得られた表面粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
Example 4
The original foil 1 was heat-treated at 150 ° C. for 5 hours. The average crystal grain size in the range (etching region) from the etching surface of the foil after heating to 2 μm was 0.6 μm, and the crystal grain size of 1 μm or more in this range was 28%. This heat-treated foil was subjected to chemical etching. The etching was performed by using a spray type CZ8101 manufactured by MEC. Processing time is 1 minute. Thereafter, Ni: 0.1 mg / dm 2 Zn: 0.1 mg / dm 2 and Cr: 0.1 mg / dm 2 were adhered, and a silane coupling agent was adhered to the outermost layer. The surface-roughened copper foil obtained above was attached to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔実施例5〕
元箔1を150℃、5時間加熱処理した。加熱後の箔のエッチングする面から2μmまでの範囲(エッチング領域)の結晶粒径は、平均で0.6μm、この範囲の1μm以上の結晶粒は28%であった。この加熱処理箔に電解エッチングを施した。エッチング液は硫酸100g/L、平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス5ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電流密度:50A/dm、処理時間:15秒行い、その後Ni:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。上記で得られた表面粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
Example 5
The original foil 1 was heat-treated at 150 ° C. for 5 hours. The average crystal grain size in the range (etching region) from the etching surface of the foil after heating to 2 μm was 0.6 μm, and the crystal grain size of 1 μm or more in this range was 28%. This heat-treated foil was subjected to electrolytic etching. The etching solution is 100 g / L sulfuric acid, 15 ppm low molecular weight gelatin with an average molecular weight of 3000, 5 ppm hydroxyethyl cellulose, 1 ppm sodium 3-mercapto-1-propanesulfonate, current density: 50 A / dm 2 , treatment time: After 15 seconds, Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , Cr: 0.1 mg / dm 2 were adhered, and a silane coupling agent was adhered to the outermost layer. The surface-roughened copper foil obtained above was attached to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔実施例6〕
元箔1を180℃、5時間加熱処理した。加熱後の箔のエッチングする面から2μmまでの範囲(エッチング領域)の結晶粒径は、平均で0.75μm、この範囲の1μm以上の結晶粒は35%であった。この加熱後の箔に電解エッチングを施した。エッチング液は硫酸100g/L、平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス5ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電流密度50A/dm、処理時間:17秒行い、更に下記めっき条件1、2により粗化量が75mg/dmになるように粗化処理を行った。
めっき条件1
硫酸銅(Cu金属として) 1〜 10g/dm
硫酸 30〜100g/dm
モリブデン酸アンモニウム(Mo金属として) 0.1〜5.0g/dm
電流密度 10〜60A/dm
通電時間 1秒〜45秒
浴温 20〜60℃
めっき条件2
硫酸銅(Cu金属として) 20〜70g/dm
硫酸 30〜100g/dm
電流密度 5〜45A/dm
通電時間 1秒〜1分
浴温 20℃〜60℃
Example 6
The original foil 1 was heat-treated at 180 ° C. for 5 hours. The average crystal grain size in the range (etching region) from the etching surface of the foil after heating to 2 μm was 0.75 μm, and the crystal grain size of 1 μm or more in this range was 35%. The heated foil was subjected to electrolytic etching. The etching solution is 100 g / L of sulfuric acid, 15 ppm of low molecular weight gelatin having an average molecular weight of 3000, 5 ppm of hydroxyethyl cellulose, 1 ppm of sodium 3-mercapto-1-propanesulfonate, current density 50 A / dm 2 , treatment time: 17 Furthermore, the roughening process was further performed by the following plating conditions 1 and 2 so that the roughening amount was 75 mg / dm 2 .
Plating condition 1
Copper sulfate (as Cu metal) 1-10 g / dm 3
Sulfuric acid 30-100 g / dm 3
Ammonium molybdate (as Mo metal) 0.1-5.0 g / dm 3
Current density 10-60A / dm 2
Energizing time 1 to 45 seconds Bath temperature 20 to 60 ° C
Plating condition 2
Copper sulfate (as Cu metal) 20-70 g / dm 3
Sulfuric acid 30-100 g / dm 3
Current density 5 to 45 A / dm 2
Energizing time 1 second to 1 minute Bath temperature 20 ° C to 60 ° C

粗化処理後、Ni:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。上記で得られた表面粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
After the roughening treatment, Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , Cr: 0.1 mg / dm 2 were attached, and a silane coupling agent was attached to the outermost layer. The surface-roughened copper foil obtained above was attached to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔比較例1〕
元箔1上にNi:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。得られた粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
[Comparative Example 1]
Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , and Cr: 0.1 mg / dm 2 were attached on the original foil 1, and a silane coupling agent was attached to the outermost layer. The obtained roughened copper foil was affixed to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔比較例2〕
元箔2上にNi:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。得られた粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
[Comparative Example 2]
Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , and Cr: 0.1 mg / dm 2 were attached on the original foil 2, and a silane coupling agent was attached to the outermost layer. The obtained roughened copper foil was affixed to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔比較例3〕
硫酸銅五水和物350g/L、硫酸80g/L、塩素イオン35ppmを含む硫酸酸性硫酸銅電解液に平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス3ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電解液温度50℃、流速0.2m/分、電流密度20A/dmの条件で、厚さ:12μm、エッチングする面の表面粗さRz:1.24μmの電解銅箔は製箔した。得られた銅箔は粒状晶をもち、エッチングする面から2μmまでの範囲(エッチング領域)の結晶粒径は、平均で0.2μm、この範囲の1μm以上の結晶粒は5%であった。
化学エッチングはエッチング液としてメック社製CZ8101を用い、スプレー式で行った。処理時間:2分。その後Ni:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。得られた粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
[Comparative Example 3]
Copper sulfate sulfate pentahydrate 350g / L, sulfuric acid 80g / L, sulfuric acid copper sulfate electrolyte containing 35ppm of chlorine ion, low molecular weight gelatin 15ppm of average molecular weight 3000, hydroxyethyl cellulose 3ppm, 3-mercapto-1-propane Electrolysis with the addition of 1 ppm of sodium sulfonate, electrolyte temperature of 50 ° C., flow rate of 0.2 m / min, current density of 20 A / dm 2 , thickness: 12 μm, surface roughness Rz of etching surface: 1.24 μm Copper foil was made. The obtained copper foil had granular crystals, and the average crystal grain size in the range (etching region) from the etching surface to 2 μm was 0.2 μm, and the crystal grain size of 1 μm or more in this range was 5%.
The chemical etching was performed by a spray method using CZ8101 manufactured by MEC as an etchant. Processing time: 2 minutes. Thereafter, Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , and Cr: 0.1 mg / dm 2 were attached, and a silane coupling agent was attached to the outermost layer. The obtained roughened copper foil was affixed to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔比較例4〕
硫酸銅五水和物350g/L、硫酸80g/L、塩素イオン35ppmを含む硫酸酸性硫酸銅電解液に平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス3ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電解液温度50℃、流速0.2m/分、電流密度20A/dmの条件で、厚:12μm、エッチングする面の表面粗さRz:1.24μmの電解銅箔は製箔した。得られた銅箔は粒状晶をもち、エッチングする面から2μmまでの範囲(エッチング領域)の結晶粒径は、平均で0.2μm、この範囲の1μm以上の結晶粒は5%であった。
電解エッチングは、エッチング液として硫酸100g/L、平均分子量3000の低分子量ゼラチン15ppm、ヒドロキシエチルセルロ−ス5ppm、3−メルカプト−1−プロパンスルホン酸ナトリウム1ppmを添加し、電流密度:50A/dm、処理時間:15秒行い、その後Ni:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。得られた粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
[Comparative Example 4]
Copper sulfate sulfate pentahydrate 350g / L, sulfuric acid 80g / L, sulfuric acid copper sulfate electrolyte containing 35ppm of chlorine ion, low molecular weight gelatin 15ppm of average molecular weight 3000, hydroxyethyl cellulose 3ppm, 3-mercapto-1-propane Electrolytic copper with addition of 1 ppm of sodium sulfonate, electrolyte temperature of 50 ° C., flow rate of 0.2 m / min, current density of 20 A / dm 2 , thickness: 12 μm, surface roughness Rz of etching surface: 1.24 μm The foil was made. The obtained copper foil had granular crystals, and the average crystal grain size in the range (etching region) from the etching surface to 2 μm was 0.2 μm, and the crystal grain size of 1 μm or more in this range was 5%.
In the electrolytic etching, sulfuric acid 100 g / L, low molecular weight gelatin 15 ppm having an average molecular weight of 3000, hydroxyethyl cellulose 5 ppm, sodium 3-mercapto-1-propanesulfonate 1 ppm are added as an etching solution, and current density is 50 A / dm 2. Treatment time: 15 seconds, Ni: 0.1 mg / dm 2 , Zn: 0.1 mg / dm 2 , Cr: 0.1 mg / dm 2 were then deposited, and a silane coupling agent was deposited on the outermost layer. The obtained roughened copper foil was affixed to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

〔比較例5〕
元箔1に、粗化粒子を189mg/dm付着させる粗化処理を行い、表面粗さRz2.3μmにした後、その後、Ni:0.1mg/dm、Zn:0.1mg/dm、Cr:0.1mg/dmを付着し、最表層にシランカップリング剤を付着した。得られた粗化処理銅箔を液晶ポリマーフィルム及びポリエーテルエーテルケトン樹脂フィルムにプレスで貼り付けピール強度を確認した。
また、ボイドの確認は、表面粗化処理銅箔の表面処理を行った面に錫めっき(粗化処理面に拡散する低融点金属含有導電性ペーストの低融点金属100%に相当する)を行ない、これを320℃にて加熱して断面観察を行った。
[Comparative Example 5]
To Motohaku 1 performs roughening treatment to the roughening particles 189 mg / dm 2 deposited, after the surface roughness Rz2.3Myuemu, then, Ni: 0.1mg / dm 2, Zn: 0.1mg / dm 2 Cr: 0.1 mg / dm 2 was adhered, and a silane coupling agent was adhered to the outermost layer. The obtained roughened copper foil was affixed to a liquid crystal polymer film and a polyether ether ketone resin film with a press to confirm the peel strength.
In addition, the void is confirmed by performing tin plating (corresponding to 100% of the low melting point metal of the low melting point metal-containing conductive paste diffusing into the roughened surface) on the surface of the surface roughened copper foil. This was heated at 320 ° C. to observe the cross section.

粗化処理銅箔のピール強度の評価
〔液晶ポリマー〕
実施例及び比較例で作成した表面粗化処理銅箔に、液晶ポリマーフィルムを積層し、280℃で一定圧力をかけ、10分間保持した後冷却して貼り付け、ピール強度を測定した。
Evaluation of peel strength of roughened copper foil (liquid crystal polymer)
A liquid crystal polymer film was laminated on the surface-roughened copper foil prepared in Examples and Comparative Examples, a constant pressure was applied at 280 ° C., held for 10 minutes, then cooled and pasted, and peel strength was measured.

〔ポリエーテルエーテルケトン樹脂フィルム〕
実施例及び比較例で作成した粗化処理銅箔に、ポリエーテルエーテルケトン樹脂フィルムを積層し、205℃で一定圧力をかけ、10分間保持した後冷却して貼り付け、ピール強度を測定した。
[Polyetheretherketone resin film]
A polyether ether ketone resin film was laminated on the roughened copper foil prepared in Examples and Comparative Examples, a constant pressure was applied at 205 ° C., held for 10 minutes, then cooled and pasted, and peel strength was measured.

〔ピール強度の測定〕
この様にして得られた、フィルムと表面粗化処理箔とのピール強度を測定した。ピール強度の測定は、JIS・C6471に準じ、180度方向に引き剥がして行った。その結果を表1に示す。
[Measurement of peel strength]
The peel strength between the film and the surface roughened foil thus obtained was measured. The peel strength was measured in accordance with JIS C6471 by peeling in the 180 degree direction. The results are shown in Table 1.

〔低融点金属におけるボイド発生〕
各実施例と、実施例と同等のピール強度を有する比較例5につきボイドの発生状況を確認し、その結果を表1に示す。
[Void generation in low melting point metals]
The state of occurrence of voids was confirmed for each Example and Comparative Example 5 having a peel strength equivalent to that of the Example, and the results are shown in Table 1.

Figure 2006269706
Figure 2006269706

表1から明らかなように、本発明の積層回路基板はピール強度が十分で、ボイド、亀裂が発生せず、優れた積層回路基板を作成、提供することができる。一方、比較例5のように粗化粒子量が多い従来銅箔では、ピール強度は十分であるが、低融点金属の拡散によりボイド及び亀裂が見られる。
また、結晶粒の大きさがある一定の値を保ち、あるいは加熱処理により均一にした粒状晶銅箔は、ピール強度が強く、ファインパターンを形成する積層回路基板用銅箔として優れたものであり、かかる銅箔を使用することにより、優れた積層回路基板を提供することができる。
As can be seen from Table 1, the laminated circuit board of the present invention has sufficient peel strength, does not cause voids and cracks, and can produce and provide an excellent laminated circuit board. On the other hand, in the conventional copper foil having a large amount of roughened particles as in Comparative Example 5, the peel strength is sufficient, but voids and cracks are observed due to the diffusion of the low melting point metal.
In addition, a granular copper foil that maintains a certain value of crystal grain size or is uniformed by heat treatment has high peel strength and is excellent as a copper foil for laminated circuit boards that form fine patterns. By using such a copper foil, an excellent laminated circuit board can be provided.

本発明によれば、低融点金属を含有した導電性ペーストを使用した積層回路基板において、銅箔と導電性ペーストとの間にボイドや亀裂の発生のない高品質のものを提供することができ、各種電子部品の回路基板の製造への利用の可能性がある。


ADVANTAGE OF THE INVENTION According to this invention, in the laminated circuit board using the electrically conductive paste containing a low melting metal, the high quality thing which does not produce a void and a crack between copper foil and an electrically conductive paste can be provided. There is a possibility of use in the manufacture of circuit boards for various electronic components.


Claims (9)

少なくとも片面の表面粗さが0.1μm〜5μmの銅または銅合金元箔の前記表面をエッチングによる粗化処理で高さ0.3μm以上の突起物が略均一に分布し、表面粗さRzが0.5〜10μmとした粗化処理銅箔と、樹脂基板に穿設した貫通孔に低融点金属を含有する導電性ペーストを充填した基板とを積層した積層回路基板。   Protrusions having a height of 0.3 μm or more are distributed substantially uniformly by roughening the surface of the copper or copper alloy base foil having a surface roughness of at least one surface of 0.1 μm to 5 μm by etching, and the surface roughness Rz is A laminated circuit board obtained by laminating a roughened copper foil of 0.5 to 10 μm and a board filled with a conductive paste containing a low melting point metal in a through hole formed in a resin board. 前記銅または銅合金元箔が電解箔であることを特徴とする請求項1に記載の積層回路基板。   The laminated circuit board according to claim 1, wherein the copper or copper alloy base foil is an electrolytic foil. 上記銅または銅合金元箔の少なくともエッチングする方の表面が粒状晶であることを特徴とする請求項1に記載の積層回路基板。   2. The laminated circuit board according to claim 1, wherein at least the surface of the copper or copper alloy base foil to be etched is a granular crystal. 前記エッチングは、化学エッチングであることを特徴とする請求項1に記載の積層回路基板。   The multilayer circuit board according to claim 1, wherein the etching is chemical etching. 前記エッチングは、電解エッチングであることを特徴とする請求項1に記載の積層回路基板。   The multilayer circuit board according to claim 1, wherein the etching is electrolytic etching. 少なくとも片面が粒状晶であり、表面粗さが0.1μm〜5μmであり、該表面から少なくとも深さXまでの領域の平均粒径が0.3μm以上である銅または銅合金元箔を、該元箔表面を深さXまでの領域以内をエッチングにより高さ0.3μm以上の突起物が略均一に分布し、表面粗さRzが0.5〜10μmとする粗化処理を施し、該粗化処理銅箔と、樹脂基板に穿設した貫通孔に低融点金属を含有する導電性ペーストを充填した基板とを積層する積層回路基板の製造方法。   A copper or copper alloy base foil having at least one surface of a granular crystal, a surface roughness of 0.1 μm to 5 μm, and an average particle size of at least a depth X from the surface of 0.3 μm or more, Protrusions having a height of 0.3 μm or more are distributed approximately uniformly by etching within the region up to the depth X on the original foil surface, and a roughening treatment is performed so that the surface roughness Rz is 0.5 to 10 μm. A method for manufacturing a laminated circuit board, in which a copper foil and a substrate filled with a conductive paste containing a low melting point metal in a through hole formed in a resin substrate are laminated. 上記銅または銅合金元箔に加熱処理を施し、少なくともエッチングする方の粒状晶表面を、該表面から少なくとも深さXまでの領域を平均粒径0.3μm以上とし、該加熱処理元箔に粗化処理を施し粗化処理銅箔とすることを特徴とする請求項6に記載の積層回路基板の製造方法。   The copper or copper alloy base foil is subjected to heat treatment, and at least the granular crystal surface to be etched has an average particle size of 0.3 μm or more from the surface to at least the depth X, and the heat treatment base foil is roughened. The method for producing a laminated circuit board according to claim 6, wherein a roughening treatment copper foil is applied. 前記エッチングは、化学エッチングであることを特徴とする請求項6に記載の積層回路基板の製造方法。   The method for manufacturing a laminated circuit board according to claim 6, wherein the etching is chemical etching. 前記エッチングは、電解エッチングであることを特徴とする請求項6に記載の積層回路基板の製造方法。
The method for manufacturing a laminated circuit board according to claim 6, wherein the etching is electrolytic etching.
JP2005085251A 2005-03-24 2005-03-24 Multilayer circuit board and manufacturing method thereof Active JP4593331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085251A JP4593331B2 (en) 2005-03-24 2005-03-24 Multilayer circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085251A JP4593331B2 (en) 2005-03-24 2005-03-24 Multilayer circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006269706A true JP2006269706A (en) 2006-10-05
JP4593331B2 JP4593331B2 (en) 2010-12-08

Family

ID=37205354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085251A Active JP4593331B2 (en) 2005-03-24 2005-03-24 Multilayer circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4593331B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127618A (en) * 2006-11-20 2008-06-05 Furukawa Circuit Foil Kk Method for treating surface of copper foil through feeding alternating current
JP2008144232A (en) * 2006-12-11 2008-06-26 Fukuda Metal Foil & Powder Co Ltd Method for roughening surface of copper foil
JP2008182222A (en) * 2006-12-28 2008-08-07 Mitsui Mining & Smelting Co Ltd Flexible printed circuit board and semiconductor device
CN116516425A (en) * 2023-05-17 2023-08-01 安徽铜冠铜箔集团股份有限公司 Manufacturing method and application of extremely-low-profile electronic copper foil for electrolytic high-order communication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158027A (en) * 1994-12-05 1996-06-18 Nippon Foil Mfg Co Ltd Annealing method for rolled copper foil
JP2001024328A (en) * 1999-07-05 2001-01-26 Asahi Chem Ind Co Ltd Multilayered wiring board
JP2002217510A (en) * 2001-01-15 2002-08-02 Matsushita Electric Ind Co Ltd Connecting structure of board, and its manufacturing method
JP2003110243A (en) * 2000-12-26 2003-04-11 Denso Corp Printed circuit board and manufacturing method thereof
JP2003152333A (en) * 2001-11-12 2003-05-23 Matsushita Electric Ind Co Ltd Circuit board and its manufacturing method
JP2004152904A (en) * 2002-10-29 2004-05-27 Kyocera Corp Electrolytic copper foil, film and multilayer wiring substrate therewith, and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158027A (en) * 1994-12-05 1996-06-18 Nippon Foil Mfg Co Ltd Annealing method for rolled copper foil
JP2001024328A (en) * 1999-07-05 2001-01-26 Asahi Chem Ind Co Ltd Multilayered wiring board
JP2003110243A (en) * 2000-12-26 2003-04-11 Denso Corp Printed circuit board and manufacturing method thereof
JP2002217510A (en) * 2001-01-15 2002-08-02 Matsushita Electric Ind Co Ltd Connecting structure of board, and its manufacturing method
JP2003152333A (en) * 2001-11-12 2003-05-23 Matsushita Electric Ind Co Ltd Circuit board and its manufacturing method
JP2004152904A (en) * 2002-10-29 2004-05-27 Kyocera Corp Electrolytic copper foil, film and multilayer wiring substrate therewith, and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127618A (en) * 2006-11-20 2008-06-05 Furukawa Circuit Foil Kk Method for treating surface of copper foil through feeding alternating current
JP2008144232A (en) * 2006-12-11 2008-06-26 Fukuda Metal Foil & Powder Co Ltd Method for roughening surface of copper foil
JP2008182222A (en) * 2006-12-28 2008-08-07 Mitsui Mining & Smelting Co Ltd Flexible printed circuit board and semiconductor device
CN116516425A (en) * 2023-05-17 2023-08-01 安徽铜冠铜箔集团股份有限公司 Manufacturing method and application of extremely-low-profile electronic copper foil for electrolytic high-order communication
CN116516425B (en) * 2023-05-17 2023-12-19 安徽铜冠铜箔集团股份有限公司 Manufacturing method and application of extremely-low-profile electronic copper foil for electrolytic high-order communication

Also Published As

Publication number Publication date
JP4593331B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP3977790B2 (en) Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP5275701B2 (en) Aluminum material for printed wiring board and method for producing the same
US20050123782A1 (en) Copper foil with low profile bond enhancement
WO2011090175A1 (en) Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board
KR20060052031A (en) Surface treated copper foil and circuit board
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP5435505B2 (en) Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate
EP1133220B1 (en) Copper foil with low profile bond enhancement
JP5281732B2 (en) Surface processing method of aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having a surface processed by the method
US6569543B2 (en) Copper foil with low profile bond enahncement
JP4609850B2 (en) Multilayer circuit board
JP2004263300A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
WO1996025838A1 (en) Copper foil and high-density multi-layered printed circuit board using the copper foil for inner layer circuit
JP2004263296A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP4391437B2 (en) Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil
WO2022215330A1 (en) Surface-treated copper foil, and copper-cladded laminate and printed wiring board each using said surface-treated copper foil
JP2004131836A (en) Electrolytic copper foil with carrier foil and its producing method, and copper clad laminated board using electrolytic copper foil with carrier foil
JP3953252B2 (en) Method for removing chromate rust preventive film and method for manufacturing wiring board
JP4540100B2 (en) Two-layer flexible copper-clad laminate and method for producing the two-layer flexible copper-clad laminate
JP2927968B2 (en) Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
JP4471795B2 (en) Electrolytic copper foil manufacturing method and printed wiring board
JP4776217B2 (en) Copper metallized laminate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4593331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350