JP5435505B2 - Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate - Google Patents

Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate Download PDF

Info

Publication number
JP5435505B2
JP5435505B2 JP2010550555A JP2010550555A JP5435505B2 JP 5435505 B2 JP5435505 B2 JP 5435505B2 JP 2010550555 A JP2010550555 A JP 2010550555A JP 2010550555 A JP2010550555 A JP 2010550555A JP 5435505 B2 JP5435505 B2 JP 5435505B2
Authority
JP
Japan
Prior art keywords
plating
metal foil
copper
foil
replica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010550555A
Other languages
Japanese (ja)
Other versions
JPWO2010093009A1 (en
Inventor
了一 小黒
宏途 沓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2010550555A priority Critical patent/JP5435505B2/en
Publication of JPWO2010093009A1 publication Critical patent/JPWO2010093009A1/en
Application granted granted Critical
Publication of JP5435505B2 publication Critical patent/JP5435505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1152Replicating the surface structure of a sacrificial layer, e.g. for roughening

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は金属箔及びその製造方法に関するものである。特に、本発明は、絶縁基板に薄膜導体層による配線を形成するためのレプリカ用金属箔およびその製造方法に関するものである。
レプリカ用金属箔は、特に、半導体素子、集積回路、電子部品等を搭載するための配線基板の製造に適するものである。
また、本発明は、金属箔を用いて粗化処理面が形成された絶縁基板、および、その絶縁基板の粗化処理面上に、所定の配線パターンが形成された配線基板に関する。
The present invention relates to a metal foil and a manufacturing method thereof. In particular, the present invention relates to a replica metal foil for forming a wiring with a thin film conductor layer on an insulating substrate, and a method for manufacturing the same.
The metal foil for replica is particularly suitable for manufacturing a wiring board for mounting a semiconductor element, an integrated circuit, an electronic component and the like.
The present invention also relates to an insulating substrate having a roughened surface formed using a metal foil, and a wiring substrate having a predetermined wiring pattern formed on the roughened surface of the insulating substrate.

近年の電子技術の進展により半導体素子、集積回路、電子部品等を搭載するための配線基板は軽薄短小化に加え高集積化,高出力化,高速化が急速に進行している。そのため、例えば半導体基板に銅などの金属配線を形成する際、スパッタリング成膜と電解メッキを併用するのが一般的である。特に半導体デバイスは、高機能・高速化にともない銅配線の微細化のプロセス開発が急速に進められている。上記の様な配線基板の高集積化により、軽薄短小化には配線幅の減少と配線長の増大とが必至となり、例えば配線材料の電気抵抗は信号遅延を起こし、強いては伝送高速化を阻害する。このため、配線材料には、電気抵抗が小さい極薄金属材料が使用されている。   With recent advances in electronic technology, wiring boards for mounting semiconductor elements, integrated circuits, electronic components, and the like are rapidly becoming more integrated, higher output, and faster in addition to being lighter, thinner, and smaller. Therefore, for example, when forming a metal wiring such as copper on a semiconductor substrate, it is common to use sputtering film formation and electrolytic plating in combination. In particular, in semiconductor devices, process development for miniaturization of copper wiring is rapidly progressing with higher functions and higher speeds. Due to the high integration of wiring boards as described above, the reduction in wiring width and the increase in wiring length are inevitably required for lighter and thinner devices. For example, the electrical resistance of wiring materials causes signal delays, which hinders the increase in transmission speed. To do. For this reason, an ultrathin metal material having a small electric resistance is used as the wiring material.

従来の配線基板における極薄金属膜の形成技術には、スパッタリング法およびCVD(化学的蒸着)法が採用されていた。その内でも成膜の量産性および安定性の観点で有利なスパッタリング法が一般的に採用されている。しかしながら、スパッタリング法で形成された配線は、エレクトロマイグレーションや配線の伸び縮みによって発生するストレスマイグレーションによって断線事故を生じ易い難点があり配線基板の製造歩留りを低下させる問題点があった。更には特殊な処理設備を用いる必要があり製造コストも高くコストパフォーマンス面での改善が課題となっていた。   Sputtering methods and CVD (chemical vapor deposition) methods have been employed as conventional techniques for forming ultrathin metal films on wiring boards. Among them, a sputtering method that is advantageous from the viewpoint of mass productivity and stability of film formation is generally employed. However, the wiring formed by the sputtering method has a problem that a disconnection accident is likely to occur due to stress migration generated by electromigration or expansion / contraction of the wiring, and there is a problem that the manufacturing yield of the wiring board is lowered. Furthermore, it is necessary to use special processing equipment, and the manufacturing cost is high, so that improvement in cost performance has been an issue.

本発明は配線基板の製造にあたり、絶縁基板に金属箔表面の表面形状を転写し、転写した表面に金属の薄い層を形成する、いわゆるレプリカ法に好適に使用する金属箔を提供するものである。   The present invention provides a metal foil suitable for use in a so-called replica method in which a surface shape of a metal foil surface is transferred to an insulating substrate and a thin metal layer is formed on the transferred surface in the production of a wiring board. .

ここで、金属箔をレプリカ用として使用する使用方法(レプリカ法)につき先ず説明する。なお、説明を簡単にするために配線基板の片方の表面に金属箔のレプリカを形成する工程につき説明する。   Here, a usage method (replica method) in which the metal foil is used for a replica will be described first. In order to simplify the description, a process of forming a metal foil replica on one surface of the wiring board will be described.

半導体素子、集積回路、電子部品等を搭載するための配線基板は、エポキシ系の接着性樹脂や半硬化の樹脂を表面に塗布したイミド系樹脂、液晶ポリマー等の樹脂フィルム等の絶縁基板である。また、この配線基板は、アラミド樹脂やガラス等の絶縁性繊維にエポキシ樹脂を含浸させ、さらに例えば厚さ5〜20μm程度のエポキシ層半硬化状態、すなわちBステージで形成したガラスエポキシ基板等の絶縁基板である。   A wiring board for mounting semiconductor elements, integrated circuits, electronic components, etc. is an insulating substrate such as an epoxy resin or semi-cured resin coated imide resin, liquid crystal polymer resin film, etc. . In addition, this wiring board is made by impregnating an insulating fiber such as an aramid resin or glass with an epoxy resin, and further, for example, an epoxy layer semi-cured state having a thickness of about 5 to 20 μm, that is, an insulation such as a glass epoxy board formed by a B stage It is a substrate.

この絶縁基板に金属箔を積層する。金属箔としては例えば粗化処理面を有する銅箔を採用する。金属箔はその粗化処理面側を絶縁基板の表面に真空熱プレスで積層される。
次いで積層した金属箔をエッチング除去する。絶縁基板の表面に、真空熱プレスした金属箔および絶縁基板に食い込んだ金属箔の粗化処理面の金属を、例えば金属箔が銅箔の場合は、配線基板の製造に一般的に用いられている塩化鉄や塩化銅などのエッチング液によってエッチング除去する。
A metal foil is laminated on this insulating substrate. For example, a copper foil having a roughened surface is employed as the metal foil. The roughened surface side of the metal foil is laminated on the surface of the insulating substrate by vacuum hot pressing.
Next, the laminated metal foil is removed by etching. The surface of the insulating substrate is vacuum-heat-pressed metal foil and the metal on the roughened surface of the metal foil that has penetrated into the insulating substrate. For example, when the metal foil is a copper foil, it is generally used for the production of wiring boards. Etch away with an etchant such as iron chloride or copper chloride.

金属箔をエッチング除去することにより絶縁基板の表面から、粗化処理面の金属が除去される。このため、金属箔の粗化処理面の凹凸形状が絶縁基板に転写され、絶縁基板表面に凹凸(レプリカ)による粗化処理面が形成される。この凹凸(レプリカ)は、金属箔の粗化処理面が粒状であれば、絶縁基板の表面に転写される凹凸形状は多くの粒状形状の凹部となる。その凹部は表面積の大きさばかりでなく、凹部表面の開口部の断面積の大きさより凹部の内部における開口部の断面積の方が大きい部分が存在する形状で形成される。よって、凹部は、アンカー効果に最適な形状となる。   The metal on the roughened surface is removed from the surface of the insulating substrate by etching away the metal foil. For this reason, the uneven | corrugated shape of the roughening process surface of metal foil is transcribe | transferred to an insulating substrate, and the roughening process surface by an unevenness | corrugation (replica) is formed in the insulating substrate surface. If the roughened surface of the metal foil is granular, the uneven shape transferred to the surface of the insulating substrate is a concave portion having many granular shapes. The concave portion is formed not only with a large surface area but also with a shape in which there is a portion where the cross sectional area of the opening inside the concave portion is larger than the size of the cross sectional area of the opening on the concave surface. Therefore, the concave portion has an optimum shape for the anchor effect.

次に、絶縁基板の表面に無電解メッキの核となるパラジウムを付着した後、無電解メッキにより電気抵抗率の小さい金属、例えば厚さ0.1〜5μm程度に銅を薄くメッキする。
次に薄くメッキしたメッキ層の表面の所望配線パターン以外の領域にメッキマスクを設ける。メッキマスクは、例えばメッキ層表面に感光性樹脂を設けた後に、所望パターン形成のための光マスクによって露光し、現像することによって形成する。
Next, after depositing palladium serving as the core of electroless plating on the surface of the insulating substrate, a metal having a low electrical resistivity, for example, copper having a thickness of about 0.1 to 5 μm is thinly plated by electroless plating.
Next, a plating mask is provided in a region other than the desired wiring pattern on the surface of the thinly plated plating layer. The plating mask is formed, for example, by providing a photosensitive resin on the surface of the plating layer, and then exposing and developing with a light mask for forming a desired pattern.

しかる後に、前記形成の無電解メッキ層から給電することによって、感光性樹脂が被着形成されていない所望配線パターン領域に、良導電性金属、例えば銅を電気メッキして配線を形成する。   After that, by supplying power from the electroless plating layer formed as described above, a wiring is formed by electroplating a highly conductive metal, for example, copper, in a desired wiring pattern region where the photosensitive resin is not deposited.

次いで、感光性樹脂を除去した後、硫酸過酸化水素系や過硫酸塩類もしくはアンモニア錯塩類系等のエッチング液によってエッチングし、電気メッキ層で覆われていない部分の無電解メッキ層を除去する。無電解メッキ層は、電気メッキ金属層の配線に比較して薄いためにエッチング速度が速い。そして、所望パターンの電気メッキ層の配線はほとんどエッチングされない。このため、電気メッキ層による所望パターンの下の無電解メッキ層は、電気メッキ層の配線がマスクとなって保護されているため、エッチングされない。最後に、過マンガン酸カリウムと水酸化ナトリウムの混合液に浸漬する。これにより、絶縁基板の露出した表面に被着し、前記エッチング液でエッチングできなかったパラジウムを除去する。(かかる方法は例えば特許文献1に開示されている。)   Next, after removing the photosensitive resin, etching is performed with an etching solution such as a hydrogen peroxide sulfate, a persulfate, or an ammonia complex, and the electroless plating layer that is not covered with the electroplating layer is removed. Since the electroless plating layer is thinner than the wiring of the electroplating metal layer, the etching rate is high. And the wiring of the electroplating layer of a desired pattern is hardly etched. For this reason, the electroless plating layer under the desired pattern by the electroplating layer is not etched because the wiring of the electroplating layer is protected using the mask. Finally, it is immersed in a mixed solution of potassium permanganate and sodium hydroxide. This removes the palladium that was deposited on the exposed surface of the insulating substrate and could not be etched with the etchant. (This method is disclosed in, for example, Patent Document 1.)

特開2006−196813号公報JP 2006-196913 A

特許文献1には、銅箔の粗化処理面は、銅箔の表面に電気メッキの電流を通常の数倍にしてメッキする、すなわち異常メッキ現象(ヤケメッキ)を利用して、粒状の銅の細かい粒子をメッキ成長させたものが記載されている。本文献では、その粒子の大きさや粗さおよび粒状などの総合的な粗化形状が、絶縁基板との密着強度に重要な要因であり、銅箔メーカーにおいて最適化されており、入手も容易である、と記載しているが、その詳細については開示していない。   In Patent Document 1, the roughened surface of the copper foil is plated on the surface of the copper foil by multiplying the current of electroplating several times as usual, that is, by utilizing an abnormal plating phenomenon (discoloration plating), The fine particles are grown by plating. In this document, the overall rough shape, such as the size, roughness, and granularity of the particles, is an important factor in the adhesion strength with the insulating substrate, and has been optimized by the copper foil manufacturer and is easily available. Although it is described as being, details thereof are not disclosed.

本発明は、半導体素子、集積回路、電子部品等を搭載するための配線基板の製造に適したレプリカ用金属箔につき鋭意研究し、レプリカ用途の金属箔として好ましい形状の粗化面を形成した金属箔を提供し、もって、絶縁基板と配線パターンとの密着性に優れ、エッチング直進性、厚み均一性にも優れる配線パターンを有する配線基板を提供することに成功したものである。   The present invention has been intensively studied on a replica metal foil suitable for manufacturing a wiring board for mounting a semiconductor element, an integrated circuit, an electronic component, etc., and a metal having a roughened surface having a preferable shape as a metal foil for replica use. By providing a foil, the present invention has succeeded in providing a wiring substrate having a wiring pattern that has excellent adhesion between the insulating substrate and the wiring pattern, and that has excellent etching straightness and thickness uniformity.

従来市販の電解銅箔は、基板との密着性を高める粗化処理の形状が銅粒のコブ状で該銅粒コブどうしも根元で緻密にくっつき合っているのが一般的である。
本発明の主としてレプリカ用途の表面処理金属箔は、粗化処理面側に0.1μm以上、1.0μm以下の間隙を有する微細柱状形状の凹凸を形成したことを大きな特徴とする。
Conventionally, electrolytic copper foils on the market generally have a roughened shape for improving adhesion to the substrate, and the copper grains are generally closely attached at the roots.
The surface-treated metal foil mainly used for replicas according to the present invention is characterized in that fine columnar irregularities having a gap of 0.1 μm or more and 1.0 μm or less are formed on the roughened surface side.

本発明のレプリカ用金属箔は、メッキ粗化表面を有する金属箔であって、該メッキ粗化表面は、未処理金属箔の少なくとも一方の面に銅または銅合金のヤケメッキにより粗化コブメッキが施され、該粗化コブメッキ上にカプセルメッキが施され、その表面粗さがRz値で1.0μmから2.5μmであり、かつ前記粗化コブメッキにより形成された粗化コブは、隣り合う粗化コブとの間に0.1μm以上1.0μm以下の間隙を有する柱状形状であることを特徴とする。 The metal foil for replica according to the present invention is a metal foil having a roughened plating surface, and the roughened plating surface is subjected to roughening galvanization by burnt plating of copper or copper alloy on at least one surface of the untreated metal foil. Capsule plating is performed on the roughened bump plating, the surface roughness is 1.0 to 2.5 μm in Rz value, and the roughened bumps formed by the roughened bump plating are adjacent roughened A columnar shape having a gap of 0.1 μm or more and 1.0 μm or less between the bumps.

本発明の金属箔は、前記メッキ粗化表面に、防錆処理が施されている金属箔である。   The metal foil of the present invention is a metal foil in which the roughened plating surface is subjected to rust prevention treatment.

本発明の金属箔は、前記未処理金属箔が圧延銅箔又は電解銅箔であり、前記未処理銅箔の少なくともメッキ粗化表面形成側の表面粗さがRz値で1.0μmから2.2μmである金属箔である。   In the metal foil of the present invention, the untreated metal foil is a rolled copper foil or an electrolytic copper foil, and the surface roughness of at least the plated roughened surface forming side of the untreated copper foil is from 1.0 μm to 2. It is a metal foil which is 2 μm.

本発明の絶縁基板は、上記の金属箔のメッキ粗化表面における凹凸形状が転写されて粗化処理面が形成された絶縁基板である。   The insulating substrate of the present invention is an insulating substrate having a roughened surface formed by transferring the uneven shape on the roughened plating surface of the metal foil.

本発明の配線基板は、上記の絶縁基板の粗化処理面上に、所定の配線パターンが形成された配線基板である。   The wiring board of the present invention is a wiring board in which a predetermined wiring pattern is formed on the roughened surface of the insulating substrate.

本発明のレプリカ用金属箔の製造方法は、表面粗さがRz値で1.0μmから2.2μmである未処理金属箔に硫酸−硫酸銅メッキ液、ピロ燐酸銅メッキ液又は炭酸銅メッキ液に鉄、クロム、モリブデン、タングステンと、バナジウムとアンチモンの両方又は何れか一方を添加金属として加えたメッキ浴でヤケメッキを施して粗化コブメッキ表面を形成し、該粗化コブメッキ表面にカプセルメッキを施し、表面粗さがRz値で1.0μmから2.5μmであり、隣り合う粗化コブとの間に0.1μm以上1.0μm以下の間隙を有する柱状形状のメッキ粗化表面とすることを特徴とする。
The method for producing a metal foil for replica according to the present invention comprises a surface roughness Rz value of 1.0 μm to 2.2 μm on an untreated metal foil, a sulfuric acid-copper sulfate plating solution, a pyrophosphate copper plating solution or a copper carbonate plating solution. A roughened galvanized surface is formed by plating with a plating bath in which iron, chromium, molybdenum, tungsten and / or vanadium and / or antimony are added as additive metals , and capsule rough plating is applied to the roughened galvanized surface. The surface roughness is 1.0 to 2.5 μm in terms of Rz value, and a roughened plated surface with a columnar shape having a gap of 0.1 μm or more and 1.0 μm or less between adjacent roughing bumps. Features.

本発明の金属箔の製造方法において、前記メッキ液中に添加する添加金属は鉄、クロム、モリブデン、タングステンと、バナジウムとアンチモンの両方又はいずれか一方である。   In the metal foil manufacturing method of the present invention, the additive metal added to the plating solution is iron, chromium, molybdenum, tungsten, and / or vanadium and antimony.

本発明の金属箔の製造方法においては、前記メッキ粗化面に防錆処理を施す。   In the method for producing a metal foil of the present invention, a rust prevention treatment is applied to the roughened plated surface.

本発明の金属箔の製造方法において、前記未処理金属箔は圧延銅箔又は電解銅箔である。   In the method for producing a metal foil of the present invention, the untreated metal foil is a rolled copper foil or an electrolytic copper foil.

本発明の絶縁基板は、前記本発明のレプリカ用金属箔、またはレプリカ用金属箔の製造方法で製造された金属箔のメッキ粗化表面における凹凸形状が転写されて粗化処理面が形成された絶縁基板である。The insulating substrate of the present invention has a roughened surface formed by transferring the uneven shape on the roughened plating surface of the metal foil for replica of the present invention or the metal foil manufactured by the method for manufacturing a metal foil for replica. It is an insulating substrate.
また、本発明の配線基板は、前記絶縁基板の前記粗化処理面上に、所定の配線パターンが形成された配線基板である。  The wiring board of the present invention is a wiring board in which a predetermined wiring pattern is formed on the roughened surface of the insulating substrate.

本発明の金属箔は主にレプリカ用途における投錨効果(レプリカを利用したアンカー効果)に優れるため、後工程である無電解メッキ時のメッキ量コストを低減できる。また、本発明の金属箔は、絶縁基板と配線パターンとの密着性に優れるため、回路作製時の細線回路エッチング工程においてエッチング直進性に優れる。よって、本発明は、半導体素子、集積回路、電子部品等を搭載するための配線基板の製造に優れた効果を有する。   Since the metal foil of the present invention is mainly excellent in the anchoring effect (anchor effect using the replica) in the replica application, it is possible to reduce the plating amount cost in the electroless plating which is a subsequent process. Moreover, since the metal foil of this invention is excellent in the adhesiveness of an insulated substrate and a wiring pattern, it is excellent in the etching straightness in the fine wire circuit etching process at the time of circuit manufacture. Therefore, the present invention has an excellent effect in the production of a wiring board for mounting a semiconductor element, an integrated circuit, an electronic component, and the like.

(A)はエッチング後の回路直進性を判断する基準(レベル)を示す写真である。 (B)はEPMA(X線マイクロアナライザ;Electron Probe Micro-Analysis)による残渣銅マッピングを判断する基準(レベル)を示す写真である。 (C)は粗化コブ間隙を説明する写真である。(A) is a photograph showing a standard (level) for judging the straightness of the circuit after etching. (B) is a photograph showing a reference (level) for determining residual copper mapping by EPMA (X-ray microanalyzer). (C) is a photograph explaining the roughened bump gap.

本発明の金属箔は、ステンレス箔、アルミ箔、銅箔等であって、特にレプリカ用途の箔としてエッチング可能な金属箔であればよい。
以下、本発明について、金属箔として需要が多く見込まれる電解銅箔を例として詳細に説明する。なお、圧延銅箔についても同様な結果が得られるので詳細な説明は省略する。
本発明で用いるメッキ粗化表面形成前の電解銅箔(以下未処理銅箔と表現することがある)は、単重厚みが、60g/mから153g/m(公称厚み9〜18μmに相当する)で、厚み方向の結晶構造が微細粒(微細結晶)である。「単重厚み」は、「単重(単位面積当たりの重量)」を「銅比重(8.9)」で割った理論上の厚みを示している(つまり、「「単重厚み」=「単重」/「銅比重(8.9)」)。そして、「公称厚み」は、実測した厚みを示している。
未処理銅箔の単重厚みを、60g/mから153g/mの範囲とするのは、未処理箔を粗化処理したり、粗化処理箔を絶縁基板に積層する際のハンドリング性、さらには、エッチングで箔を除去する際のエッチング処理の容易性等の特性が優れているからである。
The metal foil of the present invention may be a stainless steel foil, an aluminum foil, a copper foil or the like, and any metal foil that can be etched as a foil for replica use.
Hereinafter, the present invention will be described in detail by taking, as an example, an electrolytic copper foil that is expected to be highly demanded as a metal foil. In addition, since the same result is obtained also about rolled copper foil, detailed description is abbreviate | omitted.
The electrolytic copper foil before forming the roughened plating surface used in the present invention (hereinafter sometimes referred to as an untreated copper foil) has a unit thickness of 60 g / m 2 to 153 g / m 2 (to a nominal thickness of 9 to 18 μm). The crystal structure in the thickness direction is fine grains (fine crystals). “Unit weight” indicates a theoretical thickness obtained by dividing “unit weight (weight per unit area)” by “copper specific gravity (8.9)” (that is, “unit thickness” = “ Single weight "/" copper specific gravity (8.9) "). “Nominal thickness” indicates the actually measured thickness.
Single heavy Mi of untreated copper foil, in the range from 60 g / m 2 of 153 g / m 2, the untreated foils or roughened, handling properties at the time of laminating the roughening treatment foil on the insulating substrate Furthermore, it is because the characteristics such as the ease of the etching process when removing the foil by etching are excellent.

この未処理銅箔にヤケメッキを施す。ヤケメッキを施すメッキ浴には、硫酸−硫酸銅メッキ液、ピロ燐酸銅メッキ液又は炭酸銅メッキ液のいずれかの基本メッキ液組成中に金属添加剤を添加する。金属添加剤としてはFe(鉄)、Mo(モリブデン)、Cr(クロム)、W(タングステン)と、V(バナジウム)或いはSb(アンチモン)のいずれか又は両方を添加する。
未処理銅箔表面に、前記メッキ浴の限界電流密度近傍においてヤケメッキを施すことで、微細結晶のコブ状の柱状形状を形成する。ヤケメッキ浴に、Fe(鉄)、Mo(モリブデン)、Cr(クロム)、W(タングステン)を、下記のように、所定量、添加しているので、微細な複数の柱状形状が間隙を設けるように形成される。また、V(バナジウム)或いはSb(アンチモン)を添加することで、片面処理箔とした場合に、耐薬品性を向上させることができる。メッキ方法の詳細については後述する。
This untreated copper foil is burnt-plated. A metal additive is added to a basic plating solution composition of any one of a sulfuric acid-copper sulfate plating solution, a pyrophosphate copper plating solution, and a copper carbonate plating solution in a plating bath to be burnt. As a metal additive, Fe (iron), Mo (molybdenum), Cr (chromium), W (tungsten), and V (vanadium) or Sb (antimony) or both are added.
The surface of the untreated copper foil is subjected to burnt plating in the vicinity of the limiting current density of the plating bath, thereby forming a bumpy columnar shape of fine crystals. A predetermined amount of Fe (iron), Mo (molybdenum), Cr (chromium), and W (tungsten) is added to the burnt plating bath as shown below, so that a plurality of fine columnar shapes provide gaps. Formed. Further, by adding V (vanadium) or Sb (antimony), chemical resistance can be improved when a single-side treated foil is formed. Details of the plating method will be described later.

次いで、ヤケメッキによる粗化コブメッキで形成された粗化コブメッキ表面のコブ状微細柱状形状の銅粒が容易に脱落しないように、平滑メッキ、所謂カプセルメッキを施し、表面粗化銅箔、又はレプリカ用途の銅箔(以下単にレプリカ用銅箔と表現することがある)とする。カプセルメッキ方法については後述する。
上記カプセルメッキは、出来上がりのメッキ粗化表面の粗化処理形状がJIS−B−0601で規定するRz値(以下同様)で1.0μm以上、2.5μm以下であり、銅粒がカプセルメッキを施された後であっても微細柱状形状(柱状)を保ち、該柱状間に0.1μm以上、1.0μm以下の柱状間隙を有するように施す。
Next, smooth plating, so-called capsule plating, is applied to roughen the surface of the roughened copper foil or replica so that the copper grains of the bumpy fine columnar shape on the surface of the roughened bumped surface formed by roughened bumped plating by burnt plating are not easily dropped. Copper foil (hereinafter, sometimes simply referred to as replica copper foil). The capsule plating method will be described later.
In the above capsule plating, the roughened surface of the finished plated rough surface has an Rz value specified by JIS-B-0601 (hereinafter the same) of 1.0 μm or more and 2.5 μm or less, and the copper particles are encapsulated in the capsule plating. Even after being applied, the fine columnar shape (columnar shape) is maintained, and the columnar gaps between the columnar shapes are 0.1 μm or more and 1.0 μm or less.

上述のように製造したレプリカ用銅箔は、前述したように、先ずレプリカ用銅箔を積層対象となる絶縁基板、例えばエポキシ基材或いはポリイミド樹脂または有機フィルムに積層される。その後、該レプリカ用銅箔をエッチングにより完全に溶解除去せしめて柱状間隙を有する微細柱状のレプリカを絶縁基板表面に形成する。つまり、レプリカ用銅箔(金属箔)のメッキ粗化表面における凹凸形状を転写して、絶縁基板に粗化処理面を形成する。そして、その絶縁基板の粗化処理面上にメッキ処理で金属膜を形成後、その金属膜についてウェットエッチング処理を実施してパターン加工し、所定の配線パターンを形成することで、配線基板を形成する。   As described above, the replica copper foil manufactured as described above is first laminated on an insulating substrate to be laminated, for example, an epoxy base material, a polyimide resin, or an organic film. Thereafter, the replica copper foil is completely dissolved and removed by etching to form a fine columnar replica having columnar gaps on the surface of the insulating substrate. That is, the uneven shape on the roughened plating surface of the replica copper foil (metal foil) is transferred to form a roughened surface on the insulating substrate. Then, after forming a metal film by plating on the roughened surface of the insulating substrate, wet etching is performed on the metal film, pattern processing is performed, and a predetermined wiring pattern is formed, thereby forming a wiring substrate. To do.

従来レプリカ用途として頻度が高い市販の片面粗化処理銅箔では、表面の凹部がすり鉢状で、銅粒コブどうしも根元で緻密にくっつき合っているのが一般的である。このため、投錨効果(レプリカを利用したアンカー効果)が劣ると共に、無電解メッキ時のメッキ量が多くなってコストアップとなる。さらに、その後の回路作製時の細線回路エッチング工程においてのエッチング直進性も劣る結果となる。   Conventionally, a commercially available single-side roughened copper foil, which is frequently used for replica applications, generally has a mortar-shaped recess on the surface, and the copper grain bumps are closely attached to each other at the root. For this reason, the anchoring effect (anchor effect using a replica) is inferior, and the amount of plating during electroless plating increases, resulting in an increase in cost. Furthermore, the etching straightness in the fine line circuit etching process during the subsequent circuit fabrication is also poor.

主な用途がレプリカ用である、本発明の銅箔は、粗化処理面側に0.1μm以上、1.0μm以下の間隙を有する微細柱状形状が形成されている。このため、該銅箔を用いることで、絶縁基板表面に均一かつ凹程度が健全な間隔と形状で、投錨効果(レプリカを利用したアンカー効果)に優れた凹凸(レプリカ)を容易に形成することができる。従って後工程である無電解メッキ時のメッキ量を最小限に節約でき、その後の回路作製時の細線回路エッチング工程においてのエッチング直進性優れる。よって、半導体素子、集積回路、電子部品等を搭載する為の配線基板の製造に適したレプリカ用銅箔として好ましい粗化面を有する表面処理銅箔を提供することができる。   The copper foil of the present invention, which is mainly used for replicas, has a fine columnar shape having a gap of 0.1 μm or more and 1.0 μm or less on the roughened surface side. For this reason, by using the copper foil, it is possible to easily form unevenness (replica) excellent in anchoring effect (anchor effect using a replica) with a uniform and concave spacing and shape on the surface of the insulating substrate. Can do. Therefore, the amount of plating during electroless plating, which is a subsequent process, can be saved to a minimum, and the straightness of etching in the fine line circuit etching process during subsequent circuit fabrication is excellent. Therefore, it is possible to provide a surface-treated copper foil having a roughened surface that is preferable as a replica copper foil suitable for manufacturing a wiring board for mounting a semiconductor element, an integrated circuit, an electronic component, or the like.

銅箔表面に施す微細柱状形状(粗化処理形状)は、表面粗さがRz値で1.0μm以上、2.5μm以下になるように形成される。
このように規制することで不要なエッチング残渣を残すことなく微細柱状で、柱状間隙を有するレプリカを絶縁基板表面に形成することができる。
ここでRz(レプリカの深さに相当)が1.0μm未満の場合には耐熱信頼性の点で不具合を発生させる懸念がある。そして、Rzが2.5μmを超える場合では絶縁基板表面に形成される凹部の大きさが大きくなり、回路形成に際し支障となる恐れがある。このため、レプリカ用銅箔の粗化処理形状は、Rz値で1.0μm以上、2.5μm以下であることが特に好ましい。
The fine columnar shape (roughening shape) applied to the copper foil surface is formed such that the surface roughness is 1.0 μm or more and 2.5 μm or less in terms of Rz value.
By regulating in this way, a replica having a fine columnar shape and a columnar gap can be formed on the surface of the insulating substrate without leaving an unnecessary etching residue.
Here, if Rz (corresponding to the depth of the replica) is less than 1.0 μm, there is a concern of causing a problem in terms of heat resistance reliability. When Rz exceeds 2.5 μm, the size of the recess formed on the surface of the insulating substrate increases, which may hinder circuit formation. For this reason, the roughening shape of the replica copper foil is particularly preferably 1.0 μm or more and 2.5 μm or less in terms of Rz value.

本発明では、レプリカ用銅箔の粗化処理面側に、0.1μm以上、1.0μm以下の間隙を有する微細柱状形状を形成する。
メッキ粗化処理前の銅箔は微細粒の結晶構造を有する。微細粒の結晶構造を有する銅箔とは、粗化処理を施す前の表面粗度がRz値で1.0μm以上、2.2μm以下の光沢形状の銅箔である。微細粒の結晶構造を有する銅箔を粗化コブ処理することで前記間隙を有する粗化形状を設けることができる。即ち柱状結晶を有する一般的な電解銅箔ベースによる粗化コブ処理では、本発明のレプリカ形状とすることは困難である。
本発明において未処理銅箔の表面粗度をRz値で1.0μm以上と規定するのは、Rz値が1.0μm未満の未処理銅箔は、製箔工程における生産性が極めて低く、工業用材料としては不適当であるからである。また、Rz値が2.2μmを超える場合には、はヤケメッキ工程における初期電着の銅粒子が粗度の高い先端に集中して付着(メッキ)し、その結果樹枝状の極めて脆い粗化がなされてしまい、健全な状態にするために次工程の平滑メッキを過剰に施す必要が生じる。その結果、レプリカとしての適宜な凹凸間隔が得られなくなるばかりか、エッチング時に樹枝状の先端が基板内に残渣となりマイグレーション不具合を起こす懸念が高い。このため、未処理銅箔の表面粗度を、Rz値で2.2μm以下と規定している。
In the present invention, a fine columnar shape having a gap of 0.1 μm or more and 1.0 μm or less is formed on the roughened surface side of the replica copper foil.
The copper foil before the plating roughening treatment has a fine grain crystal structure. The copper foil having a fine grain crystal structure is a glossy copper foil having a surface roughness Rz value of 1.0 μm or more and 2.2 μm or less before the roughening treatment. A roughened shape having the gap can be provided by roughening a copper foil having a fine grain crystal structure. In other words, it is difficult to obtain the replica shape of the present invention by the roughing bump process using a general electrolytic copper foil base having columnar crystals.
In the present invention, the surface roughness of the untreated copper foil is defined as an Rz value of 1.0 μm or more. The untreated copper foil having an Rz value of less than 1.0 μm has extremely low productivity in the foil-making process, and is industrial. It is because it is unsuitable as a material for use. If the Rz value exceeds 2.2 μm, the initial electrodeposited copper particles in the burnt plating process concentrate and adhere to the tip with high roughness (plating), resulting in dendritic extremely brittle roughening. Therefore, in order to obtain a healthy state, it is necessary to excessively apply smooth plating in the next process. As a result, an appropriate uneven spacing as a replica cannot be obtained, and there is a high concern that a dendritic tip becomes a residue in the substrate during etching and causes a migration failure. For this reason, the surface roughness of the untreated copper foil is defined as 2.2 μm or less in terms of Rz value.

本発明の粗化コブメッキを施し、Rz(レプリカの深さに相当)が1.0μm以上、2.5μm以下で、粗化コブ間の間隙が0.1μm以上、1.0μm以下のレプリカ用銅箔を絶縁基板に張り合わせる。そして、次工程で銅箔除去のための過マンガン酸処理等により清浄化処理し、該レプリカ形状が損なわれない絶縁基板面に仕上げる。そして、該絶縁基板面に無電解メッキで超極薄銅膜を形成し、該超極薄銅膜の表面に電解銅メッキ処理を施す。このようにすることで、密着性に優れ、エッチング直進性、厚み均一性にも優れる極薄銅箔層を容易に形成することができる。   The copper for replicas having the roughened bump plating of the present invention, Rz (corresponding to the depth of the replica) of 1.0 μm or more and 2.5 μm or less, and the gap between the roughened bumps of 0.1 μm or more and 1.0 μm or less The foil is laminated to the insulating substrate. Then, in the next step, a cleaning process is performed by a permanganate process for removing the copper foil or the like to finish the insulating substrate surface without damaging the replica shape. Then, an ultra-thin copper film is formed on the surface of the insulating substrate by electroless plating, and the surface of the ultra-thin copper film is subjected to electrolytic copper plating. By doing in this way, the ultra-thin copper foil layer which is excellent in adhesiveness, and is excellent also in etching straightness and thickness uniformity can be formed easily.

本発明のレプリカ用銅箔は、表面粗度がRz値で1.0μm以上2.2μm以下の光沢形状の銅箔を用い、その表面に粗化コブ処理を施す。
前記銅箔を粗化コブ処理するヤケメッキ浴組成は、下記の通りである。
・硫酸濃度:80〜120g/l
・硫酸銅からの銅濃度:20〜30g−Cu/l、好ましくは23〜25g−Cu/l
・モリブデン化合物からのモリブデン濃度:150〜350mg−Mo/l
・鉄化合物からの鉄濃度:150〜300mg−Fe/l、好ましくは250±50mg−Fe/l
・クロム化合物からの三価クロム濃度:150〜300mg−Cr/l、好ましくは250±50mg−Cr/l
・タングステン化合物からのタングステン濃度:0.1〜20mg−Cr/l、好ましくは10±2.5mg−W/l
・バナジウム化合物或いはアンチモン化合物からのバナジウム濃度或いはアンチモン濃度:50〜200mg−V/l或いは50〜200mg−Sb/l、好ましくは150±30mg−V/lまたは150±30mg−Sb/l
・塩素化合物からの塩素濃度:0.1〜2.0mg−Cl/l、好ましくは0.1〜0.5mg−Cl/l
The copper foil for replicas of the present invention uses a glossy copper foil having a surface roughness Rz value of 1.0 μm or more and 2.2 μm or less, and is subjected to a roughening bump process.
The discoloration plating bath composition for roughening the copper foil is as follows.
・ Sulfuric acid concentration: 80-120 g / l
Copper concentration from copper sulfate: 20-30 g-Cu / l, preferably 23-25 g-Cu / l
・ Molybdenum compound concentration: 150-350 mg-Mo / l
Iron concentration from iron compound: 150 to 300 mg-Fe / l, preferably 250 ± 50 mg-Fe / l
Trivalent chromium concentration from chromium compound: 150 to 300 mg-Cr / l, preferably 250 ± 50 mg-Cr / l
-Tungsten concentration from tungsten compound: 0.1-20 mg-Cr / l, preferably 10 ± 2.5 mg-W / l
Vanadium concentration or antimony concentration from vanadium compound or antimony compound: 50 to 200 mg-V / l or 50 to 200 mg-Sb / l, preferably 150 ± 30 mg-V / l or 150 ± 30 mg-Sb / l
Chlorine concentration from chlorine compound: 0.1-2.0 mg-Cl / l, preferably 0.1-0.5 mg-Cl / l

このメッキ浴を用いて、下記のメッキ条件でヤケメッキ処理を施す。
・浴温、20〜30℃、好ましくは23.5〜25.5℃、
・電流密度:直流整流で25〜35A/dm、好ましくは28±1.5A/dm
Using this plating bath, burnt plating is performed under the following plating conditions.
Bath temperature, 20-30 ° C., preferably 23.5-25.5 ° C.
Current density: 25 to 35 A / dm 2 , preferably 28 ± 1.5 A / dm 2 by DC rectification

ヤケメッキを施す銅箔表面は、電解メッキ製箔の陰極ドラムの表面より引き剥がされた側の面(光沢面)でも、液面側の面(マット面)のどちらでも、その表面の粗度が、Rz値で1.0μm以上2.2μm以下の面であれば支障はない。
一般的な柱状結晶構造により製箔される電解銅箔の場合には、光沢面側を用いるのが好ましい。しかし、微細結晶により製箔される両面が平滑な銅箔(例えば古河電気工業株式会社により製箔される電解銅箔であるWS箔)の場合には、光沢面よりマット面の方が平滑性に富む。このため、該WS箔を用いる場合には、平滑なマット面側にヤケメッキを施し次いでカプセルメッキ処理を施すことにより健全な粗化コブ処理がなされ、Rz値で2.5μm以下で、かつ粗化コブのコブ間隙が、0.1μm以上1.0μm以下である形状の粗化面を作成することができる。
The surface of the copper foil subjected to burnt plating has a surface roughness of either the surface peeled off from the surface of the cathode drum of the electrolytic plating foil (glossy surface) or the liquid surface (matte surface). If the Rz value is 1.0 μm or more and 2.2 μm or less, there is no problem.
In the case of an electrolytic copper foil manufactured with a general columnar crystal structure, it is preferable to use the glossy surface side. However, in the case of copper foils made of fine crystals and smooth on both sides (for example, WS foil which is an electrolytic copper foil made by Furukawa Electric Co., Ltd.), the matte side is smoother than the glossy side. Rich. For this reason, when the WS foil is used, the rough matting treatment is performed by subjecting the smooth mat surface side to burnt plating and then the capsule plating treatment, the Rz value is 2.5 μm or less, and the roughening is performed. A rough surface having a shape in which the gap between the bumps is 0.1 μm or more and 1.0 μm or less can be formed.

次いで、前記ヤケメッキで形成した粗化コブ処理形状の表面に、下記の条件下において、平滑カプセルメッキを施す。
・硫酸濃度:80〜120g/l
・硫酸銅からの銅濃度:40〜60g−Cu/l、好ましくは50±2.5g−Cu/l
・浴温:45〜60℃、好ましくは55±2.5℃
・電流密度:直流整流で18〜25A/dm、好ましくは20±2.5A/dm
このようにして、粗化コブ処理面に平滑カプセルメッキ処理を施すことで粉落ちすることのない強固で健全な柱状形状が達成される。
Next, smooth capsule plating is performed on the surface of the roughened bump-formed shape formed by the above-mentioned burn plating under the following conditions.
・ Sulfuric acid concentration: 80-120 g / l
Copper concentration from copper sulfate: 40-60 g-Cu / l, preferably 50 ± 2.5 g-Cu / l
Bath temperature: 45-60 ° C, preferably 55 ± 2.5 ° C
Current density: 18-25 A / dm 2 by DC rectification, preferably 20 ± 2.5 A / dm 2
In this way, a smooth and healthy columnar shape that does not fall off powder is achieved by subjecting the roughened bump-treated surface to smooth capsule plating.

その後、該銅箔に防錆処理として有機防錆処理、クロメート処理、ニッケル処理あるいは亜鉛処理を施してレプリカ用の粗化処理銅箔とする。
有機防錆剤としては、ベンゾトリアゾール(1.2.3-Benzotriazole〔公称:BTA〕)が好ましいが、市販の誘導体でもよい。その処理量はJIS−Z−2371に規定される塩水噴霧試験(塩水濃度:5%−NaCl、温度35℃)条件下で24時間まで表面が酸化銅変色しない程度の浸漬処理を施せば良い。
Thereafter, the copper foil is subjected to organic rust prevention treatment, chromate treatment, nickel treatment or zinc treatment as rust prevention treatment to obtain a roughened copper foil for replica.
The organic rust inhibitor is preferably benzotriazole (1.2.3-Benzotriazole [nominal: BTA]), but may be a commercially available derivative. The treatment amount may be an immersion treatment that does not discolor the surface of the copper oxide until 24 hours under the condition of a salt spray test (salt water concentration: 5% -NaCl, temperature 35 ° C.) defined in JIS-Z-2371.

ニッケル処理防錆の場合は、付着Ni金属として定量分析される量が、0.06〜0.12mg−Ni/dm(10cm当たりの分析値)あればよい。粗化処理面側が0.12mg/dmを超える場合には、マイグレーション不具合の発生の懸念が高くなるので好ましくない。また、0.06mg−Ni/dm未満では十分な防錆効果が得られない。In the case of nickel-treated rust prevention, the amount quantitatively analyzed as adhering Ni metal may be 0.06 to 0.12 mg-Ni / dm 2 (analyzed value per 10 cm). When the roughened surface side exceeds 0.12 mg / dm 2 , the possibility of occurrence of a migration failure is increased, which is not preferable. Further, if it is less than 0.06 mg-Ni / dm 2 , a sufficient antirust effect cannot be obtained.

亜鉛処理防錆の場合は、付着Zn金属として定量分析される量が0.15〜0.35mg−Zn/dm(10cm当たりの分析値)あればよい。粗化処理面側が0.35mg/dmを超えても拡散効果により表面が真鍮化するだけで特に支障はないが、適宜な上限量は0.35mg−Zn/dmが好ましい。一方、0.15mg−Zn/dm未満では、経験的に変色不具合の発生が起こるので好ましくない。
なお、銅箔の片面に粗化処理するか、両面に粗化処理するかは、任意に選択することができる。
In the case of zinc treatment rust prevention, the amount quantitatively analyzed as adhering Zn metal may be 0.15 to 0.35 mg-Zn / dm 2 (analyzed value per 10 cm). Even if the roughened surface side exceeds 0.35 mg / dm 2 , there is no particular problem because the surface is only brassed by the diffusion effect, but an appropriate upper limit is preferably 0.35 mg-Zn / dm 2 . On the other hand, if it is less than 0.15 mg-Zn / dm 2 , discoloration defects occur empirically, which is not preferable.
In addition, it can select arbitrarily whether roughening processing is carried out on one side of copper foil, or roughening processing is carried out on both surfaces.

得られたレプリカ用銅箔(例えば公称厚さ9μmの粗化処理用銅箔)を、例えばBGA(Ball-Grid-Array)(レプリカ)用途部材として使用する場合には、粗化処理面側を対象基材と張り合わる。そして、積層後に該銅箔の全てを効率よくエッチング除去し、過マンガン酸処理液にて清浄する。なお、過マンガン酸処理液は、ヤケメッキ時に取り込まれた銅以外の金属残渣を溶解する効果を有する。このため、過マンガン酸処理液は、マイグレーションの懸念を払拭する手段と以降の無電解銅メッキ工程を健全に達成させる前処理剤として最適な薬剤である。   When using the obtained copper foil for replica (for example, copper foil for roughening with a nominal thickness of 9 μm) as a member for BGA (Ball-Grid-Array) (replica), for example, the roughening surface side Bond to the target substrate. And after lamination | stacking, all of this copper foil is etched away efficiently, and it cleans with a permanganate processing liquid. In addition, the permanganic acid treatment liquid has an effect of dissolving metal residues other than copper taken in at the time of burn plating. For this reason, the permanganic acid treatment liquid is an optimal chemical as a pretreatment agent that can achieve the means for wiping out migration concerns and the subsequent electroless copper plating process.

BGA用途部材として3μm厚みの極薄銅箔を必要とする場合には、該基材のレプリカ面に無電解銅メッキ薬剤のプロセスに準じて無電解銅メッキを施せば良い。また、場合によっては無電解銅メッキの上に電解メッキで厚さを付加してコスト低減に繋げることもできる。
なお、無電解メッキと電解メッキを組み合わせて、Line/Space(以下L/Sと略記する)=20μm/20μm以下の微細な配線回路をエッチング加工で施す場合には、無電解メッキの結晶と電解メッキの結晶との界面に、稀にエッチング液の染み込みによる回路不具合を発生させることがあるので、細線加工時に注意が必要である。
When an ultrathin copper foil having a thickness of 3 μm is required as a BGA application member, electroless copper plating may be applied to the replica surface of the base material in accordance with an electroless copper plating chemical process. Moreover, depending on the case, thickness can be added by electroplating on electroless copper plating, and it can also lead to cost reduction.
In addition, when electroless plating and electrolytic plating are combined and a fine wiring circuit of Line / Space (hereinafter abbreviated as L / S) = 20 μm / 20 μm or less is applied by etching, the electroless plating crystals and electrolysis are used. Care must be taken when processing fine wires because a circuit failure due to the penetration of the etchant may occur at the interface with the plating crystal.

以上、未処理金属箔として電解銅箔を例として説明した。しかし、未処理金属箔としては、電解銅箔の他に、圧延銅箔、アルミ箔、ステンレス箔等についても同様に応用することができる。   Heretofore, an electrolytic copper foil has been described as an example of the untreated metal foil. However, as an untreated metal foil, it can apply similarly to rolled copper foil, aluminum foil, stainless steel foil, etc. besides electrolytic copper foil.

次に本発明の実施形態について以下の実施例に基づいて説明する。   Next, embodiments of the present invention will be described based on the following examples.

[実施例1]
単重厚み107g/m(公称厚み12μmに相当する)で微細結晶粒を有する未処理電解銅箔の液面側であって、表面粗度がRz値で1.5μmの面に、以下の条件で粗化コブを形成するヤケメッキを施した。
下記の浴組成およびメッキ条件で電解処理(ヤケメッキ)した。
・硫酸濃度:100g/l
・硫酸銅からの銅濃度:23.5g−Cu/l
・モリブデン化合物からのモリブデン濃度:250mg−Mo/l
・鉄化合物からの鉄濃度:200mg−Fe/l
・クロム化合物からの三価クロム濃度:200mg−Cr/l
・タングステン化合物からのタングステン濃度:8.5mg−W/l
・バナジウム化合物からのバナジウム濃度:150mg−V/l
・塩素化合物からの塩素濃度:0.5mg−Cl/l
・浴温:24.5℃
・電流密度:直流整流で28A/dm
[Example 1]
On the liquid surface side of the untreated electrolytic copper foil having fine crystal grains with a single weight thickness of 107 g / m 2 (corresponding to a nominal thickness of 12 μm), the surface roughness is 1.5 μm in terms of Rz value. Under the conditions, burnt plating was used to form a roughened bump.
Electrolytic treatment (discoloration plating) was performed with the following bath composition and plating conditions.
・ Sulfuric acid concentration: 100 g / l
Copper concentration from copper sulfate: 23.5 g-Cu / l
Molybdenum compound concentration: 250 mg-Mo / l
Iron concentration from iron compound: 200 mg-Fe / l
-Trivalent chromium concentration from chromium compound: 200 mg-Cr / l
-Tungsten concentration from tungsten compound: 8.5 mg-W / l
-Vanadium concentration from vanadium compound: 150 mg-V / l
-Chlorine concentration from chlorine compounds: 0.5 mg-Cl / l
・ Bath temperature: 24.5 ℃
・ Current density: 28A / dm 2 by DC rectification

次いで前記ヤケメッキ粗化面に平滑メッキを施すことで粉落ちすることのない強固で健全な粗化コブ処理形状とするために、下記の浴組成とメッキ条件でカプセルメッキを施した。
・硫酸濃度:100g/l
・硫酸銅からの銅濃度:50g−Cu/l
・浴温:55℃
・電流密度:直流整流で22A/dm
Subsequently, capsule plating was performed with the following bath composition and plating conditions in order to obtain a strong and sound roughened bump-shaped shape that does not fall off by performing smooth plating on the rough surface of the burnt plating.
・ Sulfuric acid concentration: 100 g / l
Copper concentration from copper sulfate: 50 g-Cu / l
・ Bath temperature: 55 ℃
・ Current density: 22 A / dm 2 by DC rectification

その後、該銅箔の両面を公知のクロメート処理液(CrO濃度で3.0g/l相当)にて防錆処理を行った。Thereafter, the both surfaces of the copper foil were subjected to rust prevention treatment with a known chromate treatment solution (corresponding to 3.0 g / l in terms of CrO 3 concentration).

実施例1で製造した銅箔を市販の高周波対応絶縁基板(三菱瓦斯化学株式会社製)に220℃、30kgf/cm、100min.の条件で積層した。その後、該表面に積層した全ての銅箔を塩化第二銅エッチング液(比重:1.265;浴温:45℃)で完全に溶解除去し、水洗洗浄を十分に行なった。次いで、日本マクダーミット株式会社製のデスミアプロセス工程液(マキュダイザー9204、9275、9276、9279)を用いて、レプリカ部に所謂過マンガン酸エッチングを行い、十分な水洗洗浄を行なった。そして、該表面に公知の厚づけ用無電解銅メッキプロセス(日立製作所AP2プロセス)に準じておおよそ3.0μm厚みの銅膜を形成した。The copper foil manufactured in Example 1 was laminated on a commercially available high-frequency insulating substrate (manufactured by Mitsubishi Gas Chemical Co., Ltd.) under the conditions of 220 ° C., 30 kgf / cm 2 and 100 min. Thereafter, all the copper foils laminated on the surface were completely dissolved and removed with a cupric chloride etching solution (specific gravity: 1.265; bath temperature: 45 ° C.), and washed thoroughly with water. Next, so-called permanganic acid etching was performed on the replica portion using desmear process liquid (Mc. Dicer 9204, 9275, 9276, 9279) manufactured by McDermit Japan Co., Ltd., and sufficient washing with water was performed. Then, a copper film having a thickness of about 3.0 μm was formed on the surface according to a known electroless copper plating process for thickening (Hitachi, Ltd. AP2 process).

次いで該無電解銅膜付基板の銅膜表面にL/S=50μm/50μmのエッチングテスト用の細線回路を形成させ、エッチング後の回路の直進性を光学顕微鏡で観察した(図1(A)参照)。そして、マイグレーションの原因となる金属残渣、特に銅のマッピング観察をEPMAにて実施した(図1(B)参照)。その結果を表1に示した。
また、銅膜と絶縁基板との密着強度を測定し、その結果を表1に併記した。密着強度(kN/m)の測定は、無電解銅膜付基板の銅膜表面に公知の硫酸-硫酸銅浴を用いて35μm厚みにメッキアップし、メッキアップした表面に0.1m/m幅のパターンをUV照射にて硬化するUVインクとスクリーンにてパターン印刷し、エッチングにより得られた該パターンをJIS−C−6481に準じて測定した。
更に、処理表面の粗化コブの間隔と、その有無については、実体顕微鏡の倍率で撮影した断面写真(図1(C)参照)の粗化コブの最輪郭の間隔を、JIS規格に合格している市販のマイクロノギスを用いて実測し、倍率に準じて換算して間隔を求めた。ここでは、図1(C)に示すように、処理表面に銅粒子が分散し付着して樹枝状に電着成長することで、複数の柱状形状が間を隔てて形成される。複数の柱状形状は、処理表面から離れるに伴って幅が狭くなるように形成される。このため、この柱状形状のボトム部の間隔を、上記のように実測した。この測定結果を表1に併記した。
Next, a thin wire circuit for etching test of L / S = 50 μm / 50 μm was formed on the surface of the copper film of the substrate with the electroless copper film, and the straightness of the circuit after etching was observed with an optical microscope (FIG. 1A). reference). Then, mapping observation of metal residues that cause migration, particularly copper, was performed with EPMA (see FIG. 1B). The results are shown in Table 1.
Further, the adhesion strength between the copper film and the insulating substrate was measured, and the results are also shown in Table 1. The adhesion strength (kN / m) is measured by plating the surface of the copper film of the substrate with an electroless copper film to a thickness of 35 μm using a known sulfuric acid-copper sulfate bath, and 0.1 m / m width on the plated surface. The pattern was printed with a UV ink that was cured by UV irradiation and a screen, and the pattern obtained by etching was measured according to JIS-C-6481.
Furthermore, regarding the interval between roughing bumps on the treated surface and the presence or absence thereof, the interval between the outermost contours of the roughing bumps taken at a magnification of a stereomicroscope (see FIG. 1C) passed the JIS standard. Measured using a commercially available micro caliper and converted according to the magnification to obtain the interval. Here, as shown in FIG. 1C, a plurality of columnar shapes are formed at intervals by copper particles being dispersed and adhering to the treatment surface and electrodeposition-grown in a dendritic shape. The plurality of columnar shapes are formed so that the width decreases as the distance from the processing surface increases. For this reason, the interval between the bottoms of the columnar shape was measured as described above. The measurement results are also shown in Table 1.

表1に示すエッチング後の回路の直進性の判定は、光学顕微鏡の観察結果による。判定基準は、図1(A)に示すように、顕微鏡写真でエッチング面がほぼ直線であるものを◎、やや直線性に難があるが実用性の面では問題ないと判断されるものを△、実用性に問題があると判断されるものを×とした。
銅の残渣によるマッピングの観察は、図1(B)に示すように、EPMA観察で完全に銅の残渣が確認できないものを◎、ほぼ確認できないものを○、やや残渣が存在するが実用的には問題がないと判断されるものを△とした。
処理表面の粗化コブの間隔と、その有無については、図1(C)に示すように、実体顕微鏡の倍率で撮影した断面写真の粗化コブの最輪郭の間隔を、JIS規格に合格している市販のマイクロノギスを用いて実測し、倍率に準じて換算して間隔間の距離を求めた。
Determination of the straightness of the circuit after etching shown in Table 1 is based on the observation result of an optical microscope. As shown in FIG. 1 (A), the judgment criteria are ◎ when the etched surface is almost straight in the micrograph, and △ when the linearity is slightly difficult but practically unquestionable. The case where it was judged that there was a problem in practicality was rated as x.
As shown in FIG. 1 (B), the observation of mapping by copper residue is ◎ when the copper residue cannot be completely confirmed by EPMA observation, ○ when the copper residue is almost unidentifiable, or slightly residual, but practically △ indicates that there is no problem.
As shown in Fig. 1 (C), the interval between the rough edges of the roughened bumps on the surface of the treated surface passed the JIS standard, as shown in Fig. 1 (C). The distance between the intervals was obtained by actual measurement using a commercially available micro caliper and converting according to the magnification.

[実施例2]
実施例1で用いた微細結晶粒を有する未処理銅箔の単重厚みが63g/m(公称厚みが7μm相当)である。この点を除き、ヤケメッキ条件、カプセルメッキ条件、防錆処理条件を実施例1と全く同様にして各処理を実施し、その評価測定結果を表1に併記した。
[Example 2]
The single weight thickness of the untreated copper foil having fine crystal grains used in Example 1 is 63 g / m 2 (the nominal thickness is equivalent to 7 μm). Except for this point, each treatment was carried out in exactly the same manner as in Example 1 with the discoloration plating conditions, capsule plating conditions, and rust prevention treatment conditions, and the evaluation measurement results are also shown in Table 1.

[実施例3]
実施例1で用いた微細結晶粒を有する未処理銅箔の単重厚み153g/m(公称厚み18μmに相当)である。この点を除き、ヤケメッキ条件、カプセルメッキ条件、防錆処理条件を実施例1と全く同様にして各処理を実施し、その評価測定結果を表1に併記した。
[Example 3]
It is a unit thickness of 153 g / m 2 (corresponding to a nominal thickness of 18 μm) of the untreated copper foil having fine crystal grains used in Example 1. Except for this point, each treatment was carried out in exactly the same manner as in Example 1 with the discoloration plating conditions, capsule plating conditions, and rust prevention treatment conditions, and the evaluation measurement results are also shown in Table 1.

[実施例4]
厚みが単重厚み107g/m(公称厚み12μm相当)で、微細結晶粒を有する未処理電解銅箔の液面側の表面粗度がRz値で1.5μmの面に、以下の浴組成とメッキ条件で粗・化コブを形成するヤケメッキを施した。
ここでは、下記の基本浴に対して、下記の濃度になるように各化合物を溶解させた後に、工業用濃硫酸でpHを1.2に調整し、ピロ燐酸銅電解メッキ浴を形成した。
・基本浴:ピロ燐酸銅から銅濃度として23.5g−Cu/lを溶解させた溶液に、ピロ燐酸カリウム(ピロ燐酸化合物)300g/lを添加
・モリブデン化合物からのモリブデン濃度:250mg−Mo/l
・鉄化合物からの鉄濃度:200mg−Fe/l
・クロム化合物からの三価クロム濃度:200mg−Cr/l
・タングステン化合物からのタングステン濃度:8.5mg−W/l
・バナジウム化合物からのバナジウム濃度:150mg−V/l
・塩素化合物からの塩素濃度:0.5mg−Cl/l
そして、上記の組成のピロ燐酸電解メッキ浴を用いて、下記の条件で電解処理(ヤケメッキ)を実施した。
・液温:28.5℃
・電流密度を直流整流:32A/dm
ヤケメッキ以降のカプセルメッキもピロ燐酸銅浴で可能ではあるが、本実施例では、実施例1と全く同様のカプセルメッキ条件、防錆処理条件で処理を施した。その評価測定結果を表1に併記した。
[Example 4]
On the surface where the surface roughness on the liquid surface side of the untreated electrolytic copper foil with fine crystal grains is Rz value of 1.5 μm with a thickness of 107 g / m 2 (corresponding to a nominal thickness of 12 μm), the following bath composition And burnt plating was applied to form rough and rough bumps under the plating conditions.
Here, after dissolving each compound so that it might become the following density | concentration with respect to the following basic bath, pH was adjusted to 1.2 with industrial concentrated sulfuric acid, and the copper pyrophosphate electrolytic plating bath was formed.
Basic bath: 300 g / l of potassium pyrophosphate (pyrophosphate compound) is added to a solution obtained by dissolving 23.5 g-Cu / l as a copper concentration from copper pyrophosphate. Molybdenum concentration from molybdenum compound: 250 mg-Mo / l
Iron concentration from iron compound: 200 mg-Fe / l
-Trivalent chromium concentration from chromium compound: 200 mg-Cr / l
-Tungsten concentration from tungsten compound: 8.5 mg-W / l
-Vanadium concentration from vanadium compound: 150 mg-V / l
-Chlorine concentration from chlorine compounds: 0.5 mg-Cl / l
And using the pyrophosphoric acid electroplating bath of said composition, the electrolysis process (burn plating) was implemented on the following conditions.
Liquid temperature: 28.5 ° C
・ DC rectification of current density: 32A / dm 2
Capsule plating after scorch plating is also possible with a copper pyrophosphate bath, but in this example, the treatment was carried out under the same capsule plating conditions and antirust treatment conditions as in Example 1. The evaluation measurement results are also shown in Table 1.

[実施例5]
厚みが単重厚み107g/m(公称厚み12μm相当)で、微細結晶粒を有する未処理電解銅箔の液面側の表面粗度がRz値で1.5μmの面に、以下の条件で粗化コブを形成するヤケメッキを施した。
ここでは、下記の基本浴に対して、下記の濃度になるように各化合物を添加して、炭酸銅電解メッキ浴を形成した。
・基本浴:炭酸銅から銅濃度として23.5g−Cu/lを溶解させ、工業用濃硫酸にてpHを1.2に調整
・モリブデン化合物からのモリブデン濃度:250mg−Mo/l
・鉄化合物からの鉄濃度:200mg−Fe/l
・クロム化合物からの三価クロム濃度:として200mg−Cr/l
・タングステン化合物からのタングステン濃度:8.5mg−W/l
・バナジウム化合物からのバナジウム濃度:150mg−V/l
・塩素化合物からの塩素濃度として0.5mg−Cl/l
そして、この炭酸銅電解メッキ浴を用いて、下記の条件で電解メッキ処理(ヤケメッキ)した。
・浴温:28.5℃
・電流密度は直流整流:32A/dm
ヤケメッキ以降のカプセルメッキ条件、防錆処理条件を、実施例1と全く同様にして各処理を行い、その評価測定結果を表1に併記した。
[Example 5]
The surface roughness on the liquid surface side of the untreated electrolytic copper foil having fine crystal grains with a unit thickness of 107 g / m 2 (equivalent to a nominal thickness of 12 μm) is 1.5 μm in terms of Rz value under the following conditions. Burn plating to form a roughened bump was applied.
Here, with respect to the following basic bath, each compound was added so that it might become the following density | concentration, and the copper carbonate electroplating bath was formed.
-Basic bath: 23.5 g-Cu / l as a copper concentration from copper carbonate, adjusted to pH 1.2 with industrial concentrated sulfuric acid-Molybdenum concentration from molybdenum compound: 250 mg-Mo / l
Iron concentration from iron compound: 200 mg-Fe / l
-Trivalent chromium concentration from chromium compound: 200 mg-Cr / l
-Tungsten concentration from tungsten compound: 8.5 mg-W / l
-Vanadium concentration from vanadium compound: 150 mg-V / l
・ 0.5 mg-Cl / l as chlorine concentration from chlorine compounds
Then, using this copper carbonate electrolytic plating bath, electrolytic plating treatment (discoloration plating) was performed under the following conditions.
・ Bath temperature: 28.5 ℃
・ Current density is DC rectified: 32A / dm 2
Capsule plating conditions and rust prevention treatment conditions after burn plating were performed in exactly the same manner as in Example 1, and the evaluation measurement results are also shown in Table 1.

[実施例6]
未処理金属箔に代えて工業用の汎用圧延アルミニウム箔で単重量:68g/m(公称厚みが25μm相当)であるものを用いた。また、ヤケメッキ前に、その表面を25g/lの水酸化ナトリウム液(浴温度:85℃)で表面脱脂洗浄を行った。そして、健全なヤケメッキが施せる様に、酢酸酸性の浴に50g/lの酸化亜鉛を溶解させた液でヤケメッキ処理を施す面に0.35mg−Zn/dmの亜鉛メッキ前処理を施した。これらの点を除き、ヤケメッキ処理条件もカプセルメッキ条件も防錆処理条件も実施例1と全く同様にして各処理を行い、その評価測定結果を表1に併記した。
[Example 6]
Instead of the untreated metal foil, an industrial general-purpose rolled aluminum foil having a single weight of 68 g / m 2 (nominal thickness corresponding to 25 μm) was used. Further, before the burnt plating, the surface was degreased and washed with a 25 g / l sodium hydroxide solution (bath temperature: 85 ° C.). Then, a surface to be burnt plated with a solution obtained by dissolving 50 g / l of zinc oxide in an acetic acid acid bath was subjected to a zinc plating pretreatment of 0.35 mg-Zn / dm 2 so that a healthy burnt plating could be performed. Except for these points, the burn treatment conditions, capsule plating conditions, and rust prevention treatment conditions were the same as in Example 1, and the evaluation measurement results are also shown in Table 1.

[比較例1]
実施例1の粗化コブを形成するヤケメッキ処理を施す際に、該浴中に添加金属および添加物としてモリブデン、鉄、クロム、タングステン、バナジウム、塩素を用いなかった。これらの点を除き、実施例1と同様なカプセルメッキと防錆処理を施し、同様な評価測定を行い、その結果を表1に併記した。
[Comparative Example 1]
When the burn plating treatment for forming the roughened bumps of Example 1 was performed, molybdenum, iron, chromium, tungsten, vanadium, and chlorine were not used as additive metals and additives in the bath. Except for these points, the same capsule plating and rust prevention treatment as in Example 1 were performed, the same evaluation measurement was performed, and the results are also shown in Table 1.

[比較例2]
実施例1で用いた微細結晶粒を有する未処理銅箔に代えて、公称12μm厚みで一般的な柱状結晶を有する市販の片面粗化処理電解銅箔(古河電気工業株式会社製GTS―MP−12μm箔の粗化処理前銅箔)を用いた。この点を除き、ヤケメッキ条件、カプセルメッキ条件、防錆処理条件を実施例1と同様にして各処理を行い、その評価測定結果を表1に併記した。

[Comparative Example 2]
Instead of the untreated copper foil having fine crystal grains used in Example 1, a commercially available electrolytic copper foil for roughening one side having a nominal columnar crystal with a nominal thickness of 12 μm (GTS-MP manufactured by Furukawa Electric Co., Ltd.) The copper foil before roughening of -12 μm foil ) was used. Except for this point, each treatment was performed in the same manner as in Example 1 with respect to the discoloration plating conditions, capsule plating conditions, and rust prevention treatment conditions, and the evaluation measurement results are also shown in Table 1.

[比較例3]
高周波対応コア基板の片面に汎用のスパッタ工法にておおよそ0.5μm厚みの超薄厚銅膜を形成させた材料の、超薄銅膜表面に公知の硫酸−硫酸銅浴を用いてトータル5.0μmおよび35μm厚みに膜を電解でメッキアップした。そして、実施例と同様な評価および測定を行い、その結果を表1に併記した。
[Comparative Example 3]
4. Using a known sulfuric acid-copper sulfate bath on the surface of the ultra-thin copper film made of a material in which an ultra-thin copper film having a thickness of about 0.5 μm is formed on one side of a high-frequency compatible core substrate by a general-purpose sputtering method. The membrane was electrolyzed to a thickness of 0 μm and 35 μm. Then, the same evaluation and measurement as in the examples were performed, and the results are also shown in Table 1.

上記表1に示す結果から明らかなように、本発明の方法によれば、各比較例のものと比較して回路エッチング直進性に優れ、回路間のマイグレーションの懸念もなく、密着強度も用いる部材に必要とされる十分な強度を具備する、従来の工法で得られる極薄銅膜より品質的に向上した金属配線膜が形成できる。   As is apparent from the results shown in Table 1 above, according to the method of the present invention, the circuit etching straightness is superior to those of the comparative examples, there is no fear of migration between circuits, and the member also uses adhesion strength. Thus, a metal wiring film having sufficient strength required for the above-mentioned and improved in quality as compared with an ultrathin copper film obtained by a conventional method can be formed.

また無電解銅メッキにより銅結晶としては緻密で厚み均一性に優れる良好な銅薄膜が形成できる。このため、集積回路等の製造プロセスの歩留まりと品質向上が可能となり、微細配線でのマイグレーションによる不具合を払拭できる極薄銅箔をスパッタ法やハーフエッチング法に依らず安価に製造し、提供することが出来る。   In addition, by electroless copper plating, it is possible to form a copper thin film that is dense as a copper crystal and excellent in thickness uniformity. For this reason, it is possible to improve the yield and quality of manufacturing processes for integrated circuits, etc., and to manufacture and provide ultra-thin copper foil that can eliminate defects caused by migration in fine wiring at low cost regardless of sputtering or half-etching. I can do it.

◎ 極めて良好(最適)
○ 良好
△ 実用的には支障なし
× 支障あり
◎ Extremely good (optimal)
○ Good △ No practical problem × No problem

Claims (9)

メッキ粗化表面を有する金属箔であって、該メッキ粗化表面は、未処理金属箔の少なくとも一方の面に銅または銅合金のヤケメッキにより粗化コブメッキが施され、該粗化コブメッキ上にカプセルメッキが施され、その表面粗さがRz値で1.0μmから2.5μmであり、かつ前記粗化コブメッキにより形成された粗化コブは、隣り合う粗化コブとの間に0.1μm以上1.0μm以下の間隙を有する柱状形状であるレプリカ用金属箔。 A metal foil having a roughened plating surface, wherein the roughened plating surface is subjected to roughening galvanization by burnt plating of copper or a copper alloy on at least one surface of the untreated metal foil, and encapsulated on the roughening galvanizing. The surface roughness is 1.0 μm to 2.5 μm in terms of Rz value, and the roughening bump formed by the roughening bumping is 0.1 μm or more between adjacent roughening bumps. A replica metal foil having a columnar shape having a gap of 1.0 μm or less. 前記メッキ粗化表面に、防錆処理が施されている請求項1に記載のレプリカ用金属箔。   The metal foil for replica according to claim 1, wherein the roughened plating surface is subjected to a rust prevention treatment. 前記未処理金属箔が圧延銅箔又は電解銅箔であり、前記未処理金属箔の少なくともメッキ粗化表面形成側の表面粗さがRz値で1.0μmから2.2μmである請求項1に記載のレプリカ用金属箔。 The untreated metal foil is a rolled copper foil or an electrolytic copper foil, and the surface roughness of at least the plated roughened surface forming side of the untreated metal foil is 1.0 μm to 2.2 μm in Rz value. Metal foil for replica as described. 前記圧延銅箔又は電解銅箔の単重厚みが、60g/mから153g/mである請求項3に記載のレプリカ用金属箔。 The rolled copper foil or a single heavy Mi electrolytic copper foil, a replica metal foil according to claim 3 from 60 g / m 2 is 153 g / m 2. 表面粗さがRz値で1.0μmから2.2μmである未処理金属箔に硫酸−硫酸銅メッキ液、ピロ燐酸銅メッキ液又は炭酸銅メッキ液に鉄、クロム、モリブデン、タングステンと、バナジウムとアンチモンの両方又は何れか一方を添加金属として加えたメッキ浴でヤケメッキを施して粗化コブメッキ表面を形成し、該粗化コブメッキ表面にカプセルメッキを施し、表面粗さがRz値で1.0μmから2.5μmであり、隣り合う粗化コブとの間に0.1μm以上1.0μm以下の間隙を有する柱状形状のメッキ粗化表面とするレプリカ用金属箔の製造方法。 An untreated metal foil having a surface roughness Rz value of 1.0 μm to 2.2 μm is coated with sulfuric acid-copper sulfate plating solution, pyrophosphate copper plating solution or copper carbonate plating solution with iron, chromium, molybdenum, tungsten, and vanadium. Burnt plating is performed in a plating bath to which both or one of antimony is added as an additive metal to form a roughened galvanized surface. Capsule plating is applied to the roughened galvanized surface, and the surface roughness is from 1.0 μm in Rz value. A method for producing a replica metal foil having a columnar-shaped plated rough surface having a gap of 0.1 μm or more and 1.0 μm or less between adjacent roughing bumps of 2.5 μm. 前記メッキ粗化表面に、防錆処理を施す請求項5に記載のレプリカ用金属箔の製造方法。   The manufacturing method of the metal foil for replicas of Claim 5 which gives a rust prevention process to the said plating roughening surface. 前記未処理金属箔が圧延銅箔又は電解銅箔である請求項5に記載のレプリカ用金属箔の製造方法。   The method for producing a metal foil for replica according to claim 5, wherein the untreated metal foil is a rolled copper foil or an electrolytic copper foil. 請求項1〜4のいずれかに記載のレプリカ用金属箔、または請求項5に記載のレプリカ用金属箔の製造方法で製造された金属箔のメッキ粗化表面における凹凸形状が転写されて粗化処理面が形成された絶縁基板。   The metal foil for replica according to any one of claims 1 to 4 or the metal foil produced by the method for producing a metal foil for replica according to claim 5 is transferred to roughen the surface of the roughened plating surface. An insulating substrate with a treated surface. 請求項に記載の絶縁基板の前記粗化処理面上に、所定の配線パターンが形成された配線基板。 The wiring board by which the predetermined wiring pattern was formed on the said roughening process surface of the insulated substrate of Claim 8 .
JP2010550555A 2009-02-13 2010-02-12 Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate Active JP5435505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010550555A JP5435505B2 (en) 2009-02-13 2010-02-12 Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009031025 2009-02-13
JP2009031025 2009-02-13
JP2010550555A JP5435505B2 (en) 2009-02-13 2010-02-12 Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate
PCT/JP2010/052056 WO2010093009A1 (en) 2009-02-13 2010-02-12 Metal foil, method for producing same, insulating substrate, and wiring board

Publications (2)

Publication Number Publication Date
JPWO2010093009A1 JPWO2010093009A1 (en) 2012-08-16
JP5435505B2 true JP5435505B2 (en) 2014-03-05

Family

ID=42561849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010550555A Active JP5435505B2 (en) 2009-02-13 2010-02-12 Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate

Country Status (5)

Country Link
JP (1) JP5435505B2 (en)
KR (1) KR101256086B1 (en)
CN (1) CN102317510B (en)
TW (1) TWI432615B (en)
WO (1) WO2010093009A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885054B2 (en) * 2010-04-06 2016-03-15 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
CN103125149B (en) * 2010-09-27 2016-09-14 吉坤日矿日石金属株式会社 Copper foil for printed circuit board, its manufacture method, resin substrate for printed circuit board and printed circuit board (PCB)
US9955583B2 (en) 2013-07-23 2018-04-24 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
JP6166614B2 (en) * 2013-07-23 2017-07-19 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
TWI579137B (en) * 2014-01-27 2017-04-21 Mitsui Mining & Smelting Co Coarse copper foil, copper clad laminate and printed circuit board
JP6261037B2 (en) * 2014-02-06 2018-01-17 古河電気工業株式会社 Copper foil for high frequency circuit, copper clad laminate and printed wiring board
KR20170018342A (en) * 2014-06-06 2017-02-17 가부시키가이샤 유에이씨제이 Metal foil for current collector, current collector, and method for manufacturing metal foil for current collector
JP2017133105A (en) * 2017-03-06 2017-08-03 Jx金属株式会社 Copper foil with carrier, printed wiring board, printed circuit, copper clad laminate and manufacturing method of printed wiring board
JP7005092B2 (en) 2018-03-14 2022-01-21 エルジー・ケム・リミテッド Embedded transparent electrode substrate and its manufacturing method
JP7166335B2 (en) * 2018-03-27 2022-11-07 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
TWI740515B (en) 2019-12-23 2021-09-21 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226575A (en) * 1994-02-14 1995-08-22 Hitachi Chem Co Ltd Manufacture of printed wiring board
JP2004263300A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2006103189A (en) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk Surface-treated copper foil and circuit board
JP2006196813A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Wiring board and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354271B2 (en) * 2003-12-26 2009-10-28 三井金属鉱業株式会社 Browned surface-treated copper foil, method for producing the same, and electromagnetic shielding conductive mesh for front panel of plasma display using the browned surface-treated copper foil
TW200535259A (en) * 2004-02-06 2005-11-01 Furukawa Circuit Foil Treated copper foil and circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226575A (en) * 1994-02-14 1995-08-22 Hitachi Chem Co Ltd Manufacture of printed wiring board
JP2004263300A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2006103189A (en) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk Surface-treated copper foil and circuit board
JP2006196813A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Wiring board and method for manufacturing same

Also Published As

Publication number Publication date
CN102317510A (en) 2012-01-11
TW201037104A (en) 2010-10-16
JPWO2010093009A1 (en) 2012-08-16
KR101256086B1 (en) 2013-04-23
CN102317510B (en) 2014-12-03
WO2010093009A1 (en) 2010-08-19
KR20110094187A (en) 2011-08-22
TWI432615B (en) 2014-04-01

Similar Documents

Publication Publication Date Title
JP5435505B2 (en) Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate
JP5318886B2 (en) Copper foil for printed circuit
JP6023848B2 (en) Copper foil and copper clad laminate for printed circuit
JP4626390B2 (en) Copper foil for printed wiring boards in consideration of environmental protection
JPWO2011138876A1 (en) Copper foil for printed circuit
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP5281732B2 (en) Surface processing method of aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having a surface processed by the method
JP5156873B1 (en) Copper foil with carrier
JP6205269B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, printed circuit board, and electronic equipment
JP5364838B1 (en) Copper foil with carrier
JP2012087388A (en) Surface-treated copper foil and copper-clad laminate sheet
JP2011174132A (en) Copper foil for printed circuit board
JP5913355B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, and electronic equipment
JP7247015B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, and copper-clad laminate and printed wiring board using the surface-treated copper foil
JP3812834B2 (en) Electrolytic copper foil with carrier foil, method for producing the same, and copper-clad laminate using the electrolytic copper foil with carrier foil
JP7449921B2 (en) Metal foil for printed wiring boards, metal foil with carrier, metal-clad laminate, and method for manufacturing printed wiring boards using the same
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JP2011014651A (en) Copper foil for printed wiring board
JPWO2019188837A1 (en) Manufacturing method of surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2011012297A (en) Copper foil for printed circuit board
JP2927968B2 (en) Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014195036A (en) Copper foil with carrier, manufacturing method of copper foil with carrier, printed wiring board, printed circuit board, copper clad laminate and manufacturing method of printed wiring board
JP2013028823A (en) Laminate and printed wiring board using the same
JP2014213574A (en) Carrier-fitted copper foil,printed wiring board, print circuit board, copper-clad laminate and method for producing the printed wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R151 Written notification of patent or utility model registration

Ref document number: 5435505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350