JP6261037B2 - Copper foil for high frequency circuit, copper clad laminate and printed wiring board - Google Patents
Copper foil for high frequency circuit, copper clad laminate and printed wiring board Download PDFInfo
- Publication number
- JP6261037B2 JP6261037B2 JP2014021688A JP2014021688A JP6261037B2 JP 6261037 B2 JP6261037 B2 JP 6261037B2 JP 2014021688 A JP2014021688 A JP 2014021688A JP 2014021688 A JP2014021688 A JP 2014021688A JP 6261037 B2 JP6261037 B2 JP 6261037B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- copper
- roughening
- particles
- roughened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
Description
本発明は、ファインパターンでの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる銅箔、該銅箔を用いた銅張積層板及び多層プリント配線板やフレキシブルプリント配線板等のプリント配線板に関するものである。 The present invention is a copper foil excellent in circuit formation in a fine pattern and transmission characteristics in a high frequency region, and excellent in adhesion to a resin base material, a copper-clad laminate using the copper foil, a multilayer printed wiring board, and a flexible The present invention relates to a printed wiring board such as a printed wiring board.
近年、電子機器の小型化・薄型化が進行しており、特に携帯電話やスマートフォンに代表される携帯機器に用いられる各種電子部品は高度に集積化され、小型でかつ高密度のプリント配線板を内蔵するICやLSIなどを使用している。
これに対応して、これらに使用される高密度実装用のプリント配線板(多層プリント配線板、フレキシブルプリント配線板等)における配線パターンにも高密度化が要求され、配線の幅と間隔が微細な配線パターン、いわゆるファインパターンのプリント配線板が要求されている。例えば、フレキシブルプリント配線板においては配線の幅と間隔とがそれぞれ50μm前後のものが要求されており、小型ICに使用されるプリント配線板においては配線の幅と間隔とがそれぞれ30μm前後という微細な回路配線を有するプリント配線板が要求されている。
In recent years, electronic devices have become smaller and thinner, and various electronic components used in mobile devices such as mobile phones and smartphones are highly integrated, and small and high-density printed wiring boards have been developed. A built-in IC or LSI is used.
Correspondingly, the wiring patterns in printed wiring boards for high-density mounting (multilayer printed wiring boards, flexible printed wiring boards, etc.) used for these are also required to have high density, and the width and spacing of the wiring are fine. Wiring patterns, so-called fine pattern printed wiring boards are required. For example, a flexible printed wiring board is required to have a wiring width and interval of around 50 μm, and a printed wiring board used for a small IC has a fine wiring width and interval of around 30 μm. A printed wiring board having circuit wiring is required.
プリント配線板は次のようにして製造されている。
まず、エポキシ樹脂やポリイミド樹脂等から成る電気絶縁性の基板(以下、樹脂基材ということがある)の表面に、回路形成用の薄い銅箔を置いたのち、加熱・加圧して銅張積層板を製造する。
次いで、該銅張積層板に、スルーホールを設け、スルーホールめっきを行った後、該銅張積層板の銅箔表面にマスクパターンを形成してエッチング処理を行い、所望する配線幅と間隔を備えた配線パターンを形成し、最後に、ソルダーレジストの形成やその他の仕上げ処理を行う。
The printed wiring board is manufactured as follows.
First, a thin copper foil for circuit formation is placed on the surface of an electrically insulating substrate made of epoxy resin or polyimide resin (hereinafter sometimes referred to as resin base material), and then heated and pressed to form a copper-clad laminate. Manufacture a board.
Next, through holes are formed in the copper-clad laminate and through-hole plating is performed. Then, a mask pattern is formed on the copper foil surface of the copper-clad laminate and an etching process is performed to obtain a desired wiring width and interval. The provided wiring pattern is formed, and finally, solder resist formation and other finishing processes are performed.
上記のプリント配線板の製造工程のうち、樹脂基材の両面に銅箔が設けられた銅張積層基板(以下、単に積層基板ということがある)にサブトラクティブ法により配線パターンを形成する具体的な工程を説明する。 Of the above-mentioned printed wiring board manufacturing process, a specific example of forming a wiring pattern by a subtractive method on a copper-clad laminated board (hereinafter sometimes simply referred to as a laminated board) in which copper foil is provided on both surfaces of a resin base material The process will be described.
まず、積層基板の一方の銅箔表面(表面側)に、感光性フィルム(レジスト)を貼り付け、該感光性フィルム面に露光マスクを装着した露光装置を用い、露光光の照射によって露光マスクのパターンを感光性フィルム上に転写(投影)し、感光性フィルムのうち露光されていない部分を現像プロセスにて除去しフィルムレジストパターン(エッチングレジスト)を形成する。
次いで、フィルムレジストパターンで覆われていない(露出している)部分の銅箔をエッチング工程にて除去して、表面側の配線を形成する。エッチング工程で使用する薬品としては、例えば塩化第二鉄または塩化第二銅の水溶液に塩酸を加えたものが用いられる。その後、エッチング工程で使用済みのフィルムレジストパターンを、例えばアルカリ水溶液を用いて回路配線上から除去する。
上記と同様の工程でもう一方の面(裏面側)の銅箔にも所定の配線を施す。
なお、他の電子部品やプリント配線板とのはんだ接続を容易にするために、回路配線の端部には必要に応じて無電解錫(Sn)めっきが施される。
First, using an exposure apparatus in which a photosensitive film (resist) is attached to one copper foil surface (front side) of the laminated substrate and an exposure mask is mounted on the photosensitive film surface, the exposure mask is irradiated with exposure light. The pattern is transferred (projected) onto the photosensitive film, and an unexposed portion of the photosensitive film is removed by a development process to form a film resist pattern (etching resist).
Next, a portion of the copper foil that is not covered (exposed) with the film resist pattern is removed by an etching process to form a wiring on the surface side. As a chemical used in the etching process, for example, a solution obtained by adding hydrochloric acid to an aqueous solution of ferric chloride or cupric chloride is used. Thereafter, the film resist pattern used in the etching process is removed from the circuit wiring using, for example, an alkaline aqueous solution.
A predetermined wiring is also applied to the copper foil on the other surface (back surface side) in the same process as described above.
In order to facilitate solder connection with other electronic components and printed wiring boards, electroless tin (Sn) plating is applied to the ends of the circuit wiring as necessary.
上述した工程により表裏面に回路配線を形成した後、表面側回路配線と裏面側回路配線とを導通するためのブラインドビアホールを設ける。
ブラインドビアホールは、表面側に露出した樹脂基材にCO2レーザーで穴を加工する。このレーザーでの穴あけ工程では穴の底部(裏面側回路配線の粗化処理面)に樹脂基材(絶縁樹脂)の滓(スミア)が残ることがある。滓(スミア)が残った場合にはこの滓を除去するために過マンガン酸カリウム溶液等の酸化性の薬剤を用いて滓を除去するデスミア処理を行う。
After the circuit wiring is formed on the front and back surfaces by the above-described process, a blind via hole is provided for conducting the front surface side circuit wiring and the back surface side circuit wiring.
Blind via holes are processed by a CO 2 laser in a resin substrate exposed on the surface side. In this laser drilling process, a resin substrate (insulating resin) wrinkles (smear) may remain at the bottom of the hole (the roughened surface of the backside circuit wiring). If soot remains, a desmear treatment is performed to remove the soot using an oxidizing agent such as a potassium permanganate solution.
次に、樹脂基材に加工された穴の側面の絶縁部に導電性を付与するために、無電解銅めっきにより銅皮膜(導通層)を形成する。このための前処理として、穴の底部(裏面側回路配線)を硫酸−過酸化水素系のソフトエッチング液にて処理するソフトエッチング処理を施し、銅箔表面の金属めっきや防錆めっきを除去する。 Next, a copper film (conductive layer) is formed by electroless copper plating in order to impart conductivity to the insulating portion on the side surface of the hole processed into the resin base material. As a pretreatment for this purpose, a soft etching process is performed in which the bottom of the hole (circuit wiring on the back side) is treated with a sulfuric acid-hydrogen peroxide-based soft etching solution to remove metal plating and rust prevention plating on the copper foil surface. .
最後に、無電解銅めっきにより形成された導通層の上に電気銅めっきを施して、穴の側面および底部(裏面側回路配線)と表面側回路配線とを導通させ、両面プリント配線板を完成させる。
なお、裏面側の銅箔に配線を形成する工程はブラインドビアホールを形成した後に行うことも可能である。
Finally, electrolytic copper plating is applied on the conductive layer formed by electroless copper plating, and the side and bottom of the hole (rear circuit wiring) and the front circuit wiring are conducted to complete the double-sided printed wiring board. Let
The step of forming the wiring on the copper foil on the back side can also be performed after the blind via hole is formed.
従来、プリント配線板に用いる銅箔は、樹脂基材に熱圧着する側の表面を粗化面とし、この粗化面で樹脂基材に対するアンカー効果を発揮させ、樹脂基材と銅箔との接合強度を高めてプリント配線板としての信頼性を確保している。(特許文献1) Conventionally, the copper foil used for the printed wiring board has a roughened surface on the side to be thermocompression bonded to the resin base material, and exhibits an anchor effect on the resin base material on the roughened surface. The bonding strength is increased to ensure the reliability as a printed wiring board. (Patent Document 1)
銅箔の樹脂基材に熱圧着する側の表面を粗化面とする方法は、一般的に次の二段階の電解処理を施すことにより行われている。
(1)酸性銅電解浴中で銅箔を陰極とし、限界電流密度付近で電解を行うことにより粒状銅の微細な突起群を付着させる、いわゆる「やけめっき」を施す。
(2)「やけめっき」で施された粒状銅の微細な突起群を通常の銅めっきの薄層(いわゆる「カプセル層」)で覆って、該粒状銅の微細な突起群を銅箔の表面に固定する。
このような二段階の電解処理により、銅箔表面を凹凸のある粗化面とする。
The method of making the surface of the copper foil on the side to be thermocompression bonded to the roughened surface is generally performed by performing the following two-stage electrolytic treatment.
(1) A so-called “bake plating” is performed, in which a copper foil is used as a cathode in an acidic copper electrolytic bath, and electrolysis is performed in the vicinity of the limiting current density to attach fine protrusions of granular copper.
(2) Cover the fine projections of granular copper applied by “bake plating” with a thin layer of ordinary copper plating (so-called “capsule layer”), and cover the fine projections of granular copper with the surface of the copper foil. Secure to.
By such a two-step electrolytic treatment, the copper foil surface is made rough with a rough surface.
また、電子機器の情報処理速度アップや無線通信への対応のため、電子部品には電気信号の高速伝送が求められており、高周波対応基板の適用も進行している。高周波対応基板では電気信号の高速伝送のために伝送損失の低減を図る必要があり、樹脂基材の低誘電率化に加えて導体である回路配線の伝送損失を低減することも要求されている。 In addition, in order to increase the information processing speed of electronic devices and to cope with wireless communication, electronic components are required to transmit electric signals at high speed, and high-frequency compatible substrates are also being applied. For high-frequency compatible substrates, it is necessary to reduce transmission loss for high-speed transmission of electrical signals, and in addition to lowering the dielectric constant of the resin base material, it is also required to reduce the transmission loss of circuit wiring as a conductor .
数GHzを超える高周波帯域においては、表皮効果により配線を流れる電流が銅箔表面に集中する。このため、高周波基板対応用の銅箔として従前の粗化処理を施した銅箔を用いた場合には、粗化処理部における伝送損失が大きくなり伝送特性が悪化する不具合が発生していた。 In a high frequency band exceeding several GHz, the current flowing through the wiring is concentrated on the copper foil surface due to the skin effect. For this reason, when the copper foil which performed the conventional roughening process as a copper foil for high frequency boards was used, the transmission loss in a roughening process part became large and the malfunction which the transmission characteristic deteriorated had generate | occur | produced.
配線を流れる電流の周波数が高くなればなるほど、その表面に電流が集中する。この現象を表皮効果(skin effect)と呼び、その電流の流れる深さを表皮深さ(skin depth)と呼んでいる。表皮深さδは次式で表される。 The higher the frequency of the current flowing through the wiring, the more current is concentrated on the surface. This phenomenon is called the skin effect, and the depth at which the current flows is called the skin depth. The skin depth δ is expressed by the following equation.
銅箔の回路構成で、透磁率μ=4π×10−7、導電率σ=58×106(S/m)を代入して単位をμmにすると、
In the circuit configuration of the copper foil, if the unit of μm is set by substituting permeability μ = 4π × 10 −7 and conductivity σ = 58 × 10 6 (S / m),
粗化処理は通常平滑なめっきに換算して1〜2μm程度の厚さに相当する量の銅電析を行う。上記の式により表皮深さを求めると10GHzで0.66μm、40GHzで0.33μmとなる。
すなわち、数GHzを超える高周波帯域においては、表皮効果により配線を流れる電流の大部分が銅箔の表面、つまり粗化処理の部分を流れることになり、粗化の高さが高い場合、電流の移動距離が延びることになり、移動中に失われる電気信号の損失量も多くなる。
In the roughening treatment, copper electrodeposition is generally performed in an amount corresponding to a thickness of about 1 to 2 μm in terms of smooth plating. When the skin depth is determined by the above formula, it becomes 0.66 μm at 10 GHz and 0.33 μm at 40 GHz.
That is, in a high frequency band exceeding several GHz, most of the current flowing through the wiring due to the skin effect flows on the surface of the copper foil, that is, the roughening treatment portion. The moving distance will be extended, and the amount of loss of electrical signals lost during movement will also increase.
前述のように従来の粗化処理は酸性銅電解浴中で銅箔を陰極とし、限界電流密度付近で電解を行うことにより粒状銅の微細な突起群を銅箔表面に付着させる。銅箔表面に付着させる銅粒は水素発生が起こる限界電流密度付近で銅電析を行っているので、銅粒はポーラスな銅粒になっている。従って平滑な銅めっき皮膜に比べると、その電気抵抗が高い。 As described above, in the conventional roughening treatment, a copper foil is used as a cathode in an acidic copper electrolytic bath, and electrolysis is performed in the vicinity of the limit current density, thereby attaching a fine projection group of granular copper to the surface of the copper foil. Since the copper particles deposited on the copper foil surface are subjected to copper electrodeposition near the limit current density where hydrogen generation occurs, the copper particles are porous copper particles. Therefore, compared with a smooth copper plating film, its electric resistance is high.
このため、高周波特性を高める方法として、粗化処理層の付着厚さ(付着量)を最小限に下げて、粗化高さを低くすることで、電流の移動距離を短くして損失量を抑えるという試みが行われてきた。しかし、粗化処理層の厚さを最小限に抑えるということは、一方で銅箔と樹脂基材との密着性を低下させることになり、高周波特性と樹脂基材との密着性を両立させることは非常に困難であった。 For this reason, as a method of improving the high-frequency characteristics, the adhesion thickness (attachment amount) of the roughened layer is reduced to the minimum, and the roughening height is lowered, thereby shortening the current travel distance and reducing the loss amount. Attempts have been made to suppress it. However, minimizing the thickness of the roughening treatment layer, on the other hand, reduces the adhesion between the copper foil and the resin substrate, and achieves both high-frequency characteristics and adhesion between the resin substrate. It was very difficult.
同様な方法として、表面性状を制御した、または粗化処理を施さない平滑な銅箔上に樹脂基材との密着性を高める表面処理を行って、高周波特性に優れ、同時に銅箔と樹脂基材との密着性が高い銅箔を得る検討がなされてきた。(特許文献2、3、4、5)
しかしながらこれらの検討において、ファインパターンの回路形成性や高周波域における伝送特性に優れる表面平滑な銅箔は得られるものの、銅箔と樹脂基材との密着性を十分に高めることはできず、回路配線のエッチング工程あるいは回路配線の端部へのSnめっき工程において、銅箔と樹脂基材との界面で薬品の染み込みが発生し、あるいはプリント配線板の製造工程および製品使用中の熱負荷により密着性が低下する等の課題が指摘されていた。特に、ファインパターン対応のプリント配線板では回路配線(銅箔)と樹脂基材との接合面積が極めて小さく構成されるため、薬品の染み込みや熱負荷後の密着性低下が発生すると樹脂基材から回路配線が剥離する危険性があり、樹脂基材との密着性が良好な銅箔が望まれている。樹脂基材との密着性が低下することを防ぐために、表面にシランカップリング剤を中心とした接着層を使用する方法がある。しかし、特に高周波領域で用いられるプリント基板の樹脂材料〔例えば、メグトロン(登録商標)に代表されるポリフェニレンエーテル樹脂や液晶ポリマー等〕は、プリント基板材料と銅箔表面のシランカップリング剤とが化学結合を作り難く、粗化形状を小さくした、または粗化処理を施さない銅箔に対しては、銅箔と樹脂基板との密着性が著しく低下してしまうという問題があった。
As a similar method, a surface treatment is performed on a smooth copper foil with controlled surface properties or no roughening treatment to improve the adhesion to the resin base material, which is excellent in high frequency characteristics, and at the same time, the copper foil and the resin base. Studies have been made to obtain a copper foil having high adhesion to the material. (Patent Documents 2, 3, 4, 5)
However, in these studies, a smooth copper foil with excellent fine pattern circuit formability and transmission characteristics in the high frequency range can be obtained, but the adhesion between the copper foil and the resin base material cannot be sufficiently increased. In the wiring etching process or the Sn plating process on the edge of the circuit wiring, chemical penetration may occur at the interface between the copper foil and the resin base material, or the printed wiring board manufacturing process and the heat load during product use will cause adhesion. Issues such as a decrease in sex were pointed out. In particular, the printed wiring board that supports fine patterns has a very small bonding area between the circuit wiring (copper foil) and the resin base material. There is a risk that the circuit wiring is peeled off, and a copper foil having good adhesion to a resin base material is desired. In order to prevent the adhesiveness with the resin base material from being lowered, there is a method of using an adhesive layer centering on a silane coupling agent on the surface. However, resin materials for printed circuit boards (for example, polyphenylene ether resins and liquid crystal polymers typified by Megtron (registered trademark)) used in the high-frequency region are chemically synthesized between the printed circuit board material and the silane coupling agent on the copper foil surface. There is a problem that the adhesiveness between the copper foil and the resin substrate is remarkably lowered with respect to the copper foil in which it is difficult to make a bond and the roughened shape is reduced or the roughening treatment is not performed.
本発明の目的は、ファインパターンの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる銅箔を提供することにある。 The objective of this invention is providing the copper foil which is excellent in the circuit formation property of a fine pattern, the transmission characteristic in a high frequency range, and excellent in adhesiveness with a resin base material.
本発明によれば、少なくとも一方の面に粗化粒子を有する銅箔であり、該銅箔を幅方向に切断した断面の幅方向長さ30μmの範囲において、粗化高さ1.5μm以上の該粗化粒子が1個以上5個未満存在し、粗化高さ1.0μm以下の該粗化粒子が10個以上であることを特徴とする高周波回路用銅箔が提供される。
なお、前記銅箔断面における粗化粒子の個数は、例えばイオンミリングを用いて幅方向に断面加工を施し、HR−SEM(走査型電子顕微鏡)で、測定倍率3,000倍またはそれ以上の倍率で撮影した画像により測定することができる。
According to the present invention, it is a copper foil having roughened particles on at least one surface, and the roughened height is 1.5 μm or more in the range of the width direction length of 30 μm of the cross section obtained by cutting the copper foil in the width direction. the roughening particles are present fewer than five 1 or more, a copper foil for a high frequency circuit, characterized in that following the roughening particles roughened height 1.0μm is 10 or more is provided.
The number of roughened particles in the copper foil cross section is obtained by, for example, performing cross-section processing in the width direction using ion milling, and using a HR-SEM (scanning electron microscope), a magnification of 3,000 times or more. It can be measured by the image taken in
本発明によれば、銅箔の少なくとも一方の面に粗化粒子を有し、銅箔の幅方向切断面における幅方向長さ30μmの範囲において、粗化高さ1.5μm以上の該粗化粒子が1個以上3個未満であり、粗化高さ0.8μm以下の該粗化粒子が10個以上であることを特徴とする高周波回路用銅箔が提供される。
なお、前記銅箔断面における粗化粒子の個数は、例えばイオンミリングを用いて幅方向に断面加工を施し、HR−SEM(走査型電子顕微鏡)で、測定倍率3,000倍またはそれ以上の倍率で撮影した画像により測定することができる。
According to the present invention, has a roughening particles on at least one surface of the copper foil, the range of the width direction length 30μm in the width direction cross section of the copper foil, roughening height 1.5μm or more of the roughening particles is less than three or more than one copper foil for a high frequency circuit, wherein the roughening height 0.8μm or less of the roughening particles is 10 or more is provided.
The number of roughened particles in the copper foil cross section is obtained by, for example, performing cross-section processing in the width direction using ion milling, and using a HR-SEM (scanning electron microscope), a magnification of 3,000 times or more. It can be measured by the image taken in
本発明の高周波回路用銅箔の少なくとも一方の面に設ける粗化粒子は銅または銅合金であることが好ましい。
また、前記粗化粒子の上にクロメート処理が施されていることが好ましい。
更に、前記クロメート処理が施された表面にシランカップリング剤処理が施されていることが好ましい。
The roughening particles provided on at least one surface of the copper foil for high-frequency circuits of the present invention are preferably copper or a copper alloy.
Moreover, it is preferable that chromate treatment is performed on the roughened particles.
Further, it is preferable that the surface subjected to the chromate treatment is subjected to a silane coupling agent treatment.
本発明の銅張積層板は、樹脂基材の片面又は両面に本発明の高周波回路用銅箔を張り合わせたことを特徴とする銅張積層板である。
また、本発明のプリント配線板は、本発明の銅張積層板に配線回路を施したことを特徴とするプリント配線板である。
The copper-clad laminate of the present invention is a copper-clad laminate obtained by bonding the copper foil for a high-frequency circuit of the present invention to one side or both sides of a resin base material.
Moreover, the printed wiring board of this invention is a printed wiring board characterized by giving a wiring circuit to the copper clad laminated board of this invention.
本発明によれば、銅箔の表面に形成された粗化粒子において、粗化高さ1.5μm以上の粒子の数と粗化高さ1.0μm、より好ましくは0.8μm以下の粒子の数を適切な範囲とすることで樹脂基材との密着性が良好で、かつ高周波伝送特性に優れた高周波回路用銅箔を提供することができる。 According to the present invention, in the roughened particles formed on the surface of the copper foil, the number of particles having a roughening height of 1.5 μm or more and a roughening height of 1.0 μm, more preferably 0.8 μm or less. By adjusting the number to an appropriate range, it is possible to provide a copper foil for a high-frequency circuit that has good adhesion to a resin substrate and excellent high-frequency transmission characteristics.
本発明の高周波回路用銅箔は、金属基材としての銅箔表面(表面粗さは特に限定されないが、Rzが5.0μm以下であることが好ましい)に、ヤケめっきにより粗化粒子を設けて粗化粒子層を形成し、次いで該粗化粒子層に平滑めっき(カプセルめっき)によりカプセル層を設け、銅箔表面を粗化粒子が粉落ちすることのない強固で健全な粗化コブ処理形状とする。
本発明において、ヤケめっきの条件は下記のとおりである。
硫酸濃度 130〜180g/L
硫酸銅(銅濃度として) 18〜25g−Cu/L
(銅金属として18〜25gに相当する量の硫酸銅を意味する。以下同様。)
モリブデン化合物(Mo濃度として) 130〜180mg−Mo/L
鉄化合物(Fe濃度として) 90〜120g−Fe/L
クロム化合物(三価クロム濃度として) 20〜50mg−Cr/L
バナジュウム化合物(V濃度として) 70〜90mg−V/L
The copper foil for high-frequency circuits of the present invention is provided with roughened particles by burnt plating on the surface of the copper foil as a metal substrate (the surface roughness is not particularly limited, but Rz is preferably 5.0 μm or less). Then, a roughened particle layer is formed, and then the roughened particle layer is provided with a capsule layer by smooth plating (capsule plating), and the rough and rough roughening treatment is performed without roughening particles on the copper foil surface. Shape.
In the present invention, the conditions for burnt plating are as follows.
Sulfuric acid concentration 130-180g / L
Copper sulfate (as copper concentration) 18-25g-Cu / L
(It means copper sulfate in an amount corresponding to 18 to 25 g as copper metal. The same applies hereinafter.)
Molybdenum compound (as Mo concentration) 130-180 mg-Mo / L
Iron compound (as Fe concentration) 90-120 g-Fe / L
Chromium compound (as trivalent chromium concentration) 20-50mg-Cr / L
Vanadium compound (as V concentration) 70-90 mg-V / L
本発明においてカプセルめっきの条件は下記の通りである。
硫酸濃度 80〜150g/L
硫酸銅(銅濃度として) 40〜75g−Cu/L
浴温 40〜60℃
電流密度(直流整流で) 18〜30A/dm2
In the present invention, the conditions for capsule plating are as follows.
Sulfuric acid concentration 80 ~ 150g / L
Copper sulfate (as copper concentration) 40-75g-Cu / L
Bath temperature 40-60 ° C
Current density (by DC rectification) 18-30 A / dm 2
図2に本発明の一実施形態のSEM写真を示す。また、図1にHR−SEMで測定した銅箔の幅方向断面の模式図を示す。
本明細書において銅箔の粗化高さは、図1に示すように元箔(未処理銅箔に相当する部分)1と粗化粒子2との境界線bから粗化粒子2の頭頂部cに向かって垂直に線を引き、この線の長さLを粗化高さとする。また、本明細書において「幅方向」とは、電解銅箔又は電解銅合金箔の場合には電解ドラムにより巻き取られる方向に対して垂直となる方向、圧延銅箔又は圧延銅合金箔の場合には圧延方向に対して垂直となる方向を指す。
FIG. 2 shows an SEM photograph of one embodiment of the present invention. Moreover, the schematic diagram of the cross section of the width direction of the copper foil measured by HR-SEM is shown in FIG.
In this specification, the roughening height of the copper foil is the top of the roughened particle 2 from the boundary line b between the original foil (part corresponding to the untreated copper foil) 1 and the roughened particle 2 as shown in FIG. A line is drawn vertically toward c, and the length L of this line is defined as the roughening height. In the present specification, the “width direction” means a direction perpendicular to the direction wound by the electrolytic drum in the case of electrolytic copper foil or electrolytic copper alloy foil, in the case of rolled copper foil or rolled copper alloy foil. Indicates a direction perpendicular to the rolling direction.
本発明は、前記粗化粒子の分布を、銅箔の幅方向切断面をHR−SEMで測定倍率3000倍で観察した際、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数が1個以上5個未満であり、粗化高さ1.0μm以下の粗化粒子が10個以上存在するように形成する。
さらに、前記粗化粒子の分布を、銅箔の幅方向切断面をHR−SEMで測定倍率3000倍で観察した際、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数が1個以上3個未満であり、粗化高さ0.8μm以下の粗化粒子が10個以上存在するように形成することが特に好ましい。
なお、本発明では粗化粒子の分布をHR−SEMで測定するが、他の測定方法で測定してもよく、また、前記説明ではHR−SEMの倍率を3000倍で測定しているが、測定精度をより向上させるためには3000倍以上(下記実施例では1万倍)で測定する。
In the present invention, when the distribution of the roughened particles is observed in the width direction cut surface of the copper foil with a HR-SEM at a measurement magnification of 3000 times, the roughened height is 1.5 μm or more in the range of 30 μm in the cross section of the copper foil. The number of roughened particles is 1 or more and less than 5 and 10 or more roughened particles having a roughened height of 1.0 μm or less are present.
Further, when the distribution of the roughened particles was observed at a measurement magnification of 3000 times with a HR-SEM on the cut surface in the width direction of the copper foil, a roughening height of 1.5 μm or more was obtained in the range of 30 μm in the cross section of the copper foil. It is particularly preferable that the number of roughening particles is 1 or more and less than 3 and that there are 10 or more roughening particles having a roughening height of 0.8 μm or less.
In the present invention, the distribution of roughened particles is measured by HR-SEM, but may be measured by other measurement methods, and in the above description, the magnification of HR-SEM is measured at 3000 times. In order to further improve the measurement accuracy, the measurement is performed at 3000 times or more (10,000 times in the following examples).
本発明において、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数が1個以上5個未満と限定するのは、樹脂基板との密着性を確保するためには1個以上が必要であり、また、5個以上では伝送特性が悪化するなるため好ましくなく、樹脂との接着性と伝送特性とを勘案すると1〜5個の範囲が好適であり、より好ましくは3個未満である。
また本発明において、銅箔断面の30μmの範囲に粗化高さ1.0μm以下の粗化粒子が10個以上存在する、と限定するのは樹脂基板との密着性を確保するためであり、10個以下では樹脂基板との密着力が低下せず、高周波特性を悪化させないためである。
In the present invention, in the range of 30 μm in the cross section of the copper foil, the number of roughened particles having a roughened height of 1.5 μm or more is limited to 1 or more and less than 5 in order to ensure adhesion to the resin substrate. 1 or more is necessary, and 5 or more is not preferable because the transmission characteristics deteriorate, and the range of 1 to 5 is preferable considering the adhesiveness to the resin and the transmission characteristics. Preferably it is less than 3.
In the present invention, the reason for limiting the presence of 10 or more roughened particles having a roughened height of 1.0 μm or less in the range of 30 μm in the cross section of the copper foil is to ensure adhesion with the resin substrate, If the number is 10 or less, the adhesion with the resin substrate does not decrease and the high frequency characteristics are not deteriorated.
上記平滑めっきを施した上に、クロメート被膜からなる防錆層を形成することが望ましい。
更に、防錆層の上にシランカップリング剤処理を施すことが好ましい。
シランカップリング剤は対象となる樹脂基材によりエポキシ系、アミノ系、メタクリル系、ビニル系、メルカプト系等から適宜選択することができる。
高周波対応基板に用いられる樹脂基材には、特に相性の優れるエポキシ系、アミノ系、ビニル系のカップリング剤を選択することが好ましく、フレキシブルプリント配線板に用いられるポリイミドには、特に相性の優れるアミノ系のカップリング剤を選択することが好ましい。
本発明の高周波回路用銅箔は、樹脂基材に積層してなる銅張積層板とすることに優れている。
また、本発明の高周波回路用銅箔は前記銅張積層板を用いたプリント配線板とすることに優れている。
本発明で用いる高周波回路用銅箔は、電解銅箔、電解銅合金箔、圧延銅箔、圧延銅合金箔のいずれでも良く、銅張積層板、該銅張積層板を用いたプリント配線板の用途等に応じて適宜選択することができる。
It is desirable to form a rust preventive layer made of a chromate film on the smooth plating.
Furthermore, it is preferable to perform a silane coupling agent treatment on the rust preventive layer.
The silane coupling agent can be appropriately selected from epoxy, amino, methacrylic, vinyl, mercapto and the like depending on the target resin substrate.
It is preferable to select an epoxy, amino, or vinyl coupling agent that is particularly compatible with the resin base material used for the high-frequency compatible substrate, and particularly excellent compatibility with the polyimide used for the flexible printed wiring board. It is preferable to select an amino coupling agent.
The copper foil for high-frequency circuits of the present invention is excellent in forming a copper-clad laminate formed by laminating on a resin base material.
Moreover, the copper foil for high frequency circuits of this invention is excellent in setting it as the printed wiring board using the said copper clad laminated board.
The copper foil for a high-frequency circuit used in the present invention may be any of an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, and a rolled copper alloy foil. A copper-clad laminate and a printed wiring board using the copper-clad laminate are used. It can select suitably according to a use etc.
樹脂基材としては、種々の成分の高分子樹脂を用いることができる。リジッド配線板やIC用のプリント配線板には主にエポキシ樹脂を用いる。フレキシブル基板には主にポリイミド樹脂を用いる。ファインパターン(高密度)配線板や高周波基板用には寸法安定性のよい材料、反り、ねじれの少ない材料、熱収縮の少ない材料などとしてガラス転移点(Tg)の高い耐熱樹脂を用いる。耐熱樹脂としては、例えば耐熱エポキシ樹脂、BT(ビスマレイミド トリアジン)レジン、あるいはポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフェニレンオキサイド、シアネートエステル系樹脂などがあげられる。 As the resin substrate, polymer resins having various components can be used. Epoxy resin is mainly used for rigid wiring boards and IC printed wiring boards. A polyimide resin is mainly used for the flexible substrate. For fine pattern (high density) wiring boards and high-frequency substrates, a heat-resistant resin having a high glass transition point (Tg) is used as a material with good dimensional stability, a material with less warpage, twisting, and a material with less heat shrinkage. Examples of the heat-resistant resin include a heat-resistant epoxy resin, BT (bismaleimide triazine) resin, or polyimide, polyamideimide, polyetherimide, polyetheretherketone, polyphenylene ether, polyphenylene oxide, and cyanate ester resin.
電気信号の伝送速度が速くなると、樹脂基材の材質が特性インピーダンスや信号伝搬速度等に重要に関与してくるため、高周波回路用プリント配線板に適した樹脂基材として誘電率や誘電体損失等の特性に優れた基材が要求される。これらを満足させるために種々な材料が提案されており、例えば電気信号の高速伝送のためには、誘電率が小さく、誘電体損失も小さい樹脂基材として、液晶ポリマー、ポリフッ化エチレン、イソシアネート化合物、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル等の樹脂を挙げることができる。 As the transmission speed of electrical signals increases, the material of the resin substrate plays an important role in the characteristic impedance, signal propagation speed, etc., so the dielectric constant and dielectric loss are suitable as a resin substrate suitable for printed circuit boards for high-frequency circuits. A substrate having excellent properties such as the above is required. Various materials have been proposed to satisfy these requirements. For example, for high-speed transmission of electric signals, liquid crystal polymers, polyfluorinated ethylenes, isocyanate compounds are used as resin substrates with low dielectric constant and low dielectric loss. And resins such as polyetherimide, polyetheretherketone, and polyphenylene ether.
これらの樹脂基材と高周波回路用銅箔を張り合わせる方法としては、熱プレス方式、連続ロールラミネート方式、連続ベルトプレス方式などを用いることができ、接着剤等を介さずに熱圧着することができる。
また、別の方法としては、溶融状態や溶剤に溶解して流動性を有する状態とした樹脂含有物を高周波回路用銅箔の表面に塗布した後に、熱処理により樹脂を硬化させる方法もある。
また、高周波回路用銅箔表面を予めエポキシ樹脂やポリイミドのような接着用樹脂で被覆し、該接着用樹脂を半硬化状態(Bステージ)とした樹脂付き銅箔を回路形成用の銅箔として用い、その接着用樹脂側を樹脂基材に熱圧着して多層プリント配線板やフレキシブルプリント配線板を製造することも可能である。この方法では高周波回路用銅箔と樹脂基材との密着力をさらに高めることができるため、本発明と組み合わせることにより密着性の良好な銅張積層板を製造することができ、より効果的である。
As a method of laminating these resin base materials and high-frequency circuit copper foil, a hot press method, a continuous roll laminating method, a continuous belt press method, etc. can be used, and thermocompression bonding can be performed without using an adhesive or the like. it can.
Further, as another method, there is a method in which a resin-containing material which is melted or dissolved in a solvent and has fluidity is applied to the surface of the copper foil for high-frequency circuits, and then the resin is cured by heat treatment.
In addition, a copper foil with a resin in which the surface of the copper foil for high-frequency circuits is previously coated with an adhesive resin such as epoxy resin or polyimide and the adhesive resin is semi-cured (B stage) is used as a copper foil for circuit formation. It is also possible to produce a multilayer printed wiring board or a flexible printed wiring board by thermocompression bonding the resin side for bonding to a resin substrate. In this method, the adhesion between the copper foil for high-frequency circuits and the resin base material can be further increased, so that it is possible to produce a copper-clad laminate with good adhesion by combining with the present invention. is there.
本発明の高周波回路用銅箔を用いた銅張積層板は、銅箔と樹脂基材との密着性が優れ、またCO2ガスレーザー等のレーザーで容易にブラインドビアホールの形成加工ができることから、ブラインドビアホール(ブラインドビアホールとは、プリント配線板の片側のみが開口しているビアであり、社団法人日本プリント回路工業会編「プリント回路用語」等に記載されている。)の形成工程においてエッチング、穴空け、デスミア、ソフトエッチング、銅めっき等の加工をおこなった後でも、銅箔と樹脂基材との剥がれ等に問題はなく使用することが可能である。 The copper clad laminate using the copper foil for high-frequency circuits of the present invention has excellent adhesion between the copper foil and the resin base material, and can easily form a blind via hole with a laser such as a CO 2 gas laser. Etching in the formation process of blind via holes (blind via holes are vias that are open only on one side of the printed wiring board and are described in “Printed Circuit Terminology” edited by the Japan Printed Circuit Industry Association) Even after processing such as drilling, desmearing, soft etching, copper plating, etc., the copper foil and the resin base material can be used without any problem.
上述したように本発明の銅張積層板は、CO2ガスレーザー等のレーザーによるブラインドビアホールの形成工程、穴空け、デスミア、ソフトエッチング、銅めっき等の加工を容易に行える。従って、レーザーの照射エネルギー等の加工条件については樹脂基材の厚みや樹脂の種類により適宜、最適化した条件を選択でき、また銅張積層板への穴形成方法および穴の内部および底部のデスミア処理方法、デスミア後の穴の側面や底部への無電解銅めっきの前処理であるソフトエッチング処理方法についても最適化した条件を選択でき、所望する箇所に最適なホールを形成することが可能となる。 As described above, the copper-clad laminate of the present invention can easily perform processes such as a blind via hole forming process, drilling, desmearing, soft etching, copper plating, and the like using a laser such as a CO 2 gas laser. Therefore, the processing conditions such as laser irradiation energy can be appropriately optimized depending on the thickness of the resin base material and the type of resin, and the method for forming holes in the copper-clad laminate and the desmear inside and at the bottom of the holes Optimized conditions can be selected for the treatment method, soft etching treatment method, which is the pretreatment of electroless copper plating on the side and bottom of the hole after desmearing, and it is possible to form the optimum hole at the desired location Become.
<実施例1〜3>
金属基材として表面粗さRzが0.5μm程度、厚さが12μmの平滑な未処理銅箔を用意し、この未処理銅箔にヤケめっき処理を表1に示す電解液(溶液)Aを用い、表2に示す電流密度で粗化処理し、粗化粒子層を施した。
<比較例1〜5>
金属基材として表面粗さRzが0.5μm程度、厚さが12μmの平滑な未処理銅箔を用意し、この未処理銅箔にヤケめっき処理を表1に示す電解液(溶液)BまたはCを用い、表2に示す電流密度で粗化処理し、粗化粒子層を施した。
<Examples 1-3>
A smooth untreated copper foil having a surface roughness Rz of about 0.5 μm and a thickness of 12 μm is prepared as a metal substrate, and an electrolytic solution (solution) A shown in Table 1 is subjected to a burn plating treatment on the untreated copper foil. A roughening treatment was performed at a current density shown in Table 2 to give a roughened particle layer.
<Comparative Examples 1-5>
A smooth untreated copper foil having a surface roughness Rz of about 0.5 μm and a thickness of 12 μm is prepared as a metal substrate, and an electrolytic solution (solution) B shown in Table 1 is used for this untreated copper foil. Using C, a roughening treatment was performed at a current density shown in Table 2 to give a roughened particle layer.
次いで、前記粗化粒子が粉落ちすることなく、強固で健全な粗化コブ処理形状とするために、下記の浴組成とめっき条件でカプセルめっきを施した。
硫酸濃度:100g/L
硫酸銅からの銅濃度:50g−Cu/L
浴温:55℃
電流密度:直流整流で22A/dm2
上記のヤケめっき、及びカプセルめっきと同様の処理をもう一度繰り返した後に、該銅箔の両面を公知のクロメート処理液(CrO3濃度で3.0g/l相当)にて防錆処理を行った。
Subsequently, capsule plating was performed with the following bath composition and plating conditions in order to obtain a rough and rough roughed lump treated shape without causing the roughened particles to fall off.
Sulfuric acid concentration: 100 g / L
Copper concentration from copper sulfate: 50 g-Cu / L
Bath temperature: 55 ° C
Current density: 22 A / dm 2 by DC rectification
After the same treatment as the above-mentioned burn plating and capsule plating was repeated once, both surfaces of the copper foil were subjected to a rust prevention treatment with a known chromate treatment solution (corresponding to 3.0 g / l in CrO 3 concentration).
このようにして作製した銅箔を、イオンミリング(日立ハイテクIM4000)を用いて幅方向に断面加工を施し、HR−SEM(日立ハイテクSU8020)を用い、加速電圧3KV(2次電子像,低角度反射電子像)で、1万倍の倍率で断面観察を行い、幅方向の任意の箇所における銅箔断面の30μm範囲において粗化高さ1.5μm以上の粒子数及び粗化高さ1.0μm未満の粒子数をカウントした。
前記のように表面粗化銅箔を作製した銅箔を市販の高周波対応絶縁基板(パナソニック会社製)に200℃、35kgf/cm2、120minの条件で積層した。この積層板にレジスト幅300μm、回路間隔450mmのパターンフィルムを用いてUV露光によって配線パターンを形成し、さらにエッチングを施した。その後、基板にスルーホールを作成し、基板の酸化防止のために3μmのNiめっき及び0.05μmのAuめっきを施し、伝送特性測定用基板を作成した。この伝送特性測定用基板をオシロスコープ(Tektronix TDS7704B)を用いて40GHzの周波数で通過特性S21の測定を行った。
また、同時に前記積層板の回路幅10mmの引き剥がし強さを測定した。
以上の評価方法により各実施例及び比較例に係わる高周波回路用銅箔について評価した結果を表2に示す。
The copper foil thus produced is subjected to cross-sectional processing in the width direction using ion milling (Hitachi High-Tech IM4000), and using HR-SEM (Hitachi High-Tech SU8020), an acceleration voltage of 3 KV (secondary electron image, low angle) In the backscattered electron image), the cross-section is observed at a magnification of 10,000 times, and the number of particles having a roughening height of 1.5 μm or more and the roughening height of 1.0 μm in a 30 μm range of the copper foil cross section at an arbitrary position in the width direction The number of particles less than was counted.
The copper foil on which the surface-roughened copper foil was prepared as described above was laminated on a commercially available high-frequency insulating substrate (manufactured by Panasonic Corporation) under the conditions of 200 ° C., 35 kgf / cm 2 and 120 min. A wiring pattern was formed by UV exposure on this laminate using a pattern film having a resist width of 300 μm and a circuit interval of 450 mm, and further etched. Thereafter, through holes were formed in the substrate, and 3 μm Ni plating and 0.05 μm Au plating were applied to prevent oxidation of the substrate, thereby preparing a transmission characteristic measurement substrate. Using this oscilloscope (Tektronix TDS7704B), the transmission characteristic S21 was measured for the transmission characteristic S21 at a frequency of 40 GHz.
At the same time, the peel strength of the laminated board with a circuit width of 10 mm was measured.
Table 2 shows the results of evaluating the copper foils for high-frequency circuits according to the examples and the comparative examples by the above evaluation methods.
なお、表2では、40GHzにおける通過特性S21が−30dB以上の場合を“◎”、通過特性S21が−33dB以上−30dB未満の場合を“○”、通過特性S21が−33dB未満の場合を“×”で示している。
また、引き剥がし強さが0.6kN/m以上の場合を“◎”、引き剥がし強さが0.5kN/m以上0.6kN/m未満の場合を“○”、引き剥がし強さが0.5kN/m未満の場合を“×”で示している。
In Table 2, “◎” indicates that the pass characteristic S21 at −40 GHz is −30 dB or more, “◯” indicates that the pass characteristic S21 is −33 dB or more and less than −30 dB, and “Pass” indicates that the pass characteristic S21 is less than −33 dB. X ”.
In addition, when the peel strength is 0.6 kN / m or more, “” ”, when the peel strength is 0.5 kN / m or more and less than 0.6 kN / m,“ ◯ ”, and the peel strength is 0. The case of less than 5 kN / m is indicated by “x”.
表2から明らかなように実施例1〜3の表面処理銅箔は、銅箔の幅方向切断面をFIB−SIMで測定倍率1万倍で観察した結果、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数が1個以上5個未満であり、粗化高さ1.05μm未満の粗化粒子の数が10個以上であり、その結果、樹脂基板との密着性に優れ、伝送特性に優れた銅箔となっている。 As apparent from Table 2, the surface-treated copper foils of Examples 1 to 3 were obtained by observing the cut surface in the width direction of the copper foil at a measurement magnification of 10,000 times with FIB-SIM. The number of roughening particles with a roughening height of 1.5 μm or more is 1 or more and less than 5, and the number of roughening particles with a roughening height of less than 1.05 μm is 10 or more. It is a copper foil with excellent adhesion and excellent transmission characteristics.
一方、比較例1の表面処理銅箔は、銅箔の幅方向切断面をFIB−SIMで測定倍率一万倍で観察した結果、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数が0個であり、その結果、伝送特性は優れていたが、樹脂基板との密着性に劣る銅箔となっている。
比較例2の表面処理銅箔は、銅箔の幅方向切断面をFIB−SIMで測定倍率一万倍で観察した結果、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数が8個であり、その結果、樹脂基板との密着性には優れるが、伝送特性に劣る銅箔となっている。
On the other hand, as for the surface treatment copper foil of the comparative example 1, as a result of observing the width direction cut surface of copper foil with a measurement magnification of 10,000 times with FIB-SIM, the roughening height is 1.5 μm in the range of 30 μm of the copper foil cross section. The number of the above-mentioned roughening particles is 0, and as a result, although the transmission characteristic was excellent, it is a copper foil inferior to adhesiveness with a resin substrate.
As a result of observing the cut surface in the width direction of the copper foil with FIB-SIM at a measurement magnification of 10,000 times, the surface-treated copper foil of Comparative Example 2 has a roughening height of 1.5 μm or more in the range of 30 μm of the copper foil cross section. The number of roughening particles is 8, and as a result, the copper foil is inferior in transmission characteristics, although it is excellent in adhesion to the resin substrate.
比較例3の表面処理銅箔は、銅箔の幅方向切断面をFIB−SIMで測定倍率一万倍で観察した結果、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数は1個であるが、粗化高さ1.0μm未満の粗化粒子の数が3個であり、その結果、伝送特性は優れていたが、樹脂基板との密着性に劣る銅箔となっている。
比較例5の表面処理銅箔は、銅箔の幅方向切断面をFIB−SIMで測定倍率一万倍で観察した結果、銅箔断面の30μmの範囲において、粗化高さ1.5μm以上の粗化粒子の数が13個で、粗化高さ1.0μm未満の粗化粒子の数は0個である。その結果、伝送特性は優れていたが、樹脂基板との密着性に劣る銅箔となっている。
The surface-treated copper foil of Comparative Example 3 was obtained by observing the cut surface in the width direction of the copper foil with a FIB-SIM at a measurement magnification of 10,000 times. As a result, in the range of 30 μm of the copper foil cross section, the roughening height was 1.5 μm or more. Although the number of roughening particles is one, the number of roughening particles with a roughening height of less than 1.0 μm is three. As a result, the transmission characteristics were excellent, but the adhesion to the resin substrate was improved. It is inferior copper foil.
As for the surface treatment copper foil of Comparative Example 5, as a result of observing the width direction cut surface of the copper foil with a measurement magnification of 10,000 times with FIB-SIM, in the range of 30 μm of the copper foil cross section, the roughening height is 1.5 μm or more. The number of roughening particles is 13, and the number of roughening particles having a roughening height of less than 1.0 μm is zero. As a result, the transmission characteristics were excellent, but the copper foil was inferior in adhesion to the resin substrate.
本発明は上述したように、伝送特性に優れ、樹脂基板との密着性に優れた銅箔であり、該銅箔は特に銅張積層基板用として、プリント配線板用として優れた基材となるものである。 As described above, the present invention is a copper foil having excellent transmission characteristics and excellent adhesion to a resin substrate, and the copper foil is an excellent base material for printed wiring boards, particularly for copper-clad laminates. Is.
1 元箔(未処理銅箔に相当する部分)
2 粗化粒子
1 Original foil (part corresponding to untreated copper foil)
2 Roughened particles
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014021688A JP6261037B2 (en) | 2014-02-06 | 2014-02-06 | Copper foil for high frequency circuit, copper clad laminate and printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014021688A JP6261037B2 (en) | 2014-02-06 | 2014-02-06 | Copper foil for high frequency circuit, copper clad laminate and printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015147978A JP2015147978A (en) | 2015-08-20 |
JP6261037B2 true JP6261037B2 (en) | 2018-01-17 |
Family
ID=53891581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014021688A Active JP6261037B2 (en) | 2014-02-06 | 2014-02-06 | Copper foil for high frequency circuit, copper clad laminate and printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6261037B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6825368B2 (en) * | 2016-01-05 | 2021-02-03 | 荒川化学工業株式会社 | Copper-clad laminate and printed wiring board |
JP6543001B2 (en) | 2017-03-30 | 2019-07-10 | 古河電気工業株式会社 | Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same |
JP6746817B1 (en) | 2020-03-05 | 2020-08-26 | 日本メクトロン株式会社 | Printed wiring board and manufacturing method thereof |
JP6816193B2 (en) | 2019-03-26 | 2021-01-20 | 古河電気工業株式会社 | Surface-treated copper foil, and copper-clad laminates and printed wiring boards using this |
WO2020246467A1 (en) * | 2019-06-07 | 2020-12-10 | 古河電気工業株式会社 | Surface-treated copper foil, copper-clad laminate plate, and printed wiring board |
CN113099605B (en) * | 2021-06-08 | 2022-07-12 | 广州方邦电子股份有限公司 | Metal foil, metal foil with carrier, copper-clad laminate, and printed wiring board |
CN115038237B (en) * | 2022-08-11 | 2022-11-22 | 广州方邦电子股份有限公司 | Metal foil, copper-clad laminated plate and printed circuit board |
KR20240125053A (en) | 2022-11-28 | 2024-08-19 | 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 | Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil and printed wiring board |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4833556B2 (en) * | 2004-02-06 | 2011-12-07 | 古河電気工業株式会社 | Surface treated copper foil |
JP2006103189A (en) * | 2004-10-06 | 2006-04-20 | Furukawa Circuit Foil Kk | Surface-treated copper foil and circuit board |
KR101256086B1 (en) * | 2009-02-13 | 2013-04-23 | 후루카와 덴키 고교 가부시키가이샤 | Metal foil, method for producing same, insulating substrate, and wiring board |
JP5634103B2 (en) * | 2010-04-06 | 2014-12-03 | 福田金属箔粉工業株式会社 | A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate. |
KR20140088911A (en) * | 2012-01-18 | 2014-07-11 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Surface-treated copper foil for copper-clad laminate and copper-clad laminate using same |
-
2014
- 2014-02-06 JP JP2014021688A patent/JP6261037B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015147978A (en) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6261037B2 (en) | Copper foil for high frequency circuit, copper clad laminate and printed wiring board | |
JP5242710B2 (en) | Roughening copper foil, copper clad laminate and printed wiring board | |
TWI699459B (en) | Surface-treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic equipment, and manufacturing method of printed wiring board | |
JP6462961B2 (en) | Surface treated copper foil and copper clad laminate | |
TWI479958B (en) | Copper foil for printed wiring board and manufacturing method thereof | |
JP5764700B2 (en) | Copper-clad laminate for high-frequency substrates and surface-treated copper foil | |
JP4927963B2 (en) | Surface-treated copper foil, method for producing the same, and copper-clad laminate | |
JP6479254B2 (en) | Copper foil and copper-clad laminate having the same | |
KR102230999B1 (en) | Surface-treated copper foil and copper clad laminate manufactured using the same | |
WO2015012376A1 (en) | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board | |
JP2013155415A (en) | Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission | |
JP2016149438A (en) | Treatment copper foil, copper-clad laminate using the treatment copper foil, and print circuit board | |
JP5248684B2 (en) | Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit | |
WO2010074054A1 (en) | Method for forming electronic circuit | |
JP2013119240A (en) | Copper clad laminate for high frequency substrate, and surface treated copper foil used for the same | |
JP2006142514A (en) | Copper clad laminated sheet | |
KR102638749B1 (en) | Surface treated copper foil, copper clad laminate and printed wiring board | |
JP2015001016A (en) | Copper foil, copper-clad laminated sheet, and printed wiring board | |
JP6827083B2 (en) | Surface-treated copper foil, copper-clad laminate, and printed wiring board | |
JP5794806B2 (en) | Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board | |
KR20170037750A (en) | Surface-treated Copper Foil and Method of manufacturing of the same | |
JP2011066431A (en) | Method of manufacturing copper-clad laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171114 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20171211 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20171212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171207 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6261037 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |