JP2013119240A - Copper clad laminate for high frequency substrate, and surface treated copper foil used for the same - Google Patents

Copper clad laminate for high frequency substrate, and surface treated copper foil used for the same Download PDF

Info

Publication number
JP2013119240A
JP2013119240A JP2011269299A JP2011269299A JP2013119240A JP 2013119240 A JP2013119240 A JP 2013119240A JP 2011269299 A JP2011269299 A JP 2011269299A JP 2011269299 A JP2011269299 A JP 2011269299A JP 2013119240 A JP2013119240 A JP 2013119240A
Authority
JP
Japan
Prior art keywords
copper foil
copper
clad laminate
polyphenylene ether
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011269299A
Other languages
Japanese (ja)
Other versions
JP5971934B2 (en
Inventor
Yokun Kin
容薫 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011269299A priority Critical patent/JP5971934B2/en
Publication of JP2013119240A publication Critical patent/JP2013119240A/en
Application granted granted Critical
Publication of JP5971934B2 publication Critical patent/JP5971934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper clad laminate for high frequency substrates in which the transmission loss of a copper foil composing a conductive layer of a print circuit board during high frequency transmission is reduced to improve transmission characteristics, and the adhesiveness between a copper foil layer and a resin layer is bettered, and a surface treated copper foil.SOLUTION: The copper clad laminate for high frequency substrates is manufactured by a method for heat-compression molding a copper foil made by forming a metallic treatment layer on the surface of the copper foil and then coating it with a silane coupling agent, and a resin composition containing polyphenylene ether. In the copper clad laminate for high frequency substrates, the adhesion strength between the resin composition containing the polyphenylene ether and the copper foil is not less than 0.6 kN/m.

Description

本発明は、特にフレキシブルプリント配線板等に用いる銅張り積層板に関し、高周波域における伝送特性に優れ、かつ基材であるポリフェニレンエーテル含有樹脂との密着性に優れる高周波基板用銅張り積層板及びそれに用いる表面処理銅箔に関するものである。   The present invention relates to a copper-clad laminate particularly used for flexible printed wiring boards and the like, and has excellent transmission characteristics in a high-frequency region and excellent adhesion to a polyphenylene ether-containing resin as a base material, and a copper-clad laminate for a high-frequency substrate. The present invention relates to a surface-treated copper foil to be used.

近年、電子機器の小型化、薄肉化が進行しており、特に携帯電話に代表される携帯機器に用いられる各種電子部品は高度に集積化され、小型でかつ高密度のプリント配線板を内蔵するICやLSIなどが使用されている。
これに対応して、これらに使用される高密度実装用の多層プリント配線板やフレキシブルプリント配線板等(以下、単にプリント配線板ということもある)における回路配線パターンにも高密度化が要求され、回路配線の幅と間隔が微細な回路配線パターン、いわゆるファインパターンのプリント配線板が要求されている。
In recent years, electronic devices have been reduced in size and thickness, and various electronic components used in mobile devices such as mobile phones are highly integrated, and include a small and high-density printed wiring board. IC and LSI are used.
Correspondingly, higher density is required for circuit wiring patterns in multilayer printed wiring boards, flexible printed wiring boards, and the like (hereinafter sometimes simply referred to as printed wiring boards) used for these. A circuit wiring pattern having a fine width and interval between circuit wirings, that is, a so-called fine pattern printed wiring board is required.

従来、プリント配線板に用いる銅箔は、樹脂基材に熱圧着する側の表面を粗化面とし、この粗化面で樹脂基材に対するアンカー効果を発揮させ、樹脂基材と銅箔との接合強度を高めてプリント配線板としての信頼性を確保している(例えば特許文献1参照)。
しかしながら、電子機器の情報処理速度アップや無線通信への対応のため、電子部品には電気信号の高速伝送が求められており、高周波対応基板の適用も進行している。高周波対応基板では電気信号の高速伝送のための伝送損失の低減を図る必要があり、樹脂基材の低誘電率化に加えて導体である回路配線の伝送損失を低減することが要求されている。
数GHzを超える高周波帯域では、表皮効果により回路配線を流れる電流が銅箔表面に集中するため、高周波対応基板用の銅箔として従来の粗化処理を施した銅箔を用いた場合、租化処理部における伝送損失が大きくなり伝送特性が悪化する不具合があった。
Conventionally, the copper foil used for the printed wiring board has a roughened surface on the side to be thermocompression bonded to the resin base material, and exhibits an anchor effect on the resin base material on the roughened surface. The bonding strength is increased to ensure the reliability as a printed wiring board (see, for example, Patent Document 1).
However, in order to increase the information processing speed of electronic devices and to cope with wireless communication, electronic components are required to transmit electric signals at high speed, and application of high-frequency compatible substrates is also in progress. It is necessary to reduce the transmission loss for high-speed transmission of electrical signals for high-frequency compatible substrates, and in addition to lowering the dielectric constant of resin base materials, it is required to reduce the transmission loss of circuit wiring that is a conductor .
In the high frequency band exceeding several GHz, the current flowing through the circuit wiring is concentrated on the surface of the copper foil due to the skin effect. Therefore, when the copper foil subjected to the conventional roughening treatment is used as the copper foil for the high frequency compatible substrate, There was a problem that the transmission loss in the processing unit increased and the transmission characteristics deteriorated.

上述の問題を解消するため、ファインパターン対応や高周波対応のプリント配線板等に用いる銅箔として、粗化処理を施さずに平滑な銅箔を樹脂基材に張り付けて使用する方法がこれまで検討されてきた(例えば、特許文献2、3、4参照)。
しかしながら、これらの平滑な銅箔はファインパターンの回路形成法や高周波域における伝送特性が優れるものの、銅箔と樹脂基材との密着性を安定的に、かつ十分に高めることが困難であった。また回路配線のエッチング工程もしくは回路配線の端部へのSnめっき工程では、銅箔と樹脂基材との界面で薬品の染み込みが発生することや、プリント配線板の製造工程及び製品使用中の熱負荷により密着性が低下すること等の課題を有している。特に、ファインパターン対応のプリント配線板では回路配線(銅箔)と樹脂基材との接合面積が極めて小さく構成されているため、薬品の染み込みや熱負荷後の密着性低下が発生すると樹脂基材から回路配線が剥離する危険性がある。このため、樹脂基材と回路配線との密着性が良好な銅箔が望まれている。
しかし、銅箔の表面粗さが小さすぎる場合には銅箔と絶縁層である樹脂基材との密着性が低くなり、プリント配線板上に各種電子部品を実装する際のリフローはんだ工程において、銅箔の剥がれや膨れを引き起こすという問題があった。
In order to solve the above-mentioned problems, as a copper foil used for fine pattern compatible and high frequency compatible printed wiring boards, etc., a method of pasting a smooth copper foil on a resin base material without roughening treatment has been studied so far. (See, for example, Patent Documents 2, 3, and 4).
However, although these smooth copper foils have excellent fine pattern circuit formation methods and transmission characteristics in a high frequency range, it has been difficult to stably and sufficiently improve the adhesion between the copper foil and the resin base material. . Also, in the circuit wiring etching process or the Sn plating process on the edge of the circuit wiring, chemical penetration may occur at the interface between the copper foil and the resin base material, and the manufacturing process of the printed wiring board and the heat during product use There are problems such as a decrease in adhesion due to the load. In particular, the printed circuit board for fine patterns has a very small bonding area between the circuit wiring (copper foil) and the resin base material. There is a risk that the circuit wiring will be peeled off. For this reason, the copper foil with favorable adhesiveness of a resin base material and circuit wiring is desired.
However, if the surface roughness of the copper foil is too small, the adhesiveness between the copper foil and the resin base material that is an insulating layer is reduced, and in the reflow soldering process when mounting various electronic components on the printed wiring board, There was a problem of causing peeling and swelling of the copper foil.

前記問題を解決するために、例えば、以下の特許文献5には、不飽和二重結合を有する成分を含有するとともに硬化物の誘電率が3.5以下となるポリフェニレンエーテル樹脂組成物から形成される樹脂層と銅箔とを積層して構成される樹脂付銅箔を用いたプリント配線板製造用積層材料が開示されている。このプリント配線板製造用積層材料は、銅箔の樹脂層が形成される側の表面が、亜鉛又は亜鉛合金にて処理された後、ビニル基含有シランカップリング剤によるカップリング剤処理がされているものである。
前記プリント配線板製造用積層材料を用いた場合、表面粗さが小さい銅箔を用いても熱硬化性樹脂組成物中の不飽和二重結合がビニル基含有シランカップリング剤と結合し、この結合において亜鉛又は亜鉛合金が触媒的に働いて銅箔と熱硬化性樹脂組成物との接着力が向上する。このため、高周波の伝送損失が低く、かつ導体層と絶縁層との接着性が高いプリント配線板又は多層プリント配線板を容易に得ることができるとされている。
In order to solve the above problem, for example, Patent Document 5 below is formed from a polyphenylene ether resin composition containing a component having an unsaturated double bond and having a cured product having a dielectric constant of 3.5 or less. The laminated material for printed wiring board manufacture using the copper foil with a resin comprised by laminating | stacking the resin layer and copper foil which are made is disclosed. In this laminated material for printed wiring board production, after the surface on which the resin layer of the copper foil is formed is treated with zinc or a zinc alloy, it is treated with a coupling agent treatment with a vinyl group-containing silane coupling agent. It is what.
When the laminated material for printed wiring board production is used, even if a copper foil having a small surface roughness is used, the unsaturated double bond in the thermosetting resin composition is combined with the vinyl group-containing silane coupling agent. In bonding, zinc or a zinc alloy acts as a catalyst to improve the adhesive force between the copper foil and the thermosetting resin composition. For this reason, it is said that a printed wiring board or a multilayer printed wiring board with low transmission loss of high frequency and high adhesion between the conductor layer and the insulating layer can be easily obtained.

しかしながら、前記技術においては、不飽和二重結合を有する成分としてポリフェニレンエーテルのその末端のフェノール基の水素原子をエテニルベンジル基に置換することによりようやく実現可能になるものの、工程の簡略化のためには一般市販ポリフェニレンエーテル向けの接着力改善の技術が望まれる。   However, in the above technique, although it can be finally realized by replacing the hydrogen atom of the phenol group at the terminal of polyphenylene ether with an ethenylbenzyl group as a component having an unsaturated double bond, for the simplification of the process. Therefore, a technique for improving adhesive strength for general commercial polyphenylene ether is desired.

また、銅箔と樹脂との密着強度を高めるため、樹脂表面を租化処理した場合、樹脂の粗面によって高周波伝送時に伝送損失が大きくなる。このため、樹脂表面をでき得るかぎり滑らかな表面にする必要があった。さらに、樹脂材料の低誘電率化に伴い極性のない樹脂を用いるようになっている。このような極性のない樹脂は、銅箔との密着性が非常に悪くなっている。この点からも銅箔と樹脂との密着強度を高めることが求められていた。   In addition, when the resin surface is treated to increase the adhesion strength between the copper foil and the resin, transmission loss increases during high-frequency transmission due to the rough surface of the resin. For this reason, it has been necessary to make the resin surface as smooth as possible. Furthermore, with the reduction of the dielectric constant of the resin material, a resin having no polarity is used. Such a non-polar resin has very poor adhesion to the copper foil. From this point, it has been demanded to increase the adhesion strength between the copper foil and the resin.

特開平05−029740号公報JP 05-029740 A 特開2003−023046号公報JP 2003-023046 A 特開2007−165674号公報JP 2007-165694 A 特開2008−007803号公報JP 2008-007803 A 特開2007―030326号公報JP 2007-030326 A

本発明では上記問題点を解決し、プリント配線板の導体層を構成する銅箔の高周波伝送時における伝送損失を少なくして伝送特性を向上するとともに、銅箔層と樹脂層との密着性を改良した高周波基板用銅張り積層板及びそれに用いる表面処理銅箔を提供することを目的とする。   In the present invention, the above-mentioned problems are solved, the transmission loss at the time of high frequency transmission of the copper foil constituting the conductor layer of the printed wiring board is reduced to improve the transmission characteristics, and the adhesion between the copper foil layer and the resin layer is improved. An object is to provide an improved copper-clad laminate for a high-frequency substrate and a surface-treated copper foil used therefor.

(1)銅箔表面に金属処理層が形成された後シランカップリング剤が塗布されている銅箔とポリフェニレンエーテルを官有する樹脂組成物とを熱加圧成形法で積層した高周波基板用銅張り積層板において、前記銅箔と前記ポリフェニレンエーテルを官有する樹脂組成物との密着強度は0.6kN/m以上を有することを特徴とする高周波基板用銅張り積層板。
(2)前記ポリフェニレンエーテルを官有する樹脂組成物の樹脂成分全量中にポリフェニレンエーテル樹脂30〜90質量%を含有することを特徴とする前記(1)項に記載の高周波基板用銅張り積層板。
(3)前記ポリフェニレンエーテルを官有する樹脂組成物の樹脂成分全量中にスチレン系樹脂が10〜70質量%を含有することを特徴とする前記(1)項または(2)項に記載の高周波基板用銅張り積層板。
(4)前記ポリフェニレンエーテルを官有する樹脂組成物は、熱可塑性樹脂であることを特徴とする(1)項ないし(3)項のいずれか1項に記載の高周波基板用銅張り積層板。
(5)前記シランカップリング剤が、アミノ基、イソシアネート基、メルカプト基の何れか一種の官能基を有するシラン系化合物であることを特徴とする(1)項ないし(4)項のいずれか1項に記載の高周波基板用銅張り積層板。
(6)前記シランカップリング剤が、アミノトリメトキシシランと、アミノトリエトキシシランのうち少なくとも一方を含むことを特徴とする前記(1)項ないし(4)項のいずれか1項に記載の高周波基板用銅張り積層板。
(7)前記シランカップリング剤が、イソシアネートトリメトキシシランと、イソシアネートトリエトキシシランのうち少なくとも一方を含むことを特徴とする前記(1)項ないし(4)項のいずれか1項に記載の高周波基板用銅張り積層板。
(8)前記シランカップリング剤が、メルカプトトリメトキシシランと、メルカプトトリエトキシシランのうち少なくとも一方を含むことを特徴とする前記(1)項ないし(4)項のいずれか1項に記載の高周波基板用銅張り積層板。
(9)銅箔表面に金属処理層が形成された後シランカップリング剤が塗布されている銅箔とポリフェニレンエーテルを官有する樹脂組成物を熱加圧成形法で積層したもので、前記銅箔と前記ポリフェニレンエーテルを官有する樹脂組成物との密着強度は0.5kN/m以上を有することを特徴とする表面処理銅箔。
(10)前記金属の表面粗さRaが0.05〜0.5μm、又はRzが0.3〜2.5μmであることを特徴とする前記(9)項に記載の表面処理銅箔。
(11)前記銅箔表面の金属処理層におけるニッケル量が0.05〜1mg/dm、亜鉛量が0.01〜0.10mg/dm、及びクロム付着量が0.005〜0.06mg/dmであることを特徴とする前記(9)項または(10)項に記載の表面処理銅箔。
(1) Copper-clad for high-frequency substrates, in which a copper foil coated with a silane coupling agent after a metal-treated layer is formed on the surface of the copper foil and a resin composition having polyphenylene ether are laminated by a hot press molding method. In the laminate, a copper-clad laminate for a high-frequency substrate, wherein an adhesion strength between the copper foil and the resin composition having the polyphenylene ether is 0.6 kN / m or more.
(2) The copper-clad laminate for a high-frequency substrate as described in (1) above, wherein 30 to 90% by mass of the polyphenylene ether resin is contained in the total resin component of the resin composition having the polyphenylene ether.
(3) The high-frequency substrate as described in (1) or (2) above, wherein the styrene resin contains 10 to 70% by mass in the total resin component of the resin composition having the polyphenylene ether. Copper clad laminate.
(4) The copper-clad laminate for a high-frequency substrate according to any one of (1) to (3), wherein the resin composition having the polyphenylene ether is a thermoplastic resin.
(5) Any one of items (1) to (4), wherein the silane coupling agent is a silane compound having any one functional group of an amino group, an isocyanate group, and a mercapto group. A copper-clad laminate for a high-frequency substrate as described in the paragraph.
(6) The high-frequency wave according to any one of (1) to (4), wherein the silane coupling agent contains at least one of aminotrimethoxysilane and aminotriethoxysilane. Copper-clad laminate for substrates.
(7) The high-frequency wave as described in any one of (1) to (4) above, wherein the silane coupling agent contains at least one of isocyanate trimethoxysilane and isocyanate triethoxysilane. Copper-clad laminate for substrates.
(8) The high-frequency wave as described in any one of (1) to (4) above, wherein the silane coupling agent contains at least one of mercaptotrimethoxysilane and mercaptotriethoxysilane. Copper-clad laminate for substrates.
(9) A copper foil in which a silane coupling agent is applied after a metal treatment layer is formed on the surface of the copper foil and a resin composition having a polyphenylene ether layered by a hot press molding method. The surface-treated copper foil characterized by having an adhesion strength of 0.5 kN / m or more between the resin composition containing the polyphenylene ether and the resin composition.
(10) The surface-treated copper foil as described in (9) above, wherein the metal has a surface roughness Ra of 0.05 to 0.5 μm or Rz of 0.3 to 2.5 μm.
(11) The nickel amount in the metal treatment layer on the surface of the copper foil is 0.05 to 1 mg / dm 2 , the zinc amount is 0.01 to 0.10 mg / dm 2 , and the chromium adhesion amount is 0.005 to 0.06 mg. The surface-treated copper foil according to (9) or (10), wherein the surface-treated copper foil is / dm 2 .

本発明は、高周波伝送時における高周波基板用銅張り積層板の導体層を構成する銅箔の伝送損失が少なくなり、伝送特性が向上するとともに、銅箔と樹脂組成物との密着性を高めることができる。   The present invention reduces the transmission loss of the copper foil constituting the conductor layer of the copper-clad laminate for high-frequency substrates during high-frequency transmission, improves the transmission characteristics, and improves the adhesion between the copper foil and the resin composition. Can do.

本発明の高周波基板用銅張り積層板は、銅箔表面に金属処理層が形成された後シランカップリング剤が塗布されている銅箔と、ポリフェニレンエーテルを官有する樹脂組成物とを熱加圧成形法で積層した高周波基板用銅張り積層板であり、銅箔とポリフェニレンエーテルを官有する樹脂組成物との密着強度が0.6kN/m以上を有するものである。上記密着強度は、好ましくは0.6kN/m以上、より好ましくは0.8kN/m以上を有する。密着強度が0.6kN/m以上必要とする理由は、可動部品に使われるフレキシブルプリント基板として応用を考えた場合、金属・樹脂間で剥離はなく、十分な屈曲性を持たせるためである。
上記ポリフェニレンエーテルを官有する樹脂組成物の樹脂成分全量中にポリフェニレンエーテル樹脂を30〜90質量%含有する。好ましくは30質量%〜90質量%含有し、より好ましくは50質量%〜90質量%含有する。ポリフェニレンエーテル樹脂が少なすぎる場合には耐熱性低下の原因となり、多すぎる場合には加工性が低くなる。
上記ポリフェニレンエーテルを官有する樹脂組成物の樹脂成分全量中にスチレン系樹脂を10〜70質量%含有する。好ましくは10質量%〜50質量%含有する。このようにポリフェニレンエーテルを官有する樹脂組成物にスチレン系樹脂を含有させることで、ポリフェニレンエーテル単体では加工性がないものに加工性を与えることができる。したがって、スチレン系樹脂含量が少なすぎる場合に加工性が不十分となり、加工性改善の効果はなく、多すぎる場合には樹脂組成物の耐熱性が低下し好ましくない。このスチレン系樹脂としては特に限定するものではないが、例えば、スチレン‐エチレン‐ブタジエンのブロック共重合(SEBS)が好ましい。
The copper-clad laminate for a high-frequency substrate of the present invention is a method in which a copper foil coated with a silane coupling agent after a metal treatment layer is formed on the surface of the copper foil and a resin composition having a polyphenylene ether are heat-pressed. A copper-clad laminate for a high-frequency substrate laminated by a molding method, wherein the adhesion strength between the copper foil and the resin composition having polyphenylene ether is 0.6 kN / m or more. The adhesion strength is preferably 0.6 kN / m or more, more preferably 0.8 kN / m or more. The reason why the adhesive strength is required to be 0.6 kN / m or more is that there is no peeling between the metal and the resin, and sufficient flexibility is provided when considering application as a flexible printed circuit board used for movable parts.
30-90 mass% of polyphenylene ether resin is contained in the resin component whole quantity of the resin composition which has the said polyphenylene ether. Preferably it contains 30 mass%-90 mass%, More preferably, it contains 50 mass%-90 mass%. If the amount of polyphenylene ether resin is too small, it will cause a decrease in heat resistance, and if it is too large, the processability will be low.
10-70 mass% of styrene resin is contained in the resin component whole quantity of the resin composition which has the said polyphenylene ether. Preferably it contains 10 mass%-50 mass%. Thus, by including a styrene-based resin in a resin composition having polyphenylene ether, it is possible to impart processability to those having no processability with polyphenylene ether alone. Accordingly, when the styrene resin content is too small, the processability becomes insufficient and there is no effect of improving the processability, and when it is too large, the heat resistance of the resin composition is lowered, which is not preferable. The styrene-based resin is not particularly limited, but for example, block copolymerization (SEBS) of styrene-ethylene-butadiene is preferable.

上記シランカップリング剤には、アミノ基、イソシアネート基、メルカプト基の何れか一種の官能基を有するシラン系化合物が挙げられる。
アミノ基を含むシラン系化合物には、アミノトリメトキシシランおよびアミノトリエトキシシランが挙げられ、上記シランカップリング剤はいずれか一方もしくは両方を含む。
イソシアネート基を含むシラン系化合物には、イソシアネートトリメトキシシランおよびイソシアネートトリエトキシシランが挙げられ、上記シランカップリング剤はいずれか一方もしくは両方を含む。
メルカプト基を含むシラン系化合物には、メルカプトトリメトキシシランおよびメルカプトトリエトキシシランが挙げられ、上記シランカップリング剤はいずれか一方もしくは両方を含む。
上記シランカップリング剤の液濃度は、0.01〜15vol.%のものが好ましく、より好ましくは0.1〜10vol.%のものが好ましい。0.01vol.%未満では、シラン付着量が少ないため、十分な密着特性が期待できず、15vol.%以上では、高温高湿環境下において密着力の低下が起こりやすくなるため、シランカップリング剤の液濃度は上記範囲に設定する。
Examples of the silane coupling agent include silane compounds having any one functional group of amino group, isocyanate group, and mercapto group.
Examples of the silane compound containing an amino group include aminotrimethoxysilane and aminotriethoxysilane, and the silane coupling agent contains one or both of them.
Examples of the silane compound containing an isocyanate group include isocyanate trimethoxysilane and isocyanate triethoxysilane, and the silane coupling agent includes one or both of them.
Examples of the silane compound containing a mercapto group include mercaptotrimethoxysilane and mercaptotriethoxysilane, and the silane coupling agent includes one or both of them.
The liquid concentration of the silane coupling agent is 0.01 to 15 vol. %, More preferably 0.1 to 10 vol. % Is preferred. 0.01 vol. If it is less than%, the adhesion amount of silane is small, so that sufficient adhesion characteristics cannot be expected. If it is at least%, the adhesive strength tends to decrease in a high-temperature and high-humidity environment, so the liquid concentration of the silane coupling agent is set in the above range.

金属表面にシランカップリング剤処理を行うことによって樹脂との密着が向上する原因は、シランカップリング剤と金属表面と間で形成される化学結合と、また、シランカップリング剤中のアミノ基、イソシアネート基、メルカプト基の何れか一種の官能基と樹脂との高い相互作用であると考えられる。   The reason why the adhesion with the resin is improved by performing the silane coupling agent treatment on the metal surface is the chemical bond formed between the silane coupling agent and the metal surface, and the amino group in the silane coupling agent, This is considered to be a high interaction between any one functional group of isocyanate group and mercapto group and the resin.

上記表面処理を行った銅箔(母材銅箔)の表面粗さRaが0.05〜0.7μm、又はRzが0.3〜2.5μmであり、好ましくはRaが0.05〜0.5μmであり、Rzが0.3〜2.5μmであり、より好ましくはRaが0.1〜0.4μmであり、Rzが0.5〜1.5μmである。母材銅箔の表面粗さをRaが上記範囲に規定されるのは、高周波伝送特性を要求される使途やCOF(チップ・オン・フィルム)としての使途を満足する視認性を発現するためである。
さらに、銅箔の金属処理層における亜鉛量は、好ましくは0.01〜0.10mg/dmであり、より好ましくは0.01〜0.08mg/dmである。ニッケル量は、好ましくは0.05〜1mg/dmであり、より好ましくは0.05〜0.8mg/dmである。及びクロム付着量は、好ましくは0.005〜0.06mg/dmであり、より好ましくは0.005〜0.05mg/dmである。
ニッケルの付着量を規定するのは耐熱性と回路直進性に影響があるためで、ニッケル付着量が少なすぎると耐熱性の改善がそれほど期待できず、多すぎると回路形成のためのエッチングに悪影響を及ぼすことが懸念されるためである。
クロメート処理層は、銅箔表面が酸化するのを防ぎ、銅箔と樹脂基材との初期密着性の向上及び高温高湿雰囲気に曝された後の密着力低下を防ぐ効果がある。クロメート処理層のCr付着量により、樹脂と金属を結合するためのシランカップリング効果が決定される。つまり、少なすぎると高温高湿雰囲気に曝された後の樹脂と金属との密着力が低下する。多すぎると、クロメート処理層の水酸基が減少され、初期の樹脂と金属との密着性が低くなる結果となる。
シランカップリング剤の付着量は、銅箔の表面粗さまたは溶液の粘度に依存する。実施例に示される溶液にて、上記表面処理された銅箔を浸漬した場合、その銅箔の表面状態により、付着量が決定される。
The surface roughness Ra of the surface-treated copper foil (base material copper foil) is 0.05 to 0.7 μm, or Rz is 0.3 to 2.5 μm, preferably Ra is 0.05 to 0. 0.5 μm, Rz is 0.3 to 2.5 μm, more preferably Ra is 0.1 to 0.4 μm, and Rz is 0.5 to 1.5 μm. The reason why the surface roughness of the base copper foil is defined within the above-mentioned range is to express the visibility that satisfies the usage that requires high-frequency transmission characteristics and the usage as a COF (chip-on-film). is there.
Furthermore, the amount of zinc in the metal treatment layer of the copper foil is preferably 0.01 to 0.10 mg / dm, and more preferably 0.01 to 0.08 mg / dm. The amount of nickel is preferably 0.05 to 1 mg / dm, more preferably 0.05 to 0.8 mg / dm. And chromium adhesion amount becomes like this. Preferably it is 0.005-0.06 mg / dm, More preferably, it is 0.005-0.05 mg / dm.
The amount of nickel is regulated because it affects the heat resistance and linearity of the circuit. If the amount of nickel is too small, improvement in heat resistance cannot be expected so much, and if too large, the etching for circuit formation will be adversely affected. This is because there is a concern that the
The chromate treatment layer has an effect of preventing the copper foil surface from being oxidized, improving the initial adhesion between the copper foil and the resin base material, and preventing a decrease in adhesion after being exposed to a high-temperature and high-humidity atmosphere. The silane coupling effect for bonding the resin and the metal is determined by the amount of Cr deposited on the chromate treatment layer. That is, if the amount is too small, the adhesion between the resin and the metal after being exposed to a high-temperature and high-humidity atmosphere is reduced. When the amount is too large, the number of hydroxyl groups in the chromate-treated layer is reduced, resulting in low adhesion between the initial resin and the metal.
The amount of the silane coupling agent attached depends on the surface roughness of the copper foil or the viscosity of the solution. When the surface-treated copper foil is immersed in the solution shown in the examples, the adhesion amount is determined by the surface state of the copper foil.

本発明の表面処理銅箔は、銅箔表面に金属処理層が形成された後シランカップリング剤が塗布されている銅箔とポリフェニレンエーテルを官有する樹脂組成物を熱加圧成形法で積層したものであり、銅箔とポリフェニレンエーテルを官有する樹脂組成物との密着強度は、好ましくは0.6kN/m以上を有するものであり、より好ましくは0.8kN/m以上を有するものである。
上記表面処理を行った銅箔(母材銅箔)の表面粗さRa、Rzは上述した通りに規定される。さらに銅箔の金属処理曹における亜鉛量、ニッケル量、クロム量は、上述した通りに規定される。
The surface-treated copper foil of the present invention was obtained by laminating a copper foil coated with a silane coupling agent after a metal-treated layer was formed on the surface of the copper foil and a resin composition having polyphenylene ether by a hot press molding method. The adhesion strength between the copper foil and the resin composition having polyphenylene ether is preferably 0.6 kN / m or more, more preferably 0.8 kN / m or more.
The surface roughness Ra, Rz of the copper foil (base material copper foil) subjected to the surface treatment is defined as described above. Furthermore, the amount of zinc, the amount of nickel, and the amount of chromium in the metal-treated soda of the copper foil are defined as described above.

以下に、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。
本発明銅箔の表面処理工程を製箔工程から順に説明する。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
The surface treatment process of the copper foil of the present invention will be described in order from the foil making process.

実施例1
<製箔工程>
下記のめっき浴及びめっき条件で簿い母材銅箔(未処理銅箔)を作成した。
めっき浴及びめっき条件は以下の通りである。
[銅めっき]
硫酸銅:銅濃度として50〜80g/L
硫酸濃度:30〜70g/L
塩素濃度:0.01〜30ppm
液温:35〜45℃
電流密度:20〜50A/dm
[表面処理−1(ニッケルめっき)]
下記のめっき浴及びめっき条件で一次処理層を施した。ニッケルの付着量は0.05〜1mg/dmであった。
硫酸ニッケル6水和物:240g/L
過硫酸アンモニア:40g/L
ホウ酸:30g/L
液温:50℃
電流密度:0.5A/dm
[表面処理−2(亜鉛めっき)]
下記のめっき浴及びめっき条件で二次処理層を施した。亜鉛量の付着量は0.01〜0.10mg/dmであった。
硫酸亜鉛7水和物:24g/L
水酸化ナトリウム:85g/L
液温:25℃
電流密度:0.4A/dm
[クロメート処理(クロム酸めっき)]
金属めっき層処理後に、下記条件でクロメート処理を施した。クロム付着量は0.005〜0.06mg/dmであった。
無水クロム酸:0.1g/L 〜 100g/L
液温:20 〜 50℃
電流密度:1 〜 2A/dm
Example 1
<Foil making process>
A book base copper foil (untreated copper foil) was prepared using the following plating bath and plating conditions.
The plating bath and plating conditions are as follows.
[Copper plating]
Copper sulfate: 50-80 g / L as copper concentration
Sulfuric acid concentration: 30-70 g / L
Chlorine concentration: 0.01-30ppm
Liquid temperature: 35-45 degreeC
Current density: 20 to 50 A / dm 2
[Surface treatment-1 (nickel plating)]
The primary treatment layer was applied in the following plating bath and plating conditions. Deposition of nickel was 0.05 to 1 mg / dm 2.
Nickel sulfate hexahydrate: 240 g / L
Ammonia persulfate: 40 g / L
Boric acid: 30 g / L
Liquid temperature: 50 ° C
Current density: 0.5 A / dm 2
[Surface treatment-2 (zinc plating)]
The secondary treatment layer was applied with the following plating bath and plating conditions. Adhesion amount of the zinc amount was 0.01~0.10mg / dm 2.
Zinc sulfate heptahydrate: 24 g / L
Sodium hydroxide: 85 g / L
Liquid temperature: 25 ° C
Current density: 0.4 A / dm 2
[Chromate treatment (chromate plating)]
After the metal plating layer treatment, chromate treatment was performed under the following conditions. Chromium coating weight was 0.005~0.06mg / dm 2.
Chromic anhydride: 0.1 g / L to 100 g / L
Liquid temperature: 20-50 degreeC
Current density: 1 to 2 A / dm 2

一方、上記の条件下で作製された銅箔の表面粗さはRa=0.2μm〜0.4μm、Rz=1.0μm〜1.5μmであった。   On the other hand, the surface roughness of the copper foil produced under the above conditions was Ra = 0.2 μm to 0.4 μm and Rz = 1.0 μm to 1.5 μm.

[シランカップリング剤処理]
3‐アミノプロピルトリエトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−1100、)の1vol.%水溶液を用い、室温で上記銅箔の表面処理を行った。銅箔を斜めにした状態でシランカップリング剤水溶液を1分間均一に流し、その後、ロールによる液切りを行った。
[ポリフェニレンエーテル樹脂材(Thermoplastic)と銅箔とのラミネート処理]
樹脂基材としては、市販のポリフェニレンエーテル樹脂(Sabic Innovative Plastic,Noryl WCD861A、ガラス転移温度=152℃(動的粘弾性測定による))を使用し、熱プレス加工機(東洋精機製作所社製、ミニテストプレス(商品名))を用い、金属・樹脂ラミネートフィルムを作製(プレス温度=250℃、プレス圧力=1kN)し、試験片とした。
[Silane coupling agent treatment]
1 vol. Of 3-aminopropyltriethoxysilane (Momentive Performance Materials, A-1100). The copper foil was surface treated at room temperature using a% aqueous solution. The silane coupling agent aqueous solution was allowed to flow uniformly for 1 minute in a state where the copper foil was inclined, and then the liquid was removed by a roll.
[Lamination treatment of polyphenylene ether resin material (thermoplastic) and copper foil]
As a resin base material, a commercially available polyphenylene ether resin (Sabic Innovative Plastic, Noryl WCD861A, glass transition temperature = 152 ° C. (according to dynamic viscoelasticity measurement)) is used, and a heat press machine (manufactured by Toyo Seiki Seisakusho, mini Using a test press (trade name), a metal / resin laminate film was produced (press temperature = 250 ° C., press pressure = 1 kN) to obtain a test piece.

実施例2
シランカップリング剤として3−アミノプロピルトリエトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A―1100)の0.1vol.%水溶液を用いた以外は実施例1と同様にして試験片を作製した。
Example 2
0.1 vol. Of 3-aminopropyltriethoxysilane (manufactured by Momentive Performance Materials, A-1100) as a silane coupling agent. A test piece was prepared in the same manner as in Example 1 except that a% aqueous solution was used.

実施例3
シランカップリング剤として3−アミノプロピルトリエトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−1100)の10.0vol.%水溶液を用いた以外は実施例1と同様にして試験片を作製した。
Example 3
10.0 vol. Of 3-aminopropyltriethoxysilane (manufactured by Momentive Performance Materials, A-1100) as a silane coupling agent. A test piece was prepared in the same manner as in Example 1 except that a% aqueous solution was used.

実施例4
シランカップリング剤として3−メルカプトプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−189)の1vol.%水溶液を用いた以外は実施例1と同様にして試験片を作製した。
Example 4
As a silane coupling agent, 1 vol. Of 3-mercaptopropyltrimethoxysilane (manufactured by Momentive Performance Materials, A-189). A test piece was prepared in the same manner as in Example 1 except that a% aqueous solution was used.

実施例5
シランカップリング剤として3−イソシアネートプロピルトリエトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−1310)の1vol.%の水・エタノール(50:50vol%)混合溶液を用いた以外は実施例1と同様にして試験片を作製した。
Example 5
As a silane coupling agent, 1 vol. Of 3-isocyanatopropyltriethoxysilane (manufactured by Momentive Performance Materials, A-1310). A test piece was prepared in the same manner as in Example 1 except that a mixed solution of 50% water / ethanol (50:50 vol%) was used.

比較例1
シランカップリング剤による処理を行わないこと以外は実施例1と同様にして試験片を作製した。
Comparative Example 1
A test piece was prepared in the same manner as in Example 1 except that the treatment with the silane coupling agent was not performed.

比較例2
シランカップリング剤として3−メタクリロキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−174)の1vol.%水溶液を用いた以外は実施例1と同様にして試験片を作製した。
Comparative Example 2
1 vol. Of 3-methacryloxypropyltrimethoxysilane (manufactured by Momentive Performance Materials, A-174) as a silane coupling agent. A test piece was prepared in the same manner as in Example 1 except that a% aqueous solution was used.

比較例3
シランカップリング剤としてビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−171)の1vol.%水溶液を用いた以外は実施例1と同様にして試験片を作製した。
Comparative Example 3
As a silane coupling agent, 1 vol. Of vinyltrimethoxysilane (manufactured by Momentive Performance Materials, A-171). A test piece was prepared in the same manner as in Example 1 except that a% aqueous solution was used.

比較例4
シランカップリング剤として3−グリシドキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−187)の1vol.%水溶液を用いた以外は実施例1と同様にして試験片を作製した。
Comparative Example 4
As a silane coupling agent, 1 vol. Of 3-glycidoxypropyltrimethoxysilane (manufactured by Momentive Performance Materials, A-187). A test piece was prepared in the same manner as in Example 1 except that a% aqueous solution was used.

比較例5
樹脂としてポリスチレン(PSジャパン社製、G9305)を用いた以外は実施例1と同様にして試験片を作製した。
Comparative Example 5
A test piece was prepared in the same manner as in Example 1 except that polystyrene (PS9305, G9305) was used as the resin.

比較例6
シランカップリング剤として3−アミノプロピルトリエトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A−1100)の1vol.%水溶液を用い、表面処理した銅箔上に、バーコーターを用いて、樹脂としてポリアミドイミド(日立化成工業社製、HPC−5000)をコートした後、大気熱風高温槽中で熱処理乾燥(320℃、10秒)させた以外、実施例1と同様にして試験片を作製した。
Comparative Example 6
1 vol. Of 3-aminopropyltriethoxysilane (manufactured by Momentive Performance Materials, A-1100) as a silane coupling agent. After coating polyamideimide (HPC-5000, manufactured by Hitachi Chemical Co., Ltd.) as a resin using a bar coater on a surface-treated copper foil using a% aqueous solution, heat treatment drying (320 ° C. in an atmospheric hot air high-temperature bath) A test piece was prepared in the same manner as in Example 1 except that 10 seconds).

なお、表1に示すシランの付着量は、クロメート付着量を調整することで表面の親水性を変化させて、調整することができる。   In addition, the adhesion amount of silane shown in Table 1 can be adjusted by changing the hydrophilicity of the surface by adjusting the adhesion amount of chromate.

<試験片の特性評価>
上記各試験片について各種測定、評価を行い、その結果を表1に示した。
(1)金属付着量測定
走査型蛍光X線分析装置(株式会社リガク製ZSX Primus、分析径:35mmφ)にて分析した。
(2)表面粗さの測定
接触式表面粗さ測定機(株式会社小阪研究所製サーフコーダーSE1700)用いて中心線平均粗さRaまたは10点平均粗さRzを測定した。
(3)初期ピール強度(初期密着強度測定)
密着強度は、テンシロンテスター(株式会社島津製作所製AG−10kNI(商品名))を使用して、カッターで5mm幅の切り込みを行った後、銅箔側をピール速度10mm/minで90度方向に引っ張りその際の応力を測ることで求めた。
(4)高周波特性の測定
420mm×500mmの多層プリント配線版の片面にエッチングにより幅100μm、長さ100mmであり、縦方向40mm間隔で10本の直線回路を形成した。そして回路を形成した後、回路形成面にプリプレグ1枚と両面板に使用したものと同じ銅箔を重ね合わせ、前記プリント配線板の製造と同様の条件で加熱加圧成形し、スプリットラインを持つ多層プリント配線板を得た。この多層プリント配線板の内層回路に2510GHzと30GHzの信号を印可し、その伝送損失を計測した。
<Characteristic evaluation of test piece>
Various measurements and evaluations were performed on the above test pieces, and the results are shown in Table 1.
(1) Measurement of metal adhesion amount The amount of metal adhesion was analyzed with a scanning X-ray fluorescence analyzer (ZSX Primus, manufactured by Rigaku Corporation, analysis diameter: 35 mmφ).
(2) Measurement of surface roughness Centerline average roughness Ra or 10-point average roughness Rz was measured using a contact-type surface roughness measuring machine (Surfcoder SE1700 manufactured by Kosaka Laboratory Ltd.).
(3) Initial peel strength (initial adhesion strength measurement)
Adhesion strength was measured using a tensilon tester (AG-10kNI (trade name) manufactured by Shimadzu Corporation) with a cutter to cut a width of 5 mm, and then the copper foil side was peeled at a peel rate of 10 mm / min in the direction of 90 degrees. It was obtained by measuring the stress at the time of pulling.
(4) Measurement of high frequency characteristics Ten linear circuits having a width of 100 μm and a length of 100 mm were formed by etching on one side of a 420 mm × 500 mm multilayer printed wiring board at intervals of 40 mm in the vertical direction. After the circuit is formed, the same copper foil as that used for the prepreg and the double-sided board is superimposed on the circuit forming surface, and heat-press molding is performed under the same conditions as in the production of the printed wiring board, and a split line is provided. A multilayer printed wiring board was obtained. Signals of 2510 GHz and 30 GHz were applied to the inner layer circuit of this multilayer printed wiring board, and the transmission loss was measured.

Figure 2013119240
Figure 2013119240

表1から明らかなように、実施例1〜5は、ピール強度が0.7kN/m以上であり、十分な密着性が得られた。また、伝送特性は、10GHzで−3.4〜−4.0、30GHzで−6.7〜−6.8dB/mが確認でき、密着性と高周波特性において良好な特性が確認できた。一方、比較例1はシランカップリング処理をしていないため、比較例2はシランカップリング剤が3−メタクリロキシプロピルトリメトキシシランであるため、比較例3はシランカップリング剤がビニルトリメトキシシランであるため、比較例4はシランカップリング剤が3−グリシドキシプロピルトリメトキシシランであるため、比較例5は樹脂組成物がポリスチレンであるため、ピール強度が0.1〜0.5kN/mとなり、密着性が不十分であった。比較例6は、樹脂組成物がポリアミドイミドであるため、ピール強度が1.5kN/mとなり、密着性が十分であった。また、伝送特性は、比較例1〜4は、10GHzで−3.6〜−4.2、30GHzで−6.7〜−6.8dB/mが確認でき、比較例5では、10GHzで−3.5、30GHzで−6.6dB/mが確認できた。しかし比較例6では、伝送特性が10GHzで−6.5、30GHzで−11.5dB/mであり、劣っていた。   As is clear from Table 1, in Examples 1 to 5, the peel strength was 0.7 kN / m or more, and sufficient adhesion was obtained. Further, transmission characteristics of -3.4 to -4.0 at 10 GHz and -6.7 to -6.8 dB / m at 30 GHz were confirmed, and favorable characteristics were confirmed in adhesion and high frequency characteristics. On the other hand, since Comparative Example 1 was not subjected to silane coupling treatment, Comparative Example 2 was 3-methacryloxypropyltrimethoxysilane, and Comparative Example 3 was vinyltrimethoxysilane. Therefore, in Comparative Example 4, the silane coupling agent is 3-glycidoxypropyltrimethoxysilane, and in Comparative Example 5, since the resin composition is polystyrene, the peel strength is 0.1 to 0.5 kN / m, adhesion was insufficient. In Comparative Example 6, since the resin composition was polyamideimide, the peel strength was 1.5 kN / m, and the adhesion was sufficient. The transmission characteristics of Comparative Examples 1 to 4 can be confirmed to be −3.6 to −4.2 dB at 10 GHz, −6.7 to −6.8 dB / m at 30 GHz, and Comparative Example 5 is −10 GHz at −10 GHz. -6.6 dB / m was confirmed at 3.5 and 30 GHz. However, in Comparative Example 6, the transmission characteristics were inferior, ie, -6.5 at 10 GHz and -11.5 dB / m at 30 GHz.

Claims (11)

銅箔表面に金属処理層が形成された後シランカップリング剤が塗布されている銅箔とポリフェニレンエーテルを官有する樹脂組成物とを熱加圧成形法で積層した高周波基板用銅張り積層板において、前記銅箔と前記ポリフェニレンエーテルを官有する樹脂組成物との密着強度は0.7kN/m以上を有することを特徴とする高周波基板用銅張り積層板。   In a copper-clad laminate for a high-frequency substrate in which a copper foil coated with a silane coupling agent after a metal-treated layer is formed on the surface of the copper foil and a resin composition having polyphenylene ether are laminated by a hot press molding method. A copper-clad laminate for a high-frequency substrate, wherein the adhesive strength between the copper foil and the resin composition having the polyphenylene ether is 0.7 kN / m or more. 前記ポリフェニレンエーテルを官有する樹脂組成物の樹脂成分全量中にポリフェニレンエーテル樹脂30〜90質量%を含有することを特徴とする請求項1に記載の高周波基板用銅張り積層板。   2. The copper-clad laminate for a high frequency substrate according to claim 1, wherein 30 to 90% by mass of a polyphenylene ether resin is contained in the total resin component of the resin composition having the polyphenylene ether. 前記ポリフェニレンエーテルを官有する樹脂組成物の樹脂成分全量中にスチレン系樹脂が10〜70質量%を含有することを特徴とする請求項1または2に記載の高周波基板用銅張り積層板。   The copper-clad laminate for a high-frequency substrate according to claim 1 or 2, wherein 10 to 70% by mass of the styrene resin is contained in the total resin component of the resin composition having the polyphenylene ether. 前記ポリフェニレンエーテルを官有する樹脂組成物は、熱可塑性樹脂であることを特徴とする請求項1ないし3のいずれか1項に記載の高周波基板用銅張り積層板。   The copper-clad laminate for a high-frequency substrate according to any one of claims 1 to 3, wherein the resin composition having polyphenylene ether is a thermoplastic resin. 前記シランカップリング剤が、アミノ基、イソシアネート基、メルカプト基から何れ一種の官能基を有するシラン系化合物であることを特徴とする請求項1ないし4のいずれか1項に記載の高周波基板用銅張り積層板。   5. The copper for high-frequency substrates according to claim 1, wherein the silane coupling agent is a silane compound having any one functional group from an amino group, an isocyanate group, and a mercapto group. Upholstery laminate. 前記シランカップリング剤が、アミノトリメトキシシランと、アミノトリエトキシシランのうち少なくとも一方を含むことを特徴とする請求項1ないし4のいずれか1項に記載の高周波基板用銅張り積層板。   The copper-clad laminate for a high-frequency substrate according to any one of claims 1 to 4, wherein the silane coupling agent contains at least one of aminotrimethoxysilane and aminotriethoxysilane. 前記シランカップリング剤が、イソシアネートトリメトキシシランと、イソシアネートトリエトキシシランのうち少なくとも一方を含むことを特徴とする請求項1ないし4のいずれか1項に記載の高周波基板用銅張り積層板。   The copper-clad laminate for a high-frequency substrate according to any one of claims 1 to 4, wherein the silane coupling agent contains at least one of isocyanate trimethoxysilane and isocyanate triethoxysilane. 前記シランカップリング剤が、メルカプトトリメトキシシランと、メルカプトトリエトキシシランのうち少なくとも一方を含むことを特徴とする請求項1ないし4のいずれか1項に記載の高周波基板用銅張り積層板。   5. The copper-clad laminate for a high-frequency substrate according to claim 1, wherein the silane coupling agent contains at least one of mercaptotrimethoxysilane and mercaptotriethoxysilane. 銅箔表面に金属処理層が形成された後シランカップリング剤が塗布されている銅箔とポリフェニレンエーテルを官有する樹脂組成物を熱加圧成形法で積層し、前記銅箔と前記ポリフェニレンエーテルを官有する樹脂組成物との密着強度は0.5kN/m以上を有することを特徴とする表面処理銅箔。   After the metal treatment layer is formed on the copper foil surface, a copper foil coated with a silane coupling agent and a resin composition having a polyphenylene ether are laminated by a hot press molding method, and the copper foil and the polyphenylene ether are laminated. The surface-treated copper foil characterized by having an adhesive strength of 0.5 kN / m or more with the resin composition possessed by the government. 前記金属の表面粗さRaが0.05〜0.5μm、又はRzが0.3〜2.5μmであることを特徴とする請求項9に記載の表面処理銅箔。   The surface-treated copper foil according to claim 9, wherein the metal has a surface roughness Ra of 0.05 to 0.5 μm, or Rz of 0.3 to 2.5 μm. 前記銅箔表面の金属処理層におけるニッケル量が0.05〜1mg/dm、亜鉛量が0.01〜0.10mg/dm、及びクロム付着量が0.005〜0.06mg/dmであることを特徴とする請求項9または10に記載の表面処理銅箔。 The copper foil nickel weight 0.05 to 1 mg / dm 2 in the metallization layer on the surface, the zinc amount 0.01~0.10mg / dm 2, and chromium coating weight of 0.005~0.06mg / dm 2 The surface-treated copper foil according to claim 9 or 10, wherein:
JP2011269299A 2011-12-08 2011-12-08 Copper-clad laminate for high-frequency substrate and surface-treated copper foil used therefor Active JP5971934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269299A JP5971934B2 (en) 2011-12-08 2011-12-08 Copper-clad laminate for high-frequency substrate and surface-treated copper foil used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269299A JP5971934B2 (en) 2011-12-08 2011-12-08 Copper-clad laminate for high-frequency substrate and surface-treated copper foil used therefor

Publications (2)

Publication Number Publication Date
JP2013119240A true JP2013119240A (en) 2013-06-17
JP5971934B2 JP5971934B2 (en) 2016-08-17

Family

ID=48772126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269299A Active JP5971934B2 (en) 2011-12-08 2011-12-08 Copper-clad laminate for high-frequency substrate and surface-treated copper foil used therefor

Country Status (1)

Country Link
JP (1) JP5971934B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103802394A (en) * 2013-12-02 2014-05-21 上海南亚覆铜箔板有限公司 Copper-clad plate suitable for lead-free process and preparation method of copper-clad laminate
JP2015013474A (en) * 2013-06-07 2015-01-22 古河電気工業株式会社 Copper clad laminate for high-frequency substrate and surface-treated copper foil
JP2018016709A (en) * 2016-07-27 2018-02-01 信越化学工業株式会社 Organic silicon compound and method for producing the same, and curable composition
WO2018186025A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Metal-clad laminated board, metal member provided with resin, and wiring board
CN109694474A (en) * 2017-10-24 2019-04-30 信越化学工业株式会社 Organo-silicon compound, its manufacturing method and solidification compound
JP2021005646A (en) * 2019-06-26 2021-01-14 新光電気工業株式会社 Method of manufacturing wiring board
CN112455020A (en) * 2020-11-23 2021-03-09 无锡嘉瑞元通新材料科技有限公司 High-frequency high-speed PCB copper-clad laminate and preparation method thereof
US11895770B2 (en) 2018-10-05 2024-02-06 Panasonic Intellectual Property Management Co., Ltd. Copper-clad laminate, wiring board, and copper foil provided with resin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557852A (en) * 1991-09-03 1993-03-09 Matsushita Electric Works Ltd Laminated sheet for electrical application
JP2004137491A (en) * 2002-09-27 2004-05-13 Asahi Kasei Chemicals Corp Material having low dielectric characteristic at high frequency
JP2005262506A (en) * 2004-03-16 2005-09-29 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil equipped with resin layer for forming insulating layer, copper clad laminated sheet, printed wiring board, manufacturing method of multilayered copper clad laminated sheet and printed wiring board manufacturing method
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2007021763A (en) * 2005-07-12 2007-02-01 Hitachi Chem Co Ltd Metal foil with adhesive layer and metal clad laminated sheet
JP2007030326A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Copper foil with resin, laminate for producing printed wiring boad, and multilayer printed wiring board
JP2007137041A (en) * 2005-10-17 2007-06-07 Hitachi Chem Co Ltd Copper foil with adhesion assistant, printed wiring board and valuation method for curing degree

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557852A (en) * 1991-09-03 1993-03-09 Matsushita Electric Works Ltd Laminated sheet for electrical application
JP2004137491A (en) * 2002-09-27 2004-05-13 Asahi Kasei Chemicals Corp Material having low dielectric characteristic at high frequency
JP2005262506A (en) * 2004-03-16 2005-09-29 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil equipped with resin layer for forming insulating layer, copper clad laminated sheet, printed wiring board, manufacturing method of multilayered copper clad laminated sheet and printed wiring board manufacturing method
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2007021763A (en) * 2005-07-12 2007-02-01 Hitachi Chem Co Ltd Metal foil with adhesive layer and metal clad laminated sheet
JP2007030326A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Copper foil with resin, laminate for producing printed wiring boad, and multilayer printed wiring board
JP2007137041A (en) * 2005-10-17 2007-06-07 Hitachi Chem Co Ltd Copper foil with adhesion assistant, printed wiring board and valuation method for curing degree

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013474A (en) * 2013-06-07 2015-01-22 古河電気工業株式会社 Copper clad laminate for high-frequency substrate and surface-treated copper foil
CN103802394A (en) * 2013-12-02 2014-05-21 上海南亚覆铜箔板有限公司 Copper-clad plate suitable for lead-free process and preparation method of copper-clad laminate
JP2018016709A (en) * 2016-07-27 2018-02-01 信越化学工業株式会社 Organic silicon compound and method for producing the same, and curable composition
WO2018186025A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Metal-clad laminated board, metal member provided with resin, and wiring board
JPWO2018186025A1 (en) * 2017-04-07 2020-02-13 パナソニックIpマネジメント株式会社 Metal-clad laminate, metal member with resin, and wiring board
US11330710B2 (en) 2017-04-07 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Metal-clad laminated board, metal member provided with resin, and wiring board
CN109694474B (en) * 2017-10-24 2023-09-22 信越化学工业株式会社 Organosilicon compound, method for producing same, and curable composition
CN109694474A (en) * 2017-10-24 2019-04-30 信越化学工业株式会社 Organo-silicon compound, its manufacturing method and solidification compound
JP7445830B2 (en) 2018-10-05 2024-03-08 パナソニックIpマネジメント株式会社 Copper-clad laminates, wiring boards, and copper foils with resin
US11895770B2 (en) 2018-10-05 2024-02-06 Panasonic Intellectual Property Management Co., Ltd. Copper-clad laminate, wiring board, and copper foil provided with resin
JP2021005646A (en) * 2019-06-26 2021-01-14 新光電気工業株式会社 Method of manufacturing wiring board
JP7233320B2 (en) 2019-06-26 2023-03-06 新光電気工業株式会社 Wiring board manufacturing method
CN112455020A (en) * 2020-11-23 2021-03-09 无锡嘉瑞元通新材料科技有限公司 High-frequency high-speed PCB copper-clad laminate and preparation method thereof

Also Published As

Publication number Publication date
JP5971934B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5971934B2 (en) Copper-clad laminate for high-frequency substrate and surface-treated copper foil used therefor
JP5764700B2 (en) Copper-clad laminate for high-frequency substrates and surface-treated copper foil
JP5242710B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP6190846B2 (en) Surface treated copper foil
JP6149066B2 (en) Surface treated copper foil
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
KR101078234B1 (en) Copper-clad laminate
TWI745585B (en) Surface treatment copper foil
TW201735754A (en) Surface-treated copper foil for printed circuit board, copper-clad laminate for printed circuit board, and printed circuit board
JP7374298B2 (en) Roughened copper foil, copper clad laminates and printed wiring boards
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
JP2011219789A (en) Treated copper foil for copper-clad laminate, copper-clad laminate obtained by sticking the treated copper foil to insulating resin substrate, and printed wiring board obtained by using the copper-clad laminate
KR20170104648A (en) Coreless buildup support substrate and printed wiring board manufactured using said coreless buildup support substrate
JP2017106068A (en) Surface-treated copper foil for printed-wiring board, copper plated laminate sheet for printed-wiring board, and printed-wiring board
KR102635176B1 (en) Surface-treated copper foil for high-frequency circuit and method for producing the same
JP4978456B2 (en) Copper foil for printed circuit
JP2004140268A (en) Manufacturing method of multilayer printed circuit board for high frequency
KR102385971B1 (en) Copper-clad laminate and printed wiring board
JP5794806B2 (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board
TW202239591A (en) Surface-treated copper foil, and copper-cladded laminate and printed wiring board each using said surface-treated copper foil
TWI772110B (en) Manufacturing method of copper clad laminate and printed wiring board
KR20230072143A (en) Coreless board support
TW202042600A (en) Copper foil with surface treatment, copper-coated laminate, and printed circuit board capable of achieving tightness with non-roughened surface and reliability of high standard and reduced transmission loss
KR20230049080A (en) Copper-clad laminate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160712

R151 Written notification of patent or utility model registration

Ref document number: 5971934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350