JP7374298B2 - Roughened copper foil, copper clad laminates and printed wiring boards - Google Patents

Roughened copper foil, copper clad laminates and printed wiring boards Download PDF

Info

Publication number
JP7374298B2
JP7374298B2 JP2022509983A JP2022509983A JP7374298B2 JP 7374298 B2 JP7374298 B2 JP 7374298B2 JP 2022509983 A JP2022509983 A JP 2022509983A JP 2022509983 A JP2022509983 A JP 2022509983A JP 7374298 B2 JP7374298 B2 JP 7374298B2
Authority
JP
Japan
Prior art keywords
copper foil
roughened
filter
cutoff wavelength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022509983A
Other languages
Japanese (ja)
Other versions
JPWO2021193246A1 (en
Inventor
彰太 川口
歩 立岡
翼 加藤
博鈞 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2021193246A1 publication Critical patent/JPWO2021193246A1/ja
Application granted granted Critical
Publication of JP7374298B2 publication Critical patent/JP7374298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、粗化処理銅箔、銅張積層板及びプリント配線板に関する。 The present invention relates to a roughened copper foil, a copper-clad laminate, and a printed wiring board.

プリント配線板の製造工程において、銅箔は絶縁樹脂基材と張り合わされた銅張積層板の形態で広く使用されている。この点、プリント配線板製造時に配線の剥がれが生じるのを防ぐために、銅箔と絶縁樹脂基材とは高い密着力を有することが望まれる。そこで、通常のプリント配線板製造用銅箔では、銅箔の張り合わせ面に粗化処理を施して微細な銅粒子からなる凹凸を形成し、この凹凸をプレス加工により絶縁樹脂基材の内部に食い込ませてアンカー効果を発揮させることで、密着性を向上している。 In the manufacturing process of printed wiring boards, copper foil is widely used in the form of a copper-clad laminate laminated with an insulating resin base material. In this regard, it is desirable that the copper foil and the insulating resin base material have high adhesion in order to prevent the wiring from peeling off during the manufacture of the printed wiring board. Therefore, in conventional copper foil for manufacturing printed wiring boards, the bonding surface of the copper foil is roughened to form irregularities made of fine copper particles, and these irregularities are pressed into the inside of the insulating resin base material. This improves adhesion by creating an anchor effect.

このような粗化処理を行った銅箔として、例えば、特許文献1(特開2018-172785号公報)には、銅箔と、銅箔の少なくとも一方の表面に粗化処理層を有する表面処理銅箔であって、粗化処理層側表面のスキューネスSskが-0.6以上-0.35以下であり、粗化処理層側表面のTD(幅方向)の光沢度が70%以下であるものが開示されている。こうした表面処理銅箔によれば、銅箔表面に設けられた粗化粒子の脱落が良好に抑制され、かつ、絶縁基板との貼り合わせ時のシワ及びスジの発生が良好に抑制されるとされている。また、特許文献1には、上記効果を得ることを目的として、粗化処理層側表面の突出山部高さSpkが0.13μm以上0.27μm以下である表面処理銅箔も開示されている。 As a copper foil that has been subjected to such a roughening treatment, for example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2018-172785) describes a copper foil and a surface treatment having a roughening treatment layer on at least one surface of the copper foil. The copper foil has a skewness Ssk of -0.6 or more and -0.35 or less on the surface on the roughening treatment layer side, and a glossiness in TD (width direction) of the surface on the roughening treatment layer side is 70% or less. something is disclosed. According to such surface-treated copper foil, it is said that the falling off of the roughened particles provided on the surface of the copper foil is well suppressed, and the occurrence of wrinkles and streaks when bonded to an insulating substrate is well suppressed. ing. Furthermore, Patent Document 1 also discloses a surface-treated copper foil in which the height Spk of the protruding peaks on the surface of the roughened layer side is 0.13 μm or more and 0.27 μm or less, for the purpose of obtaining the above effects. .

ところで、近年の携帯用電子機器等の高機能化に伴い、大容量データの高速処理をすべくデジタルかアナログかを問わず信号の高周波化が進んでおり、高周波用途に適したプリント配線板が求められている。このような高周波用プリント配線板には、高周波信号を劣化させずに伝送可能とするために、伝送損失の低減が望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁基材とを備えたものであるが、伝送損失における主な損失としては、銅箔に起因する導体損失と、絶縁基材に起因する誘電損失が挙げられる。 By the way, with the increasing functionality of portable electronic devices in recent years, the frequency of signals, whether digital or analog, is increasing in order to process large amounts of data at high speed, and printed wiring boards suitable for high frequency applications are It has been demanded. Such a high frequency printed wiring board is desired to reduce transmission loss in order to be able to transmit high frequency signals without deteriorating them. Printed wiring boards are equipped with copper foil processed into a wiring pattern and an insulating base material, but the main transmission losses are conductor loss due to the copper foil and dielectric loss due to the insulating base material. This includes losses.

この点、伝送損失の低減を図った粗化処理銅箔が提案されている。例えば、特許文献2(特開2015-148011号公報)には、信号の伝送損失が小さい表面処理銅箔及びそれを用いた積層板を提供すること等を目的として、表面処理によって銅箔表面のJIS B0601-2001に基づくスキューネスRskを-0.35以上0.53以下という所定範囲に制御すること等が開示されている。 In this regard, a roughened copper foil has been proposed to reduce transmission loss. For example, Patent Document 2 (Japanese Unexamined Patent Publication No. 2015-148011) discloses that the surface of the copper foil is improved by surface treatment, with the aim of providing a surface-treated copper foil with low signal transmission loss and a laminate using the same. It is disclosed that the skewness Rsk based on JIS B0601-2001 is controlled within a predetermined range of -0.35 or more and 0.53 or less.

特開2018-172785号公報Japanese Patent Application Publication No. 2018-172785 特開2015-148011号公報Japanese Patent Application Publication No. 2015-148011

前述のように近年、プリント配線板の伝送特性(高周波特性)を向上することが求められている。こうした要求に対応すべく、銅箔の絶縁樹脂基材との接合面においてより微細な粗化処理が試みられている。すなわち、伝送損失を増大させる要因となる銅箔表面の凹凸を低減すべく、うねりの小さい銅箔表面(例えば両面平滑箔の表面や電解銅箔の電極面)に対して微細粗化処理を行うことが考えられる。しかしながら、このような粗化処理銅箔を用いて銅張積層板の加工ないしプリント配線板の製造を行った場合、概して銅箔-基材間の剥離強度が低く、密着信頼性に劣るという問題が生じうる。 As mentioned above, in recent years, there has been a demand for improved transmission characteristics (high frequency characteristics) of printed wiring boards. In order to meet these demands, attempts have been made to perform finer roughening treatment on the bonding surface of copper foil with the insulating resin base material. In other words, in order to reduce the unevenness of the copper foil surface that increases transmission loss, a fine roughening treatment is performed on the copper foil surface with small waviness (for example, the surface of double-sided smooth foil or the electrode surface of electrolytic copper foil). It is possible that However, when processing copper-clad laminates or manufacturing printed wiring boards using such roughened copper foil, the problem is that the peel strength between the copper foil and the base material is generally low and the adhesion reliability is poor. may occur.

本発明者らは、今般、粗化処理銅箔の表面において、銅箔のうねり成分をカットした条件におけるスキューネスSskに対する突出山部高さSpk又は十点平均高さS10zの比(Spk/Ssk又はS10z/Ssk)、及び銅箔のうねり成分を反映した条件における十点平均高さS10zをそれぞれ所定の範囲に制御することにより、これを用いて製造された銅張積層板ないしプリント配線板において、優れた伝送特性と高い剥離強度とを両立できるとの知見を得た。 The present inventors have recently determined, on the surface of a roughened copper foil, the ratio (Spk/Ssk or S10z/Ssk) and the ten-point average height S10z under conditions that reflect the waviness component of the copper foil, respectively, are controlled within predetermined ranges, so that in a copper-clad laminate or printed wiring board manufactured using the same, We have found that it is possible to achieve both excellent transmission characteristics and high peel strength.

したがって、本発明の目的は、銅張積層板ないしプリント配線板に用いられた場合に、優れた伝送特性と高い剥離強度とを両立可能な、粗化処理銅箔を提供することにある。 Therefore, an object of the present invention is to provide a roughened copper foil that can have both excellent transmission characteristics and high peel strength when used in copper-clad laminates or printed wiring boards.

本発明の一態様によれば、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定されるスキューネスSskに対する、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定される突出山部高さSpk(μm)の比である微小粒子先端径指数Spk/Sskが0.20以上1.00以下であり、かつ、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長64μmの条件で測定される十点平均高さS10zが2.50μm以上である、粗化処理銅箔が提供される。
According to one aspect of the present invention, there is provided a roughened copper foil having a roughened surface on at least one side,
The roughened surface has a cutoff wavelength of S filter according to ISO 25178 with respect to skewness Ssk measured under conditions of a cutoff wavelength of 0.3 μm with S filter and 5 μm with L filter according to ISO 25178. The microparticle tip diameter index Spk/Ssk, which is the ratio of the protruding peak height Spk (μm) measured under the conditions of 0.3 μm and a cutoff wavelength of 5 μm using an L filter, is 0.20 or more and 1.00 or less, And, the roughened copper foil has a ten-point average height S10z of 2.50 μm or more measured under the conditions of a cutoff wavelength of 0.3 μm with an S filter and a cutoff wavelength of 64 μm with an L filter in accordance with ISO25178. provided.

本発明の他の一態様によれば、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定されるスキューネスSskに対する、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定される十点平均高さS10z(μm)の比である微小粒子先端粗さ指数S10z/Sskが1.00以上6.00以下であり、かつ、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長64μmの条件で測定される十点平均高さS10zが2.50μm以上である、粗化処理銅箔が提供される。
According to another aspect of the present invention, there is provided a roughened copper foil having a roughened surface on at least one side,
The roughened surface has a cutoff wavelength of S filter according to ISO 25178 with respect to skewness Ssk measured under conditions of a cutoff wavelength of 0.3 μm with S filter and 5 μm with L filter according to ISO 25178. The microparticle tip roughness index S10z/Ssk, which is the ratio of the ten-point average height S10z (μm) measured under the conditions of 0.3 μm and a cutoff wavelength of 5 μm using an L filter, is 1.00 or more and 6.00 or less. , and a roughened copper foil having a ten-point average height S10z of 2.50 μm or more measured under the conditions of a cutoff wavelength of 0.3 μm by an S filter and a cutoff wavelength of 64 μm by an L filter in accordance with ISO 25178. is provided.

本発明の更に別の一態様によれば、前記粗化処理銅箔を備えた、銅張積層板が提供される。 According to yet another aspect of the present invention, there is provided a copper-clad laminate including the roughened copper foil.

本発明の更に別の一態様によれば、前記粗化処理銅箔を備えた、プリント配線板が提供される。 According to yet another aspect of the present invention, there is provided a printed wiring board including the roughened copper foil.

ISO25178に準拠して決定されるスキューネスSskを説明するための図であり、Ssk<0の場合の表面及びその高さ分布を示す図である。FIG. 3 is a diagram for explaining the skewness Ssk determined in accordance with ISO25178, and is a diagram showing the surface and its height distribution when Ssk<0. ISO25178に準拠して決定されるスキューネスSskを説明するための図であり、Ssk>0の場合の表面及びその高さ分布を示す図である。FIG. 3 is a diagram for explaining skewness Ssk determined in accordance with ISO25178, and is a diagram showing a surface and its height distribution when Ssk>0. ISO25178に準拠して決定される負荷曲線及び負荷面積率を説明するための図である。It is a figure for explaining the load curve and load area ratio determined based on ISO25178. ISO25178に準拠して決定される突出山部とコア部を分離する負荷面積率Smr1、及び突出谷部とコア部を分離する負荷面積率Smr2を説明するための図である。It is a figure for explaining the load area ratio Smr1 which separates a protruding peak part and a core part, and load area ratio Smr2 which separates a protruding valley part and a core part, and are determined based on ISO25178. ISO25178に準拠して決定される極点高さSxpを説明するための図である。It is a figure for explaining the pole height Sxp determined based on ISO25178. 粗化処理銅箔の表面凹凸が、粗化粒子成分とうねり成分とからなることを説明するための図である。FIG. 3 is a diagram for explaining that the surface unevenness of the roughened copper foil is composed of a roughened particle component and a waviness component. 本発明の粗化処理銅箔の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a roughened copper foil of the present invention.

定義
本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
Definitions Definitions of terms and parameters used to specify the present invention are shown below.

本明細書において「スキューネスSsk」とは、ISO25178に準拠して測定される、高さ分布の対称性を表すパラメータである。この値が0の場合は、高さ分布が上下に対称であることを示す。また、図1Aに示されるように、この値が0より小さい場合は、細かい谷が多い表面であることを示す。一方、図1Bに示されるように、この値が0より大きい場合は、細かい山が多い表面であることを示す。 In this specification, "skewness Ssk" is a parameter representing the symmetry of height distribution, which is measured in accordance with ISO25178. When this value is 0, it indicates that the height distribution is vertically symmetrical. Moreover, as shown in FIG. 1A, when this value is smaller than 0, it indicates that the surface has many fine valleys. On the other hand, as shown in FIG. 1B, if this value is greater than 0, it indicates a surface with many fine peaks.

本明細書において「面の負荷曲線」(以下、単に「負荷曲線」という)とは、ISO25178に準拠して測定される、負荷面積率が0%から100%となる高さを表した曲線をいう。負荷面積率とは、図2に示されるように、ある高さc以上の領域の面積を表すパラメータである。高さcでの負荷面積率は図2におけるSmr(c)に相当する。図3に示されるように、負荷面積率が0%から負荷曲線に沿って負荷面積率の差を40%にして引いた負荷曲線の割線を、負荷面積率0%から移動させていき、割線の傾斜が最も緩くなる位置を負荷曲線の中央部分という。この中央部分に対して、縦軸方向の偏差の二乗和が最小になる直線を等価直線という。等価直線の負荷面積率0%から100%の高さの範囲に含まれる部分をコア部という。コア部より高い部分を突出山部といい、コア部より低い部分は突出谷部という。 In this specification, the term "surface load curve" (hereinafter simply referred to as "load curve") refers to a curve representing the height at which the load area ratio is from 0% to 100%, which is measured in accordance with ISO25178. say. As shown in FIG. 2, the load area ratio is a parameter representing the area of a region having a certain height c or more. The load area ratio at height c corresponds to Smr(c) in FIG. As shown in Figure 3, the secant line of a load curve drawn from a load area ratio of 0% along the load curve with a difference in load area ratio of 40% is moved from the load area ratio of 0%, and the secant line The position where the slope is the gentlest is called the center of the load curve. The straight line that minimizes the sum of squares of deviations in the vertical axis direction with respect to this central portion is called an equivalent straight line. The portion included in the height range of 0% to 100% of the load area ratio of the equivalent straight line is called the core portion. The portion higher than the core portion is called a protruding peak portion, and the portion lower than the core portion is called a protruding trough portion.

本明細書において「突出山部高さSpk」とは、ISO25178に準拠して測定される、コア部の上にある突出山部の平均高さをいう。 In this specification, the "protruding peak height Spk" refers to the average height of the protruding peaks above the core portion, as measured in accordance with ISO25178.

本明細書において「極点高さSxp」とは、図4に示されるように、ISO25178に準拠して測定される、負荷面積率p%と負荷面積率q%の高さの差分を表すパラメータである。Sxpは、表面の中で特に高い山を取り除いた後の、表面の平均面と表面の高さの差分を表す。本明細書では、Sxpは、負荷面積率2.5%及び負荷面積率50%の高さの差分とする。 In this specification, "pole height Sxp" is a parameter representing the difference in height between the load area ratio p% and the load area ratio q%, which is measured in accordance with ISO25178, as shown in FIG. be. Sxp represents the difference between the average surface of the surface and the height of the surface after removing particularly high peaks on the surface. In this specification, Sxp is the difference in height between a load area ratio of 2.5% and a load area ratio of 50%.

本明細書において「十点平均高さS10z」とは、基準領域内にある山頂及び谷底のうち、高いものから5番目までの山頂の平均高さと、深いものから5番目までの谷底の平均深さ(正の値)の和をいう。 In this specification, the "ten-point average height S10z" refers to the average height of the fifth highest mountain peak and the average depth of the fifth deepest valley among the mountain peaks and valley bottoms within the reference area. It refers to the sum of positive values.

本明細書において、「界面の展開面積比Sdr」とは、ISO25178に準拠して測定される、定義領域の展開面積(表面積)が、定義領域の面積に対してどれだけ増大しているかを百分率で表したパラメータである。この値が小さいほど、平坦に近い表面形状であることを示し、完全に平坦な表面のSdrは0%となる。一方、この値が大きいほど、凹凸が多い表面形状であることを示す。 In this specification, "interface developed area ratio Sdr" refers to the percentage increase of the developed area (surface area) of the defined region relative to the area of the defined region, as measured in accordance with ISO25178. It is a parameter expressed as . The smaller this value is, the more flat the surface shape is, and the Sdr of a completely flat surface is 0%. On the other hand, the larger this value is, the more uneven the surface shape is.

本明細書において、「微小粒子先端径指数Spk/Ssk」とは、スキューネスSskに対する突出山部高さSpk(μm)の比とする。また、本明細書において、「微小粒子先端粗さ指数S10z/Ssk」とは、スキューネスSskに対する十点平均高さS10z(μm)の比とする。 In this specification, the "microparticle tip diameter index Spk/Ssk" is the ratio of the protruding peak height Spk (μm) to the skewness Ssk. Furthermore, in this specification, "microparticle tip roughness index S10z/Ssk" is the ratio of ten-point average height S10z (μm) to skewness Ssk.

スキューネスSsk、突出山部高さSpk、極点高さSxp、十点平均高さS10z及び界面の展開面積比Sdrは、粗化処理面における所定の測定面積(例えば129.419μm×128.704μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することによりそれぞれ算出することができる。 The skewness Ssk, the protruding peak height Spk, the pole height Sxp, the ten-point average height S10z, and the developed area ratio Sdr of the interface are calculated based on a predetermined measurement area (for example, 129.419 μm x 128.704 μm square) on the roughened surface. Each can be calculated by measuring the surface profile of the dimensional area) using a commercially available laser microscope.

本明細書において、スキューネスSsk、突出山部高さSpk及び極点高さSxpは、Sフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定されるものとする。また、本明細書において、界面の展開面積比Sdrは、Sフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長64μmの条件で測定されるものとする。さらに、本明細書において、十点平均高さS10zは、微小粒子先端粗さS10z/Sskの算出に用いる場合には、Sフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定されるものとする(以下、この条件で測定される十点平均高さS10zを必要に応じて「十点平均高さS10z(粗化粒子S10z)」と称することがある)。一方、微小粒子先端粗さS10z/Sskの算出に用いる以外の場合には、十点平均高さS10zは、Sフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長64μmの条件で測定されるものとする(以下、この条件で測定される十点平均高さS10zを必要に応じて「十点平均高さS10z(全体S10z)」と称することがある)。 In this specification, the skewness Ssk, the protruding peak height Spk, and the pole height Sxp are measured under conditions of a cutoff wavelength of 0.3 μm for the S filter and a cutoff wavelength of 5 μm for the L filter. Further, in this specification, the developed area ratio Sdr of the interface is measured under the conditions of a cutoff wavelength of 0.3 μm for the S filter and a cutoff wavelength of 64 μm for the L filter. Furthermore, in this specification, when the ten-point average height S10z is used to calculate the fine particle tip roughness S10z/Ssk, the cutoff wavelength of the S filter is 0.3 μm and the cutoff wavelength of the L filter is 5 μm. (Hereinafter, the ten-point average height S10z measured under these conditions may be referred to as the "ten-point average height S10z (roughened particles S10z)" as necessary). On the other hand, in cases other than when used to calculate the fine particle tip roughness S10z/Ssk, the ten-point average height S10z is measured under the conditions of a cutoff wavelength of 0.3 μm with an S filter and a cutoff wavelength of 64 μm with an L filter. (Hereinafter, the ten-point average height S10z measured under these conditions may be referred to as the "ten-point average height S10z (overall S10z)" as necessary).

本明細書において、電解銅箔の「電極面」とは電解銅箔製造時に陰極と接していた側の面を指す。 In this specification, the "electrode surface" of the electrolytic copper foil refers to the surface that was in contact with the cathode during manufacture of the electrolytic copper foil.

本明細書において、電解銅箔の「析出面」とは電解銅箔製造時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。 In this specification, the "deposition surface" of an electrolytic copper foil refers to the surface on which electrolytic copper is deposited during manufacture of the electrolytic copper foil, that is, the surface not in contact with the cathode.

粗化処理銅箔
本発明の銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。粗化処理面は、スキューネスSskに対する突出山部高さSpk(μm)の比である微小粒子先端径指数Spk/Sskが0.20以上1.00以下であり、かつ、十点平均高さS10z(全体S10z)が2.50μm以上である、及び/又はスキューネスSskに対する十点平均高さS10z(粗化粒子S10z)(μm)の比である微小粒子先端粗さ指数S10z/Sskが1.00以上6.00以下であり、かつ、十点平均高さS10z(全体S10z)が2.50μm以上である。このように、粗化処理銅箔において、銅箔のうねり成分をカットした条件におけるSpk/Ssk又はS10z/Ssk、及び銅箔のうねり成分を反映した条件におけるS10zをそれぞれ所定の範囲に制御することにより、これを用いて製造された銅張積層板ないしプリント配線板において、優れた伝送特性(高周波特性)と高い剥離強度(例えば常態剥離強度及び熱負荷後剥離強度)とを両立することができる。
Roughening treated copper foil The copper foil of the present invention is a roughening treated copper foil. This roughened copper foil has a roughened surface on at least one side. The roughened surface has a microparticle tip diameter index Spk/Ssk, which is the ratio of the protruding peak height Spk (μm) to the skewness Ssk, of 0.20 or more and 1.00 or less, and a ten-point average height S10z (overall S10z) is 2.50 μm or more, and/or the microparticle tip roughness index S10z/Ssk, which is the ratio of the ten-point average height S10z (roughened particles S10z) (μm) to the skewness Ssk, is 1.00. 6.00 or less, and the ten-point average height S10z (overall S10z) is 2.50 μm or more. In this way, in the roughening-treated copper foil, Spk/Ssk or S10z/Ssk under the condition where the waviness component of the copper foil is cut, and S10z under the condition where the waviness component of the copper foil is reflected, are each controlled within a predetermined range. Therefore, in a copper-clad laminate or printed wiring board manufactured using the same, it is possible to achieve both excellent transmission characteristics (high frequency characteristics) and high peel strength (for example, normal peel strength and peel strength after heat load). .

優れた伝送特性と高い剥離強度とは本来的には両立し難いものである。これは、優れた伝送特性を得るためには、銅箔表面の凹凸を小さくすることが求められる一方、高い剥離強度を得るためには、銅箔表面の凹凸を大きくすることが求められ、両者はトレードオフの関係にあるためである。ここで、図5に示されるように、粗化処理銅箔表面の凹凸は、「粗化粒子成分」と、粗化粒子成分より長周期の「うねり成分」とからなる。一般的に、優れた伝送特性を得るためには、うねりの小さい銅箔表面(例えば両面平滑箔の表面や電解銅箔の電極面)に対して微細粗化処理を行って小さな粗化粒子を形成することが考えられるが、このような粗化処理銅箔を用いて銅張積層板ないしプリント配線板を製造した場合、概して銅箔-基材間の剥離強度が低くなる。 It is inherently difficult to achieve both excellent transmission characteristics and high peel strength. This is because in order to obtain excellent transmission characteristics, it is necessary to reduce the unevenness on the copper foil surface, while in order to obtain high peel strength, it is necessary to increase the unevenness on the copper foil surface. This is because there is a trade-off relationship. Here, as shown in FIG. 5, the unevenness on the surface of the roughened copper foil consists of a "roughening particle component" and a "waviness component" having a longer period than the roughening particle component. Generally, in order to obtain excellent transmission characteristics, fine roughening treatment is performed on the copper foil surface with small waviness (for example, the surface of double-sided smooth foil or the electrode surface of electrolytic copper foil) to remove small roughening particles. However, when a copper-clad laminate or printed wiring board is manufactured using such a roughened copper foil, the peel strength between the copper foil and the base material generally becomes low.

この問題に対して、本発明者らは、銅箔表面における凹凸の粗化粒子及びうねりが伝送特性及び剥離強度に与える影響について検討を行った。その結果、銅箔のうねり成分は予想に反して伝送特性に影響を及ぼしにくく、主に粗化粒子の大きさが伝送特性に影響を与えることが判明した。そして、本発明者らは、銅箔のうねり成分をカットした条件におけるスキューネスSsk及び突出山部高さSpk、或いはスキューネスSsk及び十点平均高さS10z(粗化粒子S10z)を組み合わせて評価を行うことで、伝送特性に影響を及ぼす微小粒子(粗化粒子)の先端径ないし先端粗さの正確な評価が可能となることを突き止めた。具体的には、粗化処理銅箔の粗化処理面における微小粒子先端径指数Spk/Ssk、又は微小粒子先端粗さ指数S10z/Sskを上記範囲内とすることにより、優れた伝送特性を実現できることを見出した。さらに、銅箔のうねり成分を反映した条件における十点平均高さS10z(全体S10z)を上記範囲内とすることで、本来的には剥離強度が確保しにくい小さな粗化粒子であっても、銅箔のうねりを利用して銅箔-基板間の高い剥離強度を実現できることも見出した。このように、本発明の粗化処理銅箔によれば、銅張積層板ないしプリント配線板に用いられた場合に、優れた伝送特性と高い剥離強度とを両立することができる。 In response to this problem, the present inventors investigated the effects of roughening particles and waviness on the surface of the copper foil on transmission characteristics and peel strength. As a result, it was found that the waviness component of the copper foil had little effect on the transmission characteristics, contrary to expectations, and that the size of the roughening particles mainly affected the transmission characteristics. Then, the present inventors perform evaluation by combining the skewness Ssk and the protruding peak height Spk under conditions where the waviness component of the copper foil is cut, or the skewness Ssk and the ten-point average height S10z (roughening particles S10z). We found that this makes it possible to accurately evaluate the tip diameter or tip roughness of microparticles (roughening particles) that affect transmission characteristics. Specifically, excellent transmission characteristics are achieved by setting the fine particle tip diameter index Spk/Ssk or the fine particle tip roughness index S10z/Ssk on the roughened surface of the roughened copper foil within the above range. I found out what I can do. Furthermore, by setting the ten-point average height S10z (total S10z) under conditions that reflect the waviness component of the copper foil within the above range, even small roughening particles that are originally difficult to secure peel strength, We have also discovered that high peel strength between the copper foil and the substrate can be achieved by utilizing the waviness of the copper foil. As described above, the roughened copper foil of the present invention can achieve both excellent transmission characteristics and high peel strength when used in copper-clad laminates or printed wiring boards.

銅箔表面の粗化粒子成分及びうねり成分はレーザー顕微鏡のSフィルター及びLフィルターを用いることで区別することができる。具体的には、粗化処理銅箔の粗化処理面をSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定することで、うねり成分の影響がカットされた粗化粒子成分のパラメータを得ることができる。したがって、本発明におけるスキューネスSsk、突出山部高さSpk、極点高さSxp、十点平均高さS10z(粗化粒子S10z)、微小粒子先端径指数Spk/Ssk、及び微小粒子先端粗さ指数S10z/Sskは銅箔表面における粗化粒子のパラメータを的確に反映したものであるといえる。これに対して、銅箔表面をSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長64μmの条件で測定することで、粗化粒子成分及びうねり成分の両方の影響が反映された全体のパラメータを得ることができる。したがって、本発明における界面の展開面積比Sdr及び十点平均高さS10z(全体S10z)は、銅箔表面の粗化粒子成分のみならず、うねり成分をも反映したパラメータであるといえる。 The roughened particle component and the waviness component on the surface of the copper foil can be distinguished by using an S filter and an L filter of a laser microscope. Specifically, by measuring the roughened surface of the roughened copper foil under the conditions of a cutoff wavelength of 0.3 μm using an S filter and a cutoff wavelength of 5 μm using an L filter, we measured the roughness with the effect of waviness removed. parameters of the particle components can be obtained. Therefore, in the present invention, the skewness Ssk, the protruding peak height Spk, the pole height Sxp, the ten-point average height S10z (roughened particles S10z), the fine particle tip diameter index Spk/Ssk, and the fine particle tip roughness index S10z It can be said that /Ssk accurately reflects the parameters of the roughening particles on the surface of the copper foil. In contrast, by measuring the copper foil surface under the conditions of a cutoff wavelength of 0.3 μm using an S filter and a cutoff wavelength of 64 μm using an L filter, we found that the overall surface reflected the effects of both the roughening particle component and the waviness component. parameters can be obtained. Therefore, it can be said that the developed area ratio Sdr and the ten-point average height S10z (overall S10z) of the interface in the present invention are parameters that reflect not only the roughening particle component on the copper foil surface but also the waviness component.

本発明の一態様によれば、粗化処理銅箔は、粗化処理面における微小粒子先端径指数Spk/Sskが0.20μm以上1.00μm以下であり、好ましくは0.30μm以上0.90μm以下、さらに好ましくは0.40μm以上0.80μm以下、特に好ましくは0.50μm以上0.75μm以下である。また、粗化処理銅箔の粗化処理面は、スキューネスSskが0.40以上1.20以下であるのが好ましく、より好ましくは0.45以上1.17以下、さらに好ましくは0.50以上1.14以下、特に好ましくは0.55μm以上1.10μm以下である。さらに、粗化処理銅箔の粗化処理面は、突出山部高さSpkが0.25μm以上0.80μm以下であるのが好ましく、より好ましくは0.40μm以上0.80μm以下、さらに好ましくは0.40μm以上0.78μm以下、特に好ましくは0.42μm以上0.76μm以下である。前述したとおり、本発明におけるスキューネスSsk、突出山部高さSpk、及び微小粒子先端径指数Spk/Sskは、銅箔表面における凹凸のうねり成分の影響がカットされており、それ故、伝送特性に影響を及ぼす粗化粒子の微小先端径の正確な値が測定可能となる。この点、スキューネスSsk、突出山部高さSpk、及び/又は微小粒子先端径指数Spk/Sskが上記範囲内であると、高い剥離強度でありながら、より優れた伝送特性を実現することができる。 According to one aspect of the present invention, the roughened copper foil has a fine particle tip diameter index Spk/Ssk on the roughened surface of 0.20 μm or more and 1.00 μm or less, preferably 0.30 μm or more and 0.90 μm. The thickness is more preferably 0.40 μm or more and 0.80 μm or less, particularly preferably 0.50 μm or more and 0.75 μm or less. Further, the roughened surface of the roughened copper foil preferably has a skewness Ssk of 0.40 or more and 1.20 or less, more preferably 0.45 or more and 1.17 or less, and even more preferably 0.50 or more. It is 1.14 or less, particularly preferably 0.55 μm or more and 1.10 μm or less. Further, the roughened surface of the roughened copper foil preferably has a protruding peak height Spk of 0.25 μm or more and 0.80 μm or less, more preferably 0.40 μm or more and 0.80 μm or less, and even more preferably It is 0.40 μm or more and 0.78 μm or less, particularly preferably 0.42 μm or more and 0.76 μm or less. As mentioned above, the skewness Ssk, the protruding peak height Spk, and the microparticle tip diameter index Spk/Ssk in the present invention are free from the influence of the waviness component of the unevenness on the copper foil surface, and therefore have no effect on the transmission characteristics. It becomes possible to accurately measure the diameter of the microscopic tip of the roughening particles that have an effect. In this regard, when the skewness Ssk, the protruding peak height Spk, and/or the microparticle tip diameter index Spk/Ssk are within the above ranges, it is possible to achieve better transmission characteristics while maintaining high peel strength. .

本発明の他の一態様によれば、粗化処理銅箔は、粗化処理面における微小粒子先端粗さ指数S10z/Sskが1.00μm以上6.00μm以下であり、好ましくは1.50μm以上6.00μm以下、さらに好ましくは2.00μm以上6.00μm以下、特に好ましくは2.00μm以上5.50μm以下である。また、粗化処理銅箔の粗化処理面は、スキューネスSskが0.40以上1.20以下であるのが好ましく、より好ましくは0.45以上1.17以下、さらに好ましくは0.50以上1.14以下、特に好ましくは0.55μm以上1.10μm以下である。さらに、粗化処理銅箔の粗化処理面は、十点平均高さS10z(粗化粒子S10z)が1.50μm以上4.00μm以下であるのが好ましく、より好ましくは2.00μm以上4.00μm以下、さらに好ましくは2.20μm以上3.80μm以下、特に好ましくは2.30μm以上3.60μm以下、最も好ましくは2.40μm以上3.40μm以下である。前述したとおり、本発明におけるスキューネスSsk、十点平均高さS10z(粗化粒子S10z)、及び微小粒子先端粗さ指数S10z/Sskは、銅箔表面における凹凸のうねり成分の影響がカットされており、それ故、伝送特性に影響を及ぼす粗化粒子の微小先端粗さの正確な値が測定可能となる。この点、スキューネスSsk、十点平均高さS10z(粗化粒子S10z)、及び/又は微小粒子先端粗さ指数S10z/Sskが上記範囲内であると、高い剥離強度でありながら、より優れた伝送特性を実現することができる。 According to another aspect of the present invention, the roughened copper foil has a fine particle tip roughness index S10z/Ssk on the roughened surface of 1.00 μm or more and 6.00 μm or less, preferably 1.50 μm or more. It is 6.00 μm or less, more preferably 2.00 μm or more and 6.00 μm or less, particularly preferably 2.00 μm or more and 5.50 μm or less. Further, the roughened surface of the roughened copper foil preferably has a skewness Ssk of 0.40 or more and 1.20 or less, more preferably 0.45 or more and 1.17 or less, and even more preferably 0.50 or more. It is 1.14 or less, particularly preferably 0.55 μm or more and 1.10 μm or less. Further, the roughened surface of the roughened copper foil preferably has a ten-point average height S10z (roughened particles S10z) of 1.50 μm or more and 4.00 μm or less, more preferably 2.00 μm or more and 4.0 μm or more. 00 μm or less, more preferably 2.20 μm or more and 3.80 μm or less, particularly preferably 2.30 μm or more and 3.60 μm or less, and most preferably 2.40 μm or more and 3.40 μm or less. As mentioned above, the skewness Ssk, ten-point average height S10z (roughening particles S10z), and microparticle tip roughness index S10z/Ssk in the present invention are obtained by cutting the influence of the waviness component of the unevenness on the copper foil surface. , Therefore, it becomes possible to measure an accurate value of the micro-tip roughness of the roughening particles, which affects the transmission characteristics. In this regard, if the skewness Ssk, ten-point average height S10z (roughening particles S10z), and/or microparticle tip roughness index S10z/Ssk are within the above ranges, superior transmission can be achieved while maintaining high peel strength. characteristics can be realized.

粗化処理銅箔の粗化処理面は、十点平均高さS10z(全体S10z)が2.50μm以上であり、好ましくは2.50μm以上10. 00μm以下、より好ましくは2.90μm以上9.00μm以下、さらに好ましくは3.30μm以上8.00μm以下、特に好ましくは3.70μm以上7.00μm以下である。十点平均高さS10z(全体S10z)は銅箔表面における凹凸のうねり成分が反映されたものであるところ、前述したとおり、上記範囲内の十点平均高さS10z(全体S10z)であると、優れた伝送特性でありながら、銅箔のうねりを利用して銅箔-基板間の高い剥離強度を実現することができる。 The roughened surface of the roughened copper foil has a ten-point average height S10z (overall S10z) of 2.50 μm or more, preferably 2.50 μm or more and 10.00 μm or less, more preferably 2.90 μm or more.9. 00 μm or less, more preferably 3.30 μm or more and 8.00 μm or less, particularly preferably 3.70 μm or more and 7.00 μm or less. The ten-point average height S10z (overall S10z) reflects the undulation component of the unevenness on the copper foil surface, and as described above, if the ten-point average height S10z (overall S10z) is within the above range, While having excellent transmission characteristics, it is possible to achieve high peel strength between the copper foil and the substrate by utilizing the waviness of the copper foil.

粗化処理銅箔の粗化処理面は、界面の展開面積比Sdrが22.00%以上であるのが好ましく、より好ましくは25.00%以上、さらに好ましくは30.00%、さらにより好ましくは34.00%以上130.00%以下、特に好ましくは37.00%以上100.00%以下、最も好ましくは40.00%以上60.00%以下である。上記範囲内の界面の展開面積比Sdrであると、優れた誘電特性でありながら、粗化処理面がより高い剥離強度を実現するのに好都合な凹凸に富んだ形状となる。 The roughened surface of the roughened copper foil preferably has an interface developed area ratio Sdr of 22.00% or more, more preferably 25.00% or more, still more preferably 30.00%, and even more preferably is 34.00% or more and 130.00% or less, particularly preferably 37.00% or more and 100.00% or less, and most preferably 40.00% or more and 60.00% or less. When the developed area ratio Sdr of the interface is within the above range, the roughened surface has a shape rich in irregularities that is convenient for realizing higher peel strength, while having excellent dielectric properties.

粗化処理銅箔の粗化処理面は、極点高さSxpが0.40μm以上1.60μm以下であるのが好ましく、より好ましくは0.50μm以上1.60μm以下、さらに好ましくは0.60μm以上1.60μm以下、さらにより好ましくは0.60μm以上1.30μm以下、特に好ましくは0.60μm以上1.20μm以下、最も好ましくは0.60μm以上1.10μm以下である。極点高さSxpは、表面の平均面と表面の山部の高さの差分であるところ、上記範囲内の極点高さSxpであると、アンカー効果が効果的に発揮されてより高い剥離強度を実現することができる。 The roughened surface of the roughened copper foil preferably has a pole height Sxp of 0.40 μm or more and 1.60 μm or less, more preferably 0.50 μm or more and 1.60 μm or less, and even more preferably 0.60 μm or more. It is 1.60 μm or less, even more preferably 0.60 μm or more and 1.30 μm or less, particularly preferably 0.60 μm or more and 1.20 μm or less, and most preferably 0.60 μm or more and 1.10 μm or less. The pole height Sxp is the difference between the average plane of the surface and the height of the peaks of the surface, and if the pole height Sxp is within the above range, the anchor effect will be effectively exhibited and higher peel strength will be achieved. It can be realized.

粗化処理銅箔の厚さは特に限定されないが、0.1μm以上35μm以下が好ましく、より好ましくは0.5μm以上18μm以下である。なお、本発明の粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面の粗化処理ないし微細粗化処理を行ったものであってもよい。 The thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 μm or more and 35 μm or less, more preferably 0.5 μm or more and 18 μm or less. Note that the roughened copper foil of the present invention is not limited to the one in which the surface of ordinary copper foil is roughened, but also the surface of copper foil with a carrier subjected to roughening treatment or fine roughening treatment. It may be something.

本発明の粗化処理銅箔の一例が図6に示される。図6に示されるように、本発明の粗化処理銅箔は、所定のうねりを有する銅箔表面(例えば電解銅箔の析出面)に対して、所望の低粗化条件で粗化処理を行って微細な粗化粒子を形成することにより、好ましく製造することができる。したがって、本発明の好ましい態様によれば、粗化処理銅箔が電解銅箔であり、粗化処理面が電解銅箔の電極面とは反対側(すなわち析出面側)に存在する。なお、粗化処理銅箔は両側に粗化処理面を有するものであってもよいし、一方の側にのみ粗化処理面を有するものであってもよい。粗化処理面は、典型的には複数の粗化粒子を備えてなり、これら複数の粗化粒子はそれぞれ銅粒子からなるのが好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。 An example of the roughened copper foil of the present invention is shown in FIG. As shown in FIG. 6, the roughened copper foil of the present invention is a copper foil surface having a predetermined undulation (for example, the deposition surface of an electrolytic copper foil), which is roughened under desired low roughening conditions. It can be preferably manufactured by forming fine roughened particles. Therefore, according to a preferred embodiment of the present invention, the roughened copper foil is an electrolytic copper foil, and the roughened surface is present on the side opposite to the electrode surface of the electrolytic copper foil (ie, on the deposition surface side). Note that the roughened copper foil may have a roughened surface on both sides, or may have a roughened surface only on one side. The roughened surface typically includes a plurality of roughened particles, and each of the plurality of roughened particles is preferably made of copper particles. The copper particles may be made of metallic copper or may be made of a copper alloy.

粗化処理面を形成するための粗化処理は、銅箔の上に銅又は銅合金で粗化粒子を形成することにより好ましく行うことができる。粗化処理を行う前の銅箔は、無粗化の銅箔であってもよいし、予備的粗化を施したものであってもよい。粗化処理が行われることになる銅箔の表面は、JIS B0601-1994に準拠して測定される十点平均粗さRzが1.50μm以上10.00μm以下であるのが好ましく、より好ましくは2.00μm以上8.00μm以下である。上記範囲内であると、本発明の粗化処理銅箔に要求される表面プロファイルを粗化処理面に付与しやすくなる。 The roughening treatment for forming the roughened surface can be preferably performed by forming roughening particles of copper or copper alloy on the copper foil. The copper foil before being subjected to the roughening treatment may be a non-roughened copper foil or may be a copper foil subjected to preliminary roughening. The surface of the copper foil to be subjected to the roughening treatment preferably has a ten-point average roughness Rz of 1.50 μm or more and 10.00 μm or less, more preferably It is 2.00 μm or more and 8.00 μm or less. Within the above range, it becomes easy to provide the roughened surface with the surface profile required for the roughened copper foil of the present invention.

粗化処理は、例えば銅濃度5g/L以上20g/L以下、硫酸濃度50g/L以上200g/L以下を含む硫酸銅溶液中、20℃以上40℃以下の温度で、20A/dm以上50A/dm以下にて電解析出を行うのが好ましい。この電解析出は0.5秒間以上30秒間以下行われるのが好ましく、1秒間以上30秒間以下行われるのがより好ましく、1秒間以上3秒間以下行われるのがさらに好ましい。また、別の一例として、9-フェニルアクリジン(9PA)を添加する場合は、銅及び硫酸を上記濃度で含み、かつ、塩素濃度20mg/L以上100mg/L以下、及び9PA100mg/L以上200mg/L以下を含む硫酸銅溶液中、20℃以上40℃以下の温度で、20A/dm以上200A/dm以下にて電解析出を行うのが好ましい。この電解析出は0.3秒間以上30秒間以下行われるのが好ましく、0.5秒間以上1.0秒間以下行われるのがより好ましい。電解析出の際、下記式:
Cu=FCuSo4×CCu/S
(式中、FCuは極間銅供給量[(g・m)/(min・L)]、FCuSo4は硫酸銅溶液の流量(m/min)、CCuは硫酸銅溶液の銅濃度(g/L)、Sは陽極-陰極間の断面積(m)である)
により定義される極間銅供給量を0.1[(g・m)/(min・L)]以上1.0[(g・m)/(min・L)]以下とするのが好ましい。こうすることで、粗化処理銅箔の表面に本発明の粗化処理銅箔に要求される表面プロファイルを付与しやすくなる。もっとも、本発明による粗化処理銅箔は、上記方法に限らず、あらゆる方法によって製造されたものであってよい。
The roughening treatment is performed at a temperature of 20° C. or higher and 40° C. or higher at 20 A/dm or higher and 50 A or higher in a copper sulfate solution containing, for example, a copper concentration of 5 g/L or more and 20 g/L or less and a sulfuric acid concentration of 50 g/L or more and 200 g/L or less. It is preferable to carry out electrolytic deposition at a temperature of /dm 2 or less. This electrolytic deposition is preferably performed for 0.5 seconds or more and 30 seconds or less, more preferably 1 second or more and 30 seconds or less, and even more preferably 1 second or more and 3 seconds or less. As another example, when adding 9-phenylacridine (9PA), it contains copper and sulfuric acid at the above concentrations, and the chlorine concentration is 20 mg/L or more and 100 mg/L or less, and 9PA is 100 mg/L or more and 200 mg/L. It is preferable to perform electrolytic deposition at a temperature of 20° C. or higher and 40° C. or lower and 20 A/dm 2 or higher and 200 A/dm 2 or lower in a copper sulfate solution containing the following. This electrolytic deposition is preferably performed for 0.3 seconds or more and 30 seconds or less, more preferably 0.5 seconds or more and 1.0 seconds or less. During electrolytic deposition, the following formula:
F Cu =F CuSo4 ×C Cu /S
(In the formula, F Cu is the interelectrode copper supply amount [(g・m)/(min・L)], F CuSo4 is the flow rate of the copper sulfate solution (m 3 /min), and C Cu is the copper concentration of the copper sulfate solution. (g/L), S is the cross-sectional area (m 2 ) between the anode and cathode)
It is preferable that the inter-electrode copper supply amount defined by 0.1 [(g·m)/(min·L)] or more and 1.0 [(g·m)/(min·L)] or less be set. By doing so, it becomes easier to provide the surface of the roughened copper foil with the surface profile required for the roughened copper foil of the present invention. However, the roughened copper foil according to the present invention is not limited to the above method, and may be manufactured by any method.

所望により、粗化処理銅箔は防錆処理が施され、防錆処理層が形成されたものであってもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co、Mo等の他の元素をさらに含んでいてもよい。例えば、防錆処理層がNi及びZnに加えてMoをさらに含むことで、粗化処理銅箔の処理表面が、樹脂との密着性、耐薬品性及び耐熱性により優れ、かつ、エッチング残渣が残りにくいものとなる。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2以上10以下が好ましく、より好ましくは2以上7以下、さらに好ましくは2.7以上4以下である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。 If desired, the roughened copper foil may be subjected to rust prevention treatment and may have a rust prevention treatment layer formed thereon. Preferably, the rust prevention treatment includes plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment that contains at least Ni and Zn, and may further contain other elements such as Sn, Cr, Co, and Mo. For example, by further including Mo in addition to Ni and Zn, the rust-preventing treatment layer provides the treated surface of the roughened copper foil with excellent adhesion to resin, chemical resistance, and heat resistance, and also has less etching residue. It will be difficult to leave behind. The Ni/Zn adhesion ratio in zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and even more preferably 2.7 or more and 4 or less, in terms of mass ratio. Moreover, it is preferable that the rust prevention treatment further includes chromate treatment, and it is more preferable that this chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc. By doing so, the rust prevention properties can be further improved. A particularly preferred anticorrosion treatment is a combination of zinc-nickel alloy plating treatment followed by chromate treatment.

所望により、粗化処理銅箔は表面にシランカップリング剤処理が施され、シランカップリング剤層が形成されたものであってもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。 If desired, the surface of the roughened copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. This makes it possible to improve moisture resistance, chemical resistance, adhesion to adhesives, and the like. The silane coupling agent layer can be formed by appropriately diluting a silane coupling agent, applying it, and drying it. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-(2- aminoethyl) 3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc. a functional silane coupling agent, or a mercapto-functional silane coupling agent, such as 3-mercaptopropyltrimethoxysilane, or an olefin-functional silane coupling agent, such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacryloxy Acrylic functional silane coupling agents such as propyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, imidazole functional silane coupling agents such as imidazole silane, or triazine functional silane coupling agents such as triazine silane, etc. Can be mentioned.

上述した理由から、粗化処理銅箔は、粗化処理面に防錆処理層及び/又はシランカップリング剤層をさらに備えることが好ましく、より好ましくは防錆処理層及びシランカップリング剤層の両方を備える。防錆処理層及びシランカップリング剤層は、粗化処理銅箔の粗化処理面側のみならず、粗化処理面が形成されていない側に形成されてもよい。 For the reasons mentioned above, it is preferable that the roughened copper foil further includes a rust prevention treatment layer and/or a silane coupling agent layer on the roughening treatment surface, and more preferably, a rust prevention treatment layer and/or a silane coupling agent layer. Have both. The rust prevention layer and the silane coupling agent layer may be formed not only on the roughened surface side of the roughened copper foil but also on the side where the roughened surface is not formed.

銅張積層板
本発明の粗化処理銅箔はプリント配線板用銅張積層板の製造に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えた銅張積層板が提供される。本発明の粗化処理銅箔を用いることで、銅張積層板において、優れた誘電特性と高い剥離強度とを両立することができる。この銅張積層板は、本発明の粗化処理銅箔と、この粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介して粗化処理銅箔に設けられていてもよい。
Copper-clad laminate The roughened copper foil of the present invention is preferably used for producing a copper-clad laminate for printed wiring boards. That is, according to a preferred embodiment of the present invention, a copper-clad laminate including the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both excellent dielectric properties and high peel strength in a copper-clad laminate. This copper-clad laminate includes the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil. The roughened copper foil may be provided on one side or both sides of the resin layer. The resin layer contains a resin, preferably an insulating resin. Preferably, the resin layer is a prepreg and/or a resin sheet. Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, glass plate, glass woven fabric, glass nonwoven fabric, or paper is impregnated with synthetic resin. Preferred examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin. Furthermore, examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin. Further, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation properties. The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and still more preferably 3 μm or more and 200 μm or less. The resin layer may be composed of multiple layers. A resin layer such as a prepreg and/or a resin sheet may be provided on the roughened copper foil via a primer resin layer that is previously applied to the surface of the copper foil.

プリント配線板
本発明の粗化処理銅箔はプリント配線板の製造に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えたプリント配線板が提供される。本発明の粗化処理銅箔を用いることで、プリント配線板において、優れた伝送特性と高い剥離強度とを両立することができる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。銅層は本発明の粗化処理銅箔に由来する層である。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミ・アディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ(SAP)法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。
Printed Wiring Board The roughened copper foil of the present invention is preferably used for manufacturing printed wiring boards. That is, according to a preferred embodiment of the present invention, a printed wiring board including the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both excellent transmission characteristics and high peel strength in a printed wiring board. The printed wiring board according to this embodiment includes a layered structure in which a resin layer and a copper layer are laminated. The copper layer is a layer derived from the roughened copper foil of the present invention. Further, the resin layer is as described above regarding the copper-clad laminate. In any case, a known layer structure can be used for the printed wiring board. Specific examples of printed wiring boards include single-sided or double-sided printed wiring boards in which the roughened copper foil of the present invention is adhered to one or both sides of prepreg to form a cured laminate, and circuits are formed on the cured laminate, and multilayered versions of these. Examples include multilayer printed wiring boards. Further, other specific examples include flexible printed wiring boards, COF, TAB tapes, etc. in which a circuit is formed by forming the roughened copper foil of the present invention on a resin film. As another specific example, a resin-coated copper foil (RCC) is formed by applying the above-mentioned resin layer to the roughened copper foil of the present invention, and the resin layer is laminated on the above-mentioned printed circuit board as an insulating adhesive layer. After that, build-up wiring boards with circuits formed using methods such as the modified semi-additive (MSAP) method and subtractive method using the roughened copper foil as all or part of the wiring layer, and the roughened copper foil are removed. Examples include a build-up wiring board in which a circuit is formed using a semi-additive (SAP) method, and a direct build-up on wafer in which lamination of resin-coated copper foil and circuit formation are alternately repeated on a semiconductor integrated circuit.

本発明を以下の例によってさらに具体的に説明する。 The present invention will be further illustrated by the following examples.

例1~18
本発明の粗化処理銅箔の製造を以下のようにして行った。
Examples 1 to 18
The roughened copper foil of the present invention was manufactured as follows.

(1)電解銅箔の製造
例1~9及び11~18について、銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極にチタン製の電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、表1に示した厚さの電解銅箔Aを得た。このとき、陰極として、表面を#1000のバフで研磨して表面粗さを調整した電極を用いた。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:300g/L
‐ ニカワ濃度:5mg/L
‐ 塩素濃度:30mg/L
(1) Production of electrolytic copper foil For Examples 1 to 9 and 11 to 18, a sulfuric acid copper sulfate solution having the composition shown below was used as the copper electrolyte, a titanium electrode was used as the cathode, and DSA ( Using a dimensionally stable anode), electrolysis was carried out at a solution temperature of 45° C. and a current density of 55 A/dm 2 to obtain electrolytic copper foil A having the thickness shown in Table 1. At this time, an electrode whose surface was polished with a #1000 buff to adjust the surface roughness was used as the cathode.
<Composition of sulfuric acid acidic copper sulfate solution>
- Copper concentration: 80g/L
- Sulfuric acid concentration: 300g/L
- Glue concentration: 5mg/L
- Chlorine concentration: 30mg/L

一方、例10については、銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、表1に示した厚さの電解銅箔Bを得た。このとき、硫酸酸性硫酸銅溶液の組成以外の条件は電解銅箔Aと同様とした。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:260g/L
‐ ビス(3-スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
On the other hand, for Example 10, an electrolytic copper foil B having the thickness shown in Table 1 was obtained using a sulfuric acid acidic copper sulfate solution having the composition shown below as the copper electrolyte. At this time, the conditions other than the composition of the sulfuric acid copper sulfate solution were the same as those for electrolytic copper foil A.
<Composition of sulfuric acid acidic copper sulfate solution>
- Copper concentration: 80g/L
- Sulfuric acid concentration: 260g/L
- Bis(3-sulfopropyl) disulfide concentration: 30mg/L
- Diallyldimethylammonium chloride polymer concentration: 50mg/L
- Chlorine concentration: 40mg/L

(2)粗化処理
上述の電解銅箔が備える電極面及び析出面の内、例1~11及び15~18については析出面側に対して、例12~14については電極面側に対して、粗化処理を行った。なお、例1~11及び15~18に用いた電解銅箔の析出面、及び例12~14に用いた電解銅箔の電極面の、JIS B0601-1994に準拠して測定される十点平均粗さRzは表1に示されるとおりであった。
(2) Roughening treatment Of the electrode surface and deposition surface of the electrolytic copper foil described above, for Examples 1 to 11 and 15 to 18, the deposition surface side is treated, and for Examples 12 to 14, the electrode surface side is , roughening treatment was performed. In addition, the ten-point average of the deposition surface of the electrolytic copper foil used in Examples 1 to 11 and 15 to 18, and the electrode surface of the electrolytic copper foil used in Examples 12 to 14, measured in accordance with JIS B0601-1994. The roughness Rz was as shown in Table 1.

例1~9及び14~17については、以下に示される粗化処理(第一粗化処理)を行った。この粗化処理は、粗化処理用銅電解溶液(銅濃度:5g/L以上20g/L以下、硫酸濃度:50g/L以上200g/L以下、液温:30℃)中、各々の例ごとに表1に示した電流密度、時間及び極間銅供給量の条件にて電解し、水洗することにより行った。 For Examples 1 to 9 and 14 to 17, the following roughening treatment (first roughening treatment) was performed. This roughening treatment is carried out in each case in a copper electrolytic solution for roughening treatment (copper concentration: 5 g/L or more and 20 g/L or less, sulfuric acid concentration: 50 g/L or more and 200 g/L or less, liquid temperature: 30°C). Electrolysis was carried out under the conditions of current density, time, and interelectrode copper supply amount shown in Table 1, followed by washing with water.

例10~13については、以下に示される第一粗化処理、第二粗化処理及び第三粗化処理をこの順に行った。
‐ 第一粗化処理は、粗化処理用銅電解溶液(銅濃度:5g/L以上20g/L以下、硫酸濃度:50g/L以上200g/L以下、液温:30℃)中、表1に示した電流密度、時間及び極間銅供給量の条件にて電解し、水洗することにより行った。
‐ 第二粗化処理は、第一粗化処理と同じ組成の粗化処理用銅電解溶液中、表1に示した電流密度、時間及び極間銅供給量の条件にて電解し、水洗することにより行った。
‐ 第三粗化処理は、粗化処理用銅電解溶液(銅濃度:65g/L以上80g/L以下、硫酸濃度:50g/L以上200g/L以下、液温:45℃)中、表1に示した電流密度、時間及び極間銅供給量の条件にて電解し、水洗することにより行った。
For Examples 10 to 13, the following first roughening treatment, second roughening treatment, and third roughening treatment were performed in this order.
- The first roughening treatment was carried out using Table 1 in a copper electrolytic solution for roughening treatment (copper concentration: 5 g/L or more and 20 g/L or less, sulfuric acid concentration: 50 g/L or more and 200 g/L or less, liquid temperature: 30°C). Electrolysis was carried out under the conditions of the current density, time, and interelectrode copper supply amount shown in , followed by washing with water.
- The second roughening treatment is performed by electrolyzing in a copper electrolytic solution for roughening treatment with the same composition as the first roughening treatment under the conditions of current density, time, and interelectrode copper supply amount shown in Table 1, and washing with water. I went there.
- The third roughening treatment was carried out in a copper electrolytic solution for roughening treatment (copper concentration: 65 g/L or more and 80 g/L or less, sulfuric acid concentration: 50 g/L or more and 200 g/L or less, liquid temperature: 45 ° C.) according to Table 1. Electrolysis was carried out under the conditions of the current density, time, and interelectrode copper supply amount shown in , followed by washing with water.

例18については、以下に示される粗化処理(第一粗化処理)を行った。この粗化処理は、粗化処理用銅電解溶液(銅濃度:5g/L以上20g/L以下、硫酸濃度:50g/L以上200g/L以下、塩素濃度20mg/L以上100mg/L以下、9PA100mg/L以上200mg/L以下、液温:30℃)中、表1に示した電流密度、時間及び極間銅供給量の条件にて電解し、水洗することにより行った。 For Example 18, the roughening treatment (first roughening treatment) shown below was performed. This roughening treatment is carried out using a copper electrolytic solution for roughening treatment (copper concentration: 5 g/L or more and 20 g/L or less, sulfuric acid concentration: 50 g/L or more and 200 g/L or less, chlorine concentration 20 mg/L or more and 100 mg/L or less, 9PA 100 mg). /L or more and 200 mg/L or less, liquid temperature: 30° C.) under the conditions of the current density, time, and interelectrode copper supply amount shown in Table 1, followed by washing with water.

(3)防錆処理
粗化処理後の電解銅箔に表1に示した防錆処理を行った。この防錆処理として、例1~7及び9~18については、電解銅箔の両面に対し、ピロリン酸浴を用い、ピロリン酸カリウム濃度80g/L、亜鉛濃度0.2g/L、ニッケル濃度2g/L、液温40℃、電流密度0.5A/dmとして亜鉛-ニッケル系防錆処理を行った。一方、例8については、電解銅箔の粗化処理を行った側の面に対し、ピロリン酸カリウム濃度100g/L、亜鉛濃度1g/L、ニッケル濃度2g/L、モリブデン濃度1g/L、液温40℃、電流密度0.5A/dmで亜鉛-ニッケル系防錆処理を行った。なお、例8の電解銅箔の粗化処理を行った面と反対側の面に対しては、例1~7及び9~18と同様の条件で亜鉛-ニッケル系防錆処理を行った。
(3) Rust prevention treatment The rust prevention treatment shown in Table 1 was performed on the electrolytic copper foil after the roughening treatment. In Examples 1 to 7 and 9 to 18, a pyrophosphate bath was used for both sides of the electrolytic copper foil as the rust prevention treatment, with a potassium pyrophosphate concentration of 80 g/L, a zinc concentration of 0.2 g/L, and a nickel concentration of 2 g. /L, a liquid temperature of 40° C., and a current density of 0.5 A/dm 2 to perform zinc-nickel rust prevention treatment. On the other hand, for Example 8, on the roughened side of the electrolytic copper foil, potassium pyrophosphate concentration 100 g/L, zinc concentration 1 g/L, nickel concentration 2 g/L, molybdenum concentration 1 g/L, liquid Zinc-nickel rust prevention treatment was performed at a temperature of 40° C. and a current density of 0.5 A/dm 2 . Note that the surface of the electrolytic copper foil of Example 8 opposite to the roughened surface was subjected to zinc-nickel rust prevention treatment under the same conditions as Examples 1 to 7 and 9 to 18.

(4)クロメート処理
上記防錆処理を行った電解銅箔の両面に対して、クロメート処理を行い、防錆処理層の上にクロメート層を形成した。このクロメート処理は、クロム酸濃度1g/L、pH11、液温25℃及び電流密度1A/dmの条件で行った。
(4) Chromate treatment Chromate treatment was performed on both sides of the electrolytic copper foil that had been subjected to the rust prevention treatment to form a chromate layer on the rust prevention treatment layer. This chromate treatment was performed under the conditions of chromic acid concentration of 1 g/L, pH of 11, liquid temperature of 25° C., and current density of 1 A/dm 2 .

(5)シランカップリング剤処理
上記クロメート処理が施された銅箔を水洗し、その後直ちにシランカップリング剤処理を行い、粗化処理面のクロメート層上にシランカップリング剤を吸着させた。このシランカップリング剤処理は、純水を溶媒とするシランカップリング剤の溶液をシャワーリングにて粗化処理面に吹き付けて吸着処理することにより行った。シランカップリング剤として、例1~5、9及び14~18では3-アミノプロピルトリメトキシシラン、例6及び10~13では3-グリシドキシプロピルトリメトキシシラン、例7では3-アクリロキシプロピルトリメトキシシラン、例8ではビニルトリメトキシシランを用いた。シランカップリング剤の濃度はいずれも3g/Lとした。シランカップリング剤の吸着後、最終的に電熱器により水分を蒸発させ、所定厚さの粗化処理銅箔を得た。
(5) Silane coupling agent treatment The chromate-treated copper foil described above was washed with water, and then immediately treated with a silane coupling agent to adsorb the silane coupling agent onto the chromate layer on the roughened surface. This silane coupling agent treatment was carried out by spraying a solution of the silane coupling agent using pure water as a solvent onto the roughened surface using a shower ring and adsorbing it. The silane coupling agent was 3-aminopropyltrimethoxysilane in Examples 1 to 5, 9 and 14 to 18, 3-glycidoxypropyltrimethoxysilane in Examples 6 and 10 to 13, and 3-acryloxypropyl in Example 7. Trimethoxysilane, in Example 8 vinyltrimethoxysilane was used. The concentration of the silane coupling agent was 3 g/L in all cases. After adsorption of the silane coupling agent, the water was finally evaporated using an electric heater to obtain a roughened copper foil with a predetermined thickness.

Figure 0007374298000001
Figure 0007374298000001

評価
製造された粗化処理銅箔について、以下に示される各種評価を行った。
Evaluation Various evaluations shown below were performed on the manufactured roughened copper foil.

(a)粗化処理面の表面性状パラメータ
レーザー顕微鏡(オリンパス株式会社製、OLS-5000)を用いた表面粗さ解析により、粗化処理銅箔の粗化処理面の測定をISO25178に準拠して行った。具体的には、粗化処理銅箔の粗化処理面における129.419μm×128.704μmの領域の表面プロファイルを、上記レーザー顕微鏡にて対物レンズ倍率100倍で測定した。得られた粗化処理面の表面プロファイルに対して、表2に示される条件に従って解析を行い、スキューネスSsk、突出山部高さSpk、十点平均高さS10z、界面の展開面積比Sdr及び極点高さSxpを算出した。なお、十点平均高さS10zについては、Lフィルターによるカットオフ波長を2条件(5μm及び64μm)としてそれぞれ算出した。また、得られたスキューネスSsk、突出山部高さSpk及び十点平均高さS10z(Lフィルター:5μm)の値に基づいて微小粒子先端径指数Spk/Ssk、及び微小粒子先端粗さ指数S10z/Sskの値をそれぞれ算出した。結果は、表3に示されるとおりであった。
(a) Surface quality parameters of the roughened surface The roughened surface of the roughened copper foil was measured in accordance with ISO25178 by surface roughness analysis using a laser microscope (OLS-5000, manufactured by Olympus Corporation). went. Specifically, the surface profile of a 129.419 μm x 128.704 μm area on the roughened surface of the roughened copper foil was measured using the laser microscope described above at an objective lens magnification of 100 times. The surface profile of the obtained roughened surface was analyzed according to the conditions shown in Table 2, and the skewness Ssk, protruding peak height Spk, ten-point average height S10z, developed area ratio of the interface Sdr, and polar point were analyzed. The height Sxp was calculated. Note that the ten-point average height S10z was calculated under two conditions (5 μm and 64 μm) for the cutoff wavelength by the L filter. Furthermore, based on the values of the obtained skewness Ssk, protruding peak height Spk, and ten-point average height S10z (L filter: 5 μm), the microparticle tip diameter index Spk/Ssk and the microparticle tip roughness index S10z/ The value of Ssk was calculated for each. The results were as shown in Table 3.

Figure 0007374298000002
Figure 0007374298000002

(b)銅箔-基材間の剥離強度
常態及び熱負荷後の粗化処理銅箔について、絶縁基材との密着性を評価するために、常態剥離強度、及びはんだフロート後剥離強度の測定を以下のとおり行った。
(b) Peel strength between copper foil and base material In order to evaluate the adhesion to the insulating base material for roughened copper foil under normal conditions and after heat load, measurement of normal peel strength and peel strength after solder float. was carried out as follows.

(b-1)常態剥離強度
絶縁基材として、ポリフェニレンエーテルとトリアリルイソシアヌレートとビスマレイミド樹脂とを主成分とするプリプレグ(厚さ100μm)2枚を用意して、積み重ねた。この積み重ねたプリプレグに、製造した表面処理銅箔をその粗化処理面がプリプレグと当接するように積層し、32kgf/cm、205℃で120分間のプレスを行って銅張積層板を製造した。次に、この銅張積層板にエッチング法により回路形成を行い、3mm幅の直線回路を備えた試験基板を製造した。なお、例9及び例16については、回路形成前に、銅箔の厚さが18μmとなるまで銅張積層板の銅箔側表面に対してエッチングを行った。こうして得られた直線回路を、JIS C 5016-1994のA法(90°剥離)に準拠して絶縁基材から引き剥がして常態剥離強度(kgf/cm)を測定した。得られた常態剥離強度を以下の基準で格付け評価した。結果は表3に示されるとおりであった。
<常態剥離強度評価基準>
‐評価A:常態剥離強度が0.42kgf/cm以上
‐評価B:常態剥離強度が0.40kgf/cm以上0.42kgf/cm未満
‐評価C:常態剥離強度が0.40kgf/cm未満
(b-1) Normal peel strength Two sheets of prepreg (thickness: 100 μm) containing polyphenylene ether, triallyl isocyanurate, and bismaleimide resin as main components were prepared and stacked as insulating base materials. The manufactured surface-treated copper foil was laminated on this stacked prepreg so that its roughened surface was in contact with the prepreg, and pressed at 32 kgf/cm 2 and 205° C. for 120 minutes to produce a copper-clad laminate. . Next, a circuit was formed on this copper-clad laminate by etching to produce a test board with a 3 mm wide linear circuit. In addition, for Examples 9 and 16, before circuit formation, etching was performed on the copper foil side surface of the copper clad laminate until the thickness of the copper foil was 18 μm. The linear circuit thus obtained was peeled off from the insulating base material according to method A (90° peeling) of JIS C 5016-1994, and the normal peel strength (kgf/cm) was measured. The obtained normal peel strength was graded and evaluated based on the following criteria. The results were as shown in Table 3.
<Normal peel strength evaluation criteria>
- Evaluation A: Normal peel strength is 0.42 kgf/cm or more - Evaluation B: Normal peel strength is 0.40 kgf/cm or more and less than 0.42 kgf/cm - Evaluation C: Normal peel strength is less than 0.40 kgf/cm

(b-2)はんだフロート後剥離強度
剥離強度の測定に先立ち、直線回路を備えた試験基板を260℃のはんだ浴に20秒間フローティングしたこと以外は、上述した常態剥離強度と同様の手順により、はんだフロート後剥離強度(kgf/cm)を測定した。得られたはんだフロート後剥離強度を以下の基準で格付け評価した。結果は表3に示されるとおりであった。
<はんだフロート後剥離強度評価基準>
‐評価A:はんだフロート後剥離強度が0.41kgf/cm以上
‐評価B:はんだフロート後剥離強度が0.39kgf/cm以上0.41kgf/cm未満
‐評価C:はんだフロート後剥離強度が0.39kgf/cm未満
(b-2) Peel strength after solder float Prior to measuring peel strength, the test board with the linear circuit was floated in a solder bath at 260°C for 20 seconds, but the procedure was the same as that for the normal peel strength described above. The peel strength (kgf/cm) after solder float was measured. The obtained peel strength after solder float was graded and evaluated based on the following criteria. The results were as shown in Table 3.
<Peeling strength evaluation criteria after solder float>
- Evaluation A: Peel strength after solder float is 0.41 kgf/cm or more - Evaluation B: Peel strength after solder float is 0.39 kgf/cm or more and less than 0.41 kgf/cm - Evaluation C: Peel strength after solder float is 0.41 kgf/cm or more. Less than 39kgf/cm

(c)伝送特性
絶縁樹脂基材として高周波用基材(パナソニック製、MEGTRON6N)を用意した。この絶縁樹脂基材の両面に粗化処理銅箔をその粗化処理面が絶縁樹脂基材と当接するように積層し、真空プレス機を使用して、温度190℃、プレス時間120分の条件で積層し、絶縁厚さ136μmの銅張積層板を得た。その後、当該銅張積層板にエッチング加工を施し、特性インピーダンスが50Ωになるようマイクロストリップラインを形成した伝送損失測定用基板を得た。得られた伝送損失測定用基板に対して、ネットワークアナライザー(キーサイトテクノロジー製、N5225B)を用いて、50GHzの伝送損失(dB/cm)を測定した。得られた伝送損失を以下の基準で格付け評価した。結果は表3に示されるとおりであった。
<伝送損失評価基準>
‐評価A:伝送損失が-0.57dB/cm以上
‐評価B:伝送損失が-0.70dB/cm以上-0.57dB/cm未満
‐評価C:伝送損失が-0.70dB/cm未満
(c) Transmission characteristics A high frequency base material (MEGTRON6N, manufactured by Panasonic) was prepared as an insulating resin base material. A roughened copper foil was laminated on both sides of this insulating resin base material so that the roughened surface was in contact with the insulating resin base material, and using a vacuum press machine, the temperature was 190°C and the pressing time was 120 minutes. A copper-clad laminate with an insulation thickness of 136 μm was obtained. Thereafter, the copper-clad laminate was etched to obtain a substrate for transmission loss measurement in which a microstrip line was formed so that the characteristic impedance was 50Ω. The transmission loss (dB/cm) of the obtained transmission loss measurement substrate was measured at 50 GHz using a network analyzer (manufactured by Keysight Technologies, N5225B). The obtained transmission loss was graded and evaluated based on the following criteria. The results were as shown in Table 3.
<Transmission loss evaluation criteria>
- Evaluation A: Transmission loss is -0.57 dB/cm or more - Evaluation B: Transmission loss is -0.70 dB/cm or more and less than -0.57 dB/cm - Evaluation C: Transmission loss is less than -0.70 dB/cm

Figure 0007374298000003
Figure 0007374298000003

Claims (10)

少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定されるスキューネスSskに対する、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定される突出山部高さSpk(μm)の比である微小粒子先端径指数Spk/Sskが0.20以上1.00以下であり、前記スキューネスSskに対する、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定される十点平均高さS10z(μm)の比である微小粒子先端粗さ指数S10z/Sskが1.00以上6.00以下であり、かつ、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長64μmの条件で測定される十点平均高さS10zが2.50μm以上10.00μm以下である、粗化処理銅箔。
A roughened copper foil having a roughened surface on at least one side,
The roughened surface has a cutoff wavelength of S filter according to ISO 25178 with respect to skewness Ssk measured under conditions of a cutoff wavelength of 0.3 μm with S filter and 5 μm with L filter according to ISO 25178. The microparticle tip diameter index Spk/Ssk, which is the ratio of the protruding peak height Spk (μm) measured under the conditions of 0.3 μm and a cutoff wavelength of 5 μm using an L filter, is 0.20 or more and 1.00 or less, Microparticle tip roughness, which is the ratio of the ten-point average height S10z (μm) measured under the conditions of a cutoff wavelength of 0.3 μm with an S filter and a cutoff wavelength of 5 μm with an L filter, in accordance with ISO 25178, to the skewness Ssk. The ten-point average is measured under the conditions that the density index S10z/Ssk is 1.00 or more and 6.00 or less, and the cutoff wavelength is 0.3 μm with the S filter and 64 μm with the L filter in accordance with ISO 25178. A roughened copper foil having a height S10z of 2.50 μm or more and 10.00 μm or less .
前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長64μmの条件で測定される界面の展開面積比Sdrが22.00%以上である、請求項1に記載の粗化処理銅箔。 The roughened surface has an interface developed area ratio Sdr of 22.00% or more, measured under the conditions of a cutoff wavelength of 0.3 μm by an S filter and a cutoff wavelength of 64 μm by an L filter in accordance with ISO 25178. The roughened copper foil according to claim 1 . 前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定されるスキューネスSskが0.40以上1.20以下である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has a skewness Ssk of 0.40 or more and 1.20 or less measured under the conditions of a cutoff wavelength of 0.3 μm by an S filter and a cutoff wavelength of 5 μm by an L filter in accordance with ISO 25178. Item 2. Roughening treated copper foil according to item 1 or 2 . 前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定される突出山部高さSpkが0.25μm以上0.80μm以下である、請求項1~のいずれか一項に記載の粗化処理銅箔。 The roughened surface has a protruding peak height Spk of 0.25 μm or more and 0.80 μm or less, measured under the conditions of a cutoff wavelength of 0.3 μm by an S filter and a cutoff wavelength of 5 μm by an L filter in accordance with ISO 25178. The roughened copper foil according to any one of claims 1 to 3 . 前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定される十点平均高さS10z(粗化粒子S10z)が1.50μm以上4.00μm以下である、請求項1~のいずれか一項に記載の粗化処理銅箔。 The roughened surface has a ten-point average height S10z (roughened particles S10z) of 1.5 μm, which is measured in accordance with ISO 25178 with a cutoff wavelength of 0.3 μm using an S filter and a cutoff wavelength of 5 μm using an L filter. The roughened copper foil according to any one of claims 1 to 4 , which has a diameter of 50 μm or more and 4.00 μm or less. 前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.3μm及びLフィルターによるカットオフ波長5μmの条件で測定される極点高さSxpが0.40μm以上1.60μm以下である、請求項1~のいずれか一項に記載の粗化処理銅箔。 The roughened surface has a pole height Sxp of 0.40 μm or more and 1.60 μm or less, measured under the conditions of a cutoff wavelength of 0.3 μm by an S filter and a cutoff wavelength of 5 μm by an L filter in accordance with ISO 25178. , the roughened copper foil according to any one of claims 1 to 5 . 前記粗化処理面に防錆処理層及び/又はシランカップリング剤処理層をさらに備えた、請求項1~のいずれか一項に記載の粗化処理銅箔。 The roughened copper foil according to any one of claims 1 to 6 , further comprising a rust prevention treatment layer and/or a silane coupling agent treatment layer on the roughening treatment surface. 前記粗化処理銅箔が電解銅箔であり、前記粗化処理面が電解銅箔の電極面とは反対側に存在する、請求項1~のいずれか一項に記載の粗化処理銅箔。 The roughened copper foil according to any one of claims 1 to 7 , wherein the roughened copper foil is an electrolytic copper foil, and the roughened surface is present on the opposite side of the electrode surface of the electrolytic copper foil. foil. 請求項1~のいずれか一項に記載の粗化処理銅箔を備えた、銅張積層板。 A copper-clad laminate comprising the roughened copper foil according to any one of claims 1 to 8 . 請求項1~のいずれか一項に記載の粗化処理銅箔を備えた、プリント配線板。 A printed wiring board comprising the roughened copper foil according to any one of claims 1 to 8 .
JP2022509983A 2020-03-23 2021-03-16 Roughened copper foil, copper clad laminates and printed wiring boards Active JP7374298B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020051383 2020-03-23
JP2020051383 2020-03-23
PCT/JP2021/010657 WO2021193246A1 (en) 2020-03-23 2021-03-16 Roughened copper foil, copper-cladded laminate board, and printed wiring board

Publications (2)

Publication Number Publication Date
JPWO2021193246A1 JPWO2021193246A1 (en) 2021-09-30
JP7374298B2 true JP7374298B2 (en) 2023-11-06

Family

ID=77890373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022509983A Active JP7374298B2 (en) 2020-03-23 2021-03-16 Roughened copper foil, copper clad laminates and printed wiring boards

Country Status (5)

Country Link
JP (1) JP7374298B2 (en)
KR (1) KR20220130189A (en)
CN (1) CN115413301A (en)
TW (1) TWI763387B (en)
WO (1) WO2021193246A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230019067A1 (en) * 2021-07-06 2023-01-19 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil and copper clad laminate
TWI756155B (en) * 2021-07-19 2022-02-21 長春石油化學股份有限公司 Surface-treated copper foil and copper clad laminate
WO2023182175A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
WO2023182179A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, copper foil having carrier, copper-clad laminate, and printed wiring board
WO2023182174A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
WO2023182176A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099950A (en) 2002-09-06 2004-04-02 Nikko Materials Co Ltd Continuous electrolytic thick plating method and equipment for copper foil
JP2005008973A (en) 2003-06-20 2005-01-13 Hitachi Cable Ltd Surface roughening method for copper foil
JP2007238968A (en) 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The Copper foil, method for manufacturing copper foil, and multilayered circuit board using the copper foil
JP2015148011A (en) 2013-08-20 2015-08-20 Jx日鉱日石金属株式会社 Surface treated copper foil, laminate using the same, printed wiring board, electronic apparatus and method for manufacturing printed wiring board
JP2018074153A (en) 2015-08-06 2018-05-10 Jx金属株式会社 Carrier-attached copper foil, laminate, and methods for manufacturing printed wiring board and electronic equipment
JP2018172785A (en) 2017-03-31 2018-11-08 Jx金属株式会社 Surface-treated copper foil, surface-treated copper foil with resin layer, copper foil with carrier, laminate, method for producing printed wiring board and method for producing electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099950A (en) 2002-09-06 2004-04-02 Nikko Materials Co Ltd Continuous electrolytic thick plating method and equipment for copper foil
JP2005008973A (en) 2003-06-20 2005-01-13 Hitachi Cable Ltd Surface roughening method for copper foil
JP2007238968A (en) 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The Copper foil, method for manufacturing copper foil, and multilayered circuit board using the copper foil
JP2015148011A (en) 2013-08-20 2015-08-20 Jx日鉱日石金属株式会社 Surface treated copper foil, laminate using the same, printed wiring board, electronic apparatus and method for manufacturing printed wiring board
JP2018074153A (en) 2015-08-06 2018-05-10 Jx金属株式会社 Carrier-attached copper foil, laminate, and methods for manufacturing printed wiring board and electronic equipment
JP2018172785A (en) 2017-03-31 2018-11-08 Jx金属株式会社 Surface-treated copper foil, surface-treated copper foil with resin layer, copper foil with carrier, laminate, method for producing printed wiring board and method for producing electronic apparatus

Also Published As

Publication number Publication date
JPWO2021193246A1 (en) 2021-09-30
TWI763387B (en) 2022-05-01
WO2021193246A1 (en) 2021-09-30
CN115413301A (en) 2022-11-29
KR20220130189A (en) 2022-09-26
TW202206651A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP7374298B2 (en) Roughened copper foil, copper clad laminates and printed wiring boards
TWI719567B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2022255420A1 (en) Roughened copper foil, copper-clad laminated board, and printed wiring board
WO2016174998A1 (en) Roughened copper foil and printed wiring board
WO2021157363A1 (en) Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
TWI756039B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
TW201942422A (en) Surface-treated copper foil, copper-cladded laminate, and manufacturing method for printed wiring board
TWI808700B (en) Coarse treatment of copper foil, copper foil laminates and printed wiring boards
WO2022255421A1 (en) Roughened copper foil, copper clad laminate, and printed wiring board
TWI808777B (en) Coarse treatment of copper foil, copper foil laminates and printed wiring boards
WO2022209990A1 (en) Roughened copper foil, copper-clad laminate and printed wiring board
WO2023182175A1 (en) Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
WO2022202540A1 (en) Roughened copper foil, copper foil equipped with carrier, copper-cladded laminate board, and printed wiring board
WO2022202541A1 (en) Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board
US20230276579A1 (en) Manufacturing methods for copper-clad laminate and printed wiring board
TW202344716A (en) Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7374298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150