WO2022255421A1 - Roughened copper foil, copper clad laminate, and printed wiring board - Google Patents

Roughened copper foil, copper clad laminate, and printed wiring board Download PDF

Info

Publication number
WO2022255421A1
WO2022255421A1 PCT/JP2022/022387 JP2022022387W WO2022255421A1 WO 2022255421 A1 WO2022255421 A1 WO 2022255421A1 JP 2022022387 W JP2022022387 W JP 2022022387W WO 2022255421 A1 WO2022255421 A1 WO 2022255421A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
roughened
less
cutoff
value
Prior art date
Application number
PCT/JP2022/022387
Other languages
French (fr)
Japanese (ja)
Inventor
翼 加藤
歩 立岡
博鈞 楊
彰太 川口
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2023525898A priority Critical patent/JPWO2022255421A1/ja
Priority to CN202280039573.8A priority patent/CN117441039A/en
Priority to KR1020237043495A priority patent/KR20240017841A/en
Publication of WO2022255421A1 publication Critical patent/WO2022255421A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to roughened copper foils, copper clad laminates and printed wiring boards.
  • copper foil is widely used in the form of copper-clad laminates laminated with insulating resin substrates.
  • the copper foil and the insulating resin base material have high adhesive strength in order to prevent the wiring from being peeled off during the production of the printed wiring board. Therefore, in ordinary copper foils for manufacturing printed wiring boards, the bonding surface of the copper foil is roughened to form unevenness made of fine copper particles, and the unevenness is pressed into the insulating resin base material. Adhesion is improved by exerting an anchor effect.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2018-172785
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2018-172785
  • a surface-treated copper foil having an arithmetic mean roughness Ra of 0.08 ⁇ m or more and 0.20 ⁇ m or less on the roughened layer side surface and a TD (width direction) gloss of the roughened layer side surface of 70% or less. disclosed.
  • a printed wiring board comprises a copper foil processed into a wiring pattern and an insulating base material. losses.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-148011 describes a technique for providing a surface-treated copper foil with low signal transmission loss and a laminated board using the same, and the copper foil surface is improved by surface treatment. It discloses that the skewness Rsk based on JIS B0601-2001 is controlled within a predetermined range of -0.35 or more and 0.53 or less.
  • the present inventors have recently found that the Rdc/Rku, which is the ratio of the cutting level difference Rdc to the kurtosis Rku, and the maximum cross-sectional height Wt on the surface of the roughened copper foil are controlled within a predetermined range. It has been found that a copper-clad laminate or printed wiring board produced by using the compound is excellent in transmission characteristics and circuit linearity, and can achieve high peel strength.
  • an object of the present invention is to provide a roughened copper foil that is excellent in transmission characteristics and circuit linearity and capable of achieving high peel strength when used in copper-clad laminates or printed wiring boards. be.
  • a roughened copper foil having a roughened surface on at least one side In the roughened surface, Rdc/Rku, which is the ratio of the cutting level difference Rdc of the roughness curve to the kurtosis Rku of the roughness curve, is 0.180 ⁇ m or less, and the maximum cross-sectional height Wt of the undulation curve is 2.0 ⁇ m.
  • the Rku is a value measured in accordance with JIS B0601-2013 under the conditions of a magnification of 200, a cutoff wavelength of 0.3 ⁇ m with a cutoff value ⁇ s, and a cutoff wavelength of 5 ⁇ m with a cutoff value ⁇ c
  • the Rdc is measured in accordance with JIS B0601-2013 under the conditions of a magnification of 200, a cutoff wavelength of 0.3 ⁇ m with a cutoff value ⁇ s, and a cutoff wavelength of 5 ⁇ m with a cutoff value ⁇ c.
  • the roughened surface has an average height Rc of roughness curve elements of 0.70 ⁇ m or less, and the Rc is a cutoff wavelength of 0 at a magnification of 200 and a cutoff value ⁇ s in accordance with JIS B0601-2013. .3 ⁇ m and a cutoff wavelength of 5 ⁇ m with a cutoff value ⁇ c.
  • the roughened surface has a cutting level difference Wdc of the undulating curve of 1.20 ⁇ m or more and 3.10 ⁇ m or less, and the Wdc is cut off by a cutoff value ⁇ c at a magnification of 20 times in accordance with JIS B0601-2013.
  • the roughened copper foil according to any one of aspects 1 to 5, which is a value obtained as a difference in cutting level c (c(Wmr1)-c(Wmr2)).
  • the roughened surface has a roughness curve root-mean-square height Rq of 0.290 ⁇ m or less, and the Rq is a cutoff wavelength with a cutoff value ⁇ s at a magnification of 200 in accordance with JIS B0601-2013. 7.
  • FIG. 4 is a diagram for explaining a load curve of a roughness curve determined according to JIS B0601-2013;
  • FIG. 4 is a diagram for explaining a load length ratio Rmr(c) determined according to JIS B0601-2013;
  • FIG. 4 is a diagram for explaining a cutting level difference Rdc determined in compliance with JIS B0601-2013;
  • FIG. 4 is a diagram for explaining that the surface unevenness of the roughening-treated copper foil is composed of roughening particle components and waviness components.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the roughening process copper foil of this invention.
  • the "load curve of the roughness curve” refers to the substantial part that appears when the roughness curve is cut at cutting level c, determined in accordance with JIS B0601-2013, as shown in FIG. is a curve representing the ratio of as a function of c. That is, the load curve of the roughness curve can also be said to be a curve representing the height at which the load length ratio Rmr(c) is from 0% to 100%.
  • the load length ratio Rmr(c) is the ratio of the load length of the roughness curve element at the cutting level c to the evaluation length, determined in accordance with JIS B0601-2013, as shown in FIG. is a parameter that represents
  • cutting level difference Rdc of roughness curve refers to roughness measured in accordance with JIS B0601-2013, as shown in FIG. A parameter that represents the difference (c(Rmr1)-c(Rmr2)) in the cutting level c in the height direction between the two load length ratios Rmr1 and Rmr2 (where Rmr1 ⁇ Rmr2) in the load curve of the curve. . Assume herein that Rdc is calculated by specifying Rmr1 as 20% and Rmr2 as 80%.
  • roughness curve root mean square height Rq means that the reference length measured in accordance with JIS B0601-2013 is Z (x) is a parameter representing the root mean square of (Z(x) represents the height of the roughness curve at an arbitrary position x).
  • the terms "roughness curve kurtosis Rku”, “kurtosis Rku” or “Rku” are dimensionless by the square root mean square height Rq measured in accordance with JIS B0601-2013. It is a parameter representing the mean square of Z(x) in the reference length.
  • Rku means kurtosis, which is a measure of the sharpness of the surface, and represents the sharpness of the height distribution.
  • Rku>3 means that the height distribution is sharp
  • Rku ⁇ 3 means that the height distribution is flat. do.
  • Rdc/Rku is a parameter representing the ratio of the cleavage level difference Rdc to the kurtosis Rku.
  • average height Rc of the roughness curve element refers to the roughness curve element at the reference length measured in accordance with JIS B0601-2013. This parameter represents the average height.
  • Roughness curve element means a set of adjacent peaks and valleys in the roughness curve. A minimum height and a minimum length are specified for the peaks or valleys that constitute the roughness curve element, and the height is 10% or less of the maximum height Rz, or the length is 1% or less of the reference length. Some are considered noise and are part of the valleys or mountains that follow.
  • maximum cross-sectional height Wt of undulation curve refers to the crest height of the undulation curve at the evaluation length measured in accordance with JIS B0601-2013. This parameter represents the sum of the maximum depth and the maximum valley depth.
  • maximum peak height Wp of the undulation curve refers to the peak height of the undulation curve at the reference length measured in accordance with JIS B0601-2013. This parameter represents the maximum value.
  • the "load curve of the undulation curve” is a curve that expresses the ratio of the substantial part that appears when the undulation curve is cut at the cutting level c as a function of c, which is determined in accordance with JIS B0601-2013. is. That is, the load curve of the undulation curve can also be said to be a curve representing the height at which the load length ratio Wmr(c) is from 0% to 100%.
  • the load length ratio Wmr(c) is a parameter representing the ratio of the load length of the undulating curve element at the cut level c to the evaluation length determined in accordance with JIS B0601-2013.
  • cutting level difference Wdc of waviness curve refers to two load lengths in a waviness curve load curve measured in accordance with JIS B0601-2013. This is a parameter representing the difference (c(Wmr1)-c(Wmr2)) in the cutting level c in the height direction between the depth ratios Wmr1 and Wmr2 (where Wmr1 ⁇ Wmr2). Assume herein that Wdc is calculated by specifying Wmr1 as 20% and Wmr2 as 80%.
  • Rdc, Rq, Rku, Rc, Wt, Wp and Wdc can be calculated by measuring a surface profile of a predetermined measurement length on the roughened surface with a commercially available laser microscope.
  • the roughness parameters Rdc, Rq, Rku, and Rc are measured under the conditions of a magnification of 200, a cutoff wavelength of 0.3 ⁇ m with a cutoff value ⁇ s, and a cutoff wavelength of 5 ⁇ m with a cutoff value ⁇ c.
  • the reference length and the evaluation length used for calculating the roughness parameter are set to 5 ⁇ m and 25 ⁇ m, respectively.
  • the waviness parameters Wt, Wp, and Wdc are measured under the conditions of a magnification of 20, a cutoff wavelength of 5 ⁇ m with a cutoff value ⁇ c, and no cutoff with a cutoff value ⁇ f.
  • the reference length and the evaluation length used to calculate the waviness parameter are both the same as the measured length of the roughened surface.
  • the waviness parameter is measured for a region of 643.973 ⁇ m long ⁇ 643.393 ⁇ m wide on the roughened surface. 643.973 ⁇ m in case and 643.393 ⁇ m in lateral direction.
  • the above magnification corresponds to the value obtained by multiplying the magnification of the objective lens by the magnification of the optical zoom.
  • preferable measurement conditions and analysis conditions for the surface profile by the laser microscope will be shown in Examples below.
  • the "electrode surface” of the electrolytic copper foil refers to the surface that was in contact with the cathode when the electrolytic copper foil was manufactured.
  • the "deposition surface" of the electrolytic copper foil refers to the surface on which electrolytic copper is deposited during the production of the electrolytic copper foil, that is, the surface that is not in contact with the cathode.
  • the copper foil of the present invention is a roughened copper foil.
  • This roughened copper foil has a roughened surface on at least one side.
  • Rdc/Rku which is the ratio of the cutting level difference Rdc of the roughness curve to the kurtosis Rku of the roughness curve, is 0.180 ⁇ m or less.
  • the roughened surface has a maximum cross-sectional height Wt of an undulating curve of 2.50 ⁇ m or more and 10.00 ⁇ m or less.
  • a copper clad laminate or a printed wiring board manufactured using the roughened copper foil can achieve transmission It is excellent in characteristics (high frequency characteristics) and circuit linearity, and can achieve high peel strength.
  • the unevenness on the roughened copper foil surface consists of a "roughening particle component” and a “waviness component” having a longer period than the roughening particle component.
  • a copper foil surface with small undulations for example, the surface of a double-sided smooth foil or the electrode surface of an electrolytic copper foil
  • the peel strength between the copper foil and the substrate is generally low.
  • the present inventors studied the effects of roughened particles and undulations on the copper foil surface on transmission characteristics, circuit linearity, and peel strength. As a result, it was found that, contrary to expectations, the waviness component of the copper foil had little effect on the transmission characteristics, and that the size of the roughening particles mainly affected the transmission characteristics. Then, the present inventors made the bumps (roughened particles) finer in order to improve the transmission characteristics, and compensated for the insufficient adhesion by undulating the copper foil, which has a small effect on the transmission characteristics. , it was found that both excellent transmission characteristics and adhesion reliability due to high peel strength can be achieved.
  • Roughened particle components and waviness components on the copper foil surface that affect transmission characteristics, circuit linearity, or peel strength can be distinguished by properly using the measurement magnification in a laser microscope and the cutoff values ⁇ s, ⁇ c, and ⁇ f. .
  • the roughened surface by measuring the roughened surface at a high magnification of 200 times, it is possible to accurately evaluate the fine irregularities of the roughened surface that affect the transmission characteristics.
  • the influence of the waviness component can be reduced.
  • a cut roughness parameter can be calculated.
  • the roughness parameters in the present invention are parameters that accurately reflect the roughened particle component on the copper foil surface.
  • Rdc, Rku, Rdc/Rku, Rc and Rq are parameters that accurately reflect the roughened particle component on the copper foil surface.
  • the roughened surface can be evaluated accurately.
  • by measuring the roughened surface at a low magnification of 20 times it is possible to extensively evaluate the height (undulation) of the entire roughened surface that affects circuit linearity and adhesion reliability. can.
  • the undulation curve obtained by measuring the roughened surface under the conditions where the cutoff wavelength is 5 ⁇ m with the cutoff value ⁇ c and the cutoff value ⁇ f is not performed the effect of the roughened particle component is cut. undulation parameters can be calculated.
  • the waviness parameters in the present invention are parameters that adequately reflect waviness components on the copper foil surface, and by using these indices, circuit linearity and peel strength can be accurately evaluated. can do.
  • the roughened surface of the roughened copper foil has a maximum cross-sectional height Wt of the undulating curve of 2.50 ⁇ m or more and 10.00 ⁇ m or less, preferably 2.90 ⁇ m or more and 10.00 ⁇ m or less, more preferably 3.10 ⁇ m or more. It is 9.00 ⁇ m or less, more preferably 3.30 ⁇ m or more and 7.00 ⁇ m or less.
  • Wt is within the above range, excellent circuit linearity and high peel strength can be achieved in a well-balanced manner while ensuring excellent transmission characteristics.
  • Rdc/Rku of the roughened surface of the roughened copper foil is 0.180 ⁇ m or less, preferably 0.015 ⁇ m or more and 0.150 ⁇ m or less, more preferably 0.030 ⁇ m or more and 0.110 ⁇ m or less, and still more preferably 0 0.045 ⁇ m or more and 0.080 ⁇ m or less.
  • Rdc/Rku is within the above range, excellent transmission characteristics can be achieved while maintaining excellent circuit linearity and high peel strength.
  • the roughened surface of the roughened copper foil preferably has a roughness curve cutting level difference Rdc of 0.45 ⁇ m or less, more preferably 0.04 ⁇ m or more and 0.40 ⁇ m or less, and still more preferably 0.08 ⁇ m or more. It is 0.35 ⁇ m or less, particularly preferably 0.12 ⁇ m or more and 0.30 ⁇ m or less.
  • Rdc is within the above range, it becomes easier to control Rdc/Rku within the above range, and further excellent transmission characteristics can be achieved.
  • the roughened surface of the roughened copper foil preferably has a roughness curve kurtosis Rku of 1.30 or more and 8.00 or less, more preferably 1.50 or more and 5.50 or less, and still more preferably 2.50 or more. 00 or more and 4.50 or less, particularly preferably 2.50 or more and 3.20 or less.
  • Rku is within the above range, it becomes easier to control Rdc/Rku within the above range, and further excellent transmission characteristics can be achieved.
  • the roughened surface of the roughened copper foil preferably has a peak height Wp of 1.00 ⁇ m or more and 6.00 ⁇ m or less, more preferably 1.20 ⁇ m or more and 5.00 ⁇ m or less, and still more preferably 1 .30 ⁇ m or more and 4.30 ⁇ m or less, particularly preferably 1.40 ⁇ m or more and 3.70 ⁇ m or less.
  • Wp is within the above range, excellent circuit linearity and high peel strength can be achieved in a better balance while ensuring excellent transmission characteristics.
  • the roughened surface of the roughened copper foil preferably has an average height Rc of roughness curve elements of 0.70 ⁇ m or less, more preferably 0.06 ⁇ m or more and 0.60 ⁇ m or less, and still more preferably 0.12 ⁇ m. 0.50 ⁇ m or less, particularly preferably 0.18 ⁇ m or more and 0.50 ⁇ m or less.
  • Rc is within the above range, even better transmission characteristics can be achieved while maintaining excellent circuit linearity and high peel strength.
  • the roughened surface of the roughened copper foil preferably has a cutting level difference Wdc of the undulating curve of 1.20 ⁇ m or more and 3.10 ⁇ m or less, more preferably 1.20 ⁇ m or more and 2.70 ⁇ m or less, still more preferably 1 .30 ⁇ m or more and 2.30 ⁇ m or less, particularly preferably 1.60 ⁇ m or more and 2.00 ⁇ m or less.
  • Wdc is within the above range, it is possible to achieve excellent circuit linearity and high peel strength in a well-balanced manner while ensuring excellent transmission characteristics.
  • the roughened surface of the roughened copper foil preferably has a roughness curve with a root-mean-square height Rq of 0.290 ⁇ m or less, more preferably 0.030 ⁇ m or more and 0.260 ⁇ m or less, still more preferably 0.290 ⁇ m or less. 060 ⁇ m or more and 0.220 ⁇ m or less, particularly preferably 0.090 ⁇ m or more and 0.200 ⁇ m or less.
  • Rq is within the above range, it is possible to achieve even better transmission characteristics while maintaining excellent circuit linearity and high peel strength.
  • the thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 ⁇ m or more and 210 ⁇ m or less, more preferably 0.3 ⁇ m or more and 105 ⁇ m or less, still more preferably 7 ⁇ m or more and 70 ⁇ m or less, and particularly preferably 9 ⁇ m or more and 35 ⁇ m or less.
  • the roughened copper foil of the present invention is not limited to the ordinary copper foil whose surface has been roughened, but the copper foil surface of the carrier-attached copper foil has been roughened or finely roughened. can be anything.
  • the roughened copper foil of the present invention is obtained by subjecting a copper foil surface having predetermined undulations (for example, a deposition surface of an electrolytic copper foil) to a roughening treatment under desired low-roughening conditions. It can be produced preferably by carrying out to form fine roughened particles. Therefore, according to a preferred aspect of the present invention, the roughened copper foil is an electrolytic copper foil, and the roughened surface is present on the deposition surface side of the electrolytic copper foil.
  • the roughened copper foil may have roughened surfaces on both sides, or may have a roughened surface only on one side.
  • the roughened surface is typically provided with a plurality of roughened particles, and each of these roughened particles preferably consists of copper particles.
  • the copper particles may consist of metallic copper, or may consist of a copper alloy.
  • the roughening treatment for forming the roughened surface can be preferably carried out by forming roughening particles with copper or a copper alloy on the copper foil.
  • the copper foil before the roughening treatment may be a non-roughened copper foil or a pre-roughened copper foil.
  • the surface of the copper foil to be roughened preferably has a ten-point average roughness Rz measured in accordance with JIS B0601-1994 of 1.30 ⁇ m or more and 10.00 ⁇ m or less, more preferably It is 1.50 ⁇ m or more and 8.00 ⁇ m or less. Within the above range, it becomes easier to impart the surface profile required for the roughened copper foil of the present invention to the roughened surface.
  • the roughening treatment is performed, for example, in a copper sulfate solution containing a copper concentration of 7 g/L or more and 17 g/L or less and a sulfuric acid concentration of 50 g/L or more and 200 g/L or less at a temperature of 20 ° C. or more and 40 ° C. or less at 10 A / dm 2 or more and 50 A. /dm 2 or less.
  • This electrolytic deposition is preferably carried out for 0.5 to 30 seconds, more preferably 1 to 30 seconds, and even more preferably 1 to 3 seconds.
  • the roughened copper foil according to the present invention is not limited to the method described above, and may be manufactured by any method.
  • R L L/D C (Wherein, R L is the liquid resistance index (mm L/mol), L is the distance between the electrodes (anode-cathode) (mm), and D C is the charge carrier density (mol/L).)
  • the liquid resistance index RL defined by is preferably 9.0 mm L / mol or more and 20.0 mm L / mol or less, and 11.0 mm L / mol or more and 17.0 mm L / mol or less is more preferred.
  • the bumps can be preferably formed in a shape suitable for imparting the surface profile required for the roughened copper foil of the present invention.
  • the charge carrier density Dc can be calculated by totaling the product of each ion concentration and valence for all ions present in the plating solution.
  • the liquid resistance index is an index that correlates with the resistance of the solution.
  • the roughened copper foil may be subjected to antirust treatment and may have an antirust treatment layer formed thereon.
  • the antirust treatment preferably includes plating with zinc.
  • the plating treatment using zinc may be either zinc plating treatment or zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably zinc-nickel alloy treatment.
  • the zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, Co and Mo.
  • the antirust treatment layer further contains Mo in addition to Ni and Zn, so that the treated surface of the roughened copper foil has excellent adhesion to resin, chemical resistance, and heat resistance, and etching residue is removed. It becomes difficult to remain.
  • Ni/(Zn+Ni) which is the ratio of the Ni deposition amount to the total amount of the Zn deposition amount and the Ni deposition amount, is preferably 0.3 or more and 0.9 or less, more preferably It is 0.4 or more and 0.9 or less, more preferably 0.4 or more and 0.8 or less.
  • the total amount of Zn and Ni deposited in the zinc-nickel alloy plating is preferably 8 mg/m 2 or more and 160 mg/m 2 or less, more preferably 13 mg/m 2 or more and 130 mg/m 2 or less, and still more preferably 19 mg/m 2 . 80 mg/ m2 or less.
  • Ni/(Zn+Ni+Mo) which is the ratio of the Ni deposition amount to the total amount of the Zn deposition amount, the Ni deposition amount and the Mo deposition amount, is 0.20 or more and 0.20 to 0.20. It is preferably 80 or less, more preferably 0.25 or more and 0.75 or less, still more preferably 0.30 or more and 0.65 or less.
  • the total deposition amount of Zn, Ni and Mo in the zinc-nickel-molybdenum alloy plating is preferably 10 mg/m 2 or more and 200 mg/m 2 or less, more preferably 15 mg/m 2 or more and 150 mg/m 2 or less, further preferably 20 mg/m 2 or more and 90 mg/m 2 or less.
  • the amounts of Zn, Ni, and Mo deposited were obtained by dissolving a predetermined area (for example, 25 cm 2 ) on the roughened surface of the roughened copper foil with acid, and measuring the concentration of each element in the resulting solution by ICP emission spectrometry. It can be calculated by analyzing based on the law.
  • the antirust treatment preferably further includes chromate treatment, and this chromate treatment is more preferably performed on the surface of the zinc-containing plating after the plating treatment using zinc. By doing so, the rust resistance can be further improved.
  • a particularly preferred antirust treatment is a combination of zinc-nickel alloy plating treatment (or zinc-nickel-molybdenum alloy plating treatment) and subsequent chromate treatment.
  • the surface of the roughened copper foil may be treated with a silane coupling agent to form a silane coupling agent-treated layer.
  • a silane coupling agent-treated layer can be formed by appropriately diluting a silane coupling agent, coating it, and drying it.
  • silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc.
  • epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)but
  • amino-functional silane coupling agents or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane or olefin-functional silane coupling agents such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacrylic acrylic functional silane coupling agents such as roxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, or imidazole functional silane coupling agents such as imidazole silane, or triazine functional silane coupling agents such as triazine silane, and the like. is mentioned.
  • the roughened copper foil preferably has an anticorrosive layer and/or a silane coupling agent-treated layer on the roughened surface, more preferably an anticorrosive layer and a silane coupling agent-treated layer.
  • an anticorrosive layer and/or a silane coupling agent-treated layer are formed on the roughened surface, more preferably an anticorrosive layer and a silane coupling agent-treated layer.
  • each numerical value of the roughness parameter and waviness parameter in this specification is It means a numerical value obtained by measuring the surface of the roughened copper foil after the agent-treated layer is formed.
  • the anticorrosion treatment layer and the silane coupling agent treatment layer may be formed not only on the roughened surface side of the roughened copper foil, but also on the side where the roughened surface is not formed.
  • the roughened copper foil of the present invention is preferably used for producing a copper-clad laminate for printed wiring boards. That is, according to a preferred aspect of the present invention, there is provided a copper-clad laminate comprising the roughened copper foil.
  • This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil.
  • the roughened copper foil may be provided on one side of the resin layer, or may be provided on both sides.
  • the resin layer comprises resin, preferably insulating resin.
  • the resin layer is preferably prepreg and/or resin sheet.
  • Prepreg is a general term for composite materials in which synthetic resin is impregnated into a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper.
  • insulating resins include epoxy resins, cyanate resins, bismaleimide triazine resins (BT resins), polyphenylene ether resins, and phenol resins.
  • the insulating resin forming the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins.
  • the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation.
  • the thickness of the resin layer is not particularly limited, it is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 400 ⁇ m or less, and still more preferably 3 ⁇ m or more and 200 ⁇ m or less.
  • the resin layer may be composed of multiple layers.
  • a resin layer such as a prepreg and/or a resin sheet may be provided on the roughened copper foil in advance via a primer resin layer that is applied to the surface of the copper foil.
  • the roughened copper foil of the present invention is preferably used for manufacturing printed wiring boards. That is, according to a preferred aspect of the present invention, there is provided a printed wiring board comprising the roughened copper foil.
  • the printed wiring board according to this aspect includes a layer structure in which a resin layer and a copper layer are laminated.
  • the copper layer is a layer derived from the roughened copper foil of the present invention.
  • the resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board.
  • printed wiring boards include a single-sided or double-sided printed wiring board formed by bonding the roughened copper foil of the present invention to one or both sides of a prepreg to form a cured laminate, and then forming a circuit on the printed wiring board.
  • a multilayer printed wiring board etc. are mentioned.
  • other specific examples include flexible printed wiring boards, COF, TAB tapes, etc., in which the roughened copper foil of the present invention is formed on a resin film to form a circuit.
  • a resin-coated copper foil (RCC) is formed by applying the above resin layer to the roughened copper foil of the present invention, and the resin layer is used as an insulating adhesive layer and laminated on the above printed circuit board.
  • the roughened copper foil is used as all or part of the wiring layer, and the circuit is formed by the modified semi-additive method (MSAP), the subtractive method, etc., and the roughened copper foil is removed.
  • MSAP modified semi-additive method
  • Examples 1-11 The roughened copper foil of the present invention was manufactured as follows.
  • first roughening treatment For Examples 1 to 8, the following roughening treatment (first roughening treatment) was performed. This roughening treatment is performed in a copper electrolytic solution for roughening treatment (copper concentration: 7 g / L or more and 17 g / L or less, sulfuric acid concentration: 50 g / L or more and 200 g / L or less, liquid temperature: 30 ° C.) for each example Electrolysis was carried out under the conditions of liquid resistance index, current density and time shown in Table 1, followed by washing with water.
  • the first roughening treatment is performed in a copper electrolytic solution for roughening treatment (copper concentration: 7 g / L or more and 17 g / L or less, sulfuric acid concentration: 50 g / L or more and 200 g / L or less, liquid temperature: 30 ° C.)
  • Table 1 Electrolysis was carried out under the liquid resistance index, current density and time conditions shown in , followed by washing with water.
  • the second roughening treatment is performed by electrolysis under the conditions of liquid resistance index, current density and time shown in Table 1 in a copper electrolytic solution for roughening treatment having the same composition as the first roughening treatment, and washing with water. gone.
  • the third roughening treatment is performed in a copper electrolytic solution for roughening treatment (copper concentration: 65 g / L or more and 80 g / L or less, sulfuric acid concentration: 50 g / L or more and 200 g / L or less, liquid temperature: 45 ° C.)
  • Table 1 Electrolysis was carried out under the liquid resistance index, current density and time conditions shown in , followed by washing with water.
  • the antirust treatment shown in Table 1 was performed on the electrolytic copper foil after the roughening treatment.
  • a pyrophosphate bath was used on the roughened surface of the electrolytic copper foil, with a potassium pyrophosphate concentration of 100 g / L, a zinc concentration of 1 g / L, nickel Rust prevention treatment A (zinc-nickel-molybdenum system rust prevention treatment) was performed at a concentration of 2 g/L, a molybdenum concentration of 1 g/L, a liquid temperature of 40°C, and a current density of 0.5 A/dm 2 .
  • a pyrophosphate bath was applied to the surface of the electrodeposited copper foil that had not been roughened, and the concentration of potassium pyrophosphate was 80 g/L, the concentration of zinc was 0.2 g/L, the concentration of nickel was 2 g/L, the liquid temperature was 40°C.
  • Antirust treatment B (zinc-nickel antirust treatment) was performed at a current density of 0.5 A/dm 2 .
  • both surfaces of the electrolytic copper foil were subjected to antirust treatment B under the same conditions as the surface of the electrolytic copper foil not subjected to roughening treatment in Examples 1 and 5 to 8. gone.
  • Chromate treatment was performed on both surfaces of the antirust-treated electrolytic copper foil to form a chromate layer on the antirust treatment layer. This chromate treatment was performed under the conditions of a chromic acid concentration of 1 g/L, a pH of 11, a liquid temperature of 25° C. and a current density of 1 A/dm 2 .
  • Silane Coupling Agent Treatment The chromate-treated copper foil was washed with water and then immediately treated with a silane coupling agent to adsorb the silane coupling agent onto the chromate layer on the roughened surface.
  • This silane coupling agent treatment was carried out by spraying a solution of a silane coupling agent using pure water as a solvent onto the roughened surface by showering for adsorption treatment.
  • the silane coupling agent 3-aminopropyltrimethoxysilane was used in Examples 1, 3, 4 and 6-8, and 3-glycidoxypropyltrimethoxysilane was used in Examples 2, 5 and 9-11.
  • the concentration of the silane coupling agent was 3 g/L in each case. After adsorption of the silane coupling agent, water was finally evaporated by an electric heater to obtain a roughened copper foil with a predetermined thickness.
  • the obtained surface profile of the roughened surface was analyzed according to the conditions shown in Tables 2 and 3, and Rdc, Rku, Rc, Rq, Wdc, Wt and Wp were calculated. Also, Rdc/Rku was calculated based on the obtained Rdc and Rku values. The results were as shown in Table 4.
  • ⁇ Preparation of copper-clad laminate Two prepregs (thickness: 100 ⁇ m) mainly composed of polyphenylene ether, triallyl isocyanurate, and bismaleimide resin were prepared and stacked as insulating substrates.
  • the manufactured surface-treated copper foil was laminated on the stacked prepreg so that the roughened surface was in contact with the prepreg, and pressed at 32 kgf/cm 2 and 205° C. for 120 minutes to obtain a 34 cm ⁇ 34 cm copper clad.
  • a laminate was produced.
  • Circuit linearity was evaluated as follows. First, for Examples 4 to 7, etching was performed on the copper-foil-side surface of the above-described copper-clad laminate until the thickness of the copper foil reached 12 ⁇ m. For Examples 1 to 11, a dry film was attached to the surface of the copper-clad laminate on the copper foil side, followed by exposure and development to form an etching resist. By treating with a copper chloride etchant, copper was dissolved and removed from between the resists to form linear circuits each having a width of 300 ⁇ m, a height of 12 ⁇ m, and a length of 10 cm or 15 cm (six in total).
  • the linear circuit thus obtained was observed with an optical microscope, and the circuit width was measured by randomly selecting 30 points per circuit. An average value and a standard deviation were calculated for the obtained 30 sets of circuit width data, and the coefficient of variation (%) for each circuit was calculated by dividing the standard deviation by the average value. The average value of the variation coefficients in the six circuits was obtained and used as the circuit width variation coefficient in each example. The quality of the obtained circuit width variation coefficient was evaluated according to the following criteria. The results were as shown in Table 4. ⁇ Circuit Width Variation Coefficient Evaluation Criteria> -Good: Circuit width variation coefficient is 1.50% or less -Bad: Circuit width variation coefficient is over 1.50%
  • ⁇ Peel strength between copper foil and substrate> In order to evaluate the adhesion between the roughened copper foil and the insulating substrate, the normal peel strength was measured as follows. First, for Examples 4 to 7, etching was performed on the copper-foil-side surface of the above-described copper-clad laminate until the thickness of the copper foil reached 12 ⁇ m. For Examples 1 to 11, circuit formation was performed on the copper-clad laminate by an etching method to produce a test substrate having a straight circuit with a width of 3 mm. The linear circuit thus obtained was peeled off from the insulating substrate according to JIS C 5016-1994 A method (90° peeling), and the normal peel strength (kgf/cm) was measured.
  • a base material for high frequency (MEGTRON6N manufactured by Panasonic) was prepared as an insulating resin base material.
  • a roughened copper foil is laminated on both sides of this insulating resin substrate so that the roughened surface is in contact with the insulating resin substrate, and a vacuum press is used at a temperature of 190 ° C. for a pressing time of 120 minutes. to obtain a copper-clad laminate having an insulation thickness of 136 ⁇ m.
  • the copper-clad laminate was subjected to an etching process to obtain a transmission loss measuring board on which microstrip lines were formed so as to have a characteristic impedance of 50 ⁇ .
  • the transmission loss (dB/cm) at 28 GHz was measured on the obtained transmission loss measuring board using a network analyzer (N5225B manufactured by Keysight Technologies). The quality of the obtained transmission loss was evaluated according to the following criteria. The results were as shown in Table 4. ⁇ Transmission loss evaluation criteria> -Good: Transmission loss is -0.33 dB/cm or more -Bad: Transmission loss is less than -0.33 dB/cm

Abstract

Provided is a roughened copper foil having excellent transmission characteristics and circuit linearity and capable of achieving high peel strength when used in a copper clad laminate or a printed wiring board. This roughened copper foil has a roughened surface on at least one side. The roughened surface has a value Rdc/Rku, which is the ratio of the cut level difference Rdc of the roughness curve to the kurtosis Rku of the roughness curve, of 0.180 μm or less, and has a value of the maximum cross-sectional height Wt of the undulation curve of 2.50 μm or more and 10.00 μm or less. Rku and Wt are values measured in accordance with JIS B0601-2013, and Rdc is a value obtained as the difference in cut level c in the height direction between a load length ratio of 20% and a load length ratio of 80% in accordance with JIS B0601-2013.

Description

粗化処理銅箔、銅張積層板及びプリント配線板Roughened copper foil, copper clad laminate and printed wiring board
 本発明は、粗化処理銅箔、銅張積層板及びプリント配線板に関する。 The present invention relates to roughened copper foils, copper clad laminates and printed wiring boards.
 プリント配線板の製造工程において、銅箔は絶縁樹脂基材と張り合わされた銅張積層板の形態で広く使用されている。この点、プリント配線板製造時に配線の剥がれが生じるのを防ぐために、銅箔と絶縁樹脂基材とは高い密着力を有することが望まれる。そこで、通常のプリント配線板製造用銅箔では、銅箔の張り合わせ面に粗化処理を施して微細な銅粒子からなる凹凸を形成し、この凹凸をプレス加工により絶縁樹脂基材の内部に食い込ませてアンカー効果を発揮させることで、密着性を向上している。 In the manufacturing process of printed wiring boards, copper foil is widely used in the form of copper-clad laminates laminated with insulating resin substrates. In this regard, it is desired that the copper foil and the insulating resin base material have high adhesive strength in order to prevent the wiring from being peeled off during the production of the printed wiring board. Therefore, in ordinary copper foils for manufacturing printed wiring boards, the bonding surface of the copper foil is roughened to form unevenness made of fine copper particles, and the unevenness is pressed into the insulating resin base material. Adhesion is improved by exerting an anchor effect.
 このような粗化処理を行った銅箔として、例えば、特許文献1(特開2018-172785号公報)には、銅箔と、銅箔の少なくとも一方の表面に粗化処理層を有し、粗化処理層側表面の算術平均粗さRaが0.08μm以上0.20μm以下であり、粗化処理層側表面のTD(幅方向)の光沢度が70%以下である表面処理銅箔が開示されている。こうした表面処理銅箔によれば、銅箔表面に設けられた粗化粒子の脱落が良好に抑制され、かつ、絶縁基板との張り合わせ時のシワ及びスジの発生が良好に抑制されるとされている。 As a copper foil that has undergone such a roughening treatment, for example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2018-172785) has a copper foil and a roughening treatment layer on at least one surface of the copper foil, A surface-treated copper foil having an arithmetic mean roughness Ra of 0.08 μm or more and 0.20 μm or less on the roughened layer side surface and a TD (width direction) gloss of the roughened layer side surface of 70% or less. disclosed. According to such a surface-treated copper foil, it is said that detachment of roughening particles provided on the surface of the copper foil is well suppressed, and the occurrence of wrinkles and streaks during lamination with an insulating substrate is well suppressed. there is
 ところで、近年の携帯用電子機器等の高機能化に伴い、大容量データの高速処理をすべくデジタルかアナログかを問わず信号の高周波化が進んでおり、高周波用途に適したプリント配線板が求められている。このような高周波用プリント配線板には、高周波信号を劣化させずに伝送可能とするために、伝送損失の低減が望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁基材とを備えたものであるが、伝送損失における主な損失としては、銅箔に起因する導体損失と、絶縁基材に起因する誘電損失が挙げられる。 By the way, in recent years, as the functions of portable electronic devices have become more sophisticated, the frequency of signals, whether digital or analog, has been increasing in order to process large amounts of data at high speed. It has been demanded. For such high-frequency printed wiring boards, reduction in transmission loss is desired in order to enable transmission of high-frequency signals without deterioration. A printed wiring board comprises a copper foil processed into a wiring pattern and an insulating base material. losses.
 この点、伝送損失の低減を図った粗化処理銅箔が提案されている。例えば、特許文献2(特開2015-148011号公報)には、信号の伝送損失が小さい表面処理銅箔及びそれを用いた積層板を提供すること等を目的として、表面処理によって銅箔表面のJIS B0601-2001に基づくスキューネスRskを-0.35以上0.53以下という所定範囲に制御すること等が開示されている。 In this regard, a roughened copper foil has been proposed to reduce transmission loss. For example, Patent Document 2 (Japanese Patent Application Laid-Open No. 2015-148011) describes a technique for providing a surface-treated copper foil with low signal transmission loss and a laminated board using the same, and the copper foil surface is improved by surface treatment. It discloses that the skewness Rsk based on JIS B0601-2001 is controlled within a predetermined range of -0.35 or more and 0.53 or less.
特開2018-172785号公報JP 2018-172785 A 特開2015-148011号公報JP 2015-148011 A
 前述のように、近年、プリント配線板の伝送特性(高周波特性)を向上することが求められている。こうした要求に対応すべく、銅箔の絶縁樹脂基材との接合面においてより微細な粗化処理が試みられている。すなわち、伝送損失を増大させる要因となる銅箔表面の凹凸を低減すべく、うねりの小さい銅箔表面(例えば両面平滑箔の表面や電解銅箔の電極面)に対して微細粗化処理を行うことが考えられる。また、うねりの小さい粗化処理銅箔を用いることで、回路形成時における配線パターンの直線性(以下、回路直線性という)を向上させることが考えられる。しかしながら、このような粗化処理銅箔を用いて銅張積層板の加工ないしプリント配線板の製造を行った場合、概して銅箔-基材間の剥離強度が低く、密着信頼性に劣るという問題が生じうる。 As mentioned above, in recent years, there has been a demand to improve the transmission characteristics (high frequency characteristics) of printed wiring boards. In order to meet these demands, attempts have been made to finely roughen the bonding surface of the copper foil with the insulating resin substrate. That is, in order to reduce the unevenness of the copper foil surface, which is a factor that increases the transmission loss, the surface of the copper foil with small undulations (for example, the surface of the double-sided smooth foil and the electrode surface of the electrolytic copper foil) is subjected to a fine roughening treatment. can be considered. In addition, it is conceivable that the linearity of the wiring pattern (hereinafter referred to as circuit linearity) at the time of circuit formation is improved by using a roughened copper foil with small undulations. However, when a copper-clad laminate is processed or a printed wiring board is manufactured using such a roughened copper foil, the peel strength between the copper foil and the substrate is generally low, resulting in poor adhesion reliability. can occur.
 本発明者らは、今般、粗化処理銅箔の表面において、クルトシスRkuに対する切断レベル差Rdcの比であるRdc/Rku、及び最大断面高さWtを所定の範囲に制御することにより、これを用いて製造された銅張積層板ないしプリント配線板において、伝送特性及び回路直線性に優れるとともに、高い剥離強度を実現できるとの知見を得た。 The present inventors have recently found that the Rdc/Rku, which is the ratio of the cutting level difference Rdc to the kurtosis Rku, and the maximum cross-sectional height Wt on the surface of the roughened copper foil are controlled within a predetermined range. It has been found that a copper-clad laminate or printed wiring board produced by using the compound is excellent in transmission characteristics and circuit linearity, and can achieve high peel strength.
 したがって、本発明の目的は、銅張積層板ないしプリント配線板に用いられた場合に、伝送特性及び回路直線性に優れるとともに、高い剥離強度を実現可能な粗化処理銅箔を提供することにある。 Accordingly, an object of the present invention is to provide a roughened copper foil that is excellent in transmission characteristics and circuit linearity and capable of achieving high peel strength when used in copper-clad laminates or printed wiring boards. be.
 本発明によれば、以下の態様が提供される。
[態様1]
 少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
 前記粗化処理面は、粗さ曲線のクルトシスRkuに対する粗さ曲線の切断レベル差Rdcの比であるRdc/Rkuが0.180μm以下であり、かつ、うねり曲線の最大断面高さWtが2.50μm以上10.00μm以下であり、
 前記Rkuは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される値であり、
 前記Rdcは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される粗さ曲線における、負荷長さ率(Rmr1)20%と負荷長さ率(Rmr2)80%との間における高さ方向の切断レベルcの差(c(Rmr1)-c(Rmr2))として得られる値であり、
 前記Wtは、JIS B0601-2013に準拠して、倍率20倍、カットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定される値である、粗化処理銅箔。
[態様2]
 前記粗化処理面は、前記最大断面高さWtが2.90μm以上10.00μm以下である、態様1に記載の粗化処理銅箔。
[態様3]
 前記粗化処理面は、前記切断レベル差Rdcが0.45μm以下である、態様1又は2に記載の粗化処理銅箔。
[態様4]
 前記粗化処理面は、うねり曲線の最大山高さWpが1.00μm以上6.00μm以下であり、前記Wpは、JIS B0601-2013に準拠して、倍率20倍、カットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定される値である、態様1~3のいずれか一つに記載の粗化処理銅箔。
[態様5]
 前記粗化処理面は、粗さ曲線要素の平均高さRcが0.70μm以下であり、前記Rcは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される値である、態様1~4のいずれか一つに記載の粗化処理銅箔。
[態様6]
 前記粗化処理面は、うねり曲線の切断レベル差Wdcが1.20μm以上3.10μm以下であり、前記Wdcは、JIS B0601-2013に準拠して、倍率20倍、カットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定されるうねり曲線における、負荷長さ率(Wmr1)20%と負荷長さ率(Wmr2)80%との間における高さ方向の切断レベルcの差(c(Wmr1)-c(Wmr2))として得られる値である、態様1~5のいずれか一つに記載の粗化処理銅箔。
[態様7]
 前記粗化処理面は、粗さ曲線の二乗平均平方根高さRqが0.290μm以下であり、前記Rqは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される値である、態様1~6のいずれか一つに記載の粗化処理銅箔。
[態様8]
 前記粗化処理面は、前記クルトシスRkuが1.30以上8.00以下である、態様1~7のいずれか一つに記載の粗化処理銅箔。
[態様9]
 前記粗化処理面に防錆処理層及び/又はシランカップリング剤処理層を備える、態様1~8のいずれか一つに記載の粗化処理銅箔。
[態様10]
 前記粗化処理銅箔が電解銅箔であり、前記粗化処理面が電解銅箔の析出面側に存在する、態様1~9のいずれか一つに記載の粗化処理銅箔。
[態様11]
 態様1~10のいずれか一つに記載の粗化処理銅箔を備えた、銅張積層板。
[態様12]
 態様1~10のいずれか一つに記載の粗化処理銅箔を備えた、プリント配線板。
According to the present invention, the following aspects are provided.
[Aspect 1]
A roughened copper foil having a roughened surface on at least one side,
In the roughened surface, Rdc/Rku, which is the ratio of the cutting level difference Rdc of the roughness curve to the kurtosis Rku of the roughness curve, is 0.180 μm or less, and the maximum cross-sectional height Wt of the undulation curve is 2.0 μm. 50 μm or more and 10.00 μm or less,
The Rku is a value measured in accordance with JIS B0601-2013 under the conditions of a magnification of 200, a cutoff wavelength of 0.3 μm with a cutoff value λs, and a cutoff wavelength of 5 μm with a cutoff value λc,
The Rdc is measured in accordance with JIS B0601-2013 under the conditions of a magnification of 200, a cutoff wavelength of 0.3 μm with a cutoff value λs, and a cutoff wavelength of 5 μm with a cutoff value λc. is the value obtained as the difference (c(Rmr1)-c(Rmr2)) in the cutting level c in the height direction between the load length ratio (Rmr1) of 20% and the load length ratio (Rmr2) of 80%;
The Wt is a value measured in accordance with JIS B0601-2013 under the conditions of a magnification of 20 times, a cutoff wavelength of 5 μm with a cutoff value λc, and no cutoff with a cutoff value λf. Copper foil.
[Aspect 2]
The roughened copper foil according to aspect 1, wherein the roughened surface has a maximum cross-sectional height Wt of 2.90 μm or more and 10.00 μm or less.
[Aspect 3]
The roughened copper foil according to aspect 1 or 2, wherein the roughened surface has a cutting level difference Rdc of 0.45 μm or less.
[Aspect 4]
The roughened surface has a maximum peak height Wp of an undulating curve of 1.00 μm or more and 6.00 μm or less, and the Wp is cut off by a cutoff value λc at a magnification of 20 times in accordance with JIS B0601-2013. The roughened copper foil according to any one of aspects 1 to 3, which is a value measured under conditions in which a wavelength of 5 μm and cutoff with a cutoff value λf are not performed.
[Aspect 5]
The roughened surface has an average height Rc of roughness curve elements of 0.70 μm or less, and the Rc is a cutoff wavelength of 0 at a magnification of 200 and a cutoff value λs in accordance with JIS B0601-2013. .3 μm and a cutoff wavelength of 5 μm with a cutoff value λc.
[Aspect 6]
The roughened surface has a cutting level difference Wdc of the undulating curve of 1.20 μm or more and 3.10 μm or less, and the Wdc is cut off by a cutoff value λc at a magnification of 20 times in accordance with JIS B0601-2013. Height direction between load length ratio (Wmr1) 20% and load length ratio (Wmr2) 80% in the undulation curve measured under the condition that the wavelength is 5 μm and the cutoff value λf is not cut off. The roughened copper foil according to any one of aspects 1 to 5, which is a value obtained as a difference in cutting level c (c(Wmr1)-c(Wmr2)).
[Aspect 7]
The roughened surface has a roughness curve root-mean-square height Rq of 0.290 μm or less, and the Rq is a cutoff wavelength with a cutoff value λs at a magnification of 200 in accordance with JIS B0601-2013. 7. The roughened copper foil according to any one of aspects 1 to 6, which is a value measured under the conditions of 0.3 μm and a cutoff wavelength of 5 μm with a cutoff value λc.
[Aspect 8]
The roughened copper foil according to any one of modes 1 to 7, wherein the roughened surface has a kurtosis Rku of 1.30 or more and 8.00 or less.
[Aspect 9]
The roughened copper foil according to any one of aspects 1 to 8, wherein the roughened surface is provided with an anticorrosive layer and/or a silane coupling agent-treated layer.
[Aspect 10]
The roughened copper foil according to any one of aspects 1 to 9, wherein the roughened copper foil is an electrolytic copper foil, and the roughened surface is present on the deposition surface side of the electrolytic copper foil.
[Aspect 11]
A copper clad laminate comprising the roughened copper foil according to any one of aspects 1 to 10.
[Aspect 12]
A printed wiring board comprising the roughened copper foil according to any one of aspects 1 to 10.
JIS B0601-2013に準拠して決定される粗さ曲線の負荷曲線を説明するための図である。FIG. 4 is a diagram for explaining a load curve of a roughness curve determined according to JIS B0601-2013; JIS B0601-2013に準拠して決定される負荷長さ率Rmr(c)を説明するための図である。FIG. 4 is a diagram for explaining a load length ratio Rmr(c) determined according to JIS B0601-2013; JIS B0601-2013に準拠して決定される切断レベル差Rdcを説明するための図である。FIG. 4 is a diagram for explaining a cutting level difference Rdc determined in compliance with JIS B0601-2013; 粗化処理銅箔の表面凹凸が、粗化粒子成分とうねり成分とからなることを説明するための図である。FIG. 4 is a diagram for explaining that the surface unevenness of the roughening-treated copper foil is composed of roughening particle components and waviness components. 本発明の粗化処理銅箔の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the roughening process copper foil of this invention.
 定義
 本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
DEFINITIONS Definitions of terms or parameters used to define the present invention are provided below.
 本明細書において「粗さ曲線の負荷曲線」とは、図1に示されるように、JIS B0601-2013に準拠して決定される、粗さ曲線を切断レベルcで切断したときに現れる実体部の割合をcの関数として表した曲線である。すなわち、粗さ曲線の負荷曲線は、負荷長さ率Rmr(c)が0%から100%となる高さを表す曲線ともいえる。負荷長さ率Rmr(c)とは、図2に示されるように、JIS B0601-2013に準拠して決定される、評価長さに対する、切断レベルcにおける粗さ曲線要素の負荷長さの比率を表すパラメータである。 In this specification, the "load curve of the roughness curve" refers to the substantial part that appears when the roughness curve is cut at cutting level c, determined in accordance with JIS B0601-2013, as shown in FIG. is a curve representing the ratio of as a function of c. That is, the load curve of the roughness curve can also be said to be a curve representing the height at which the load length ratio Rmr(c) is from 0% to 100%. The load length ratio Rmr(c) is the ratio of the load length of the roughness curve element at the cutting level c to the evaluation length, determined in accordance with JIS B0601-2013, as shown in FIG. is a parameter that represents
 本明細書において「粗さ曲線の切断レベル差Rdc」、「切断レベル差Rdc」又は「Rdc」とは、図3に示されるように、JIS B0601-2013に準拠して測定される、粗さ曲線の負荷曲線において、2つの負荷長さ率Rmr1及びRmr2(ただし、Rmr1<Rmr2)の間における高さ方向の切断レベルcの差(c(Rmr1)-c(Rmr2))を表すパラメータである。本明細書では、Rmr1を20%及びRmr2を80%と指定してRdcを算出するものとする。 As used herein, "cutting level difference Rdc of roughness curve", "cutting level difference Rdc" or "Rdc" refers to roughness measured in accordance with JIS B0601-2013, as shown in FIG. A parameter that represents the difference (c(Rmr1)-c(Rmr2)) in the cutting level c in the height direction between the two load length ratios Rmr1 and Rmr2 (where Rmr1<Rmr2) in the load curve of the curve. . Assume herein that Rdc is calculated by specifying Rmr1 as 20% and Rmr2 as 80%.
 本明細書において「粗さ曲線の二乗平均平方根高さRq」、「二乗平均平方根高さRq」又は「Rq」とは、JIS B0601-2013に準拠して測定される、基準長さにおいて、Z(x)(Z(x)は任意の位置xにおける粗さ曲線の高さを表す)の二乗平均平方根を表すパラメータである。 As used herein, "roughness curve root mean square height Rq", "root mean square height Rq" or "Rq" means that the reference length measured in accordance with JIS B0601-2013 is Z (x) is a parameter representing the root mean square of (Z(x) represents the height of the roughness curve at an arbitrary position x).
 本明細書において「粗さ曲線のクルトシスRku」、「クルトシスRku」又は「Rku」とは、JIS B0601-2013に準拠して測定される、二乗平均平方根高さRqの四乗によって無次元化した基準長さにおいて、Z(x)の四乗平均を表すパラメータである。Rkuは表面の鋭さの尺度である尖度を意味し、高さ分布のとがり(鋭さ)を表す。Rku=3は高さ分布が正規分布であることを意味し、Rku>3であると高さ分布が尖っており、Rku<3であると高さ分布がつぶれている形状であることを意味する。 As used herein, the terms "roughness curve kurtosis Rku", "kurtosis Rku" or "Rku" are dimensionless by the square root mean square height Rq measured in accordance with JIS B0601-2013. It is a parameter representing the mean square of Z(x) in the reference length. Rku means kurtosis, which is a measure of the sharpness of the surface, and represents the sharpness of the height distribution. Rku=3 means that the height distribution is a normal distribution, Rku>3 means that the height distribution is sharp, and Rku<3 means that the height distribution is flat. do.
 本明細書において「Rdc/Rku」とは、クルトシスRkuに対する切断レベル差Rdcの比を表すパラメータである。 As used herein, "Rdc/Rku" is a parameter representing the ratio of the cleavage level difference Rdc to the kurtosis Rku.
 本明細書において「粗さ曲線要素の平均高さRc」、「平均高さRc」又は「Rc」とは、JIS B0601-2013に準拠して測定される、基準長さにおける粗さ曲線要素の高さの平均を表すパラメータである。粗さ曲線要素とは、粗さ曲線における一組の隣り合う山及び谷を意味する。粗さ曲線要素を構成する山ないし谷には、最小高さ及び最小長さが規定されており、高さが最大高さRzの10%以下、あるいは長さが基準長さの1%以下であるものはノイズとみなされて、前後に続く谷ないし山の一部とされる。 As used herein, "average height Rc of the roughness curve element", "average height Rc" or "Rc" refers to the roughness curve element at the reference length measured in accordance with JIS B0601-2013. This parameter represents the average height. Roughness curve element means a set of adjacent peaks and valleys in the roughness curve. A minimum height and a minimum length are specified for the peaks or valleys that constitute the roughness curve element, and the height is 10% or less of the maximum height Rz, or the length is 1% or less of the reference length. Some are considered noise and are part of the valleys or mountains that follow.
 本明細書において「うねり曲線の最大断面高さWt」、「最大断面高さWt」又は「Wt」とは、JIS B0601-2013に準拠して測定される、評価長さにおいて、うねり曲線の山高さの最大値と谷深さの最大値との和を表すパラメータである。 In this specification, "maximum cross-sectional height Wt of undulation curve", "maximum cross-sectional height Wt" or "Wt" refers to the crest height of the undulation curve at the evaluation length measured in accordance with JIS B0601-2013. This parameter represents the sum of the maximum depth and the maximum valley depth.
 本明細書において「うねり曲線の最大山高さWp」、「最大山高さWp」又は「Wp」とは、JIS B0601-2013に準拠して測定される、基準長さにおいて、うねり曲線の山高さの最大値を表すパラメータである。 As used herein, "maximum peak height Wp of the undulation curve", "maximum peak height Wp" or "Wp" refers to the peak height of the undulation curve at the reference length measured in accordance with JIS B0601-2013. This parameter represents the maximum value.
 本明細書において「うねり曲線の負荷曲線」とは、JIS B0601-2013に準拠して決定される、うねり曲線を切断レベルcで切断したときに現れる実体部の割合をcの関数として表した曲線である。すなわち、うねり曲線の負荷曲線は、負荷長さ率Wmr(c)が0%から100%となる高さを表す曲線ともいえる。負荷長さ率Wmr(c)とは、JIS B0601-2013に準拠して決定される、評価長さに対する、切断レベルcにおけるうねり曲線要素の負荷長さの比率を表すパラメータである。 In this specification, the "load curve of the undulation curve" is a curve that expresses the ratio of the substantial part that appears when the undulation curve is cut at the cutting level c as a function of c, which is determined in accordance with JIS B0601-2013. is. That is, the load curve of the undulation curve can also be said to be a curve representing the height at which the load length ratio Wmr(c) is from 0% to 100%. The load length ratio Wmr(c) is a parameter representing the ratio of the load length of the undulating curve element at the cut level c to the evaluation length determined in accordance with JIS B0601-2013.
 本明細書において「うねり曲線の切断レベル差Wdc」、「切断レベル差Wdc」又は「Wdc」とは、JIS B0601-2013に準拠して測定される、うねり曲線の負荷曲線において、2つの負荷長さ率Wmr1及びWmr2(ただし、Wmr1<Wmr2)の間における高さ方向の切断レベルcの差(c(Wmr1)-c(Wmr2))を表すパラメータである。本明細書では、Wmr1を20%及びWmr2を80%と指定してWdcを算出するものとする。 As used herein, the terms "cutting level difference Wdc of waviness curve", "cutting level difference Wdc", or "Wdc" refer to two load lengths in a waviness curve load curve measured in accordance with JIS B0601-2013. This is a parameter representing the difference (c(Wmr1)-c(Wmr2)) in the cutting level c in the height direction between the depth ratios Wmr1 and Wmr2 (where Wmr1<Wmr2). Assume herein that Wdc is calculated by specifying Wmr1 as 20% and Wmr2 as 80%.
 Rdc、Rq、Rku、Rc、Wt、Wp及びWdcは、粗化処理面における所定の測定長さの表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。本明細書において、粗さパラメータであるRdc、Rq、Rku及びRcは、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定されるものとする。また、粗さパラメータの算出に用いられる基準長さ及び評価長さは、それぞれ5μm及び25μmとする。一方、うねりパラメータであるWt、Wp及びWdcは、倍率20倍、カットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定されるものとする。また、うねりパラメータの算出に用いられる基準長さ及び評価長さは、いずれも粗化処理面の測定長さと同一とする。後述の実施例において、粗化処理面における縦643.973μm×横643.393μmの領域に対してうねりパラメータの測定を行っているが、かかる場合における基準長さ及び評価長さは、縦方向の場合は643.973μm、横方向の場合は643.393μmである。なお、レーザー顕微鏡による測定において対物レンズ及び光学ズームの両方を使用する場合、上記倍率は対物レンズの倍率に光学ズームの倍率を乗じた値に相当する。例えば、対物レンズ倍率が100倍、光学ズーム倍率が2倍の場合、倍率は200倍(=100×2)となる。その他、レーザー顕微鏡による表面プロファイルの好ましい測定条件及び解析条件については後述の実施例に示すものとする。 Rdc, Rq, Rku, Rc, Wt, Wp and Wdc can be calculated by measuring a surface profile of a predetermined measurement length on the roughened surface with a commercially available laser microscope. In this specification, the roughness parameters Rdc, Rq, Rku, and Rc are measured under the conditions of a magnification of 200, a cutoff wavelength of 0.3 μm with a cutoff value λs, and a cutoff wavelength of 5 μm with a cutoff value λc. shall be Also, the reference length and the evaluation length used for calculating the roughness parameter are set to 5 μm and 25 μm, respectively. On the other hand, the waviness parameters Wt, Wp, and Wdc are measured under the conditions of a magnification of 20, a cutoff wavelength of 5 μm with a cutoff value λc, and no cutoff with a cutoff value λf. Also, the reference length and the evaluation length used to calculate the waviness parameter are both the same as the measured length of the roughened surface. In the examples described later, the waviness parameter is measured for a region of 643.973 μm long×643.393 μm wide on the roughened surface. 643.973 μm in case and 643.393 μm in lateral direction. When both the objective lens and the optical zoom are used in the measurement with the laser microscope, the above magnification corresponds to the value obtained by multiplying the magnification of the objective lens by the magnification of the optical zoom. For example, when the objective lens magnification is 100 times and the optical zoom magnification is 2 times, the magnification is 200 times (=100×2). In addition, preferable measurement conditions and analysis conditions for the surface profile by the laser microscope will be shown in Examples below.
 本明細書において、電解銅箔の「電極面」とは電解銅箔製造時に陰極と接していた側の面を指す。 In this specification, the "electrode surface" of the electrolytic copper foil refers to the surface that was in contact with the cathode when the electrolytic copper foil was manufactured.
 本明細書において、電解銅箔の「析出面」とは電解銅箔製造時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。 In this specification, the "deposition surface" of the electrolytic copper foil refers to the surface on which electrolytic copper is deposited during the production of the electrolytic copper foil, that is, the surface that is not in contact with the cathode.
 粗化処理銅箔
 本発明の銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。この粗化処理面は、粗さ曲線のクルトシスRkuに対する粗さ曲線の切断レベル差Rdcの比であるRdc/Rkuが0.180μm以下である。また、粗化処理面は、うねり曲線の最大断面高さWtが2.50μm以上10.00μm以下である。このように粗化処理銅箔の表面において、Rdc/Rku、及び最大断面高さWtを所定の範囲に制御することにより、これを用いて製造された銅張積層板ないしプリント配線板において、伝送特性(高周波特性)及び回路直線性に優れるとともに、高い剥離強度を実現することができる。
Roughened Copper Foil The copper foil of the present invention is a roughened copper foil. This roughened copper foil has a roughened surface on at least one side. In this roughened surface, Rdc/Rku, which is the ratio of the cutting level difference Rdc of the roughness curve to the kurtosis Rku of the roughness curve, is 0.180 μm or less. Further, the roughened surface has a maximum cross-sectional height Wt of an undulating curve of 2.50 μm or more and 10.00 μm or less. By controlling Rdc/Rku and the maximum cross-sectional height Wt on the surface of the roughened copper foil within a predetermined range in this way, a copper clad laminate or a printed wiring board manufactured using the roughened copper foil can achieve transmission It is excellent in characteristics (high frequency characteristics) and circuit linearity, and can achieve high peel strength.
 優れた伝送特性及び高い剥離強度の両立、並びに優れた回路直線性及び高い剥離強度の両立は本来的には難しいものである。これは、伝送特性ないし回路直線性を向上させるためには、銅箔表面の凹凸を小さくすることが求められる一方、高い剥離強度を得るためには、銅箔表面の凹凸を大きくすることが求められ、これらはトレードオフの関係にあるためである。ここで、図4に示されるように、粗化処理銅箔表面の凹凸は、「粗化粒子成分」と、粗化粒子成分より長周期の「うねり成分」とからなる。一般的に、伝送特性ないし回路直線性を向上させるためには、うねりの小さい銅箔表面(例えば両面平滑箔の表面や電解銅箔の電極面)に対して微細粗化処理を行って小さな粗化粒子を形成することが考えられるが、このような粗化処理銅箔を用いて銅張積層板ないしプリント配線板を製造した場合、概して銅箔-基材間の剥離強度が低くなる。 It is inherently difficult to achieve both excellent transmission characteristics and high peel strength, as well as excellent circuit linearity and high peel strength. In order to improve transmission characteristics or circuit linearity, it is necessary to reduce the unevenness of the copper foil surface. This is because they are in a trade-off relationship. Here, as shown in FIG. 4, the unevenness on the roughened copper foil surface consists of a "roughening particle component" and a "waviness component" having a longer period than the roughening particle component. In general, in order to improve transmission characteristics or circuit linearity, a copper foil surface with small undulations (for example, the surface of a double-sided smooth foil or the electrode surface of an electrolytic copper foil) is subjected to a fine roughening treatment to reduce the roughness. However, when a copper-clad laminate or a printed wiring board is produced using such a roughened copper foil, the peel strength between the copper foil and the substrate is generally low.
 この問題に対して、本発明者らは、銅箔表面における凹凸の粗化粒子及びうねりが伝送特性、回路直線性及び剥離強度に与える影響について検討を行った。その結果、銅箔のうねり成分は予想に反して伝送特性に影響を及ぼしにくく、主に粗化粒子の大きさが伝送特性に影響を与えることが判明した。そして、本発明者らは、伝送特性を良好とするためにコブ(粗化粒子)を微細化するとともに、これにより不足する密着性を伝送特性への影響が小さい銅箔のうねりによって補うことにより、優れた伝送特性と、高い剥離強度による密着信頼性とを両立できることを突き止めた。また、銅箔のうねりを所定の範囲内に制御することにより、優れた回路直線性と高い剥離強度とをバランス良く実現できることも突き止めた。具体的には、切断レベル差RdcをクルトシスRkuで除したRdc/Rkuを用いることによって伝送特性に影響を及ぼす微小なコブ(粗化粒子)の形状を正確に反映できることを知見するとともに、Rdc/Rkuを0.180μm以下に制御することにより、優れた伝送特性を実現できることを見出した。さらに、最大断面高さWtが広範囲の粗化処理面におけるうねり成分を正確に反映できることを知見するとともに、このWtを2.50μm以上10.00μm以下とすることにより、回路直線性に優れながらも、銅箔のうねりを利用して銅箔-基板間の高い剥離強度を実現できることも見出した。 In response to this problem, the present inventors studied the effects of roughened particles and undulations on the copper foil surface on transmission characteristics, circuit linearity, and peel strength. As a result, it was found that, contrary to expectations, the waviness component of the copper foil had little effect on the transmission characteristics, and that the size of the roughening particles mainly affected the transmission characteristics. Then, the present inventors made the bumps (roughened particles) finer in order to improve the transmission characteristics, and compensated for the insufficient adhesion by undulating the copper foil, which has a small effect on the transmission characteristics. , it was found that both excellent transmission characteristics and adhesion reliability due to high peel strength can be achieved. It was also found that by controlling the waviness of the copper foil within a predetermined range, excellent circuit linearity and high peel strength can be achieved in a well-balanced manner. Specifically, it was found that by using Rdc/Rku obtained by dividing the cutting level difference Rdc by the kurtosis Rku, it was possible to accurately reflect the shape of minute bumps (roughening particles) that affect the transmission characteristics. It has been found that excellent transmission characteristics can be achieved by controlling Rku to 0.180 μm or less. Furthermore, we have found that the maximum cross-sectional height Wt can accurately reflect the undulation component on a wide range of roughened surfaces, and by setting this Wt to 2.50 μm or more and 10.00 μm or less, the circuit linearity is excellent. We also found that high peel strength between the copper foil and the substrate can be achieved by utilizing the waviness of the copper foil.
 伝送特性、回路直線性又は剥離強度に影響を与える銅箔表面の粗化粒子成分及びうねり成分は、レーザー顕微鏡における測定倍率、並びにカットオフ値λs、λc及びλfを使い分けることで区別することができる。具体的には、粗化処理面を倍率200倍という高倍率で測定することで、伝送特性に影響する粗化処理面の細かい凹凸を正確に評価することができる。そして、粗化処理面をカットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定して得られる粗さ曲線を用いることで、うねり成分の影響がカットされた粗さパラメータを算出することができる。したがって、本発明における粗さパラメータ、すなわちRdc、Rku、Rdc/Rku、Rc及びRqは銅箔表面における粗化粒子成分を的確に反映したパラメータであるといえ、これらの指標を用いることで伝送特性を正確に評価することができる。これに対して、粗化処理面を倍率20倍という低倍率で測定することで、回路直線性及び密着信頼性に影響する粗化処理面全体の高さ(うねり)を広範囲に評価することができる。そして、粗化処理面をカットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定して得られるうねり曲線を用いることで、粗化粒子成分の影響がカットされたうねりパラメータを算出することができる。したがって、本発明におけるうねりパラメータ、すなわちWt、Wp及びWdcは、銅箔表面におけるうねり成分を適格に反映したパラメータであるといえ、これらの指標を用いることで回路直線性及び剥離強度を正確に評価することができる。 Roughened particle components and waviness components on the copper foil surface that affect transmission characteristics, circuit linearity, or peel strength can be distinguished by properly using the measurement magnification in a laser microscope and the cutoff values λs, λc, and λf. . Specifically, by measuring the roughened surface at a high magnification of 200 times, it is possible to accurately evaluate the fine irregularities of the roughened surface that affect the transmission characteristics. Then, by using a roughness curve obtained by measuring the roughened surface under the conditions of a cutoff wavelength of 0.3 μm with a cutoff value λs and a cutoff wavelength of 5 μm with a cutoff value λc, the influence of the waviness component can be reduced. A cut roughness parameter can be calculated. Therefore, it can be said that the roughness parameters in the present invention, that is, Rdc, Rku, Rdc/Rku, Rc and Rq are parameters that accurately reflect the roughened particle component on the copper foil surface. can be evaluated accurately. On the other hand, by measuring the roughened surface at a low magnification of 20 times, it is possible to extensively evaluate the height (undulation) of the entire roughened surface that affects circuit linearity and adhesion reliability. can. Then, by using the undulation curve obtained by measuring the roughened surface under the conditions where the cutoff wavelength is 5 μm with the cutoff value λc and the cutoff value λf is not performed, the effect of the roughened particle component is cut. undulation parameters can be calculated. Therefore, it can be said that the waviness parameters in the present invention, that is, Wt, Wp and Wdc, are parameters that adequately reflect waviness components on the copper foil surface, and by using these indices, circuit linearity and peel strength can be accurately evaluated. can do.
 粗化処理銅箔の粗化処理面は、うねり曲線の最大断面高さWtが2.50μm以上10.00μm以下であり、好ましくは2.90μm以上10.00μm以下、より好ましくは3.10μm以上9.00μm以下、さらに好ましくは3.30μm以上7.00μm以下である。上記範囲内のWtであると、優れた伝送特性を確保しながら、優れた回路直線性及び高い剥離強度をバランス良く実現することができる。 The roughened surface of the roughened copper foil has a maximum cross-sectional height Wt of the undulating curve of 2.50 μm or more and 10.00 μm or less, preferably 2.90 μm or more and 10.00 μm or less, more preferably 3.10 μm or more. It is 9.00 μm or less, more preferably 3.30 μm or more and 7.00 μm or less. When the Wt is within the above range, excellent circuit linearity and high peel strength can be achieved in a well-balanced manner while ensuring excellent transmission characteristics.
 粗化処理銅箔の粗化処理面は、Rdc/Rkuが0.180μm以下であり、好ましくは0.015μm以上0.150μm以下、より好ましくは0.030μm以上0.110μm以下、さらに好ましくは0.045μm以上0.080μm以下である。上記範囲内のRdc/Rkuであると、優れた回路直線性及び高い剥離強度でありながら、優れた伝送特性を実現することができる。 Rdc/Rku of the roughened surface of the roughened copper foil is 0.180 μm or less, preferably 0.015 μm or more and 0.150 μm or less, more preferably 0.030 μm or more and 0.110 μm or less, and still more preferably 0 0.045 μm or more and 0.080 μm or less. When Rdc/Rku is within the above range, excellent transmission characteristics can be achieved while maintaining excellent circuit linearity and high peel strength.
 粗化処理銅箔の粗化処理面は、粗さ曲線の切断レベル差Rdcが0.45μm以下であるのが好ましく、より好ましくは0.04μm以上0.40μm以下、さらに好ましくは0.08μm以上0.35μm以下、特に好ましくは0.12μm以上0.30μm以下である。上記範囲内のRdcであると、Rdc/Rkuを上述した範囲に制御しやすくなるとともに、より一層優れた伝送特性を実現することができる。 The roughened surface of the roughened copper foil preferably has a roughness curve cutting level difference Rdc of 0.45 μm or less, more preferably 0.04 μm or more and 0.40 μm or less, and still more preferably 0.08 μm or more. It is 0.35 μm or less, particularly preferably 0.12 μm or more and 0.30 μm or less. When Rdc is within the above range, it becomes easier to control Rdc/Rku within the above range, and further excellent transmission characteristics can be achieved.
 粗化処理銅箔の粗化処理面は、粗さ曲線のクルトシスRkuが1.30以上8.00以下であるのが好ましく、より好ましくは1.50以上5.50以下、さらに好ましくは2.00以上4.50以下、特に好ましくは2.50以上3.20以下である。上記範囲内のRkuであると、Rdc/Rkuを上述した範囲に制御しやすくなるとともに、より一層優れた伝送特性を実現することができる。 The roughened surface of the roughened copper foil preferably has a roughness curve kurtosis Rku of 1.30 or more and 8.00 or less, more preferably 1.50 or more and 5.50 or less, and still more preferably 2.50 or more. 00 or more and 4.50 or less, particularly preferably 2.50 or more and 3.20 or less. When Rku is within the above range, it becomes easier to control Rdc/Rku within the above range, and further excellent transmission characteristics can be achieved.
 粗化処理銅箔の粗化処理面は、うねり曲線の最大山高さWpが1.00μm以上6.00μm以下であるのが好ましく、より好ましくは1.20μm以上5.00μm以下、さらに好ましくは1.30μm以上4.30μm以下、特に好ましくは1.40μm以上3.70μm以下である。上記範囲内のWpであると、優れた伝送特性を確保しながら、優れた回路直線性及び高い剥離強度をより一層バランス良く実現することができる。 The roughened surface of the roughened copper foil preferably has a peak height Wp of 1.00 μm or more and 6.00 μm or less, more preferably 1.20 μm or more and 5.00 μm or less, and still more preferably 1 .30 μm or more and 4.30 μm or less, particularly preferably 1.40 μm or more and 3.70 μm or less. When Wp is within the above range, excellent circuit linearity and high peel strength can be achieved in a better balance while ensuring excellent transmission characteristics.
 粗化処理銅箔の粗化処理面は、粗さ曲線要素の平均高さRcが0.70μm以下であるのが好ましく、より好ましくは0.06μm以上0.60μm以下、さらに好ましくは0.12μm以上0.50μm以下、特に好ましくは0.18μm以上0.50μm以下である。上記範囲内のRcであると、優れた回路直線性及び高い剥離強度でありながら、より一層優れた伝送特性を実現することができる。 The roughened surface of the roughened copper foil preferably has an average height Rc of roughness curve elements of 0.70 μm or less, more preferably 0.06 μm or more and 0.60 μm or less, and still more preferably 0.12 μm. 0.50 μm or less, particularly preferably 0.18 μm or more and 0.50 μm or less. When Rc is within the above range, even better transmission characteristics can be achieved while maintaining excellent circuit linearity and high peel strength.
 粗化処理銅箔の粗化処理面は、うねり曲線の切断レベル差Wdcが1.20μm以上3.10μm以下であるのが好ましく、より好ましくは1.20μm以上2.70μm以下、さらに好ましくは1.30μm以上2.30μm以下、特に好ましくは1.60μm以上2.00μm以下である。上記範囲内のWdcであると、優れた伝送特性を確保しながら、優れた回路直線性及び高い剥離強度をより一層バランス良く実現することができる。 The roughened surface of the roughened copper foil preferably has a cutting level difference Wdc of the undulating curve of 1.20 μm or more and 3.10 μm or less, more preferably 1.20 μm or more and 2.70 μm or less, still more preferably 1 .30 μm or more and 2.30 μm or less, particularly preferably 1.60 μm or more and 2.00 μm or less. When Wdc is within the above range, it is possible to achieve excellent circuit linearity and high peel strength in a well-balanced manner while ensuring excellent transmission characteristics.
 粗化処理銅箔の粗化処理面は、粗さ曲線の二乗平均平方根高さRqが0.290μm以下であるのが好ましく、より好ましくは0.030μm以上0.260μm以下、さらに好ましくは0.060μm以上0.220μm以下、特に好ましくは0.090μm以上0.200μm以下である。上記範囲内のRqであると、優れた回路直線性及び高い剥離強度でありながら、より一層優れた伝送特性を実現することができる。 The roughened surface of the roughened copper foil preferably has a roughness curve with a root-mean-square height Rq of 0.290 μm or less, more preferably 0.030 μm or more and 0.260 μm or less, still more preferably 0.290 μm or less. 060 μm or more and 0.220 μm or less, particularly preferably 0.090 μm or more and 0.200 μm or less. When Rq is within the above range, it is possible to achieve even better transmission characteristics while maintaining excellent circuit linearity and high peel strength.
 粗化処理銅箔の厚さは特に限定されないが、0.1μm以上210μm以下が好ましく、より好ましくは0.3μm以上105μm以下、さらに好ましくは7μm以上70μm以下、特に好ましくは9μm以上35μm以下である。なお、本発明の粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面の粗化処理ないし微細粗化処理を行ったものであってもよい。 The thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 μm or more and 210 μm or less, more preferably 0.3 μm or more and 105 μm or less, still more preferably 7 μm or more and 70 μm or less, and particularly preferably 9 μm or more and 35 μm or less. . The roughened copper foil of the present invention is not limited to the ordinary copper foil whose surface has been roughened, but the copper foil surface of the carrier-attached copper foil has been roughened or finely roughened. can be anything.
 本発明の粗化処理銅箔の一例が図5に示される。図5に示されるように、本発明の粗化処理銅箔は、所定のうねりを有する銅箔表面(例えば電解銅箔の析出面)に対して、所望の低粗化条件で粗化処理を行って微細な粗化粒子を形成することにより、好ましく製造することができる。したがって、本発明の好ましい態様によれば、粗化処理銅箔が電解銅箔であり、粗化処理面が電解銅箔の析出面側に存在する。なお、粗化処理銅箔は両側に粗化処理面を有するものであってもよいし、一方の側にのみ粗化処理面を有するものであってもよい。粗化処理面は、典型的には複数の粗化粒子を備えてなり、これら複数の粗化粒子はそれぞれ銅粒子からなるのが好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。 An example of the roughened copper foil of the present invention is shown in FIG. As shown in FIG. 5, the roughened copper foil of the present invention is obtained by subjecting a copper foil surface having predetermined undulations (for example, a deposition surface of an electrolytic copper foil) to a roughening treatment under desired low-roughening conditions. It can be produced preferably by carrying out to form fine roughened particles. Therefore, according to a preferred aspect of the present invention, the roughened copper foil is an electrolytic copper foil, and the roughened surface is present on the deposition surface side of the electrolytic copper foil. The roughened copper foil may have roughened surfaces on both sides, or may have a roughened surface only on one side. The roughened surface is typically provided with a plurality of roughened particles, and each of these roughened particles preferably consists of copper particles. The copper particles may consist of metallic copper, or may consist of a copper alloy.
 粗化処理面を形成するための粗化処理は、銅箔の上に銅又は銅合金で粗化粒子を形成することにより好ましく行うことができる。粗化処理を行う前の銅箔は、無粗化の銅箔であってもよいし、予備的粗化を施したものであってもよい。粗化処理が行われることになる銅箔の表面は、JIS B0601-1994に準拠して測定される十点平均粗さRzが1.30μm以上10.00μm以下であるのが好ましく、より好ましくは1.50μm以上8.00μm以下である。上記範囲内であると、本発明の粗化処理銅箔に要求される表面プロファイルを粗化処理面に付与しやすくなる。 The roughening treatment for forming the roughened surface can be preferably carried out by forming roughening particles with copper or a copper alloy on the copper foil. The copper foil before the roughening treatment may be a non-roughened copper foil or a pre-roughened copper foil. The surface of the copper foil to be roughened preferably has a ten-point average roughness Rz measured in accordance with JIS B0601-1994 of 1.30 μm or more and 10.00 μm or less, more preferably It is 1.50 μm or more and 8.00 μm or less. Within the above range, it becomes easier to impart the surface profile required for the roughened copper foil of the present invention to the roughened surface.
 粗化処理は、例えば銅濃度7g/L以上17g/L以下、硫酸濃度50g/L以上200g/L以下を含む硫酸銅溶液中、20℃以上40℃以下の温度で、10A/dm以上50A/dm以下にて電解析出を行うのが好ましい。この電解析出は0.5秒間以上30秒間以下行われるのが好ましく、1秒間以上30秒間以下行われるのがより好ましく、1秒間以上3秒間以下行われるのがさらに好ましい。もっとも、本発明による粗化処理銅箔は、上記方法に限らず、あらゆる方法によって製造されたものであってよい。 The roughening treatment is performed, for example, in a copper sulfate solution containing a copper concentration of 7 g/L or more and 17 g/L or less and a sulfuric acid concentration of 50 g/L or more and 200 g/L or less at a temperature of 20 ° C. or more and 40 ° C. or less at 10 A / dm 2 or more and 50 A. /dm 2 or less. This electrolytic deposition is preferably carried out for 0.5 to 30 seconds, more preferably 1 to 30 seconds, and even more preferably 1 to 3 seconds. However, the roughened copper foil according to the present invention is not limited to the method described above, and may be manufactured by any method.
 上記電解析出の際、下記式:
 R=L/D
(式中、Rは液抵抗指数(mm・L/mol)、Lは極間(陽極-陰極間)距離(mm)、Dは電荷担体密度(mol/L)である)
により定義される液抵抗指数Rを9.0mm・L/mol以上20.0mm・L/mol以下とするのが好ましく、11.0mm・L/mol以上17.0mm・L/mol以下とするのがより好ましい。このように液抵抗指数Rを大きくすることで系全体における電圧が大きくなり、コブ形成反応時の電圧も大きくなる。これがコブ形状に影響を及ぼす結果、本発明の粗化処理銅箔に要求される表面プロファイルを付与するのに適した形状のコブを好ましく形成することができる。なお、電荷担体密度Dは、めっき液中に存在する全てのイオンについて、各々のイオン濃度及び価数の積を合計することにより算出することができる。例えば、めっき液として硫酸銅溶液を用いる場合、電荷担体密度Dは、下記式:
 Dc=[H]×1+[Cu2+]×2+[SO 2-]×2
(式中、[H]は溶液中の水素イオン濃度(mol/L)、[Cu2+]は溶液中の銅イオン濃度(mol/L)、[SO 2-]は溶液中の硫酸イオン濃度(mol/L)である)
により算出される。
During the above electrolytic deposition, the following formula:
R L =L/D C
(Wherein, R L is the liquid resistance index (mm L/mol), L is the distance between the electrodes (anode-cathode) (mm), and D C is the charge carrier density (mol/L).)
The liquid resistance index RL defined by is preferably 9.0 mm L / mol or more and 20.0 mm L / mol or less, and 11.0 mm L / mol or more and 17.0 mm L / mol or less is more preferred. By increasing the liquid resistance index RL in this manner, the voltage in the entire system increases, and the voltage during the nodule formation reaction also increases. As a result of this affecting the shape of the bumps, the bumps can be preferably formed in a shape suitable for imparting the surface profile required for the roughened copper foil of the present invention. The charge carrier density Dc can be calculated by totaling the product of each ion concentration and valence for all ions present in the plating solution. For example, when using a copper sulfate solution as the plating solution, the charge carrier density D C is given by the following formula:
Dc=[H + ]×1+[Cu 2+ ]×2+[SO 4 2− ]×2
(In the formula, [H + ] is the hydrogen ion concentration in the solution (mol/L), [Cu 2+ ] is the copper ion concentration in the solution (mol/L), and [SO 4 2− ] is the sulfate ion in the solution. concentration (mol/L))
Calculated by
 液抵抗指数Rと電圧との関係は以下のように説明される。まず、オームの法則により下記式:
 V=ρ×L×I/S
(式中、Vは電圧、ρは比抵抗、Lは極間距離、Iは電流、Sは極間の断面積である)
が導出される。すなわち、電圧Vは、比抵抗ρ、極間距離L、及び電流密度(=I/S)に比例する。そして、比抵抗ρは上述した電荷担体密度Dに反比例する。このため、電流密度が一定の場合、(極間距離Lに比例し、電荷担体密度Dに反比例する)液抵抗指数を大きくすることで電圧も大きくなる。したがって、液抵抗指数は溶液の抵抗と相関のある指標といえる。
The relationship between liquid resistance index RL and voltage is explained as follows. First, according to Ohm's law, the following formula:
V=ρ×L×I/S
(Wherein, V is the voltage, ρ is the specific resistance, L is the distance between the electrodes, I is the current, and S is the cross-sectional area between the electrodes)
is derived. That is, the voltage V is proportional to the specific resistance ρ, the inter-electrode distance L, and the current density (=I/S). Then, the resistivity ρ is inversely proportional to the charge carrier density DC mentioned above. Therefore, if the current density is constant, increasing the liquid resistance index (proportional to the inter-electrode distance L and inversely proportional to the charge carrier density DC ) will also increase the voltage. Therefore, it can be said that the liquid resistance index is an index that correlates with the resistance of the solution.
 所望により、粗化処理銅箔は防錆処理が施され、防錆処理層が形成されたものであってもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co、Mo等の他の元素をさらに含んでいてもよい。例えば、防錆処理層がNi及びZnに加えてMoをさらに含むことで、粗化処理銅箔の処理表面が、樹脂との密着性、耐薬品性及び耐熱性により優れ、かつ、エッチング残渣が残りにくいものとなる。 If desired, the roughened copper foil may be subjected to antirust treatment and may have an antirust treatment layer formed thereon. The antirust treatment preferably includes plating with zinc. The plating treatment using zinc may be either zinc plating treatment or zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, Co and Mo. For example, the antirust treatment layer further contains Mo in addition to Ni and Zn, so that the treated surface of the roughened copper foil has excellent adhesion to resin, chemical resistance, and heat resistance, and etching residue is removed. It becomes difficult to remain.
 亜鉛-ニッケル合金めっきにおける、Zn付着量及びNi付着量の合計量に対するNi付着量の比率であるNi/(Zn+Ni)は、質量比で、0.3以上0.9以下が好ましく、より好ましくは0.4以上0.9以下、さらに好ましくは0.4以上0.8以下である。また、亜鉛-ニッケル合金めっきにおけるZn及びNiの合計付着量は8mg/m以上160mg/m以下が好ましく、より好ましくは13mg/m以上130mg/m以下、さらに好ましくは19mg/m以上80mg/m以下である。一方、亜鉛-ニッケル-モリブデン合金めっきにおける、Zn付着量、Ni付着量及びMo付着量の合計量に対するNi付着量の比率であるNi/(Zn+Ni+Mo)は、質量比で、0.20以上0.80以下が好ましく、より好ましくは0.25以上0.75以下、さらに好ましくは0.30以上0.65以下である。また、亜鉛-ニッケル-モリブデン合金めっきにおけるZn、Ni及びMoの合計付着量は10mg/m以上200mg/m以下が好ましく、より好ましくは15mg/m以上150mg/m以下、さらに好ましくは20mg/m以上90mg/m以下である。Zn、Ni及びMoの各付着量は、粗化処理銅箔の粗化処理面における所定の面積(例えば25cm)を酸で溶解し、得られた溶解液中の各元素濃度をICP発光分析法に基づいて分析することにより算出することができる。 In the zinc-nickel alloy plating, Ni/(Zn+Ni), which is the ratio of the Ni deposition amount to the total amount of the Zn deposition amount and the Ni deposition amount, is preferably 0.3 or more and 0.9 or less, more preferably It is 0.4 or more and 0.9 or less, more preferably 0.4 or more and 0.8 or less. The total amount of Zn and Ni deposited in the zinc-nickel alloy plating is preferably 8 mg/m 2 or more and 160 mg/m 2 or less, more preferably 13 mg/m 2 or more and 130 mg/m 2 or less, and still more preferably 19 mg/m 2 . 80 mg/ m2 or less. On the other hand, in zinc-nickel-molybdenum alloy plating, Ni/(Zn+Ni+Mo), which is the ratio of the Ni deposition amount to the total amount of the Zn deposition amount, the Ni deposition amount and the Mo deposition amount, is 0.20 or more and 0.20 to 0.20. It is preferably 80 or less, more preferably 0.25 or more and 0.75 or less, still more preferably 0.30 or more and 0.65 or less. In addition, the total deposition amount of Zn, Ni and Mo in the zinc-nickel-molybdenum alloy plating is preferably 10 mg/m 2 or more and 200 mg/m 2 or less, more preferably 15 mg/m 2 or more and 150 mg/m 2 or less, further preferably 20 mg/m 2 or more and 90 mg/m 2 or less. The amounts of Zn, Ni, and Mo deposited were obtained by dissolving a predetermined area (for example, 25 cm 2 ) on the roughened surface of the roughened copper foil with acid, and measuring the concentration of each element in the resulting solution by ICP emission spectrometry. It can be calculated by analyzing based on the law.
 防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理(あるいは亜鉛-ニッケル-モリブデン合金めっき処理)とその後のクロメート処理との組合せである。 The antirust treatment preferably further includes chromate treatment, and this chromate treatment is more preferably performed on the surface of the zinc-containing plating after the plating treatment using zinc. By doing so, the rust resistance can be further improved. A particularly preferred antirust treatment is a combination of zinc-nickel alloy plating treatment (or zinc-nickel-molybdenum alloy plating treatment) and subsequent chromate treatment.
 所望により、粗化処理銅箔は表面にシランカップリング剤処理が施され、シランカップリング剤処理層が形成されたものであってもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤処理層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。 If desired, the surface of the roughened copper foil may be treated with a silane coupling agent to form a silane coupling agent-treated layer. As a result, moisture resistance, chemical resistance, adhesion to adhesives and the like can be improved. The silane coupling agent-treated layer can be formed by appropriately diluting a silane coupling agent, coating it, and drying it. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc. amino-functional silane coupling agents, or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane or olefin-functional silane coupling agents such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacrylic acrylic functional silane coupling agents such as roxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, or imidazole functional silane coupling agents such as imidazole silane, or triazine functional silane coupling agents such as triazine silane, and the like. is mentioned.
 上述した理由から、粗化処理銅箔は、粗化処理面に防錆処理層及び/又はシランカップリング剤処理層を備えることが好ましく、より好ましくは防錆処理層及びシランカップリング剤処理層の両方を備える。粗化処理面に防錆処理層及び/又はシランカップリング剤処理層が形成されている場合、本明細書における粗さパラメータ及びうねりパラメータの各数値は、防錆処理層及び/又はシランカップリング剤処理層が形成された後の粗化処理銅箔の表面を測定して得られる数値を意味するものとする。なお、防錆処理層及びシランカップリング剤処理層は、粗化処理銅箔の粗化処理面側のみならず、粗化処理面が形成されていない側に形成されてもよい。 For the reasons described above, the roughened copper foil preferably has an anticorrosive layer and/or a silane coupling agent-treated layer on the roughened surface, more preferably an anticorrosive layer and a silane coupling agent-treated layer. Provide both. When a rust-preventive treatment layer and/or a silane coupling agent-treated layer is formed on the roughened surface, each numerical value of the roughness parameter and waviness parameter in this specification is It means a numerical value obtained by measuring the surface of the roughened copper foil after the agent-treated layer is formed. In addition, the anticorrosion treatment layer and the silane coupling agent treatment layer may be formed not only on the roughened surface side of the roughened copper foil, but also on the side where the roughened surface is not formed.
 銅張積層板
 本発明の粗化処理銅箔はプリント配線板用銅張積層板の製造に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えた銅張積層板が提供される。本発明の粗化処理銅箔を用いることで、銅張積層板において、優れた伝送特性と高い剥離強度とを両立することができる。この銅張積層板は、本発明の粗化処理銅箔と、この粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介して粗化処理銅箔に設けられていてもよい。
Copper-Clad Laminate The roughened copper foil of the present invention is preferably used for producing a copper-clad laminate for printed wiring boards. That is, according to a preferred aspect of the present invention, there is provided a copper-clad laminate comprising the roughened copper foil. By using the roughened copper foil of the present invention, it is possible to achieve both excellent transmission characteristics and high peel strength in copper-clad laminates. This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil. The roughened copper foil may be provided on one side of the resin layer, or may be provided on both sides. The resin layer comprises resin, preferably insulating resin. The resin layer is preferably prepreg and/or resin sheet. Prepreg is a general term for composite materials in which synthetic resin is impregnated into a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper. Preferred examples of insulating resins include epoxy resins, cyanate resins, bismaleimide triazine resins (BT resins), polyphenylene ether resins, and phenol resins. Examples of the insulating resin forming the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins. In addition, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation. Although the thickness of the resin layer is not particularly limited, it is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and still more preferably 3 μm or more and 200 μm or less. The resin layer may be composed of multiple layers. A resin layer such as a prepreg and/or a resin sheet may be provided on the roughened copper foil in advance via a primer resin layer that is applied to the surface of the copper foil.
 プリント配線板
 本発明の粗化処理銅箔はプリント配線板の製造に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えたプリント配線板が提供される。本発明の粗化処理銅箔を用いることで、プリント配線板において、優れた伝送特性と高い剥離強度とを両立することができる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。銅層は本発明の粗化処理銅箔に由来する層である。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミ・アディティブ法(MSAP)、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ法(SAP)で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。
Printed Wiring Board The roughened copper foil of the present invention is preferably used for manufacturing printed wiring boards. That is, according to a preferred aspect of the present invention, there is provided a printed wiring board comprising the roughened copper foil. By using the roughened copper foil of the present invention, it is possible to achieve both excellent transmission characteristics and high peel strength in a printed wiring board. The printed wiring board according to this aspect includes a layer structure in which a resin layer and a copper layer are laminated. The copper layer is a layer derived from the roughened copper foil of the present invention. Also, the resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board. Specific examples of printed wiring boards include a single-sided or double-sided printed wiring board formed by bonding the roughened copper foil of the present invention to one or both sides of a prepreg to form a cured laminate, and then forming a circuit on the printed wiring board. A multilayer printed wiring board etc. are mentioned. Further, other specific examples include flexible printed wiring boards, COF, TAB tapes, etc., in which the roughened copper foil of the present invention is formed on a resin film to form a circuit. As another specific example, a resin-coated copper foil (RCC) is formed by applying the above resin layer to the roughened copper foil of the present invention, and the resin layer is used as an insulating adhesive layer and laminated on the above printed circuit board. After that, the roughened copper foil is used as all or part of the wiring layer, and the circuit is formed by the modified semi-additive method (MSAP), the subtractive method, etc., and the roughened copper foil is removed. A build-up wiring board in which a circuit is formed by a semi-additive method (SAP), and a direct build-up on wafer in which lamination of resin-coated copper foil on a semiconductor integrated circuit and circuit formation are alternately repeated.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be explained more specifically by the following examples.
 例1~11
 本発明の粗化処理銅箔の製造を以下のようにして行った。
Examples 1-11
The roughened copper foil of the present invention was manufactured as follows.
(1)電解銅箔の製造
 銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極にチタン製の電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、表1に示した厚さの電解銅箔を得た。このとき、陰極として、表面を表1に示される番手のバフで研磨して表面粗さを調整した電極を用いた。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:300g/L
‐ ニカワ濃度:5mg/L
‐ 塩素濃度:30mg/L
(1) Production of Electrodeposited Copper Foil A sulfuric acid copper sulfate solution having the composition shown below was used as the copper electrolyte, a titanium electrode was used as the cathode, and a DSA (dimensionally stable anode) was used as the anode. Electrolysis was performed at a temperature of 45° C. and a current density of 55 A/dm 2 to obtain an electrolytic copper foil having a thickness shown in Table 1. At this time, as the cathode, an electrode whose surface was polished with a buff having a count shown in Table 1 to adjust the surface roughness was used.
<Composition of sulfuric acid copper sulfate solution>
- Copper concentration: 80g/L
- Sulfuric acid concentration: 300g/L
- Glue concentration: 5 mg / L
- Chlorine concentration: 30 mg / L
(2)粗化処理
 上述の電解銅箔が備える電極面及び析出面の内、例1~6及び11については析出面側に対して、例7~10については電極面側に対して、粗化処理を行った。なお、例1~6及び11に用いた電解銅箔の析出面、並びに例7~10に用いた電解銅箔の電極面における、接触式表面粗さ計を用いてJIS B0601-1994に準拠して測定される十点平均粗さRzは表1に示されるとおりであった。
(2) Roughening treatment Of the electrode surface and deposition surface provided by the above-described electrodeposited copper foil, roughening was performed on the deposition surface side for Examples 1 to 6 and 11, and on the electrode surface side for Examples 7 to 10. A chemical treatment was performed. In addition, the deposition surface of the electrolytic copper foil used in Examples 1 to 6 and 11 and the electrode surface of the electrolytic copper foil used in Examples 7 to 10 were measured using a contact surface roughness meter in accordance with JIS B0601-1994. Table 1 shows the ten-point average roughness Rz measured.
 例1~8については、以下に示される粗化処理(第一粗化処理)を行った。この粗化処理は、粗化処理用銅電解溶液(銅濃度:7g/L以上17g/L以下、硫酸濃度:50g/L以上200g/L以下、液温:30℃)中、各々の例ごとに表1に示した液抵抗指数、電流密度及び時間の条件にて電解し、水洗することにより行った。 For Examples 1 to 8, the following roughening treatment (first roughening treatment) was performed. This roughening treatment is performed in a copper electrolytic solution for roughening treatment (copper concentration: 7 g / L or more and 17 g / L or less, sulfuric acid concentration: 50 g / L or more and 200 g / L or less, liquid temperature: 30 ° C.) for each example Electrolysis was carried out under the conditions of liquid resistance index, current density and time shown in Table 1, followed by washing with water.
 例9~11については、以下に示される第一粗化処理、第二粗化処理及び第三粗化処理をこの順に行った。
‐ 第一粗化処理は、粗化処理用銅電解溶液(銅濃度:7g/L以上17g/L以下、硫酸濃度:50g/L以上200g/L以下、液温:30℃)中、表1に示した液抵抗指数、電流密度及び時間の条件にて電解し、水洗することにより行った。
‐ 第二粗化処理は、第一粗化処理と同じ組成の粗化処理用銅電解溶液中、表1に示した液抵抗指数、電流密度及び時間の条件にて電解し、水洗することにより行った。
‐ 第三粗化処理は、粗化処理用銅電解溶液(銅濃度:65g/L以上80g/L以下、硫酸濃度:50g/L以上200g/L以下、液温:45℃)中、表1に示した液抵抗指数、電流密度及び時間の条件にて電解し、水洗することにより行った。
For Examples 9 to 11, the following first roughening treatment, second roughening treatment and third roughening treatment were performed in this order.
- The first roughening treatment is performed in a copper electrolytic solution for roughening treatment (copper concentration: 7 g / L or more and 17 g / L or less, sulfuric acid concentration: 50 g / L or more and 200 g / L or less, liquid temperature: 30 ° C.) Table 1 Electrolysis was carried out under the liquid resistance index, current density and time conditions shown in , followed by washing with water.
- The second roughening treatment is performed by electrolysis under the conditions of liquid resistance index, current density and time shown in Table 1 in a copper electrolytic solution for roughening treatment having the same composition as the first roughening treatment, and washing with water. gone.
- The third roughening treatment is performed in a copper electrolytic solution for roughening treatment (copper concentration: 65 g / L or more and 80 g / L or less, sulfuric acid concentration: 50 g / L or more and 200 g / L or less, liquid temperature: 45 ° C.) Table 1 Electrolysis was carried out under the liquid resistance index, current density and time conditions shown in , followed by washing with water.
(3)防錆処理
 粗化処理後の電解銅箔に表1に示した防錆処理を行った。この防錆処理として、例1及び5~8については、電解銅箔の粗化処理を行った面に対し、ピロリン酸浴を用い、ピロリン酸カリウム濃度100g/L、亜鉛濃度1g/L、ニッケル濃度2g/L、モリブデン濃度1g/L、液温40℃、電流密度0.5A/dmで防錆処理A(亜鉛-ニッケル-モリブデン系防錆処理)を行った。また、電解銅箔の粗化処理を行っていない面に対し、ピロリン酸浴を用い、ピロリン酸カリウム濃度80g/L、亜鉛濃度0.2g/L、ニッケル濃度2g/L、液温40℃、電流密度0.5A/dmとして防錆処理B(亜鉛-ニッケル系防錆処理)を行った。一方、例2~4及び9~11については、電解銅箔の両面に対し、例1及び5~8における電解銅箔の粗化処理を行っていない面と同様の条件で防錆処理Bを行った。
(3) Anticorrosion Treatment The antirust treatment shown in Table 1 was performed on the electrolytic copper foil after the roughening treatment. As this rust prevention treatment, for Examples 1 and 5 to 8, a pyrophosphate bath was used on the roughened surface of the electrolytic copper foil, with a potassium pyrophosphate concentration of 100 g / L, a zinc concentration of 1 g / L, nickel Rust prevention treatment A (zinc-nickel-molybdenum system rust prevention treatment) was performed at a concentration of 2 g/L, a molybdenum concentration of 1 g/L, a liquid temperature of 40°C, and a current density of 0.5 A/dm 2 . In addition, a pyrophosphate bath was applied to the surface of the electrodeposited copper foil that had not been roughened, and the concentration of potassium pyrophosphate was 80 g/L, the concentration of zinc was 0.2 g/L, the concentration of nickel was 2 g/L, the liquid temperature was 40°C. Antirust treatment B (zinc-nickel antirust treatment) was performed at a current density of 0.5 A/dm 2 . On the other hand, in Examples 2 to 4 and 9 to 11, both surfaces of the electrolytic copper foil were subjected to antirust treatment B under the same conditions as the surface of the electrolytic copper foil not subjected to roughening treatment in Examples 1 and 5 to 8. gone.
(4)クロメート処理
 上記防錆処理を行った電解銅箔の両面に対して、クロメート処理を行い、防錆処理層の上にクロメート層を形成した。このクロメート処理は、クロム酸濃度1g/L、pH11、液温25℃及び電流密度1A/dmの条件で行った。
(4) Chromate Treatment Chromate treatment was performed on both surfaces of the antirust-treated electrolytic copper foil to form a chromate layer on the antirust treatment layer. This chromate treatment was performed under the conditions of a chromic acid concentration of 1 g/L, a pH of 11, a liquid temperature of 25° C. and a current density of 1 A/dm 2 .
(5)シランカップリング剤処理
 上記クロメート処理が施された銅箔を水洗し、その後直ちにシランカップリング剤処理を行い、粗化処理面のクロメート層上にシランカップリング剤を吸着させた。このシランカップリング剤処理は、純水を溶媒とするシランカップリング剤の溶液をシャワーリングにて粗化処理面に吹き付けて吸着処理することにより行った。シランカップリング剤として、例1、3、4及び6~8では3-アミノプロピルトリメトキシシラン、例2、5及び9~11では3-グリシドキシプロピルトリメトキシシランを用いた。シランカップリング剤の濃度はいずれも3g/Lとした。シランカップリング剤の吸着後、最終的に電熱器により水分を蒸発させ、所定厚さの粗化処理銅箔を得た。
(5) Silane Coupling Agent Treatment The chromate-treated copper foil was washed with water and then immediately treated with a silane coupling agent to adsorb the silane coupling agent onto the chromate layer on the roughened surface. This silane coupling agent treatment was carried out by spraying a solution of a silane coupling agent using pure water as a solvent onto the roughened surface by showering for adsorption treatment. As the silane coupling agent, 3-aminopropyltrimethoxysilane was used in Examples 1, 3, 4 and 6-8, and 3-glycidoxypropyltrimethoxysilane was used in Examples 2, 5 and 9-11. The concentration of the silane coupling agent was 3 g/L in each case. After adsorption of the silane coupling agent, water was finally evaporated by an electric heater to obtain a roughened copper foil with a predetermined thickness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 評価
 製造された粗化処理銅箔について、以下に示される各種評価を行った。
Evaluation Various evaluations shown below were performed on the manufactured roughened copper foil.
<粗化処理面の表面性状パラメータ>
 レーザー顕微鏡(オリンパス株式会社製、OLS-5000)を用いた表面粗さ解析により、粗化処理銅箔の粗化処理面の測定をJIS B0601-2013に準拠して行った。このとき、粗さパラメータ(Rdc、Rku、Rc及びRq)については表2に示されるとおり測定倍率を200倍(対物レンズ倍率100倍×光学ズーム2倍)とし、うねりパラメータ(Wdc、Wt及びWp)については表3に示されるとおり測定倍率を20倍(対物レンズ倍率20倍)として測定を行った。その他の具体的な測定条件は表2及び3に示されるとおりとした。得られた粗化処理面の表面プロファイルに対して、表2及び3に示される条件に従って解析を行い、Rdc、Rku、Rc、Rq、Wdc、Wt及びWpを算出した。また、得られたRdc及びRkuの値に基づいて、Rdc/Rkuを算出した。結果は表4に示されるとおりであった。
<Surface quality parameters of roughened surface>
By surface roughness analysis using a laser microscope (OLS-5000 manufactured by Olympus Corporation), the roughened surface of the roughened copper foil was measured according to JIS B0601-2013. At this time, as shown in Table 2, the roughness parameters (Rdc, Rku, Rc and Rq) were measured with a measurement magnification of 200 times (objective lens magnification of 100 times and optical zoom of 2 times), and the waviness parameters (Wdc, Wt and Wp ), as shown in Table 3, the measurement was performed with a measurement magnification of 20 times (objective lens magnification of 20 times). Other specific measurement conditions were as shown in Tables 2 and 3. The obtained surface profile of the roughened surface was analyzed according to the conditions shown in Tables 2 and 3, and Rdc, Rku, Rc, Rq, Wdc, Wt and Wp were calculated. Also, Rdc/Rku was calculated based on the obtained Rdc and Rku values. The results were as shown in Table 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<防錆処理層における元素付着量の測定>
 粗化処理銅箔の粗化処理面における面積25cm(5cm×5cm)の領域を酸で溶解し、得られた溶解液中のZn、Ni及びMoの各濃度をICP発光分析法により分析して、Zn付着量、Ni付着量及びMo付着量を測定した。結果は表4に示されるとおりであった。
<Measurement of element adhesion amount in antirust treatment layer>
A region of 25 cm 2 (5 cm × 5 cm) on the roughened surface of the roughened copper foil was dissolved with acid, and the concentrations of Zn, Ni and Mo in the resulting solution were analyzed by ICP emission spectrometry. Zn adhesion amount, Ni adhesion amount and Mo adhesion amount were measured. The results were as shown in Table 4.
<銅張積層板の作製>
 絶縁基材として、ポリフェニレンエーテルとトリアリルイソシアヌレートとビスマレイミド樹脂とを主成分とするプリプレグ(厚さ100μm)2枚を用意して、積み重ねた。この積み重ねたプリプレグに、製造した表面処理銅箔をその粗化処理面がプリプレグと当接するように積層し、32kgf/cm、205℃で120分間のプレスを行って、34cm×34cmの銅張積層板を作製した。
<Preparation of copper-clad laminate>
Two prepregs (thickness: 100 μm) mainly composed of polyphenylene ether, triallyl isocyanurate, and bismaleimide resin were prepared and stacked as insulating substrates. The manufactured surface-treated copper foil was laminated on the stacked prepreg so that the roughened surface was in contact with the prepreg, and pressed at 32 kgf/cm 2 and 205° C. for 120 minutes to obtain a 34 cm × 34 cm copper clad. A laminate was produced.
<回路直線性>
 回路直線性の評価を次のようにして行った。まず、例4~7について、銅箔の厚さが12μmとなるまで上述した銅張積層板の銅箔側表面に対してエッチングを行った。例1~11について、銅張積層板の銅箔側表面にドライフィルムを貼り付け、露光及び現像を行い、エッチングレジストを形成した。塩化銅エッチング液で処理することにより、レジスト間から銅を溶解除去し、回路幅300μm、回路高さ12μm、長さ10cm又は15cmの直線状回路を3本ずつ(合計6本)形成した。こうして得られた直線状回路を光学顕微鏡で観察し、1本の回路あたり無作為に30箇所を選んで回路幅を測定した。得られた30個の回路幅データの組に対して平均値及び標準偏差を計算し、標準偏差を平均値で除すことで、回路ごとの変動係数(%)を算出した。6本の回路における変動係数の平均値を求め、各例における回路幅変動係数とした。得られた回路幅変動係数の良否を以下の基準に従って評価した。結果は表4に示されるとおりであった。
<回路幅変動係数評価基準>
‐良好:回路幅変動係数が1.50%以下
‐不良:回路幅変動係数が1.50%超
<Circuit linearity>
Circuit linearity was evaluated as follows. First, for Examples 4 to 7, etching was performed on the copper-foil-side surface of the above-described copper-clad laminate until the thickness of the copper foil reached 12 μm. For Examples 1 to 11, a dry film was attached to the surface of the copper-clad laminate on the copper foil side, followed by exposure and development to form an etching resist. By treating with a copper chloride etchant, copper was dissolved and removed from between the resists to form linear circuits each having a width of 300 μm, a height of 12 μm, and a length of 10 cm or 15 cm (six in total). The linear circuit thus obtained was observed with an optical microscope, and the circuit width was measured by randomly selecting 30 points per circuit. An average value and a standard deviation were calculated for the obtained 30 sets of circuit width data, and the coefficient of variation (%) for each circuit was calculated by dividing the standard deviation by the average value. The average value of the variation coefficients in the six circuits was obtained and used as the circuit width variation coefficient in each example. The quality of the obtained circuit width variation coefficient was evaluated according to the following criteria. The results were as shown in Table 4.
<Circuit Width Variation Coefficient Evaluation Criteria>
-Good: Circuit width variation coefficient is 1.50% or less -Bad: Circuit width variation coefficient is over 1.50%
<銅箔-基材間の剥離強度>
 粗化処理銅箔及び絶縁基材間の密着性を評価するために、常態剥離強度の測定を次のようにして行った。まず、例4~7について、銅箔の厚さが12μmとなるまで上述した銅張積層板の銅箔側表面に対してエッチングを行った。例1~11について、銅張積層板にエッチング法により回路形成を行い、3mm幅の直線回路を備えた試験基板を製造した。こうして得られた直線回路を、JIS C 5016-1994のA法(90°剥離)に準拠して絶縁基材から引き剥がして常態剥離強度(kgf/cm)を測定した。得られた常態剥離強度の良否を以下の基準に従って評価した。結果は表4に示されるとおりであった。
<常態剥離強度評価基準>
‐良好:常態剥離強度が0.30kgf/cm以上
‐不良:常態剥離強度が0.30kgf/cm未満
<Peel strength between copper foil and substrate>
In order to evaluate the adhesion between the roughened copper foil and the insulating substrate, the normal peel strength was measured as follows. First, for Examples 4 to 7, etching was performed on the copper-foil-side surface of the above-described copper-clad laminate until the thickness of the copper foil reached 12 μm. For Examples 1 to 11, circuit formation was performed on the copper-clad laminate by an etching method to produce a test substrate having a straight circuit with a width of 3 mm. The linear circuit thus obtained was peeled off from the insulating substrate according to JIS C 5016-1994 A method (90° peeling), and the normal peel strength (kgf/cm) was measured. The quality of the normal peel strength obtained was evaluated according to the following criteria. The results were as shown in Table 4.
<Normal state peel strength evaluation criteria>
-Good: normal peel strength is 0.30 kgf / cm or more -Poor: normal peel strength is less than 0.30 kgf / cm
(c)伝送特性
 絶縁樹脂基材として高周波用基材(パナソニック製、MEGTRON6N)を用意した。この絶縁樹脂基材の両面に粗化処理銅箔をその粗化処理面が絶縁樹脂基材と当接するように積層し、真空プレス機を使用して、温度190℃、プレス時間120分の条件で積層し、絶縁厚さ136μmの銅張積層板を得た。その後、当該銅張積層板にエッチング加工を施し、特性インピーダンスが50Ωになるようマイクロストリップラインを形成した伝送損失測定用基板を得た。得られた伝送損失測定用基板に対して、ネットワークアナライザー(キーサイトテクノロジー製、N5225B)を用いて、28GHzの伝送損失(dB/cm)を測定した。得られた伝送損失の良否を以下の基準に従って評価した。結果は表4に示されるとおりであった。
<伝送損失評価基準>
‐良好:伝送損失が-0.33dB/cm以上
‐不良:伝送損失が-0.33dB/cm未満
(c) Transmission characteristics A base material for high frequency (MEGTRON6N manufactured by Panasonic) was prepared as an insulating resin base material. A roughened copper foil is laminated on both sides of this insulating resin substrate so that the roughened surface is in contact with the insulating resin substrate, and a vacuum press is used at a temperature of 190 ° C. for a pressing time of 120 minutes. to obtain a copper-clad laminate having an insulation thickness of 136 μm. After that, the copper-clad laminate was subjected to an etching process to obtain a transmission loss measuring board on which microstrip lines were formed so as to have a characteristic impedance of 50Ω. The transmission loss (dB/cm) at 28 GHz was measured on the obtained transmission loss measuring board using a network analyzer (N5225B manufactured by Keysight Technologies). The quality of the obtained transmission loss was evaluated according to the following criteria. The results were as shown in Table 4.
<Transmission loss evaluation criteria>
-Good: Transmission loss is -0.33 dB/cm or more -Bad: Transmission loss is less than -0.33 dB/cm
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (12)

  1.  少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
     前記粗化処理面は、粗さ曲線のクルトシスRkuに対する粗さ曲線の切断レベル差Rdcの比であるRdc/Rkuが0.180μm以下であり、かつ、うねり曲線の最大断面高さWtが2.50μm以上10.00μm以下であり、
     前記Rkuは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される値であり、
     前記Rdcは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される粗さ曲線における、負荷長さ率(Rmr1)20%と負荷長さ率(Rmr2)80%との間における高さ方向の切断レベルcの差(c(Rmr1)-c(Rmr2))として得られる値であり、
     前記Wtは、JIS B0601-2013に準拠して、倍率20倍、カットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定される値である、粗化処理銅箔。
    A roughened copper foil having a roughened surface on at least one side,
    In the roughened surface, Rdc/Rku, which is the ratio of the cutting level difference Rdc of the roughness curve to the kurtosis Rku of the roughness curve, is 0.180 μm or less, and the maximum cross-sectional height Wt of the undulation curve is 2.0 μm. 50 μm or more and 10.00 μm or less,
    The Rku is a value measured in accordance with JIS B0601-2013 under the conditions of a magnification of 200, a cutoff wavelength of 0.3 μm with a cutoff value λs, and a cutoff wavelength of 5 μm with a cutoff value λc,
    The Rdc is measured in accordance with JIS B0601-2013 under the conditions of a magnification of 200, a cutoff wavelength of 0.3 μm with a cutoff value λs, and a cutoff wavelength of 5 μm with a cutoff value λc. is the value obtained as the difference (c(Rmr1)-c(Rmr2)) in the cutting level c in the height direction between the load length ratio (Rmr1) of 20% and the load length ratio (Rmr2) of 80%;
    The Wt is a value measured in accordance with JIS B0601-2013 under the conditions of a magnification of 20 times, a cutoff wavelength of 5 μm with a cutoff value λc, and no cutoff with a cutoff value λf. Copper foil.
  2.  前記粗化処理面は、前記最大断面高さWtが2.90μm以上10.00μm以下である、請求項1に記載の粗化処理銅箔。 The roughened copper foil according to claim 1, wherein the roughened surface has a maximum cross-sectional height Wt of 2.90 µm or more and 10.00 µm or less.
  3.  前記粗化処理面は、前記切断レベル差Rdcが0.45μm以下である、請求項1又は2に記載の粗化処理銅箔。 The roughened copper foil according to claim 1 or 2, wherein the roughened surface has a cutting level difference Rdc of 0.45 µm or less.
  4.  前記粗化処理面は、うねり曲線の最大山高さWpが1.00μm以上6.00μm以下であり、前記Wpは、JIS B0601-2013に準拠して、倍率20倍、カットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定される値である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has a maximum peak height Wp of an undulating curve of 1.00 μm or more and 6.00 μm or less, and the Wp is cut off by a cutoff value λc at a magnification of 20 times in accordance with JIS B0601-2013. 3. The roughened copper foil according to claim 1 or 2, which is a value measured under conditions where a wavelength of 5 μm and cutoff with a cutoff value λf are not performed.
  5.  前記粗化処理面は、粗さ曲線要素の平均高さRcが0.70μm以下であり、前記Rcは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される値である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has an average height Rc of roughness curve elements of 0.70 μm or less, and the Rc is a cutoff wavelength of 0 at a magnification of 200 and a cutoff value λs in accordance with JIS B0601-2013. The roughened copper foil according to claim 1 or 2, which is a value measured under conditions of .3 µm and a cutoff wavelength of 5 µm with a cutoff value λc.
  6.  前記粗化処理面は、うねり曲線の切断レベル差Wdcが1.20μm以上3.10μm以下であり、前記Wdcは、JIS B0601-2013に準拠して、倍率20倍、カットオフ値λcによるカットオフ波長5μm、及びカットオフ値λfによるカットオフを行わない条件で測定されるうねり曲線における、負荷長さ率(Wmr1)20%と負荷長さ率(Wmr2)80%との間における高さ方向の切断レベルcの差(c(Wmr1)-c(Wmr2))として得られる値である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has a cutting level difference Wdc of the undulating curve of 1.20 μm or more and 3.10 μm or less, and the Wdc is cut off by a cutoff value λc at a magnification of 20 times in accordance with JIS B0601-2013. Height direction between load length ratio (Wmr1) 20% and load length ratio (Wmr2) 80% in the undulation curve measured under the condition that the wavelength is 5 μm and the cutoff value λf is not cut off. 3. The roughened copper foil according to claim 1, which is a value obtained as a difference (c(Wmr1)-c(Wmr2)) of the cutting level c.
  7.  前記粗化処理面は、粗さ曲線の二乗平均平方根高さRqが0.290μm以下であり、前記Rqは、JIS B0601-2013に準拠して、倍率200倍、カットオフ値λsによるカットオフ波長0.3μm、及びカットオフ値λcによるカットオフ波長5μmの条件で測定される値である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has a root-mean-square height Rq of the roughness curve of 0.290 μm or less, and the Rq is a cutoff wavelength with a cutoff value λs at a magnification of 200 in accordance with JIS B0601-2013. 3. The roughened copper foil according to claim 1, which is a value measured under conditions of 0.3 μm and a cutoff wavelength of 5 μm with a cutoff value λc.
  8.  前記粗化処理面は、前記クルトシスRkuが1.30以上8.00以下である、請求項1又は2に記載の粗化処理銅箔。 The roughened copper foil according to claim 1 or 2, wherein the roughened surface has a kurtosis Rku of 1.30 or more and 8.00 or less.
  9.  前記粗化処理面に防錆処理層及び/又はシランカップリング剤処理層を備える、請求項1又は2に記載の粗化処理銅箔。 The roughened copper foil according to claim 1 or 2, wherein the roughened surface is provided with an anticorrosive layer and/or a silane coupling agent-treated layer.
  10.  前記粗化処理銅箔が電解銅箔であり、前記粗化処理面が電解銅箔の析出面側に存在する、請求項1又は2に記載の粗化処理銅箔。 The roughened copper foil according to claim 1 or 2, wherein the roughened copper foil is an electrolytic copper foil, and the roughened surface is present on the deposition surface side of the electrolytic copper foil.
  11.  請求項1又は2に記載の粗化処理銅箔を備えた、銅張積層板。 A copper clad laminate comprising the roughened copper foil according to claim 1 or 2.
  12.  請求項1又は2に記載の粗化処理銅箔を備えた、プリント配線板。

     
    A printed wiring board comprising the roughened copper foil according to claim 1 or 2.

PCT/JP2022/022387 2021-06-03 2022-06-01 Roughened copper foil, copper clad laminate, and printed wiring board WO2022255421A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023525898A JPWO2022255421A1 (en) 2021-06-03 2022-06-01
CN202280039573.8A CN117441039A (en) 2021-06-03 2022-06-01 Roughened copper foil, copper-clad laminate and printed circuit board
KR1020237043495A KR20240017841A (en) 2021-06-03 2022-06-01 Roughened copper foil, copper clad laminate and printed wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021093517 2021-06-03
JP2021-093517 2021-06-03
JP2021121031 2021-07-21
JP2021-121031 2021-07-21

Publications (1)

Publication Number Publication Date
WO2022255421A1 true WO2022255421A1 (en) 2022-12-08

Family

ID=84324125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022387 WO2022255421A1 (en) 2021-06-03 2022-06-01 Roughened copper foil, copper clad laminate, and printed wiring board

Country Status (4)

Country Link
JP (1) JPWO2022255421A1 (en)
KR (1) KR20240017841A (en)
TW (1) TWI808775B (en)
WO (1) WO2022255421A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042201A1 (en) * 2012-09-11 2014-03-20 Jx日鉱日石金属株式会社 Copper foil provided with carrier
JP2014201777A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Carrier-provided copper foil
WO2019188087A1 (en) * 2018-03-30 2019-10-03 三井金属鉱業株式会社 Copper-clad laminate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
JP5758035B2 (en) 2013-08-20 2015-08-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP2018145519A (en) * 2017-03-03 2018-09-20 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method of producing printed wiring board and method of producing electronic apparatus
JP7356209B2 (en) 2017-03-31 2023-10-04 Jx金属株式会社 Surface-treated copper foil, surface-treated copper foil with resin layer, copper foil with carrier, laminate, method for manufacturing printed wiring boards, and method for manufacturing electronic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042201A1 (en) * 2012-09-11 2014-03-20 Jx日鉱日石金属株式会社 Copper foil provided with carrier
JP2014201777A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Carrier-provided copper foil
WO2019188087A1 (en) * 2018-03-30 2019-10-03 三井金属鉱業株式会社 Copper-clad laminate

Also Published As

Publication number Publication date
TWI808775B (en) 2023-07-11
JPWO2022255421A1 (en) 2022-12-08
TW202248458A (en) 2022-12-16
KR20240017841A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2022255420A1 (en) Roughened copper foil, copper-clad laminated board, and printed wiring board
JP6193534B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
TWI719567B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN107923047B (en) Roughened copper foil, copper-clad laminate, and printed wiring board
JP7374298B2 (en) Roughened copper foil, copper clad laminates and printed wiring boards
WO2016117587A1 (en) Ultrathin copper foil with carrier and method for manufacturing same
JP7259093B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP7177956B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2022255421A1 (en) Roughened copper foil, copper clad laminate, and printed wiring board
WO2022255422A1 (en) Roughened copper foil, copper-clad laminate board, and printed circuit board
WO2022209989A1 (en) Roughened copper foil, copper-cladded laminate board, and printed wiring board
WO2022209990A1 (en) Roughened copper foil, copper-clad laminate and printed wiring board
WO2019188837A1 (en) Surface-treated copper foil, copper-cladded laminate, and manufacturing method for printed wiring board
WO2023054398A1 (en) Roughened copper foil, copper-clad laminate, and method for manufacturing printed wiring board
CN117441039A (en) Roughened copper foil, copper-clad laminate and printed circuit board
CN117480281A (en) Roughened copper foil, copper-clad laminate and printed circuit board
JP2023040316A (en) Surface-treated metallic foil and metal clad laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023525898

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237043495

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE