WO2014042201A1 - Copper foil provided with carrier - Google Patents

Copper foil provided with carrier Download PDF

Info

Publication number
WO2014042201A1
WO2014042201A1 PCT/JP2013/074585 JP2013074585W WO2014042201A1 WO 2014042201 A1 WO2014042201 A1 WO 2014042201A1 JP 2013074585 W JP2013074585 W JP 2013074585W WO 2014042201 A1 WO2014042201 A1 WO 2014042201A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier
copper foil
resin
copper
Prior art date
Application number
PCT/JP2013/074585
Other languages
French (fr)
Japanese (ja)
Inventor
倫也 古曳
友太 永浦
和彦 坂口
徹 千葉
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50278311&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014042201(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201380046519.7A priority Critical patent/CN104619889B/en
Priority to KR1020157009363A priority patent/KR101766554B1/en
Priority to KR1020177011125A priority patent/KR102050646B1/en
Publication of WO2014042201A1 publication Critical patent/WO2014042201A1/en
Priority to PH12015500529A priority patent/PH12015500529A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Definitions

  • the present invention relates to a copper foil with a carrier.
  • this invention relates to the copper foil with a carrier used as a material of a printed wiring board.
  • a printed wiring board is generally manufactured through a process of forming a copper-clad laminate by bonding an insulating substrate to copper foil and then forming a conductor pattern on the copper foil surface by etching.
  • higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.
  • the ultrathin copper layer is etched away with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi-Additive-Process). Is formed.
  • MSAP sulfuric acid-hydrogen peroxide etchant
  • the peel strength between the ultrathin copper layer and the resin base material is mainly sufficient, and the peel strength Is required to be sufficiently retained after high-temperature heating, wet processing, soldering, chemical processing, and the like.
  • a method of increasing the peel strength between the ultrathin copper layer and the resin base material generally, a large amount of roughened particles are adhered on the ultrathin copper layer having a large surface profile (unevenness, roughness). The method is representative.
  • Patent Document 1 a copper foil with a carrier that is not subjected to a roughening treatment on the surface of an ultrathin copper layer is used as a copper foil with a carrier for use in a fine circuit including a semiconductor package substrate. It has been tried.
  • the adhesion (peeling strength) between the ultrathin copper layer not subjected to such roughening treatment and the resin is affected by the low profile (unevenness, roughness, roughness) of the general copper foil for printed wiring boards. There is a tendency to decrease when compared. Therefore, the further improvement is calculated
  • the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate is Ni. It is described that a layer or / and a Ni alloy layer are provided, a chromate layer is provided, a Cr layer or / and a Cr alloy layer are provided, a Ni layer and a chromate layer are provided, and a Ni layer and a Cr layer are provided. Has been.
  • the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the desired adhesive strength is achieved while reducing the degree of the roughening treatment (miniaturization). It has gained. Further, it is described that the surface treatment is performed with a silane coupling agent or the rust prevention treatment is performed.
  • the present inventors have conducted intensive research, and as a result, the surface of the ultrathin copper layer is reduced in roughness, and finely roughened particles are formed in the ultrathin copper layer. It has been found that a roughened surface with low roughness can be formed. And it discovered that the said copper foil with a carrier was very effective for fine pitch formation.
  • the present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer.
  • a copper foil with a carrier, the ultrathin copper layer is roughened, and the Rz of the surface of the ultrathin copper layer is 1.6 ⁇ m or less as measured by a non-contact type roughness meter. is there.
  • the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer,
  • the ultrathin copper layer is roughened, and Ra on the surface of the ultrathin copper layer is a copper foil with a carrier as measured by a non-contact type roughness meter and is 0.3 ⁇ m or less.
  • the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer.
  • the ultrathin copper layer is roughened, and Rt on the surface of the ultrathin copper layer is a copper foil with a carrier that is 2.3 ⁇ m or less as measured with a non-contact type roughness meter.
  • Rz on the surface of the ultrathin copper layer is 1.4 ⁇ m or less as measured by a non-contact type roughness meter.
  • Ra on the surface of the ultrathin copper layer is 0.25 ⁇ m or less as measured with a non-contact roughness meter.
  • the Rt of the ultrathin copper layer surface is 1.8 ⁇ m or less as measured by a non-contact type roughness meter.
  • the surface of the ultrathin copper layer has Ssk of ⁇ 0.3 to 0.3.
  • the surface of the ultrathin copper layer has a Sku of 2.7 to 3.3.
  • a copper foil carrier In yet another embodiment of the copper foil with a carrier according to the present invention, a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer were provided.
  • the ultrathin copper layer In the copper foil with a carrier, the ultrathin copper layer is roughened, and the surface area ratio of the surface of the ultrathin copper layer is 1.05 to 1.5.
  • the surface area ratio of the surface of the ultrathin copper layer is 1.05 to 1.5.
  • the volume per area 66524 ⁇ m 2 of the surface of the ultrathin copper layer is 300000 ⁇ m 3 or more.
  • the present invention is a copper clad laminate manufactured using the copper foil with a carrier according to the present invention.
  • the present invention is a printed wiring board manufactured using the carrier-attached copper foil according to the present invention.
  • the present invention is a printed circuit board manufactured using a copper foil with a carrier.
  • the printed wiring board manufacturing method includes a step of forming a circuit by any one of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
  • FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention. It is.
  • GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention.
  • J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • a copper foil is used as a carrier that can be used in the present invention.
  • the carrier is typically provided in the form of rolled copper foil or electrolytic copper foil.
  • the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
  • the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used.
  • a copper alloy foil is also included.
  • the thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 ⁇ m or more. However, if it is too thick, the production cost increases, so it is generally preferable that the thickness is 70 ⁇ m or less. Accordingly, the thickness of the carrier is typically 12-70 ⁇ m, more typically 18-35 ⁇ m.
  • a release layer is provided on the carrier.
  • a peeling layer it can be set as the arbitrary peeling layers known to those skilled in the art in copper foil with a carrier.
  • the release layer may be one or more of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, alloys thereof, hydrates thereof, oxides thereof, or organic substances. It is preferable to form with the layer containing.
  • the release layer may be composed of a plurality of layers.
  • the release layer is a single metal layer made of any one element of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, and Al elements from the carrier side, Or, an alloy layer made of one or more elements selected from the element group of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, and Al, and Cr, Ni, Co, It is comprised from the layer which consists of a hydrate or oxide of 1 or more elements selected from the element group of Fe, Mo, Ti, W, P, Cu, and Al.
  • the release layer is preferably composed of two layers of Ni and Cr.
  • the Ni layer is laminated in contact with the interface with the copper foil carrier and the Cr layer is in contact with the interface with the ultrathin copper layer.
  • the release layer can be obtained by, for example, wet plating such as electroplating, electroless plating, and immersion plating, or dry plating such as sputtering, CVD, and PDV. Electroplating is preferable from the viewpoint of cost.
  • Ultra-thin copper layer An ultrathin copper layer is provided on the release layer.
  • the ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable.
  • the thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 ⁇ m or less. Typically 0.5 to 12 ⁇ m, more typically 2 to 5 ⁇ m.
  • a roughening treatment layer is provided by performing a roughening treatment, for example, for improving the adhesion to the insulating substrate.
  • the roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy.
  • the roughening treatment layer is preferably composed of fine particles from the viewpoint of fine pitch formation.
  • the electroplating conditions for forming the roughened particles if the current density is increased, the copper concentration in the plating solution is decreased, or the amount of coulomb is increased, the particles tend to become finer.
  • the roughening layer is composed of electrodeposited grains made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, and zinc, or an alloy containing at least one of them. can do.
  • secondary particles and tertiary particles and / or a rust-preventing layer and / or a heat-resistant layer are formed of nickel, cobalt, copper, zinc alone or an alloy, and further, chromate treatment is performed on the surface thereof.
  • Surface treatment such as silane coupling treatment may be performed. That is, you may form 1 or more types of layers selected from the group which consists of a rust prevention layer, a heat-resistant layer, a chromate processing layer, and a silane coupling processing layer on the surface of a roughening processing layer.
  • a heat-resistant layer and / or a rust-preventing layer may be provided on the roughened layer
  • a chromate-treated layer may be provided on the heat-resistant layer and / or the rust-proof layer
  • a silane cup is provided on the chromate-treated layer.
  • a ring treatment layer can be provided.
  • the order of forming the heat-resistant layer, the rust-preventing layer, the chromate treatment layer, and the silane coupling treatment layer is not limited to each other, and these layers may be formed in any order on the roughening treatment layer. .
  • the surface of the ultrathin copper layer after various surface treatments such as roughening treatment is Rz (10-point average roughness) when measured with a non-contact type roughness meter. ) Of 1.6 ⁇ m or less is extremely advantageous from the viewpoint of fine pitch formation.
  • Rz is preferably 1.5 ⁇ m or less, more preferably 1.4 ⁇ m or less, even more preferably 1.35 ⁇ m or less, even more preferably 1.3 ⁇ m or less, and even more preferably 1.2 ⁇ m or less. More preferably 1.0 ⁇ m or less, still more preferably 0.8 ⁇ m or less, and even more preferably 0.6 ⁇ m or less.
  • Rz is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.2 ⁇ m or more, because if the Rz is too small, the adhesion with the resin is reduced. Is more preferable.
  • the surface of the ultrathin copper layer after being subjected to various surface treatments such as roughening treatment is Ra (arithmetic mean roughness) when measured with a non-contact type roughness meter. Is 0.30 ⁇ m or less from the viewpoint of fine pitch formation. Ra is preferably 0.27 ⁇ m or less, more preferably 0.26 ⁇ m or less, more preferably 0.25 ⁇ m or less, more preferably 0.24 ⁇ m or less, more preferably 0.23 ⁇ m or less, and even more preferably 0.20 ⁇ m.
  • Ra is preferably 0.005 ⁇ m or more, more preferably 0.009 ⁇ m or more, 0.01 ⁇ m or more, or 0.02 ⁇ m or more, because if it becomes too small, the adhesive strength with the resin is reduced.
  • the thickness is more preferably 0.05 ⁇ m or more, and more preferably 0.10 ⁇ m or more.
  • the surface of the ultrathin copper layer after being subjected to various surface treatments such as roughening treatment has an Rt of 2.3 ⁇ m or less when measured with a non-contact type roughness meter. This is extremely advantageous from the viewpoint of fine pitch formation.
  • Rt is preferably 2.2 ⁇ m or less, preferably 2.1 ⁇ m or less, preferably 2.07 ⁇ m or less, more preferably 2.0 ⁇ m or less, more preferably 1.9 ⁇ m or less, and more preferably 1.8 ⁇ m or less. Even more preferably, it is 1.5 ⁇ m or less, still more preferably 1.2 ⁇ m or less, and even more preferably 1.0 ⁇ m or less.
  • Rt is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more, since the adhesive strength with the resin decreases if Rt is too small.
  • it is 0.5 ⁇ m or more.
  • the surface of the ultrathin copper layer after various surface treatments such as roughening treatment has an Ssk (skewness) of ⁇ 0.3 to 0.3 when measured with a non-contact type roughness meter. Is preferable from the viewpoint of fine pitch formation.
  • the lower limit of Ssk is preferably ⁇ 0.2 or more, more preferably ⁇ 0.1 or more, more preferably ⁇ 0.070 or more, more preferably ⁇ 0.065 or more, more preferably It is -0.060 or more, more preferably -0.058 or more, and further preferably 0 or more.
  • the upper limit of Ssk is preferably 0.2 or less.
  • the surface of the ultrathin copper layer after various surface treatments such as roughening treatment may have a Sku (Cultosis) of 2.7 to 3.3 when measured with a non-contact type roughness meter. It is preferable from the viewpoint of fine pitch formation.
  • the lower limit of Sku is preferably 2.8 or more, more preferably 2.9 or more, and more preferably 3.0 or more.
  • the upper limit of Sku is preferably 3.2 or less.
  • the roughness parameters of Rz and Ra on the surface of the ultrathin copper layer conform to JIS B0601-1994, and the roughness parameter of Rt conforms to JIS B0601-2001, the roughness of Ssk and Sku.
  • the parameters are measured with a non-contact type roughness meter in accordance with ISO 25178 draft.
  • the volume here refers to a value measured with a laser microscope and serves as an index for evaluating the volume of the roughened particles present on the roughened surface.
  • the volume is preferably 300,000 ⁇ m 3 or more, more preferably 350,000 ⁇ m 3 or more per area 66524 ⁇ m 2 of the roughened surface as measured by a laser microscope.
  • volume may preferably be 500000Myuemu 3 or less, and more preferably, 450000Myuemu 3 or less.
  • the surface area ratio here is a value measured by a laser microscope, and is a value of actual area / area when the area and the actual area are measured.
  • the area refers to the measurement reference area
  • the actual area refers to the surface area in the measurement reference area. If the surface area ratio becomes too large, the adhesion strength increases, but the etching amount increases and fine pitch cannot be formed. On the other hand, if the surface area ratio becomes too small, the adhesion strength cannot be secured, and is preferably 1.05 to 1.5. 0.07 to 1.47 is preferable, 1.09 to 1.4 is preferable, and 1.1 to 1.3 is more preferable.
  • a resin layer may be further provided on the surface of the ultrathin copper layer after various surface treatments such as roughening treatment.
  • a resin layer may be provided on the roughening treatment layer, the heat-resistant layer, the rust prevention layer, the chromate treatment layer, or the silane coupling treatment layer.
  • the resin layer may be an insulating resin layer.
  • the resin layer may be an adhesive resin, that is, an adhesive, or may be a semi-cured (B-stage) insulating resin layer for adhesion.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may contain a thermosetting resin or a thermoplastic resin.
  • the resin layer may include a thermoplastic resin.
  • the resin layer may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like.
  • the resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication. No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Application Laid-Open No.
  • Japanese Patent No. 3612594 Japanese Patent Application Laid-Open No. 2002-179721, Japanese Patent Application Laid-Open No. 2002-309444, Japanese Patent Application Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Application Laid-Open No. -249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, and Japanese Patent Application Laid-Open No. 4570070. No. 5-53218, Japanese Patent No.
  • WO 2008/114858 International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
  • the type of the resin layer is not particularly limited.
  • epoxy resin polyimide resin, polyfunctional cyanate ester compound, maleimide compound, polymaleimide compound, maleimide resin, aromatic maleimide resin , Polyvinyl acetal resin, urethane resin, polyethersulfone (also referred to as polyethersulfone or polyethersulfone), polyethersulfone (also referred to as polyethersulfone or polyethersulfone) resin, aromatic polyamide resin, aromatic Polyamide resin polymer, rubber resin, polyamine, aromatic polyamine, polyamideimide resin, rubber modified epoxy resin, phenoxy resin, carboxyl group-modified acrylonitrile-butadiene resin, polyphenylene oxide, bismaleimide triazine Resins, thermosetting polyphenylene oxide resins, cyanate ester resins, carboxylic acid anhydrides, polyvalent carboxylic acid anhydrides, linear polymers having crosslinkable functional groups, polyphenylene ether resins, 2,2-
  • the epoxy resin has two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials.
  • the epoxy resin is preferably an epoxy resin epoxidized using a compound having two or more glycidyl groups in the molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, brominated (brominated) epoxy Resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, brominated bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, rubber modified bisphenol A type epoxy resin, glycidylamine type epoxy resin, triglycidyl isocyanurate, N, N -Glycidyl amine compounds such as diglycidyl aniline, glycidyl ester compounds such as diglycidyl tetrahydrophthalate, phosphorus-containing epoxy resins, biphenyl type epoxy resins, One or two or more types selected from the group of phenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylethane type epoxy resin can be used, or
  • the phosphorus-containing epoxy resin a known epoxy resin containing phosphorus can be used.
  • the phosphorus-containing epoxy resin is, for example, an epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having two or more epoxy groups in the molecule. Is preferred.
  • the epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is converted to 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide.
  • a compound represented by the following chemical formula 1 (HCA-NQ) or chemical formula 2 (HCA-HQ) an epoxy resin is reacted with the OH group portion to obtain a phosphorus-containing epoxy resin. Is.
  • the phosphorus-containing epoxy resin which is the component E obtained using the above-mentioned compound as a raw material, is a mixture of one or two compounds having the structural formula shown in any one of the following chemical formulas 3 to 5. Is preferred. This is because the resin quality in a semi-cured state is excellent in stability, and at the same time, the flame retardant effect is high.
  • the brominated (brominated) epoxy resin a known brominated (brominated) epoxy resin can be used.
  • the brominated (brominated) epoxy resin is a brominated epoxy resin having the structural formula shown in Chemical formula 6 obtained as a derivative from tetrabromobisphenol A having two or more epoxy groups in the molecule. It is preferable to use one or two brominated epoxy resins having the structural formula shown in FIG.
  • maleimide resin aromatic maleimide resin, maleimide compound or polymaleimide compound
  • known maleimide resins aromatic maleimide resins, maleimide compounds or polymaleimide compounds
  • maleimide resin or aromatic maleimide resin or maleimide compound or polymaleimide compound 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl -5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1, It is possible to use 3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and a polymer obtained
  • the maleimide resin may be an aromatic maleimide resin having two or more maleimide groups in the molecule, and an aromatic maleimide resin having two or more maleimide groups in the molecule and a polyamine or aromatic polyamine. Polymerization adducts obtained by polymerizing and may be used. As the polyamine or aromatic polyamine, known polyamines or aromatic polyamines can be used.
  • polyamine or aromatic polyamine m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodicyclohexylmethane, 1,4-diaminocyclohexane, 2,6-diaminopyridine, 4,4′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane, 4,4′-diaminodiphenyl ether, 4,4′-diamino-3-methyldiphenyl ether, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminobenzophenone, 4,4'-diaminodiphenylsulfone, bis (4-aminophenyl) phenylamine, m-xylenediamine, p-xylenediamine, 1,3-bis [4-aminophenoxy] benzene, 3-methyl-4,4 '
  • 1 type, or 2 or more types of well-known polyamine and / or aromatic polyamine or the above-mentioned polyamine or aromatic polyamine can be used.
  • a known phenoxy resin can be used as the phenoxy resin.
  • combined by reaction of bisphenol and a bivalent epoxy resin can be used as said phenoxy resin.
  • an epoxy resin a well-known epoxy resin and / or the above-mentioned epoxy resin can be used.
  • the bisphenol known bisphenols can be used, and bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A, 4,4′-dihydroxybiphenyl, HCA (9,10-Dihydro-9-Oxa- Bisphenol obtained as an adduct of 10-phosphophenanthrene-10-oxide) and quinones such as hydroquinone and naphthoquinone can be used.
  • the linear polymer having a crosslinkable functional group a known linear polymer having a crosslinkable functional group can be used.
  • the linear polymer having a crosslinkable functional group preferably has a functional group that contributes to the curing reaction of an epoxy resin such as a hydroxyl group or a carboxyl group.
  • the linear polymer having a crosslinkable functional group is preferably soluble in an organic solvent having a boiling point of 50 ° C. to 200 ° C.
  • Specific examples of the linear polymer having a functional group mentioned here include polyvinyl acetal resin, phenoxy resin, polyethersulfone resin, polyamideimide resin and the like.
  • the resin layer may contain a crosslinking agent.
  • a known crosslinking agent can be used as the crosslinking agent.
  • a urethane-based resin can be used as the crosslinking agent.
  • a known rubber resin can be used as the rubber resin.
  • the rubbery resin is described as a concept including natural rubber and synthetic rubber.
  • the latter synthetic rubber includes styrene-butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber, acrylonitrile butadiene rubber, acrylic rubber ( Acrylic ester copolymer), polybutadiene rubber, isoprene rubber and the like. Furthermore, when ensuring the heat resistance of the resin layer to be formed, it is also useful to select and use a synthetic rubber having heat resistance such as nitrile rubber, chloroprene rubber, silicon rubber, urethane rubber or the like. Regarding these rubber resins, it is desirable to have various functional groups at both ends in order to produce a copolymer by reacting with an aromatic polyamide resin or a polyamideimide resin.
  • CTBN carboxy group-terminated butadiene nitrile
  • C-NBR carboxy-modified nitrile butadiene rubber
  • a known polyimide amide resin can be used as the polyamide imide resin.
  • polyimide amide resin for example, trimellitic anhydride, benzophenonetetracarboxylic anhydride and vitorylene diisocyanate are heated in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide.
  • trimellitic anhydride, diphenylmethane diisocyanate and carboxyl group-terminated acrylonitrile-butadiene rubber in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide. What is obtained can be used.
  • a known rubber-modified polyamideimide resin can be used as the rubber-modified polyamideimide resin.
  • the rubber-modified polyamideimide resin is obtained by reacting a polyamideimide resin and a rubber resin.
  • the reaction of the polyamide-imide resin and the rubber resin is performed for the purpose of improving the flexibility of the polyamide-imide resin itself. That is, the polyamideimide resin and the rubber resin are reacted to replace a part of the acid component (cyclohexanedicarboxylic acid or the like) of the polyamideimide resin with the rubber component.
  • a known polyamideimide resin can be used as the polyamideimide resin.
  • As the rubber resin a known rubber resin or the aforementioned rubber resin can be used.
  • Solvents used for dissolving the polyamideimide resin and the rubbery resin when polymerizing the rubber-modified polyamideimide resin include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, nitromethane, nitroethane, tetrahydrofuran , Cyclohexanone, methyl ethyl ketone, acetonitrile, ⁇ -butyrolactone and the like are preferably used alone or in combination.
  • a known phosphazene resin can be used as the phosphazene resin.
  • the phosphazene resin is a resin containing phosphazene having a double bond having phosphorus and nitrogen as constituent elements.
  • the phosphazene resin can dramatically improve the flame retardancy due to the synergistic effect of nitrogen and phosphorus in the molecule.
  • a known fluororesin can be used as the fluororesin.
  • fluororesin examples include PTFE (polytetrafluoroethylene (tetrafluoroethylene)), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer (4.6).
  • PTFE polytetrafluoroethylene (tetrafluoroethylene)
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer (4.6).
  • a fluororesin composed of at least one thermoplastic resin selected from polysulfide and aromatic polyether and a fluororesin may be used.
  • the resin layer may contain a resin curing agent.
  • a known resin curing agent can be used as the resin curing agent.
  • resin curing agents include amines such as dicyandiamide, imidazoles and aromatic amines, phenols such as bisphenol A and brominated bisphenol A, novolaks such as phenol novolac resins and cresol novolac resins, and acid anhydrides such as phthalic anhydride.
  • amines such as dicyandiamide, imidazoles and aromatic amines
  • phenols such as bisphenol A and brominated bisphenol A
  • novolaks such as phenol novolac resins and cresol novolac resins
  • acid anhydrides such as phthalic anhydride.
  • the resin layer may contain one or more of the aforementioned resin curing agents. These curing agents are particularly effective for epoxy resins.
  • a specific example of the biphenyl type phenol resin is shown in Chemical Formula 8.
  • imidazoles can be used, such as 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5- Hydroxymethylimidazole etc. are mentioned, These can be used individually or in mixture. Of these, imidazoles having the structural formula shown in Chemical Formula 10 below are preferably used.
  • the moisture absorption resistance of the semi-cured resin layer can be remarkably improved, and the long-term storage stability is excellent. This is because imidazoles function as a catalyst during curing of the epoxy resin and contribute as a reaction initiator that causes a self-polymerization reaction of the epoxy resin in the initial stage of the curing reaction.
  • amine resin curing agent known amines can be used.
  • the amine resin curing agent for example, the above-mentioned polyamines and aromatic polyamines can be used, and aromatic polyamines, polyamides, and these are obtained by polymerizing or condensing with epoxy resins or polyvalent carboxylic acids.
  • One or more selected from the group of amine adducts to be used may be used.
  • the resin curing agent for the amines examples include 4,4′-diaminodiphenylene sulfone, 3,3′-diaminodiphenylene sulfone, 4,4-diaminodiphenylel, 2,2-bis [4 It is preferable to use at least one of-(4-aminophenoxy) phenyl] propane and bis [4- (4-aminophenoxy) phenyl] sulfone.
  • the resin layer may contain a curing accelerator.
  • a known curing accelerator can be used as the curing accelerator.
  • tertiary amine, imidazole, urea curing accelerator and the like can be used.
  • the resin layer may include a reaction catalyst.
  • a known reaction catalyst can be used as the reaction catalyst. For example, finely pulverized silica or antimony trioxide can be used as a reaction catalyst.
  • the anhydride of the polyvalent carboxylic acid is preferably a component that contributes as a curing agent for the epoxy resin.
  • the anhydride of the polyvalent carboxylic acid is phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydroxyphthalic anhydride, hexahydroxyphthalic anhydride, methylhexahydroxyphthalic anhydride, nadine. Acid and methyl nadic acid are preferred.
  • the thermoplastic resin may be a thermoplastic resin having a functional group other than an alcoholic hydroxyl group polymerizable with an epoxy resin.
  • the polyvinyl acetal resin may have a functional group polymerizable with an epoxy resin or a maleimide compound other than an acid group and a hydroxyl group.
  • the polyvinyl acetal resin may have a carboxyl group, an amino group or an unsaturated double bond introduced into the molecule.
  • the aromatic polyamide resin polymer include those obtained by reacting an aromatic polyamide resin and a rubber resin.
  • the aromatic polyamide resin is synthesized by condensation polymerization of an aromatic diamine and a dicarboxylic acid.
  • aromatic diamine As the aromatic diamine at this time, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, m-xylenediamine, 3,3′-oxydianiline and the like are used.
  • dicarboxylic acid phthalic acid, isophthalic acid, terephthalic acid, fumaric acid or the like is used.
  • rubber resin to be reacted with the aromatic polyamide resin a known rubber resin or the aforementioned rubber resin can be used. This aromatic polyamide resin polymer is used for the purpose of not being damaged by under-etching by an etchant when etching a copper foil after being processed into a copper-clad laminate.
  • the resin layer is a cured resin layer (the “cured resin layer” means a cured resin layer) and a half in order from the copper foil side (that is, the ultrathin copper layer side of the copper foil with carrier).
  • the resin layer which formed the cured resin layer sequentially may be sufficient.
  • the cured resin layer may be composed of a resin component of any one of a polyimide resin, a polyamideimide resin, and a composite resin having a thermal expansion coefficient of 0 ppm / ° C. to 25 ppm / ° C.
  • a semi-cured resin layer having a coefficient of thermal expansion after curing of 0 ppm / ° C. to 50 ppm / ° C. may be provided on the cured resin layer.
  • the thermal expansion coefficient of the entire resin layer after the cured resin layer and the semi-cured resin layer are cured may be 40 ppm / ° C. or less.
  • the cured resin layer may have a glass transition temperature of 300 ° C. or higher.
  • the semi-cured resin layer may be formed using a maleimide resin or an aromatic maleimide resin.
  • the resin composition for forming the semi-cured resin layer preferably contains a maleimide resin, an epoxy resin, and a linear polymer having a crosslinkable functional group.
  • epoxy resin a known epoxy resin or an epoxy resin described in this specification can be used.
  • maleimide resins aromatic maleimide resins, linear polymers having crosslinkable functional groups, known maleimide resins, aromatic maleimide resins, linear polymers having crosslinkable functional groups, or the aforementioned maleimide resins.
  • An aromatic maleimide resin or a linear polymer having a crosslinkable functional group can be used.
  • the said cured resin layer is a polymeric polymer layer which has hardened
  • the polymer layer is preferably made of a resin having a glass transition temperature of 150 ° C. or higher so that it can withstand the solder mounting process.
  • the polymer polymer layer is preferably made of one or a mixture of two or more of a polyamide resin, a polyether sulfone resin, an aramid resin, a phenoxy resin, a polyimide resin, a polyvinyl acetal resin, and a polyamideimide resin.
  • the thickness of the polymer layer is preferably 3 ⁇ m to 10 ⁇ m.
  • the said high molecular polymer layer contains any 1 type, or 2 or more types of an epoxy resin, a maleimide-type resin, a phenol resin, and a urethane resin.
  • the semi-cured resin layer is preferably composed of an epoxy resin composition having a thickness of 10 ⁇ m to 50 ⁇ m.
  • the epoxy resin composition preferably contains the following components A to E.
  • Component A An epoxy resin having one or more selected from the group consisting of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol AD type epoxy resin that have an epoxy equivalent of 200 or less and are liquid at room temperature.
  • B component High heat-resistant epoxy resin.
  • Component C Phosphorus-containing flame-retardant resin, which is any one of phosphorus-containing epoxy resin and phosphazene-based resin, or a mixture of these.
  • Component D A rubber-modified polyamideimide resin modified with a liquid rubber component having a property of being soluble in a solvent having a boiling point in the range of 50 ° C. to 200 ° C.
  • E component Resin curing agent.
  • the B component is a “high heat resistant epoxy resin” having a high so-called glass transition point Tg.
  • the “high heat-resistant epoxy resin” referred to here is preferably a polyfunctional epoxy resin such as a novolac-type epoxy resin, a cresol novolac-type epoxy resin, a phenol novolac-type epoxy resin, or a naphthalene-type epoxy resin.
  • the phosphorus-containing epoxy resin of component C the aforementioned phosphorus-containing epoxy resin can be used.
  • the phosphazene resin described above can be used as the C component phosphazene resin.
  • the rubber-modified polyamide-imide resin described above can be used as the rubber-modified polyamide-imide resin of component D.
  • the resin curing agent described above can be used as the E component resin curing agent.
  • a solvent is added to the resin composition shown above and used as a resin varnish to form a thermosetting resin layer as an adhesive layer of a printed wiring board.
  • the resin varnish is prepared by adding a solvent to the resin composition described above so that the resin solid content is in the range of 30 wt% to 70 wt%, and the resin flow when measured in accordance with MIL-P-13949G in the MIL standard.
  • a semi-cured resin film in the range of 5% to 35% can be formed.
  • the solvent a known solvent or the aforementioned solvent can be used.
  • the resin layer is a resin layer having a first thermosetting resin layer and a second thermosetting resin layer located on the surface of the first thermosetting resin layer in order from the copper foil side
  • the curable resin layer is formed of a resin component that does not dissolve in chemicals during desmear processing in the wiring board manufacturing process, and the second thermosetting resin layer dissolves in chemicals during desmear processing in the wiring board manufacturing process. Then, it may be formed using a resin that can be washed and removed.
  • the first thermosetting resin layer may be formed using a resin component obtained by mixing one or more of polyimide resin, polyethersulfone, and polyphenylene oxide.
  • the second thermosetting resin layer may be formed using an epoxy resin component.
  • the thickness t1 ( ⁇ m) of the first thermosetting resin layer is Rz ( ⁇ m) of the roughened surface roughness of the copper foil with carrier, and the thickness of the second thermosetting resin layer is t2 ( ⁇ m). Then, t1 is preferably a thickness that satisfies the condition of Rz ⁇ t1 ⁇ t2.
  • the resin layer may be a prepreg in which a skeleton material is impregnated with a resin.
  • the resin impregnated in the skeleton material is preferably a thermosetting resin.
  • the prepreg may be a known prepreg or a prepreg used for manufacturing a printed wiring board.
  • the skeleton material may include aramid fibers, glass fibers, or wholly aromatic polyester fibers.
  • the skeleton material is preferably an aramid fiber, a glass fiber, or a nonwoven fabric or woven fabric of wholly aromatic polyester fibers.
  • the wholly aromatic polyester fiber is preferably a wholly aromatic polyester fiber having a melting point of 300 ° C. or higher.
  • the wholly aromatic polyester fiber having a melting point of 300 ° C. or higher is a fiber produced using a resin called a so-called liquid crystal polymer, and the liquid crystal polymer includes 2-hydroxyl-6-naphthoic acid and p-hydroxybenzoic acid.
  • the main component is an acid polymer.
  • this wholly aromatic polyester fiber has a low dielectric constant and low dielectric loss tangent, it has excellent performance as a constituent material of an electrically insulating layer and can be used in the same manner as glass fiber and aramid fiber. is there.
  • the silane coupling agent process for the fiber which comprises the said nonwoven fabric and woven fabric.
  • a known amino-based or epoxy-based silane coupling agent or the aforementioned silane coupling agent can be used depending on the purpose of use.
  • the prepreg is a prepreg obtained by impregnating a thermosetting resin into a nonwoven fabric using an aramid fiber or glass fiber having a nominal thickness of 70 ⁇ m or less, or a skeleton material made of glass cloth having a nominal thickness of 30 ⁇ m or less. Also good.
  • the resin layer may include a dielectric (dielectric filler).
  • a dielectric (dielectric filler) is included in any of the above resin layers or resin compositions, it can be used for the purpose of forming the capacitor layer and increase the capacitance of the capacitor circuit.
  • the dielectric (dielectric filler) includes a composite oxide having a perovskite structure such as BaTiO3, SrTiO3, Pb (Zr-Ti) O3 (commonly called PZT), PbLaTiO3 / PbLaZrO (commonly known as PLZT), SrBi2Ta2O9 (commonly known as SBT), and the like.
  • Dielectric powder is used.
  • the dielectric (dielectric filler) may be powdery.
  • the powder characteristics of the dielectric (dielectric filler) are as follows. First, the particle size is 0.01 ⁇ m to 3.0 ⁇ m, preferably 0.02 ⁇ m to 2.0 ⁇ m. Must be in range.
  • the particle size referred to here is indirect in which the average particle size is estimated from the measured values of the laser diffraction scattering type particle size distribution measurement method and the BET method because the particles form a certain secondary aggregation state.
  • the accuracy is inferior in measurement, and it refers to the average particle diameter obtained by directly observing a dielectric (dielectric filler) with a scanning electron microscope (SEM) and image analysis of the SEM image. It is. In this specification, the particle size at this time is indicated as DIA.
  • the image analysis of the dielectric (dielectric filler) powder observed using a scanning electron microscope (SEM) in this specification is performed using an IP-1000PC manufactured by Asahi Engineering Co., Ltd. Circular particle analysis was performed with a threshold value of 10 and an overlapping degree of 20, and the average particle diameter DIA was obtained.
  • the resin layer containing the dielectric for forming the capacitor circuit layer having a low dielectric loss tangent is improved by improving the adhesion between the inner layer circuit surface of the inner layer core material and the resin layer containing the dielectric.
  • the copper foil with a carrier which has can be provided.
  • Examples of the resin and / or resin composition and / or compound contained in the resin layer include methyl ethyl ketone (MEK), cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, methanol, ethanol, propylene glycol monomethyl ether , Dimethylformamide, dimethylacetamide, cyclohexanone, ethyl cellosolve, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like to obtain a resin liquid (resin varnish).
  • MEK methyl ethyl ketone
  • cyclopentanone dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene
  • methanol ethanol
  • propylene glycol monomethyl ether Dimethylformamide, dimethylacetamide, cyclohexanone, ethyl cellosolve
  • the ultrathin copper layer or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary. Removing the solvent Te and to B-stage.
  • a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C.
  • the resin layer composition is dissolved using a solvent, and the resin solid content is 3 wt% to 70 wt%, preferably 3 wt% to 60 wt%, preferably 10 wt% to 40 wt%, more preferably 25 wt% to 40 wt%.
  • the resin layer is preferably a semi-cured resin film having a resin flow in the range of 5% to 35% when measured according to MIL-P-13949G in the MIL standard. In this specification, the resin flow is based on MIL-P-13949G in the MIL standard. Four 10 cm square samples were sampled from a resin-coated copper foil with a resin thickness of 55 ⁇ m.
  • the copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompression bonded to thermally cure the resin layer, and then the carrier is peeled off.
  • the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.
  • this resin-attached copper foil with a carrier can reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board.
  • the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
  • the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous.
  • the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 ⁇ m or less can be manufactured.
  • the thickness of this resin layer is preferably 0.1 to 120 ⁇ m.
  • the thickness of the resin layer is less than 0.1 ⁇ m, the adhesive strength is reduced, and when the copper foil with a carrier with the resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.
  • the thickness of the resin layer is greater than 120 ⁇ m, it is difficult to form a resin layer having a target thickness in a single coating process, which may be economically disadvantageous because of extra material costs and man-hours.
  • the thickness of the resin layer is 0.1 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m, More preferably, the thickness is 1 ⁇ m to 5 ⁇ m in order to reduce the thickness of the multilayer printed wiring board.
  • the thickness of the resin layer is preferably 0.1 to 50 ⁇ m, more preferably 0.5 ⁇ m to 25 ⁇ m, and more preferably 1.0 ⁇ m to 15 ⁇ m. preferable.
  • the total resin layer thickness of the cured resin layer and the semi-cured resin layer is preferably 0.1 ⁇ m to 120 ⁇ m, preferably 5 ⁇ m to 120 ⁇ m, preferably 10 ⁇ m to 120 ⁇ m, and 10 ⁇ m to 60 ⁇ m. Are more preferred.
  • the thickness of the cured resin layer is preferably 2 ⁇ m to 30 ⁇ m, preferably 3 ⁇ m to 30 ⁇ m, and more preferably 5 to 20 ⁇ m.
  • the thickness of the semi-cured resin layer is preferably 3 ⁇ m to 55 ⁇ m, more preferably 7 ⁇ m to 55 ⁇ m, and even more preferably 15 to 115 ⁇ m. If the total resin layer thickness exceeds 120 ⁇ m, it may be difficult to produce a thin multilayer printed wiring board.
  • the total resin layer thickness is less than 5 ⁇ m, it is easy to form a thin multilayer printed wiring board, but an insulating layer between inner layer circuits This is because the resin layer may become too thin and the insulation between the circuits of the inner layer tends to become unstable. Moreover, when the cured resin layer thickness is less than 2 ⁇ m, it may be necessary to consider the surface roughness of the roughened copper foil surface. Conversely, if the cured resin layer thickness exceeds 20 ⁇ m, the effect of the cured resin layer may not be particularly improved, and the total insulating layer thickness becomes thick.
  • the thickness of the resin layer is 0.1 ⁇ m to 5 ⁇ m, in order to improve the adhesion between the resin layer and the copper foil with carrier, a heat-resistant layer and / or a rust-proof layer is formed on the ultrathin copper layer.
  • a heat-resistant layer and / or a rust-proof layer is formed on the ultrathin copper layer.
  • the thickness of the above-mentioned resin layer says the average value of the thickness measured by cross-sectional observation in arbitrary 10 points
  • this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer
  • the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.
  • Copper foil with carrier a copper foil with a carrier provided with a copper foil carrier, a release layer laminated on the copper foil carrier, an ultrathin copper layer laminated on the release layer, and an optional resin layer is produced. Is done.
  • the method of using the copper foil with carrier itself is well known to those skilled in the art.
  • the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc.
  • the printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern. Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier
  • a copper-clad laminate is formed through a process of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor
  • the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier, Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, A step of providing a through hole or / and a blind via in the insulating substrate exposed by removing the ultrathin copper layer by etching and, if present, a resin layer; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via; Providing a plating resist on the electroless plating layer; Expos
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier, Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, A step of providing an electroless plating layer on the surface of the insulating substrate exposed by removing the ultrathin copper layer by etching or, if present, the resin layer; Providing a plating resist on the electroless plating layer; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electroplating layer in a region where the circuit from which the plating resist has been removed is formed; Removing the plat
  • the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming part is protected by a plating resist, and the copper is thickened in the circuit forming part by electroplating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier, Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier, Forming a circuit by electroplating after providing the plating resist; Removing the plating resist; Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching; including.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier, Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electroplating layer in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist; Removing an ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like; including.
  • the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier, Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Applying catalyst nuclei to the region containing the through-holes and / or blind vias; Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier, Exposing the etching resist to form a circuit pattern; Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as
  • the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier, Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Providing an electroplating layer on the surface of the electroless plating layer; Providing an etching resist on the surface of the electroplating layer or / and the ultrathin copper layer; Exposing the etching resist to form a circuit pattern; Removing the ultrathin copper layer and the electroless plating layer
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier, Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Forming a mask on the surface of the electroless plating layer; Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed; Providing an etching resist on the surface of the electroplating layer or / and the ultrathin copper layer; Exposing the etching resist to form a
  • ⁇ Through holes and / or blind vias and subsequent desmear steps may not be performed.
  • the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing.
  • the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example.
  • the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed.
  • the following method for producing a printed wiring board can be similarly performed using an attached copper foil.
  • a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • FIG. 2-A a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
  • the resist is removed to form a circuit plating having a predetermined shape.
  • an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, and then another carrier is attached.
  • a copper foil (second layer) is bonded from the ultrathin copper layer side.
  • the carrier is peeled off from the second layer copper foil with carrier.
  • the other carrier-attached copper foil may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil.
  • one or more circuits may be formed on the second layer circuit shown in FIG. 4-H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
  • the carrier-attached copper foil used for the first layer may have a substrate on the carrier-side surface of the carrier-attached copper foil.
  • substrate or resin layer since the copper foil with a carrier used for the 1st layer is supported and it becomes difficult to wrinkle, there exists an advantage that productivity improves.
  • the substrate any substrate can be used as long as it has an effect of supporting the carrier-attached copper foil used in the first layer.
  • the carrier, prepreg, resin layer or known carrier, prepreg, resin layer, metal plate, metal foil, inorganic compound plate, inorganic compound foil, organic compound plate, organic compound A foil can be used.
  • the timing for forming the substrate on the carrier side surface is not particularly limited, but it is necessary to form the substrate before peeling off the carrier.
  • it is preferably formed before the step of forming a resin layer on the ultrathin copper layer side surface of the copper foil with carrier, and the step of forming a circuit on the ultrathin copper layer side surface of the copper foil with carrier More preferably, it is formed before.
  • the copper foil with a carrier according to the present invention is preferably controlled so that the color difference on the surface of the ultrathin copper layer satisfies the following (1).
  • the “color difference on the surface of the ultrathin copper layer” means the color difference on the surface of the ultrathin copper layer, or the color difference on the surface of the surface treatment layer when various surface treatments such as roughening treatment are applied. . That is, in the copper foil with a carrier according to the present invention, the color difference of the surface of the ultrathin copper layer, the roughening treatment layer, the heat resistance layer, the rust prevention layer, the chromate treatment layer or the silane coupling layer satisfies the following (1). It is preferably controlled. (1)
  • the color difference ⁇ E * ab based on JISZ8730 on the surface of the ultrathin copper layer, the roughened layer, the heat resistant layer, the rust preventive layer, the chromate layer or the silane coupling layer is 45 or more.
  • the color differences ⁇ L, ⁇ a, and ⁇ b are respectively measured with a color difference meter, and are shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. It is a comprehensive index and is expressed as ⁇ L: black and white, ⁇ a: reddish green, ⁇ b: yellow blue.
  • ⁇ E * ab is expressed by the following formula using these color differences.
  • the above-described color difference can be adjusted by increasing the current density when forming the ultrathin copper layer, decreasing the copper concentration in the plating solution, and increasing the linear flow rate of the plating solution.
  • the above-mentioned color difference can also be adjusted by performing a roughening process on the surface of an ultra-thin copper layer and providing a roughening process layer.
  • the current density is higher than that of the prior art (for example, 40 to 60 A) using an electrolytic solution containing copper and one or more elements selected from the group consisting of nickel, cobalt, tungsten, and molybdenum. / Dm 2 ) and the processing time can be shortened (for example, 0.1 to 1.3 seconds).
  • Ni alloy plating (for example, Ni—W alloy plating, Ni—Co—P alloy plating, Ni—Zn alloy plating) is applied to the surface of the treatment layer or the silane coupling treatment layer at a lower current density (0.1 to 1.. 3A / dm 2 ), and the processing time can be set long (20 to 40 seconds).
  • the contrast between the ultrathin copper layer and the circuit is As a result, the visibility is improved and the circuit can be accurately aligned.
  • the color difference ⁇ E * ab based on JISZ8730 on the surface of the ultrathin copper layer is preferably 50 or more, more preferably 55 or more, and even more preferably 60 or more.
  • the circuit plating can be accurately formed at a predetermined position. Further, according to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, for example, removal of the ultrathin copper layer by flash etching as shown in FIG. At this time, the circuit plating is protected by the resin layer and the shape thereof is maintained, thereby facilitating the formation of a fine circuit.
  • the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 5-J and 5-K, when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
  • a known resin or prepreg can be used as the embedding resin (resin).
  • a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used.
  • the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
  • Example 1 Production of copper foil with carrier ⁇ Example 1> As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 ⁇ m (JTC manufactured by JX Nippon Mining & Metals) was prepared. An Ni layer having an adhesion amount of 4000 ⁇ g / dm 2 was formed on the shiny surface of the copper foil by electroplating using a roll-to-roll type continuous plating line under the following conditions.
  • JTC manufactured by JX Nippon Mining & Metals
  • Nickel sulfate 250-300 g / L Nickel chloride: 35 to 45 g / L Nickel acetate: 10-20g / L Trisodium citrate: 15-30 g / L Brightener: Saccharin, butynediol, etc.
  • Sodium dodecyl sulfate 30 to 100 ppm pH: 4-6 Bath temperature: 50-70 ° C Current density: 3 to 15 A / dm 2
  • Electrolytic chromate treatment Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L pH: 3-4 Liquid temperature: 50-60 ° C Current density: 0.1 to 2.6 A / dm 2 Coulomb amount: 0.5-30 As / dm 2
  • an ultrathin copper layer having a thickness of 3 ⁇ m was formed on the Cr layer by electroplating under the following conditions to produce a copper foil with a carrier.
  • a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 ⁇ m was also manufactured and evaluated in the same manner as in the example of the ultrathin copper layer thickness of 3 ⁇ m. The result was the same regardless of the thickness.
  • Current density 10 to 100 A / dm 2
  • Example 2 After forming an ultrathin copper layer on the copper foil carrier under the same conditions as in Example 1, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order. went.
  • the thickness of the ultrathin copper foil was 3 ⁇ m.
  • Liquid composition Copper 10-20 g / L, sulfuric acid 50-100 g / L Liquid temperature: 25-50 ° C Current density: 1 to 58 A / dm 2 Coulomb amount: 4 to 81 As / dm 2 ⁇ Roughening 2 Liquid composition: Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L pH: 2-3 Liquid temperature: 30-50 ° C Current density: 24 to 50 A / dm 2 Coulomb amount: 34 to 48 As / dm 2 ⁇ Rust prevention treatment Liquid composition: Nickel 5-20g / L, Cobalt 1-8g / L pH: 2-3 Liquid temperature: 40-60 ° C Current density: 5 to 20 A / dm 2 Coulomb amount: 10-20 As / dm 2 ⁇ Chromate treatment Liquid composition: Potassium dichromate 1-10g / L, Zinc 0-5g / L pH: 3
  • Example 3 After forming the ultrathin copper layer on the copper foil carrier under the same conditions as in Example 1, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and The silane coupling treatment was performed in this order.
  • the thickness of the ultrathin copper foil was 3 ⁇ m.
  • Example 4 After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 ⁇ m was formed on the Cr layer on the roll-to-roll continuous plating line.
  • the copper foil with a carrier was manufactured by electroplating under the conditions described above.
  • a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 ⁇ m was also manufactured, and evaluated in the same manner as in the example with an ultrathin copper layer thickness of 3 ⁇ m. The result was almost the same regardless of the thickness.
  • R 1 And R 2 were both methyl groups.
  • the above compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours.
  • Example 5 After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 ⁇ m was formed on the Cr layer on the roll-to-roll continuous plating line.
  • the copper foil with a carrier was manufactured by electroplating under the conditions described above.
  • a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 ⁇ m was also manufactured, and evaluated in the same manner as in the example with an ultrathin copper layer thickness of 3 ⁇ m. The result was almost the same regardless of the thickness.
  • R 1 And R 2 were both methyl groups.
  • the above compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours. )
  • a contact-type roughness measuring device (contact roughness meter Surfcorder SE-3C manufactured by Kosaka Laboratory Ltd.) was used for JIS B0601-1994 (Ra, Rz) and JIS B0601-2001 (Rt).
  • the surface roughness (Ra, Rt, Rz) of the ultrathin copper layer was measured.
  • the volume of the roughened surface is measured as follows. (1) The laser microscope is adjusted to a height at which the surface of the sample is focused. (2) Adjust the brightness so that the overall illuminance is about 80% of the saturation point. (3) The laser microscope is brought close to the sample, and the point where the screen illuminance completely disappears is set to zero. (4) The laser microscope is moved away from the sample, and the point where the screen illuminance completely disappears is set as the upper limit height. (5) Measure the volume of the roughened surface from zero height to the upper limit.

Abstract

Provided is a copper foil provided with a carrier, suitable for forming a fine pitch. A copper foil provided with a carrier, comprising a copper foil carrier, a release layer layered onto the copper foil carrier, and a very thin copper layer layered onto the release layer; wherein the very thin copper layer has been roughened and the Rz of the very thin copper layer surface is 1.6 μm or less as measured with a non-contact roughness meter.

Description

キャリア付き銅箔Copper foil with carrier
 本発明は、キャリア付き銅箔に関する。より詳細には、本発明はプリント配線板の材料として使用されるキャリア付き銅箔に関する。 The present invention relates to a copper foil with a carrier. In more detail, this invention relates to the copper foil with a carrier used as a material of a printed wiring board.
 プリント配線板は銅箔に絶縁基板を接着させて銅張積層板とした後に、エッチングにより銅箔面に導体パターンを形成するという工程を経て製造されるのが一般的である。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。 A printed wiring board is generally manufactured through a process of forming a copper-clad laminate by bonding an insulating substrate to copper foil and then forming a conductor pattern on the copper foil surface by etching. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.
 ファインピッチ化に対応して、最近では厚さ9μm以下、更には厚さ5μm以下の銅箔が要求されているが、このような極薄の銅箔は機械的強度が低くプリント配線板の製造時に破れたり、皺が発生したりしやすいので、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を電着させたキャリア付き銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着後、キャリアは剥離層を介して剥離除去される。露出した極薄銅層上にレジストで回路パターンを形成した後に、極薄銅層を硫酸-過酸化水素系のエッチャントでエッチング除去する手法(MSAP:Modified-Semi-Additive-Process)により、微細回路が形成される。 Recently, copper foils with a thickness of 9 μm or less and further with a thickness of 5 μm or less have been required in response to the fine pitch, but such ultra-thin copper foils have low mechanical strength and are used in the manufacture of printed wiring boards. Copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is electrodeposited through a release layer, since it is easily broken or wrinkled. After bonding the surface of the ultrathin copper layer to an insulating substrate and thermocompression bonding, the carrier is peeled and removed through the peeling layer. After the circuit pattern is formed with resist on the exposed ultrathin copper layer, the ultrathin copper layer is etched away with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi-Additive-Process). Is formed.
 ここで、樹脂との接着面となるキャリア付き銅箔の極薄銅層の表面に対しては、主として、極薄銅層と樹脂基材との剥離強度が十分であること、そしてその剥離強度が高温加熱、湿式処理、半田付け、薬品処理等の後でも十分に保持されていることが要求される。極薄銅層と樹脂基材の間の剥離強度を高める方法としては、一般的に、表面のプロファイル(凹凸、粗さ)を大きくした極薄銅層の上に多量の粗化粒子を付着させる方法が代表的である。 Here, for the surface of the ultrathin copper layer of the copper foil with a carrier that becomes the adhesive surface with the resin, the peel strength between the ultrathin copper layer and the resin base material is mainly sufficient, and the peel strength Is required to be sufficiently retained after high-temperature heating, wet processing, soldering, chemical processing, and the like. As a method of increasing the peel strength between the ultrathin copper layer and the resin base material, generally, a large amount of roughened particles are adhered on the ultrathin copper layer having a large surface profile (unevenness, roughness). The method is representative.
 しかしながら、プリント配線板の中でも特に微細な回路パターンを形成する必要のある半導体パッケージ基板に、このようなプロファイル(凹凸、粗さ)の大きい極薄銅層を使用すると、回路エッチング時に不要な銅粒子が残ってしまい、回路パターン間の絶縁不良等の問題が発生する。 However, if a very thin copper layer with such a large profile (irregularity, roughness) is used on a semiconductor package substrate that needs to form a particularly fine circuit pattern among printed wiring boards, unnecessary copper particles during circuit etching Will remain, causing problems such as poor insulation between circuit patterns.
 このため、WO2004/005588号(特許文献1)では、半導体パッケージ基板をはじめとする微細回路用途のキャリア付銅箔として、極薄銅層の表面に粗化処理を施さないキャリア付銅箔を用いることが試みられている。このような粗化処理を施さない極薄銅層と樹脂との密着性(剥離強度)は、その低いプロファイル(凹凸、粗度、粗さ)の影響で一般的なプリント配線板用銅箔と比較すると低下する傾向がある。そのため、キャリア付銅箔について更なる改善が求められている。 For this reason, in WO2004 / 005588 (Patent Document 1), a copper foil with a carrier that is not subjected to a roughening treatment on the surface of an ultrathin copper layer is used as a copper foil with a carrier for use in a fine circuit including a semiconductor package substrate. It has been tried. The adhesion (peeling strength) between the ultrathin copper layer not subjected to such roughening treatment and the resin is affected by the low profile (unevenness, roughness, roughness) of the general copper foil for printed wiring boards. There is a tendency to decrease when compared. Therefore, the further improvement is calculated | required about copper foil with a carrier.
 そこで、特開2007-007937号公報(特許文献2)及び特開2010-006071号公報(特許文献3)では、キャリア付き極薄銅箔のポリイミド系樹脂基板と接触(接着)する面に、Ni層又は/及びNi合金層を設けること、クロメート層を設けること、Cr層又は/及びCr合金層を設けること、Ni層とクロメート層とを設けること、Ni層とCr層とを設けることが記載されている。これらの表面処理層を設けることにより、ポリイミド系樹脂基板とキャリア付き極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)しながら所望の接着強度を得ている。更に、シランカップリング剤で表面処理したり、防錆処理を施したりすることも記載されている。 Therefore, in Japanese Patent Application Laid-Open No. 2007-007937 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2010-006071 (Patent Document 3), the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate is Ni. It is described that a layer or / and a Ni alloy layer are provided, a chromate layer is provided, a Cr layer or / and a Cr alloy layer are provided, a Ni layer and a chromate layer are provided, and a Ni layer and a Cr layer are provided. Has been. By providing these surface treatment layers, the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the desired adhesive strength is achieved while reducing the degree of the roughening treatment (miniaturization). It has gained. Further, it is described that the surface treatment is performed with a silane coupling agent or the rust prevention treatment is performed.
WO2004/005588号WO2004 / 005588 特開2007-007937号公報JP 2007-007937 A 特開2010-006071号公報JP 2010-006071 A
 キャリア付き銅箔の開発においては、これまで極薄銅層と樹脂基材との剥離強度を確保することに重きが置かれていた。そのため、ファインピッチ化に関しては未だ十分な検討がなされておらず、未だ改善の余地が残されている。そこで、本発明はファインピッチ形成に好適なキャリア付き銅箔を提供することを課題とする。具体的には、これまでのMSAPで形成できる限界と考えられていたL/S=20μm/20μmよりも微細な配線を形成可能なキャリア付き銅箔を提供することを課題とする。 In the development of copper foil with a carrier, the emphasis has so far been on ensuring the peel strength between the ultrathin copper layer and the resin substrate. For this reason, the fine pitch has not been sufficiently studied yet, and there is still room for improvement. Then, this invention makes it a subject to provide the copper foil with a carrier suitable for fine pitch formation. Specifically, it is an object to provide a copper foil with a carrier capable of forming wiring finer than L / S = 20 μm / 20 μm, which has been considered to be a limit that can be formed by conventional MSAP.
 上記目的を達成するため、本発明者らは鋭意研究を重ねたところ、極薄銅層の表面を低粗度化し、且つ、極薄銅層に微細粗化粒子を形成することで、均一かつ低粗度の粗化処理面を形成することが可能となることを見出した。そして、当該キャリア付き銅箔はファインピッチ形成に極めて効果的であることを見出した。 In order to achieve the above-mentioned object, the present inventors have conducted intensive research, and as a result, the surface of the ultrathin copper layer is reduced in roughness, and finely roughened particles are formed in the ultrathin copper layer. It has been found that a roughened surface with low roughness can be formed. And it discovered that the said copper foil with a carrier was very effective for fine pitch formation.
 本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRzは非接触式粗さ計で測定して1.6μm以下であるキャリア付き銅箔である。 The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer. A copper foil with a carrier, the ultrathin copper layer is roughened, and the Rz of the surface of the ultrathin copper layer is 1.6 μm or less as measured by a non-contact type roughness meter. is there.
 本発明は別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRaは非接触式粗さ計で測定して0.3μm以下であるキャリア付き銅箔である。 In another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, The ultrathin copper layer is roughened, and Ra on the surface of the ultrathin copper layer is a copper foil with a carrier as measured by a non-contact type roughness meter and is 0.3 μm or less.
 本発明は更に別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRtは非接触式粗さ計で測定して2.3μm以下であるキャリア付き銅箔である。 In yet another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer. The ultrathin copper layer is roughened, and Rt on the surface of the ultrathin copper layer is a copper foil with a carrier that is 2.3 μm or less as measured with a non-contact type roughness meter.
 本発明に係るキャリア付き銅箔の一実施形態においては、極薄銅層表面のRzは非接触式粗さ計で測定して1.4μm以下である。 In one embodiment of the copper foil with a carrier according to the present invention, Rz on the surface of the ultrathin copper layer is 1.4 μm or less as measured by a non-contact type roughness meter.
 本発明に係るキャリア付き銅箔の別の一実施形態においては、極薄銅層表面のRaは非接触式粗さ計で測定して0.25μm以下である。 In another embodiment of the copper foil with a carrier according to the present invention, Ra on the surface of the ultrathin copper layer is 0.25 μm or less as measured with a non-contact roughness meter.
 本発明に係るキャリア付き銅箔の更に別の一実施形態においては、極薄銅層表面のRtは非接触式粗さ計で測定して1.8μm以下である。 In yet another embodiment of the copper foil with a carrier according to the present invention, the Rt of the ultrathin copper layer surface is 1.8 μm or less as measured by a non-contact type roughness meter.
 本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面はSskが-0.3~0.3である。 In yet another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has Ssk of −0.3 to 0.3.
 本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面はSkuが2.7~3.3である。 In yet another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has a Sku of 2.7 to 3.3.
 本発明に係るキャリア付き銅箔の更に別の一実施形態において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面の表面積比が1.05~1.5である。 In yet another embodiment of the copper foil with a carrier according to the present invention, a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer were provided. In the copper foil with a carrier, the ultrathin copper layer is roughened, and the surface area ratio of the surface of the ultrathin copper layer is 1.05 to 1.5.
 本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面の表面積比が1.05~1.5である。 In yet another embodiment of the copper foil with a carrier according to the present invention, the surface area ratio of the surface of the ultrathin copper layer is 1.05 to 1.5.
 本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面の面積66524μm2当たりの体積が300000μm3以上である。 In still another embodiment of the copper foil with a carrier according to the present invention, the volume per area 66524 μm 2 of the surface of the ultrathin copper layer is 300000 μm 3 or more.
 本発明は更に別の一側面において、本発明に係るキャリア付き銅箔を用いて製造した銅張積層板である。 In yet another aspect, the present invention is a copper clad laminate manufactured using the copper foil with a carrier according to the present invention.
 本発明は更に別の一側面において、本発明に係るキャリア付き銅箔を用いて製造したプリント配線板である。 In yet another aspect, the present invention is a printed wiring board manufactured using the carrier-attached copper foil according to the present invention.
 本発明は更に別の一側面において、キャリア付き銅箔を用いて製造したプリント回路板である。 In still another aspect, the present invention is a printed circuit board manufactured using a copper foil with a carrier.
 本発明は更に別の一側面において、
 本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
 前記キャリア付き銅箔と絶縁基板を積層する工程、
 前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法の何れかの方法によって、回路を形成する工程を含むプリント配線板の製造方法である。
In another aspect of the present invention,
Preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, a copper clad laminate is formed through a step of peeling the carrier of the copper foil with carrier,
Thereafter, the printed wiring board manufacturing method includes a step of forming a circuit by any one of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
 本発明に係るキャリア付き銅箔はファインピッチ形成に好適であり、例えば、MSAP工程で形成できる限界と考えられていたL/S=20μm/20μmよりも微細な配線、例えばL/S=15μm/15μmの微細な配線を形成することが可能となる。 The copper foil with a carrier according to the present invention is suitable for fine pitch formation, for example, a wiring finer than L / S = 20 μm / 20 μm, which is considered to be a limit that can be formed by the MSAP process, for example, L / S = 15 μm / It becomes possible to form fine wiring of 15 μm.
実施例1及び実施例2における極薄銅層M面のSEM写真である。It is a SEM photograph of the ultrathin copper layer M surface in Example 1 and Example 2. A~Cは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、回路めっき・レジスト除去までの工程における配線板断面の模式図である。FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. D~Fは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、樹脂及び2層目キャリア付銅箔積層からレーザー穴あけまでの工程における配線板断面の模式図である。D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention. It is. G~Iは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、ビアフィル形成から1層目のキャリア剥離までの工程における配線板断面の模式図である。GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention. J~Kは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、フラッシュエッチングからバンプ・銅ピラー形成までの工程における配線板断面の模式図である。J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
<1.キャリア>
 本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.
 本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には70μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12~70μmであり、より典型的には18~35μmである。 The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost increases, so it is generally preferable that the thickness is 70 μm or less. Accordingly, the thickness of the carrier is typically 12-70 μm, more typically 18-35 μm.
<2.剥離層>
 キャリアの上には剥離層を設ける。剥離層としては、キャリア付き銅箔において当業者に知られた任意の剥離層とすることができる。例えば、剥離層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、又はこれらの合金、またはこれらの水和物、またはこれらの酸化物、あるいは有機物の何れか一種以上を含む層で形成することが好ましい。剥離層は複数の層で構成されても良い。
<2. Release layer>
A release layer is provided on the carrier. As a peeling layer, it can be set as the arbitrary peeling layers known to those skilled in the art in copper foil with a carrier. For example, the release layer may be one or more of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, alloys thereof, hydrates thereof, oxides thereof, or organic substances. It is preferable to form with the layer containing. The release layer may be composed of a plurality of layers.
 本発明の一実施形態において、剥離層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Alの元素群の内何れか一種の元素からなる単一金属層、又は、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Alの元素群から選択された一種以上の元素からなる合金層と、その上に積層されたCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Alの元素群から選択された一種以上の元素の水和物若しくは酸化物からなる層とから構成される。 In one embodiment of the present invention, the release layer is a single metal layer made of any one element of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, and Al elements from the carrier side, Or, an alloy layer made of one or more elements selected from the element group of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, and Al, and Cr, Ni, Co, It is comprised from the layer which consists of a hydrate or oxide of 1 or more elements selected from the element group of Fe, Mo, Ti, W, P, Cu, and Al.
 剥離層はNi及びCrの2層で構成されることが好ましい。この場合、Ni層は銅箔キャリアとの界面に、Cr層は極薄銅層との界面にそれぞれ接するようにして積層する。 The release layer is preferably composed of two layers of Ni and Cr. In this case, the Ni layer is laminated in contact with the interface with the copper foil carrier and the Cr layer is in contact with the interface with the ultrathin copper layer.
 剥離層は、例えば電気めっき、無電解めっき及び浸漬めっきのような湿式めっき、或いはスパッタリング、CVD及びPDVのような乾式めっきにより得ることができる。コストの観点から電気めっきが好ましい。 The release layer can be obtained by, for example, wet plating such as electroplating, electroless plating, and immersion plating, or dry plating such as sputtering, CVD, and PDV. Electroplating is preferable from the viewpoint of cost.
<3.極薄銅層>
 剥離層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5~12μmであり、より典型的には2~5μmである。
<3. Ultra-thin copper layer>
An ultrathin copper layer is provided on the release layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. Typically 0.5 to 12 μm, more typically 2 to 5 μm.
<4.粗化処理等の表面処理>
 極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設ける。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理層は、ファインピッチ形成の観点から微細な粒子で構成されるのが好ましい。粗化粒子を形成する際の電気めっき条件について、電流密度を高く、めっき液中の銅濃度を低く、又は、クーロン量を大きくすると粒子が微細化する傾向にある。
<4. Surface treatment such as roughening>
On the surface of the ultrathin copper layer, a roughening treatment layer is provided by performing a roughening treatment, for example, for improving the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening treatment layer is preferably composed of fine particles from the viewpoint of fine pitch formation. Regarding the electroplating conditions for forming the roughened particles, if the current density is increased, the copper concentration in the plating solution is decreased, or the amount of coulomb is increased, the particles tend to become finer.
 粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる電着粒で構成することができる。 The roughening layer is composed of electrodeposited grains made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, and zinc, or an alloy containing at least one of them. can do.
 また、粗化処理をした後、ニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子及び/又は防錆層及び/又は耐熱層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの表面処理を施してもよい。すなわち、粗化処理層の表面に、防錆層、耐熱層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。 Further, after roughening treatment, secondary particles and tertiary particles and / or a rust-preventing layer and / or a heat-resistant layer are formed of nickel, cobalt, copper, zinc alone or an alloy, and further, chromate treatment is performed on the surface thereof. Surface treatment such as silane coupling treatment may be performed. That is, you may form 1 or more types of layers selected from the group which consists of a rust prevention layer, a heat-resistant layer, a chromate processing layer, and a silane coupling processing layer on the surface of a roughening processing layer.
 例えば、粗化処理層上に耐熱層および/または防錆層を備えてもよく、前記耐熱層および/または防錆層上にクロメート処理層を備えてもよく、前記クロメート処理層上にシランカップリング処理層を備えることができる。なお、前記耐熱層、防錆層、クロメート処理層、シランカップリング処理層を形成する順番は互いに限定されず、粗化処理層上に、どのような順序でこれらの層を形成してもよい。 For example, a heat-resistant layer and / or a rust-preventing layer may be provided on the roughened layer, a chromate-treated layer may be provided on the heat-resistant layer and / or the rust-proof layer, and a silane cup is provided on the chromate-treated layer. A ring treatment layer can be provided. The order of forming the heat-resistant layer, the rust-preventing layer, the chromate treatment layer, and the silane coupling treatment layer is not limited to each other, and these layers may be formed in any order on the roughening treatment layer. .
 粗化処理等の各種表面処理を施した後の極薄銅層の表面(「粗化処理面」ともいう。)は、非接触式粗さ計で測定したときにRz(十点平均粗さ)を1.6μm以下とすることがファインピッチ形成の観点で極めて有利となる。Rzは好ましくは1.5μm以下、より好ましくは1.4μm以下であり、更により好ましくは1.35μm以下であり、更により好ましくは1.3μm以下であり、更により好ましくは1.2μm以下であり、更により好ましくは1.0μm以下であり、更により好ましくは0.8μm以下であり、更により好ましくは0.6μm以下である。但し、Rzは、小さくなりすぎると樹脂との密着力が低下することから、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることが更により好ましい。 The surface of the ultrathin copper layer after various surface treatments such as roughening treatment (also referred to as “roughened surface”) is Rz (10-point average roughness) when measured with a non-contact type roughness meter. ) Of 1.6 μm or less is extremely advantageous from the viewpoint of fine pitch formation. Rz is preferably 1.5 μm or less, more preferably 1.4 μm or less, even more preferably 1.35 μm or less, even more preferably 1.3 μm or less, and even more preferably 1.2 μm or less. More preferably 1.0 μm or less, still more preferably 0.8 μm or less, and even more preferably 0.6 μm or less. However, Rz is preferably 0.01 μm or more, more preferably 0.1 μm or more, and further preferably 0.2 μm or more, because if the Rz is too small, the adhesion with the resin is reduced. Is more preferable.
 粗化処理等の各種表面処理を施した後の極薄銅層の表面(「粗化処理面」ともいう。)は、非接触式粗さ計で測定したときにRa(算術平均粗さ)を0.30μm以下とすることがファインピッチ形成の観点で極めて有利となる。Raは好ましくは0.27μm以下、より好ましくは0.26μm以下、より好ましくは0.25μm以下、より好ましくは0.24μm以下、より好ましくは0.23μm以下であり、更により好ましくは0.20μm以下であり、更により好ましくは0.18μm以下であり、更により好ましくは0.16μm以下、更により好ましくは0.15μm以下、更により好ましくは0.13μm以下である。但し、Raは、小さくなりすぎると樹脂との密着力が低下することから、0.005μm以上であることが好ましく、0.009μm以上、0.01μm以上、0.02μm以上であることがより好ましく、0.05μm以上であることがより好ましく、0.10μm以上であることがより好ましい。 The surface of the ultrathin copper layer after being subjected to various surface treatments such as roughening treatment (also referred to as “roughened surface”) is Ra (arithmetic mean roughness) when measured with a non-contact type roughness meter. Is 0.30 μm or less from the viewpoint of fine pitch formation. Ra is preferably 0.27 μm or less, more preferably 0.26 μm or less, more preferably 0.25 μm or less, more preferably 0.24 μm or less, more preferably 0.23 μm or less, and even more preferably 0.20 μm. Or less, still more preferably 0.18 μm or less, even more preferably 0.16 μm or less, even more preferably 0.15 μm or less, and even more preferably 0.13 μm or less. However, Ra is preferably 0.005 μm or more, more preferably 0.009 μm or more, 0.01 μm or more, or 0.02 μm or more, because if it becomes too small, the adhesive strength with the resin is reduced. The thickness is more preferably 0.05 μm or more, and more preferably 0.10 μm or more.
 粗化処理等の各種表面処理を施した後の極薄銅層の表面(「粗化処理面」ともいう。)は、非接触式粗さ計で測定したときにRtを2.3μm以下とすることがファインピッチ形成の観点で極めて有利となる。Rtは好ましくは2.2μm以下、好ましくは2.1μm以下、好ましくは2.07μm以下、より好ましくは2.0μm以下、より好ましくは1.9μm以下であり、より好ましくは1.8μm以下であり、更により好ましくは1.5μm以下であり、更により好ましくは1.2μm以下であり、更により好ましくは1.0μm以下である。但し、Rtは、小さくなりすぎると樹脂との密着力が低下することから、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることがより好ましい。 The surface of the ultrathin copper layer after being subjected to various surface treatments such as roughening treatment (also referred to as “roughened surface”) has an Rt of 2.3 μm or less when measured with a non-contact type roughness meter. This is extremely advantageous from the viewpoint of fine pitch formation. Rt is preferably 2.2 μm or less, preferably 2.1 μm or less, preferably 2.07 μm or less, more preferably 2.0 μm or less, more preferably 1.9 μm or less, and more preferably 1.8 μm or less. Even more preferably, it is 1.5 μm or less, still more preferably 1.2 μm or less, and even more preferably 1.0 μm or less. However, Rt is preferably 0.01 μm or more, more preferably 0.1 μm or more, and more preferably 0.3 μm or more, since the adhesive strength with the resin decreases if Rt is too small. Preferably, it is 0.5 μm or more.
 また、粗化処理等の各種表面処理を施した後の極薄銅層の表面は、非接触式粗さ計で測定したときにSsk(スキューネス)を-0.3~0.3とすることがファインピッチ形成の観点で好ましい。Sskの下限は好ましくは-0.2以上であり、より好ましくは-0.1以上であり、より好ましくは-0.070以上であり、より好ましくは-0.065以上であり、より好ましくは-0.060以上であり、より好ましくは-0.058以上であり、更に好ましくは0以上である。Sskの上限は好ましくは0.2以下である。 Also, the surface of the ultrathin copper layer after various surface treatments such as roughening treatment has an Ssk (skewness) of −0.3 to 0.3 when measured with a non-contact type roughness meter. Is preferable from the viewpoint of fine pitch formation. The lower limit of Ssk is preferably −0.2 or more, more preferably −0.1 or more, more preferably −0.070 or more, more preferably −0.065 or more, more preferably It is -0.060 or more, more preferably -0.058 or more, and further preferably 0 or more. The upper limit of Ssk is preferably 0.2 or less.
 また、粗化処理等の各種表面処理を施した後の極薄銅層の表面は、非接触式粗さ計で測定したときにSku(クルトシス)を2.7~3.3とすることがファインピッチ形成の観点で好ましい。Skuの下限は好ましくは2.8以上であり、より好ましくは2.9以上であり、より好ましくは3.0以上である。Skuの上限は好ましくは3.2以下である。 Further, the surface of the ultrathin copper layer after various surface treatments such as roughening treatment may have a Sku (Cultosis) of 2.7 to 3.3 when measured with a non-contact type roughness meter. It is preferable from the viewpoint of fine pitch formation. The lower limit of Sku is preferably 2.8 or more, more preferably 2.9 or more, and more preferably 3.0 or more. The upper limit of Sku is preferably 3.2 or less.
 本発明において、極薄銅層表面のRz、Raの粗さパラメータについてはJIS B0601-1994に準拠して、Rtの粗さパラメータについてはJIS B0601-2001に準拠して、Ssk、Skuの粗さパラメータについてはISO25178ドラフトに準拠して非接触式粗さ計で測定する。 In the present invention, the roughness parameters of Rz and Ra on the surface of the ultrathin copper layer conform to JIS B0601-1994, and the roughness parameter of Rt conforms to JIS B0601-2001, the roughness of Ssk and Sku. The parameters are measured with a non-contact type roughness meter in accordance with ISO 25178 draft.
 なお、プリント配線板または銅張積層板など、極薄銅層表面に樹脂などの絶縁基板が接着されている場合においては、絶縁基板を溶かして除去することで、銅回路または銅箔表面について、前述の表面粗さ(Ra、Rt、Rz)を測定することができる。 In addition, in the case where an insulating substrate such as a resin is bonded to the surface of an ultrathin copper layer, such as a printed wiring board or a copper clad laminate, by melting and removing the insulating substrate, the copper circuit or copper foil surface, The aforementioned surface roughness (Ra, Rt, Rz) can be measured.
 ファインピッチ形成のためには、粗化粒子層のエッチング量を減少させるために、粗化処理面の体積を制御することも重要である。ここでいう体積とは、レーザー顕微鏡にて測定される値を指し、粗化処理面に存在する粗化粒子の体積を評価する指標となる。粗化処理面の体積が大きい場合、極薄銅層と樹脂との密着力が高くなる傾向にある。そして、極薄銅層と樹脂との密着力が高くなると耐マイグレーション性が向上する傾向にある。具体的には、体積はレーザー顕微鏡にて測定して、粗化処理面の面積66524μm2当たり300000μm3以上であるのが好ましく、350000μm3以上であるのがより好ましい。但し、体積が大きくなり過ぎるとエッチング量が増加し、ファインピッチを形成できないことから、体積は500000μm3以下とするのが好ましく、450000μm3以下とするのがより好ましい。 In order to form a fine pitch, it is also important to control the volume of the roughened surface in order to reduce the etching amount of the roughened particle layer. The volume here refers to a value measured with a laser microscope and serves as an index for evaluating the volume of the roughened particles present on the roughened surface. When the volume of the roughened surface is large, the adhesion between the ultrathin copper layer and the resin tends to increase. And, when the adhesion between the ultrathin copper layer and the resin is increased, the migration resistance tends to be improved. Specifically, the volume is preferably 300,000 μm 3 or more, more preferably 350,000 μm 3 or more per area 66524 μm 2 of the roughened surface as measured by a laser microscope. However, increases the amount of etching the volume is too large, since not form fine pitch, volume may preferably be 500000Myuemu 3 or less, and more preferably, 450000Myuemu 3 or less.
 更に、ファインピッチ形成のためには、微細粗化粒子による樹脂との密着性を確保するために、粗化処理面の表面積比を制御することも重要である。ここでいう表面積比とは、レーザー顕微鏡にて測定される値であって、エリア及び実エリアを測定したときの、実エリア/エリアの値である。エリアとは測定基準面積を指し、実エリアとは測定基準面積中の表面積を指す。表面積比は大きくなりすぎると密着強度が増すがエッチング量が増加しファインピッチが形成できない一方で、小さくなりすぎると密着強度が確保できないので、1.05~1.5であることが好ましく、1.07~1.47であることが好ましく、1.09~1.4であることが好ましく、1.1~1.3であることがより好ましい。 Furthermore, in order to form a fine pitch, it is also important to control the surface area ratio of the roughened surface in order to ensure adhesion with the resin by the fine roughened particles. The surface area ratio here is a value measured by a laser microscope, and is a value of actual area / area when the area and the actual area are measured. The area refers to the measurement reference area, and the actual area refers to the surface area in the measurement reference area. If the surface area ratio becomes too large, the adhesion strength increases, but the etching amount increases and fine pitch cannot be formed. On the other hand, if the surface area ratio becomes too small, the adhesion strength cannot be secured, and is preferably 1.05 to 1.5. 0.07 to 1.47 is preferable, 1.09 to 1.4 is preferable, and 1.1 to 1.3 is more preferable.
<5.樹脂層>
 本発明に係るキャリア付銅箔においては、粗化処理等の各種表面処理を施した後の極薄銅層の表面に更に樹脂層を備えても良い。例えば、粗化処理層、耐熱層、防錆層、クロメート処理層、又はシランカップリング処理層の上に樹脂層を備えても良い。前記樹脂層は絶縁樹脂層であってもよい。
<5. Resin layer>
In the copper foil with a carrier according to the present invention, a resin layer may be further provided on the surface of the ultrathin copper layer after various surface treatments such as roughening treatment. For example, a resin layer may be provided on the roughening treatment layer, the heat-resistant layer, the rust prevention layer, the chromate treatment layer, or the silane coupling treatment layer. The resin layer may be an insulating resin layer.
 前記樹脂層は接着用樹脂、すなわち接着剤であってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。 The resin layer may be an adhesive resin, that is, an adhesive, or may be a semi-cured (B-stage) insulating resin layer for adhesion. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
 また前記樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記樹脂層は熱可塑性樹脂を含んでもよい。前記樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記樹脂層は例えば国際公開番号WO2008/004399号、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11-5828号、特開平11-140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000-43188号、特許第3612594号、特開2002-179772号、特開2002-359444号、特開2003-304068号、特許第3992225、特開2003-249739号、特許第4136509号、特開2004-82687号、特許第4025177号、特開2004-349654号、特許第4286060号、特開2005-262506号、特許第4570070号、特開2005-53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006-257153号、特開2007-326923号、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009-67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009-173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011-14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013-19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。 The resin layer may contain a thermosetting resin or a thermoplastic resin. The resin layer may include a thermoplastic resin. The resin layer may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like. The resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication. No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Application Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Application Laid-Open No. 2002-179721, Japanese Patent Application Laid-Open No. 2002-309444, Japanese Patent Application Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Application Laid-Open No. -249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, and Japanese Patent Application Laid-Open No. 4570070. No. 5-53218, Japanese Patent No. 3949676, Japanese Patent No. 4178415, International Publication No. WO2004 / 005588, Japanese Patent Application Laid-Open No. 2006-257153, Japanese Patent Application Laid-Open No. 2007-326923, Japanese Patent Application Laid-Open No. 2008-11169, and Japanese Patent No. 5024930. No. WO2006 / 028207, Japanese Patent No. 4828427, JP 2009-67029, International Publication No. WO 2006/134868, Japanese Patent No. 5046927, JP 2009-173017, International Publication No. WO 2007/105635, Patent No. 5180815, International Publication No. WO 2008/114858, International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
 また、前記樹脂層は、その種類は格別限定されるものではないが、例えば、エポキシ樹脂、ポリイミド樹脂、多官能性シアン酸エステル化合物、マレイミド化合物、ポリマレイミド化合物、マレイミド系樹脂、芳香族マレイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、ポリエーテルスルホン(ポリエーテルサルホン、ポリエーテルサルフォンともいう)、ポリエーテルスルホン(ポリエーテルサルホン、ポリエーテルサルフォンともいう)樹脂、芳香族ポリアミド樹脂、芳香族ポリアミド樹脂ポリマー、ゴム性樹脂、ポリアミン、芳香族ポリアミン、ポリアミドイミド樹脂、ゴム変成エポキシ樹脂、フェノキシ樹脂、カルボキシル基変性アクリロニトリル-ブタジエン樹脂、ポリフェニレンオキサイド、ビスマレイミドトリアジン樹脂、熱硬化性ポリフェニレンオキサイド樹脂、シアネートエステル系樹脂、カルボン酸の無水物、多価カルボン酸の無水物、架橋可能な官能基を有する線状ポリマー、ポリフェニレンエーテル樹脂、2,2-ビス(4-シアナトフェニル)プロパン、リン含有フェノール化合物、ナフテン酸マンガン、2,2-ビス(4-グリシジルフェニル)プロパン、ポリフェニレンエーテル-シアネート系樹脂、シロキサン変性ポリアミドイミド樹脂、シアノエステル樹脂、フォスファゼン系樹脂、ゴム変成ポリアミドイミド樹脂、イソプレン、水素添加型ポリブタジエン、ポリビニルブチラール、フェノキシ、高分子エポキシ、芳香族ポリアミド、フッ素樹脂、ビスフェノール、ブロック共重合ポリイミド樹脂およびシアノエステル樹脂の群から選択される一種以上を含む樹脂を好適なものとして挙げることができる。 The type of the resin layer is not particularly limited. For example, epoxy resin, polyimide resin, polyfunctional cyanate ester compound, maleimide compound, polymaleimide compound, maleimide resin, aromatic maleimide resin , Polyvinyl acetal resin, urethane resin, polyethersulfone (also referred to as polyethersulfone or polyethersulfone), polyethersulfone (also referred to as polyethersulfone or polyethersulfone) resin, aromatic polyamide resin, aromatic Polyamide resin polymer, rubber resin, polyamine, aromatic polyamine, polyamideimide resin, rubber modified epoxy resin, phenoxy resin, carboxyl group-modified acrylonitrile-butadiene resin, polyphenylene oxide, bismaleimide triazine Resins, thermosetting polyphenylene oxide resins, cyanate ester resins, carboxylic acid anhydrides, polyvalent carboxylic acid anhydrides, linear polymers having crosslinkable functional groups, polyphenylene ether resins, 2,2-bis (4 -Cyanatophenyl) propane, phosphorus-containing phenolic compound, manganese naphthenate, 2,2-bis (4-glycidylphenyl) propane, polyphenylene ether-cyanate resin, siloxane-modified polyamideimide resin, cyanoester resin, phosphazene resin, Rubber-modified polyamide-imide resin, isoprene, hydrogenated polybutadiene, polyvinyl butyral, phenoxy, polymer epoxy, aromatic polyamide, fluororesin, bisphenol, block copolymerized polyimide resin, and cyanoester resin It can be mentioned resins containing one or more kinds that is as suitable.
 また前記エポキシ樹脂は、分子内に2個以上のエポキシ基を有するものであって、電気・電子材料用途に用いることのできるものであれば、特に問題なく使用できる。また、前記エポキシ樹脂は分子内に2個以上のグリシジル基を有する化合物を用いてエポキシ化したエポキシ樹脂が好ましい。また、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ブロム化(臭素化)エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ゴム変性ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリグリシジルイソシアヌレート、N,N-ジグリシジルアニリン等のグリシジルアミン化合物、テトラヒドロフタル酸ジグリシジルエステル等のグリシジルエステル化合物、リン含有エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、の群から選ばれる1種又は2種以上を混合して用いることができ、又は前記エポキシ樹脂の水素添加体やハロゲン化体を用いることができる。
 前記リン含有エポキシ樹脂として公知のリンを含有するエポキシ樹脂を用いることができる。また、前記リン含有エポキシ樹脂は例えば、分子内に2以上のエポキシ基を備える9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドからの誘導体として得られるエポキシ樹脂であることが好ましい。
The epoxy resin has two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials. The epoxy resin is preferably an epoxy resin epoxidized using a compound having two or more glycidyl groups in the molecule. Also, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, brominated (brominated) epoxy Resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, brominated bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, rubber modified bisphenol A type epoxy resin, glycidylamine type epoxy resin, triglycidyl isocyanurate, N, N -Glycidyl amine compounds such as diglycidyl aniline, glycidyl ester compounds such as diglycidyl tetrahydrophthalate, phosphorus-containing epoxy resins, biphenyl type epoxy resins, One or two or more types selected from the group of phenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylethane type epoxy resin can be used, or a hydrogenated product of the epoxy resin or Halogenated substances can be used.
As the phosphorus-containing epoxy resin, a known epoxy resin containing phosphorus can be used. The phosphorus-containing epoxy resin is, for example, an epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having two or more epoxy groups in the molecule. Is preferred.
 この9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドからの誘導体として得られるエポキシ樹脂は、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドにナフトキノンやハイドロキノンを反応させて、以下の化1(HCA-NQ)又は化2(HCA-HQ)に示す化合物とした後に、そのOH基の部分にエポキシ樹脂を反応させてリン含有エポキシ樹脂としたものである。 The epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is converted to 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. After reacting naphthoquinone or hydroquinone to obtain a compound represented by the following chemical formula 1 (HCA-NQ) or chemical formula 2 (HCA-HQ), an epoxy resin is reacted with the OH group portion to obtain a phosphorus-containing epoxy resin. Is.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上述の化合物を原料として得られた前記E成分であるリン含有エポキシ樹脂は、以下に示す化3~化5のいずれかに示す構造式を備える化合物の1種又は2種を混合して用いることが好ましい。半硬化状態での樹脂品質の安定性に優れ、同時に難燃性効果が高いためである。 The phosphorus-containing epoxy resin, which is the component E obtained using the above-mentioned compound as a raw material, is a mixture of one or two compounds having the structural formula shown in any one of the following chemical formulas 3 to 5. Is preferred. This is because the resin quality in a semi-cured state is excellent in stability, and at the same time, the flame retardant effect is high.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 また、前記ブロム化(臭素化)エポキシ樹脂として、公知のブロム化(臭素化)されているエポキシ樹脂を用いることができる。例えば、前記ブロム化(臭素化)エポキシ樹脂は分子内に2以上のエポキシ基を備えるテトラブロモビスフェノールAからの誘導体として得られる化6に示す構造式を備える臭素化エポキシ樹脂、以下に示す化7に示す構造式を備える臭素化エポキシ樹脂の1種又は2種を混合して用いることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Further, as the brominated (brominated) epoxy resin, a known brominated (brominated) epoxy resin can be used. For example, the brominated (brominated) epoxy resin is a brominated epoxy resin having the structural formula shown in Chemical formula 6 obtained as a derivative from tetrabromobisphenol A having two or more epoxy groups in the molecule. It is preferable to use one or two brominated epoxy resins having the structural formula shown in FIG.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 前記マレイミド系樹脂または芳香族マレイミド樹脂またはマレイミド化合物またはポリマレイミド化合物としては、公知のマレイミド系樹脂または芳香族マレイミド樹脂またはマレイミド化合物またはポリマレイミド化合物を用いることができる。例えばマレイミド系樹脂または芳香族マレイミド樹脂またはマレイミド化合物またはポリマレイミド化合物としては4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン並びに上記化合物と、上記化合物またはその他の化合物とを重合させたポリマー等の使用が可能である。また、前記マレイミド系樹脂は、分子内に2個以上のマレイミド基を有する芳香族マレイミド樹脂であってもよく、分子内に2個以上のマレイミド基を有する芳香族マレイミド樹脂とポリアミンまたは芳香族ポリアミンとを重合させた重合付加物であってもよい。
 前記ポリアミンまたは芳香族ポリアミンとしては、公知のポリアミンまたは芳香族ポリアミンを用いることができる。例えば、ポリアミンまたは芳香族ポリアミンとして、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジシクロヘキシルメタン、1,4-ジアミノシクロヘキサン、2,6-ジアミノピリジン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3-メチルジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルスルホン、ビス(4-アミノフェニル)フェニルアミン、m-キシレンジアミン、p-キシレンジアミン、1,3-ビス[4-アミノフェノキシ]ベンゼン、3-メチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、2,2’,5,5’-テトラクロロ-4,4’-ジアミノジフェニルメタン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、2,2-ビス(3-エチル-4-アミノフェニル)プロパン、2,2-ビス(2,3-ジクロロ-4-アミノフェニル)プロパン、ビス(2,3-ジメチル-4-アミノフェニル)フェニルエタン、エチレンジアミンおよびヘキサメチレンジアミン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン並びに上記化合物と、上記化合物またはその他の化合物とを重合させたポリマー等を用いることができる。また、公知のポリアミンおよび/または芳香族ポリアミンまたは前述のポリアミンまたは芳香族ポリアミンを一種または二種以上用いることができる。
 前記フェノキシ樹脂としては公知のフェノキシ樹脂を用いることができる。また、前記フェノキシ樹脂として、ビスフェノールと2価のエポキシ樹脂との反応により合成されるものを用いることができる。エポキシ樹脂としては、公知のエポキシ樹脂および/または前述のエポキシ樹脂を用いることができる。
 前記ビスフェノールとしては、公知のビスフェノールを使用することができ、またビスフェノールA、ビスフェノールF、ビスフェノールS、テトラブロモビスフェノールA、4,4’-ジヒドロキシビフェニル、HCA(9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-Oxide)とハイドロキノン、ナフトキノン等のキノン類との付加物として得られるビスフェノール等を使用することができる。
 前記架橋可能な官能基を有する線状ポリマーとしては、公知の架橋可能な官能基を有する線状ポリマーを用いることができる。例えば、前記架橋可能な官能基を有する線状ポリマーは水酸基、カルボキシル基等のエポキシ樹脂の硬化反応に寄与する官能基を備えることが好ましい。そして、この架橋可能な官能基を有する線状ポリマーは、沸点が50℃~200℃の温度の有機溶剤に可溶であることが好ましい。ここで言う官能基を有する線状ポリマーを具体的に例示すると、ポリビニルアセタール樹脂、フェノキシ樹脂、ポリエーテルスルホン樹脂、ポリアミドイミド樹脂等である。
 前記樹脂層は架橋剤を含んでもよい。架橋剤には、公知の架橋剤を用いることができる。架橋剤として例えばウレタン系樹脂を用いることができる。
 前記ゴム性樹脂は公知のゴム性樹脂を用いることができる。例えば前記ゴム性樹脂とは、天然ゴム及び合成ゴムを含む概念として記載しており、後者の合成ゴムにはスチレン-ブタジエンゴム、ブタジエンゴム、ブチルゴム、エチレン-プロピレンゴム、アクリロニトリルブタジエンゴム、アクリルゴム(アクリル酸エステル共重合体)、ポリブタジエンゴム、イソプレンゴム等がある。更に、形成する樹脂層の耐熱性を確保する際には、ニトリルゴム、クロロプレンゴム、シリコンゴム、ウレタンゴム等の耐熱性を備えた合成ゴムを選択使用することも有用である。これらのゴム性樹脂に関しては、芳香族ポリアミド樹脂またはポリアミドイミド樹脂と反応して共重合体を製造するようにするため、両末端に種々の官能基を備えるものであることが望ましい。特に、CTBN(カルボキシ基末端ブタジエンニトリル)を用いることが有用である。また、アクリロニトリルブタジエンゴムの中でも、カルボキシル変性体であると、エポキシ樹脂と架橋構造を取り、硬化後の樹脂層のフレキシビリティを向上させることができる。カルボキシル変性体としては、カルボキシ基末端ニトリルブタジエンゴム(CTBN)、カルボキシ基末端ブタジエンゴム(CTB)、カルボキシ変性ニトリルブタジエンゴム(C‐NBR)を用いることができる。
 前記ポリアミドイミド樹脂としては公知のポリイミドアミド樹脂を用いることができる。また、前記ポリイミドアミド樹脂としては例えば、トリメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物及びビトリレンジイソシアネートをN-メチル-2-ピロリドン又は/及びN,N-ジメチルアセトアミド等の溶剤中で加熱することで得られる樹脂や、トリメリット酸無水物、ジフェニルメタンジイソシアネート及びカルボキシル基末端アクリロニトリル-ブタジエンゴムをN-メチル-2-ピロリドン又は/及びN,N-ジメチルアセトアミド等の溶剤中で加熱することで得られるものを用いることができる。
 前記ゴム変成ポリアミドイミド樹脂として、公知のゴム変成ポリアミドイミド樹脂を用いることができる。ゴム変成ポリアミドイミド樹脂は、ポリアミドイミド樹脂とゴム性樹脂とを反応させて得られるものである。ポリアミドイミド樹脂とゴム性樹脂とを反応させて用いるのは、ポリアミドイミド樹脂そのものの柔軟性を向上させる目的で行う。すなわち、ポリアミドイミド樹脂とゴム性樹脂とを反応させ、ポリアミドイミド樹脂の酸成分(シクロヘキサンジカルボン酸等)の一部をゴム成分に置換するのである。ポリアミドイミド樹脂には公知のポリアミドイミド樹脂を用いることができる。また、ゴム性樹脂には公知のゴム性樹脂または前述のゴム性樹脂を用いることができる。ゴム変成ポリアミドイミド樹脂を重合させる際に、ポリアミドイミド樹脂とゴム性樹脂との溶解に使用する溶剤には、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ニトロメタン、ニトロエタン、テトラヒドロフラン、シクロヘキサノン、メチルエチルケトン、アセトニトリル、γ-ブチロラクトン等を、1種又は2種以上を混合して用いることが好ましい。
 前記フォスファゼン系樹脂として、公知のフォスファゼン系樹脂を用いることができる。フォスファゼン系樹脂は、リン及び窒素を構成元素とする二重結合を持つフォスファゼンを含む樹脂である。フォスファゼン系樹脂は、分子中の窒素とリンの相乗効果により、難燃性能を飛躍的に向上させることができる。また、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド誘導体と異なり、樹脂中で安定して存在し、マイグレーションの発生を防ぐ効果が得られる。
 前記フッ素樹脂として、公知のフッ素樹脂を用いることができる。また、フッ素樹脂として例えばPTFE(ポリテトラフルオロエチレン(4フッ化))、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(4.6フッ化))、ETFE(テトラフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフルオライド(2フッ化))、PCTFE(ポリクロロトリフルオロエチレン(3フッ化))、ポリアリルスルフォン、芳香族ポリスルフィドおよび芳香族ポリエーテルの中から選ばれるいずれか少なくとも1種の熱可塑性樹脂とフッ素樹脂とからなるフッ素樹脂等を用いてもよい。
 また、前記樹脂層は樹脂硬化剤を含んでもよい。樹脂硬化剤としては公知の樹脂硬化剤を用いることができる。例えば樹脂硬化剤としてはジシアンジアミド、イミダゾール類、芳香族アミン等のアミン類、ビスフェノールA、ブロム化ビスフェノールA等のフェノール類、フェノールノボラック樹脂及びクレゾールノボラック樹脂等のノボラック類、無水フタル酸等の酸無水物、ビフェニル型フェノール樹脂、フェノールアラルキル型フェノール樹脂等を用いることができる。また、前記樹脂層は前述の樹脂硬化剤の1種又は2種以上を含んでもよい。これらの硬化剤はエポキシ樹脂に特に有効である。
 前記ビフェニル型フェノール樹脂の具体例を化8に示す。
Figure JPOXMLDOC01-appb-C000007
As the maleimide resin, aromatic maleimide resin, maleimide compound or polymaleimide compound, known maleimide resins, aromatic maleimide resins, maleimide compounds or polymaleimide compounds can be used. For example, as maleimide resin or aromatic maleimide resin or maleimide compound or polymaleimide compound, 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl -5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1, It is possible to use 3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and a polymer obtained by polymerizing the above compound with the above compound or other compounds. The maleimide resin may be an aromatic maleimide resin having two or more maleimide groups in the molecule, and an aromatic maleimide resin having two or more maleimide groups in the molecule and a polyamine or aromatic polyamine. Polymerization adducts obtained by polymerizing and may be used.
As the polyamine or aromatic polyamine, known polyamines or aromatic polyamines can be used. For example, as polyamine or aromatic polyamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodicyclohexylmethane, 1,4-diaminocyclohexane, 2,6-diaminopyridine, 4,4′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane, 4,4′-diaminodiphenyl ether, 4,4′-diamino-3-methyldiphenyl ether, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminobenzophenone, 4,4'-diaminodiphenylsulfone, bis (4-aminophenyl) phenylamine, m-xylenediamine, p-xylenediamine, 1,3-bis [4-aminophenoxy] benzene, 3-methyl-4,4 ' -Diaminodiphenylmethane, 3,3'-diethyl-4 4′-diaminodiphenylmethane, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 2,2 ′, 5,5′-tetrachloro-4,4′-diaminodiphenylmethane, 2,2-bis (3- Methyl-4-aminophenyl) propane, 2,2-bis (3-ethyl-4-aminophenyl) propane, 2,2-bis (2,3-dichloro-4-aminophenyl) propane, bis (2,3 -Dimethyl-4-aminophenyl) phenylethane, ethylenediamine and hexamethylenediamine, 2,2-bis (4- (4-aminophenoxy) phenyl) propane and the above compound were polymerized with the above compound or other compounds A polymer or the like can be used. Moreover, 1 type, or 2 or more types of well-known polyamine and / or aromatic polyamine or the above-mentioned polyamine or aromatic polyamine can be used.
A known phenoxy resin can be used as the phenoxy resin. Moreover, what is synthesize | combined by reaction of bisphenol and a bivalent epoxy resin can be used as said phenoxy resin. As an epoxy resin, a well-known epoxy resin and / or the above-mentioned epoxy resin can be used.
As the bisphenol, known bisphenols can be used, and bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A, 4,4′-dihydroxybiphenyl, HCA (9,10-Dihydro-9-Oxa- Bisphenol obtained as an adduct of 10-phosphophenanthrene-10-oxide) and quinones such as hydroquinone and naphthoquinone can be used.
As the linear polymer having a crosslinkable functional group, a known linear polymer having a crosslinkable functional group can be used. For example, the linear polymer having a crosslinkable functional group preferably has a functional group that contributes to the curing reaction of an epoxy resin such as a hydroxyl group or a carboxyl group. The linear polymer having a crosslinkable functional group is preferably soluble in an organic solvent having a boiling point of 50 ° C. to 200 ° C. Specific examples of the linear polymer having a functional group mentioned here include polyvinyl acetal resin, phenoxy resin, polyethersulfone resin, polyamideimide resin and the like.
The resin layer may contain a crosslinking agent. A known crosslinking agent can be used as the crosslinking agent. For example, a urethane-based resin can be used as the crosslinking agent.
A known rubber resin can be used as the rubber resin. For example, the rubbery resin is described as a concept including natural rubber and synthetic rubber. The latter synthetic rubber includes styrene-butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber, acrylonitrile butadiene rubber, acrylic rubber ( Acrylic ester copolymer), polybutadiene rubber, isoprene rubber and the like. Furthermore, when ensuring the heat resistance of the resin layer to be formed, it is also useful to select and use a synthetic rubber having heat resistance such as nitrile rubber, chloroprene rubber, silicon rubber, urethane rubber or the like. Regarding these rubber resins, it is desirable to have various functional groups at both ends in order to produce a copolymer by reacting with an aromatic polyamide resin or a polyamideimide resin. In particular, it is useful to use CTBN (carboxy group-terminated butadiene nitrile). Moreover, among acrylonitrile butadiene rubbers, a carboxyl-modified product can take a crosslinked structure with an epoxy resin and improve the flexibility of the cured resin layer. As the carboxyl-modified product, carboxy group-terminated nitrile butadiene rubber (CTBN), carboxy group-terminated butadiene rubber (CTB), and carboxy-modified nitrile butadiene rubber (C-NBR) can be used.
A known polyimide amide resin can be used as the polyamide imide resin. In addition, as the polyimide amide resin, for example, trimellitic anhydride, benzophenonetetracarboxylic anhydride and vitorylene diisocyanate are heated in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide. By heating the resin obtained in this way, trimellitic anhydride, diphenylmethane diisocyanate and carboxyl group-terminated acrylonitrile-butadiene rubber in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide. What is obtained can be used.
A known rubber-modified polyamideimide resin can be used as the rubber-modified polyamideimide resin. The rubber-modified polyamideimide resin is obtained by reacting a polyamideimide resin and a rubber resin. The reaction of the polyamide-imide resin and the rubber resin is performed for the purpose of improving the flexibility of the polyamide-imide resin itself. That is, the polyamideimide resin and the rubber resin are reacted to replace a part of the acid component (cyclohexanedicarboxylic acid or the like) of the polyamideimide resin with the rubber component. A known polyamideimide resin can be used as the polyamideimide resin. As the rubber resin, a known rubber resin or the aforementioned rubber resin can be used. Solvents used for dissolving the polyamideimide resin and the rubbery resin when polymerizing the rubber-modified polyamideimide resin include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, nitromethane, nitroethane, tetrahydrofuran , Cyclohexanone, methyl ethyl ketone, acetonitrile, γ-butyrolactone and the like are preferably used alone or in combination.
A known phosphazene resin can be used as the phosphazene resin. The phosphazene resin is a resin containing phosphazene having a double bond having phosphorus and nitrogen as constituent elements. The phosphazene resin can dramatically improve the flame retardancy due to the synergistic effect of nitrogen and phosphorus in the molecule. In addition, unlike 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivatives, they exist stably in the resin, and an effect of preventing the occurrence of migration can be obtained.
A known fluororesin can be used as the fluororesin. Examples of the fluororesin include PTFE (polytetrafluoroethylene (tetrafluoroethylene)), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer (4.6). Fluoride)), ETFE (tetrafluoroethylene / ethylene copolymer), PVDF (polyvinylidene fluoride (difluoride)), PCTFE (polychlorotrifluoroethylene (trifluoride)), polyallylsulfone, aromatic A fluororesin composed of at least one thermoplastic resin selected from polysulfide and aromatic polyether and a fluororesin may be used.
The resin layer may contain a resin curing agent. A known resin curing agent can be used as the resin curing agent. For example, resin curing agents include amines such as dicyandiamide, imidazoles and aromatic amines, phenols such as bisphenol A and brominated bisphenol A, novolaks such as phenol novolac resins and cresol novolac resins, and acid anhydrides such as phthalic anhydride. Products, biphenyl type phenol resins, phenol aralkyl type phenol resins and the like can be used. The resin layer may contain one or more of the aforementioned resin curing agents. These curing agents are particularly effective for epoxy resins.
A specific example of the biphenyl type phenol resin is shown in Chemical Formula 8.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 また、前記フェノールアラルキル型フェノール樹脂の具体例を化9に示す。 A specific example of the phenol aralkyl type phenol resin is shown in Chemical Formula 9.
Figure JPOXMLDOC01-appb-C000009
 イミダゾール類としては、公知のものを用いることができ、例えば、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどが挙げられ、これらを単独若しくは混合して用いることができる。
 また、中でも、以下の化10に示す構造式を備えるイミダゾール類を用いる事が好ましい。この化10に示す構造式のイミダゾール類を用いることで、半硬化状態の樹脂層の耐吸湿性を顕著に向上でき、長期保存安定性に優れる。イミダゾール類は、エポキシ樹脂の硬化に際して触媒的な働きを行うものであり、硬化反応の初期段階において、エポキシ樹脂の自己重合反応を引き起こす反応開始剤として寄与するからである。
Figure JPOXMLDOC01-appb-C000009
Known imidazoles can be used, such as 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5- Hydroxymethylimidazole etc. are mentioned, These can be used individually or in mixture.
Of these, imidazoles having the structural formula shown in Chemical Formula 10 below are preferably used. By using the imidazole having the structural formula shown in Chemical Formula 10, the moisture absorption resistance of the semi-cured resin layer can be remarkably improved, and the long-term storage stability is excellent. This is because imidazoles function as a catalyst during curing of the epoxy resin and contribute as a reaction initiator that causes a self-polymerization reaction of the epoxy resin in the initial stage of the curing reaction.
Figure JPOXMLDOC01-appb-C000010
 前記アミン類の樹脂硬化剤としては、公知のアミン類を用いることができる。また、前記アミン類の樹脂硬化剤としては例えば前述のポリアミンや芳香族ポリアミンを用いることが出来、また、芳香族ポリアミン、ポリアミド類及びこれらをエポキシ樹脂や多価カルボン酸と重合或いは縮合させて得られるアミンアダクト体の群から選ばれた1種又は2種以上を用いてもよい。また、前記アミン類の樹脂硬化剤としては、4,4’-ジアミノジフェニレンサルフォン、3,3’-ジアミノジフェニレンサルフォン、4,4-ジアミノジフェニレル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンまたはビス[4-(4-アミノフェノキシ)フェニル]サルフォンのいずれか一種以上を用いることが好ましい。
 前記樹脂層は硬化促進剤を含んでもよい。硬化促進剤としては公知の硬化促進剤を用いることができる。例えば、硬化促進剤としては、3級アミン、イミダゾール、尿素系硬化促進剤等を用いることができる。
 前記樹脂層は反応触媒を含んでもよい。反応触媒としては公知の反応触媒を用いることができる。例えば反応触媒として微粉砕シリカ、三酸化アンチモン等を用いることができる。
Figure JPOXMLDOC01-appb-C000010
As the amine resin curing agent, known amines can be used. As the amine resin curing agent, for example, the above-mentioned polyamines and aromatic polyamines can be used, and aromatic polyamines, polyamides, and these are obtained by polymerizing or condensing with epoxy resins or polyvalent carboxylic acids. One or more selected from the group of amine adducts to be used may be used. Examples of the resin curing agent for the amines include 4,4′-diaminodiphenylene sulfone, 3,3′-diaminodiphenylene sulfone, 4,4-diaminodiphenylel, 2,2-bis [4 It is preferable to use at least one of-(4-aminophenoxy) phenyl] propane and bis [4- (4-aminophenoxy) phenyl] sulfone.
The resin layer may contain a curing accelerator. A known curing accelerator can be used as the curing accelerator. For example, as the curing accelerator, tertiary amine, imidazole, urea curing accelerator and the like can be used.
The resin layer may include a reaction catalyst. A known reaction catalyst can be used as the reaction catalyst. For example, finely pulverized silica or antimony trioxide can be used as a reaction catalyst.
 前記多価カルボン酸の無水物はエポキシ樹脂の硬化剤として寄与する成分であることが好ましい。また、前記多価カルボン酸の無水物は、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、テトラヒドロキシ無水フタル酸、ヘキサヒドロキシ無水フタル酸、メチルヘキサヒドロキシ無水フタル酸、ナジン酸、メチルナジン酸であることが好ましい。 The anhydride of the polyvalent carboxylic acid is preferably a component that contributes as a curing agent for the epoxy resin. The anhydride of the polyvalent carboxylic acid is phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydroxyphthalic anhydride, hexahydroxyphthalic anhydride, methylhexahydroxyphthalic anhydride, nadine. Acid and methyl nadic acid are preferred.
 前記熱可塑性樹脂はエポキシ樹脂と重合可能なアルコール性水酸基以外の官能基を有する熱可塑性樹脂であってもよい。
 前記ポリビニルアセタール樹脂は酸基および水酸基以外のエポキシ樹脂またはマレイミド化合物と重合可能な官能基を有してもよい。また、前記ポリビニルアセタール樹脂はその分子内にカルボキシル基、アミノ基または不飽和二重結合を導入したものであってもよい。
 前記芳香族ポリアミド樹脂ポリマーとしては、芳香族ポリアミド樹脂とゴム性樹脂とを反応させて得られるものが挙げられる。ここで、芳香族ポリアミド樹脂とは、芳香族ジアミンとジカルボン酸との縮重合により合成されるものである。このときの芳香族ジアミンには、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、m-キシレンジアミン、3,3’-オキシジアニリン等を用いる。そして、ジカルボン酸には、フタル酸、イソフタル酸、テレフタル酸、フマル酸等を用いる。
 前記芳香族ポリアミド樹脂と反応させる前記ゴム性樹脂とは、公知のゴム性樹脂または前述のゴム性樹脂を用いることができる。
 この芳香族ポリアミド樹脂ポリマーは、銅張積層板に加工した後の銅箔をエッチング加工する際に、エッチング液によりアンダーエッチングによる損傷を受けないことを目的に用いたものである。
The thermoplastic resin may be a thermoplastic resin having a functional group other than an alcoholic hydroxyl group polymerizable with an epoxy resin.
The polyvinyl acetal resin may have a functional group polymerizable with an epoxy resin or a maleimide compound other than an acid group and a hydroxyl group. The polyvinyl acetal resin may have a carboxyl group, an amino group or an unsaturated double bond introduced into the molecule.
Examples of the aromatic polyamide resin polymer include those obtained by reacting an aromatic polyamide resin and a rubber resin. Here, the aromatic polyamide resin is synthesized by condensation polymerization of an aromatic diamine and a dicarboxylic acid. As the aromatic diamine at this time, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, m-xylenediamine, 3,3′-oxydianiline and the like are used. As the dicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, fumaric acid or the like is used.
As the rubber resin to be reacted with the aromatic polyamide resin, a known rubber resin or the aforementioned rubber resin can be used.
This aromatic polyamide resin polymer is used for the purpose of not being damaged by under-etching by an etchant when etching a copper foil after being processed into a copper-clad laminate.
 また、前記樹脂層は銅箔側(すなわちキャリア付銅箔の極薄銅層側)から順に硬化樹脂層(「硬化樹脂層」とは硬化済みの樹脂層のことを意味するとする。)と半硬化樹脂層とを順次形成した樹脂層であってもよい。前記硬化樹脂層は、熱膨張係数が0ppm/℃~25ppm/℃のポリイミド樹脂、ポリアミドイミド樹脂、これらの複合樹脂のいずれかの樹脂成分で構成されてもよい。 The resin layer is a cured resin layer (the “cured resin layer” means a cured resin layer) and a half in order from the copper foil side (that is, the ultrathin copper layer side of the copper foil with carrier). The resin layer which formed the cured resin layer sequentially may be sufficient. The cured resin layer may be composed of a resin component of any one of a polyimide resin, a polyamideimide resin, and a composite resin having a thermal expansion coefficient of 0 ppm / ° C. to 25 ppm / ° C.
 また、前記硬化樹脂層上に、硬化した後の熱膨張係数が0ppm/℃~50ppm/℃の半硬化樹脂層を設けてもよい。また、前記硬化樹脂層と前記半硬化樹脂層とが硬化した後の樹脂層全体の熱膨張係数が40ppm/℃以下であってもよい。前記硬化樹脂層は、ガラス転移温度が300℃以上であってもよい。また、前記半硬化樹脂層は、マレイミド系樹脂または芳香族マレイミド樹脂を用いて形成したものであってもよい。前記半硬化樹脂層を形成するための樹脂組成物は、マレイミド系樹脂、エポキシ樹脂、架橋可能な官能基を有する線状ポリマーを含むことが好ましい。エポキシ樹脂は公知のエポキシ樹脂または本明細書に記載のエポキシ樹脂を用いることができる。また、マレイミド系樹脂、芳香族マレイミド樹脂、架橋可能な官能基を有する線状ポリマーとしては公知のマレイミド系樹脂、芳香族マレイミド樹脂、架橋可能な官能基を有する線状ポリマー又は前述のマレイミド系樹脂、芳香族マレイミド樹脂、架橋可能な官能基を有する線状ポリマーを用いることができる。 Further, a semi-cured resin layer having a coefficient of thermal expansion after curing of 0 ppm / ° C. to 50 ppm / ° C. may be provided on the cured resin layer. In addition, the thermal expansion coefficient of the entire resin layer after the cured resin layer and the semi-cured resin layer are cured may be 40 ppm / ° C. or less. The cured resin layer may have a glass transition temperature of 300 ° C. or higher. The semi-cured resin layer may be formed using a maleimide resin or an aromatic maleimide resin. The resin composition for forming the semi-cured resin layer preferably contains a maleimide resin, an epoxy resin, and a linear polymer having a crosslinkable functional group. As the epoxy resin, a known epoxy resin or an epoxy resin described in this specification can be used. In addition, as maleimide resins, aromatic maleimide resins, linear polymers having crosslinkable functional groups, known maleimide resins, aromatic maleimide resins, linear polymers having crosslinkable functional groups, or the aforementioned maleimide resins. An aromatic maleimide resin or a linear polymer having a crosslinkable functional group can be used.
 また、立体成型プリント配線板製造用途に適した、樹脂層を有するキャリア付銅箔を提供する場合、前記硬化樹脂層は硬化した可撓性を有する高分子ポリマー層であることが好ましい。前記高分子ポリマー層は、はんだ実装工程に耐えられるように、150℃以上のガラス転移温度をもつ樹脂からなるものが好適である。前記高分子ポリマー層は、ポリアミド樹脂、ポリエーテルサルフォン樹脂、アラミド樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリビニルアセタール樹脂、ポリアミドイミド樹脂のいずれか1種又は2種以上の混合樹脂からなることが好ましい。また、前記高分子ポリマー層の厚さは3μm~10μmであることが好ましい。
 また、前記高分子ポリマー層は、エポキシ樹脂、マレイミド系樹脂、フェノール樹脂、ウレタン樹脂のいずれか1種又は2種以上を含むことが好ましい。また、前記半硬化樹脂層は厚さが10μm~50μmのエポキシ樹脂組成物で構成されていることが好ましい。
Moreover, when providing the copper foil with a carrier which has a resin layer suitable for a three-dimensional molded printed wiring board manufacture use, it is preferable that the said cured resin layer is a polymeric polymer layer which has hardened | cured flexibility. The polymer layer is preferably made of a resin having a glass transition temperature of 150 ° C. or higher so that it can withstand the solder mounting process. The polymer polymer layer is preferably made of one or a mixture of two or more of a polyamide resin, a polyether sulfone resin, an aramid resin, a phenoxy resin, a polyimide resin, a polyvinyl acetal resin, and a polyamideimide resin. The thickness of the polymer layer is preferably 3 μm to 10 μm.
Moreover, it is preferable that the said high molecular polymer layer contains any 1 type, or 2 or more types of an epoxy resin, a maleimide-type resin, a phenol resin, and a urethane resin. The semi-cured resin layer is preferably composed of an epoxy resin composition having a thickness of 10 μm to 50 μm.
 また、前記エポキシ樹脂組成物は以下のA成分~E成分の各成分を含むものであることが好ましい。
A成分: エポキシ当量が200以下で、室温で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上からなるエポキシ樹脂。
B成分: 高耐熱性エポキシ樹脂。
C成分: リン含有エポキシ系樹脂、フォスファゼン系樹脂のいずれか1種又はこれらを混合した樹脂であるリン含有難燃性樹脂。
D成分: 沸点が50℃~200℃の範囲にある溶剤に可溶な性質を備える液状ゴム成分で変成したゴム変成ポリアミドイミド樹脂。
E成分: 樹脂硬化剤。
The epoxy resin composition preferably contains the following components A to E.
Component A: An epoxy resin having one or more selected from the group consisting of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol AD type epoxy resin that have an epoxy equivalent of 200 or less and are liquid at room temperature.
B component: High heat-resistant epoxy resin.
Component C: Phosphorus-containing flame-retardant resin, which is any one of phosphorus-containing epoxy resin and phosphazene-based resin, or a mixture of these.
Component D: A rubber-modified polyamideimide resin modified with a liquid rubber component having a property of being soluble in a solvent having a boiling point in the range of 50 ° C. to 200 ° C.
E component: Resin curing agent.
 B成分は、所謂ガラス転移点Tgの高い「高耐熱性エポキシ樹脂」である。ここで言う「高耐熱性エポキシ樹脂」は、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂等の多官能エポキシ樹脂であることが好ましい。
 C成分のリン含有エポキシ樹脂として、前述のリン含有エポキシ樹脂を用いることができる。また、C成分のフォスファゼン系樹脂として前述のフォスファゼン系樹脂を用いることができる。
 D成分のゴム変成ポリアミドイミド樹脂として、前述のゴム変成ポリアミドイミド樹脂を用いることができる。E成分の樹脂硬化剤として、前述の樹脂硬化剤を用いることができる。
The B component is a “high heat resistant epoxy resin” having a high so-called glass transition point Tg. The “high heat-resistant epoxy resin” referred to here is preferably a polyfunctional epoxy resin such as a novolac-type epoxy resin, a cresol novolac-type epoxy resin, a phenol novolac-type epoxy resin, or a naphthalene-type epoxy resin.
As the phosphorus-containing epoxy resin of component C, the aforementioned phosphorus-containing epoxy resin can be used. The phosphazene resin described above can be used as the C component phosphazene resin.
The rubber-modified polyamide-imide resin described above can be used as the rubber-modified polyamide-imide resin of component D. The resin curing agent described above can be used as the E component resin curing agent.
 以上に示した樹脂組成物に溶剤を加えて樹脂ワニスとして用い、プリント配線板の接着層として熱硬化性樹脂層を形成する。当該樹脂ワニスは、上述の樹脂組成物に溶剤を加えて、樹脂固形分量が30wt%~70wt%の範囲に調製し、MIL規格におけるMIL-P-13949Gに準拠して測定したときのレジンフローが5%~35%の範囲にある半硬化樹脂膜の形成が可能である。溶剤には、公知の溶剤または前述の溶剤を用いることができる。 A solvent is added to the resin composition shown above and used as a resin varnish to form a thermosetting resin layer as an adhesive layer of a printed wiring board. The resin varnish is prepared by adding a solvent to the resin composition described above so that the resin solid content is in the range of 30 wt% to 70 wt%, and the resin flow when measured in accordance with MIL-P-13949G in the MIL standard. A semi-cured resin film in the range of 5% to 35% can be formed. As the solvent, a known solvent or the aforementioned solvent can be used.
 前記樹脂層は銅箔側から順に第1熱硬化性樹脂層と、当該第1熱硬化性樹脂層の表面に位置する第2熱硬化性樹脂層とを有する樹脂層であって、第1熱硬化性樹脂層は、配線板製造プロセスにおけるデスミア処理時の薬品に溶解しない樹脂成分で形成されたものであり、第2熱硬化性樹脂層は、配線板製造プロセスにおけるデスミア処理時の薬品に溶解し洗浄除去可能な樹脂を用いて形成したものであってもよい。前記第1熱硬化性樹脂層は、ポリイミド樹脂、ポリエーテルサルホン、ポリフェニレンオキサイドのいずれか一種又は2種以上を混合した樹脂成分を用いて形成したものであってもよい。前記第2熱硬化性樹脂層は、エポキシ樹脂成分を用いて形成したものであってもよい。前記第1熱硬化性樹脂層の厚さt1(μm)は、キャリア付銅箔の粗化面粗さをRz(μm)とし、第2熱硬化性樹脂層の厚さをt2(μm)としたとき、t1は、Rz<t1<t2の条件を満たす厚さであることが好ましい。 The resin layer is a resin layer having a first thermosetting resin layer and a second thermosetting resin layer located on the surface of the first thermosetting resin layer in order from the copper foil side, The curable resin layer is formed of a resin component that does not dissolve in chemicals during desmear processing in the wiring board manufacturing process, and the second thermosetting resin layer dissolves in chemicals during desmear processing in the wiring board manufacturing process. Then, it may be formed using a resin that can be washed and removed. The first thermosetting resin layer may be formed using a resin component obtained by mixing one or more of polyimide resin, polyethersulfone, and polyphenylene oxide. The second thermosetting resin layer may be formed using an epoxy resin component. The thickness t1 (μm) of the first thermosetting resin layer is Rz (μm) of the roughened surface roughness of the copper foil with carrier, and the thickness of the second thermosetting resin layer is t2 (μm). Then, t1 is preferably a thickness that satisfies the condition of Rz <t1 <t2.
 前記樹脂層は骨格材に樹脂を含浸させたプリプレグであってもよい。前記骨格材に含浸させた樹脂は熱硬化性樹脂であることが好ましい。前記プリプレグは公知のプリプレグまたはプリント配線板製造に用いるプリプレグであってもよい。 The resin layer may be a prepreg in which a skeleton material is impregnated with a resin. The resin impregnated in the skeleton material is preferably a thermosetting resin. The prepreg may be a known prepreg or a prepreg used for manufacturing a printed wiring board.
 前記骨格材はアラミド繊維又はガラス繊維又は全芳香族ポリエステル繊維を含んでもよい。前記骨格材はアラミド繊維又はガラス繊維又は全芳香族ポリエステル繊維の不織布若しくは織布であることが好ましい。また、前記全芳香族ポリエステル繊維は融点が300℃以上の全芳香族ポリエステル繊維であることが好ましい。前記融点が300℃以上の全芳香族ポリエステル繊維とは、所謂液晶ポリマーと称される樹脂を用いて製造される繊維であり、当該液晶ポリマーは2-ヒドロキシル-6-ナフトエ酸及びp-ヒドロキシ安息香酸の重合体を主成分とするものである。この全芳香族ポリエステル繊維は、低誘電率、低い誘電正接を持つため、電気的絶縁層の構成材として優れた性能を有し、ガラス繊維及びアラミド繊維と同様に使用することが可能なものである。
 なお、前記不織布及び織布を構成する繊維は、その表面の樹脂との濡れ性を向上させるため、シランカップリング剤処理を施す事が好ましい。このときのシランカップリング剤は、使用目的に応じて公知のアミノ系、エポキシ系等のシランカップリング剤または前述のシランカップリング剤を用いることができる。
The skeleton material may include aramid fibers, glass fibers, or wholly aromatic polyester fibers. The skeleton material is preferably an aramid fiber, a glass fiber, or a nonwoven fabric or woven fabric of wholly aromatic polyester fibers. The wholly aromatic polyester fiber is preferably a wholly aromatic polyester fiber having a melting point of 300 ° C. or higher. The wholly aromatic polyester fiber having a melting point of 300 ° C. or higher is a fiber produced using a resin called a so-called liquid crystal polymer, and the liquid crystal polymer includes 2-hydroxyl-6-naphthoic acid and p-hydroxybenzoic acid. The main component is an acid polymer. Since this wholly aromatic polyester fiber has a low dielectric constant and low dielectric loss tangent, it has excellent performance as a constituent material of an electrically insulating layer and can be used in the same manner as glass fiber and aramid fiber. is there.
In addition, in order to improve the wettability with the resin of the surface, it is preferable to perform the silane coupling agent process for the fiber which comprises the said nonwoven fabric and woven fabric. As the silane coupling agent at this time, a known amino-based or epoxy-based silane coupling agent or the aforementioned silane coupling agent can be used depending on the purpose of use.
 また、前記プリプレグは公称厚さが70μm以下のアラミド繊維又はガラス繊維を用いた不織布、あるいは、公称厚さが30μm以下のガラスクロスからなる骨格材に熱硬化性樹脂を含浸させたプリプレグであってもよい。 The prepreg is a prepreg obtained by impregnating a thermosetting resin into a nonwoven fabric using an aramid fiber or glass fiber having a nominal thickness of 70 μm or less, or a skeleton material made of glass cloth having a nominal thickness of 30 μm or less. Also good.
(樹脂層が誘電体(誘電体フィラー)を含む場合)
 前記樹脂層は誘電体(誘電体フィラー)を含んでもよい。
 上記いずれかの樹脂層または樹脂組成物に誘電体(誘電体フィラー)を含ませる場合には、キャパシタ層を形成する用途に用い、キャパシタ回路の電気容量を増大させることができるのである。この誘電体(誘電体フィラー)には、BaTiO3、SrTiO3、Pb(Zr-Ti)O3(通称PZT)、PbLaTiO3・PbLaZrO(通称PLZT)、SrBi2Ta2O9(通称SBT)等のペブロスカイト構造を持つ複合酸化物の誘電体粉を用いる。
(When the resin layer contains a dielectric (dielectric filler))
The resin layer may include a dielectric (dielectric filler).
In the case where a dielectric (dielectric filler) is included in any of the above resin layers or resin compositions, it can be used for the purpose of forming the capacitor layer and increase the capacitance of the capacitor circuit. The dielectric (dielectric filler) includes a composite oxide having a perovskite structure such as BaTiO3, SrTiO3, Pb (Zr-Ti) O3 (commonly called PZT), PbLaTiO3 / PbLaZrO (commonly known as PLZT), SrBi2Ta2O9 (commonly known as SBT), and the like. Dielectric powder is used.
 誘電体(誘電体フィラー)は粉状であってもよい。誘電体(誘電体フィラー)が粉状である場合、この誘電体(誘電体フィラー)の粉体特性は、まず粒径が0.01μm~3.0μm、好ましくは0.02μm~2.0μmの範囲のものである必要がある。ここで言う粒径は、粉粒同士がある一定の2次凝集状態を形成しているため、レーザー回折散乱式粒度分布測定法やBET法等の測定値から平均粒径を推測するような間接測定では精度が劣るものとなるため用いることができず、誘電体(誘電体フィラー)を走査型電子顕微鏡(SEM)で直接観察し、そのSEM像を画像解析し得られる平均粒径を言うものである。本件明細書ではこの時の粒径をDIAと表示している。なお、本件明細書における走査型電子顕微鏡(SEM)を用いて観察される誘電体(誘電体フィラー)の粉体の画像解析は、旭エンジニアリング株式会社製のIP-1000PCを用いて、円度しきい値10、重なり度20として円形粒子解析を行い、平均粒径DIAを求めたものである。
 上述の実施の形態により、当該内層コア材の内層回路表面と誘電体を含む樹脂層との密着性を向上させ、低い誘電正接を備えるキャパシタ回路層を形成するための誘電体を含む樹脂層を有するキャリア付銅箔を提供することができる。
The dielectric (dielectric filler) may be powdery. When the dielectric (dielectric filler) is powdery, the powder characteristics of the dielectric (dielectric filler) are as follows. First, the particle size is 0.01 μm to 3.0 μm, preferably 0.02 μm to 2.0 μm. Must be in range. The particle size referred to here is indirect in which the average particle size is estimated from the measured values of the laser diffraction scattering type particle size distribution measurement method and the BET method because the particles form a certain secondary aggregation state. It cannot be used because the accuracy is inferior in measurement, and it refers to the average particle diameter obtained by directly observing a dielectric (dielectric filler) with a scanning electron microscope (SEM) and image analysis of the SEM image. It is. In this specification, the particle size at this time is indicated as DIA. In addition, the image analysis of the dielectric (dielectric filler) powder observed using a scanning electron microscope (SEM) in this specification is performed using an IP-1000PC manufactured by Asahi Engineering Co., Ltd. Circular particle analysis was performed with a threshold value of 10 and an overlapping degree of 20, and the average particle diameter DIA was obtained.
According to the above-described embodiment, the resin layer containing the dielectric for forming the capacitor circuit layer having a low dielectric loss tangent is improved by improving the adhesion between the inner layer circuit surface of the inner layer core material and the resin layer containing the dielectric. The copper foil with a carrier which has can be provided.
 前述の樹脂層に含まれる樹脂および/または樹脂組成物および/または化合物を例えばメチルエチルケトン(MEK)、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、トルエン、メタノール、エタノール、プロピレングリコールモノメチルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、エチルセロソルブ、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどの溶剤に溶解して樹脂液(樹脂ワニス)とし、これを前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング剤層の上に、例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100~250℃、好ましくは130~200℃であればよい。前記樹脂層の組成物を、溶剤を用いて溶解し、樹脂固形分3wt%~70wt%、好ましくは、3wt%~60wt%、好ましくは10wt%~40wt%、より好ましくは25wt%~40wt%の樹脂液としてもよい。なお、メチルエチルケトンとシクロペンタノンとの混合溶剤を用いて溶解することが、環境的な見地より現段階では最も好ましい。なお、溶剤には沸点が50℃~200℃の範囲である溶剤を用いることが好ましい。
 また、前記樹脂層はMIL規格におけるMIL-P-13949Gに準拠して測定したときのレジンフローが5%~35%の範囲にある半硬化樹脂膜であることが好ましい。
 本件明細書において、レジンフローとは、MIL規格におけるMIL-P-13949Gに準拠して、樹脂厚さを55μmとした樹脂付銅箔から10cm角試料を4枚サンプリングし、この4枚の試料を重ねた状態(積層体)でプレス温度171℃、プレス圧14kgf/cm2、プレス時間10分の条件で張り合わせ、そのときの樹脂流出重量を測定した結果から数1に基づいて算出した値である。
Examples of the resin and / or resin composition and / or compound contained in the resin layer include methyl ethyl ketone (MEK), cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, methanol, ethanol, propylene glycol monomethyl ether , Dimethylformamide, dimethylacetamide, cyclohexanone, ethyl cellosolve, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like to obtain a resin liquid (resin varnish). On the ultrathin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary. Removing the solvent Te and to B-stage. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C. The resin layer composition is dissolved using a solvent, and the resin solid content is 3 wt% to 70 wt%, preferably 3 wt% to 60 wt%, preferably 10 wt% to 40 wt%, more preferably 25 wt% to 40 wt%. It is good also as a resin liquid. In addition, it is most preferable at this stage from an environmental standpoint to dissolve using a mixed solvent of methyl ethyl ketone and cyclopentanone. It is preferable to use a solvent having a boiling point in the range of 50 ° C. to 200 ° C.
The resin layer is preferably a semi-cured resin film having a resin flow in the range of 5% to 35% when measured according to MIL-P-13949G in the MIL standard.
In this specification, the resin flow is based on MIL-P-13949G in the MIL standard. Four 10 cm square samples were sampled from a resin-coated copper foil with a resin thickness of 55 μm. It is a value calculated based on Equation 1 from the result of measuring the resin outflow weight at the time of laminating under the conditions of a press temperature of 171 ° C., a press pressure of 14 kgf / cm 2 and a press time of 10 minutes in a stacked state (laminate). .
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 前記樹脂層を備えたキャリア付銅箔(樹脂付きキャリア付銅箔)は、その樹脂層を基材に重ね合わせたのち全体を熱圧着して該樹脂層を熱硬化せしめ、ついでキャリアを剥離して極薄銅層を表出せしめ(当然に表出するのは該極薄銅層の中間層側の表面である)、そこに所定の配線パターンを形成するという態様で使用される。 The copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompression bonded to thermally cure the resin layer, and then the carrier is peeled off. Thus, the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.
 この樹脂付きキャリア付銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張積層板を製造することができる。またこのとき、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。 Using this resin-attached copper foil with a carrier can reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board. In addition, the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
 なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。
 この樹脂層の厚みは0.1~120μmであることが好ましい。
In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.
The thickness of this resin layer is preferably 0.1 to 120 μm.
 樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付きキャリア付銅箔を内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。一方、樹脂層の厚みを120μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる場合がある。
 なお、樹脂層を有するキャリア付銅箔が極薄の多層プリント配線板を製造することに用いられる場合には、前記樹脂層の厚みを0.1μm~5μm、より好ましくは0.5μm~5μm、より好ましくは1μm~5μmとすることが、多層プリント配線板の厚みを小さくするために好ましい。
 また、樹脂層が誘電体を含む場合には、樹脂層の厚みは0.1~50μmであることが好ましく、0.5μm~25μmであることが好ましく、1.0μm~15μmであることがより好ましい。
 また、前記硬化樹脂層、半硬化樹脂層との総樹脂層厚みは0.1μm~120μmであるものが好ましく、5μm~120μmであるものが好ましく、10μm~120μmであるものが好ましく、10μm~60μmのものがより好ましい。そして、硬化樹脂層の厚みは2μm~30μmであることが好ましく、3μm~30μmであることが好ましく、5~20μmであることがより好ましい。また、半硬化樹脂層の厚みは3μm~55μmであることが好ましく、7μm~55μmであることが好ましく、15~115μmであることがより望ましい。総樹脂層厚みが120μmを超えると、薄厚の多層プリント配線板を製造することが難しくなる場合があり、5μm未満では薄厚の多層プリント配線板を形成し易くなるものの、内層の回路間における絶縁層である樹脂層が薄くなりすぎ、内層の回路間の絶縁性を不安定にする傾向が生じる場合があるためである。また、硬化樹脂層厚みが2μm未満であると、銅箔粗化面の表面粗度を考慮する必要が生じる場合がある。逆に硬化樹脂層厚みが20μmを超えると硬化済み樹脂層による効果は特に向上することがなくなる場合があり、総絶縁層厚は厚くなる。
When the thickness of the resin layer is less than 0.1 μm, the adhesive strength is reduced, and when the copper foil with a carrier with the resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two. On the other hand, if the thickness of the resin layer is greater than 120 μm, it is difficult to form a resin layer having a target thickness in a single coating process, which may be economically disadvantageous because of extra material costs and man-hours.
When the copper foil with a carrier having a resin layer is used for producing an extremely thin multilayer printed wiring board, the thickness of the resin layer is 0.1 μm to 5 μm, more preferably 0.5 μm to 5 μm, More preferably, the thickness is 1 μm to 5 μm in order to reduce the thickness of the multilayer printed wiring board.
When the resin layer contains a dielectric, the thickness of the resin layer is preferably 0.1 to 50 μm, more preferably 0.5 μm to 25 μm, and more preferably 1.0 μm to 15 μm. preferable.
The total resin layer thickness of the cured resin layer and the semi-cured resin layer is preferably 0.1 μm to 120 μm, preferably 5 μm to 120 μm, preferably 10 μm to 120 μm, and 10 μm to 60 μm. Are more preferred. The thickness of the cured resin layer is preferably 2 μm to 30 μm, preferably 3 μm to 30 μm, and more preferably 5 to 20 μm. The thickness of the semi-cured resin layer is preferably 3 μm to 55 μm, more preferably 7 μm to 55 μm, and even more preferably 15 to 115 μm. If the total resin layer thickness exceeds 120 μm, it may be difficult to produce a thin multilayer printed wiring board. If the total resin layer thickness is less than 5 μm, it is easy to form a thin multilayer printed wiring board, but an insulating layer between inner layer circuits This is because the resin layer may become too thin and the insulation between the circuits of the inner layer tends to become unstable. Moreover, when the cured resin layer thickness is less than 2 μm, it may be necessary to consider the surface roughness of the roughened copper foil surface. Conversely, if the cured resin layer thickness exceeds 20 μm, the effect of the cured resin layer may not be particularly improved, and the total insulating layer thickness becomes thick.
 なお、前記樹脂層の厚みを0.1μm~5μmとする場合には、樹脂層とキャリア付銅箔との密着性を向上させるため、極薄銅層の上に耐熱層および/または防錆層および/またはクロメート処理層および/またはシランカップリング処理層を設けた後に、当該耐熱層または防錆層またはクロメート処理層またはシランカップリング処理層の上に樹脂層を形成することが好ましい。
 なお、前述の樹脂層の厚みは、任意の10点において断面観察により測定した厚みの平均値をいう。
When the thickness of the resin layer is 0.1 μm to 5 μm, in order to improve the adhesion between the resin layer and the copper foil with carrier, a heat-resistant layer and / or a rust-proof layer is formed on the ultrathin copper layer. After providing the chromate treatment layer and / or the silane coupling treatment layer, it is preferable to form a resin layer on the heat-resistant layer, rust prevention layer, chromate treatment layer or silane coupling treatment layer.
In addition, the thickness of the above-mentioned resin layer says the average value of the thickness measured by cross-sectional observation in arbitrary 10 points | pieces.
 更に、この樹脂付きキャリア付銅箔のもう一つの製品形態としては、前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング処理層の上に樹脂層で被覆し、半硬化状態とした後、ついでキャリアを剥離して、キャリアが存在しない樹脂付き銅箔の形で製造することも可能である。 Furthermore, as another product form of this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer After coating with a resin layer and making it into a semi-cured state, the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.
<6.キャリア付き銅箔>
 このようにして、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層と、随意的な樹脂層を備えたキャリア付き銅箔が製造される。キャリア付き銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がして銅張積層板とし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。更に、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。以下に、本発明に係るキャリア付き銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
<6. Copper foil with carrier>
In this way, a copper foil with a carrier provided with a copper foil carrier, a release layer laminated on the copper foil carrier, an ultrathin copper layer laminated on the release layer, and an optional resin layer is produced. Is done. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern. Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.
 本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、前記キャリア付き銅箔と絶縁基板を積層する工程、前記キャリア付き銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。 In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a process of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.
 本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。 In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
 従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した絶縁基板及び存在する場合には樹脂層にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電気めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
A step of providing a through hole or / and a blind via in the insulating substrate exposed by removing the ultrathin copper layer by etching and, if present, a resin layer;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electroplating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した絶縁基板又は存在する場合には樹脂層の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電気めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
A step of providing an electroless plating layer on the surface of the insulating substrate exposed by removing the ultrathin copper layer by etching or, if present, the resin layer;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electroplating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電気めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。 In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming part is protected by a plating resist, and the copper is thickened in the circuit forming part by electroplating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
 従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
 前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電気めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electroplating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.
 モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電気めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for manufacturing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electroplating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing an ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。 In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
 従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.
 本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。 In the present invention, the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
 従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電気めっき層を設ける工程、
前記電気めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電気めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of a method for manufacturing a printed wiring board according to the present invention using a subtractive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
Providing an etching resist on the surface of the electroplating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electroplating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
 サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されいない前記無電解めっき層の表面に電気めっき層を設ける工程、
前記電気めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
Providing an etching resist on the surface of the electroplating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
 スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。 ¡Through holes and / or blind vias and subsequent desmear steps may not be performed.
 ここで、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例を図面を用いて詳細に説明する。なお、ここでは粗化処理層が形成された極薄銅層を有するキャリア付銅箔を例に説明するが、これに限られず、粗化処理層が形成されていない極薄銅層を有するキャリア付銅箔を用いても同様に下記のプリント配線板の製造方法を行うことができる。
 まず、図2-Aに示すように、表面に粗化処理層が形成された極薄銅層を有するキャリア付銅箔(1層目)を準備する。
 次に、図2-Bに示すように、極薄銅層の粗化処理層上にレジストを塗布し、露光・現像を行い、レジストを所定の形状にエッチングする。
 次に、図2-Cに示すように、回路用のめっきを形成した後、レジストを除去することで、所定の形状の回路めっきを形成する。
 次に、図3-Dに示すように、回路めっきを覆うように(回路めっきが埋没するように)極薄銅層上に埋め込み樹脂を設けて樹脂層を積層し、続いて別のキャリア付銅箔(2層目)を極薄銅層側から接着させる。
 次に、図3-Eに示すように、2層目のキャリア付銅箔からキャリアを剥がす。
 次に、図3-Fに示すように、樹脂層の所定位置にレーザー穴あけを行い、回路めっきを露出させてブラインドビアを形成する。
 次に、図4-Gに示すように、ブラインドビアに銅を埋め込みビアフィルを形成する。
 次に、図4-Hに示すように、ビアフィル上に、上記図2-B及び図2-Cのようにして回路めっきを形成する。
 次に、図4-Iに示すように、1層目のキャリア付銅箔からキャリアを剥がす。
 次に、図5-Jに示すように、フラッシュエッチングにより両表面の極薄銅層を除去し、樹脂層内の回路めっきの表面を露出させる。
 次に、図5-Kに示すように、樹脂層内の回路めっき上にバンプを形成し、当該はんだ上に銅ピラーを形成する。このようにして本発明のキャリア付銅箔を用いたプリント配線板を作製する。
Here, the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing. Here, the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example. However, the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed. The following method for producing a printed wiring board can be similarly performed using an attached copper foil.
First, as shown in FIG. 2-A, a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
Next, as shown in FIG. 2-B, a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
Next, as shown in FIG. 2C, after forming a circuit plating, the resist is removed to form a circuit plating having a predetermined shape.
Next, as shown in FIG. 3-D, an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, and then another carrier is attached. A copper foil (second layer) is bonded from the ultrathin copper layer side.
Next, as shown in FIG. 3E, the carrier is peeled off from the second layer copper foil with carrier.
Next, as shown in FIG. 3F, laser drilling is performed at a predetermined position of the resin layer to expose the circuit plating and form a blind via.
Next, as shown in FIG. 4-G, copper is embedded in the blind via to form a via fill.
Next, as shown in FIG. 4-H, circuit plating is formed on the via fill as shown in FIGS. 2-B and 2-C.
Next, as shown in FIG. 4-I, the carrier is peeled off from the first layer of copper foil with carrier.
Next, as shown in FIG. 5-J, the ultrathin copper layers on both surfaces are removed by flash etching, and the surface of the circuit plating in the resin layer is exposed.
Next, as shown in FIG. 5K, bumps are formed on the circuit plating in the resin layer, and copper pillars are formed on the solder. Thus, the printed wiring board using the copper foil with a carrier of this invention is produced.
 上記別のキャリア付銅箔(2層目)は、本発明のキャリア付銅箔を用いてもよく、従来のキャリア付銅箔を用いてもよく、さらに通常の銅箔を用いてもよい。また、図4-Hに示される2層目の回路上に、さらに回路を1層或いは複数層形成してもよく、それらの回路形成をセミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行ってもよい。 The other carrier-attached copper foil (second layer) may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil. Further, one or more circuits may be formed on the second layer circuit shown in FIG. 4-H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
 また、前記1層目に用いられるキャリア付銅箔は、当該キャリア付銅箔のキャリア側表面に基板を有してもよい。当該基板または樹脂層を有することで1層目に用いられるキャリア付銅箔は支持され、しわが入りにくくなるため、生産性が向上するという利点がある。なお、前記基板には、前記1層目に用いられるキャリア付銅箔を支持する効果するものであれば、全ての基板を用いることが出来る。例えば前記基板として本願明細書に記載のキャリア、プリプレグ、樹脂層や公知のキャリア、プリプレグ、樹脂層、金属板、金属箔、無機化合物の板、無機化合物の箔、有機化合物の板、有機化合物の箔を用いることができる。 The carrier-attached copper foil used for the first layer may have a substrate on the carrier-side surface of the carrier-attached copper foil. By having the said board | substrate or resin layer, since the copper foil with a carrier used for the 1st layer is supported and it becomes difficult to wrinkle, there exists an advantage that productivity improves. As the substrate, any substrate can be used as long as it has an effect of supporting the carrier-attached copper foil used in the first layer. For example, the carrier, prepreg, resin layer or known carrier, prepreg, resin layer, metal plate, metal foil, inorganic compound plate, inorganic compound foil, organic compound plate, organic compound A foil can be used.
 キャリア側表面に基板を形成するタイミングについては特に制限はないが、キャリアを剥離する前に形成することが必要である。特に、前記キャリア付銅箔の前記極薄銅層側表面に樹脂層を形成する工程の前に形成することが好ましく、キャリア付銅箔の前記極薄銅層側表面に回路を形成する工程の前に形成することがより好ましい。 The timing for forming the substrate on the carrier side surface is not particularly limited, but it is necessary to form the substrate before peeling off the carrier. In particular, it is preferably formed before the step of forming a resin layer on the ultrathin copper layer side surface of the copper foil with carrier, and the step of forming a circuit on the ultrathin copper layer side surface of the copper foil with carrier More preferably, it is formed before.
 本発明に係るキャリア付銅箔は、極薄銅層表面の色差が以下(1)を満たすように制御されていることが好ましい。本発明において「極薄銅層表面の色差」とは、極薄銅層の表面の色差、又は、粗化処理等の各種表面処理が施されている場合はその表面処理層表面の色差を示す。すなわち、本発明に係るキャリア付銅箔は、極薄銅層または粗化処理層または耐熱層または防錆層またはクロメート処理層またはシランカップリング層の表面の色差が以下(1)を満たすように制御されていることが好ましい。
(1)極薄銅層または粗化処理層または耐熱層または防錆層またはクロメート処理層またはシランカップリング処理層の表面のJISZ8730に基づく色差ΔE*abが45以上である。
The copper foil with a carrier according to the present invention is preferably controlled so that the color difference on the surface of the ultrathin copper layer satisfies the following (1). In the present invention, the “color difference on the surface of the ultrathin copper layer” means the color difference on the surface of the ultrathin copper layer, or the color difference on the surface of the surface treatment layer when various surface treatments such as roughening treatment are applied. . That is, in the copper foil with a carrier according to the present invention, the color difference of the surface of the ultrathin copper layer, the roughening treatment layer, the heat resistance layer, the rust prevention layer, the chromate treatment layer or the silane coupling layer satisfies the following (1). It is preferably controlled.
(1) The color difference ΔE * ab based on JISZ8730 on the surface of the ultrathin copper layer, the roughened layer, the heat resistant layer, the rust preventive layer, the chromate layer or the silane coupling layer is 45 or more.
 ここで、色差ΔL、Δa、Δbは、それぞれ色差計で測定され、黒/白/赤/緑/黄/青を加味し、JIS Z8730に基づくL*a*b表色系を用いて示される総合指標であり、ΔL:白黒、Δa:赤緑、Δb:黄青として表される。また、ΔE*abはこれらの色差を用いて下記式で表される。 Here, the color differences ΔL, Δa, and Δb are respectively measured with a color difference meter, and are shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. It is a comprehensive index and is expressed as ΔL: black and white, Δa: reddish green, Δb: yellow blue. ΔE * ab is expressed by the following formula using these color differences.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 上述の色差は、極薄銅層形成時の電流密度を高くし、メッキ液中の銅濃度を低くし、メッキ液の線流速を高くすることで調整することができる。
 また上述の色差は、極薄銅層の表面に粗化処理を施して粗化処理層を設けることで調整することもできる。粗化処理層を設ける場合には銅およびニッケル、コバルト、タングステン、モリブデンからなる群から選択される一種以上の元素とを含む電界液を用いて、従来よりも電流密度を高く(例えば40~60A/dm2)し、処理時間を短く(例えば0.1~1.3秒)することで調整することができる。極薄銅層の表面に粗化処理層を設けない場合には、Niの濃度をその他の元素の2倍以上としたメッキ浴を用いて、極薄銅層または耐熱層または防錆層またはクロメート処理層またはシランカップリング処理層の表面にNi合金メッキ(例えばNi-W合金メッキ、Ni-Co-P合金メッキ、Ni-Zn合金めっき)を従来よりも低電流密度(0.1~1.3A/dm2)で処理時間を長く(20秒~40秒)設定して処理することで達成できる。
The above-described color difference can be adjusted by increasing the current density when forming the ultrathin copper layer, decreasing the copper concentration in the plating solution, and increasing the linear flow rate of the plating solution.
Moreover, the above-mentioned color difference can also be adjusted by performing a roughening process on the surface of an ultra-thin copper layer and providing a roughening process layer. In the case of providing the roughened layer, the current density is higher than that of the prior art (for example, 40 to 60 A) using an electrolytic solution containing copper and one or more elements selected from the group consisting of nickel, cobalt, tungsten, and molybdenum. / Dm 2 ) and the processing time can be shortened (for example, 0.1 to 1.3 seconds). When a roughening layer is not provided on the surface of the ultrathin copper layer, use a plating bath in which the concentration of Ni is twice or more that of other elements, and use an ultrathin copper layer, heat resistant layer, rust preventive layer or chromate. Ni alloy plating (for example, Ni—W alloy plating, Ni—Co—P alloy plating, Ni—Zn alloy plating) is applied to the surface of the treatment layer or the silane coupling treatment layer at a lower current density (0.1 to 1.. 3A / dm 2 ), and the processing time can be set long (20 to 40 seconds).
 極薄銅層表面のJISZ8730に基づく色差ΔE*abが45以上であると、例えば、キャリア付銅箔の極薄銅層表面に回路を形成する際に、極薄銅層と回路とのコントラストが鮮明となり、その結果、視認性が良好となり回路の位置合わせを精度良く行うことができる。極薄銅層表面のJISZ8730に基づく色差ΔE*abは、好ましくは50以上であり、より好ましくは55以上であり、更により好ましくは60以上である。 When the color difference ΔE * ab based on JISZ8730 on the surface of the ultrathin copper layer is 45 or more, for example, when forming a circuit on the surface of the ultrathin copper layer of the copper foil with carrier, the contrast between the ultrathin copper layer and the circuit is As a result, the visibility is improved and the circuit can be accurately aligned. The color difference ΔE * ab based on JISZ8730 on the surface of the ultrathin copper layer is preferably 50 or more, more preferably 55 or more, and even more preferably 60 or more.
 極薄銅層または粗化処理層または耐熱層または防錆層またはクロメート処理層またはシランカップリング層の表面の色差が上記のようの制御されている場合には、回路めっきとのコントラストが鮮明となり、視認性が良好となる。従って、上述のようなプリント配線板の例えば図2-Cに示すような製造工程において、回路めっきを精度良く所定の位置に形成することが可能となる。また、上述のようなプリント配線板の製造方法によれば、回路めっきが樹脂層に埋め込まれた構成となっているため、例えば図5-Jに示すようなフラッシュエッチングによる極薄銅層の除去の際に、回路めっきが樹脂層によって保護され、その形状が保たれ、これにより微細回路の形成が容易となる。また、回路めっきが樹脂層によって保護されるため、耐マイグレーション性が向上し、回路の配線の導通が良好に抑制される。このため、微細回路の形成が容易となる。また、図5-J及び図5-Kに示すようにフラッシュエッチングによって極薄銅層を除去したとき、回路めっきの露出面が樹脂層から凹んだ形状となるため、当該回路めっき上にバンプが、さらにその上に銅ピラーがそれぞれ形成しやすくなり、製造効率が向上する。 When the color difference on the surface of the ultra-thin copper layer, roughened layer, heat-resistant layer, rust-proof layer, chromate-treated layer or silane coupling layer is controlled as described above, the contrast with the circuit plating becomes clear. , Visibility becomes good. Therefore, in the manufacturing process of the printed wiring board as described above, for example, as shown in FIG. 2-C, the circuit plating can be accurately formed at a predetermined position. Further, according to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, for example, removal of the ultrathin copper layer by flash etching as shown in FIG. At this time, the circuit plating is protected by the resin layer and the shape thereof is maintained, thereby facilitating the formation of a fine circuit. Further, since the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 5-J and 5-K, when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
 なお、埋め込み樹脂(レジン)には公知の樹脂、プリプレグを用いることができる。例えば、BT(ビスマレイミドトリアジン)レジンやBTレジンを含浸させたガラス布であるプリプレグ、味の素ファインテクノ株式会社製ABFフィルムやABFを用いることができる。また、前記埋め込み樹脂(レジン)には本明細書に記載の樹脂層および/または樹脂および/またはプリプレグを使用することができる。 A known resin or prepreg can be used as the embedding resin (resin). For example, a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used. Moreover, the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
 以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited to these examples.
1.キャリア付き銅箔の製造
<実施例1>
 銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)を用意した。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続めっきラインで電気めっきすることにより4000μg/dm2の付着量のNi層を形成した。
1. Production of copper foil with carrier <Example 1>
As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 μm (JTC manufactured by JX Nippon Mining & Metals) was prepared. An Ni layer having an adhesion amount of 4000 μg / dm 2 was formed on the shiny surface of the copper foil by electroplating using a roll-to-roll type continuous plating line under the following conditions.
・Ni層
 硫酸ニッケル:250~300g/L
 塩化ニッケル:35~45g/L
 酢酸ニッケル:10~20g/L
 クエン酸三ナトリウム:15~30g/L
 光沢剤:サッカリン、ブチンジオール等
 ドデシル硫酸ナトリウム:30~100ppm
 pH:4~6
 浴温:50~70℃
 電流密度:3~15A/dm2
・ Ni layer Nickel sulfate: 250-300 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30 to 100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3 to 15 A / dm 2
 水洗及び酸洗後、引き続き、ロール・トウ・ロール型の連続めっきライン上で、Ni層の上に11μg/dm2の付着量のCr層を以下の条件で電解クロメート処理することにより付着させた。
・電解クロメート処理
 液組成:重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH:3~4
 液温:50~60℃
 電流密度:0.1~2.6A/dm2
 クーロン量:0.5~30As/dm2
After washing with water and pickling, a Cr layer having an adhesion amount of 11 μg / dm 2 was deposited on the Ni layer by electrolytic chromate treatment under the following conditions on a roll-to-roll type continuous plating line. .
Electrolytic chromate treatment Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Current density: 0.1 to 2.6 A / dm 2
Coulomb amount: 0.5-30 As / dm 2
 引き続き、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付き銅箔を製造した。なお、本実施例では極薄銅層の厚みを2、5、10μmとしたキャリア付き銅箔についても製造し、極薄銅層の厚みが3μmの実施例と同様に評価した。結果は厚みによらず同じとなった。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 電解液温度:20~80℃
 電流密度:10~100A/dm2
Subsequently, on the roll-to-roll type continuous plating line, an ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer by electroplating under the following conditions to produce a copper foil with a carrier. In this example, a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 μm was also manufactured and evaluated in the same manner as in the example of the ultrathin copper layer thickness of 3 μm. The result was the same regardless of the thickness.
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
 次いで、極薄銅層表面に以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
(液組成1)
 Cu:10~30g/L
 H2SO4:10~150g/L
 W:0~50mg/L
 ドデシル硫酸ナトリウム:0~50mg/L
 As:0~200mg/L
(電気めっき条件1)
 温度:30~70℃
 電流密度:25~110A/dm2
 粗化クーロン量:50~500As/dm2
 めっき時間:0.5~20秒
・粗化処理2
(液組成2)
 Cu:20~80g/L
 H2SO4:50~200g/L
(電気めっき条件2)
 温度:30~70℃
 電流密度:5~50A/dm2
 粗化クーロン量:50~300As/dm2
 めっき時間:1~60秒
・防錆処理
(液組成)
 NaOH:40~200g/L
 NaCN:70~250g/L
 CuCN:50~200g/L
 Zn(CN)2:2~100g/L
 As23:0.01~1g/L
(液温)
 40~90℃
(電流条件)
 電流密度:1~50A/dm2
 めっき時間:1~20秒
・クロメート処理
 K2Cr27(Na2Cr27或いはCrO3):2~10g/L
 NaOH又はKOH:10~50g/L
 ZnOH又はZnSO4・7H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度:0.05~5A/dm2
 時間:5~30秒
・シランカップリング処理
 0.1vol%~0.3vol%の3-グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100~200℃の空気中で0.1~10秒間乾燥・加熱する。
Next, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order on the surface of the ultrathin copper layer.
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4 : 10 to 150 g / L
W: 0-50mg / L
Sodium dodecyl sulfate: 0 to 50 mg / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1-60 seconds, anti-rust treatment (liquid composition)
NaOH: 40 to 200 g / L
NaCN: 70 to 250 g / L
CuCN: 50 to 200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds Silane coupling treatment 0.1 vol% to 0.3 vol% 3-glycidoxypropyltrimethoxysilane aqueous solution is spray-coated and then 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.
<実施例2>
 実施例1と同様の条件で銅箔キャリア上に極薄銅層を形成した後、以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。なお、極薄銅箔の厚みは3μmとした。
・粗化処理1
 液組成    :銅10~20g/L、硫酸50~100g/L
 液温      :25~50℃
 電流密度  :1~58A/dm2
 クーロン量:4~81As/dm2
・粗化処理2
 液組成    :銅10~20g/L、ニッケル5~15g/L、コバルト5~15g/L
 pH      :2~3
 液温      :30~50℃
 電流密度  :24~50A/dm2
 クーロン量:34~48As/dm2
・防錆処理
 液組成    :ニッケル5~20g/L、コバルト1~8g/L
 pH      :2~3
 液温      :40~60℃
 電流密度  :5~20A/dm2
 クーロン量:10~20As/dm2
・クロメート処理
 液組成    :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH      :3~4
 液温      :50~60℃
 電流密度  :0~2A/dm2(浸漬クロメート処理のため無電解での実施も可能)
 クーロン量:0~2As/dm2(浸漬クロメート処理のため無電解での実施も可能)
・シランカップリング処理
 ジアミノシラン水溶液の塗布(ジアミノシラン濃度:0.1~0.5wt%)
<Example 2>
After forming an ultrathin copper layer on the copper foil carrier under the same conditions as in Example 1, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order. went. The thickness of the ultrathin copper foil was 3 μm.
・ Roughening 1
Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L
Liquid temperature: 25-50 ° C
Current density: 1 to 58 A / dm 2
Coulomb amount: 4 to 81 As / dm 2
・ Roughening 2
Liquid composition: Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L
pH: 2-3
Liquid temperature: 30-50 ° C
Current density: 24 to 50 A / dm 2
Coulomb amount: 34 to 48 As / dm 2
・ Rust prevention treatment Liquid composition: Nickel 5-20g / L, Cobalt 1-8g / L
pH: 2-3
Liquid temperature: 40-60 ° C
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
・ Chromate treatment Liquid composition: Potassium dichromate 1-10g / L, Zinc 0-5g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Current density: 0-2A / dm 2 (Impregnation is possible because of immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (can be electroless because of immersion chromate treatment)
・ Silane coupling treatment Application of diaminosilane aqueous solution (diaminosilane concentration: 0.1 to 0.5 wt%)
<実施例3>
 実施例1と同様の条件で銅箔キャリア上に極薄銅層を形成した後、次いで、極薄銅層表面に以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。なお、極薄銅箔の厚みは3μmとした。
・粗化処理1
(液組成1)
 Cu:10~30g/L
 H2SO4:10~150g/L
 As:0~200mg/L
(電気めっき条件1)
 温度:30~70℃
 電流密度:25~110A/dm2
 粗化クーロン量:50~500As/dm2
 めっき時間:0.5~20秒
・粗化処理2
(液組成2)
 Cu:20~80g/L
 H2SO4:50~200g/L
(電気めっき条件2)
 温度:30~70℃
 電流密度:5~50A/dm2
 粗化クーロン量:50~300As/dm2
 めっき時間:1~60秒
・防錆処理
(液組成)
 NaOH:40~200g/L
 NaCN:70~250g/L
 CuCN:50~200g/L
 Zn(CN)2:2~100g/L
 As23:0.01~1g/L
(液温)
 40~90℃
(電流条件)
 電流密度:1~50A/dm2
 めっき時間:1~20秒
・クロメート処理
 K2Cr27(Na2Cr27或いはCrO3):2~10g/L
 NaOH又はKOH:10~50g/L
 ZnOH又はZnSO4・7H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度:0.05~5A/dm2
 時間:5~30秒
・シランカップリング処理
 0.1vol%~0.3vol%の3-グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100~200℃の空気中で0.1~10秒間乾燥・加熱する。
<Example 3>
After forming the ultrathin copper layer on the copper foil carrier under the same conditions as in Example 1, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and The silane coupling treatment was performed in this order. The thickness of the ultrathin copper foil was 3 μm.
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4 : 10 to 150 g / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1-60 seconds, anti-rust treatment (liquid composition)
NaOH: 40 to 200 g / L
NaCN: 70 to 250 g / L
CuCN: 50 to 200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds Silane coupling treatment 0.1 vol% to 0.3 vol% 3-glycidoxypropyltrimethoxysilane aqueous solution is spray-coated and then 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.
<実施例4>
 実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。なお、本実施例では極薄銅層の厚みを2、5、10μmとしたキャリア付銅箔についても製造し、極薄銅層の厚みが3μmの実施例と同様に評価した。結果は厚みによらずほとんど同じとなった。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 ビス(3スルホプロピル)ジスルフィド-濃度:10~100ppm
 3級アミン化合物:10~100ppm
 塩素:10~100ppm
 電解液温度:20~80℃
 電流密度:10~100A/dm2
 なお、前述の3級アミン化合物として以下の化合物を用いた。
Figure JPOXMLDOC01-appb-C000013
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。ここでは、R1及びR2は共にメチル基とした。)
 上記化合物は例えばナガセケムテックス株式会社製デコナール Ex-314とジメチルアミンを所定量混合させ、60℃で3時間反応を行うことで得ることができる。
<Example 4>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above. In this example, a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 μm was also manufactured, and evaluated in the same manner as in the example with an ultrathin copper layer thickness of 3 μm. The result was almost the same regardless of the thickness.
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Bis (3sulfopropyl) disulfide concentration: 10 to 100 ppm
Tertiary amine compound: 10-100ppm
Chlorine: 10-100ppm
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
In addition, the following compounds were used as the above-mentioned tertiary amine compound.
Figure JPOXMLDOC01-appb-C000013
(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group. Here, R 1 And R 2 were both methyl groups.)
The above compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours.
 銅箔キャリア上に極薄銅層を形成した後、以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
 液組成    :銅10~20g/L、硫酸50~100g/L
 液温      :25~50℃
 電流密度  :1~58A/dm2
 クーロン量:4~81As/dm2
・粗化処理2
 液組成    :銅10~20g/L、ニッケル5~15g/L、コバルト5~15g/L
 pH      :2~3
 液温      :30~50℃
 電流密度  :24~50A/dm2
 クーロン量:34~48As/dm2
・防錆処理
 液組成    :ニッケル5~20g/L、コバルト1~8g/L
 pH      :2~3
 液温      :40~60℃
 電流密度  :5~20A/dm2
 クーロン量:10~20As/dm2
・クロメート処理
 液組成    :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH      :3~4
 液温      :50~60℃
 電流密度  :0~2A/dm2(浸漬クロメート処理のため無電解での実施も可能)
 クーロン量:0~2As/dm2(浸漬クロメート処理のため無電解での実施も可能)
・シランカップリング処理
 ジアミノシラン水溶液の塗布(ジアミノシラン濃度:0.1~0.5wt%)
After the ultrathin copper layer was formed on the copper foil carrier, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order.
・ Roughening 1
Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L
Liquid temperature: 25-50 ° C
Current density: 1 to 58 A / dm 2
Coulomb amount: 4 to 81 As / dm 2
・ Roughening 2
Liquid composition: Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L
pH: 2-3
Liquid temperature: 30-50 ° C
Current density: 24 to 50 A / dm 2
Coulomb amount: 34 to 48 As / dm 2
・ Rust prevention treatment Liquid composition: Nickel 5-20g / L, Cobalt 1-8g / L
pH: 2-3
Liquid temperature: 40-60 ° C
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
・ Chromate treatment Liquid composition: Potassium dichromate 1-10g / L, Zinc 0-5g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Current density: 0-2A / dm 2 (Impregnation is possible because of immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (can be electroless because of immersion chromate treatment)
・ Silane coupling treatment Application of diaminosilane aqueous solution (diaminosilane concentration: 0.1 to 0.5 wt%)
<実施例5>
 実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。なお、本実施例では極薄銅層の厚みを2、5、10μmとしたキャリア付銅箔についても製造し、極薄銅層の厚みが3μmの実施例と同様に評価した。結果は厚みによらずほとんど同じとなった。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 ビス(3スルホプロピル)ジスルフィド-濃度:10~100ppm
 3級アミン化合物:10~100ppm
 塩素:10~100ppm
 電解液温度:20~80℃
 電流密度:10~100A/dm2
 なお、前述の3級アミン化合物として以下の化合物を用いた。
Figure JPOXMLDOC01-appb-C000014
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。ここでは、R1及びR2は共にメチル基とした。)
 上記化合物は例えばナガセケムテックス株式会社製デコナール Ex-314とジメチルアミンを所定量混合させ、60℃で3時間反応を行うことで得ることができる。)
<Example 5>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above. In this example, a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 μm was also manufactured, and evaluated in the same manner as in the example with an ultrathin copper layer thickness of 3 μm. The result was almost the same regardless of the thickness.
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Bis (3sulfopropyl) disulfide concentration: 10 to 100 ppm
Tertiary amine compound: 10-100ppm
Chlorine: 10-100ppm
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
In addition, the following compounds were used as the above-mentioned tertiary amine compound.
Figure JPOXMLDOC01-appb-C000014
(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group. Here, R 1 And R 2 were both methyl groups.)
The above compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours. )
 銅箔キャリア上に極薄銅層を形成した後、以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
(液組成1)
 Cu:10~30g/L
 H2SO4:10~150g/L
 W:0.1~50mg/L
 ドデシル硫酸ナトリウム:0.1~50mg/L
 As:0.1~200mg/L
(電気めっき条件1)
 温度:30~70℃
 電流密度:25~110A/dm2
 粗化クーロン量:50~500As/dm2
 めっき時間:0.5~20秒
・粗化処理2
(液組成2)
 Cu:20~80g/L
 H2SO4:50~200g/L
(電気めっき条件2)
 温度:30~70℃
 電流密度:5~50A/dm2
 粗化クーロン量:50~300As/dm2
 めっき時間:1~60秒
・防錆処理
(液組成)
 NaOH:40~200g/L
 NaCN:70~250g/L
 CuCN:50~200g/L
 Zn(CN)2:2~100g/L
 As23:0.01~1g/L
(液温)
 40~90℃
(電流条件)
 電流密度:1~50A/dm2
 めっき時間:1~20秒
・クロメート処理
 K2Cr27(Na2Cr27或いはCrO3):2~10g/L
 NaOH又はKOH:10~50g/L
 ZnOH又はZnSO4・7H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度:0.05~5A/dm2
 時間:5~30秒
・シランカップリング処理
 0.1vol%~0.3vol%の3-グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100~200℃の空気中で0.1~10秒間乾燥・加熱する。
After the ultrathin copper layer was formed on the copper foil carrier, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order.
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4 : 10 to 150 g / L
W: 0.1-50mg / L
Sodium dodecyl sulfate: 0.1 to 50 mg / L
As: 0.1 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1-60 seconds, anti-rust treatment (liquid composition)
NaOH: 40 to 200 g / L
NaCN: 70 to 250 g / L
CuCN: 50 to 200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds Silane coupling treatment 0.1 vol% to 0.3 vol% 3-glycidoxypropyltrimethoxysilane aqueous solution is spray-coated and then 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.
<比較例1>
 実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付き銅箔を製造した。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 電解液温度:20~80℃
 電流密度:5~9A/dm2
・粗化処理1
(液組成1)
 Cu:10~30g/L
 H2SO4:10~150g/L
 As:0~200mg/L
(電気めっき条件1)
 温度:30~70℃
 電流密度:25~110A/dm2
 粗化クーロン量:50~500As/dm2
 めっき時間:0.5~20秒
・粗化処理2
(液組成2)
 Cu:20~80g/L
 H2SO4:50~200g/L
(電気めっき条件2)
 温度:30~70℃
 電流密度:5~50A/dm2
 粗化クーロン量:50~300As/dm2
 めっき時間:1~60秒
・防錆処理
(液組成)
 NaOH:40~200g/L
 NaCN:70~250g/L
 CuCN:50~200g/L
 Zn(CN)2:2~100g/L
 As23:0.01~1g/L
(液温)
 40~90℃
(電流条件)
 電流密度:1~50A/dm2
 めっき時間:1~20秒
・クロメート処理
 K2Cr27(Na2Cr27或いはCrO3):2~10g/L
 NaOH又はKOH:10~50g/L
 ZnOH又はZnSO4・7H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度:0.05~5A/dm2
 時間:5~30秒
・シランカップリング処理
 0.1vol%~0.3vol%の3-グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100~200℃の空気中で0.1~10秒間乾燥・加熱する。
<Comparative Example 1>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above.
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 5-9 A / dm 2
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4 : 10 to 150 g / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1-60 seconds, anti-rust treatment (liquid composition)
NaOH: 40 to 200 g / L
NaCN: 70 to 250 g / L
CuCN: 50 to 200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds Silane coupling treatment 0.1 vol% to 0.3 vol% 3-glycidoxypropyltrimethoxysilane aqueous solution is spray-coated and then 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.
<比較例2>
 実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付き銅箔を製造した。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 電解液温度:20~80℃
 電流密度:10~100A/dm2
・粗化処理1
(液組成1)
 Cu:10~30g/L
 H2SO4:10~150g/L
 W:0~50mg/L
 ドデシル硫酸ナトリウム:0~50mg/L
 As:0~200mg/L
(電気めっき条件1)
 温度:30~70℃
 電流密度:25~110A/dm2
 粗化クーロン量:50~500As/dm2
 めっき時間:40秒
・粗化処理2
(液組成2)
 Cu:20~80g/L
 H2SO4:50~200g/L
(電気めっき条件2)
 温度:30~70℃
 電流密度:5~50A/dm2
 粗化クーロン量:50~300As/dm2
 めっき時間:80秒
・防錆処理
(液組成)
 NaOH:40~200g/L
 NaCN:70~250g/L
 CuCN:50~200g/L
 Zn(CN)2:2~100g/L
 As23:0.01~1g/L
(液温)
 40~90℃
(電流条件)
 電流密度:1~50A/dm2
 めっき時間:1~20秒
・クロメート処理
 K2Cr27(Na2Cr27或いはCrO3):2~10g/L
 NaOH又はKOH:10~50g/L
 ZnOH又はZnSO4・7H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度:0.05~5A/dm2
 時間:5~30秒
・シランカップリング処理
 0.1vol%~0.3vol%の3-グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100~200℃の空気中で0.1~10秒間乾燥・加熱する。
<Comparative Example 2>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above.
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4 : 10 to 150 g / L
W: 0-50mg / L
Sodium dodecyl sulfate: 0 to 50 mg / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 40 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 80 seconds, rust prevention treatment (liquid composition)
NaOH: 40 to 200 g / L
NaCN: 70 to 250 g / L
CuCN: 50 to 200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds Silane coupling treatment 0.1 vol% to 0.3 vol% 3-glycidoxypropyltrimethoxysilane aqueous solution is spray-coated and then 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.
2.キャリア付き銅箔の特性評価
 上記のようにして得られたキャリア付き銅箔について、以下の方法で特性評価を実施した。結果を表1に示す。
(表面粗さ)
 極薄銅層の表面粗さ(Ra、Rt、Rz、Ssk、Sku)を非接触式粗さ測定機(オリンパス製 LEXT OLS 4000)を用いて、Ra、RzについてはJIS B0601-1994に準拠して、RtについてはJIS B0601-2001に準拠して、またSsk、SkuについてはISO25178ドラフトに準拠して以下の測定条件で、測定した。
 <測定条件>
 カットオフ:無
 基準長さ:257.9μm
 基準面積:66524μm2
 測定環境温度:23~25℃
2. Evaluation of characteristics of copper foil with carrier The characteristics of the copper foil with carrier obtained as described above were evaluated by the following method. The results are shown in Table 1.
(Surface roughness)
The surface roughness (Ra, Rt, Rz, Ssk, Sku) of the ultra-thin copper layer was measured using a non-contact type roughness measuring machine (OLYMPUS LEXT OLS 4000), and Ra and Rz were in accordance with JIS B0601-1994. Rt was measured in accordance with JIS B0601-2001, and Ssk and Sku were measured in accordance with ISO 25178 draft under the following measurement conditions.
<Measurement conditions>
Cut-off: None Reference length: 257.9 μm
Reference area: 66524 μm 2
Measurement ambient temperature: 23-25 ° C
 また、比較のため、接触式粗さ測定機(株式会社小阪研究所製接触粗さ計Surfcorder SE-3C)を用いて、JIS B0601-1994(Ra、Rz)及びJIS B0601-2001(Rt)に準拠して以下の測定条件でも極薄銅層の表面粗さ(Ra、Rt、Rz)を測定した。
 <測定条件>
 カットオフ:0.25mm
 基準長さ:0.8mm
 測定環境温度:23~25℃
For comparison, a contact-type roughness measuring device (contact roughness meter Surfcorder SE-3C manufactured by Kosaka Laboratory Ltd.) was used for JIS B0601-1994 (Ra, Rz) and JIS B0601-2001 (Rt). In accordance with the following measurement conditions, the surface roughness (Ra, Rt, Rz) of the ultrathin copper layer was measured.
<Measurement conditions>
Cut-off: 0.25mm
Standard length: 0.8mm
Measurement ambient temperature: 23-25 ° C
(表面積比)
 非接触式粗さ測定機(オリンパス製 LEXT OLS 4000)を用いて、以下の測定条件で、測定した。表面積比は、エリア及び実エリアを測定し、実エリア/エリアの値を表面積比とした。ここで、エリアとは測定基準面積を指し、実エリアとは測定基準面積中の表面積を指す。
 <測定条件>
 カットオフ:無
 基準長さ:257.9μm
 基準面積:66524μm2
 測定環境温度:23~25℃
(Surface area ratio)
It measured on the following measurement conditions using the non-contact-type roughness measuring machine (OLYMPUS LEXT OLS 4000). For the surface area ratio, the area and the actual area were measured, and the value of the actual area / area was defined as the surface area ratio. Here, the area refers to the measurement reference area, and the actual area refers to the surface area in the measurement reference area.
<Measurement conditions>
Cut-off: None Reference length: 257.9 μm
Reference area: 66524 μm 2
Measurement ambient temperature: 23-25 ° C
(粗化処理面の体積)
 非接触式粗さ測定機(レーザー顕微鏡、オリンパス製 LEXT OLS 4000)を用いて、以下の測定条件で、測定した。なお、粗化処理面の体積は以下の様に測定される。
(1)レーザー顕微鏡がサンプルの表面に焦点の合う高さに合わせる。
(2)明るさを調整し、全体照度が飽和点の約80%になるよう調節する。
(3)レーザー顕微鏡をサンプルに近づけ、画面照度が完全に消失した地点をゼロとする。
(4)レーザー顕微鏡をサンプルから遠ざけ、画面照度が完全に消失した地点を上限高さとする。
(5)高さゼロから上限までの粗化処理面の体積を測定する。
 <測定条件>
カットオフ:無
 基準長さ:257.9μm
 基準面積:66524μm2
 測定環境温度:23~25℃
(マイグレーション)
 各キャリア付き銅箔をビスマス系樹脂に接着し、次いでキャリア箔を剥離除去した。露出した極薄銅層の厚みをソフトエッチングにより1.5μmとした。その後、洗浄、乾燥を行った後に、極薄銅層上に、DF(日立化成社製、商品名RY-3625)をラミネート塗布した。15mJ/cm2の条件で露光し、現像液(炭酸ナトリウム)を用いて38℃で1分間液噴射揺動し、表1に記載の各種ピッチでレジストパターンを形成した。次いで、硫酸銅めっき(荏原ユージライト製 CUBRITE21)を用いて15μmめっきUPしたのち、剥離液(水酸化ナトリウム)でDFを剥離した。その後、極薄銅層を硫酸-過酸化水素系のエッチャントでエッチング除去して表1に記載の各種ピッチの配線を形成した。
 表中に記載されているピッチはライン及びスペースの合計値に相当する。
 得られた配線に対して、マイグレーション測定機(IMV製 MIG-9000)を用いて、以下の測定条件で、配線パターン間の絶縁劣化の有無を評価した。
 <測定条件>
 閾値:初期抵抗60%ダウン
 測定時間:1000h
 電圧:60V
 温度:85℃
 相対湿度:85%RH
(Roughening surface volume)
It measured on the following measuring conditions using the non-contact-type roughness measuring machine (a laser microscope, Olympus LEXT OLS 4000). The volume of the roughened surface is measured as follows.
(1) The laser microscope is adjusted to a height at which the surface of the sample is focused.
(2) Adjust the brightness so that the overall illuminance is about 80% of the saturation point.
(3) The laser microscope is brought close to the sample, and the point where the screen illuminance completely disappears is set to zero.
(4) The laser microscope is moved away from the sample, and the point where the screen illuminance completely disappears is set as the upper limit height.
(5) Measure the volume of the roughened surface from zero height to the upper limit.
<Measurement conditions>
Cut-off: None Reference length: 257.9 μm
Reference area: 66524 μm 2
Measurement ambient temperature: 23-25 ° C
(migration)
Each carrier-attached copper foil was bonded to a bismuth-based resin, and then the carrier foil was peeled off. The thickness of the exposed ultrathin copper layer was set to 1.5 μm by soft etching. After washing and drying, DF (manufactured by Hitachi Chemical Co., Ltd., trade name RY-3625) was laminated on the ultrathin copper layer. Exposure was carried out under the condition of 15 mJ / cm 2 , and liquid jet rocking was performed for 1 minute at 38 ° C. using a developer (sodium carbonate) to form resist patterns at various pitches shown in Table 1. Next, UP was plated by 15 μm using copper sulfate plating (CUBRITE 21 manufactured by Sugawara Eugleite), and then DF was peeled with a peeling solution (sodium hydroxide). Thereafter, the ultrathin copper layer was removed by etching with a sulfuric acid-hydrogen peroxide etchant to form wirings having various pitches shown in Table 1.
The pitch described in the table corresponds to the total value of lines and spaces.
The obtained wirings were evaluated for the presence or absence of insulation deterioration between the wiring patterns using a migration measuring machine (IMV MIG-9000) under the following measurement conditions.
<Measurement conditions>
Threshold: Initial resistance 60% down Measurement time: 1000h
Voltage: 60V
Temperature: 85 ° C
Relative humidity: 85% RH
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

Claims (29)

  1.  銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRzは非接触式粗さ計で測定して1.6μm以下であるキャリア付き銅箔。 A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened Rz on the surface of the ultrathin copper layer is 1.6 μm or less as measured with a non-contact type roughness meter.
  2.  銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRaは非接触式粗さ計で測定して0.3μm以下であるキャリア付き銅箔。 A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened The carrier-attached copper foil whose Ra on the surface of the ultrathin copper layer is 0.3 μm or less as measured with a non-contact type roughness meter.
  3.  銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRtは非接触式粗さ計で測定して2.3μm以下であるキャリア付き銅箔。 A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened The carrier-attached copper foil whose Rt on the surface of the ultrathin copper layer is 2.3 μm or less as measured with a non-contact type roughness meter.
  4.  極薄銅層表面のRzは非接触式粗さ計で測定して1.4μm以下である請求項1~3の何れか一項に記載のキャリア付き銅箔。 4. The copper foil with a carrier according to claim 1, wherein Rz on the surface of the ultrathin copper layer is 1.4 μm or less as measured with a non-contact roughness meter.
  5.  極薄銅層表面のRaは非接触式粗さ計で測定して0.25μm以下である請求項1~4の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 4, wherein Ra on the surface of the ultrathin copper layer is 0.25 µm or less as measured with a non-contact roughness meter.
  6.  極薄銅層表面のRtは非接触式粗さ計で測定して1.8μm以下である請求項1~5の何れか一項に記載のキャリア付き銅箔。 6. The copper foil with a carrier according to claim 1, wherein Rt on the surface of the ultrathin copper layer is 1.8 μm or less as measured with a non-contact type roughness meter.
  7.  極薄銅層表面のRzは非接触式粗さ計で測定して1.3μm以下である請求項1~3の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 3, wherein Rz on the surface of the ultrathin copper layer is 1.3 µm or less as measured with a non-contact roughness meter.
  8.  極薄銅層表面のRaは非接触式粗さ計で測定して0.20μm以下である請求項1~4の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 4, wherein Ra on the surface of the ultrathin copper layer is 0.20 µm or less as measured with a non-contact roughness meter.
  9.  極薄銅層表面のRtは非接触式粗さ計で測定して1.5μm以下である請求項1~5の何れか一項に記載のキャリア付き銅箔。 6. The copper foil with a carrier according to claim 1, wherein Rt on the surface of the ultrathin copper layer is 1.5 μm or less as measured with a non-contact type roughness meter.
  10.  極薄銅層表面のRzは非接触式粗さ計で測定して0.8μm以下である請求項1~3の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 3, wherein Rz on the surface of the ultrathin copper layer is 0.8 µm or less as measured with a non-contact roughness meter.
  11.  極薄銅層表面のRaは非接触式粗さ計で測定して0.16μm以下である請求項1~4の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 4, wherein Ra on the surface of the ultrathin copper layer is 0.16 µm or less as measured with a non-contact roughness meter.
  12.  極薄銅層表面のRtは非接触式粗さ計で測定して1.0μm以下である請求項1~5の何れか一項に記載のキャリア付き銅箔。 6. The copper foil with a carrier according to claim 1, wherein Rt on the surface of the ultrathin copper layer is 1.0 μm or less as measured with a non-contact type roughness meter.
  13.  極薄銅層表面は、Sskが-0.3~0.3である請求項1~6の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 6, wherein the surface of the ultrathin copper layer has Ssk of -0.3 to 0.3.
  14.  極薄銅層表面は、Skuが2.7~3.3である請求項1~7の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 7, wherein the surface of the ultrathin copper layer has a Sku of 2.7 to 3.3.
  15.  銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面の表面積比が1.05~1.5であるキャリア付き銅箔。 A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened A copper foil with a carrier having a surface area ratio of 1.05 to 1.5 on the surface of the ultrathin copper layer.
  16.  極薄銅層表面の表面積比が1.05~1.5である請求項1~9の何れか一項に記載のキャリア付き銅箔(ここで、表面積比とは、レーザー顕微鏡にてエリア及び実エリアを測定したときの、実エリア/エリアの値である。エリアとは測定基準面積を指し、実エリアとは測定基準面積中の表面積を指す。)。 10. The copper foil with a carrier according to claim 1, wherein the surface area ratio of the surface of the ultrathin copper layer is 1.05 to 1.5 (here, the surface area ratio means the area and the area with a laser microscope). (The real area / area value when the real area is measured. The area refers to the measurement reference area, and the real area refers to the surface area in the measurement reference area.)
  17.  極薄銅層表面の面積66524μm2当たりのレーザー顕微鏡にて測定される体積が300000μm3以上である請求項1~16の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 16, wherein the volume measured with a laser microscope per area of 66524 μm 2 on the surface of the ultrathin copper layer is 300000 μm 3 or more.
  18.  前記粗化処理された極薄銅層の上に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1~17の何れか一項に記載のキャリア付き銅箔。 The one or more layers selected from the group consisting of a heat-resistant layer, a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer are provided on the roughened ultrathin copper layer. The copper foil with a carrier as described in any one of Claims.
  19.  前記粗化処理された極薄銅層の上に樹脂層を備える請求項1~17の何れか一項に記載のキャリア付き銅箔。 The carrier-attached copper foil according to any one of claims 1 to 17, further comprising a resin layer on the roughened ultrathin copper layer.
  20.  前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える請求項18に記載のキャリア付き銅箔。 The copper foil with a carrier according to claim 18, comprising a resin layer on one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer.
  21.  請求項1~20の何れか一項に記載のキャリア付き銅箔を用いて製造した銅張積層板。 A copper clad laminate produced using the copper foil with a carrier according to any one of claims 1 to 20.
  22.  請求項1~20の何れか一項に記載のキャリア付き銅箔を用いて製造したプリント配線板。 A printed wiring board manufactured using the carrier-attached copper foil according to any one of claims 1 to 20.
  23.  請求項1~20の何れか一項に記載のキャリア付き銅箔を用いて製造したプリント回路板。 A printed circuit board manufactured using the carrier-attached copper foil according to any one of claims 1 to 20.
  24.  請求項1~20の何れか一項に記載のキャリア付き銅箔と絶縁基板とを準備する工程、
     前記キャリア付き銅箔と絶縁基板を積層する工程、
     前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
    その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法の何れかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。
    Preparing a copper foil with a carrier according to any one of claims 1 to 20 and an insulating substrate;
    Laminating the copper foil with carrier and an insulating substrate;
    After laminating the copper foil with carrier and the insulating substrate, a copper clad laminate is formed through a step of peeling the carrier of the copper foil with carrier,
    Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
  25.  請求項1~20のいずれか一項に記載のキャリア付き銅箔の前記極薄銅層側表面に回路を形成する工程、
     前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面に樹脂層を形成する工程、
     前記樹脂層上に回路を形成する工程、
     前記樹脂層上に回路を形成した後に、前記キャリアを剥離させる工程、及び、
     前記キャリアを剥離させた後に、前記極薄銅層を除去することで、前記極薄銅層側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
    を含むプリント配線板の製造方法。
    Forming a circuit on the ultrathin copper layer side surface of the copper foil with a carrier according to any one of claims 1 to 20,
    Forming a resin layer on the ultrathin copper layer side surface of the carrier-attached copper foil so that the circuit is buried;
    Forming a circuit on the resin layer;
    Forming the circuit on the resin layer, and then peeling the carrier; and
    After the carrier is peeled off, the printed wiring board includes a step of exposing the circuit embedded in the resin layer formed on the surface of the ultrathin copper layer by removing the ultrathin copper layer Method.
  26.  前記樹脂層上に回路を形成する工程が、前記樹脂層上に別のキャリア付銅箔を極薄銅層側から貼り合わせ、前記樹脂層に貼り合わせたキャリア付銅箔を用いて前記回路を形成する工程である請求項25に記載のプリント配線板の製造方法。 The step of forming a circuit on the resin layer includes attaching another carrier-attached copper foil on the resin layer from the ultrathin copper layer side, and using the carrier-attached copper foil attached to the resin layer to form the circuit. 26. The method for manufacturing a printed wiring board according to claim 25, which is a forming step.
  27.  前記樹脂層上に貼り合わせる別のキャリア付銅箔が、請求項1~20のいずれか一項に記載のキャリア付銅箔である請求項25に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 25, wherein another copper foil with a carrier to be bonded onto the resin layer is the copper foil with a carrier according to any one of claims 1 to 20.
  28.  前記樹脂層上に回路を形成する工程が、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行われる請求項25~27のいずれか一項に記載のプリント配線板の製造方法。 The print according to any one of claims 25 to 27, wherein the step of forming a circuit on the resin layer is performed by any one of a semi-additive method, a subtractive method, a partly additive method, and a modified semi-additive method. A method for manufacturing a wiring board.
  29.  キャリアを剥離する前に、キャリア付銅箔のキャリア側表面に基板を形成する工程を更に含む請求項25~28のいずれか一項に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to any one of claims 25 to 28, further comprising a step of forming a substrate on the carrier side surface of the copper foil with a carrier before peeling the carrier.
PCT/JP2013/074585 2012-09-11 2013-09-11 Copper foil provided with carrier WO2014042201A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380046519.7A CN104619889B (en) 2012-09-11 2013-09-11 Copper foil with carrier
KR1020157009363A KR101766554B1 (en) 2012-09-11 2013-09-11 Copper foil provided with carrier
KR1020177011125A KR102050646B1 (en) 2012-09-11 2013-09-11 Copper foil provided with carrier
PH12015500529A PH12015500529A1 (en) 2012-09-11 2015-03-11 Carrier-attached copper foil

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-200017 2012-09-11
JP2012200017 2012-09-11
JP2012-200973 2012-09-12
JP2012200973 2012-09-12
JP2012280024 2012-12-21
JP2012-280024 2012-12-21
JP2013-012468 2013-01-25
JP2013012468A JP5481577B1 (en) 2012-09-11 2013-01-25 Copper foil with carrier

Publications (1)

Publication Number Publication Date
WO2014042201A1 true WO2014042201A1 (en) 2014-03-20

Family

ID=50278311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074585 WO2014042201A1 (en) 2012-09-11 2013-09-11 Copper foil provided with carrier

Country Status (7)

Country Link
JP (1) JP5481577B1 (en)
KR (2) KR102050646B1 (en)
CN (4) CN109379858A (en)
MY (2) MY188679A (en)
PH (1) PH12015500529A1 (en)
TW (2) TWI575120B (en)
WO (1) WO2014042201A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136785A1 (en) * 2013-03-04 2014-09-12 Jx日鉱日石金属株式会社 Copper foil with attached carrier, copper-clad laminate using same, printed circuit board, electronic device, and method for manufacturing printed circuit board
JP2015199355A (en) * 2014-03-31 2015-11-12 Jx日鉱日石金属株式会社 Carrier-provided copper foil, printed wiring board, laminate, laminate sheet, electronic equipment and method of producing printed wiring board
JP2015205481A (en) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electronic apparatus and manufacturing method of printed wiring board
JP2015214750A (en) * 2014-04-24 2015-12-03 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic apparatus and manufacturing method of printed wiring board
WO2016031960A1 (en) * 2014-08-28 2016-03-03 株式会社有沢製作所 Three-layer flexible metal-clad laminate and double-sided three-layer flexible metal-clad laminate
CN106358377A (en) * 2015-07-16 2017-01-25 Jx金属株式会社 Copper foil with carrier laminate production method for laminate production method for printed wiring board and production method for electronic device
EP3618129A4 (en) * 2017-04-27 2021-01-13 KYOCERA Corporation Circuit board and light-emitting device provided with same
US11304291B2 (en) 2017-06-29 2022-04-12 Kyocera Corporation Circuit board and light emitting device including circuit board
WO2022255421A1 (en) * 2021-06-03 2022-12-08 三井金属鉱業株式会社 Roughened copper foil, copper clad laminate, and printed wiring board
EP4132235A4 (en) * 2020-03-30 2024-04-10 Mitsubishi Materials Corp Bonded body and insulating circuit board

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108277509A (en) * 2012-11-20 2018-07-13 Jx日矿日石金属株式会社 Copper foil with carrier
CN105050331B (en) * 2015-07-07 2016-09-07 安徽铜冠铜箔有限公司 A kind of manufacture method of the high roughness electronics Copper Foil for ceramic base high-frequency copper-clad plate
CN109072472B (en) * 2016-04-14 2020-10-16 三井金属矿业株式会社 Surface-treated copper foil, copper foil with carrier, and copper-clad laminate and printed wiring board manufacturing method using same
US10711360B2 (en) * 2017-07-14 2020-07-14 Rohm And Haas Electronic Materials Llc Nickel electroplating compositions with copolymers of arginine and bisepoxides and methods of electroplating nickel
KR20200118144A (en) 2018-03-30 2020-10-14 미쓰이금속광업주식회사 Copper clad laminate
KR102098475B1 (en) 2018-07-06 2020-04-07 주식회사 포스코 A Manufacturing Method of Surface-treated Zn-Ni Alloy Electroplated Steel Sheet Having Excellent Corrosion Resistivity and Paintability
JP6895936B2 (en) * 2018-09-28 2021-06-30 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminates and circuit boards using this
US10581081B1 (en) * 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
TWI740515B (en) 2019-12-23 2021-09-21 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same
TWI697549B (en) * 2019-12-23 2020-07-01 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same
CN112226790B (en) * 2020-10-19 2022-04-22 九江德福科技股份有限公司 Production method of ultrathin high-strength electronic copper foil
WO2022153580A1 (en) * 2021-01-15 2022-07-21 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2022244826A1 (en) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board
EP4362611A1 (en) * 2021-06-24 2024-05-01 Kyocera Corporation Wiring board
WO2023281759A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
TWI781818B (en) 2021-11-05 2022-10-21 長春石油化學股份有限公司 Surface-treated copper foil and copper clad laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314855A (en) * 2006-05-29 2007-12-06 Furukawa Circuit Foil Kk Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP2008285751A (en) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd Surface treated copper foil, copper clad laminate obtainable using the surface treated copper foil, and printed circuit board obtainable using the copper clad laminate
JP2010236072A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Stacked copper foil and method for manufacturing the same
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
JP2012169598A (en) * 2011-01-26 2012-09-06 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method therefor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536095B2 (en) * 1988-10-20 1996-09-18 日立化成工業株式会社 Manufacturing method of wiring board
TW595280B (en) * 2000-04-25 2004-06-21 Nippon Denkai Kk Copper foil for TAB tape carrier, TAB tape carrier using the copper foil and TAB carrier tape
US7026059B2 (en) * 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP2002134858A (en) * 2000-10-25 2002-05-10 Hitachi Cable Ltd Copper foil for printed boards
WO2004005588A1 (en) 2002-07-04 2004-01-15 Mitsui Mining & Smelting Co.,Ltd. Electrolytic copper foil with carrier foil
JP2005008955A (en) * 2003-06-19 2005-01-13 Hitachi Cable Ltd Surface treatment method for copper foil
JP4087369B2 (en) * 2003-11-11 2008-05-21 古河サーキットフォイル株式会社 Ultra-thin copper foil with carrier and printed wiring board
WO2005079130A1 (en) * 2004-02-17 2005-08-25 Nippon Mining & Metals Co., Ltd. Copper foil having blackened surface or layer
JP4567360B2 (en) * 2004-04-02 2010-10-20 三井金属鉱業株式会社 Copper foil manufacturing method and copper foil obtained by the manufacturing method
JP4429979B2 (en) 2005-06-29 2010-03-10 古河電気工業株式会社 Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier
JP4157898B2 (en) * 2006-10-02 2008-10-01 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent press punchability
CN101636527B (en) * 2007-03-15 2011-11-09 日矿金属株式会社 Copper electrolyte solution and two-layer flexible substrate obtained by using the same
US8877348B2 (en) * 2007-10-31 2014-11-04 Jfe Steel Corporation Surface-treated steel sheet and resin-coated steel sheet
KR101351928B1 (en) * 2007-12-28 2014-01-21 일진머티리얼즈 주식회사 Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
TWI499690B (en) * 2009-03-13 2015-09-11 Ajinomoto Kk Paste metal laminates
JP2010006071A (en) 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
JP5356968B2 (en) * 2009-09-30 2013-12-04 Jx日鉱日石金属株式会社 Sn plating film and composite material having the same
JP2011116074A (en) * 2009-12-07 2011-06-16 Jx Nippon Mining & Metals Corp Metal foil equipped with electric resistance film and board for printed circuit using the metal foil
CN102452197B (en) * 2010-10-21 2014-08-20 财团法人工业技术研究院 Foil-attached copper foil and method for producing same
JP2012167297A (en) * 2011-02-09 2012-09-06 Jfe Steel Corp Electrogalvanized steel plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314855A (en) * 2006-05-29 2007-12-06 Furukawa Circuit Foil Kk Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP2008285751A (en) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd Surface treated copper foil, copper clad laminate obtainable using the surface treated copper foil, and printed circuit board obtainable using the copper clad laminate
JP2010236072A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Stacked copper foil and method for manufacturing the same
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
JP2012169598A (en) * 2011-01-26 2012-09-06 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136785A1 (en) * 2013-03-04 2014-09-12 Jx日鉱日石金属株式会社 Copper foil with attached carrier, copper-clad laminate using same, printed circuit board, electronic device, and method for manufacturing printed circuit board
JP2015199355A (en) * 2014-03-31 2015-11-12 Jx日鉱日石金属株式会社 Carrier-provided copper foil, printed wiring board, laminate, laminate sheet, electronic equipment and method of producing printed wiring board
JP2015205481A (en) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electronic apparatus and manufacturing method of printed wiring board
JP2015214750A (en) * 2014-04-24 2015-12-03 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic apparatus and manufacturing method of printed wiring board
WO2016031960A1 (en) * 2014-08-28 2016-03-03 株式会社有沢製作所 Three-layer flexible metal-clad laminate and double-sided three-layer flexible metal-clad laminate
JP2016049773A (en) * 2014-08-28 2016-04-11 株式会社有沢製作所 Three-layer flexible metal-clad laminate and double-sided three-layer flexible metal-clad laminate
CN106358377A (en) * 2015-07-16 2017-01-25 Jx金属株式会社 Copper foil with carrier laminate production method for laminate production method for printed wiring board and production method for electronic device
CN106358377B (en) * 2015-07-16 2019-09-13 Jx金属株式会社 Copper foil with carrier, laminate, the manufacturing method of laminate, the manufacturing method of the manufacturing method of printing distributing board and e-machine
EP3618129A4 (en) * 2017-04-27 2021-01-13 KYOCERA Corporation Circuit board and light-emitting device provided with same
US10950768B2 (en) 2017-04-27 2021-03-16 Kyocera Corporation Circuit board and light-emitting device provided with same
US11304291B2 (en) 2017-06-29 2022-04-12 Kyocera Corporation Circuit board and light emitting device including circuit board
EP4132235A4 (en) * 2020-03-30 2024-04-10 Mitsubishi Materials Corp Bonded body and insulating circuit board
WO2022255421A1 (en) * 2021-06-03 2022-12-08 三井金属鉱業株式会社 Roughened copper foil, copper clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JP5481577B1 (en) 2014-04-23
CN104619889A (en) 2015-05-13
KR102050646B1 (en) 2019-11-29
TW201533280A (en) 2015-09-01
CN109379858A (en) 2019-02-22
CN108588766B (en) 2020-02-18
MY167704A (en) 2018-09-21
TWI504788B (en) 2015-10-21
KR101766554B1 (en) 2017-08-08
KR20170046822A (en) 2017-05-02
JP2014139336A (en) 2014-07-31
CN107641820A (en) 2018-01-30
PH12015500529B1 (en) 2015-04-27
CN104619889B (en) 2018-10-09
PH12015500529A1 (en) 2015-04-27
KR20150052315A (en) 2015-05-13
TWI575120B (en) 2017-03-21
TW201428144A (en) 2014-07-16
MY188679A (en) 2021-12-22
CN108588766A (en) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2014042201A1 (en) Copper foil provided with carrier
WO2014080959A1 (en) Copper foil with carrier
JP6379038B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
KR101780130B1 (en) Copper foil with carrier attached thereto
JP5870148B2 (en) Copper foil with carrier, method for producing printed circuit board, copper-clad laminate, method for producing copper-clad laminate, and method for producing printed wiring board
WO2014065430A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
JP2014193606A (en) Carrier-fitted copper foil, copper-clad laminate sheet using the same, printed wiring board, electronic appliance using the same, and method for manufacturing printed wiring board
WO2014084385A1 (en) Copper foil with carrier
WO2014084384A1 (en) Carrier-supported copper foil
WO2014065431A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
JP6415033B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP6377329B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP6396967B2 (en) Copper foil with carrier and copper clad laminate using copper foil with carrier
JP2015205481A (en) Copper foil with carrier, copper-clad laminate, printed wiring board, electronic apparatus and manufacturing method of printed wiring board
WO2014084321A1 (en) Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board
JP2015078421A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminated plate, and method of producing printed wiring board
JP2015163740A (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12015500529

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20157009363

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13837661

Country of ref document: EP

Kind code of ref document: A1