WO2014084321A1 - Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board - Google Patents

Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board Download PDF

Info

Publication number
WO2014084321A1
WO2014084321A1 PCT/JP2013/082081 JP2013082081W WO2014084321A1 WO 2014084321 A1 WO2014084321 A1 WO 2014084321A1 JP 2013082081 W JP2013082081 W JP 2013082081W WO 2014084321 A1 WO2014084321 A1 WO 2014084321A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier
copper foil
copper
resin
Prior art date
Application number
PCT/JP2013/082081
Other languages
French (fr)
Japanese (ja)
Inventor
美里 本多
友太 永浦
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Publication of WO2014084321A1 publication Critical patent/WO2014084321A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump

Definitions

  • the present invention relates to a copper foil with a carrier, a method for producing a copper foil with a carrier, a printed wiring board, and a printed circuit board. More specifically, the present invention relates to a copper foil with a carrier used as a material for a printed wiring board for fine patterns, a method for producing the copper foil with a carrier, a printed wiring board, and a printed circuit board.
  • a printed wiring board is manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, a BT resin, a polyimide film or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (lamination method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.
  • the thickness of the copper foil used for the copper clad laminate is also 9 ⁇ m, further 5 ⁇ m or less.
  • the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer.
  • a general method of using a copper foil with a carrier is to peel the carrier through a release layer after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded.
  • a diffusion prevention layer, a release layer, and an electrolytic copper plating are formed in this order on the surface of a carrier, and a Cr or Cr hydrated oxide layer is formed as a release layer.
  • a method for maintaining good peelability after hot pressing by using a simple substance or an alloy of Ni, Co, Fe, Cr, Mo, Ta, Cu, Al, P as a diffusion preventing layer is disclosed.
  • the release layer is formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof, or hydrates thereof.
  • Patent Documents 2 and 3 describe that it is effective to provide Ni, Fe, or an alloy layer thereof as a base for the release layer in order to stabilize the peelability in a high temperature use environment such as a hot press. ing.
  • an object of the present invention is to provide a copper foil with a carrier that can be peeled off after a lamination process on an insulating substrate, while the ultrathin copper layer does not peel off from the carrier before the lamination process on the insulating substrate.
  • Another object of the present invention is to provide a copper foil with a carrier in which the generation of pinholes on the surface of the ultrathin copper layer is suppressed.
  • the present inventor conducted extensive research and used copper foil as a carrier, formed an intermediate layer between the ultrathin copper layer and the carrier, and formed this intermediate layer on the copper foil carrier. It is extremely effective to be composed of nickel and molybdenum or cobalt or molybdenum-cobalt alloy in order, control the amount of nickel, molybdenum and cobalt deposited, and control the concentration of nickel, molybdenum and cobalt near the intermediate layer. I found out that
  • the present invention has been completed on the basis of the above knowledge, and in one aspect, a copper foil with a carrier having a copper foil carrier, an intermediate layer, and an ultrathin copper layer in this order, wherein the intermediate layer is the copper foil carrier.
  • the intermediate layer has an adhesion amount of nickel of 1000 to 40000 ⁇ g / dm 2 , and molybdenum is included when molybdenum is included.
  • the adhesion amount 50 ⁇ 1000 ⁇ g / dm 2 when comprising cobalt is deposited amount 50 ⁇ 1000 [mu] g / dm 2 of cobalt, from the cross-section of the copper foil carrier / intermediate layer / ultra-thin copper layer, these in this order
  • the maximum nickel concentration is 50 to 95% by mass
  • Ultrathin copper layer side of Kell a copper foil with carrier in which molybdenum or cobalt is present from 1 to 50% by weight at the maximum value.
  • the copper foil with a carrier when the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. ⁇ 2 hours in the atmosphere,
  • the maximum nickel concentration is 50 to 95% by mass.
  • molybdenum or cobalt is present at a maximum value of 1 to 50% by mass on the ultrathin copper layer side from nickel.
  • the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. ⁇ 2 hours.
  • nickel, molybdenum and / or cobalt nickel, molybdenum and / or cobalt, and copper coexist when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them.
  • the minimum value of the copper concentration at the location to be applied is 10 to 65% by mass.
  • the concentration of cobalt in the molybdenum-cobalt alloy in the intermediate layer is 20 to 80% by mass.
  • the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.
  • the surface of the ultrathin copper layer has a roughening treatment layer.
  • the roughening layer is any selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc. It is the layer which consists of an alloy containing these 1 type or any 1 type or more.
  • the surface of the roughening treatment layer was selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer. It has one or more layers.
  • the surface of the ultrathin copper layer is selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer. It has one or more layers.
  • a resin layer is provided on the ultrathin copper layer.
  • a resin layer is provided on the roughening treatment layer.
  • the carrier-attached copper foil according to the present invention on one or more layers selected from the group consisting of the heat-resistant layer, the rust-preventing layer, the chromate treatment layer, and the silane coupling treatment layer.
  • a resin layer is provided on one or more layers selected from the group consisting of the heat-resistant layer, the rust-preventing layer, the chromate treatment layer, and the silane coupling treatment layer.
  • the resin layer includes a dielectric.
  • the present invention is a printed wiring board manufactured using the copper foil with a carrier of the present invention.
  • the present invention is a printed circuit board manufactured using the copper foil with a carrier of the present invention.
  • the present invention is a copper-clad laminate manufactured using the carrier-attached copper foil of the present invention.
  • a nickel layer is formed on a copper foil carrier by dry plating or wet plating, and a molybdenum layer, a cobalt layer, or a molybdenum-cobalt alloy layer is formed on the nickel layer.
  • the method for producing a copper foil with a carrier according to the present invention comprising a step of forming an intermediate layer and a step of forming an ultrathin copper layer on the intermediate layer by electroplating.
  • the method further includes a step of forming a roughened layer on the ultrathin copper layer.
  • a step of forming a circuit on the ultrathin copper layer side surface of the copper foil with a carrier of the present invention Forming a resin layer on the ultrathin copper layer side surface of the carrier-attached copper foil so that the circuit is buried; Forming a circuit on the resin layer; Forming the circuit on the resin layer, and then peeling the carrier; and After the carrier is peeled off, the printed wiring board includes a step of exposing the circuit embedded in the resin layer formed on the surface of the ultrathin copper layer by removing the ultrathin copper layer Is the method.
  • the step of forming a circuit on the resin layer is performed by laminating another copper foil with a carrier on the resin layer from the ultrathin copper layer side.
  • the circuit is formed using a copper foil with a carrier bonded to a layer.
  • another copper foil with a carrier to be bonded onto the resin layer is the copper foil with a carrier of the present invention.
  • the step of forming a circuit on the resin layer is any one of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method. Done by the method.
  • the copper foil with carrier for forming a circuit on the surface has a substrate or a resin layer on the surface of the carrier of the copper foil with carrier.
  • the copper foil with a carrier according to the present invention has high adhesion between the carrier and the ultrathin copper layer before the lamination process to the insulating substrate, while the carrier and the ultrathin copper layer after the lamination process to the insulation substrate. Adhesiveness is lowered, it can be easily peeled off at the carrier / ultra-thin copper layer interface, and the occurrence of pinholes on the surface of the ultra-thin copper layer can be well suppressed.
  • FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention.
  • GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention.
  • J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • 6 is a cross-sectional concentration profile after pressure bonding of a substrate according to Example 5. It is a density
  • a copper foil is used as a carrier that can be used in the present invention.
  • the carrier is typically provided in the form of rolled copper foil or electrolytic copper foil.
  • the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
  • the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used.
  • a copper alloy foil is also included.
  • the thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 ⁇ m or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 ⁇ m or less. Accordingly, the thickness of the carrier is typically 12-300 ⁇ m, more typically 12-150 ⁇ m, more typically 12-100 ⁇ m, more typically 12-70 ⁇ m, and more Typically 18 to 35 ⁇ m.
  • An intermediate layer is provided on the copper foil carrier. Another layer may be provided between the copper foil carrier and the intermediate layer.
  • the intermediate layer is formed by laminating nickel and molybdenum or cobalt or a molybdenum-cobalt alloy in this order from the copper foil carrier side. Since the adhesive force between nickel and copper is higher than the adhesive force between molybdenum or cobalt and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and molybdenum or cobalt. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer. Moreover, you may provide an intermediate
  • Molybdenum or cobalt or molybdenum-cobalt alloy in the intermediate layer is thinly present at the interface of the ultrathin copper layer. It is preferable for obtaining the property that the ultrathin copper layer can be peeled off from the carrier after the laminating step.
  • molybdenum or cobalt or molybdenum-cobalt alloy is present at the boundary between the carrier and the ultrathin copper layer without providing a nickel layer, the peelability is hardly improved, and there is no molybdenum or cobalt or molybdenum-cobalt alloy and the nickel layer.
  • the ultrathin copper layer is directly laminated, the peel strength is too strong or too weak depending on the amount of nickel in the nickel layer, and an appropriate peel strength cannot be obtained.
  • the intermediate layer is also peeled along with the peeling of the ultrathin copper layer, that is, peeling occurs between the carrier and the intermediate layer. This is not preferable. This situation occurs not only when molybdenum, cobalt, or molybdenum-cobalt alloy is provided at the interface with the carrier, but also when molybdenum, cobalt, or molybdenum-cobalt alloy is provided at the interface with the ultrathin copper layer. Or it may occur when the amount of cobalt is too large.
  • the nickel and cobalt or molybdenum-cobalt alloy of the intermediate layer can be formed by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV.
  • Molybdenum can be formed only by dry plating such as CVD and PDV. Electroplating is preferable from the viewpoint of cost.
  • the adhesion amount of nickel 1000 ⁇ 40000 ⁇ g / dm 2, coating weight 50 ⁇ 1000 ⁇ g / dm 2 of molybdenum case containing molybdenum, at a coverage of cobalt 50 ⁇ 1000 ⁇ g / dm 2 when containing cobalt is there.
  • the amount of pinholes tends to increase as the amount of nickel increases, the number of pinholes is also suppressed within this range.
  • the nickel adhesion amount is preferably 5000 to 20000 ⁇ g / dm 2, and 7500 to 15000 ⁇ g / dm 2. More preferred.
  • the molybdenum adhesion amount is preferably 80 to 600 ⁇ g / dm 2, and more preferably 100 to 400 ⁇ g / dm 2 .
  • the amount of cobalt adhesion is preferably 80 to 600 ⁇ g / dm 2, and more preferably 100 to 400 ⁇ g / dm 2 .
  • the total adhesion amount of molybdenum and cobalt is preferably 50 to 1200 ⁇ g / dm 2 .
  • the total adhesion amount of molybdenum and cobalt is preferably 100 to 1000 ⁇ g / dm 2, and more preferably 150 to 700 ⁇ g / dm 2 .
  • the carrier-added copper foil subjected to strike plating with a copper-phosphorus alloy has phosphorus on both the intermediate layer surface and the ultrathin copper layer surface. For this reason, when it peels between an intermediate
  • the plating layer formed by strike plating becomes thin, cross-sectional observation is performed with FIB, TEM, etc., and when the thickness of the copper phosphorous plating layer on the intermediate layer is 0.1 ⁇ m or less, it is strike plating. Can be determined.
  • Ultra-thin copper layer An ultrathin copper layer is provided on the intermediate layer. Another layer may be provided between the intermediate layer and the ultrathin copper layer.
  • the ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, and copper cyanide, and is used in a general electrolytic copper foil.
  • a copper sulfate bath is preferred because copper foil can be formed at a current density.
  • the thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 ⁇ m or less. Typically 0.5 to 12 ⁇ m, more typically 2 to 5 ⁇ m. In addition, you may provide an ultra-thin copper layer on both surfaces of a copper foil carrier.
  • a roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate.
  • the roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy.
  • the roughening process may be fine.
  • the roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or an alloy containing one or more of them. Also good.
  • a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy.
  • a heat-resistant layer or a rust-preventing layer may be formed of copper, nickel, cobalt, zinc alone or an alloy, and the surface may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment.
  • a heat-resistant layer or a rust-preventing layer may be formed of copper, nickel, cobalt, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good.
  • one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer.
  • One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface.
  • the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers such as 2 layers or more and 3 layers or more.
  • the heat-resistant layer and the rust-proof layer known heat-resistant layers and rust-proof layers can be used.
  • the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum
  • it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like.
  • the heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • An oxide, nitride, or silicide containing one or more elements selected from the above may be included.
  • the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy.
  • the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities.
  • the total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 .
  • the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
  • the heat-resistant layer and / or rust prevention layer is a layer containing a nickel-zinc alloy, the interface between the copper foil and the resin substrate is eroded by the desmear liquid when the inner wall of a through hole or via hole comes into contact with the desmear liquid. It is difficult to improve the adhesion between the copper foil and the resin substrate.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2.
  • a tin layer of ⁇ 80 mg / m 2 , preferably 5 mg / m 2 ⁇ 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these.
  • the heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable.
  • silane coupling agent for the silane coupling agent used for a silane coupling process, for example, using an amino-type silane coupling agent or an epoxy-type silane coupling agent, a mercapto-type silane coupling agent.
  • Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and ⁇ -aminopropyl.
  • Triethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, ⁇ -mercaptopropyltrimethoxysilane or the like may be used.
  • the silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • you may use 2 or more types of such silane coupling agents in mixture.
  • it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
  • the amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl
  • the silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the base resin and the surface-treated copper foil can be further improved.
  • Resin layer> Resin layer on ultrathin copper layer of copper foil with carrier of the present invention (surface treatment layer formed on ultrathin copper layer by surface treatment when ultrathin copper layer is surface-treated) May be provided.
  • the resin layer may be an insulating resin layer.
  • the resin layer may be an adhesive resin, that is, an adhesive, or may be a semi-cured (B-stage) insulating resin layer for adhesion.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may contain a thermosetting resin or a thermoplastic resin.
  • the resin layer may include a thermoplastic resin.
  • the resin layer may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like.
  • the resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Laid-Open No. 2000-43188, Japanese Patent No.
  • Japanese Patent Laid-Open No. 2002-179772 Japanese Patent Laid-Open No. 2002-359444, Japanese Patent Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Laid-Open No. 2003 -249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, and Japanese Patent Application Laid-Open No. 4570070. No. 5-53218, Japanese Patent No. 3949676, Japanese Patent No.
  • WO 2008/114858 International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
  • the type of the resin layer is not particularly limited.
  • epoxy resin polyimide resin, polyfunctional cyanate ester compound, maleimide compound, polymaleimide compound, maleimide resin, aromatic maleimide resin , Polyvinyl acetal resin, urethane resin, polyethersulfone (also referred to as polyethersulfone or polyethersulfone), polyethersulfone (also referred to as polyethersulfone or polyethersulfone) resin, aromatic polyamide resin, aromatic Polyamide resin polymer, rubber resin, polyamine, aromatic polyamine, polyamideimide resin, rubber modified epoxy resin, phenoxy resin, carboxyl group-modified acrylonitrile-butadiene resin, polyphenylene oxide, bismaleimide triazine Resins, thermosetting polyphenylene oxide resins, cyanate ester resins, carboxylic acid anhydrides, polyvalent carboxylic acid anhydrides, linear polymers having crosslinkable functional groups, polyphenylene ether resins, 2,2-
  • the epoxy resin has two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials.
  • the epoxy resin is preferably an epoxy resin epoxidized using a compound having two or more glycidyl groups in the molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, brominated (brominated) epoxy Resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, brominated bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, rubber modified bisphenol A type epoxy resin, glycidylamine type epoxy resin, triglycidyl isocyanurate, N, N -Glycidylamine compounds such as diglycidyl aniline, glycidyl ester compounds such as diglycidyl tetrahydrophthalate, phosphorus-containing epoxy resins, biphenyl type epoxy resin , Biphenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, or a mixture of two or more types, or a hydrogenated product
  • the phosphorus-containing epoxy resin a known epoxy resin containing phosphorus can be used.
  • the phosphorus-containing epoxy resin is, for example, an epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having two or more epoxy groups in the molecule. Is preferred.
  • the epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is converted to 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide.
  • a compound represented by the following chemical formula 1 (HCA-NQ) or chemical formula 2 (HCA-HQ) an epoxy resin is reacted with the OH group portion to obtain a phosphorus-containing epoxy resin. Is.
  • the phosphorus-containing epoxy resin which is the component E obtained using the above-mentioned compound as a raw material, is a mixture of one or two compounds having the structural formula shown in any one of the following chemical formulas 3 to 5. Is preferred. This is because the resin quality in a semi-cured state is excellent in stability, and at the same time, the flame retardant effect is high.
  • the brominated (brominated) epoxy resin a known brominated (brominated) epoxy resin can be used.
  • the brominated (brominated) epoxy resin is a brominated epoxy resin having the structural formula shown in Chemical formula 6 obtained as a derivative from tetrabromobisphenol A having two or more epoxy groups in the molecule. It is preferable to use one or two brominated epoxy resins having the structural formula shown in FIG.
  • maleimide resin aromatic maleimide resin, maleimide compound or polymaleimide compound
  • known maleimide resins aromatic maleimide resins, maleimide compounds or polymaleimide compounds
  • maleimide resin or aromatic maleimide resin or maleimide compound or polymaleimide compound 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl -5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1, It is possible to use 3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and a polymer obtained
  • the maleimide resin may be an aromatic maleimide resin having two or more maleimide groups in the molecule, and an aromatic maleimide resin having two or more maleimide groups in the molecule and a polyamine or aromatic polyamine. Polymerization adducts obtained by polymerizing and may be used. As the polyamine or aromatic polyamine, known polyamines or aromatic polyamines can be used.
  • polyamine or aromatic polyamine m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodicyclohexylmethane, 1,4-diaminocyclohexane, 2,6-diaminopyridine, 4,4′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane, 4,4′-diaminodiphenyl ether, 4,4′-diamino-3-methyldiphenyl ether, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminobenzophenone, 4,4'-diaminodiphenylsulfone, bis (4-aminophenyl) phenylamine, m-xylenediamine, p-xylenediamine, 1,3-bis [4-aminophenoxy] benzene, 3-methyl-4,4 '
  • 1 type, or 2 or more types of well-known polyamine and / or aromatic polyamine or the above-mentioned polyamine or aromatic polyamine can be used.
  • a known phenoxy resin can be used as the phenoxy resin.
  • combined by reaction of bisphenol and a bivalent epoxy resin can be used as said phenoxy resin.
  • an epoxy resin a well-known epoxy resin and / or the above-mentioned epoxy resin can be used.
  • the bisphenol known bisphenols can be used, and bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A, 4,4′-dihydroxybiphenyl, HCA (9,10-Dihydro-9-Oxa- Bisphenol obtained as an adduct of 10-phosphophenanthrene-10-oxide) and quinones such as hydroquinone and naphthoquinone can be used.
  • the linear polymer having a crosslinkable functional group a known linear polymer having a crosslinkable functional group can be used.
  • the linear polymer having a crosslinkable functional group preferably has a functional group that contributes to the curing reaction of an epoxy resin such as a hydroxyl group or a carboxyl group.
  • the linear polymer having a crosslinkable functional group is preferably soluble in an organic solvent having a boiling point of 50 ° C. to 200 ° C.
  • Specific examples of the linear polymer having a functional group mentioned here include polyvinyl acetal resin, phenoxy resin, polyethersulfone resin, polyamideimide resin and the like.
  • the resin layer may contain a crosslinking agent.
  • a known crosslinking agent can be used as the crosslinking agent.
  • a urethane-based resin can be used as the crosslinking agent.
  • a known rubber resin can be used as the rubber resin.
  • the rubbery resin is described as a concept including natural rubber and synthetic rubber.
  • the latter synthetic rubber includes styrene-butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber, acrylonitrile butadiene rubber, acrylic rubber ( Acrylic ester copolymer), polybutadiene rubber, isoprene rubber and the like. Furthermore, when ensuring the heat resistance of the resin layer to be formed, it is also useful to select and use a synthetic rubber having heat resistance such as nitrile rubber, chloroprene rubber, silicon rubber, urethane rubber or the like. Regarding these rubber resins, it is desirable to have various functional groups at both ends in order to produce a copolymer by reacting with an aromatic polyamide resin or a polyamideimide resin.
  • CTBN carboxy group-terminated butadiene nitrile
  • C-NBR carboxy-modified nitrile butadiene rubber
  • a known polyimide amide resin can be used as the polyamide imide resin.
  • polyimide amide resin for example, trimellitic anhydride, benzophenonetetracarboxylic anhydride and vitorylene diisocyanate are heated in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide.
  • trimellitic anhydride, diphenylmethane diisocyanate and carboxyl group-terminated acrylonitrile-butadiene rubber in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide. What is obtained can be used.
  • a known rubber-modified polyamideimide resin can be used as the rubber-modified polyamideimide resin.
  • the rubber-modified polyamideimide resin is obtained by reacting a polyamideimide resin and a rubber resin.
  • the reaction of the polyamide-imide resin and the rubber resin is performed for the purpose of improving the flexibility of the polyamide-imide resin itself. That is, the polyamideimide resin and the rubber resin are reacted to replace a part of the acid component (cyclohexanedicarboxylic acid or the like) of the polyamideimide resin with the rubber component.
  • a known polyamideimide resin can be used as the polyamideimide resin.
  • As the rubber resin a known rubber resin or the aforementioned rubber resin can be used.
  • Solvents used for dissolving the polyamideimide resin and the rubbery resin when polymerizing the rubber-modified polyamideimide resin include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, nitromethane, nitroethane, tetrahydrofuran , Cyclohexanone, methyl ethyl ketone, acetonitrile, ⁇ -butyrolactone and the like are preferably used alone or in combination.
  • a known phosphazene resin can be used as the phosphazene resin.
  • the phosphazene resin is a resin containing phosphazene having a double bond having phosphorus and nitrogen as constituent elements.
  • the phosphazene resin can dramatically improve the flame retardancy due to the synergistic effect of nitrogen and phosphorus in the molecule.
  • a known fluororesin can be used as the fluororesin.
  • fluororesin examples include PTFE (polytetrafluoroethylene (tetrafluoroethylene)), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer (4.6).
  • PTFE polytetrafluoroethylene (tetrafluoroethylene)
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer (4.6).
  • a fluororesin composed of at least one thermoplastic resin selected from polysulfide and aromatic polyether and a fluororesin may be used.
  • the resin layer may contain a resin curing agent.
  • a known resin curing agent can be used as the resin curing agent.
  • resin curing agents include amines such as dicyandiamide, imidazoles and aromatic amines, phenols such as bisphenol A and brominated bisphenol A, novolaks such as phenol novolac resins and cresol novolac resins, and acid anhydrides such as phthalic anhydride.
  • amines such as dicyandiamide, imidazoles and aromatic amines
  • phenols such as bisphenol A and brominated bisphenol A
  • novolaks such as phenol novolac resins and cresol novolac resins
  • acid anhydrides such as phthalic anhydride.
  • the resin layer may contain one or more of the aforementioned resin curing agents. These curing agents are particularly effective for epoxy resins.
  • a specific example of the biphenyl type phenol resin is shown in Chemical Formula 8.
  • imidazoles can be used, such as 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5- Hydroxymethylimidazole etc. are mentioned, These can be used individually or in mixture. Of these, imidazoles having the structural formula shown in Chemical Formula 10 below are preferably used.
  • the moisture absorption resistance of the semi-cured resin layer can be remarkably improved, and the long-term storage stability is excellent. This is because imidazoles function as a catalyst during curing of the epoxy resin and contribute as a reaction initiator that causes a self-polymerization reaction of the epoxy resin in the initial stage of the curing reaction.
  • amine resin curing agent known amines can be used.
  • the amine resin curing agent for example, the above-mentioned polyamines and aromatic polyamines can be used, and aromatic polyamines, polyamides, and these are obtained by polymerizing or condensing with epoxy resins or polyvalent carboxylic acids.
  • One or more selected from the group of amine adducts to be used may be used.
  • the resin curing agent for the amines examples include 4,4′-diaminodiphenylene sulfone, 3,3′-diaminodiphenylene sulfone, 4,4-diaminodiphenylel, 2,2-bis [4 It is preferable to use at least one of-(4-aminophenoxy) phenyl] propane and bis [4- (4-aminophenoxy) phenyl] sulfone.
  • the resin layer may contain a curing accelerator.
  • a known curing accelerator can be used as the curing accelerator.
  • tertiary amine, imidazole, urea curing accelerator and the like can be used.
  • the resin layer may include a reaction catalyst.
  • a known reaction catalyst can be used as the reaction catalyst. For example, finely pulverized silica or antimony trioxide can be used as a reaction catalyst.
  • the anhydride of the polyvalent carboxylic acid is preferably a component that contributes as a curing agent for the epoxy resin.
  • the anhydride of the polyvalent carboxylic acid is phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydroxyphthalic anhydride, hexahydroxyphthalic anhydride, methylhexahydroxyphthalic anhydride, nadine. Acid and methyl nadic acid are preferred.
  • the thermoplastic resin may be a thermoplastic resin having a functional group other than an alcoholic hydroxyl group polymerizable with an epoxy resin.
  • the polyvinyl acetal resin may have a functional group polymerizable with an epoxy resin or a maleimide compound other than an acid group and a hydroxyl group.
  • the polyvinyl acetal resin may have a carboxyl group, an amino group or an unsaturated double bond introduced into the molecule.
  • the aromatic polyamide resin polymer include those obtained by reacting an aromatic polyamide resin and a rubber resin.
  • the aromatic polyamide resin is synthesized by condensation polymerization of an aromatic diamine and a dicarboxylic acid.
  • aromatic diamine As the aromatic diamine at this time, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, m-xylenediamine, 3,3′-oxydianiline and the like are used.
  • dicarboxylic acid phthalic acid, isophthalic acid, terephthalic acid, fumaric acid or the like is used.
  • rubber resin to be reacted with the aromatic polyamide resin a known rubber resin or the aforementioned rubber resin can be used. This aromatic polyamide resin polymer is used for the purpose of not being damaged by under-etching by an etchant when etching a copper foil after being processed into a copper-clad laminate.
  • the resin layer is a cured resin layer (the “cured resin layer” means a cured resin layer) and a half in order from the copper foil side (that is, the ultrathin copper layer side of the copper foil with carrier).
  • the resin layer which formed the cured resin layer sequentially may be sufficient.
  • the cured resin layer may be composed of a resin component of any one of a polyimide resin, a polyamideimide resin, and a composite resin having a thermal expansion coefficient of 0 ppm / ° C. to 25 ppm / ° C.
  • a semi-cured resin layer having a coefficient of thermal expansion after curing of 0 ppm / ° C. to 50 ppm / ° C. may be provided on the cured resin layer.
  • the thermal expansion coefficient of the entire resin layer after the cured resin layer and the semi-cured resin layer are cured may be 40 ppm / ° C. or less.
  • the cured resin layer may have a glass transition temperature of 300 ° C. or higher.
  • the semi-cured resin layer may be formed using a maleimide resin or an aromatic maleimide resin.
  • the resin composition for forming the semi-cured resin layer preferably contains a maleimide resin, an epoxy resin, and a linear polymer having a crosslinkable functional group.
  • epoxy resin a known epoxy resin or an epoxy resin described in this specification can be used.
  • maleimide resins aromatic maleimide resins, linear polymers having crosslinkable functional groups, known maleimide resins, aromatic maleimide resins, linear polymers having crosslinkable functional groups, or the aforementioned maleimide resins.
  • An aromatic maleimide resin or a linear polymer having a crosslinkable functional group can be used.
  • the said cured resin layer is a polymeric polymer layer which has hardened
  • the polymer layer is preferably made of a resin having a glass transition temperature of 150 ° C. or higher so that it can withstand the solder mounting process.
  • the polymer polymer layer is preferably made of one or a mixture of two or more of a polyamide resin, a polyether sulfone resin, an aramid resin, a phenoxy resin, a polyimide resin, a polyvinyl acetal resin, and a polyamideimide resin.
  • the thickness of the polymer layer is preferably 3 ⁇ m to 10 ⁇ m.
  • the said high molecular polymer layer contains any 1 type, or 2 or more types of an epoxy resin, a maleimide-type resin, a phenol resin, and a urethane resin.
  • the semi-cured resin layer is preferably composed of an epoxy resin composition having a thickness of 10 ⁇ m to 50 ⁇ m.
  • the epoxy resin composition preferably contains the following components A to E.
  • Component A An epoxy resin having one or more selected from the group consisting of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol AD type epoxy resin that have an epoxy equivalent of 200 or less and are liquid at room temperature.
  • B component High heat-resistant epoxy resin.
  • Component C Phosphorus-containing flame-retardant resin, which is any one of phosphorus-containing epoxy resin and phosphazene-based resin, or a mixture of these.
  • Component D A rubber-modified polyamideimide resin modified with a liquid rubber component having a property of being soluble in a solvent having a boiling point in the range of 50 ° C. to 200 ° C.
  • E component Resin curing agent.
  • the B component is a “high heat resistant epoxy resin” having a high so-called glass transition point Tg.
  • the “high heat-resistant epoxy resin” referred to here is preferably a polyfunctional epoxy resin such as a novolac-type epoxy resin, a cresol novolac-type epoxy resin, a phenol novolac-type epoxy resin, or a naphthalene-type epoxy resin.
  • the phosphorus-containing epoxy resin of component C the aforementioned phosphorus-containing epoxy resin can be used.
  • the phosphazene resin described above can be used as the C component phosphazene resin.
  • the rubber-modified polyamide-imide resin described above can be used as the rubber-modified polyamide-imide resin of component D.
  • the resin curing agent described above can be used as the E component resin curing agent.
  • a solvent is added to the resin composition shown above and used as a resin varnish to form a thermosetting resin layer as an adhesive layer of a printed wiring board.
  • the resin varnish is prepared by adding a solvent to the resin composition described above so that the resin solid content is in the range of 30 wt% to 70 wt%, and the resin flow when measured in accordance with MIL-P-13949G in the MIL standard.
  • a semi-cured resin film in the range of 5% to 35% can be formed.
  • the solvent a known solvent or the aforementioned solvent can be used.
  • the resin layer is a resin layer having a first thermosetting resin layer and a second thermosetting resin layer located on the surface of the first thermosetting resin layer in order from the copper foil side
  • the curable resin layer is formed of a resin component that does not dissolve in chemicals during desmear processing in the wiring board manufacturing process, and the second thermosetting resin layer dissolves in chemicals during desmear processing in the wiring board manufacturing process. Then, it may be formed using a resin that can be washed and removed.
  • the first thermosetting resin layer may be formed using a resin component obtained by mixing one or more of polyimide resin, polyethersulfone, and polyphenylene oxide.
  • the second thermosetting resin layer may be formed using an epoxy resin component.
  • the thickness t1 ( ⁇ m) of the first thermosetting resin layer is Rz ( ⁇ m) of the roughened surface roughness of the copper foil with carrier, and the thickness of the second thermosetting resin layer is t2 ( ⁇ m). Then, t1 is preferably a thickness that satisfies the condition of Rz ⁇ t1 ⁇ t2.
  • the resin layer may be a prepreg in which a skeleton material is impregnated with a resin.
  • the resin impregnated in the skeleton material is preferably a thermosetting resin.
  • the prepreg may be a known prepreg or a prepreg used for manufacturing a printed wiring board.
  • the skeleton material may include aramid fibers, glass fibers, or wholly aromatic polyester fibers.
  • the skeleton material is preferably an aramid fiber, a glass fiber, or a nonwoven fabric or woven fabric of wholly aromatic polyester fibers.
  • the wholly aromatic polyester fiber is preferably a wholly aromatic polyester fiber having a melting point of 300 ° C. or higher.
  • the wholly aromatic polyester fiber having a melting point of 300 ° C. or higher is a fiber produced using a resin called a so-called liquid crystal polymer, and the liquid crystal polymer includes 2-hydroxyl-6-naphthoic acid and p-hydroxybenzoic acid.
  • the main component is an acid polymer.
  • this wholly aromatic polyester fiber has a low dielectric constant and low dielectric loss tangent, it has excellent performance as a constituent material of an electrically insulating layer and can be used in the same manner as glass fiber and aramid fiber. is there.
  • the silane coupling agent process for the fiber which comprises the said nonwoven fabric and woven fabric.
  • a known amino-based or epoxy-based silane coupling agent or the aforementioned silane coupling agent can be used depending on the purpose of use.
  • the prepreg is a prepreg obtained by impregnating a thermosetting resin into a nonwoven fabric using an aramid fiber or glass fiber having a nominal thickness of 70 ⁇ m or less, or a skeleton material made of glass cloth having a nominal thickness of 30 ⁇ m or less. Also good.
  • the resin layer may include a dielectric (dielectric filler).
  • a dielectric (dielectric filler) is included in any of the above resin layers or resin compositions, it can be used for the purpose of forming the capacitor layer and increase the capacitance of the capacitor circuit.
  • the dielectric (dielectric filler) includes a composite oxide having a perovskite structure such as BaTiO3, SrTiO3, Pb (Zr-Ti) O3 (commonly called PZT), PbLaTiO3 / PbLaZrO (commonly known as PLZT), SrBi2Ta2O9 (commonly known as SBT), and the like.
  • Dielectric powder is used.
  • the dielectric (dielectric filler) may be powdery.
  • the powder characteristics of the dielectric (dielectric filler) are as follows. First, the particle size is 0.01 ⁇ m to 3.0 ⁇ m, preferably 0.02 ⁇ m to 2.0 ⁇ m. Must be in range.
  • the particle size referred to here is indirect in which the average particle size is estimated from the measured values of the laser diffraction scattering type particle size distribution measurement method and the BET method because the particles form a certain secondary aggregation state.
  • the accuracy is inferior in measurement, and it refers to the average particle diameter obtained by directly observing a dielectric (dielectric filler) with a scanning electron microscope (SEM) and image analysis of the SEM image. It is. In this specification, the particle size at this time is indicated as DIA.
  • the image analysis of the dielectric (dielectric filler) powder observed using a scanning electron microscope (SEM) in this specification is performed using an IP-1000PC manufactured by Asahi Engineering Co., Ltd. Circular particle analysis was performed with a threshold value of 10 and an overlapping degree of 20, and the average particle diameter DIA was obtained.
  • the resin layer containing the dielectric for forming the capacitor circuit layer having a low dielectric loss tangent is improved by improving the adhesion between the inner layer circuit surface of the inner layer core material and the resin layer containing the dielectric.
  • the copper foil with a carrier which has can be provided.
  • Examples of the resin and / or resin composition and / or compound contained in the resin layer include methyl ethyl ketone (MEK), cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, methanol, ethanol, propylene glycol monomethyl ether , Dimethylformamide, dimethylacetamide, cyclohexanone, ethyl cellosolve, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like to obtain a resin liquid (resin varnish).
  • MEK methyl ethyl ketone
  • cyclopentanone dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene
  • methanol ethanol
  • propylene glycol monomethyl ether Dimethylformamide, dimethylacetamide, cyclohexanone, ethyl cellosolve
  • the ultrathin copper layer or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary. Removing the solvent Te and to B-stage.
  • a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C.
  • the resin layer composition is dissolved using a solvent, and the resin solid content is 3 wt% to 70 wt%, preferably 3 wt% to 60 wt%, preferably 10 wt% to 40 wt%, more preferably 25 wt% to 40 wt%.
  • the resin layer is preferably a semi-cured resin film having a resin flow in the range of 5% to 35% when measured according to MIL-P-13949G in the MIL standard. In this specification, the resin flow is based on MIL-P-13949G in the MIL standard. Four 10 cm square samples were sampled from a resin-coated copper foil with a resin thickness of 55 ⁇ m.
  • the copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompression bonded to thermally cure the resin layer, and then the carrier is peeled off.
  • the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.
  • this resin-attached copper foil with a carrier can reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board.
  • the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
  • the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous.
  • the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 ⁇ m or less can be manufactured.
  • the thickness of this resin layer is preferably 0.1 to 120 ⁇ m.
  • the thickness of the resin layer is less than 0.1 ⁇ m, the adhesive strength is reduced, and when the copper foil with a carrier with the resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.
  • the thickness of the resin layer is greater than 120 ⁇ m, it is difficult to form a resin layer having a target thickness in a single coating process, which may be economically disadvantageous because of extra material costs and man-hours.
  • the thickness of the resin layer is 0.1 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m, More preferably, the thickness is 1 ⁇ m to 5 ⁇ m in order to reduce the thickness of the multilayer printed wiring board.
  • the thickness of the resin layer is preferably 0.1 to 50 ⁇ m, more preferably 0.5 ⁇ m to 25 ⁇ m, and more preferably 1.0 ⁇ m to 15 ⁇ m. preferable.
  • the total resin layer thickness of the cured resin layer and the semi-cured resin layer is preferably 0.1 ⁇ m to 120 ⁇ m, preferably 5 ⁇ m to 120 ⁇ m, preferably 10 ⁇ m to 120 ⁇ m, and 10 ⁇ m to 60 ⁇ m. Are more preferred.
  • the thickness of the cured resin layer is preferably 2 ⁇ m to 30 ⁇ m, preferably 3 ⁇ m to 30 ⁇ m, and more preferably 5 to 20 ⁇ m.
  • the thickness of the semi-cured resin layer is preferably 3 ⁇ m to 55 ⁇ m, more preferably 7 ⁇ m to 55 ⁇ m, and even more preferably 15 to 115 ⁇ m. If the total resin layer thickness exceeds 120 ⁇ m, it may be difficult to produce a thin multilayer printed wiring board.
  • the total resin layer thickness is less than 5 ⁇ m, it is easy to form a thin multilayer printed wiring board, but an insulating layer between inner layer circuits This is because the resin layer may become too thin and the insulation between the circuits of the inner layer tends to become unstable. Moreover, when the cured resin layer thickness is less than 2 ⁇ m, it may be necessary to consider the surface roughness of the roughened copper foil surface. Conversely, if the cured resin layer thickness exceeds 20 ⁇ m, the effect of the cured resin layer may not be particularly improved, and the total insulating layer thickness becomes thick.
  • the thickness of the resin layer is 0.1 ⁇ m to 5 ⁇ m, in order to improve the adhesion between the resin layer and the copper foil with carrier, a heat-resistant layer and / or a rust-proof layer is formed on the ultrathin copper layer.
  • a heat-resistant layer and / or a rust-proof layer is formed on the ultrathin copper layer.
  • the thickness of the above-mentioned resin layer says the average value of the thickness measured by cross-sectional observation in arbitrary 10 points
  • this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer
  • the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.
  • Copper foil with carrier, printed circuit board, printed wiring board> The copper foil with a carrier which has a copper foil carrier, an intermediate
  • the method of using the copper foil with carrier itself is well known to those skilled in the art.
  • the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite.
  • a carrier is peeled off after being bonded to an insulating substrate such as a base epoxy resin, a glass cloth / glass nonwoven fabric composite base epoxy resin and a glass cloth base epoxy resin, a polyester film, a polyimide film, etc.
  • the peeled portion is mainly the interface between the intermediate layer and the ultrathin copper layer.
  • the ultrathin copper layer adhered to the insulating substrate is etched into the intended conductor pattern, and finally a printed wiring board or printed circuit board can be manufactured.
  • a printed wiring board manufactured using the copper foil with a carrier of the present invention those in known forms can be widely used.
  • a conductor pattern is printed on an insulating substrate in order to electrically connect each component.
  • a substrate in which the wiring formed by the above is provided on an insulating substrate or the like based on circuit design.
  • a printed circuit board manufactured using the copper foil with a carrier of this invention the thing of a well-known form can be used widely, for example, it is comprised with the said printed wiring, the various components mounted in a board
  • a substrate in which a circuit is provided on an insulating substrate or the like can be given.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier
  • a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor
  • the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via; Providing a plating resist on the electroless plating layer; Exposing the plating resist, and then removing the plating resist in
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching; Providing a plating resist on the electroless plating layer; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist; Removing the electroless plating layer and the
  • the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier, Forming a circuit by electrolytic plating after providing the plating resist; Removing the plating resist; Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching; including.
  • the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist; Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like; including.
  • the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
  • a step of preparing the copper foil with carrier and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Applying catalyst nuclei to the region containing the through-holes and / or blind vias; Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier, Exposing the etching resist to form a circuit pattern; Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit pattern; Removing the ultrathin copper layer and the catalyst nucleus by a method such as etch
  • the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
  • a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Providing an electroplating layer on the surface of the electroless plating layer; A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer; Exposing the etching resist to form a circuit pattern; Removing the ultrathin copper layer and the electroless plating
  • a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Forming a mask on the surface of the electroless plating layer; Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed; A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer; Exposing the etching resist to form
  • ⁇ Through holes and / or blind vias and subsequent desmear steps may not be performed.
  • the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing.
  • the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example.
  • the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed.
  • the following method for producing a printed wiring board can be similarly performed using an attached copper foil.
  • a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • FIG. 1A a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
  • the resist is removed to form circuit plating having a predetermined shape.
  • an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, and then another carrier is attached.
  • a copper foil (second layer) is bonded from the ultrathin copper layer side.
  • the carrier is peeled off from the second-layer copper foil with carrier.
  • the other carrier-attached copper foil may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil.
  • one or more circuits may be formed on the second-layer circuit shown in FIG. 3H, and these circuits may be formed using a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
  • the copper foil with a carrier according to the present invention is preferably controlled so that the color difference on the surface of the ultrathin copper layer satisfies the following (1).
  • the “color difference on the surface of the ultrathin copper layer” means the color difference on the surface of the ultrathin copper layer, or the color difference on the surface of the surface treatment layer when various surface treatments such as roughening treatment are applied. . That is, in the copper foil with a carrier according to the present invention, the color difference of the surface of the ultrathin copper layer, the roughening treatment layer, the heat resistance layer, the rust prevention layer, the chromate treatment layer or the silane coupling layer satisfies the following (1). It is preferably controlled.
  • the color difference ⁇ E * ab based on JIS Z8730 on the surface of the ultrathin copper layer, the roughened layer, the heat-resistant layer, the rust-proof layer, the chromate-treated layer or the silane coupling-treated layer is 45 or more.
  • the color differences ⁇ L, ⁇ a, and ⁇ b are respectively measured with a color difference meter, and are shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. It is a comprehensive index and is expressed as ⁇ L: black and white, ⁇ a: reddish green, ⁇ b: yellow blue.
  • ⁇ E * ab is expressed by the following formula using these color differences.
  • the above-described color difference can be adjusted by increasing the current density when forming the ultrathin copper layer, decreasing the copper concentration in the plating solution, and increasing the linear flow rate of the plating solution.
  • the above-mentioned color difference can also be adjusted by performing a roughening process on the surface of an ultra-thin copper layer and providing a roughening process layer.
  • the current density is higher than that of the prior art (for example, 40 to 60 A) using an electrolytic solution containing copper and one or more elements selected from the group consisting of nickel, cobalt, tungsten, and molybdenum. / Dm2), and can be adjusted by shortening the processing time (for example, 0.1 to 1.3 seconds).
  • Ni alloy plating (for example, Ni—W alloy plating, Ni—Co—P alloy plating, Ni—Zn alloy plating) is applied to the surface of the treatment layer or the silane coupling treatment layer at a lower current density (0.1 to 1.. 3A / dm 2 ), and the processing time can be set long (20 to 40 seconds).
  • the color difference ⁇ E * ab based on JIS Z8730 on the ultrathin copper layer surface is 45 or more, for example, when forming a circuit on the ultrathin copper layer surface of the copper foil with carrier, the contrast between the ultrathin copper layer and the circuit As a result, visibility is improved and circuit alignment can be performed with high accuracy.
  • the color difference ⁇ E * ab based on JIS Z8730 on the surface of the ultrathin copper layer is preferably 50 or more, more preferably 55 or more, and even more preferably 60 or more.
  • the contrast with the circuit plating becomes clear. , Visibility becomes good. Accordingly, in the manufacturing process of the printed wiring board as described above, for example, as shown in FIG. 1-C, the circuit plating can be accurately formed at a predetermined position. Further, according to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, for example, removal of the ultrathin copper layer by flash etching as shown in FIG. At this time, the circuit plating is protected by the resin layer and the shape thereof is maintained, thereby facilitating the formation of a fine circuit.
  • the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 4-J and 4-K, when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
  • a known resin or prepreg can be used as the embedding resin (resin).
  • a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used.
  • the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
  • the carrier-attached copper foil used in the first layer may have a substrate or a resin layer on the surface of the carrier-attached copper foil.
  • substrate or resin layer since the copper foil with a carrier used for the first layer is supported and it becomes difficult to wrinkle, there exists an advantage that productivity improves.
  • the substrate or the resin layer is not particularly limited as long as it has an effect of supporting the carrier-attached copper foil used in the first layer, and any substrate or resin layer can be used.
  • the carrier, prepreg, resin layer or known carrier, prepreg, resin layer, metal plate, metal foil, inorganic compound plate, inorganic compound foil, organic compound plate described herein as the substrate or resin layer, Organic compound foils can be used.
  • the copper foil with a carrier of the present invention has a maximum nickel concentration when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them in this order from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer. Is 50 to 95% by mass, and molybdenum or cobalt is present at a maximum of 1 to 50% by mass on the ultrathin copper layer side from nickel.
  • the copper foil with a carrier of the present invention is obtained by performing elemental analysis on the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, carrier copper / nickel layer / molybdenum or cobalt or molybdenum-cobalt alloy layer / ultra thin copper layer. It has a structure.
  • the adhesive force is increased due to mutual diffusion and it is difficult to peel off.
  • molybdenum or cobalt and copper are difficult to dissolve and mutual diffusion is difficult. Since it does not easily occur, the adhesive force is weak at the interface between the molybdenum or cobalt or molybdenum-cobalt alloy layer and copper.
  • the intermediate layer is also peeled off at the time of peeling of the ultrathin copper layer, that is, peeling is performed between the carrier and the intermediate layer. Since it will occur, it is not preferable. This situation occurs not only when a molybdenum or cobalt or molybdenum-cobalt alloy layer is provided at the interface with the carrier, but also when a molybdenum or cobalt or molybdenum-cobalt alloy layer is provided at the interface with the ultrathin copper layer. This can occur if the amount of molybdenum or cobalt is too high.
  • the copper foil with a carrier of the present invention has a copper foil carrier / intermediate layer / layer when an insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. ⁇ 2 hours.
  • the maximum value of the nickel concentration is 50 to 95% by mass and the ultrathin copper layer than nickel On the side, a maximum of 1 to 50% by weight of molybdenum or cobalt may be present.
  • the element analysis of the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer shows that the copper foil carrier / nickel layer / molybdenum or cobalt or molybdenum-cobalt alloy layer / electrode It has a thin copper layer structure.
  • the presence of molybdenum or cobalt or a molybdenum-cobalt alloy layer at the interface between the nickel layer and the ultrathin copper layer suppresses element diffusion between the nickel layer and the ultrathin copper layer during thermocompression bonding of the insulated substrate, and A rapid increase in peel strength due to pressure bonding can be prevented, and a stable peel strength can be maintained.
  • the copper foil with a carrier of the present invention has a copper foil carrier / intermediate layer / layer when an insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. ⁇ 2 hours.
  • the minimum copper concentration at the location where nickel, molybdenum and / or cobalt, and copper coexist is 10 to 10 nm. It may be 65% by mass.
  • the concentration of cobalt in the molybdenum-cobalt alloy in the intermediate layer may be 20 to 80% by mass. According to such a configuration, the presence of the cobalt of the intermediate layer in a certain amount or more has the effect of preventing excessive copper diffusion into the intermediate layer and preventing an extreme increase in peel strength. is there.
  • Nickel sulfate 250-500 g / L Nickel chloride: 35 to 45 g / L Nickel acetate: 10-20g / L Trisodium citrate: 15-30 g / L Brightener: Saccharin, butynediol, etc.
  • Sodium dodecyl sulfate 30 to 100 ppm pH: 4-6 Bath temperature: 50-70 ° C Current density: 3 to 15 A / dm 2
  • Cobalt plating Cobalt sulfate: 200 to 300 g / L Boric acid: 20-50 g / L pH: 2-5 Liquid temperature: 10-70 ° C Current density: 0.5 to 20 A / dm 2 ⁇ Molybdenum-cobalt alloy plating Cobalt sulfate: 10 to 200 g / L Sodium molybdate: 5 to 200 g / L Sodium citrate: 2 to 240 g / L pH: 2-5 Liquid temperature: 10-70 ° C Current density: 0.5 to 10 A / dm 2
  • the molybdenum layer cannot be formed by electroplating, it was produced with a roll-to-roll type sputtering apparatus. In that case, the thin oxide film on the copper foil surface may be removed by an ion gun (LIS), and then the coating layer may be formed. The thicknesses of the Ni layer and the Mo layer were changed by adjusting the sputtering power.
  • LIS ion gun
  • an ultrathin copper layer having a thickness of 2 to 5 ⁇ m was formed on the intermediate layer by electroplating under the following conditions to produce a copper foil with a carrier. . ⁇ Ultra-thin copper layer Copper concentration: 30-120 g / L H 2 SO 4 concentration: 20 to 120 g / L Electrolyte temperature: 20-80 ° C Current density: 10 to 100 A / dm 2
  • the amount of nickel deposited was measured by ICP emission analysis using an ICP emission spectrophotometer (model: SPS3100) manufactured by SII after dissolving the sample with nitric acid having a concentration of 20% by mass. Dissolve in a mixed solution of hydrochloric acid (nitric acid concentration: 20% by mass, hydrochloric acid concentration: 12% by mass) and perform quantitative analysis by atomic absorption spectrometry using an atomic absorption spectrophotometer (model: AA240FS) manufactured by VARIAN. was measured.
  • STEM evaluation is also applied to the case after bonding the ultrathin copper layer side of the copper foil with a carrier on the insulating substrate and performing pressure bonding in the atmosphere at 20 kgf / cm 2 and 220 ° C. ⁇ 2 hours. went.
  • the evaluation by the above-mentioned STEM was performed in a long side direction of each sample sheet at a total of three locations, one in each region within 50 mm from both ends and one in a 50 mm ⁇ 50 mm region at the center. The three measurement locations are shown in FIG.
  • the values obtained by arithmetically averaging the maximum value of nickel concentration, the maximum value of molybdenum concentration, and the maximum value of cobalt concentration at the three locations were set as the maximum value of Kel concentration, the maximum value of molybdenum concentration, and the maximum value of cobalt concentration, respectively.
  • the above-mentioned region within 50 mm from both ends and the 50 mm ⁇ 50 mm region at the center may overlap.
  • ⁇ Pinhole> The number of pinholes was visually measured using a consumer photographic backlight as a light source. The number of pinholes is determined by bonding the ultrathin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. ⁇ 2 hours in the atmosphere. It peeled and measured by making a backlight permeate
  • the adhesion amount of nickel is 1000 to 40000 ⁇ g / dm 2.
  • the adhesion amount of molybdenum is 50 to 1000 ⁇ g / dm 2 .
  • the maximum nickel concentration when a 50 to 1000 nm long STEM line analysis was performed in the range including all of them in this order from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer Is 50 to 95% by mass, and molybdenum or cobalt is present at the maximum value of 1 to 50% by mass on the ultrathin copper layer side from nickel. Showed good peel strength.
  • Comparative Example 8 the concentration of molybdenum and cobalt measured by the STEM line analysis of the cross section was low, so that peeling became impossible after pressing.
  • FIG. 5 the density
  • FIG. 6 shows a concentration profile of a cross section after the substrate is crimped according to Comparative Example 3. 5 and 6, the left side of the graph is the copper foil carrier side, and the right side is the ultrathin copper layer side.

Abstract

A copper foil with a carrier is provided. Before a lamination step wherein the copper foil with a carrier is laminated onto a base material, the adhesion between the carrier and the ultra-thin copper layer in the copper foil with a carrier is high, while after the lamination step, the adhesiveness between the carrier and the ultra-thin copper layer therein lowers, so that the carrier and the ultra-thin copper layer can be easily separated at an interface therebetween. Further, the occurrence of pinholes on the copper-layer-side surface is well suppressed. In the copper foil with a carrier, an intermediate layer is formed by laminating both nickel and molybdenum or cobalt or a molybdenum-cobalt alloy in this order from the copper foil carrier side. In the intermediate layer, the deposit of nickel is 1000 to 40000μg/dm2. In a case where the intermediate layer contains molybdenum, the deposit of molybdenum is 50 to 1000μg/dm2, while in a case where the intermediate layer contains cobalt, the deposit of cobalt is 50 to 1000μg/dm2. When STEM line analysis with a length of 50 to 1000 nm is conducted in a cross section composed of the copper foil carrier, the intermediate layer and the ultra-thin copper layer in an area which includes all of these three constituents in this order, the maximum nickel concentration is 50 to 95mass%, while molybdenum or cobalt is present on the ultra-thin-copper-layer side of the nickel layer, the maximum amount of molybdenum or cobalt being 1 to 50mass%.

Description

キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板及びプリント回路板Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
 本発明は、キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板及びプリント回路板に関する。より詳細には、本発明はファインパターン用途のプリント配線板の材料として使用されるキャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板及びプリント回路板に関する。 The present invention relates to a copper foil with a carrier, a method for producing a copper foil with a carrier, a printed wiring board, and a printed circuit board. More specifically, the present invention relates to a copper foil with a carrier used as a material for a printed wiring board for fine patterns, a method for producing the copper foil with a carrier, a printed wiring board, and a printed circuit board.
 プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い、搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められており、特にプリント配線板上にICチップを載せる場合、L/S=20/20以下のファインピッチ化が求められている。 Printed wiring boards have made great progress over the last half century, and today they are used in almost all electronic devices. In recent years, with the increasing demand for miniaturization and high performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and printed circuit boards. There is a demand for high frequency response, and in particular, when an IC chip is mounted on a printed wiring board, a fine pitch of L / S = 20/20 or less is required.
 プリント配線板は、まず、銅箔とガラスエポキシ基板、BT樹脂、ポリイミドフィルムなどを主とする絶縁基板を貼り合わせた銅張積層体として製造される。貼り合わせは、絶縁基板と銅箔を重ね合わせて加熱加圧させて形成する方法(ラミネート法)、又は、絶縁基板材料の前駆体であるワニスを銅箔の被覆層を有する面に塗布し、加熱・硬化する方法(キャスティング法)が用いられる。 First, a printed wiring board is manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, a BT resin, a polyimide film or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (lamination method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.
 ファインピッチ化に伴って銅張積層体に使用される銅箔の厚みも9μm、さらには5μm以下になるなど、箔厚が薄くなりつつある。ところが、箔厚が9μm以下になると前述のラミネート法やキャスティング法で銅張積層体を形成するときのハンドリング性が極めて悪化する。そこで、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を形成したキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着した後に、キャリアを剥離層を介して剥離するというのがキャリア付銅箔の一般的な使用方法である。 As the fine pitch is increased, the thickness of the copper foil used for the copper clad laminate is also 9 μm, further 5 μm or less. However, when the foil thickness is 9 μm or less, the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer. A general method of using a copper foil with a carrier is to peel the carrier through a release layer after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded.
 キャリア付銅箔に関する技術として、例えば特許文献1には、キャリアの表面に、拡散防止層、剥離層、電気銅めっきをこの順番に形成し、剥離層としてCr又はCr水和酸化物層を、拡散防止層としてNi、Co、Fe、Cr、Mo、Ta、Cu、Al、Pの単体又は合金を用いることで加熱プレス後の良好な剥離性を保持する方法が開示されている。 As a technique related to a copper foil with a carrier, for example, in Patent Document 1, a diffusion prevention layer, a release layer, and an electrolytic copper plating are formed in this order on the surface of a carrier, and a Cr or Cr hydrated oxide layer is formed as a release layer. A method for maintaining good peelability after hot pressing by using a simple substance or an alloy of Ni, Co, Fe, Cr, Mo, Ta, Cu, Al, P as a diffusion preventing layer is disclosed.
 また、剥離層としてCr、Ni、Co、Fe、Mo、Ti、W、P又はこれらの合金又はこれらの水和物で形成することが知られている。さらに、加熱プレス等の高温使用環境における剥離性の安定化を図る上で、剥離層の下地にNi、Fe又はこれらの合金層をもうけると効果的であることが特許文献2および3に記載されている。 Further, it is known that the release layer is formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof, or hydrates thereof. Furthermore, Patent Documents 2 and 3 describe that it is effective to provide Ni, Fe, or an alloy layer thereof as a base for the release layer in order to stabilize the peelability in a high temperature use environment such as a hot press. ing.
特開2006-022406号公報JP 2006-022406 A 特開2010-006071号公報JP 2010-006071 A 特開2007-007937号公報JP 2007-007937 A
 キャリア付銅箔においては、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離することは避けなければならず、一方、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離できる必要がある。また、キャリア付銅箔においては、極薄銅層側の表面にピンホールが存在するのはプリント配線板の性能不良に繋がり好ましくない。 In copper foil with a carrier, it is necessary to avoid the peeling of the ultrathin copper layer from the carrier before the lamination process on the insulating substrate, while the ultrathin copper layer from the carrier is removed after the lamination process to the insulating substrate. Must be peelable. In addition, in the copper foil with a carrier, the presence of pinholes on the surface of the ultrathin copper layer is not preferable because it leads to poor performance of the printed wiring board.
 これらの点に関して、従来技術では十分な検討がなされておらず、未だ改善の余地が残されている。そこで、本発明は、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後には剥離可能なキャリア付銅箔を提供することを課題とする。本発明は更に、極薄銅層側表面におけるピンホールの発生が抑制されたキャリア付銅箔を提供することも課題とする。 These points have not been fully studied in the prior art, and there is still room for improvement. Therefore, an object of the present invention is to provide a copper foil with a carrier that can be peeled off after a lamination process on an insulating substrate, while the ultrathin copper layer does not peel off from the carrier before the lamination process on the insulating substrate. . Another object of the present invention is to provide a copper foil with a carrier in which the generation of pinholes on the surface of the ultrathin copper layer is suppressed.
 上記目的を達成するため、本発明者は鋭意研究を重ねたところ、キャリアとして銅箔を使用し、中間層を極薄銅層とキャリアとの間に形成し、この中間層を銅箔キャリア上から順にニッケルと、モリブデンまたはコバルトまたはモリブデン-コバルト合金で構成すること、ニッケル、モリブデン、コバルトの付着量を制御すること、及び、中間層付近のニッケル、モリブデン、コバルト濃度を制御することが極めて効果的であることを見出した。 In order to achieve the above object, the present inventor conducted extensive research and used copper foil as a carrier, formed an intermediate layer between the ultrathin copper layer and the carrier, and formed this intermediate layer on the copper foil carrier. It is extremely effective to be composed of nickel and molybdenum or cobalt or molybdenum-cobalt alloy in order, control the amount of nickel, molybdenum and cobalt deposited, and control the concentration of nickel, molybdenum and cobalt near the intermediate layer. I found out that
 本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリア、中間層、極薄銅層をこの順に有するキャリア付銅箔であって、前記中間層は、前記銅箔キャリア側から、ニッケルと、モリブデンまたはコバルトまたはモリブデン-コバルト合金とがこの順で積層されて構成されており、前記中間層において、ニッケルの付着量が1000~40000μg/dm2、モリブデンを含む場合はモリブデンの付着量が50~1000μg/dm2、コバルトを含む場合はコバルトの付着量が50~1000μg/dm2であり、前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50~95質量%であり、且つニッケルより極薄銅層側に、モリブデンまたはコバルトが最大値で1~50質量%存在するキャリア付銅箔である。 The present invention has been completed on the basis of the above knowledge, and in one aspect, a copper foil with a carrier having a copper foil carrier, an intermediate layer, and an ultrathin copper layer in this order, wherein the intermediate layer is the copper foil carrier. When nickel and molybdenum or cobalt or molybdenum-cobalt alloy are laminated in this order from the side, the intermediate layer has an adhesion amount of nickel of 1000 to 40000 μg / dm 2 , and molybdenum is included when molybdenum is included. the adhesion amount 50 ~ 1000μg / dm 2, when comprising cobalt is deposited amount 50 ~ 1000 [mu] g / dm 2 of cobalt, from the cross-section of the copper foil carrier / intermediate layer / ultra-thin copper layer, these in this order When a 50 to 1000 nm long STEM line analysis is performed in a range including all of the above, the maximum nickel concentration is 50 to 95% by mass, and Ultrathin copper layer side of Kell, a copper foil with carrier in which molybdenum or cobalt is present from 1 to 50% by weight at the maximum value.
 本発明に係るキャリア付銅箔の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50~95質量%であり、且つニッケルより極薄銅層側に、モリブデンまたはコバルトが最大値で1~50質量%存在する。 In one embodiment of the copper foil with a carrier according to the present invention, when the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere, When a 50 to 1000 nm long STEM line analysis is performed in a range including all of the copper foil carrier / intermediate layer / ultra thin copper layer in this order, the maximum nickel concentration is 50 to 95% by mass. In addition, molybdenum or cobalt is present at a maximum value of 1 to 50% by mass on the ultrathin copper layer side from nickel.
 本発明に係るキャリア付銅箔の別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケルと、モリブデン及び/またはコバルトと、銅とが共存する箇所の銅濃度最小値が10~65質量%となる。 In another embodiment of the copper foil with a carrier according to the present invention, the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours. In addition, from the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, nickel, molybdenum and / or cobalt, and copper coexist when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them. The minimum value of the copper concentration at the location to be applied is 10 to 65% by mass.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記中間層のモリブデン-コバルト合金のコバルトの濃度が20~80質量%である。 In yet another embodiment of the copper foil with a carrier according to the present invention, the concentration of cobalt in the molybdenum-cobalt alloy in the intermediate layer is 20 to 80% by mass.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている。 In yet another embodiment of the copper foil with a carrier according to the present invention, the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層表面に粗化処理層を有する。 In yet another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has a roughening treatment layer.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層が、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。 In yet another embodiment of the copper foil with a carrier according to the present invention, the roughening layer is any selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc. It is the layer which consists of an alloy containing these 1 type or any 1 type or more.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In yet another embodiment of the copper foil with a carrier according to the present invention, the surface of the roughening treatment layer was selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer. It has one or more layers.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In still another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer is selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer. It has one or more layers.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層上に樹脂層を備える。 In yet another embodiment of the copper foil with a carrier according to the present invention, a resin layer is provided on the ultrathin copper layer.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層上に樹脂層を備える。 In yet another embodiment of the copper foil with a carrier according to the present invention, a resin layer is provided on the roughening treatment layer.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える。 In still another embodiment of the carrier-attached copper foil according to the present invention, on one or more layers selected from the group consisting of the heat-resistant layer, the rust-preventing layer, the chromate treatment layer, and the silane coupling treatment layer. A resin layer is provided.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記樹脂層が誘電体を含む。 In yet another embodiment of the copper foil with a carrier according to the present invention, the resin layer includes a dielectric.
 本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。 In yet another aspect, the present invention is a printed wiring board manufactured using the copper foil with a carrier of the present invention.
 本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント回路板である。 In still another aspect, the present invention is a printed circuit board manufactured using the copper foil with a carrier of the present invention.
 本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造した銅張積層板である。 In yet another aspect, the present invention is a copper-clad laminate manufactured using the carrier-attached copper foil of the present invention.
 本発明は更に別の一側面において、銅箔キャリア上に、乾式めっき又は湿式めっきにより、ニッケル層を形成し、前記ニッケル層の上にモリブデン層又はコバルト層又はモリブデン-コバルト合金層を形成することで中間層を形成する工程と、前記中間層上に電気めっきにより極薄銅層を形成する工程とを含む本発明のキャリア付銅箔の製造方法である。 In yet another aspect of the present invention, a nickel layer is formed on a copper foil carrier by dry plating or wet plating, and a molybdenum layer, a cobalt layer, or a molybdenum-cobalt alloy layer is formed on the nickel layer. The method for producing a copper foil with a carrier according to the present invention comprising a step of forming an intermediate layer and a step of forming an ultrathin copper layer on the intermediate layer by electroplating.
 本発明に係るキャリア付銅箔の製造方法の一実施形態においては、前記極薄銅層上に粗化処理層を形成する工程をさらに含む。 In an embodiment of the method for producing a copper foil with a carrier according to the present invention, the method further includes a step of forming a roughened layer on the ultrathin copper layer.
 本発明は更に別の一側面において、本発明のキャリア付銅箔と絶縁基板とを準備する工程、
 前記キャリア付銅箔と絶縁基板とを積層する工程、
 前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法である。
In another aspect of the present invention, a step of preparing the carrier-attached copper foil of the present invention and an insulating substrate,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the carrier-attached copper foil and the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the carrier-attached copper foil,
Thereafter, the printed wiring board manufacturing method includes a step of forming a circuit by any one of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
 本発明は更に別の一側面において、本発明のキャリア付銅箔の前記極薄銅層側表面に回路を形成する工程、
 前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面に樹脂層を形成する工程、
 前記樹脂層上に回路を形成する工程、
 前記樹脂層上に回路を形成した後に、前記キャリアを剥離させる工程、及び、
 前記キャリアを剥離させた後に、前記極薄銅層を除去することで、前記極薄銅層側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
を含むプリント配線板の製造方法である。
In yet another aspect of the present invention, a step of forming a circuit on the ultrathin copper layer side surface of the copper foil with a carrier of the present invention,
Forming a resin layer on the ultrathin copper layer side surface of the carrier-attached copper foil so that the circuit is buried;
Forming a circuit on the resin layer;
Forming the circuit on the resin layer, and then peeling the carrier; and
After the carrier is peeled off, the printed wiring board includes a step of exposing the circuit embedded in the resin layer formed on the surface of the ultrathin copper layer by removing the ultrathin copper layer Is the method.
 本発明のプリント配線板の製造方法は一実施形態において、前記樹脂層上に回路を形成する工程が、前記樹脂層上に別のキャリア付銅箔を極薄銅層側から貼り合わせ、前記樹脂層に貼り合わせたキャリア付銅箔を用いて前記回路を形成する工程である。 In one embodiment of the method for producing a printed wiring board according to the present invention, the step of forming a circuit on the resin layer is performed by laminating another copper foil with a carrier on the resin layer from the ultrathin copper layer side. In this step, the circuit is formed using a copper foil with a carrier bonded to a layer.
 本発明のプリント配線板の製造方法は別の一実施形態において、前記樹脂層上に貼り合わせる別のキャリア付銅箔が、本発明のキャリア付銅箔である。 In another embodiment of the method for producing a printed wiring board of the present invention, another copper foil with a carrier to be bonded onto the resin layer is the copper foil with a carrier of the present invention.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記樹脂層上に回路を形成する工程が、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行われる。 In still another embodiment of the method for producing a printed wiring board of the present invention, the step of forming a circuit on the resin layer is any one of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method. Done by the method.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記表面に回路を形成するキャリア付銅箔が、当該キャリア付銅箔のキャリアの表面に基板または樹脂層を有する。 In yet another embodiment of the method for producing a printed wiring board of the present invention, the copper foil with carrier for forming a circuit on the surface has a substrate or a resin layer on the surface of the carrier of the copper foil with carrier.
 本発明に係るキャリア付銅箔は、絶縁基板への積層工程前にはキャリアと極薄銅層との密着力が高い一方で、絶縁基板への積層工程後にはキャリアと極薄銅層との密着性が低下し、キャリア/極薄銅層界面で容易に剥離でき、且つ、極薄銅層側表面におけるピンホールの発生を良好に抑制することができる。 The copper foil with a carrier according to the present invention has high adhesion between the carrier and the ultrathin copper layer before the lamination process to the insulating substrate, while the carrier and the ultrathin copper layer after the lamination process to the insulation substrate. Adhesiveness is lowered, it can be easily peeled off at the carrier / ultra-thin copper layer interface, and the occurrence of pinholes on the surface of the ultra-thin copper layer can be well suppressed.
A~Cは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、回路めっき・レジスト除去までの工程における配線板断面の模式図である。FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. D~Fは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、樹脂及び2層目キャリア付銅箔積層からレーザー穴あけまでの工程における配線板断面の模式図である。D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention. It is. G~Iは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、ビアフィル形成から1層目のキャリア剥離までの工程における配線板断面の模式図である。GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention. J~Kは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、フラッシュエッチングからバンプ・銅ピラー形成までの工程における配線板断面の模式図である。J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. 実施例5に係る基板圧着後の断面の濃度プロファイルである。6 is a cross-sectional concentration profile after pressure bonding of a substrate according to Example 5. 比較例3に係る基板圧着後の断面の濃度プロファイルである。It is a density | concentration profile of the cross section after the board | substrate crimping | compression-bonding which concerns on the comparative example 3. FIG. 実施例に係るサンプルシートの測定箇所を示す模式図である。It is a schematic diagram which shows the measurement location of the sample sheet which concerns on an Example.
<1.キャリア>
 本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.
 本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12~300μmであり、より典型的には12~150μmであり、より典型的には12~100μmであり、より典型的には12~70μmであり、より典型的には18~35μmである。 The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the carrier is typically 12-300 μm, more typically 12-150 μm, more typically 12-100 μm, more typically 12-70 μm, and more Typically 18 to 35 μm.
<2.中間層>
 銅箔キャリア上には中間層を設ける。銅箔キャリアと中間層との間に他の層を設けてもよい。中間層は、銅箔キャリア側から、ニッケルと、モリブデンまたはコバルトまたはモリブデン-コバルト合金とがこの順で積層されて構成されている。ニッケルと銅との接着力は、モリブデンまたはコバルトと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とモリブデンまたはコバルトとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。また、中間層は銅箔キャリアの両面に設けてもよい。
 キャリアとして電解銅箔を使用する場合には、ピンホールを減少させる観点からシャイニー面に中間層を設けることが好ましい。
<2. Intermediate layer>
An intermediate layer is provided on the copper foil carrier. Another layer may be provided between the copper foil carrier and the intermediate layer. The intermediate layer is formed by laminating nickel and molybdenum or cobalt or a molybdenum-cobalt alloy in this order from the copper foil carrier side. Since the adhesive force between nickel and copper is higher than the adhesive force between molybdenum or cobalt and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and molybdenum or cobalt. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer. Moreover, you may provide an intermediate | middle layer in both surfaces of a copper foil carrier.
When using electrolytic copper foil as a carrier, it is preferable to provide an intermediate layer on the shiny surface from the viewpoint of reducing pinholes.
 中間層のうちモリブデンまたはコバルトまたはモリブデン-コバルト合金は極薄銅層の界面に薄く存在することが、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能であるという特性を得る上で好ましい。ニッケル層を設けずにモリブデンまたはコバルトまたはモリブデン-コバルト合金をキャリアと極薄銅層の境界に存在させた場合は、剥離性はほとんど向上しないし、モリブデンまたはコバルトまたはモリブデン-コバルト合金がなくニッケル層と極薄銅層を直接積層した場合はニッケル層におけるニッケル量に応じて剥離強度が強すぎたり弱すぎたりして適切な剥離強度は得られない。 Molybdenum or cobalt or molybdenum-cobalt alloy in the intermediate layer is thinly present at the interface of the ultrathin copper layer. It is preferable for obtaining the property that the ultrathin copper layer can be peeled off from the carrier after the laminating step. When molybdenum or cobalt or molybdenum-cobalt alloy is present at the boundary between the carrier and the ultrathin copper layer without providing a nickel layer, the peelability is hardly improved, and there is no molybdenum or cobalt or molybdenum-cobalt alloy and the nickel layer. When the ultrathin copper layer is directly laminated, the peel strength is too strong or too weak depending on the amount of nickel in the nickel layer, and an appropriate peel strength cannot be obtained.
 また、モリブデンまたはコバルトまたはモリブデン-コバルト合金がキャリアとニッケル層の境界に存在すると、極薄銅層の剥離時に中間層も付随して剥離されてしまう、すなわちキャリアと中間層の間で剥離が生じてしまうので好ましくない。このような状況は、キャリアとの界面にモリブデンまたはコバルトまたはモリブデン-コバルト合金を設けた場合のみならず、極薄銅層との界面にモリブデンまたはコバルトまたはモリブデン-コバルト合金を設けたとしてもモリブデン量またはコバルト量が多すぎると生じ得る。これは、銅とニッケルとは固溶しやすいので、これらが接触していると相互拡散によって接着力が高くなり剥離しにくくなる一方で、モリブデンまたはコバルトと銅とは固溶しにくく、相互拡散が生じにくいので、モリブデンまたはコバルトまたはモリブデン-コバルト合金と銅との界面では接着力が弱く、剥離しやすいことが原因と考えられる。また、中間層のニッケル量が不足している場合、キャリアと極薄銅層の間には微量のモリブデンまたはコバルトしか存在しないので両者が密着して剥がれにくくなる。 In addition, if molybdenum or cobalt or molybdenum-cobalt alloy is present at the boundary between the carrier and the nickel layer, the intermediate layer is also peeled along with the peeling of the ultrathin copper layer, that is, peeling occurs between the carrier and the intermediate layer. This is not preferable. This situation occurs not only when molybdenum, cobalt, or molybdenum-cobalt alloy is provided at the interface with the carrier, but also when molybdenum, cobalt, or molybdenum-cobalt alloy is provided at the interface with the ultrathin copper layer. Or it may occur when the amount of cobalt is too large. This is because copper and nickel are likely to be in solid solution, so if they are in contact with each other, the adhesive force increases due to mutual diffusion and it is difficult to peel off, while molybdenum or cobalt and copper are less likely to dissolve and mutual diffusion. This is considered to be because the adhesive strength is weak at the interface between molybdenum or cobalt or molybdenum-cobalt alloy and copper, and peeling easily occurs. Further, when the amount of nickel in the intermediate layer is insufficient, there is only a small amount of molybdenum or cobalt between the carrier and the ultrathin copper layer, so that they are in close contact and difficult to peel off.
 中間層のニッケル及びコバルトまたはモリブデン-コバルト合金は、例えば電気めっき、無電解めっき及び浸漬めっきのような湿式めっき、或いはスパッタリング、CVD及びPDVのような乾式めっきにより形成することができる。また、モリブデンはCVD及びPDVのような乾式めっきのみにより形成することができる。コストの観点から電気めっきが好ましい。 The nickel and cobalt or molybdenum-cobalt alloy of the intermediate layer can be formed by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV. Molybdenum can be formed only by dry plating such as CVD and PDV. Electroplating is preferable from the viewpoint of cost.
 中間層において、ニッケルの付着量が1000~40000μg/dm2、モリブデンを含む場合はモリブデンの付着量が50~1000μg/dm2、コバルトを含む場合はコバルトの付着量が50~1000μg/dm2である。ニッケル量が増えるにつれてピンホールの量が多くなる傾向にあるが、この範囲であればピンホールの数も抑制される。極薄銅層をムラなく均一に剥離する観点、及び、ピンホールを抑制する観点からは、ニッケル付着量は5000~20000μg/dm2とすることが好ましく、7500~15000μg/dm2とすることがより好ましい。モリブデンを含む場合は、モリブデン付着量は80~600μg/dm2とすることが好ましく、100~400μg/dm2とすることがより好ましい。コバルトを含む場合は、コバルト付着量は80~600μg/dm2とすることが好ましく、100~400μg/dm2とすることがより好ましい。なお、中間層においてモリブデンとコバルトとが含まれる層を設ける場合には、モリブデンとコバルトの合計の付着量は50~1200μg/dm2であることが好ましい。また、モリブデンとコバルトの合計の付着量は100~1000μg/dm2とすることが好ましく、150~700μg/dm2とすることがより好ましい。 In the intermediate layer, the adhesion amount of nickel 1000 ~ 40000μg / dm 2, coating weight 50 ~ 1000μg / dm 2 of molybdenum case containing molybdenum, at a coverage of cobalt 50 ~ 1000μg / dm 2 when containing cobalt is there. Although the amount of pinholes tends to increase as the amount of nickel increases, the number of pinholes is also suppressed within this range. From the viewpoint of evenly peeling the ultrathin copper layer uniformly and from the viewpoint of suppressing pinholes, the nickel adhesion amount is preferably 5000 to 20000 μg / dm 2, and 7500 to 15000 μg / dm 2. More preferred. When molybdenum is included, the molybdenum adhesion amount is preferably 80 to 600 μg / dm 2, and more preferably 100 to 400 μg / dm 2 . When cobalt is included, the amount of cobalt adhesion is preferably 80 to 600 μg / dm 2, and more preferably 100 to 400 μg / dm 2 . In the case where a layer containing molybdenum and cobalt is provided in the intermediate layer, the total adhesion amount of molybdenum and cobalt is preferably 50 to 1200 μg / dm 2 . The total adhesion amount of molybdenum and cobalt is preferably 100 to 1000 μg / dm 2, and more preferably 150 to 700 μg / dm 2 .
<3.ストライクめっき>
 中間層の上には極薄銅層を設ける。その前に極薄銅層のピンホールを低減させるために中間層のクロム層上に銅-リン合金によるストライクめっきを行ってもよい。ストライクめっきの処理液にはピロリン酸銅めっき液などを用いることができる。このように、銅-リン合金によるストライクめっきを行ったキャリア付銅箔は、中間層表面と極薄銅層表面の両方にリンが存在することとなる。このため、中間層/極薄銅層間で剥離させたとき、中間層及び極薄銅層の表面からリンが検出される。また、ストライクめっきで形成されためっき層は薄くなるため、FIBやTEM等で断面観察をし、中間層上の銅リンめっき層の厚みが0.1μm以下である場合にはストライクめっきであると判定することができる。
<3. Strike plating>
An ultrathin copper layer is provided on the intermediate layer. Before that, strike plating with a copper-phosphorus alloy may be performed on the chromium layer of the intermediate layer in order to reduce pinholes in the ultrathin copper layer. A copper pyrophosphate plating solution or the like can be used as the strike plating treatment solution. Thus, the carrier-added copper foil subjected to strike plating with a copper-phosphorus alloy has phosphorus on both the intermediate layer surface and the ultrathin copper layer surface. For this reason, when it peels between an intermediate | middle layer / ultra thin copper layer, phosphorus is detected from the surface of an intermediate | middle layer and an ultra-thin copper layer. In addition, since the plating layer formed by strike plating becomes thin, cross-sectional observation is performed with FIB, TEM, etc., and when the thickness of the copper phosphorous plating layer on the intermediate layer is 0.1 μm or less, it is strike plating. Can be determined.
<4.極薄銅層>
 中間層の上には極薄銅層を設ける。中間層と極薄銅層との間には他の層を設けてもよい。好ましくは、極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5~12μmであり、より典型的には2~5μmである。なお、極薄銅層は銅箔キャリアの両面に設けてもよい。
<4. Ultra-thin copper layer>
An ultrathin copper layer is provided on the intermediate layer. Another layer may be provided between the intermediate layer and the ultrathin copper layer. Preferably, the ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, and copper cyanide, and is used in a general electrolytic copper foil. A copper sulfate bath is preferred because copper foil can be formed at a current density. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. Typically 0.5 to 12 μm, more typically 2 to 5 μm. In addition, you may provide an ultra-thin copper layer on both surfaces of a copper foil carrier.
<5.粗化処理及びその他の表面処理>
 極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、銅、ニッケル、コバルト、亜鉛の単体または合金等で耐熱層または防錆層を形成してもよく、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、銅、ニッケル、コバルト、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ例えば2層以上、3層以上などの複数の層で形成されてもよい。
<5. Roughening and other surface treatments>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or an alloy containing one or more of them. Also good. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of copper, nickel, cobalt, zinc alone or an alloy, and the surface may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed of copper, nickel, cobalt, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers such as 2 layers or more and 3 layers or more.
 耐熱層、防錆層としては公知の耐熱層、防錆層を用いることができる。例えば、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む層であってもよく、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素からなる金属層または合金層であってもよい。また、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む酸化物、窒化物、珪化物を含んでもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金を含む層であってもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金層であってもよい。前記ニッケル-亜鉛合金層は、不可避不純物を除き、ニッケルを50wt%~99wt%、亜鉛を50wt%~1wt%含有するものであってもよい。前記ニッケル-亜鉛合金層の亜鉛及びニッケルの合計付着量が5~1000mg/m2、好ましくは10~500mg/m2、好ましくは20~100mg/m2であってもよい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量と亜鉛の付着量との比(=ニッケルの付着量/亜鉛の付着量)が1.5~10であることが好ましい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。耐熱層および/または防錆層がニッケル-亜鉛合金を含む層である場合、スルーホールやビアホール等の内壁部がデスミア液と接触したときに銅箔と樹脂基板との界面がデスミア液に浸食されにくく、銅箔と樹脂基板との密着性が向上する。 As the heat-resistant layer and the rust-proof layer, known heat-resistant layers and rust-proof layers can be used. For example, the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum A layer containing one or more elements selected from nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements Further, it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like. The heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. An oxide, nitride, or silicide containing one or more elements selected from the above may be included. Further, the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy. Further, the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer. The nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities. The total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 . The ratio of the nickel adhesion amount and the zinc adhesion amount of the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer (= nickel adhesion amount / zinc adhesion amount) is 1.5 to 10. It is preferable. Further, the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably. When the heat-resistant layer and / or rust prevention layer is a layer containing a nickel-zinc alloy, the interface between the copper foil and the resin substrate is eroded by the desmear liquid when the inner wall of a through hole or via hole comes into contact with the desmear liquid. It is difficult to improve the adhesion between the copper foil and the resin substrate.
 例えば耐熱層および/または防錆層は、付着量が1mg/m2~100mg/m2、好ましくは5mg/m2~50mg/m2のニッケルまたはニッケル合金層と、付着量が1mg/m2~80mg/m2、好ましくは5mg/m2~40mg/m2のスズ層とを順次積層したものであってもよく、前記ニッケル合金層はニッケル-モリブデン、ニッケル-亜鉛、ニッケル-モリブデン-コバルトのいずれか一種により構成されてもよい。また、耐熱層および/または防錆層は、ニッケルまたはニッケル合金とスズとの合計付着量が2mg/m2~150mg/m2であることが好ましく、10mg/m2~70mg/m2であることがより好ましい。また、耐熱層および/または防錆層は、[ニッケルまたはニッケル合金中のニッケル付着量]/[スズ付着量]=0.25~10であることが好ましく、0.33~3であることがより好ましい。当該耐熱層および/または防錆層を用いるとキャリア付銅箔をプリント配線板に加工して以降の回路の引き剥がし強さ、当該引き剥がし強さの耐薬品性劣化率等が良好になる。 For example, the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2. A tin layer of ˜80 mg / m 2 , preferably 5 mg / m 2 ˜40 mg / m 2 may be sequentially laminated. The nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these. The heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable. In addition, the heat-resistant layer and / or the rust-preventing layer preferably has [amount of nickel deposited in nickel or nickel alloy] / [amount of tin deposited] = 0.25 to 10, preferably 0.33 to 3. More preferred. When the heat-resistant layer and / or rust-preventing layer is used, the carrier-clad copper foil is processed into a printed wiring board, and the subsequent circuit peeling strength, the chemical resistance deterioration rate of the peeling strength, and the like are improved.
 なお、シランカップリング処理に用いられるシランカップリング剤には公知のシランカップリング剤を用いてよく、例えばアミノ系シランカップリング剤又はエポキシ系シランカップリング剤、メルカプト系シランカップリング剤を用いてよい。また、シランカップリング剤にはビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ‐メタクリロキシプロピルトリメトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、4‐グリシジルブチルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N‐3‐(4‐(3‐アミノプロポキシ)プトキシ)プロピル‐3‐アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ‐メルカプトプロピルトリメトキシシラン等を用いてもよい。 In addition, you may use a well-known silane coupling agent for the silane coupling agent used for a silane coupling process, for example, using an amino-type silane coupling agent or an epoxy-type silane coupling agent, a mercapto-type silane coupling agent. Good. Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and γ-aminopropyl. Triethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, γ-mercaptopropyltrimethoxysilane or the like may be used.
 前記シランカップリング処理層は、エポキシ系シラン、アミノ系シラン、メタクリロキシ系シラン、メルカプト系シランなどのシランカップリング剤などを使用して形成してもよい。なお、このようなシランカップリング剤は、2種以上混合して使用してもよい。中でも、アミノ系シランカップリング剤又はエポキシ系シランカップリング剤を用いて形成したものであることが好ましい。 The silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like. In addition, you may use 2 or more types of such silane coupling agents in mixture. Especially, it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
 ここで言うアミノ系シランカップリング剤とは、N‐(2‐アミノエチル)‐3‐アミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、3‐アミノプロピルトリエトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、N‐(3‐アクリルオキシ‐2‐ヒドロキシプロピル)‐3‐アミノプロピルトリエトキシシラン、4‐アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリス(2‐エチルヘキソキシ)シラン、6‐(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3‐(1‐アミノプロポキシ)‐3,3‐ジメチル‐1‐プロペニルトリメトキシシラン、3‐アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3‐アミノプロピルトリエトキシシラン、3‐アミノプロピルトリメトキシシラン、ω‐アミノウンデシルトリメトキシシラン、3‐(2‐N‐ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、(N,N‐ジエチル‐3‐アミノプロピル)トリメトキシシラン、(N,N‐ジメチル‐3‐アミノプロピル)トリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシランからなる群から選択されるものであってもよい。 The amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl) Trimethoxysilane, -(2-aminoethyl-3-aminopropyl) tris (2-ethylhexoxy) silane, 6- (aminohexylaminopropyl) trimethoxysilane, aminophenyltrimethoxysilane, 3- (1-aminopropoxy) -3,3 -Dimethyl-1-propenyltrimethoxysilane, 3-aminopropyltris (methoxyethoxyethoxy) silane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, ω-aminoundecyltrimethoxysilane, 3- ( 2-N-benzylaminoethylaminopropyl) trimethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, (N, N-diethyl-3-aminopropyl) trimethoxysilane, (N, N -Dimethyl-3-aminopropyl) Trimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane may be selected from the group consisting of Good.
 シランカップリング処理層は、ケイ素原子換算で、0.05mg/m2~200mg/m2、好ましくは0.15mg/m2~20mg/m2、好ましくは0.3mg/m2~2.0mg/m2の範囲で設けられていることが望ましい。前述の範囲の場合、基材樹脂と表面処理銅箔との密着性をより向上させることができる。 The silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the base resin and the surface-treated copper foil can be further improved.
 また、極薄銅層、粗化処理層、耐熱層、防錆層、シランカップリング処理層またはクロメート処理層の表面に、国際公開番号WO2008/053878、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、国際公開番号WO2006/134868、特許第5046927号、国際公開番号WO2007/105635、特許第5180815号、特開2013-19056号に記載の表面処理を行うことができる。 Further, on the surface of an ultrathin copper layer, a roughening treatment layer, a heat-resistant layer, a rust prevention layer, a silane coupling treatment layer or a chromate treatment layer, International Publication No. WO2008 / 053878, JP2008-1111169, Patent No. 5024930 Surface treatment described in International Publication No. WO2006 / 028207, Patent No. 4828427, International Publication No. WO2006 / 134868, Patent No. 5046927, International Publication No. WO2007 / 105635, Patent No. 5180815, JP2013-19056A be able to.
<5.樹脂層>
 本発明のキャリア付銅箔の極薄銅層(極薄銅層が表面処理されている場合には、当該表面処理により極薄銅層の上に形成された表面処理層)の上に樹脂層を備えても良い。前記樹脂層は絶縁樹脂層であってもよい。
<5. Resin layer>
Resin layer on ultrathin copper layer of copper foil with carrier of the present invention (surface treatment layer formed on ultrathin copper layer by surface treatment when ultrathin copper layer is surface-treated) May be provided. The resin layer may be an insulating resin layer.
 前記樹脂層は接着用樹脂、すなわち接着剤であってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。 The resin layer may be an adhesive resin, that is, an adhesive, or may be a semi-cured (B-stage) insulating resin layer for adhesion. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
 また前記樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記樹脂層は熱可塑性樹脂を含んでもよい。前記樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記樹脂層は例えば国際公開番号WO2008/004399、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11-5828号、特開平11-140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000-43188号、特許第3612594号、特開2002-179772号、特開2002-359444号、特開2003-304068号、特許第3992225号、特開2003-249739号、特許第4136509号、特開2004-82687号、特許第4025177号、特開2004-349654号、特許第4286060号、特開2005-262506号、特許第4570070号、特開2005-53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006-257153号、特開2007-326923号、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009-67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009-173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011-14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013-19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。 The resin layer may contain a thermosetting resin or a thermoplastic resin. The resin layer may include a thermoplastic resin. The resin layer may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like. The resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Laid-Open No. 2002-179772, Japanese Patent Laid-Open No. 2002-359444, Japanese Patent Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Laid-Open No. 2003 -249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, and Japanese Patent Application Laid-Open No. 4570070. No. 5-53218, Japanese Patent No. 3949676, Japanese Patent No. 4178415, International Publication No. WO2004 / 005588, Japanese Patent Application Laid-Open No. 2006-257153, Japanese Patent Application Laid-Open No. 2007-326923, Japanese Patent Application Laid-Open No. 2008-11169, and Japanese Patent No. 5024930. No. WO2006 / 028207, Japanese Patent No. 4828427, JP 2009-67029, International Publication No. WO 2006/134868, Japanese Patent No. 5046927, JP 2009-173017, International Publication No. WO 2007/105635, Patent No. 5180815, International Publication No. WO 2008/114858, International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
 また、前記樹脂層は、その種類は格別限定されるものではないが、例えば、エポキシ樹脂、ポリイミド樹脂、多官能性シアン酸エステル化合物、マレイミド化合物、ポリマレイミド化合物、マレイミド系樹脂、芳香族マレイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、ポリエーテルスルホン(ポリエーテルサルホン、ポリエーテルサルフォンともいう)、ポリエーテルスルホン(ポリエーテルサルホン、ポリエーテルサルフォンともいう)樹脂、芳香族ポリアミド樹脂、芳香族ポリアミド樹脂ポリマー、ゴム性樹脂、ポリアミン、芳香族ポリアミン、ポリアミドイミド樹脂、ゴム変成エポキシ樹脂、フェノキシ樹脂、カルボキシル基変性アクリロニトリル-ブタジエン樹脂、ポリフェニレンオキサイド、ビスマレイミドトリアジン樹脂、熱硬化性ポリフェニレンオキサイド樹脂、シアネートエステル系樹脂、カルボン酸の無水物、多価カルボン酸の無水物、架橋可能な官能基を有する線状ポリマー、ポリフェニレンエーテル樹脂、2,2-ビス(4-シアナトフェニル)プロパン、リン含有フェノール化合物、ナフテン酸マンガン、2,2-ビス(4-グリシジルフェニル)プロパン、ポリフェニレンエーテル-シアネート系樹脂、シロキサン変性ポリアミドイミド樹脂、シアノエステル樹脂、フォスファゼン系樹脂、ゴム変成ポリアミドイミド樹脂、イソプレン、水素添加型ポリブタジエン、ポリビニルブチラール、フェノキシ、高分子エポキシ、芳香族ポリアミド、フッ素樹脂、ビスフェノール、ブロック共重合ポリイミド樹脂およびシアノエステル樹脂の群から選択される一種以上を含む樹脂を好適なものとして挙げることができる。 The type of the resin layer is not particularly limited. For example, epoxy resin, polyimide resin, polyfunctional cyanate ester compound, maleimide compound, polymaleimide compound, maleimide resin, aromatic maleimide resin , Polyvinyl acetal resin, urethane resin, polyethersulfone (also referred to as polyethersulfone or polyethersulfone), polyethersulfone (also referred to as polyethersulfone or polyethersulfone) resin, aromatic polyamide resin, aromatic Polyamide resin polymer, rubber resin, polyamine, aromatic polyamine, polyamideimide resin, rubber modified epoxy resin, phenoxy resin, carboxyl group-modified acrylonitrile-butadiene resin, polyphenylene oxide, bismaleimide triazine Resins, thermosetting polyphenylene oxide resins, cyanate ester resins, carboxylic acid anhydrides, polyvalent carboxylic acid anhydrides, linear polymers having crosslinkable functional groups, polyphenylene ether resins, 2,2-bis (4 -Cyanatophenyl) propane, phosphorus-containing phenolic compound, manganese naphthenate, 2,2-bis (4-glycidylphenyl) propane, polyphenylene ether-cyanate resin, siloxane-modified polyamideimide resin, cyanoester resin, phosphazene resin, Rubber-modified polyamide-imide resin, isoprene, hydrogenated polybutadiene, polyvinyl butyral, phenoxy, polymer epoxy, aromatic polyamide, fluororesin, bisphenol, block copolymerized polyimide resin, and cyanoester resin It can be mentioned resins containing one or more kinds that is as suitable.
 また前記エポキシ樹脂は、分子内に2個以上のエポキシ基を有するものであって、電気・電子材料用途に用いることのできるものであれば、特に問題なく使用できる。また、前記エポキシ樹脂は分子内に2個以上のグリシジル基を有する化合物を用いてエポキシ化したエポキシ樹脂が好ましい。また、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ブロム化(臭素化)エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ゴム変性ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリグリシジルイソシアヌレート、N,N-ジグリシジルアニリン等のグリシジルアミン化合物、テトラヒドロフタル酸ジグリシジルエステル等のグリシジルエステル化合物、リン含有エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、の群から選ばれる1種又は2種以上を混合して用いることができ、又は前記エポキシ樹脂の水素添加体やハロゲン化体を用いることができる。
 前記リン含有エポキシ樹脂として公知のリンを含有するエポキシ樹脂を用いることができる。また、前記リン含有エポキシ樹脂は例えば、分子内に2以上のエポキシ基を備える9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドからの誘導体として得られるエポキシ樹脂であることが好ましい。
The epoxy resin has two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials. The epoxy resin is preferably an epoxy resin epoxidized using a compound having two or more glycidyl groups in the molecule. Also, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, brominated (brominated) epoxy Resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, brominated bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, rubber modified bisphenol A type epoxy resin, glycidylamine type epoxy resin, triglycidyl isocyanurate, N, N -Glycidylamine compounds such as diglycidyl aniline, glycidyl ester compounds such as diglycidyl tetrahydrophthalate, phosphorus-containing epoxy resins, biphenyl type epoxy resin , Biphenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, or a mixture of two or more types, or a hydrogenated product of the epoxy resin Or a halogenated compound can be used.
As the phosphorus-containing epoxy resin, a known epoxy resin containing phosphorus can be used. The phosphorus-containing epoxy resin is, for example, an epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having two or more epoxy groups in the molecule. Is preferred.
 この9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドからの誘導体として得られるエポキシ樹脂は、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドにナフトキノンやハイドロキノンを反応させて、以下の化1(HCA-NQ)又は化2(HCA-HQ)に示す化合物とした後に、そのOH基の部分にエポキシ樹脂を反応させてリン含有エポキシ樹脂としたものである。 The epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is converted to 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. After reacting naphthoquinone or hydroquinone to obtain a compound represented by the following chemical formula 1 (HCA-NQ) or chemical formula 2 (HCA-HQ), an epoxy resin is reacted with the OH group portion to obtain a phosphorus-containing epoxy resin. Is.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上述の化合物を原料として得られた前記E成分であるリン含有エポキシ樹脂は、以下に示す化3~化5のいずれかに示す構造式を備える化合物の1種又は2種を混合して用いることが好ましい。半硬化状態での樹脂品質の安定性に優れ、同時に難燃性効果が高いためである。 The phosphorus-containing epoxy resin, which is the component E obtained using the above-mentioned compound as a raw material, is a mixture of one or two compounds having the structural formula shown in any one of the following chemical formulas 3 to 5. Is preferred. This is because the resin quality in a semi-cured state is excellent in stability, and at the same time, the flame retardant effect is high.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 また、前記ブロム化(臭素化)エポキシ樹脂として、公知のブロム化(臭素化)されているエポキシ樹脂を用いることができる。例えば、前記ブロム化(臭素化)エポキシ樹脂は分子内に2以上のエポキシ基を備えるテトラブロモビスフェノールAからの誘導体として得られる化6に示す構造式を備える臭素化エポキシ樹脂、以下に示す化7に示す構造式を備える臭素化エポキシ樹脂の1種又は2種を混合して用いることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Further, as the brominated (brominated) epoxy resin, a known brominated (brominated) epoxy resin can be used. For example, the brominated (brominated) epoxy resin is a brominated epoxy resin having the structural formula shown in Chemical formula 6 obtained as a derivative from tetrabromobisphenol A having two or more epoxy groups in the molecule. It is preferable to use one or two brominated epoxy resins having the structural formula shown in FIG.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 前記マレイミド系樹脂または芳香族マレイミド樹脂またはマレイミド化合物またはポリマレイミド化合物としては、公知のマレイミド系樹脂または芳香族マレイミド樹脂またはマレイミド化合物またはポリマレイミド化合物を用いることができる。例えばマレイミド系樹脂または芳香族マレイミド樹脂またはマレイミド化合物またはポリマレイミド化合物としては4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン並びに上記化合物と、上記化合物またはその他の化合物とを重合させたポリマー等の使用が可能である。また、前記マレイミド系樹脂は、分子内に2個以上のマレイミド基を有する芳香族マレイミド樹脂であってもよく、分子内に2個以上のマレイミド基を有する芳香族マレイミド樹脂とポリアミンまたは芳香族ポリアミンとを重合させた重合付加物であってもよい。
 前記ポリアミンまたは芳香族ポリアミンとしては、公知のポリアミンまたは芳香族ポリアミンを用いることができる。例えば、ポリアミンまたは芳香族ポリアミンとして、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジシクロヘキシルメタン、1,4-ジアミノシクロヘキサン、2,6-ジアミノピリジン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3-メチルジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルスルホン、ビス(4-アミノフェニル)フェニルアミン、m-キシレンジアミン、p-キシレンジアミン、1,3-ビス[4-アミノフェノキシ]ベンゼン、3-メチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、2,2’,5,5’-テトラクロロ-4,4’-ジアミノジフェニルメタン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、2,2-ビス(3-エチル-4-アミノフェニル)プロパン、2,2-ビス(2,3-ジクロロ-4-アミノフェニル)プロパン、ビス(2,3-ジメチル-4-アミノフェニル)フェニルエタン、エチレンジアミンおよびヘキサメチレンジアミン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン並びに上記化合物と、上記化合物またはその他の化合物とを重合させたポリマー等を用いることができる。また、公知のポリアミンおよび/または芳香族ポリアミンまたは前述のポリアミンまたは芳香族ポリアミンを一種または二種以上用いることができる。
 前記フェノキシ樹脂としては公知のフェノキシ樹脂を用いることができる。また、前記フェノキシ樹脂として、ビスフェノールと2価のエポキシ樹脂との反応により合成されるものを用いることができる。エポキシ樹脂としては、公知のエポキシ樹脂および/または前述のエポキシ樹脂を用いることができる。
 前記ビスフェノールとしては、公知のビスフェノールを使用することができ、またビスフェノールA、ビスフェノールF、ビスフェノールS、テトラブロモビスフェノールA、4,4’-ジヒドロキシビフェニル、HCA(9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-Oxide)とハイドロキノン、ナフトキノン等のキノン類との付加物として得られるビスフェノール等を使用することができる。
 前記架橋可能な官能基を有する線状ポリマーとしては、公知の架橋可能な官能基を有する線状ポリマーを用いることができる。例えば、前記架橋可能な官能基を有する線状ポリマーは水酸基、カルボキシル基等のエポキシ樹脂の硬化反応に寄与する官能基を備えることが好ましい。そして、この架橋可能な官能基を有する線状ポリマーは、沸点が50℃~200℃の温度の有機溶剤に可溶であることが好ましい。ここで言う官能基を有する線状ポリマーを具体的に例示すると、ポリビニルアセタール樹脂、フェノキシ樹脂、ポリエーテルスルホン樹脂、ポリアミドイミド樹脂等である。
 前記樹脂層は架橋剤を含んでもよい。架橋剤には、公知の架橋剤を用いることができる。架橋剤として例えばウレタン系樹脂を用いることができる。
 前記ゴム性樹脂は公知のゴム性樹脂を用いることができる。例えば前記ゴム性樹脂とは、天然ゴム及び合成ゴムを含む概念として記載しており、後者の合成ゴムにはスチレン-ブタジエンゴム、ブタジエンゴム、ブチルゴム、エチレン-プロピレンゴム、アクリロニトリルブタジエンゴム、アクリルゴム(アクリル酸エステル共重合体)、ポリブタジエンゴム、イソプレンゴム等がある。更に、形成する樹脂層の耐熱性を確保する際には、ニトリルゴム、クロロプレンゴム、シリコンゴム、ウレタンゴム等の耐熱性を備えた合成ゴムを選択使用することも有用である。これらのゴム性樹脂に関しては、芳香族ポリアミド樹脂またはポリアミドイミド樹脂と反応して共重合体を製造するようにするため、両末端に種々の官能基を備えるものであることが望ましい。特に、CTBN(カルボキシ基末端ブタジエンニトリル)を用いることが有用である。また、アクリロニトリルブタジエンゴムの中でも、カルボキシル変性体であると、エポキシ樹脂と架橋構造を取り、硬化後の樹脂層のフレキシビリティを向上させることができる。カルボキシル変性体としては、カルボキシ基末端ニトリルブタジエンゴム(CTBN)、カルボキシ基末端ブタジエンゴム(CTB)、カルボキシ変性ニトリルブタジエンゴム(C‐NBR)を用いることができる。
 前記ポリアミドイミド樹脂としては公知のポリイミドアミド樹脂を用いることができる。また、前記ポリイミドアミド樹脂としては例えば、トリメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物及びビトリレンジイソシアネートをN-メチル-2-ピロリドン又は/及びN,N-ジメチルアセトアミド等の溶剤中で加熱することで得られる樹脂や、トリメリット酸無水物、ジフェニルメタンジイソシアネート及びカルボキシル基末端アクリロニトリル-ブタジエンゴムをN-メチル-2-ピロリドン又は/及びN,N-ジメチルアセトアミド等の溶剤中で加熱することで得られるものを用いることができる。
 前記ゴム変成ポリアミドイミド樹脂として、公知のゴム変成ポリアミドイミド樹脂を用いることができる。ゴム変成ポリアミドイミド樹脂は、ポリアミドイミド樹脂とゴム性樹脂とを反応させて得られるものである。ポリアミドイミド樹脂とゴム性樹脂とを反応させて用いるのは、ポリアミドイミド樹脂そのものの柔軟性を向上させる目的で行う。すなわち、ポリアミドイミド樹脂とゴム性樹脂とを反応させ、ポリアミドイミド樹脂の酸成分(シクロヘキサンジカルボン酸等)の一部をゴム成分に置換するのである。ポリアミドイミド樹脂には公知のポリアミドイミド樹脂を用いることができる。また、ゴム性樹脂には公知のゴム性樹脂または前述のゴム性樹脂を用いることができる。ゴム変成ポリアミドイミド樹脂を重合させる際に、ポリアミドイミド樹脂とゴム性樹脂との溶解に使用する溶剤には、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ニトロメタン、ニトロエタン、テトラヒドロフラン、シクロヘキサノン、メチルエチルケトン、アセトニトリル、γ-ブチロラクトン等を、1種又は2種以上を混合して用いることが好ましい。
 前記フォスファゼン系樹脂として、公知のフォスファゼン系樹脂を用いることができる。フォスファゼン系樹脂は、リン及び窒素を構成元素とする二重結合を持つフォスファゼンを含む樹脂である。フォスファゼン系樹脂は、分子中の窒素とリンの相乗効果により、難燃性能を飛躍的に向上させることができる。また、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド誘導体と異なり、樹脂中で安定して存在し、マイグレーションの発生を防ぐ効果が得られる。
 前記フッ素樹脂として、公知のフッ素樹脂を用いることができる。また、フッ素樹脂として例えばPTFE(ポリテトラフルオロエチレン(4フッ化))、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(4.6フッ化))、ETFE(テトラフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフルオライド(2フッ化))、PCTFE(ポリクロロトリフルオロエチレン(3フッ化))、ポリアリルスルフォン、芳香族ポリスルフィドおよび芳香族ポリエーテルの中から選ばれるいずれか少なくとも1種の熱可塑性樹脂とフッ素樹脂とからなるフッ素樹脂等を用いてもよい。
 また、前記樹脂層は樹脂硬化剤を含んでもよい。樹脂硬化剤としては公知の樹脂硬化剤を用いることができる。例えば樹脂硬化剤としてはジシアンジアミド、イミダゾール類、芳香族アミン等のアミン類、ビスフェノールA、ブロム化ビスフェノールA等のフェノール類、フェノールノボラック樹脂及びクレゾールノボラック樹脂等のノボラック類、無水フタル酸等の酸無水物、ビフェニル型フェノール樹脂、フェノールアラルキル型フェノール樹脂等を用いることができる。また、前記樹脂層は前述の樹脂硬化剤の1種又は2種以上を含んでもよい。これらの硬化剤はエポキシ樹脂に特に有効である。
 前記ビフェニル型フェノール樹脂の具体例を化8に示す。
Figure JPOXMLDOC01-appb-C000007
As the maleimide resin, aromatic maleimide resin, maleimide compound or polymaleimide compound, known maleimide resins, aromatic maleimide resins, maleimide compounds or polymaleimide compounds can be used. For example, as maleimide resin or aromatic maleimide resin or maleimide compound or polymaleimide compound, 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl -5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1, It is possible to use 3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and a polymer obtained by polymerizing the above compound with the above compound or other compounds. The maleimide resin may be an aromatic maleimide resin having two or more maleimide groups in the molecule, and an aromatic maleimide resin having two or more maleimide groups in the molecule and a polyamine or aromatic polyamine. Polymerization adducts obtained by polymerizing and may be used.
As the polyamine or aromatic polyamine, known polyamines or aromatic polyamines can be used. For example, as polyamine or aromatic polyamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodicyclohexylmethane, 1,4-diaminocyclohexane, 2,6-diaminopyridine, 4,4′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane, 4,4′-diaminodiphenyl ether, 4,4′-diamino-3-methyldiphenyl ether, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminobenzophenone, 4,4'-diaminodiphenylsulfone, bis (4-aminophenyl) phenylamine, m-xylenediamine, p-xylenediamine, 1,3-bis [4-aminophenoxy] benzene, 3-methyl-4,4 ' -Diaminodiphenylmethane, 3,3'-diethyl-4 4′-diaminodiphenylmethane, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 2,2 ′, 5,5′-tetrachloro-4,4′-diaminodiphenylmethane, 2,2-bis (3- Methyl-4-aminophenyl) propane, 2,2-bis (3-ethyl-4-aminophenyl) propane, 2,2-bis (2,3-dichloro-4-aminophenyl) propane, bis (2,3 -Dimethyl-4-aminophenyl) phenylethane, ethylenediamine and hexamethylenediamine, 2,2-bis (4- (4-aminophenoxy) phenyl) propane and the above compound were polymerized with the above compound or other compounds A polymer or the like can be used. Moreover, 1 type, or 2 or more types of well-known polyamine and / or aromatic polyamine or the above-mentioned polyamine or aromatic polyamine can be used.
A known phenoxy resin can be used as the phenoxy resin. Moreover, what is synthesize | combined by reaction of bisphenol and a bivalent epoxy resin can be used as said phenoxy resin. As an epoxy resin, a well-known epoxy resin and / or the above-mentioned epoxy resin can be used.
As the bisphenol, known bisphenols can be used, and bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A, 4,4′-dihydroxybiphenyl, HCA (9,10-Dihydro-9-Oxa- Bisphenol obtained as an adduct of 10-phosphophenanthrene-10-oxide) and quinones such as hydroquinone and naphthoquinone can be used.
As the linear polymer having a crosslinkable functional group, a known linear polymer having a crosslinkable functional group can be used. For example, the linear polymer having a crosslinkable functional group preferably has a functional group that contributes to the curing reaction of an epoxy resin such as a hydroxyl group or a carboxyl group. The linear polymer having a crosslinkable functional group is preferably soluble in an organic solvent having a boiling point of 50 ° C. to 200 ° C. Specific examples of the linear polymer having a functional group mentioned here include polyvinyl acetal resin, phenoxy resin, polyethersulfone resin, polyamideimide resin and the like.
The resin layer may contain a crosslinking agent. A known crosslinking agent can be used as the crosslinking agent. For example, a urethane-based resin can be used as the crosslinking agent.
A known rubber resin can be used as the rubber resin. For example, the rubbery resin is described as a concept including natural rubber and synthetic rubber. The latter synthetic rubber includes styrene-butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber, acrylonitrile butadiene rubber, acrylic rubber ( Acrylic ester copolymer), polybutadiene rubber, isoprene rubber and the like. Furthermore, when ensuring the heat resistance of the resin layer to be formed, it is also useful to select and use a synthetic rubber having heat resistance such as nitrile rubber, chloroprene rubber, silicon rubber, urethane rubber or the like. Regarding these rubber resins, it is desirable to have various functional groups at both ends in order to produce a copolymer by reacting with an aromatic polyamide resin or a polyamideimide resin. In particular, it is useful to use CTBN (carboxy group-terminated butadiene nitrile). Moreover, among acrylonitrile butadiene rubbers, a carboxyl-modified product can take a crosslinked structure with an epoxy resin and improve the flexibility of the cured resin layer. As the carboxyl-modified product, carboxy group-terminated nitrile butadiene rubber (CTBN), carboxy group-terminated butadiene rubber (CTB), and carboxy-modified nitrile butadiene rubber (C-NBR) can be used.
A known polyimide amide resin can be used as the polyamide imide resin. In addition, as the polyimide amide resin, for example, trimellitic anhydride, benzophenonetetracarboxylic anhydride and vitorylene diisocyanate are heated in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide. By heating the resin obtained in this way, trimellitic anhydride, diphenylmethane diisocyanate and carboxyl group-terminated acrylonitrile-butadiene rubber in a solvent such as N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide. What is obtained can be used.
A known rubber-modified polyamideimide resin can be used as the rubber-modified polyamideimide resin. The rubber-modified polyamideimide resin is obtained by reacting a polyamideimide resin and a rubber resin. The reaction of the polyamide-imide resin and the rubber resin is performed for the purpose of improving the flexibility of the polyamide-imide resin itself. That is, the polyamideimide resin and the rubber resin are reacted to replace a part of the acid component (cyclohexanedicarboxylic acid or the like) of the polyamideimide resin with the rubber component. A known polyamideimide resin can be used as the polyamideimide resin. As the rubber resin, a known rubber resin or the aforementioned rubber resin can be used. Solvents used for dissolving the polyamideimide resin and the rubbery resin when polymerizing the rubber-modified polyamideimide resin include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, nitromethane, nitroethane, tetrahydrofuran , Cyclohexanone, methyl ethyl ketone, acetonitrile, γ-butyrolactone and the like are preferably used alone or in combination.
A known phosphazene resin can be used as the phosphazene resin. The phosphazene resin is a resin containing phosphazene having a double bond having phosphorus and nitrogen as constituent elements. The phosphazene resin can dramatically improve the flame retardancy due to the synergistic effect of nitrogen and phosphorus in the molecule. In addition, unlike 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivatives, they exist stably in the resin, and an effect of preventing the occurrence of migration can be obtained.
A known fluororesin can be used as the fluororesin. Examples of the fluororesin include PTFE (polytetrafluoroethylene (tetrafluoroethylene)), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer (4.6). Fluoride)), ETFE (tetrafluoroethylene / ethylene copolymer), PVDF (polyvinylidene fluoride (difluoride)), PCTFE (polychlorotrifluoroethylene (trifluoride)), polyallylsulfone, aromatic A fluororesin composed of at least one thermoplastic resin selected from polysulfide and aromatic polyether and a fluororesin may be used.
The resin layer may contain a resin curing agent. A known resin curing agent can be used as the resin curing agent. For example, resin curing agents include amines such as dicyandiamide, imidazoles and aromatic amines, phenols such as bisphenol A and brominated bisphenol A, novolaks such as phenol novolac resins and cresol novolac resins, and acid anhydrides such as phthalic anhydride. Products, biphenyl type phenol resins, phenol aralkyl type phenol resins and the like can be used. The resin layer may contain one or more of the aforementioned resin curing agents. These curing agents are particularly effective for epoxy resins.
A specific example of the biphenyl type phenol resin is shown in Chemical Formula 8.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 また、前記フェノールアラルキル型フェノール樹脂の具体例を化9に示す。 A specific example of the phenol aralkyl type phenol resin is shown in Chemical Formula 9.
Figure JPOXMLDOC01-appb-C000009
 イミダゾール類としては、公知のものを用いることができ、例えば、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどが挙げられ、これらを単独若しくは混合して用いることができる。
 また、中でも、以下の化10に示す構造式を備えるイミダゾール類を用いる事が好ましい。この化10に示す構造式のイミダゾール類を用いることで、半硬化状態の樹脂層の耐吸湿性を顕著に向上でき、長期保存安定性に優れる。イミダゾール類は、エポキシ樹脂の硬化に際して触媒的な働きを行うものであり、硬化反応の初期段階において、エポキシ樹脂の自己重合反応を引き起こす反応開始剤として寄与するからである。
Figure JPOXMLDOC01-appb-C000009
Known imidazoles can be used, such as 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5- Hydroxymethylimidazole etc. are mentioned, These can be used individually or in mixture.
Of these, imidazoles having the structural formula shown in Chemical Formula 10 below are preferably used. By using the imidazole having the structural formula shown in Chemical Formula 10, the moisture absorption resistance of the semi-cured resin layer can be remarkably improved, and the long-term storage stability is excellent. This is because imidazoles function as a catalyst during curing of the epoxy resin and contribute as a reaction initiator that causes a self-polymerization reaction of the epoxy resin in the initial stage of the curing reaction.
Figure JPOXMLDOC01-appb-C000010
 前記アミン類の樹脂硬化剤としては、公知のアミン類を用いることができる。また、前記アミン類の樹脂硬化剤としては例えば前述のポリアミンや芳香族ポリアミンを用いることが出来、また、芳香族ポリアミン、ポリアミド類及びこれらをエポキシ樹脂や多価カルボン酸と重合或いは縮合させて得られるアミンアダクト体の群から選ばれた1種又は2種以上を用いてもよい。また、前記アミン類の樹脂硬化剤としては、4,4’-ジアミノジフェニレンサルフォン、3,3’-ジアミノジフェニレンサルフォン、4,4-ジアミノジフェニレル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンまたはビス[4-(4-アミノフェノキシ)フェニル]サルフォンのいずれか一種以上を用いることが好ましい。
 前記樹脂層は硬化促進剤を含んでもよい。硬化促進剤としては公知の硬化促進剤を用いることができる。例えば、硬化促進剤としては、3級アミン、イミダゾール、尿素系硬化促進剤等を用いることができる。
 前記樹脂層は反応触媒を含んでもよい。反応触媒としては公知の反応触媒を用いることができる。例えば反応触媒として微粉砕シリカ、三酸化アンチモン等を用いることができる。
Figure JPOXMLDOC01-appb-C000010
As the amine resin curing agent, known amines can be used. As the amine resin curing agent, for example, the above-mentioned polyamines and aromatic polyamines can be used, and aromatic polyamines, polyamides, and these are obtained by polymerizing or condensing with epoxy resins or polyvalent carboxylic acids. One or more selected from the group of amine adducts to be used may be used. Examples of the resin curing agent for the amines include 4,4′-diaminodiphenylene sulfone, 3,3′-diaminodiphenylene sulfone, 4,4-diaminodiphenylel, 2,2-bis [4 It is preferable to use at least one of-(4-aminophenoxy) phenyl] propane and bis [4- (4-aminophenoxy) phenyl] sulfone.
The resin layer may contain a curing accelerator. A known curing accelerator can be used as the curing accelerator. For example, as the curing accelerator, tertiary amine, imidazole, urea curing accelerator and the like can be used.
The resin layer may include a reaction catalyst. A known reaction catalyst can be used as the reaction catalyst. For example, finely pulverized silica or antimony trioxide can be used as a reaction catalyst.
 前記多価カルボン酸の無水物はエポキシ樹脂の硬化剤として寄与する成分であることが好ましい。また、前記多価カルボン酸の無水物は、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、テトラヒドロキシ無水フタル酸、ヘキサヒドロキシ無水フタル酸、メチルヘキサヒドロキシ無水フタル酸、ナジン酸、メチルナジン酸であることが好ましい。 The anhydride of the polyvalent carboxylic acid is preferably a component that contributes as a curing agent for the epoxy resin. The anhydride of the polyvalent carboxylic acid is phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydroxyphthalic anhydride, hexahydroxyphthalic anhydride, methylhexahydroxyphthalic anhydride, nadine. Acid and methyl nadic acid are preferred.
 前記熱可塑性樹脂はエポキシ樹脂と重合可能なアルコール性水酸基以外の官能基を有する熱可塑性樹脂であってもよい。
 前記ポリビニルアセタール樹脂は酸基および水酸基以外のエポキシ樹脂またはマレイミド化合物と重合可能な官能基を有してもよい。また、前記ポリビニルアセタール樹脂はその分子内にカルボキシル基、アミノ基または不飽和二重結合を導入したものであってもよい。
 前記芳香族ポリアミド樹脂ポリマーとしては、芳香族ポリアミド樹脂とゴム性樹脂とを反応させて得られるものが挙げられる。ここで、芳香族ポリアミド樹脂とは、芳香族ジアミンとジカルボン酸との縮重合により合成されるものである。このときの芳香族ジアミンには、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、m-キシレンジアミン、3,3’-オキシジアニリン等を用いる。そして、ジカルボン酸には、フタル酸、イソフタル酸、テレフタル酸、フマル酸等を用いる。
 前記芳香族ポリアミド樹脂と反応させる前記ゴム性樹脂とは、公知のゴム性樹脂または前述のゴム性樹脂を用いることができる。
 この芳香族ポリアミド樹脂ポリマーは、銅張積層板に加工した後の銅箔をエッチング加工する際に、エッチング液によりアンダーエッチングによる損傷を受けないことを目的に用いたものである。
The thermoplastic resin may be a thermoplastic resin having a functional group other than an alcoholic hydroxyl group polymerizable with an epoxy resin.
The polyvinyl acetal resin may have a functional group polymerizable with an epoxy resin or a maleimide compound other than an acid group and a hydroxyl group. The polyvinyl acetal resin may have a carboxyl group, an amino group or an unsaturated double bond introduced into the molecule.
Examples of the aromatic polyamide resin polymer include those obtained by reacting an aromatic polyamide resin and a rubber resin. Here, the aromatic polyamide resin is synthesized by condensation polymerization of an aromatic diamine and a dicarboxylic acid. As the aromatic diamine at this time, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, m-xylenediamine, 3,3′-oxydianiline and the like are used. As the dicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, fumaric acid or the like is used.
As the rubber resin to be reacted with the aromatic polyamide resin, a known rubber resin or the aforementioned rubber resin can be used.
This aromatic polyamide resin polymer is used for the purpose of not being damaged by under-etching by an etchant when etching a copper foil after being processed into a copper-clad laminate.
 また、前記樹脂層は銅箔側(すなわちキャリア付銅箔の極薄銅層側)から順に硬化樹脂層(「硬化樹脂層」とは硬化済みの樹脂層のことを意味するとする。)と半硬化樹脂層とを順次形成した樹脂層であってもよい。前記硬化樹脂層は、熱膨張係数が0ppm/℃~25ppm/℃のポリイミド樹脂、ポリアミドイミド樹脂、これらの複合樹脂のいずれかの樹脂成分で構成されてもよい。 The resin layer is a cured resin layer (the “cured resin layer” means a cured resin layer) and a half in order from the copper foil side (that is, the ultrathin copper layer side of the copper foil with carrier). The resin layer which formed the cured resin layer sequentially may be sufficient. The cured resin layer may be composed of a resin component of any one of a polyimide resin, a polyamideimide resin, and a composite resin having a thermal expansion coefficient of 0 ppm / ° C. to 25 ppm / ° C.
 また、前記硬化樹脂層上に、硬化した後の熱膨張係数が0ppm/℃~50ppm/℃の半硬化樹脂層を設けてもよい。また、前記硬化樹脂層と前記半硬化樹脂層とが硬化した後の樹脂層全体の熱膨張係数が40ppm/℃以下であってもよい。前記硬化樹脂層は、ガラス転移温度が300℃以上であってもよい。また、前記半硬化樹脂層は、マレイミド系樹脂または芳香族マレイミド樹脂を用いて形成したものであってもよい。前記半硬化樹脂層を形成するための樹脂組成物は、マレイミド系樹脂、エポキシ樹脂、架橋可能な官能基を有する線状ポリマーを含むことが好ましい。エポキシ樹脂は公知のエポキシ樹脂または本明細書に記載のエポキシ樹脂を用いることができる。また、マレイミド系樹脂、芳香族マレイミド樹脂、架橋可能な官能基を有する線状ポリマーとしては公知のマレイミド系樹脂、芳香族マレイミド樹脂、架橋可能な官能基を有する線状ポリマー又は前述のマレイミド系樹脂、芳香族マレイミド樹脂、架橋可能な官能基を有する線状ポリマーを用いることができる。 Further, a semi-cured resin layer having a coefficient of thermal expansion after curing of 0 ppm / ° C. to 50 ppm / ° C. may be provided on the cured resin layer. In addition, the thermal expansion coefficient of the entire resin layer after the cured resin layer and the semi-cured resin layer are cured may be 40 ppm / ° C. or less. The cured resin layer may have a glass transition temperature of 300 ° C. or higher. The semi-cured resin layer may be formed using a maleimide resin or an aromatic maleimide resin. The resin composition for forming the semi-cured resin layer preferably contains a maleimide resin, an epoxy resin, and a linear polymer having a crosslinkable functional group. As the epoxy resin, a known epoxy resin or an epoxy resin described in this specification can be used. In addition, as maleimide resins, aromatic maleimide resins, linear polymers having crosslinkable functional groups, known maleimide resins, aromatic maleimide resins, linear polymers having crosslinkable functional groups, or the aforementioned maleimide resins. An aromatic maleimide resin or a linear polymer having a crosslinkable functional group can be used.
 また、立体成型プリント配線板製造用途に適した、樹脂層を有するキャリア付銅箔を提供する場合、前記硬化樹脂層は硬化した可撓性を有する高分子ポリマー層であることが好ましい。前記高分子ポリマー層は、はんだ実装工程に耐えられるように、150℃以上のガラス転移温度をもつ樹脂からなるものが好適である。前記高分子ポリマー層は、ポリアミド樹脂、ポリエーテルサルフォン樹脂、アラミド樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリビニルアセタール樹脂、ポリアミドイミド樹脂のいずれか1種又は2種以上の混合樹脂からなることが好ましい。また、前記高分子ポリマー層の厚さは3μm~10μmであることが好ましい。
 また、前記高分子ポリマー層は、エポキシ樹脂、マレイミド系樹脂、フェノール樹脂、ウレタン樹脂のいずれか1種又は2種以上を含むことが好ましい。また、前記半硬化樹脂層は厚さが10μm~50μmのエポキシ樹脂組成物で構成されていることが好ましい。
Moreover, when providing the copper foil with a carrier which has a resin layer suitable for a three-dimensional molded printed wiring board manufacture use, it is preferable that the said cured resin layer is a polymeric polymer layer which has hardened | cured flexibility. The polymer layer is preferably made of a resin having a glass transition temperature of 150 ° C. or higher so that it can withstand the solder mounting process. The polymer polymer layer is preferably made of one or a mixture of two or more of a polyamide resin, a polyether sulfone resin, an aramid resin, a phenoxy resin, a polyimide resin, a polyvinyl acetal resin, and a polyamideimide resin. The thickness of the polymer layer is preferably 3 μm to 10 μm.
Moreover, it is preferable that the said high molecular polymer layer contains any 1 type, or 2 or more types of an epoxy resin, a maleimide-type resin, a phenol resin, and a urethane resin. The semi-cured resin layer is preferably composed of an epoxy resin composition having a thickness of 10 μm to 50 μm.
 また、前記エポキシ樹脂組成物は以下のA成分~E成分の各成分を含むものであることが好ましい。
A成分: エポキシ当量が200以下で、室温で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上からなるエポキシ樹脂。
B成分: 高耐熱性エポキシ樹脂。
C成分: リン含有エポキシ系樹脂、フォスファゼン系樹脂のいずれか1種又はこれらを混合した樹脂であるリン含有難燃性樹脂。
D成分: 沸点が50℃~200℃の範囲にある溶剤に可溶な性質を備える液状ゴム成分で変成したゴム変成ポリアミドイミド樹脂。
E成分: 樹脂硬化剤。
The epoxy resin composition preferably contains the following components A to E.
Component A: An epoxy resin having one or more selected from the group consisting of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol AD type epoxy resin that have an epoxy equivalent of 200 or less and are liquid at room temperature.
B component: High heat-resistant epoxy resin.
Component C: Phosphorus-containing flame-retardant resin, which is any one of phosphorus-containing epoxy resin and phosphazene-based resin, or a mixture of these.
Component D: A rubber-modified polyamideimide resin modified with a liquid rubber component having a property of being soluble in a solvent having a boiling point in the range of 50 ° C. to 200 ° C.
E component: Resin curing agent.
 B成分は、所謂ガラス転移点Tgの高い「高耐熱性エポキシ樹脂」である。ここで言う「高耐熱性エポキシ樹脂」は、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂等の多官能エポキシ樹脂であることが好ましい。
 C成分のリン含有エポキシ樹脂として、前述のリン含有エポキシ樹脂を用いることができる。また、C成分のフォスファゼン系樹脂として前述のフォスファゼン系樹脂を用いることができる。
 D成分のゴム変成ポリアミドイミド樹脂として、前述のゴム変成ポリアミドイミド樹脂を用いることができる。E成分の樹脂硬化剤として、前述の樹脂硬化剤を用いることができる。
The B component is a “high heat resistant epoxy resin” having a high so-called glass transition point Tg. The “high heat-resistant epoxy resin” referred to here is preferably a polyfunctional epoxy resin such as a novolac-type epoxy resin, a cresol novolac-type epoxy resin, a phenol novolac-type epoxy resin, or a naphthalene-type epoxy resin.
As the phosphorus-containing epoxy resin of component C, the aforementioned phosphorus-containing epoxy resin can be used. The phosphazene resin described above can be used as the C component phosphazene resin.
The rubber-modified polyamide-imide resin described above can be used as the rubber-modified polyamide-imide resin of component D. The resin curing agent described above can be used as the E component resin curing agent.
 以上に示した樹脂組成物に溶剤を加えて樹脂ワニスとして用い、プリント配線板の接着層として熱硬化性樹脂層を形成する。当該樹脂ワニスは、上述の樹脂組成物に溶剤を加えて、樹脂固形分量が30wt%~70wt%の範囲に調製し、MIL規格におけるMIL-P-13949Gに準拠して測定したときのレジンフローが5%~35%の範囲にある半硬化樹脂膜の形成が可能である。溶剤には、公知の溶剤または前述の溶剤を用いることができる。 A solvent is added to the resin composition shown above and used as a resin varnish to form a thermosetting resin layer as an adhesive layer of a printed wiring board. The resin varnish is prepared by adding a solvent to the resin composition described above so that the resin solid content is in the range of 30 wt% to 70 wt%, and the resin flow when measured in accordance with MIL-P-13949G in the MIL standard. A semi-cured resin film in the range of 5% to 35% can be formed. As the solvent, a known solvent or the aforementioned solvent can be used.
 前記樹脂層は銅箔側から順に第1熱硬化性樹脂層と、当該第1熱硬化性樹脂層の表面に位置する第2熱硬化性樹脂層とを有する樹脂層であって、第1熱硬化性樹脂層は、配線板製造プロセスにおけるデスミア処理時の薬品に溶解しない樹脂成分で形成されたものであり、第2熱硬化性樹脂層は、配線板製造プロセスにおけるデスミア処理時の薬品に溶解し洗浄除去可能な樹脂を用いて形成したものであってもよい。前記第1熱硬化性樹脂層は、ポリイミド樹脂、ポリエーテルサルホン、ポリフェニレンオキサイドのいずれか一種又は2種以上を混合した樹脂成分を用いて形成したものであってもよい。前記第2熱硬化性樹脂層は、エポキシ樹脂成分を用いて形成したものであってもよい。前記第1熱硬化性樹脂層の厚さt1(μm)は、キャリア付銅箔の粗化面粗さをRz(μm)とし、第2熱硬化性樹脂層の厚さをt2(μm)としたとき、t1は、Rz<t1<t2の条件を満たす厚さであることが好ましい。 The resin layer is a resin layer having a first thermosetting resin layer and a second thermosetting resin layer located on the surface of the first thermosetting resin layer in order from the copper foil side, The curable resin layer is formed of a resin component that does not dissolve in chemicals during desmear processing in the wiring board manufacturing process, and the second thermosetting resin layer dissolves in chemicals during desmear processing in the wiring board manufacturing process. Then, it may be formed using a resin that can be washed and removed. The first thermosetting resin layer may be formed using a resin component obtained by mixing one or more of polyimide resin, polyethersulfone, and polyphenylene oxide. The second thermosetting resin layer may be formed using an epoxy resin component. The thickness t1 (μm) of the first thermosetting resin layer is Rz (μm) of the roughened surface roughness of the copper foil with carrier, and the thickness of the second thermosetting resin layer is t2 (μm). Then, t1 is preferably a thickness that satisfies the condition of Rz <t1 <t2.
 前記樹脂層は骨格材に樹脂を含浸させたプリプレグであってもよい。前記骨格材に含浸させた樹脂は熱硬化性樹脂であることが好ましい。前記プリプレグは公知のプリプレグまたはプリント配線板製造に用いるプリプレグであってもよい。 The resin layer may be a prepreg in which a skeleton material is impregnated with a resin. The resin impregnated in the skeleton material is preferably a thermosetting resin. The prepreg may be a known prepreg or a prepreg used for manufacturing a printed wiring board.
 前記骨格材はアラミド繊維又はガラス繊維又は全芳香族ポリエステル繊維を含んでもよい。前記骨格材はアラミド繊維又はガラス繊維又は全芳香族ポリエステル繊維の不織布若しくは織布であることが好ましい。また、前記全芳香族ポリエステル繊維は融点が300℃以上の全芳香族ポリエステル繊維であることが好ましい。前記融点が300℃以上の全芳香族ポリエステル繊維とは、所謂液晶ポリマーと称される樹脂を用いて製造される繊維であり、当該液晶ポリマーは2-ヒドロキシル-6-ナフトエ酸及びp-ヒドロキシ安息香酸の重合体を主成分とするものである。この全芳香族ポリエステル繊維は、低誘電率、低い誘電正接を持つため、電気的絶縁層の構成材として優れた性能を有し、ガラス繊維及びアラミド繊維と同様に使用することが可能なものである。
 なお、前記不織布及び織布を構成する繊維は、その表面の樹脂との濡れ性を向上させるため、シランカップリング剤処理を施す事が好ましい。このときのシランカップリング剤は、使用目的に応じて公知のアミノ系、エポキシ系等のシランカップリング剤または前述のシランカップリング剤を用いることができる。
The skeleton material may include aramid fibers, glass fibers, or wholly aromatic polyester fibers. The skeleton material is preferably an aramid fiber, a glass fiber, or a nonwoven fabric or woven fabric of wholly aromatic polyester fibers. The wholly aromatic polyester fiber is preferably a wholly aromatic polyester fiber having a melting point of 300 ° C. or higher. The wholly aromatic polyester fiber having a melting point of 300 ° C. or higher is a fiber produced using a resin called a so-called liquid crystal polymer, and the liquid crystal polymer includes 2-hydroxyl-6-naphthoic acid and p-hydroxybenzoic acid. The main component is an acid polymer. Since this wholly aromatic polyester fiber has a low dielectric constant and low dielectric loss tangent, it has excellent performance as a constituent material of an electrically insulating layer and can be used in the same manner as glass fiber and aramid fiber. is there.
In addition, in order to improve the wettability with the resin of the surface, it is preferable to perform the silane coupling agent process for the fiber which comprises the said nonwoven fabric and woven fabric. As the silane coupling agent at this time, a known amino-based or epoxy-based silane coupling agent or the aforementioned silane coupling agent can be used depending on the purpose of use.
 また、前記プリプレグは公称厚さが70μm以下のアラミド繊維又はガラス繊維を用いた不織布、あるいは、公称厚さが30μm以下のガラスクロスからなる骨格材に熱硬化性樹脂を含浸させたプリプレグであってもよい。 The prepreg is a prepreg obtained by impregnating a thermosetting resin into a nonwoven fabric using an aramid fiber or glass fiber having a nominal thickness of 70 μm or less, or a skeleton material made of glass cloth having a nominal thickness of 30 μm or less. Also good.
(樹脂層が誘電体(誘電体フィラー)を含む場合)
 前記樹脂層は誘電体(誘電体フィラー)を含んでもよい。
 上記いずれかの樹脂層または樹脂組成物に誘電体(誘電体フィラー)を含ませる場合には、キャパシタ層を形成する用途に用い、キャパシタ回路の電気容量を増大させることができるのである。この誘電体(誘電体フィラー)には、BaTiO3、SrTiO3、Pb(Zr-Ti)O3(通称PZT)、PbLaTiO3・PbLaZrO(通称PLZT)、SrBi2Ta2O9(通称SBT)等のペブロスカイト構造を持つ複合酸化物の誘電体粉を用いる。
(When the resin layer contains a dielectric (dielectric filler))
The resin layer may include a dielectric (dielectric filler).
In the case where a dielectric (dielectric filler) is included in any of the above resin layers or resin compositions, it can be used for the purpose of forming the capacitor layer and increase the capacitance of the capacitor circuit. The dielectric (dielectric filler) includes a composite oxide having a perovskite structure such as BaTiO3, SrTiO3, Pb (Zr-Ti) O3 (commonly called PZT), PbLaTiO3 / PbLaZrO (commonly known as PLZT), SrBi2Ta2O9 (commonly known as SBT), and the like. Dielectric powder is used.
 誘電体(誘電体フィラー)は粉状であってもよい。誘電体(誘電体フィラー)が粉状である場合、この誘電体(誘電体フィラー)の粉体特性は、まず粒径が0.01μm~3.0μm、好ましくは0.02μm~2.0μmの範囲のものである必要がある。ここで言う粒径は、粉粒同士がある一定の2次凝集状態を形成しているため、レーザー回折散乱式粒度分布測定法やBET法等の測定値から平均粒径を推測するような間接測定では精度が劣るものとなるため用いることができず、誘電体(誘電体フィラー)を走査型電子顕微鏡(SEM)で直接観察し、そのSEM像を画像解析し得られる平均粒径を言うものである。本件明細書ではこの時の粒径をDIAと表示している。なお、本件明細書における走査型電子顕微鏡(SEM)を用いて観察される誘電体(誘電体フィラー)の粉体の画像解析は、旭エンジニアリング株式会社製のIP-1000PCを用いて、円度しきい値10、重なり度20として円形粒子解析を行い、平均粒径DIAを求めたものである。
 上述の実施の形態により、当該内層コア材の内層回路表面と誘電体を含む樹脂層との密着性を向上させ、低い誘電正接を備えるキャパシタ回路層を形成するための誘電体を含む樹脂層を有するキャリア付銅箔を提供することができる。
The dielectric (dielectric filler) may be powdery. When the dielectric (dielectric filler) is powdery, the powder characteristics of the dielectric (dielectric filler) are as follows. First, the particle size is 0.01 μm to 3.0 μm, preferably 0.02 μm to 2.0 μm. Must be in range. The particle size referred to here is indirect in which the average particle size is estimated from the measured values of the laser diffraction scattering type particle size distribution measurement method and the BET method because the particles form a certain secondary aggregation state. It cannot be used because the accuracy is inferior in measurement, and it refers to the average particle diameter obtained by directly observing a dielectric (dielectric filler) with a scanning electron microscope (SEM) and image analysis of the SEM image. It is. In this specification, the particle size at this time is indicated as DIA. In addition, the image analysis of the dielectric (dielectric filler) powder observed using a scanning electron microscope (SEM) in this specification is performed using an IP-1000PC manufactured by Asahi Engineering Co., Ltd. Circular particle analysis was performed with a threshold value of 10 and an overlapping degree of 20, and the average particle diameter DIA was obtained.
According to the above-described embodiment, the resin layer containing the dielectric for forming the capacitor circuit layer having a low dielectric loss tangent is improved by improving the adhesion between the inner layer circuit surface of the inner layer core material and the resin layer containing the dielectric. The copper foil with a carrier which has can be provided.
 前述の樹脂層に含まれる樹脂および/または樹脂組成物および/または化合物を例えばメチルエチルケトン(MEK)、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、トルエン、メタノール、エタノール、プロピレングリコールモノメチルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、エチルセロソルブ、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどの溶剤に溶解して樹脂液(樹脂ワニス)とし、これを前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング剤層の上に、例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100~250℃、好ましくは130~200℃であればよい。前記樹脂層の組成物を、溶剤を用いて溶解し、樹脂固形分3wt%~70wt%、好ましくは、3wt%~60wt%、好ましくは10wt%~40wt%、より好ましくは25wt%~40wt%の樹脂液としてもよい。なお、メチルエチルケトンとシクロペンタノンとの混合溶剤を用いて溶解することが、環境的な見地より現段階では最も好ましい。なお、溶剤には沸点が50℃~200℃の範囲である溶剤を用いることが好ましい。
 また、前記樹脂層はMIL規格におけるMIL-P-13949Gに準拠して測定したときのレジンフローが5%~35%の範囲にある半硬化樹脂膜であることが好ましい。
 本件明細書において、レジンフローとは、MIL規格におけるMIL-P-13949Gに準拠して、樹脂厚さを55μmとした樹脂付銅箔から10cm角試料を4枚サンプリングし、この4枚の試料を重ねた状態(積層体)でプレス温度171℃、プレス圧14kgf/cm2、プレス時間10分の条件で張り合わせ、そのときの樹脂流出重量を測定した結果から数1に基づいて算出した値である。
Examples of the resin and / or resin composition and / or compound contained in the resin layer include methyl ethyl ketone (MEK), cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, methanol, ethanol, propylene glycol monomethyl ether , Dimethylformamide, dimethylacetamide, cyclohexanone, ethyl cellosolve, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like to obtain a resin liquid (resin varnish). On the ultrathin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary. Removing the solvent Te and to B-stage. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C. The resin layer composition is dissolved using a solvent, and the resin solid content is 3 wt% to 70 wt%, preferably 3 wt% to 60 wt%, preferably 10 wt% to 40 wt%, more preferably 25 wt% to 40 wt%. It is good also as a resin liquid. In addition, it is most preferable at this stage from an environmental standpoint to dissolve using a mixed solvent of methyl ethyl ketone and cyclopentanone. It is preferable to use a solvent having a boiling point in the range of 50 ° C. to 200 ° C.
The resin layer is preferably a semi-cured resin film having a resin flow in the range of 5% to 35% when measured according to MIL-P-13949G in the MIL standard.
In this specification, the resin flow is based on MIL-P-13949G in the MIL standard. Four 10 cm square samples were sampled from a resin-coated copper foil with a resin thickness of 55 μm. It is a value calculated based on Equation 1 from the result of measuring the resin outflow weight at the time of laminating under the conditions of a press temperature of 171 ° C., a press pressure of 14 kgf / cm 2, and a press time of 10 minutes in a stacked state (laminate).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 前記樹脂層を備えたキャリア付銅箔(樹脂付きキャリア付銅箔)は、その樹脂層を基材に重ね合わせたのち全体を熱圧着して該樹脂層を熱硬化せしめ、ついでキャリアを剥離して極薄銅層を表出せしめ(当然に表出するのは該極薄銅層の中間層側の表面である)、そこに所定の配線パターンを形成するという態様で使用される。 The copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompression bonded to thermally cure the resin layer, and then the carrier is peeled off. Thus, the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.
 この樹脂付きキャリア付銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張積層板を製造することができる。またこのとき、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。 Using this resin-attached copper foil with a carrier can reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board. In addition, the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
 なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。
 この樹脂層の厚みは0.1~120μmであることが好ましい。
In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.
The thickness of this resin layer is preferably 0.1 to 120 μm.
 樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付きキャリア付銅箔を内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。一方、樹脂層の厚みを120μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる場合がある。
 なお、樹脂層を有するキャリア付銅箔が極薄の多層プリント配線板を製造することに用いられる場合には、前記樹脂層の厚みを0.1μm~5μm、より好ましくは0.5μm~5μm、より好ましくは1μm~5μmとすることが、多層プリント配線板の厚みを小さくするために好ましい。
 また、樹脂層が誘電体を含む場合には、樹脂層の厚みは0.1~50μmであることが好ましく、0.5μm~25μmであることが好ましく、1.0μm~15μmであることがより好ましい。
 また、前記硬化樹脂層、半硬化樹脂層との総樹脂層厚みは0.1μm~120μmであるものが好ましく、5μm~120μmであるものが好ましく、10μm~120μmであるものが好ましく、10μm~60μmのものがより好ましい。そして、硬化樹脂層の厚みは2μm~30μmであることが好ましく、3μm~30μmであることが好ましく、5~20μmであることがより好ましい。また、半硬化樹脂層の厚みは3μm~55μmであることが好ましく、7μm~55μmであることが好ましく、15~115μmであることがより望ましい。総樹脂層厚みが120μmを超えると、薄厚の多層プリント配線板を製造することが難しくなる場合があり、5μm未満では薄厚の多層プリント配線板を形成し易くなるものの、内層の回路間における絶縁層である樹脂層が薄くなりすぎ、内層の回路間の絶縁性を不安定にする傾向が生じる場合があるためである。また、硬化樹脂層厚みが2μm未満であると、銅箔粗化面の表面粗度を考慮する必要が生じる場合がある。逆に硬化樹脂層厚みが20μmを超えると硬化済み樹脂層による効果は特に向上することがなくなる場合があり、総絶縁層厚は厚くなる。
When the thickness of the resin layer is less than 0.1 μm, the adhesive strength is reduced, and when the copper foil with a carrier with the resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two. On the other hand, if the thickness of the resin layer is greater than 120 μm, it is difficult to form a resin layer having a target thickness in a single coating process, which may be economically disadvantageous because of extra material costs and man-hours.
When the copper foil with a carrier having a resin layer is used for producing an extremely thin multilayer printed wiring board, the thickness of the resin layer is 0.1 μm to 5 μm, more preferably 0.5 μm to 5 μm, More preferably, the thickness is 1 μm to 5 μm in order to reduce the thickness of the multilayer printed wiring board.
When the resin layer contains a dielectric, the thickness of the resin layer is preferably 0.1 to 50 μm, more preferably 0.5 μm to 25 μm, and more preferably 1.0 μm to 15 μm. preferable.
The total resin layer thickness of the cured resin layer and the semi-cured resin layer is preferably 0.1 μm to 120 μm, preferably 5 μm to 120 μm, preferably 10 μm to 120 μm, and 10 μm to 60 μm. Are more preferred. The thickness of the cured resin layer is preferably 2 μm to 30 μm, preferably 3 μm to 30 μm, and more preferably 5 to 20 μm. The thickness of the semi-cured resin layer is preferably 3 μm to 55 μm, more preferably 7 μm to 55 μm, and even more preferably 15 to 115 μm. If the total resin layer thickness exceeds 120 μm, it may be difficult to produce a thin multilayer printed wiring board. If the total resin layer thickness is less than 5 μm, it is easy to form a thin multilayer printed wiring board, but an insulating layer between inner layer circuits This is because the resin layer may become too thin and the insulation between the circuits of the inner layer tends to become unstable. Moreover, when the cured resin layer thickness is less than 2 μm, it may be necessary to consider the surface roughness of the roughened copper foil surface. Conversely, if the cured resin layer thickness exceeds 20 μm, the effect of the cured resin layer may not be particularly improved, and the total insulating layer thickness becomes thick.
 なお、前記樹脂層の厚みを0.1μm~5μmとする場合には、樹脂層とキャリア付銅箔との密着性を向上させるため、極薄銅層の上に耐熱層および/または防錆層および/またはクロメート処理層および/またはシランカップリング処理層を設けた後に、当該耐熱層または防錆層またはクロメート処理層またはシランカップリング処理層の上に樹脂層を形成することが好ましい。
 なお、前述の樹脂層の厚みは、任意の10点において断面観察により測定した厚みの平均値をいう。
When the thickness of the resin layer is 0.1 μm to 5 μm, in order to improve the adhesion between the resin layer and the copper foil with carrier, a heat-resistant layer and / or a rust-proof layer is formed on the ultrathin copper layer. After providing the chromate treatment layer and / or the silane coupling treatment layer, it is preferable to form a resin layer on the heat-resistant layer, rust prevention layer, chromate treatment layer or silane coupling treatment layer.
In addition, the thickness of the above-mentioned resin layer says the average value of the thickness measured by cross-sectional observation in arbitrary 10 points | pieces.
 更に、この樹脂付きキャリア付銅箔のもう一つの製品形態としては、前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング処理層の上に樹脂層で被覆し、半硬化状態とした後、ついでキャリアを剥離して、キャリアが存在しない樹脂付き銅箔の形で製造することも可能である。 Furthermore, as another product form of this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer After coating with a resin layer and making it into a semi-cured state, the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.
<6.キャリア付銅箔、プリント回路板、プリント配線板>
 上述したプロセスを経て、銅箔キャリア、中間層、極薄銅層をこの順で有するキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がす。本発明に係るキャリア付銅箔の場合、剥離箇所は主として中間層と極薄銅層の界面である。続いて、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板又はプリント回路板を製造することができる。本発明のキャリア付銅箔を用いて製造したプリント配線板としては、公知の形態のものを広く用いることができ、例えば、各部品を電気的に接続するために、導体パターンを絶縁基板にプリントによって形成する配線が、回路設計に基づいて絶縁基板等に設けられてなる基板が挙げられる。また、本発明のキャリア付銅箔を用いて製造したプリント回路板としては、公知の形態のものを広く用いることができ、例えば、上記プリント配線及び基板に搭載する種々の部品等で構成される回路が絶縁基板等に設けられてなる基板が挙げられる。
<6. Copper foil with carrier, printed circuit board, printed wiring board>
The copper foil with a carrier which has a copper foil carrier, an intermediate | middle layer, and an ultra-thin copper layer in this order through the process mentioned above is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. A carrier is peeled off after being bonded to an insulating substrate such as a base epoxy resin, a glass cloth / glass nonwoven fabric composite base epoxy resin and a glass cloth base epoxy resin, a polyester film, a polyimide film, etc. In the case of the carrier-attached copper foil according to the present invention, the peeled portion is mainly the interface between the intermediate layer and the ultrathin copper layer. Subsequently, the ultrathin copper layer adhered to the insulating substrate is etched into the intended conductor pattern, and finally a printed wiring board or printed circuit board can be manufactured. As a printed wiring board manufactured using the copper foil with a carrier of the present invention, those in known forms can be widely used. For example, a conductor pattern is printed on an insulating substrate in order to electrically connect each component. A substrate in which the wiring formed by the above is provided on an insulating substrate or the like based on circuit design. Moreover, as a printed circuit board manufactured using the copper foil with a carrier of this invention, the thing of a well-known form can be used widely, for example, it is comprised with the said printed wiring, the various components mounted in a board | substrate, etc. A substrate in which a circuit is provided on an insulating substrate or the like can be given.
 以下に、本発明に係るキャリア付銅箔を用いたプリント配線板の製造工程の例を幾つか示す。 Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier according to the present invention are shown.
 本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。 In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.
 本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。 In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
 従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。 In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
 従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
 前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electrolytic plating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.
 モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。 In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
 従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.
 本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。 In the present invention, the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
 従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
 サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されていない前記無電解めっき層の表面に電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
 スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。 ¡Through holes and / or blind vias and subsequent desmear steps may not be performed.
 ここで、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例を図面を用いて詳細に説明する。なお、ここでは粗化処理層が形成された極薄銅層を有するキャリア付銅箔を例に説明するが、これに限られず、粗化処理層が形成されていない極薄銅層を有するキャリア付銅箔を用いても同様に下記のプリント配線板の製造方法を行うことができる。
 まず、図1-Aに示すように、表面に粗化処理層が形成された極薄銅層を有するキャリア付銅箔(1層目)を準備する。
 次に、図1-Bに示すように、極薄銅層の粗化処理層上にレジストを塗布し、露光・現像を行い、レジストを所定の形状にエッチングする。
 次に、図1-Cに示すように、回路用のめっきを形成した後、レジストを除去することで、所定の形状の回路めっきを形成する。
 次に、図2-Dに示すように、回路めっきを覆うように(回路めっきが埋没するように)極薄銅層上に埋め込み樹脂を設けて樹脂層を積層し、続いて別のキャリア付銅箔(2層目)を極薄銅層側から接着させる。
 次に、図2-Eに示すように、2層目のキャリア付銅箔からキャリアを剥がす。
 次に、図2-Fに示すように、樹脂層の所定位置にレーザー穴あけを行い、回路めっきを露出させてブラインドビアを形成する。
 次に、図3-Gに示すように、ブラインドビアに銅を埋め込みビアフィルを形成する。
 次に、図3-Hに示すように、ビアフィル上に、上記図1-B及び図1-Cのようにして回路めっきを形成する。
 次に、図3-Iに示すように、1層目のキャリア付銅箔からキャリアを剥がす。
 次に、図4-Jに示すように、フラッシュエッチングにより両表面の極薄銅層を除去し、樹脂層内の回路めっきの表面を露出させる。
 次に、図4-Kに示すように、樹脂層内の回路めっき上にバンプを形成し、当該はんだ上に銅ピラーを形成する。このようにして本発明のキャリア付銅箔を用いたプリント配線板を作製する。
Here, the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing. Here, the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example. However, the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed. The following method for producing a printed wiring board can be similarly performed using an attached copper foil.
First, as shown in FIG. 1-A, a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
Next, as shown in FIG. 1-B, a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
Next, as shown in FIG. 1-C, after circuit plating is formed, the resist is removed to form circuit plating having a predetermined shape.
Next, as shown in FIG. 2-D, an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, and then another carrier is attached. A copper foil (second layer) is bonded from the ultrathin copper layer side.
Next, as shown in FIG. 2-E, the carrier is peeled off from the second-layer copper foil with carrier.
Next, as shown in FIG. 2-F, laser drilling is performed at a predetermined position of the resin layer to expose the circuit plating and form a blind via.
Next, as shown in FIG. 3G, copper is embedded in the blind via to form a via fill.
Next, as shown in FIG. 3H, circuit plating is formed on the via fill as shown in FIGS. 1B and 1C.
Next, as shown in FIG. 3I, the carrier is peeled off from the first layer of copper foil with carrier.
Next, as shown in FIG. 4J, the ultrathin copper layers on both surfaces are removed by flash etching, and the surface of the circuit plating in the resin layer is exposed.
Next, as shown in FIG. 4K, bumps are formed on the circuit plating in the resin layer, and copper pillars are formed on the solder. Thus, the printed wiring board using the copper foil with a carrier of this invention is produced.
 上記別のキャリア付銅箔(2層目)は、本発明のキャリア付銅箔を用いてもよく、従来のキャリア付銅箔を用いてもよく、さらに通常の銅箔を用いてもよい。また、図3-Hに示される2層目の回路上に、さらに回路を1層或いは複数層形成してもよく、それらの回路形成をセミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行ってもよい。 The other carrier-attached copper foil (second layer) may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil. Further, one or more circuits may be formed on the second-layer circuit shown in FIG. 3H, and these circuits may be formed using a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
 本発明に係るキャリア付銅箔は、極薄銅層表面の色差が以下(1)を満たすように制御されていることが好ましい。本発明において「極薄銅層表面の色差」とは、極薄銅層の表面の色差、又は、粗化処理等の各種表面処理が施されている場合はその表面処理層表面の色差を示す。すなわち、本発明に係るキャリア付銅箔は、極薄銅層または粗化処理層または耐熱層または防錆層またはクロメート処理層またはシランカップリング層の表面の色差が以下(1)を満たすように制御されていることが好ましい。
(1)極薄銅層または粗化処理層または耐熱層または防錆層またはクロメート処理層またはシランカップリング処理層の表面のJIS Z8730に基づく色差ΔE*abが45以上である。
The copper foil with a carrier according to the present invention is preferably controlled so that the color difference on the surface of the ultrathin copper layer satisfies the following (1). In the present invention, the “color difference on the surface of the ultrathin copper layer” means the color difference on the surface of the ultrathin copper layer, or the color difference on the surface of the surface treatment layer when various surface treatments such as roughening treatment are applied. . That is, in the copper foil with a carrier according to the present invention, the color difference of the surface of the ultrathin copper layer, the roughening treatment layer, the heat resistance layer, the rust prevention layer, the chromate treatment layer or the silane coupling layer satisfies the following (1). It is preferably controlled.
(1) The color difference ΔE * ab based on JIS Z8730 on the surface of the ultrathin copper layer, the roughened layer, the heat-resistant layer, the rust-proof layer, the chromate-treated layer or the silane coupling-treated layer is 45 or more.
 ここで、色差ΔL、Δa、Δbは、それぞれ色差計で測定され、黒/白/赤/緑/黄/青を加味し、JIS Z8730に基づくL*a*b表色系を用いて示される総合指標であり、ΔL:白黒、Δa:赤緑、Δb:黄青として表される。また、ΔE*abはこれらの色差を用いて下記式で表される。 Here, the color differences ΔL, Δa, and Δb are respectively measured with a color difference meter, and are shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. It is a comprehensive index and is expressed as ΔL: black and white, Δa: reddish green, Δb: yellow blue. ΔE * ab is expressed by the following formula using these color differences.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 上述の色差は、極薄銅層形成時の電流密度を高くし、メッキ液中の銅濃度を低くし、メッキ液の線流速を高くすることで調整することができる。
 また上述の色差は、極薄銅層の表面に粗化処理を施して粗化処理層を設けることで調整することもできる。粗化処理層を設ける場合には銅およびニッケル、コバルト、タングステン、モリブデンからなる群から選択される一種以上の元素とを含む電界液を用いて、従来よりも電流密度を高く(例えば40~60A/dm2)し、処理時間を短く(例えば0.1~1.3秒)することで調整することができる。極薄銅層の表面に粗化処理層を設けない場合には、Niの濃度をその他の元素の2倍以上としたメッキ浴を用いて、極薄銅層または耐熱層または防錆層またはクロメート処理層またはシランカップリング処理層の表面にNi合金メッキ(例えばNi-W合金メッキ、Ni-Co-P合金メッキ、Ni-Zn合金めっき)を従来よりも低電流密度(0.1~1.3A/dm2)で処理時間を長く(20秒~40秒)設定して処理することで達成できる。
The above-described color difference can be adjusted by increasing the current density when forming the ultrathin copper layer, decreasing the copper concentration in the plating solution, and increasing the linear flow rate of the plating solution.
Moreover, the above-mentioned color difference can also be adjusted by performing a roughening process on the surface of an ultra-thin copper layer and providing a roughening process layer. In the case of providing the roughened layer, the current density is higher than that of the prior art (for example, 40 to 60 A) using an electrolytic solution containing copper and one or more elements selected from the group consisting of nickel, cobalt, tungsten, and molybdenum. / Dm2), and can be adjusted by shortening the processing time (for example, 0.1 to 1.3 seconds). When a roughening layer is not provided on the surface of the ultrathin copper layer, use a plating bath in which the concentration of Ni is twice or more that of other elements, and use an ultrathin copper layer, heat resistant layer, rust preventive layer or chromate. Ni alloy plating (for example, Ni—W alloy plating, Ni—Co—P alloy plating, Ni—Zn alloy plating) is applied to the surface of the treatment layer or the silane coupling treatment layer at a lower current density (0.1 to 1.. 3A / dm 2 ), and the processing time can be set long (20 to 40 seconds).
 極薄銅層表面のJIS Z8730に基づく色差ΔE*abが45以上であると、例えば、キャリア付銅箔の極薄銅層表面に回路を形成する際に、極薄銅層と回路とのコントラストが鮮明となり、その結果、視認性が良好となり回路の位置合わせを精度良く行うことができる。極薄銅層表面のJIS Z8730に基づく色差ΔE*abは、好ましくは50以上であり、より好ましくは55以上であり、更により好ましくは60以上である。 When the color difference ΔE * ab based on JIS Z8730 on the ultrathin copper layer surface is 45 or more, for example, when forming a circuit on the ultrathin copper layer surface of the copper foil with carrier, the contrast between the ultrathin copper layer and the circuit As a result, visibility is improved and circuit alignment can be performed with high accuracy. The color difference ΔE * ab based on JIS Z8730 on the surface of the ultrathin copper layer is preferably 50 or more, more preferably 55 or more, and even more preferably 60 or more.
 極薄銅層または粗化処理層または耐熱層または防錆層またはクロメート処理層またはシランカップリング層の表面の色差が上記のように制御されている場合には、回路めっきとのコントラストが鮮明となり、視認性が良好となる。従って、上述のようなプリント配線板の例えば図1-Cに示すような製造工程において、回路めっきを精度良く所定の位置に形成することが可能となる。また、上述のようなプリント配線板の製造方法によれば、回路めっきが樹脂層に埋め込まれた構成となっているため、例えば図4-Jに示すようなフラッシュエッチングによる極薄銅層の除去の際に、回路めっきが樹脂層によって保護され、その形状が保たれ、これにより微細回路の形成が容易となる。また、回路めっきが樹脂層によって保護されるため、耐マイグレーション性が向上し、回路の配線の導通が良好に抑制される。このため、微細回路の形成が容易となる。また、図4-J及び図4-Kに示すようにフラッシュエッチングによって極薄銅層を除去したとき、回路めっきの露出面が樹脂層から凹んだ形状となるため、当該回路めっき上にバンプが、さらにその上に銅ピラーがそれぞれ形成しやすくなり、製造効率が向上する。 When the color difference on the surface of the ultra-thin copper layer, roughened layer, heat-resistant layer, rust-proof layer, chromate-treated layer or silane coupling layer is controlled as described above, the contrast with the circuit plating becomes clear. , Visibility becomes good. Accordingly, in the manufacturing process of the printed wiring board as described above, for example, as shown in FIG. 1-C, the circuit plating can be accurately formed at a predetermined position. Further, according to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, for example, removal of the ultrathin copper layer by flash etching as shown in FIG. At this time, the circuit plating is protected by the resin layer and the shape thereof is maintained, thereby facilitating the formation of a fine circuit. Further, since the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 4-J and 4-K, when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
 なお、埋め込み樹脂(レジン)には公知の樹脂、プリプレグを用いることができる。例えば、BT(ビスマレイミドトリアジン)レジンやBTレジンを含浸させたガラス布であるプリプレグ、味の素ファインテクノ株式会社製ABFフィルムやABFを用いることができる。また、前記埋め込み樹脂(レジン)には本明細書に記載の樹脂層および/または樹脂および/またはプリプレグを使用することができる。 A known resin or prepreg can be used as the embedding resin (resin). For example, a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used. Moreover, the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
 また、前記一層目に用いられるキャリア付銅箔は、当該キャリア付銅箔の表面に基板または樹脂層を有してもよい。当該基板または樹脂層を有することで一層目に用いられるキャリア付銅箔は支持され、シワが入りにくくなるため、生産性が向上するという利点がある。なお、前記基板または樹脂層には、前記一層目に用いられるキャリア付銅箔を支持する効果を有するものであれば、特に限定されず全ての基板または樹脂層を用いることが出来る。例えば前記基板または樹脂層として本明細書に記載のキャリア、プリプレグ、樹脂層や公知のキャリア、プリプレグ、樹脂層、金属板、金属箔、無機化合物の板、無機化合物の箔、有機化合物の板、有機化合物の箔を用いることができる。 Further, the carrier-attached copper foil used in the first layer may have a substrate or a resin layer on the surface of the carrier-attached copper foil. By having the said board | substrate or resin layer, since the copper foil with a carrier used for the first layer is supported and it becomes difficult to wrinkle, there exists an advantage that productivity improves. The substrate or the resin layer is not particularly limited as long as it has an effect of supporting the carrier-attached copper foil used in the first layer, and any substrate or resin layer can be used. For example, the carrier, prepreg, resin layer or known carrier, prepreg, resin layer, metal plate, metal foil, inorganic compound plate, inorganic compound foil, organic compound plate described herein as the substrate or resin layer, Organic compound foils can be used.
 本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50~95質量%であり、且つニッケルより極薄銅層側に、モリブデンまたはコバルトが最大値で1~50質量%存在する。
 このように、本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層断面を元素分析すると、キャリア銅/ニッケル層/モリブデンまたはコバルトまたはモリブデン-コバルト合金層/極薄銅層の構造になっている。このとき、ニッケルと銅は固溶しやすいので、これらが接触していると相互拡散によって接着力が高くなり剥離しにくくなる一方で、モリブデンまたはコバルトと銅とは固溶しにくく、相互拡散が生じにくいので、モリブデンまたはコバルトまたはモリブデン-コバルト合金層と銅との界面では接着力が弱い。このニッケルとモリブデンまたはコバルトの濃度を変更することで、中間層中の銅濃度を制御することにより剥離強度を制御できる。また、モリブデンまたはコバルトまたはモリブデン-コバルト合金層がキャリアとニッケル層の境界に存在すると、極薄銅層の剥離時に中間層も付随して剥離されてしまう、すなわちキャリアと中間層の間で剥離が生じてしまうので好ましくない。このような状況は、キャリアとの界面にモリブデンまたはコバルトまたはモリブデン-コバルト合金層を設けた場合のみならず、極薄銅層との界面にモリブデンまたはコバルトまたはモリブデン-コバルト合金層を設けたとしてもモリブデン量またはコバルト量が多すぎると生じ得る。これは、モリブデンまたはコバルトと銅とは固溶しにくく、相互拡散が生じにくいので、モリブデンまたはコバルトまたはモリブデン-コバルト合金層と銅との界面では接着力が弱く、剥離しやすいことが原因と考えられる。また、中間層のニッケル量が不足している場合、キャリアと極薄銅層の間には微量のモリブデンまたはコバルトしか存在しないので両者が密着して剥がれにくくなる。
The copper foil with a carrier of the present invention has a maximum nickel concentration when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them in this order from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer. Is 50 to 95% by mass, and molybdenum or cobalt is present at a maximum of 1 to 50% by mass on the ultrathin copper layer side from nickel.
As described above, the copper foil with a carrier of the present invention is obtained by performing elemental analysis on the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, carrier copper / nickel layer / molybdenum or cobalt or molybdenum-cobalt alloy layer / ultra thin copper layer. It has a structure. At this time, since nickel and copper are easy to dissolve, when they are in contact with each other, the adhesive force is increased due to mutual diffusion and it is difficult to peel off. On the other hand, molybdenum or cobalt and copper are difficult to dissolve and mutual diffusion is difficult. Since it does not easily occur, the adhesive force is weak at the interface between the molybdenum or cobalt or molybdenum-cobalt alloy layer and copper. By changing the concentration of nickel and molybdenum or cobalt, the peel strength can be controlled by controlling the copper concentration in the intermediate layer. In addition, if the molybdenum or cobalt or molybdenum-cobalt alloy layer is present at the boundary between the carrier and the nickel layer, the intermediate layer is also peeled off at the time of peeling of the ultrathin copper layer, that is, peeling is performed between the carrier and the intermediate layer. Since it will occur, it is not preferable. This situation occurs not only when a molybdenum or cobalt or molybdenum-cobalt alloy layer is provided at the interface with the carrier, but also when a molybdenum or cobalt or molybdenum-cobalt alloy layer is provided at the interface with the ultrathin copper layer. This can occur if the amount of molybdenum or cobalt is too high. This is thought to be because molybdenum or cobalt and copper are difficult to dissolve and interdiffusion is unlikely to occur, so the adhesive force at the interface between molybdenum or cobalt or molybdenum-cobalt alloy layer and copper is weak and easy to peel. It is done. Further, when the amount of nickel in the intermediate layer is insufficient, there is only a small amount of molybdenum or cobalt between the carrier and the ultrathin copper layer, so that they are in close contact and difficult to peel off.
 本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50~95質量%であり、且つニッケルより極薄銅層側に、モリブデンまたはコバルトが最大値で1~50質量%存在してもよい。
 このように、熱圧着後のキャリア付銅箔においても、銅箔キャリア/中間層/極薄銅層断面を元素分析すると、銅箔キャリア/ニッケル層/モリブデンまたはコバルトまたはモリブデン-コバルト合金層/極薄銅層の構造になっている。このとき、ニッケル層と極薄銅層の界面に、モリブデンまたはコバルトまたはモリブデン-コバルト合金層が存在することで絶縁基板熱圧着時のニッケル層と極薄銅層間の元素拡散を抑制し、絶縁基板圧着による急激な剥離強度の上昇を防止し、安定した剥離強度を保持できる。
The copper foil with a carrier of the present invention has a copper foil carrier / intermediate layer / layer when an insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours. When a 50 to 1000 nm long STEM line analysis is performed from the cross section of the ultrathin copper layer in the range including all of them in this order, the maximum value of the nickel concentration is 50 to 95% by mass and the ultrathin copper layer than nickel On the side, a maximum of 1 to 50% by weight of molybdenum or cobalt may be present.
Thus, even in the copper foil with carrier after thermocompression bonding, the element analysis of the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer shows that the copper foil carrier / nickel layer / molybdenum or cobalt or molybdenum-cobalt alloy layer / electrode It has a thin copper layer structure. At this time, the presence of molybdenum or cobalt or a molybdenum-cobalt alloy layer at the interface between the nickel layer and the ultrathin copper layer suppresses element diffusion between the nickel layer and the ultrathin copper layer during thermocompression bonding of the insulated substrate, and A rapid increase in peel strength due to pressure bonding can be prevented, and a stable peel strength can be maintained.
 本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケルと、モリブデン及び/またはコバルトと、銅とが共存する箇所の銅濃度最小値が10~65質量%となってもよい。
 このような構成によれば、本発明のキャリア付銅箔は、熱圧着後に銅箔キャリア/中間層/極薄銅層の断面を元素分析すると、中間層の内部に銅が一定量以上で存在している。このため、熱圧着後の極端な剥離強度の低下を防止できるという効果がある。
The copper foil with a carrier of the present invention has a copper foil carrier / intermediate layer / layer when an insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours. When a 50 to 1000 nm long STEM line analysis is performed from the cross section of the ultrathin copper layer, the minimum copper concentration at the location where nickel, molybdenum and / or cobalt, and copper coexist is 10 to 10 nm. It may be 65% by mass.
According to such a configuration, when the copper foil with a carrier of the present invention is subjected to elemental analysis of the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer after thermocompression bonding, copper exists in the intermediate layer in a certain amount or more. is doing. For this reason, there exists an effect that the fall of the extreme peeling strength after thermocompression-bonding can be prevented.
 本発明のキャリア付銅箔は、中間層のモリブデン-コバルト合金のコバルトの濃度が20~80質量%であってもよい。
 このような構成によれば、中間層のコバルが一定量以上で存在していることで、中間層内部への過度の銅の拡散を防止し、剥離強度の極端な上昇を防止できるという効果がある。
In the copper foil with a carrier of the present invention, the concentration of cobalt in the molybdenum-cobalt alloy in the intermediate layer may be 20 to 80% by mass.
According to such a configuration, the presence of the cobalt of the intermediate layer in a certain amount or more has the effect of preventing excessive copper diffusion into the intermediate layer and preventing an extreme increase in peel strength. is there.
 以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited to these examples.
1.キャリア付銅箔の製造
 銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)及び厚さ33μmの圧延銅箔(JX日鉱日石金属社製C1100)を用意した。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続ラインでキャリア表面及び極薄銅層側について順に以下の条件で表1に記載の中間層形成処理を行った。キャリア表面側と極薄銅層側との処理工程の間には、水洗及び酸洗を行った。
1. Production of Copper Foil with Carrier As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 μm (JTC made by JX Nippon Mining & Metals) and a rolled copper foil having a thickness of 33 μm (C1100 made by JX Nippon Mining & Metals) Prepared. With respect to the shiny surface of this copper foil, the intermediate layer formation treatment described in Table 1 was performed in the following conditions in order on the carrier surface and the ultrathin copper layer side in a roll-to-roll type continuous line under the following conditions. . Washing and pickling were performed between the processing steps on the carrier surface side and the ultrathin copper layer side.
 (めっき条件)
・Niめっき
 硫酸ニッケル:250~500g/L
 塩化ニッケル:35~45g/L
 酢酸ニッケル:10~20g/L
 クエン酸三ナトリウム:15~30g/L
 光沢剤:サッカリン、ブチンジオール等
 ドデシル硫酸ナトリウム:30~100ppm
 pH:4~6
 浴温:50~70℃
 電流密度:3~15A/dm2
(Plating conditions)
・ Ni plating Nickel sulfate: 250-500 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30 to 100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3 to 15 A / dm 2
・コバルトめっき
 硫酸コバルト:200~300g/L
 ホウ酸:20~50g/L
 pH:2~5
 液温:10~70℃
 電流密度:0.5~20A/dm2
・モリブデン-コバルト合金めっき
 硫酸コバルト:10~200g/L
 モリブデン酸ナトリウム:5~200g/L
 クエン酸ナトリウム:2~240g/L
 pH:2~5
 液温:10~70℃
 電流密度:0.5~10A/dm2
・ Cobalt plating Cobalt sulfate: 200 to 300 g / L
Boric acid: 20-50 g / L
pH: 2-5
Liquid temperature: 10-70 ° C
Current density: 0.5 to 20 A / dm 2
・ Molybdenum-cobalt alloy plating Cobalt sulfate: 10 to 200 g / L
Sodium molybdate: 5 to 200 g / L
Sodium citrate: 2 to 240 g / L
pH: 2-5
Liquid temperature: 10-70 ° C
Current density: 0.5 to 10 A / dm 2
 (スパッタ条件)
 モリブデン層は電気めっきでは形成できないため、ロール to ロール式のスパッタリング装置で作製した。その場合、銅箔表面の薄い酸化膜をイオンガン(LIS)により取り除いた後、被覆層を形成してもよい。Ni層とMo層の厚さはスパッタリング電力を調整することにより変化させた。
・装置:ロール to ロール式スパッタリング装置(神港精機社)
・到達真空度:1.0×10-5Pa
・スパッタリング圧:0.25Pa
・搬送速度:15m/min
・イオンガン電力:225W
・スパッタリング電力:200~3000W
・ターゲット:
 Ni層用=Ni(純度3N)
 Mo層用=Mo(純度3N)
・成膜速度:各ターゲットについて一定時間約0.2μm成膜し、3次元測定器で厚さを測定し、単位時間当たりのスパッタレートを算出した。
(Sputtering conditions)
Since the molybdenum layer cannot be formed by electroplating, it was produced with a roll-to-roll type sputtering apparatus. In that case, the thin oxide film on the copper foil surface may be removed by an ion gun (LIS), and then the coating layer may be formed. The thicknesses of the Ni layer and the Mo layer were changed by adjusting the sputtering power.
・ Equipment: Roll-to-roll sputtering equipment (Shinko Seiki Co., Ltd.)
・ Achieving vacuum: 1.0 × 10 −5 Pa
・ Sputtering pressure: 0.25 Pa
・ Conveying speed: 15m / min
・ Ion gun power: 225W
・ Sputtering power: 200-3000W
·target:
For Ni layer = Ni (purity 3N)
For Mo layer = Mo (purity 3N)
Film formation rate: About 0.2 μm of film was formed for each target for a fixed time, the thickness was measured with a three-dimensional measuring device, and the sputtering rate per unit time was calculated.
 引き続き、ロール・トウ・ロール型の連続めっきライン上で、中間層の上に厚さ2~5μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を作製した。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 電解液温度:20~80℃
 電流密度:10~100A/dm2
Subsequently, on a continuous roll-to-roll type plating line, an ultrathin copper layer having a thickness of 2 to 5 μm was formed on the intermediate layer by electroplating under the following conditions to produce a copper foil with a carrier. .
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
 なお、実施例1、5、7については極薄銅層の表面に以下の粗化処理、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理
 Cu:10~20g/L
 Co:1~10g/L
 Ni:1~10g/L
 pH:1~4
 温度:40~50℃
 電流密度Dk:20~30A/dm2
 時間:1~5秒
 Cu付着量:15~40mg/dm2
 Co付着量:100~3000μg/dm2
 Ni付着量:100~1000μg/dm2
・防錆処理
 Zn:0~20g/L
 Ni:0~5g/L
 pH:3.5
 温度:40℃
 電流密度Dk :0~1.7A/dm2
 時間:1秒
 Zn付着量:5~250μg/dm2
 Ni付着量:5~300μg/dm2
・クロメート処理
 K2Cr27
 (Na2Cr27或いはCrO3):2~10g/L
 NaOH或いはKOH:10~50g/L
 ZnO或いはZnSO47H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度 0.05~5A/dm2
 時間:5~30秒
 Cr付着量:10~150μg/dm2
・シランカップリング処理
 ビニルトリエトキシシラン水溶液
 (ビニルトリエトキシシラン濃度:0.1~1.4wt%)
 pH:4~5
 時間:5~30秒
In Examples 1, 5, and 7, the surface of the ultrathin copper layer was subjected to the following roughening treatment, rust prevention treatment, chromate treatment, and silane coupling treatment in this order.
・ Roughening Cu: 10 to 20 g / L
Co: 1-10g / L
Ni: 1-10g / L
pH: 1 to 4
Temperature: 40-50 ° C
Current density Dk: 20 to 30 A / dm 2
Time: 1 to 5 seconds Cu adhesion amount: 15 to 40 mg / dm 2
Co adhesion amount: 100 to 3000 μg / dm 2
Ni adhesion amount: 100 to 1000 μg / dm 2
・ Rust prevention treatment Zn: 0-20g / L
Ni: 0-5g / L
pH: 3.5
Temperature: 40 ° C
Current density Dk: 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5 to 250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50g / L
ZnO or ZnSO 4 7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density 0.05-5A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Time: 5-30 seconds
2.キャリア付銅箔の各種評価
 上記のようにして得られたキャリア付銅箔について、以下の方法で各種の評価を実施した。結果を表1に示す。
2. Various evaluations of copper foil with carrier Various evaluations were carried out by the following methods for the copper foil with carrier obtained as described above. The results are shown in Table 1.
<付着量の測定>
 ニッケル付着量はサンプルを濃度20質量%の硝酸で溶解してSII社製のICP発光分光分析装置(型式:SPS3100)を用いてICP発光分析によって測定し、モリブデン及びコバルト付着量はサンプルを硝酸と塩酸の混合液(硝酸濃度:20質量%、塩酸濃度:12質量%)にて溶解して、VARIAN社製の原子吸光分光光度計(型式:AA240FS)を用いて原子吸光法により定量分析を行うことで測定した。
<Measurement of adhesion amount>
The amount of nickel deposited was measured by ICP emission analysis using an ICP emission spectrophotometer (model: SPS3100) manufactured by SII after dissolving the sample with nitric acid having a concentration of 20% by mass. Dissolve in a mixed solution of hydrochloric acid (nitric acid concentration: 20% by mass, hydrochloric acid concentration: 12% by mass) and perform quantitative analysis by atomic absorption spectrometry using an atomic absorption spectrophotometer (model: AA240FS) manufactured by VARIAN. Was measured.
<STEMによる評価>
 キャリア付銅箔の断面の元素分布をSTEMによって観察したときの測定条件を以下に示す。
・装置:STEM(日立製作所社、型式HD-2000STEM)
・加速電圧:200kV
・倍率:100000~1000000倍
・観察視野:1500nm×1500nm~160nm×160nm
 元素濃度の線分析は、キャリア/中間層/極薄銅層を介して50~1000nm長行った。検出元素からカーボンを除外し、各元素の濃度(質量%)を分析した。
 キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後のものについても同様にSTEM評価を行った。
 なお、上記STEMによる評価は各サンプルシートの長辺方向において、両端から50mm以内の領域内の各1箇所、中央部の50mm×50mmの領域内の1箇所の合計3箇所について行った。当該3箇所の測定箇所を図7に示す。なお、当該3箇所におけるニッケル濃度の最大値、モリブデン濃度の最大値、コバルト濃度の最大値を算術平均した値を、それぞれケル濃度の最大値、モリブデン濃度の最大値、コバルト濃度の最大値とした。
 なお、サンプルの大きさが小さい場合には、上述の両端から50mm以内の領域ならびに中央部の50mm×50mmの領域は重なってもよい。
<Evaluation by STEM>
The measurement conditions when the element distribution in the cross section of the copper foil with a carrier is observed by STEM are shown below.
・ Device: STEM (Hitachi, Ltd., model HD-2000 STEM)
・ Acceleration voltage: 200kV
・ Magnification: 100,000 to 1,000,000 times ・ Viewing field: 1500 nm × 1500 nm to 160 nm × 160 nm
Elemental concentration line analysis was performed for a length of 50 to 1000 nm through the carrier / intermediate layer / ultra thin copper layer. Carbon was excluded from the detected elements, and the concentration (% by mass) of each element was analyzed.
STEM evaluation is also applied to the case after bonding the ultrathin copper layer side of the copper foil with a carrier on the insulating substrate and performing pressure bonding in the atmosphere at 20 kgf / cm 2 and 220 ° C. × 2 hours. went.
In addition, the evaluation by the above-mentioned STEM was performed in a long side direction of each sample sheet at a total of three locations, one in each region within 50 mm from both ends and one in a 50 mm × 50 mm region at the center. The three measurement locations are shown in FIG. In addition, the values obtained by arithmetically averaging the maximum value of nickel concentration, the maximum value of molybdenum concentration, and the maximum value of cobalt concentration at the three locations were set as the maximum value of Kel concentration, the maximum value of molybdenum concentration, and the maximum value of cobalt concentration, respectively. .
When the sample size is small, the above-mentioned region within 50 mm from both ends and the 50 mm × 50 mm region at the center may overlap.
<ピンホール>
 民生用の写真用バックライトを光源にして、目視でピンホールの数を測定した。なお、ピンホール個数はキャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後、キャリアを剥離し、絶縁基板側からバックライトを透過させて測定した。
<Pinhole>
The number of pinholes was visually measured using a consumer photographic backlight as a light source. The number of pinholes is determined by bonding the ultrathin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere. It peeled and measured by making a backlight permeate | transmit from the insulating substrate side.
<剥離強度>
 キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後、剥離強度は、ロードセルにて銅箔キャリア側を引っ張り、90°剥離法(JIS C 6471 8.1)に準拠して測定した。また、絶縁基板上に貼り合わせる前のキャリア付銅箔も同様に剥離強度を測定しておいた。
<Peel strength>
After bonding the ultra-thin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere, the peel strength is measured with a load cell. The foil carrier side was pulled and measured according to the 90 ° peeling method (JIS C 6471 8.1). Further, the peel strength of the carrier-attached copper foil before being bonded onto the insulating substrate was also measured.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(評価結果)
 実施例1~7は、中間層において、ニッケルの付着量が1000~40000μg/dm2、モリブデンを含む場合はモリブデンの付着量が50~1000μg/dm2、コバルトを含む場合はコバルトの付着量が50~1000μg/dm2であり、銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50~95質量%であり、且つニッケルより極薄銅層側に、モリブデンまたはコバルトが最大値で1~50質量%存在していたため、いずれもピンホールが良好に抑制されており、さらに良好な剥離強度を示した。
 比較例1及び2は、ニッケル、コバルト、モリブデンが存在しないため、プレス前後で剥離できなかった。
 比較例3は、モリブデン、コバルトが存在しないため、プレス後に剥離できなかった。
 比較例4は、モリブデン、コバルトが存在せず、ニッケルの付着量が少ないため、プレス前後で剥離できなかった。
 比較例5及び7は、コバルトの付着量が多すぎたため、ピンホールが多発し、剥離強度が低くなりすぎた。
 比較例6は、モリブデンの付着量が多すぎたため、ピンホールが多発し、剥離強度が低くなりすぎた。
 比較例8は、断面のSTEM線分析で測定されたモリブデンとコバルトの濃度が低いため、プレス後に剥離不可になった。
 図5に、実施例5に係る基板圧着後の断面の濃度プロファイルを示す。図6に、比較例3に係る基板圧着後の断面の濃度プロファイルを示す。なお、図5、図6共にグラフの左側が銅箔キャリア側、右側が極薄銅層側を示す。
(Evaluation results)
In Examples 1 to 7, in the intermediate layer, the adhesion amount of nickel is 1000 to 40000 μg / dm 2. When molybdenum is included, the adhesion amount of molybdenum is 50 to 1000 μg / dm 2 . 50 to 1000 μg / dm 2 , and the maximum nickel concentration when a 50 to 1000 nm long STEM line analysis was performed in the range including all of them in this order from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer Is 50 to 95% by mass, and molybdenum or cobalt is present at the maximum value of 1 to 50% by mass on the ultrathin copper layer side from nickel. Showed good peel strength.
In Comparative Examples 1 and 2, since nickel, cobalt, and molybdenum were not present, peeling was not possible before and after pressing.
In Comparative Example 3, since molybdenum and cobalt were not present, peeling was not possible after pressing.
In Comparative Example 4, molybdenum and cobalt were not present, and the amount of nickel deposited was small, so that peeling was not possible before and after pressing.
In Comparative Examples 5 and 7, since the amount of cobalt deposited was too large, pinholes occurred frequently and the peel strength was too low.
In Comparative Example 6, since the amount of molybdenum deposited was too large, pinholes occurred frequently and the peel strength was too low.
In Comparative Example 8, the concentration of molybdenum and cobalt measured by the STEM line analysis of the cross section was low, so that peeling became impossible after pressing.
In FIG. 5, the density | concentration profile of the cross section after the board | substrate pressure bonding which concerns on Example 5 is shown. FIG. 6 shows a concentration profile of a cross section after the substrate is crimped according to Comparative Example 3. 5 and 6, the left side of the graph is the copper foil carrier side, and the right side is the ultrathin copper layer side.

Claims (24)

  1.  銅箔キャリア、中間層、極薄銅層をこの順に有するキャリア付銅箔であって、
     前記中間層は、前記銅箔キャリア側から、ニッケルと、モリブデンまたはコバルトまたはモリブデン-コバルト合金とがこの順で積層されて構成されており、
     前記中間層において、ニッケルの付着量が1000~40000μg/dm2、モリブデンを含む場合はモリブデンの付着量が50~1000μg/dm2、コバルトを含む場合はコバルトの付着量が50~1000μg/dm2であり、
     前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50~95質量%であり、且つニッケルより極薄銅層側に、モリブデンまたはコバルトが最大値で1~50質量%存在するキャリア付銅箔。
    A copper foil with a carrier having a copper foil carrier, an intermediate layer, and an ultrathin copper layer in this order,
    The intermediate layer is configured by laminating nickel and molybdenum or cobalt or a molybdenum-cobalt alloy in this order from the copper foil carrier side.
    In the intermediate layer, the adhesion amount of nickel is 1000 to 40000 μg / dm 2 , when molybdenum is included, the adhesion amount of molybdenum is 50 to 1000 μg / dm 2 , and when it includes cobalt, the adhesion amount of cobalt is 50 to 1000 μg / dm 2. And
    When a 50 to 1000 nm long STEM line analysis is performed in a range including all of the copper foil carrier / intermediate layer / ultra thin copper layer in this order, the maximum nickel concentration is 50 to 95% by mass. And a copper foil with a carrier in which molybdenum or cobalt is present at a maximum value of 1 to 50% by mass on the ultrathin copper layer side from nickel.
  2.  前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、
     前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50~95質量%であり、且つニッケルより極薄銅層側に、モリブデンまたはコバルトが最大値で1~50質量%存在する請求項1に記載のキャリア付銅箔。
    When the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours,
    When a 50 to 1000 nm long STEM line analysis is performed in a range including all of the copper foil carrier / intermediate layer / ultra thin copper layer in this order, the maximum nickel concentration is 50 to 95% by mass. The copper foil with a carrier according to claim 1, wherein a maximum of 1 to 50 mass% of molybdenum or cobalt is present on the ultrathin copper layer side of nickel.
  3.  前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、
     前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50~1000nm長STEM線分析を行ったとき、ニッケルと、モリブデン及び/またはコバルトと、銅とが共存する箇所の銅濃度最小値が10~65質量%となる請求項1又は2に記載のキャリア付銅箔。
    When the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours,
    Locations where nickel, molybdenum and / or cobalt, and copper coexist when a 50 to 1000 nm long STEM line analysis is performed in a range including all of these from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer The copper foil with a carrier according to claim 1 or 2, wherein the minimum copper concentration is 10 to 65 mass%.
  4.  前記中間層のモリブデン-コバルト合金のコバルトの濃度が20~80質量%である請求項1~3のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 1 to 3, wherein a concentration of cobalt in the molybdenum-cobalt alloy in the intermediate layer is 20 to 80% by mass.
  5.  前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている請求項1~4のいずれか一項に記載のキャリア付銅箔。 The carrier-attached copper foil according to any one of claims 1 to 4, wherein the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.
  6.  前記極薄銅層表面に粗化処理層を有する請求項1~5のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 1 to 5, which has a roughened layer on the surface of the ultrathin copper layer.
  7.  前記粗化処理層が、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項6に記載のキャリア付銅箔。 The roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium, and zinc, or an alloy containing at least one kind. Item 7. A copper foil with a carrier according to Item 6.
  8.  前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項6又は7に記載のキャリア付銅箔。 The copper with a carrier according to claim 6 or 7 which has one or more sorts of layers chosen from the group which consists of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of said roughening treatment layer. Foil.
  9.  前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1~8のいずれか一項に記載のキャリア付銅箔。 The surface of the ultrathin copper layer has at least one layer selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer. The copper foil with a carrier of description.
  10.  前記極薄銅層上に樹脂層を備える請求項1~5のいずれか一項に記載のキャリア付銅箔。 The carrier-attached copper foil according to any one of claims 1 to 5, further comprising a resin layer on the ultrathin copper layer.
  11.  前記粗化処理層上に樹脂層を備える請求項6~8のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 6 to 8, further comprising a resin layer on the roughening treatment layer.
  12.  前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える請求項8又は9に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 8 or 9, wherein a resin layer is provided on one or more layers selected from the group consisting of the heat-resistant layer, the rust prevention layer, the chromate treatment layer and the silane coupling treatment layer.
  13.  前記樹脂層が誘電体を含む請求項10~12のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 10 to 12, wherein the resin layer contains a dielectric.
  14.  請求項1~13のいずれか一項に記載のキャリア付銅箔を用いて製造したプリント配線板。 A printed wiring board manufactured using the carrier-attached copper foil according to any one of claims 1 to 13.
  15.  請求項1~13のいずれか一項に記載のキャリア付銅箔を用いて製造したプリント回路板。 A printed circuit board manufactured using the carrier-attached copper foil according to any one of claims 1 to 13.
  16.  請求項1~13のいずれか一項に記載のキャリア付銅箔を用いて製造した銅張積層板。 A copper-clad laminate produced using the carrier-attached copper foil according to any one of claims 1 to 13.
  17.  銅箔キャリア上に、乾式めっき又は湿式めっきにより、ニッケル層を形成し、前記ニッケル層の上にモリブデン層又はコバルト層又はモリブデン-コバルト合金層を形成することで中間層を形成する工程と、前記中間層上に電気めっきにより極薄銅層を形成する工程とを含む請求項1~13のいずれか一項に記載のキャリア付銅箔の製造方法。 Forming a nickel layer on the copper foil carrier by dry plating or wet plating, and forming an intermediate layer by forming a molybdenum layer, a cobalt layer, or a molybdenum-cobalt alloy layer on the nickel layer; and The method for producing a copper foil with a carrier according to any one of claims 1 to 13, comprising a step of forming an ultrathin copper layer on the intermediate layer by electroplating.
  18.  前記極薄銅層上に粗化処理層を形成する工程を含む請求項17に記載のキャリア付銅箔の製造方法。 The manufacturing method of the copper foil with a carrier of Claim 17 including the process of forming a roughening process layer on the said ultra-thin copper layer.
  19.  請求項1~13のいずれか一項に記載のキャリア付銅箔と絶縁基板とを準備する工程、
     前記キャリア付銅箔と絶縁基板とを積層する工程、
     前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
    その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。
    Preparing a carrier-attached copper foil according to any one of claims 1 to 13 and an insulating substrate;
    Laminating the copper foil with carrier and an insulating substrate;
    After laminating the carrier-attached copper foil and the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the carrier-attached copper foil,
    Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
  20.  請求項1~13のいずれか一項に記載のキャリア付銅箔の前記極薄銅層側表面に回路を形成する工程、
     前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面に樹脂層を形成する工程、
     前記樹脂層上に回路を形成する工程、
     前記樹脂層上に回路を形成した後に、前記キャリアを剥離させる工程、及び、
     前記キャリアを剥離させた後に、前記極薄銅層を除去することで、前記極薄銅層側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
    を含むプリント配線板の製造方法。
    Forming a circuit on the ultrathin copper layer side surface of the carrier-attached copper foil according to any one of claims 1 to 13,
    Forming a resin layer on the ultrathin copper layer side surface of the carrier-attached copper foil so that the circuit is buried;
    Forming a circuit on the resin layer;
    Forming the circuit on the resin layer, and then peeling the carrier; and
    After the carrier is peeled off, the printed wiring board includes a step of exposing the circuit embedded in the resin layer formed on the surface of the ultrathin copper layer by removing the ultrathin copper layer Method.
  21.  前記樹脂層上に回路を形成する工程が、前記樹脂層上に別のキャリア付銅箔を極薄銅層側から貼り合わせ、前記樹脂層に貼り合わせたキャリア付銅箔を用いて前記回路を形成する工程である請求項20に記載のプリント配線板の製造方法。 The step of forming a circuit on the resin layer includes attaching another carrier-attached copper foil on the resin layer from the ultrathin copper layer side, and using the carrier-attached copper foil attached to the resin layer to form the circuit. The method for manufacturing a printed wiring board according to claim 20, wherein the method is a forming step.
  22.  前記樹脂層上に貼り合わせる別のキャリア付銅箔が、請求項1~13のいずれか一項に記載のキャリア付銅箔である請求項21に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 21, wherein the carrier-attached copper foil to be bonded onto the resin layer is the carrier-attached copper foil according to any one of claims 1 to 13.
  23.  前記樹脂層上に回路を形成する工程が、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行われる請求項20~22のいずれか一項に記載のプリント配線板の製造方法。 The print according to any one of claims 20 to 22, wherein the step of forming a circuit on the resin layer is performed by any one of a semi-additive method, a subtractive method, a partly additive method, and a modified semi-additive method. A method for manufacturing a wiring board.
  24.  前記表面に回路を形成するキャリア付銅箔が、当該キャリア付銅箔のキャリアの表面に基板または樹脂層を有する請求項20~23のいずれか一項に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to any one of claims 20 to 23, wherein the copper foil with a carrier forming a circuit on the surface has a substrate or a resin layer on the surface of the carrier of the copper foil with the carrier.
PCT/JP2013/082081 2012-11-28 2013-11-28 Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board WO2014084321A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-260171 2012-11-28
JP2012260171 2012-11-28
JP2012-270749 2012-12-11
JP2012270749A JP5247929B1 (en) 2012-11-28 2012-12-11 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board

Publications (1)

Publication Number Publication Date
WO2014084321A1 true WO2014084321A1 (en) 2014-06-05

Family

ID=49041866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082081 WO2014084321A1 (en) 2012-11-28 2013-11-28 Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board

Country Status (3)

Country Link
JP (1) JP5247929B1 (en)
TW (1) TWI512151B (en)
WO (1) WO2014084321A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111345120A (en) * 2017-11-30 2020-06-26 凸版印刷株式会社 Glass core, multilayer wiring board, and method for manufacturing glass core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521099B1 (en) * 2013-09-02 2014-06-11 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
TWI593548B (en) * 2015-01-09 2017-08-01 Jx Nippon Mining & Metals Corp Attached to the metal substrate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
CN1984527A (en) * 2005-12-15 2007-06-20 古河电路铜箔株式会社 Ultrathin copper foil with carrier and printed circuit board
KR20070064283A (en) * 2005-12-15 2007-06-20 후루카와서키트호일가부시끼가이샤 Copper foil attached to the carrier and printed circuit board using the same
EP1802183A2 (en) * 2005-12-15 2007-06-27 Furukawa Circuit Foil Co., Ltd. Ultrathin copper foil with carrier and printed circuit board using same
JP2010258398A (en) * 2009-03-31 2010-11-11 Jx Nippon Mining & Metals Corp Copper foil for printed circuit board
JP4659140B2 (en) * 2009-06-30 2011-03-30 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
JP2011129685A (en) * 2009-12-17 2011-06-30 Jx Nippon Mining & Metals Corp Environmentally friendly copper foil for printed wiring board
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006071A (en) * 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
CN102643543B (en) * 2011-02-18 2014-09-17 中国科学院深圳先进技术研究院 Composite dielectric material, copper-clad foil prepreg manufactured and copper-clad foil laminated board by using composite dielectric material

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038049A1 (en) * 2000-09-18 2004-02-26 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
EP1331088A1 (en) * 2000-09-22 2003-07-30 Circuit Foil Japan Co. Ltd Copper foil for high-density ultrafine wiring board
CN1466517A (en) * 2000-09-22 2004-01-07 �źӵ�·ͭ����ʽ���� Copper foil for high-density ultrafine wiring board
JP2006022406A (en) * 2000-09-22 2006-01-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier
TWI276708B (en) * 2000-09-22 2007-03-21 Furukawa Circuit Foil Copper foil for high-density ultra-fine printed wiring board
MY146636A (en) * 2000-09-22 2012-09-14 Furukawa Electric Co Ltd Copper foil for high-density ultra-fine printed wiring board
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
US20070154692A1 (en) * 2005-12-15 2007-07-05 Furukawa Circuit Foil Co., Ltd. Ultrathin copper foil with carrier and printed circuit board using same
CN1984527A (en) * 2005-12-15 2007-06-20 古河电路铜箔株式会社 Ultrathin copper foil with carrier and printed circuit board
KR20070064283A (en) * 2005-12-15 2007-06-20 후루카와서키트호일가부시끼가이샤 Copper foil attached to the carrier and printed circuit board using the same
JP2007186782A (en) * 2005-12-15 2007-07-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and printed circuit board using the same
TW200803640A (en) * 2005-12-15 2008-01-01 Furukawa Circuit Foil Ultrathin copper foil with carrier and printed circuit board
DE602006010161D1 (en) * 2005-12-15 2009-12-17 Furukawa Electric Co Ltd Ultrathin copper foil with carrier and circuit board and its use
EP1802183A2 (en) * 2005-12-15 2007-06-27 Furukawa Circuit Foil Co., Ltd. Ultrathin copper foil with carrier and printed circuit board using same
JP2010258398A (en) * 2009-03-31 2010-11-11 Jx Nippon Mining & Metals Corp Copper foil for printed circuit board
JP4659140B2 (en) * 2009-06-30 2011-03-30 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
JP2011129685A (en) * 2009-12-17 2011-06-30 Jx Nippon Mining & Metals Corp Environmentally friendly copper foil for printed wiring board
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
TW201229322A (en) * 2010-10-06 2012-07-16 Furukawa Electric Co Ltd Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
CN103154327A (en) * 2010-10-06 2013-06-12 古河电气工业株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
EP2615196A1 (en) * 2010-10-06 2013-07-17 Furukawa Electric Co., Ltd. Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
US20130220679A1 (en) * 2010-10-06 2013-08-29 Furukawa Electric Co., Ltd. Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111345120A (en) * 2017-11-30 2020-06-26 凸版印刷株式会社 Glass core, multilayer wiring board, and method for manufacturing glass core

Also Published As

Publication number Publication date
JP2014129554A (en) 2014-07-10
JP5247929B1 (en) 2013-07-24
TW201435154A (en) 2014-09-16
TWI512151B (en) 2015-12-11

Similar Documents

Publication Publication Date Title
WO2014024994A1 (en) Copper foil with carrier attached thereto
WO2014042201A1 (en) Copper foil provided with carrier
WO2014080959A1 (en) Copper foil with carrier
WO2014065430A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
JP6379038B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
WO2015012376A1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
JP2014193606A (en) Carrier-fitted copper foil, copper-clad laminate sheet using the same, printed wiring board, electronic appliance using the same, and method for manufacturing printed wiring board
WO2014084385A1 (en) Copper foil with carrier
WO2014017606A1 (en) Copper foil with carrier
WO2014084384A1 (en) Carrier-supported copper foil
JP2015200026A (en) Carrier-provided copper foil, printed wiring board, laminate, laminate sheet, electronic equipment and method of producing printed wiring board
WO2014065431A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
JP6310193B2 (en) Copper foil with carrier, method for producing the same, method for producing copper-clad laminate, and method for producing printed wiring board
JP6593979B2 (en) Surface treated copper foil, copper foil with carrier, base material, copper clad laminate manufacturing method, electronic device manufacturing method, and printed wiring board manufacturing method
JP2016146477A (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, laminate, printed wiring board, method for manufacturing electronic apparatus, and method for manufacturing printed wiring board
JP6343205B2 (en) Copper foil with carrier and laminate manufacturing method using the same, printed wiring board, electronic device, printed wiring board manufacturing method, and electronic device manufacturing method
JP6415033B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP6377329B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP2015009556A (en) Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP6396967B2 (en) Copper foil with carrier and copper clad laminate using copper foil with carrier
JP6310191B2 (en) Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board
WO2014084321A1 (en) Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board
JP2015205481A (en) Copper foil with carrier, copper-clad laminate, printed wiring board, electronic apparatus and manufacturing method of printed wiring board
JP2015061757A (en) Copper foil with carrier and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015200025A (en) Carrier-provided copper foil, printed wiring board, laminate sheet, electronic equipment, laminate and method of producing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859038

Country of ref document: EP

Kind code of ref document: A1