WO2022153580A1 - Surface-treated copper foil, copper-clad laminate, and printed wiring board - Google Patents

Surface-treated copper foil, copper-clad laminate, and printed wiring board Download PDF

Info

Publication number
WO2022153580A1
WO2022153580A1 PCT/JP2021/026045 JP2021026045W WO2022153580A1 WO 2022153580 A1 WO2022153580 A1 WO 2022153580A1 JP 2021026045 W JP2021026045 W JP 2021026045W WO 2022153580 A1 WO2022153580 A1 WO 2022153580A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
treated
layer
treatment layer
base material
Prior art date
Application number
PCT/JP2021/026045
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 松岡
翔平 岩沢
郁浩 五刀
誓哉 中島
敦史 三木
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to PCT/JP2022/001216 priority Critical patent/WO2022154102A1/en
Priority to TW111101709A priority patent/TW202229651A/en
Priority to KR1020237019472A priority patent/KR20230104700A/en
Priority to JP2022575656A priority patent/JPWO2022154102A1/ja
Publication of WO2022153580A1 publication Critical patent/WO2022153580A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding

Definitions

  • This disclosure relates to surface-treated copper foil, copper-clad laminates, and printed wiring boards.
  • Copper-clad laminates are widely used in various applications such as flexible printed wiring boards.
  • This flexible printed wiring board is mounted by etching the copper foil of a copper-clad laminate to form a conductor pattern (also called a "wiring pattern") and connecting electronic components on the conductor pattern with solder. Manufactured.
  • the causes of signal power loss (transmission loss) in electronic circuits can be broadly divided into two.
  • the first is the conductor loss, that is, the loss due to the copper foil
  • the second is the dielectric loss, that is, the loss due to the resin base material.
  • the conductor loss has a skin effect in the high frequency region and has the characteristic that the current flows on the surface of the conductor. Therefore, if the surface of the copper foil is rough, the current will flow along a complicated path. Therefore, in order to reduce the conductor loss of the high frequency signal, it is desirable to reduce the surface roughness of the copper foil.
  • transmission loss and “conductor loss” are simply used in the present specification, they mainly mean “transmission loss of high frequency signal” and "conductor loss of high frequency signal”.
  • Patent Document 1 proposes a method of providing a roughening treatment layer formed of roughened particles on a copper foil and forming a silane coupling treatment layer on the outermost surface layer.
  • the surface of the copper foil on which the surface treatment layer is formed generally has minute irregularities.
  • minute irregularities for example, in the case of rolled copper foil, oil pits formed by rolling oil during rolling are formed on the surface as minute uneven portions.
  • the polishing streaks of the rotating drum formed during polishing cause minute uneven portions on the surface of the electrolytic copper foil on the rotating drum side, which are deposited and formed on the rotating drum. If the copper foil has minute irregularities, for example, when forming the roughening treatment layer, the current is concentrated in the convex portions and the roughened particles are overgrown, while the current is not sufficiently supplied in the concave portions. It becomes difficult for the roughened particles to grow.
  • a resin base material formed of a low dielectric material such as a liquid crystal polymer or a low dielectric polyimide is more difficult to adhere to a copper foil than a conventional resin base material, so that the adhesiveness between the copper foil and the resin base material is improved. It is desired to develop a method to enhance it. Further, although the silane coupling treatment layer has an effect of improving the adhesiveness between the copper foil and the resin base material, the effect of improving the adhesiveness may not be sufficient depending on the type.
  • the embodiment of the present invention has been made to solve the above-mentioned problems, and in one aspect, it is possible to enhance the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications. It is an object of the present invention to provide a surface-treated copper foil. Further, in another aspect, the embodiment of the present invention provides a copper-clad laminate having excellent adhesion between a resin base material, particularly a resin base material suitable for high-frequency applications, and a surface-treated copper foil. The purpose. Further, an embodiment of the present invention aims to provide a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern, in another aspect. ..
  • the present inventors have added a trace amount of tungsten compound to the plating solution used for forming the roughening-treated layer to obtain the copper foil. It was found that the overgrowth of the roughened particles formed in the convex portion can be suppressed and the roughened particles can be easily formed in the concave portion of the copper foil. Then, the present inventors analyzed the surface shape of the surface-treated copper foil thus obtained, and found that the Sku and Str of the surface-treated layer are closely related to this surface shape. We have found and completed the embodiment of the present invention.
  • the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil on one side surface, and the surface-treated layer has Sku of 2.50 to 2.50. It relates to a surface-treated copper foil having 4.50 and a Str of 0.20 to 0.40. In another aspect, an embodiment of the present invention relates to a copper-clad laminate comprising the surface-treated copper foil and a resin base material adhered to the surface-treated layer of the surface-treated copper foil. Further, an embodiment of the present invention relates to a printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate on another side surface.
  • a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications, on one side.
  • a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil is provided. be able to.
  • a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern. ..
  • the surface-treated copper foil according to the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil.
  • the surface treatment layer may be formed on only one surface of the copper foil, or may be formed on both surfaces of the copper foil.
  • the type of the surface treatment layer may be the same or different.
  • the surface treatment layer has a Sku (Kurtosis) of 2.50 to 4.50.
  • Sk is defined in ISO 25178-2: 2012.
  • the surface-treated copper foil according to the embodiment of the present invention has irregularities on the surface, and the irregularities contribute to the improvement of the adhesiveness between the copper foil and the resin base material.
  • the Sk of the surface treatment layer is an index for evaluating the height distribution of the unevenness.
  • the Sku of the surface treatment layer is 2.50 to 4.50, it means that the height distribution is a normal distribution or a distribution state close to it.
  • the fact that the Sk of the surface treatment layer is less than 2.50 is a result of various mixing of low and high heights of the surface treatment layer (height from the copper foil surface), resulting in a height distribution. Means that is an unbiased distribution.
  • the fact that the Sk of the surface treatment layer is larger than 4.50 means that the height distribution is uneven, that is, the surface of the surface treatment layer is in a state where a certain height portion protrudes and occupies a large part.
  • the height distribution of the surface-treated layer is a normal distribution or a distribution state close to that, for example, when a roughened-treated layer is formed on the surface of the copper foil, the roughened particles overgrown in the convex portion of the copper foil, that is, coarse particles. This means that there are few roughened particles or recesses of the copper foil where the roughened particles are not formed.
  • the Sku of the surface treatment layer is 2.50 to 4.50, the overgrowth of the roughened particles formed on the convex portion of the copper foil is suppressed, and the roughened particles are also suppressed on the concave portion of the copper foil. Means the state in which is formed.
  • a surface-treated copper foil having a large amount of coarse roughened particles nor a surface-treated copper foil having a portion where roughened particles are formed is preferable from the viewpoint of adhesiveness to a resin base material.
  • a surface-treated copper foil having many coarse roughened particles if a force is applied to peel off the surface-treated copper foil after bonding with a resin base material, stress is concentrated on the coarse roughened particles and the particles are easily broken. On the contrary, it is considered that the adhesive force to the resin base material is reduced. Further, in the surface-treated copper foil in which the roughened particles are not formed, the anchor effect due to the roughened particles cannot be sufficiently secured, and the adhesive force between the surface-treated copper foil and the resin base material is lowered. Conceivable.
  • the present inventors have found that Sk of the surface-treated layer is involved in the adhesiveness with the resin substrate. rice field. From the viewpoint of stably obtaining the adhesive force to the resin base material, the Sku of the surface treatment layer is preferably 2.80 to 4.00, and more preferably 2.90 to 3.75. The Sk of the surface treatment layer is measured in accordance with ISO 25178-2: 2012.
  • the surface treatment layer has a Str (texture aspect ratio) of 0.20 to 0.40.
  • Str is a spatial parameter defined in ISO 25178-2: 2012 and represents the strength of surface anisotropy and isotropic. Str is in the range of 0 to 1, and the closer it is to 0, the stronger the anisotropy (for example, the larger the streaks). On the contrary, the closer the Str is to 1, the stronger the isotropic property.
  • the Str of the surface treatment layer is 0.20 to 0.40
  • the surface of the surface treatment layer has an appropriate anisotropy. This state means that the surface treatment layer is uniformly formed along the minute uneven portions on the surface of the copper foil.
  • the roughening treatment layer when the roughening treatment layer is formed on the surface of the copper foil, it means that there are few roughened particles overgrown in the convex portions and few roughened particles are not formed in the concave portions. That is, when the Str of the surface treatment layer is 0.20 to 0.40, the overgrowth of the roughened particles formed in the convex portion of the copper foil is suppressed, and the roughened particles are also formed in the concave portion of the copper foil. It means the state of being done. As a result, the anchoring effect of the roughened particles can be sufficiently ensured, so that the adhesive force between the surface-treated copper foil and the resin base material is increased. From the viewpoint of stably obtaining such an effect, the Str of the surface treatment layer is preferably 0.26 to 0.35. The Str of the surface treatment layer is measured according to ISO 25178-2: 2012.
  • the surface treatment layer preferably has a Sa (arithmetic mean height) of 0.18 to 0.43 ⁇ m.
  • Sa is a parameter in the height direction defined in ISO 25178-2: 2012, and represents the average height difference from the average plane. If the Sa of the surface-treated layer is too large, the surface of the surface-treated layer becomes rough, so that the anchor effect is likely to be exhibited when the surface-treated copper foil is adhered to the resin base material.
  • a circuit board is produced by processing a copper-clad laminate in which a surface-treated copper foil having a large Sa (that is, a rough surface) and a resin base material are bonded to each other, the skin of the surface-treated copper foil is formed. The effect increases the transmission loss.
  • the lower limit value of Sa of the surface treatment layer is preferably 0.20 ⁇ m, more preferably 0.24 ⁇ m, and the upper limit value is preferably 0.40 ⁇ m, more preferably 0. It is .35 ⁇ m.
  • the surface treatment layer preferably has an Sq (root mean square height) of 0.26 to 0.53 ⁇ m.
  • Sq is a parameter in the height direction defined in ISO 25178-2: 2012, and represents a variation in the height of the convex portion on the surface of the surface treatment layer.
  • Sq root mean square height
  • the lower limit value of Sq of the surface treatment layer is preferably 0.30 ⁇ m, more preferably 0.34 ⁇ m, and the upper limit value is preferably 0.48 ⁇ m, more preferably 0. It is .43 ⁇ m.
  • the surface treatment layer has a Sa of 0.20 to 0.32 ⁇ m and an Sq of 0.26 to 0. It is preferably .40 ⁇ m.
  • the surface treatment layer preferably has an Sdr (developed interface area ratio) of 38 to 79%.
  • Sdr is a composite parameter defined in ISO 25178-2: 2012 and represents the rate of increase in the surface. In other words, it represents the rate of increase in the actual surface area with respect to the area when a surface is viewed in a plan view. If the Sdr of the surface-treated layer is too large, the surface of the surface-treated layer becomes dense and undulating, so that the anchor effect is likely to be exhibited when the surface-treated copper foil is adhered to the resin base material, while transmission is performed by the skin effect. The loss will be large. Therefore, by setting the Sdr of the surface treatment layer within the above range, it is possible to secure a balance between ensuring the anchor effect and suppressing transmission loss.
  • the type of the surface treatment layer is not particularly limited, and various surface treatment layers known in the art can be used.
  • the surface treatment layer include a roughening treatment layer, a heat resistance treatment layer, a rust prevention treatment layer, a chromate treatment layer, a silane coupling treatment layer and the like. These layers can be used alone or in combination of two or more.
  • the surface treatment layer preferably contains a roughening treatment layer from the viewpoint of adhesiveness to the resin base material.
  • the surface treatment layer contains one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer, these layers are roughened treatment layers. It is preferably provided on top.
  • FIG. 1 shows a schematic enlarged cross-sectional view of a surface-treated copper foil having a roughening-treated layer on one surface of the copper foil.
  • the roughening-treated layer formed on one surface of the copper foil 10 includes roughened particles 20 and a cover plating layer 30 that covers at least a part of the roughened particles 20.
  • the roughened particles 20 are formed not only in the convex portion 11 of the copper foil 10 but also in the concave portion 12. Further, overgrowth of the roughened particles 20 formed on the convex portion 11 of the copper foil 10 is suppressed by adding a trace amount of a tungsten compound to the plating solution. Therefore, the roughened particles 20 do not overgrow into particles having a large particle size, and have a complicated shape that grows in each direction. It is considered that such a structure can be obtained by controlling parameters such as Sk and Str of the surface treatment layer within the above range.
  • the roughened particles 20 are not particularly limited, but may be a single element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or two or more of these elements. It can be formed from the containing alloy. Among them, the roughened particles 20 are preferably formed of copper or a copper alloy, particularly copper.
  • the cover plating layer 30 is not particularly limited, but can be formed of copper, silver, gold, nickel, cobalt, zinc, or the like.
  • the roughened layer can be formed by electroplating.
  • the roughened particles 20 can be formed by electroplating using a plating solution to which a trace amount of tungsten compound is added.
  • the tungsten compound is not particularly limited, but for example, sodium tungstate (Na 2 WO 4 ) or the like can be used.
  • the content of the tungsten compound in the plating solution is preferably 1 ppm or more. With such a content, it is possible to suppress the overgrowth of the roughened particles 20 formed in the convex portion 11 and facilitate the formation of the roughened particles 20 in the concave portion 12.
  • the upper limit of the content of the tungsten compound is not particularly limited, but is preferably 20 ppm from the viewpoint of suppressing an increase in electrical resistance.
  • the electroplating conditions for forming the roughening treatment layer may be adjusted according to the electroplating apparatus to be used, and are not particularly limited, but typical conditions are as follows. Each electroplating may be performed once or a plurality of times. (Conditions for forming roughened particles 20) Plating solution composition: 5 to 15 g / L Cu, 40 to 100 g / L sulfuric acid, 1 to 6 ppm sodium tungstate Plating solution temperature: 20 to 50 ° C. Electroplating conditions: current density 30-90 A / dm 2 , time 0.1-8 seconds
  • Plating solution composition 10 to 30 g / L Cu, 70 to 130 g / L sulfuric acid Plating solution temperature: 30 to 60 ° C.
  • Electroplating conditions current density 4.8 to 15 A / dm 2 , time 0.1 to 8 seconds
  • the heat-resistant treatment layer and the rust-prevention treatment layer are not particularly limited, and can be formed from materials known in the art. Since the heat-resistant treatment layer may also function as a rust-preventive treatment layer, one layer having both the functions of the heat-resistant treatment layer and the rust-preventive treatment layer is formed as the heat-resistant treatment layer and the rust-preventive treatment layer. May be good.
  • the heat-resistant layer and / or rust-preventive layer includes nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • the heat-resistant treatment layer and / or the rust-prevention treatment layer is preferably a Ni—Zn layer.
  • the heat-resistant treatment layer and the rust-prevention treatment layer can be formed by electroplating.
  • the conditions may be adjusted according to the electroplating apparatus used and are not particularly limited, but the conditions for forming the heat-resistant treatment layer (Ni—Zn layer) using a general electroplating apparatus are as follows. be.
  • the electroplating may be performed once or a plurality of times.
  • Plating solution composition 1 to 30 g / L Ni, 1 to 30 g / L Zn Plating solution pH: 2-5
  • Plating liquid temperature 30 to 50 ° C
  • Electroplating conditions current density 0.1-10 A / dm 2 , time 0.1-5 seconds
  • the chromate-treated layer is not particularly limited and can be formed from a material known in the art.
  • the term "chromate-treated layer" as used herein means a layer formed of a liquid containing chromic anhydride, chromic acid, chromic acid, chromate or dichromate.
  • the chromate-treated layer can be any element (metal, alloy, oxide, nitride, sulfide, etc.) such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, and titanium. It can be a layer containing (may be in the form).
  • Examples of the chromate-treated layer include a chromate-treated layer treated with an aqueous solution of chromic anhydride or potassium dichromate, and a chromate-treated layer treated with a treatment solution containing chromic anhydride or potassium dichromate and zinc.
  • the chromate-treated layer can be formed by a known method such as immersion chromate treatment and electrolytic chromate treatment. These conditions are not particularly limited, but for example, the conditions for forming a general chromate-treated layer are as follows.
  • the chromate treatment may be performed once or a plurality of times.
  • Chromate solution composition 1 to 10 g / L K 2 Cr 2 O 7 , 0.01 to 10 g / L Zn Chromate solution pH: 2-5
  • Chromate liquid temperature 30-55 ° C
  • Electrolytic conditions Current density 0.1 to 10 A / dm 2 , time 0.1 to 5 seconds (in the case of electrolytic chromate treatment)
  • the silane coupling treatment layer is not particularly limited, and can be formed from a material known in the art.
  • the term "silane coupling-treated layer" as used herein means a layer formed of a silane coupling agent.
  • the silane coupling agent is not particularly limited, and those known in the art can be used.
  • Examples of silane coupling agents include amino-based silane coupling agents, epoxy-based silane coupling agents, mercapto-based silane coupling agents, metharoxy-based silane coupling agents, vinyl-based silane coupling agents, and imidazole-based silane coupling agents. , Triazine-based silane coupling agent and the like. Among these, amino-based silane coupling agents and epoxy-based silane coupling agents are preferable.
  • the above silane coupling agent can be used alone or in combination of two or more.
  • a typical method for forming a silane coupling treatment layer a method of forming a silane coupling treatment layer by applying a 1 to 3% by volume aqueous solution of the above-mentioned silane coupling agent and drying it can be mentioned.
  • the copper foil 10 is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil.
  • Electrolytic copper foil is generally manufactured by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath, but a flat S surface (shine surface) formed on the rotating drum side and an S surface. It has an M surface (matte surface) formed on the opposite side of the surface.
  • the M surface of the electrolytic copper foil generally has minute uneven portions.
  • the S surface of the electrolytic copper foil has minute uneven portions because the polishing streaks of the rotating drum formed during polishing are transferred.
  • the rolled copper foil has minute uneven portions on the surface because oil pits are formed by rolling oil during rolling.
  • the material of the copper foil 10 is not particularly limited, but when the copper foil 10 is a rolled copper foil, tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100) usually used as a circuit pattern of a printed wiring board are used.
  • High-purity copper such as alloy number C1020 or JIS H3510 alloy number C1011) can be used.
  • copper alloys such as Sn-containing copper, Ag-containing copper, copper alloys to which Cr, Zr, Mg and the like are added, and Corson-based copper alloys to which Ni and Si and the like are added can also be used.
  • copper foil 10 is a concept including copper alloy foil.
  • the thickness of the copper foil 10 is not particularly limited, but may be, for example, 1 to 1000 ⁇ m, 1 to 500 ⁇ m, 1 to 300 ⁇ m, 3 to 100 ⁇ m, 5 to 70 ⁇ m, 6 to 35 ⁇ m, or 9 to 18 ⁇ m. can.
  • the surface-treated copper foil having the above-mentioned structure can be produced according to a method known in the art.
  • parameters such as Sku and Str of the surface treatment layer can be controlled by adjusting the formation conditions of the surface treatment layer, particularly the above-mentioned formation conditions of the roughening treatment layer.
  • the surface-treated copper foil according to the embodiment of the present invention has a tungsten content of 1.0 ⁇ when it is acid-decomposed to a solution and the tungsten content in the solution is measured by inductively coupled plasma mass spectrometry. It is preferably 12 / t to 4.0 ⁇ 12 / t [ppm] (t is the thickness of the copper foil 10). If the content of tungsten is within such a range, the Sku and Str of the surface treatment layer can be controlled within the above range.
  • the copper foil 10 is a processed copper alloy to which high-purity copper such as tough pitch copper and oxygen-free copper, which is usually used as a circuit pattern of a printed wiring board, and Sn, Ag, Cr, Zr, Mg, etc. are added.
  • the copper foil 10 usually does not contain W. Therefore, by performing a calculation considering the thickness of the copper foil 10 based on the amount of tungsten obtained by analyzing the solution of the surface-treated copper foil containing the copper foil 10, the tungsten of the surface-treated layer can be obtained. The content can be estimated.
  • the above formula is the estimation method.
  • the solution by acid decomposition treatment is carried out by dissolving a 10 cm square surface-treated copper foil in a mixed solution of nitric acid and hydrofluoric acid and diluting the solution.
  • Inductively coupled plasma mass spectrometry can be performed using an inductively coupled plasma mass spectrometer (ICP-MS).
  • the Sku of the surface-treated layer is controlled to 2.50 to 4.50 and the Str is controlled to 0.20 to 0.40. It is possible to enhance the adhesiveness with a resin base material suitable for the above.
  • the copper-clad laminate according to the embodiment of the present invention includes the above-mentioned surface-treated copper foil and a resin base material adhered to the surface-treated layer of the surface-treated copper foil.
  • This copper-clad laminate can be manufactured by adhering a resin base material to the surface-treated layer of the above-mentioned surface-treated copper foil.
  • the resin base material is not particularly limited, and those known in the art can be used. Examples of resin base materials include paper base material phenol resin, paper base material epoxy resin, synthetic fiber cloth base material epoxy resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass non-woven composite base material epoxy resin, and glass. Examples thereof include cloth-based epoxy resin, polyester film, polyimide resin, liquid crystal polymer, and fluororesin. Among these, the resin base material is preferably a polyimide resin.
  • the method for adhering the surface-treated copper foil to the resin base material is not particularly limited, and can be performed according to a method known in the art.
  • the surface-treated copper foil and the resin base material may be laminated and thermocompression bonded.
  • the copper-clad laminate manufactured as described above can be used for manufacturing a printed wiring board.
  • the copper-clad laminate according to the embodiment of the present invention uses the above-mentioned surface-treated copper foil, it is possible to improve the adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications.
  • the printed wiring board according to the embodiment of the present invention includes a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
  • This printed wiring board can be manufactured by etching the surface-treated copper foil of the copper-clad laminate to form a circuit pattern.
  • the method for forming the circuit pattern is not particularly limited, and a known method such as a subtractive method or a semi-additive method can be used. Among them, the subtractive method is preferable as the method for forming the circuit pattern.
  • a predetermined resist pattern is formed by applying, exposing and developing a resist on the surface of the surface-treated copper foil of the copper-clad laminate.
  • the surface-treated copper foil of the portion (unnecessary portion) where the resist pattern is not formed is removed by etching to form a circuit pattern.
  • the resist pattern on the surface-treated copper foil is removed.
  • the various conditions in this subtractive method are not particularly limited, and can be performed according to the conditions known in the art.
  • the printed wiring board according to the embodiment of the present invention uses the above-mentioned copper-clad laminate, it is excellent in adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications, and a circuit pattern. ..
  • Example 1 A rolled copper foil (thickness 12 ⁇ m) is prepared, and one surface is degreased and pickled, and then a roughening treatment layer is used as a surface treatment layer, a Ni—Zn layer is used as a heat treatment layer, a chromate treatment layer, and a silane coupling treatment.
  • a surface-treated copper foil was obtained by sequentially forming layers. The formation conditions of each treatment layer were as follows.
  • Roughening treatment layer ⁇ Conditions for forming roughened particles> Plating solution composition: 11 g / L Cu, 50 g / L sulfuric acid, 1 ppm tungsten (derived from sodium tungstate dihydrate) Plating liquid temperature: 27 ° C Electroplating conditions: Current density 38.8 A / dm 2 , time 1.3 seconds Number of electroplating processes: 2 times
  • Plating solution composition 20 g / L Cu, 100 g / L sulfuric acid Plating solution temperature: 50 ° C.
  • Electroplating conditions Current density 8.2 A / dm 2 , Time 1.4 seconds Number of electroplating processes: 2 times
  • Chromate-treated layer ⁇ Conditions for forming electrolytic chromate-treated layer> Chromate solution composition: 3 g / L K 2 Cr 2 O 7 , 0.33 g / L Zn Chromate solution pH: 3.7 Chromate liquid temperature: 55 ° C Electrolysis conditions: current density 1.4 A / dm 2 , time 0.7 seconds
  • silane coupling treatment layer was formed by applying a 1.2% by volume aqueous solution of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane and drying it.
  • Example 2 A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 2 ppm under the conditions for forming the roughened particles.
  • Example 3 A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 3 ppm under the conditions for forming the roughened particles.
  • Example 4 A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 4 ppm under the conditions for forming the roughened particles.
  • Example 5 A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 5 ppm under the conditions for forming the roughened particles.
  • Example 6 A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 6 ppm under the conditions for forming the roughened particles.
  • Example 7 The same rolled copper foil as in Example 1 was prepared, and after degreasing and pickling one surface, a roughening treatment layer was used as a surface treatment layer, a Ni—Zn layer as a heat treatment layer, a chromate treatment layer, and a silane coupling treatment.
  • a surface-treated copper foil was obtained by sequentially forming layers. The formation conditions of each treatment layer were as follows.
  • Roughening treatment layer ⁇ Conditions for forming roughened particles> Plating solution composition: 11 g / L Cu, 50 g / L sulfuric acid, 5 ppm tungsten (derived from sodium tungstate dihydrate) Plating liquid temperature: 27 ° C Electroplating conditions: Current density 46.8 A / dm 2 , time 1.0 seconds Number of electroplating processes: 2 times
  • Plating solution composition 20 g / L Cu, 100 g / L sulfuric acid Plating solution temperature: 50 ° C.
  • Electroplating conditions Current density 8.2 A / dm 2 , Time 1.4 seconds Number of electroplating processes: 2 times
  • Chromate-treated layer ⁇ Conditions for forming electrolytic chromate-treated layer> Chromate solution composition: 3 g / L K 2 Cr 2 O 7 , 0.33 g / L Zn Chromate solution pH: 3.7 Chromate liquid temperature: 55 ° C Electrolysis conditions: current density 1.5 A / dm 2 , time 0.7 seconds
  • silane coupling treatment layer was formed by applying a 1.2% by volume aqueous solution of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane and drying it.
  • Example 8 A surface-treated copper foil was obtained under the same conditions as in Example 7 except that the current density was changed to 9.6 A / dm 2 under the conditions for forming the cover plating layer.
  • Example 9 The current density was set to 46.0 A / dm 2 under the conditions for forming the roughened particles, the current density was set to 9.6 A / dm 2 under the conditions for forming the cover plating layer, and the current density was set to 0 under the conditions for forming the Ni—Zn layer.
  • a surface-treated copper foil was obtained under the same conditions as in Example 7 except that the values were changed to 9 A / dm 2 .
  • Example 1 The rolled copper foil (copper foil without surface treatment) used in Example 1 was used as a comparison.
  • Example 2 A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was 0 ppm (sodium tungstate was not added) under the conditions for forming the roughened particles.
  • Objective lens MPLAPON50XLEXT (magnification: 50x, numerical aperture: 0.95, immersion type: air, mechanical lens barrel length: ⁇ , cover glass thickness: 0, field of view: FN18)
  • Optical zoom magnification 1x Scanning mode: XYZ High precision (height resolution: 60 nm, number of pixels of captured data: 1024 x 1024) Captured image size [number of pixels]: 257 ⁇ m wide x 258 ⁇ m long [1024 x 1024] (Since it is measured in the lateral direction, the evaluation length is equivalent to 257 ⁇ m)
  • DIC: Off Multilayer: Off Laser intensity: 100 Offset: 0 Confocal level: 0 Beam diameter Aperture: Off Image average: 1 time Noise reduction: On Brightness unevenness correction: On Optical noise filter: On Cutoff: ⁇ c 200 ⁇ m, no ⁇ s and ⁇ f Filter: Gaussian filter Noise reduction: Pretreatment surface (tilt) ) Correction:
  • Brightness is a value that should be set appropriately according to the color tone of measurement symmetry.
  • the above setting is an appropriate value when measuring the surface of the surface-treated copper foil in which L * is ⁇ 69 to ⁇ 10, a * is 2 to 32, and b * is 221.
  • Optical system d / 8 °, integrating sphere size: 63.5 mm, observation light source: D65 Measurement method: Reflective illumination diameter: 25.4 mm Measurement diameter: 20.0 mm Measurement wavelength / interval: 400-700 nm / 10 nm Light source: Pulse xenon lamp, 1 emission / measurement Traceability standard: Based on CIE 44 and ASTM E259, National Institute of Standards and Technology (NIST) compliant calibration Standard observer: 10 ° In addition, as the white tile used as the measurement standard, the one with the following object color was used. When measured at D65 / 10 °, the values in the CIE XYZ color system are X: 81.90, Y: 87.02, Z: 93.76.
  • the peel strength is 0.50 kgf / cm or more, it can be said that the adhesiveness between the circuit (surface-treated copper foil) and the resin base material is good.
  • the copper foil of Comparative Example 1 could not be bonded to the polyimide resin base material, so this evaluation was not performed.
  • Table 1 shows the results of the above characteristic evaluation.
  • the surface-treated copper foils of Examples 1 to 9 in which the Sku and Str of the surface-treated layer were within a predetermined range had high peel strength.
  • the Sa of the surface-treated layer was equivalent to that of the surface-treated copper foils of Examples 1 to 9, the surface-treated copper foil of Comparative Example 2 in which the Sku was out of the predetermined range had a low peel strength.
  • the larger the Sa of the surface treatment layer the better the adhesiveness with the resin base material, this result, that is, the peel strength is improved by controlling the Sku and Str while the Sa is almost the same. The result was amazing.
  • the surface-treated copper foils of Examples 1 to 9 Comparing the surface-treated copper foils of Examples 1 to 9 with the copper foils of Comparative Example 1, it can be seen that Str is a very close value.
  • the surface-treated copper foils of Examples 1 to 9 have already been described in view of the fact that the copper foil of Comparative Example 1 is surface-treated and that Str exhibits surface anisotropy and isotropic properties.
  • the surface-treated layer particularly the roughened particle layer, is uniformly formed along the minute uneven portion (oil pit in the case of rolled copper foil) on the surface of the copper foil. You can see that it has been done. If the roughened particle layer is not formed along the minute uneven portion, the Str value should be significantly different before and after the surface treatment.
  • a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications. ..
  • a surface-treated copper foil in which roughened particles are formed along minute irregularities on the surface of the copper foil.
  • a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil.
  • a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.

Abstract

A surface-treated copper foil which comprises: a copper foil; and a surface treatment layer that is formed on at least one surface of the copper foil. The surface treatment layer has an Sku of from 2.50 to 4.50 and an Str of from 0.20 to 0.40.

Description

表面処理銅箔、銅張積層板及びプリント配線板Surface-treated copper foil, copper-clad laminate and printed wiring board
 本開示は、表面処理銅箔、銅張積層板及びプリント配線板に関する。 This disclosure relates to surface-treated copper foil, copper-clad laminates, and printed wiring boards.
 銅張積層板は、フレキシブルプリント配線板などの各種用途において広く用いられている。このフレキシブルプリント配線板は、銅張積層板の銅箔をエッチングして導体パターン(「配線パターン」とも称される)を形成し、導体パターン上に電子部品を半田で接続して実装することによって製造される。 Copper-clad laminates are widely used in various applications such as flexible printed wiring boards. This flexible printed wiring board is mounted by etching the copper foil of a copper-clad laminate to form a conductor pattern (also called a "wiring pattern") and connecting electronic components on the conductor pattern with solder. Manufactured.
 近年、パソコン、モバイル端末などの電子機器では、通信の高速化及び大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能なフレキシブルプリント配線板が求められている。特に、電気信号の周波数は、高周波になるほど信号電力の損失(減衰)が大きくなり、データが読み取れなくなり易いため、信号電力の損失を低減することが求められている。 In recent years, in electronic devices such as personal computers and mobile terminals, the frequency of electric signals has been increasing along with the increase in communication speed and capacity, and a flexible printed wiring board capable of coping with this has been required. In particular, as the frequency of the electric signal becomes higher, the loss (attenuation) of the signal power becomes larger and the data tends to be unreadable. Therefore, it is required to reduce the loss of the signal power.
 電子回路における信号電力の損失(伝送損失)が起こる原因は大きく二つに分けることができる。その一は、導体損失、すなわち銅箔による損失であり、その二は、誘電体損失、すなわち樹脂基材による損失である。
 導体損失は、高周波域では表皮効果があり、電流は導体の表面を流れるという特性を有するため、銅箔表面が粗いと複雑な経路を辿って、電流が流れることになる。したがって、高周波信号の導体損失を少なくするためには、銅箔の表面粗さを小さくすることが望ましい。以下、本明細書において、単に「伝送損失」及び「導体損失」と記載した場合は、「高周波信号の伝送損失」及び「高周波信号の導体損失」を主に意味する。
The causes of signal power loss (transmission loss) in electronic circuits can be broadly divided into two. The first is the conductor loss, that is, the loss due to the copper foil, and the second is the dielectric loss, that is, the loss due to the resin base material.
The conductor loss has a skin effect in the high frequency region and has the characteristic that the current flows on the surface of the conductor. Therefore, if the surface of the copper foil is rough, the current will flow along a complicated path. Therefore, in order to reduce the conductor loss of the high frequency signal, it is desirable to reduce the surface roughness of the copper foil. Hereinafter, when the terms "transmission loss" and "conductor loss" are simply used in the present specification, they mainly mean "transmission loss of high frequency signal" and "conductor loss of high frequency signal".
 他方、誘電体損失は、樹脂基材の種類に依存するため、高周波信号が流れる回路基板においては、低誘電材料(例えば、液晶ポリマー、低誘電ポリイミド)から形成された樹脂基材を用いることが望ましい。また、誘電体損失は、銅箔と樹脂基材との間を接着する接着剤によっても影響を受けるため、銅箔と樹脂基材との間は接着剤を用いずに接着することが望ましい。
 そこで、銅箔と樹脂基材との間を接着剤の使用なしに接着するために、銅箔の少なくとも一方の面に表面処理層を形成することが提案されている。例えば、特許文献1には、銅箔上に粗化粒子から形成される粗化処理層を設けるとともに、最表層にシランカップリング処理層を形成する方法が提案されている。
On the other hand, since the dielectric loss depends on the type of the resin base material, it is possible to use a resin base material formed of a low dielectric material (for example, a liquid crystal polymer or a low dielectric polyimide) in a circuit board through which a high frequency signal flows. desirable. Further, since the dielectric loss is also affected by the adhesive that adheres between the copper foil and the resin base material, it is desirable to adhere between the copper foil and the resin base material without using an adhesive.
Therefore, it has been proposed to form a surface treatment layer on at least one surface of the copper foil in order to bond the copper foil and the resin base material without using an adhesive. For example, Patent Document 1 proposes a method of providing a roughening treatment layer formed of roughened particles on a copper foil and forming a silane coupling treatment layer on the outermost surface layer.
特開2012-112009号公報Japanese Unexamined Patent Publication No. 2012-112009
 表面処理層が形成される銅箔の表面には、一般的に微小な凹凸部が存在する。例えば、圧延銅箔の場合、圧延時に圧延油によって形成されるオイルピットが微小な凹凸部として表面に形成される。また、電解銅箔の場合、研磨時に形成された回転ドラムの研磨スジが、回転ドラム上に析出形成される電解銅箔の回転ドラム側表面の微小な凹凸部の原因となる。
 銅箔に微小な凹凸部が存在すると、例えば、粗化処理層を形成する際に、凸部では電流が集中して粗化粒子が過成長する一方、凹部では電流が十分に供給されず、粗化粒子が成長し難くなる。その結果、銅箔の凸部に粗大な粗化粒子が形成される一方、銅箔の凹部は粗化粒子が過小になるという状態、すなわち、銅箔表面の粗化粒子が均一に形成されていない状態になる。粗大な粗化粒子が多い表面処理銅箔では、樹脂基材との接合後、表面処理銅箔を剥離させる力を付与すると、粗大な粗化粒子に応力が集中して折れ易くなる結果、樹脂基材に対する接着力が低下することがある。また、粗化粒子の大きさが不十分な表面処理銅箔では、粗化粒子によるアンカー効果が低下してしまい、銅箔と樹脂基材との接着性が十分に得られないことがある。
 特に、液晶ポリマー、低誘電ポリイミドなどの低誘電材料から形成された樹脂基材は、従来の樹脂基材よりも銅箔と接着し難いため、銅箔と樹脂基材との間の接着性を高める手法の開発が望まれている。
 また、シランカップリング処理層は、銅箔と樹脂基材との間の接着性を向上させる効果を有するものの、その種類によっては、接着性の向上効果が十分ではないこともある。
The surface of the copper foil on which the surface treatment layer is formed generally has minute irregularities. For example, in the case of rolled copper foil, oil pits formed by rolling oil during rolling are formed on the surface as minute uneven portions. Further, in the case of the electrolytic copper foil, the polishing streaks of the rotating drum formed during polishing cause minute uneven portions on the surface of the electrolytic copper foil on the rotating drum side, which are deposited and formed on the rotating drum.
If the copper foil has minute irregularities, for example, when forming the roughening treatment layer, the current is concentrated in the convex portions and the roughened particles are overgrown, while the current is not sufficiently supplied in the concave portions. It becomes difficult for the roughened particles to grow. As a result, coarse roughened particles are formed in the convex portion of the copper foil, while the roughened particles are too small in the concave portion of the copper foil, that is, the roughened particles on the surface of the copper foil are uniformly formed. It will be in a non-existent state. In the surface-treated copper foil having many coarse coarse particles, if a force for peeling the surface-treated copper foil is applied after bonding with the resin base material, stress is concentrated on the coarse roughened particles and the resin is easily broken. Adhesive strength to the substrate may decrease. Further, in the surface-treated copper foil in which the size of the roughened particles is insufficient, the anchor effect due to the roughened particles is lowered, and the adhesiveness between the copper foil and the resin base material may not be sufficiently obtained.
In particular, a resin base material formed of a low dielectric material such as a liquid crystal polymer or a low dielectric polyimide is more difficult to adhere to a copper foil than a conventional resin base material, so that the adhesiveness between the copper foil and the resin base material is improved. It is desired to develop a method to enhance it.
Further, although the silane coupling treatment layer has an effect of improving the adhesiveness between the copper foil and the resin base material, the effect of improving the adhesiveness may not be sufficient depending on the type.
 本発明の実施形態は、上記のような問題を解決するためになされたものであり、一つの側面において、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することを目的とする。
 また、本発明の実施形態は、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することを目的とする。
 さらに、本発明の実施形態は、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することを目的とする。
The embodiment of the present invention has been made to solve the above-mentioned problems, and in one aspect, it is possible to enhance the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications. It is an object of the present invention to provide a surface-treated copper foil.
Further, in another aspect, the embodiment of the present invention provides a copper-clad laminate having excellent adhesion between a resin base material, particularly a resin base material suitable for high-frequency applications, and a surface-treated copper foil. The purpose.
Further, an embodiment of the present invention aims to provide a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern, in another aspect. ..
 本発明者らは、上記の問題を解決すべく表面処理銅箔について鋭意研究を行った結果、粗化処理層の形成に用いられるめっき液に微量のタングステン化合物を添加することにより、銅箔の凸部に形成される粗化粒子の過成長を抑制するとともに、銅箔の凹部に粗化粒子を形成させ易くし得るという知見を得た。そして、本発明者らは、このようにして得られた表面処理銅箔の表面形状について分析を行ったところ、表面処理層のSku及びStrが、この表面形状と密接に関係していることを見出し、本発明の実施形態を完成するに至った。 As a result of diligent research on the surface-treated copper foil in order to solve the above problems, the present inventors have added a trace amount of tungsten compound to the plating solution used for forming the roughening-treated layer to obtain the copper foil. It was found that the overgrowth of the roughened particles formed in the convex portion can be suppressed and the roughened particles can be easily formed in the concave portion of the copper foil. Then, the present inventors analyzed the surface shape of the surface-treated copper foil thus obtained, and found that the Sku and Str of the surface-treated layer are closely related to this surface shape. We have found and completed the embodiment of the present invention.
 すなわち、本発明の実施形態は、一つの側面において、銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有し、前記表面処理層は、Skuが2.50~4.50、Strが0.20~0.40である表面処理銅箔に関する。
 また、本発明の実施形態は、別の側面において、前記表面処理銅箔と、前記表面処理銅箔の前記表面処理層に接着された樹脂基材とを備える銅張積層板に関する。
 さらに、本発明の実施形態は、別の側面において、前記銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板に関する。
That is, the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil on one side surface, and the surface-treated layer has Sku of 2.50 to 2.50. It relates to a surface-treated copper foil having 4.50 and a Str of 0.20 to 0.40.
In another aspect, an embodiment of the present invention relates to a copper-clad laminate comprising the surface-treated copper foil and a resin base material adhered to the surface-treated layer of the surface-treated copper foil.
Further, an embodiment of the present invention relates to a printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate on another side surface.
 本発明の実施形態によれば、一つの側面において、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。
 また、本発明の実施形態によれば、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。
 さらに、本発明の実施形態によれば、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。
According to the embodiment of the present invention, it is possible to provide a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications, on one side.
Further, according to the embodiment of the present invention, on another aspect, a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil is provided. be able to.
Further, according to the embodiment of the present invention, on another aspect, it is possible to provide a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern. ..
銅箔の一方の面に粗化処理層を有する表面処理銅箔の模式的な拡大断面図である。It is a schematic enlarged sectional view of the surface-treated copper foil which has a roughening treatment layer on one surface of a copper foil.
 以下、本発明の好適な実施形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。以下の実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、以下の実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, preferred embodiments of the present invention will be specifically described, but the present invention should not be construed as being limited to these, and shall be based on the knowledge of those skilled in the art as long as the gist of the present invention is not deviated. , Various changes and improvements can be made. The plurality of components disclosed in the following embodiments can form various inventions by appropriate combinations. For example, some components may be deleted from all the components shown in the following embodiments, or components of different embodiments may be combined as appropriate.
 本発明の実施形態に係る表面処理銅箔は、銅箔と、銅箔の少なくとも一方の面に形成された表面処理層とを有する。
 表面処理層は、銅箔の一方の面のみに形成されていてもよいし、銅箔の両方の面に形成されていてもよい。銅箔の両方の面に表面処理層が形成される場合、表面処理層の種類は同一であっても異なっていてもよい。
The surface-treated copper foil according to the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil.
The surface treatment layer may be formed on only one surface of the copper foil, or may be formed on both surfaces of the copper foil. When the surface treatment layer is formed on both surfaces of the copper foil, the type of the surface treatment layer may be the same or different.
 表面処理層は、Sku(クルトシス)が2.50~4.50である。Skuは、ISO 25178-2:2012に規定される。Skuは平均高さを基準にし、高さのヒストグラムを作成した場合の当該ヒストグラムの尖り具合(尖度)を表現するパラメータである。例えば、Sku=3.00の場合、高さ分布が正規分布であることを意味する。また、Sku>3.00の場合、数値が大きくなるほど、高さ分布が集中していることを意味する。逆に、Sku<3.00の場合、数値が小さくなるほど、高さ分布が分散していることを意味する。 The surface treatment layer has a Sku (Kurtosis) of 2.50 to 4.50. Sk is defined in ISO 25178-2: 2012. Sk is a parameter that expresses the degree of kurtosis (kurtosis) of the histogram when a histogram of height is created with reference to the average height. For example, when Sk = 3.00, it means that the height distribution is a normal distribution. Further, when Sk> 3.00, the larger the value, the more concentrated the height distribution. On the contrary, when Sk <3.00, the smaller the value, the more dispersed the height distribution.
 本発明の実施形態に係る表面処理銅箔は表面に凹凸を有しており、当該凹凸は銅箔と樹脂基材との接着性の向上に資する。表面処理層のSkuは当該凹凸の高さ分布を評価する指標となる。
 表面処理層のSkuが2.50~4.50であることは、高さ分布が正規分布又はそれに近い分布状態であることを意味する。一方、表面処理層のSkuが2.50未満であることは、表面処理層の高さ(銅箔表面からの高さ)が低い部分と高い部分とが様々に入り交じった結果、高さ分布が偏っていない分布状態であることを意味する。表面処理層のSkuが4.50より大きいことは、高さ分布が偏っている分布状態であること、すなわち、表面処理層の表面は、ある高さの部分が突出して多くを占めている状態であることを意味する。
 表面処理層の高さ分布が正規分布又はそれに近い分布状態は、例えば、銅箔の表面に粗化処理層を形成する場合に、銅箔の凸部において過成長した粗化粒子、すなわち粗大な粗化粒子や、銅箔の凹部において粗化粒子が形成されていない箇所が少ないことを意味する。したがって、表面処理層のSkuが2.50~4.50であることは、銅箔の凸部に形成される粗化粒子の過成長が抑制され、また、銅箔の凹部にも粗化粒子が形成されている状態を意味する。
The surface-treated copper foil according to the embodiment of the present invention has irregularities on the surface, and the irregularities contribute to the improvement of the adhesiveness between the copper foil and the resin base material. The Sk of the surface treatment layer is an index for evaluating the height distribution of the unevenness.
When the Sku of the surface treatment layer is 2.50 to 4.50, it means that the height distribution is a normal distribution or a distribution state close to it. On the other hand, the fact that the Sk of the surface treatment layer is less than 2.50 is a result of various mixing of low and high heights of the surface treatment layer (height from the copper foil surface), resulting in a height distribution. Means that is an unbiased distribution. The fact that the Sk of the surface treatment layer is larger than 4.50 means that the height distribution is uneven, that is, the surface of the surface treatment layer is in a state where a certain height portion protrudes and occupies a large part. Means that
The height distribution of the surface-treated layer is a normal distribution or a distribution state close to that, for example, when a roughened-treated layer is formed on the surface of the copper foil, the roughened particles overgrown in the convex portion of the copper foil, that is, coarse particles. This means that there are few roughened particles or recesses of the copper foil where the roughened particles are not formed. Therefore, when the Sku of the surface treatment layer is 2.50 to 4.50, the overgrowth of the roughened particles formed on the convex portion of the copper foil is suppressed, and the roughened particles are also suppressed on the concave portion of the copper foil. Means the state in which is formed.
 粗大な粗化粒子が多い表面処理銅箔も、粗化粒子が形成されていない箇所がある表面処理銅箔も、樹脂基材との接着性の観点からは好ましくない。例えば、粗大な粗化粒子が多い表面処理銅箔では、樹脂基材との接合後、表面処理銅箔を剥離させる力を付与すると、粗大な粗化粒子に応力が集中して折れ易くなる結果、却って樹脂基材に対する接着力が低下すると考えられる。また、粗化粒子が形成されていない箇所がある表面処理銅箔では、粗化粒子によるアンカー効果を十分に確保することができなくなり、表面処理銅箔と樹脂基材との接着力が低下すると考えられる。本発明者らは、後述する実施例及び比較例の表面処理銅箔についてピール強度を測定して分析を行った結果、表面処理層のSkuが樹脂基材との接着性に関与することを見出した。
 樹脂基材に対する接着力を安定して得る観点から、表面処理層のSkuは、2.80~4.00であることが好ましく、2.90~3.75であることがより好ましい。
 なお、表面処理層のSkuは、ISO 25178-2:2012に準拠して測定される。
Neither a surface-treated copper foil having a large amount of coarse roughened particles nor a surface-treated copper foil having a portion where roughened particles are formed is preferable from the viewpoint of adhesiveness to a resin base material. For example, in a surface-treated copper foil having many coarse roughened particles, if a force is applied to peel off the surface-treated copper foil after bonding with a resin base material, stress is concentrated on the coarse roughened particles and the particles are easily broken. On the contrary, it is considered that the adhesive force to the resin base material is reduced. Further, in the surface-treated copper foil in which the roughened particles are not formed, the anchor effect due to the roughened particles cannot be sufficiently secured, and the adhesive force between the surface-treated copper foil and the resin base material is lowered. Conceivable. As a result of measuring and analyzing the peel strength of the surface-treated copper foils of Examples and Comparative Examples described later, the present inventors have found that Sk of the surface-treated layer is involved in the adhesiveness with the resin substrate. rice field.
From the viewpoint of stably obtaining the adhesive force to the resin base material, the Sku of the surface treatment layer is preferably 2.80 to 4.00, and more preferably 2.90 to 3.75.
The Sk of the surface treatment layer is measured in accordance with ISO 25178-2: 2012.
 表面処理層は、Str(テクスチャのアスペクト比)が0.20~0.40である。Strは、ISO 25178-2:2012に規定される空間パラメータであり、表面の異方性や等方性の強さを表す。Strは、0~1の範囲にあり、0に近いほど異方性が強いこと(例えば、スジ目などが大きいこと)を意味する。逆に、Strが1に近いほど、等方性が強いことを意味する。
 表面処理層のStrが0.20~0.40であると、表面処理層の表面は異方性が適度にある状態となる。この状態は、銅箔の表面の微小な凹凸部に沿って表面処理層が均一に形成されていることを意味する。したがって、例えば、銅箔の表面に粗化処理層を形成する場合に、凸部において過成長した粗化粒子や、凹部において粗化粒子が形成されていない箇所が少ないことを意味する。すなわち、表面処理層のStrが0.20~0.40であることは、銅箔の凸部に形成される粗化粒子の過成長が抑制され、銅箔の凹部にも粗化粒子が形成されている状態を意味する。その結果、粗化粒子によるアンカー効果を十分に確保することができるため、表面処理銅箔と樹脂基材との接着力が高くなる。このような効果を安定して得る観点から、表面処理層のStrは0.26~0.35であることが好ましい。
 なお、表面処理層のStrは、ISO 25178-2:2012に準拠して測定される。
The surface treatment layer has a Str (texture aspect ratio) of 0.20 to 0.40. Str is a spatial parameter defined in ISO 25178-2: 2012 and represents the strength of surface anisotropy and isotropic. Str is in the range of 0 to 1, and the closer it is to 0, the stronger the anisotropy (for example, the larger the streaks). On the contrary, the closer the Str is to 1, the stronger the isotropic property.
When the Str of the surface treatment layer is 0.20 to 0.40, the surface of the surface treatment layer has an appropriate anisotropy. This state means that the surface treatment layer is uniformly formed along the minute uneven portions on the surface of the copper foil. Therefore, for example, when the roughening treatment layer is formed on the surface of the copper foil, it means that there are few roughened particles overgrown in the convex portions and few roughened particles are not formed in the concave portions. That is, when the Str of the surface treatment layer is 0.20 to 0.40, the overgrowth of the roughened particles formed in the convex portion of the copper foil is suppressed, and the roughened particles are also formed in the concave portion of the copper foil. It means the state of being done. As a result, the anchoring effect of the roughened particles can be sufficiently ensured, so that the adhesive force between the surface-treated copper foil and the resin base material is increased. From the viewpoint of stably obtaining such an effect, the Str of the surface treatment layer is preferably 0.26 to 0.35.
The Str of the surface treatment layer is measured according to ISO 25178-2: 2012.
 表面処理層は、Sa(算術平均高さ)が0.18~0.43μmであることが好ましい。Saは、ISO 25178-2:2012に規定される高さ方向のパラメータであり、平均面からの高低差の平均を表す。
 表面処理層のSaが大きすぎると、表面処理層の表面が粗くなるため、表面処理銅箔を樹脂基材に接着した場合にアンカー効果が発揮され易くなる。一方で、表面処理層のSaが大きい(すなわち、表面が粗い)表面処理銅箔と樹脂基材とを接着した銅張積層板を加工して回路基板を作製した場合、表面処理銅箔の表皮効果によって伝送損失が大きくなる。そのため、表面処理層のSaを上記の範囲とすることにより、樹脂基材に対する表面処理銅箔の接着力の確保と伝送損失の抑制とのバランスを確保することができる。このような効果を安定して得る観点から、表面処理層のSaは、下限値が好ましくは0.20μm、より好ましくは0.24μmであり、上限値が好ましくは0.40μm、より好ましくは0.35μmである。
The surface treatment layer preferably has a Sa (arithmetic mean height) of 0.18 to 0.43 μm. Sa is a parameter in the height direction defined in ISO 25178-2: 2012, and represents the average height difference from the average plane.
If the Sa of the surface-treated layer is too large, the surface of the surface-treated layer becomes rough, so that the anchor effect is likely to be exhibited when the surface-treated copper foil is adhered to the resin base material. On the other hand, when a circuit board is produced by processing a copper-clad laminate in which a surface-treated copper foil having a large Sa (that is, a rough surface) and a resin base material are bonded to each other, the skin of the surface-treated copper foil is formed. The effect increases the transmission loss. Therefore, by setting Sa of the surface-treated layer in the above range, it is possible to secure a balance between securing the adhesive force of the surface-treated copper foil to the resin base material and suppressing transmission loss. From the viewpoint of stably obtaining such an effect, the lower limit value of Sa of the surface treatment layer is preferably 0.20 μm, more preferably 0.24 μm, and the upper limit value is preferably 0.40 μm, more preferably 0. It is .35 μm.
 表面処理層は、Sq(二乗平均平方根高さ)が0.26~0.53μmであることが好ましい。Sqは、ISO 25178-2:2012に規定される高さ方向のパラメータであり、表面処理層の表面における凸部の高さのバラツキを表す。
 表面処理層のSqが大きいと、表面処理層の表面における凸部の高さのバラツキが大きくなり、表面処理銅箔を樹脂基材に接着した場合にアンカー効果が発揮され易くなる。ただし、Sqが大きすぎる(凸部の高さのバラツキが大きすぎる)と、工業製品としての品質管理の観点から問題になる場合がある。そのため、表面処理層のSqを上記の範囲とすることにより、アンカー効果の確保と品質管理の観点とのバランスを確保することができる。このような効果を安定して得る観点から、表面処理層のSqは、下限値が好ましくは0.30μm、より好ましくは0.34μmであり、上限値が好ましくは0.48μm、より好ましくは0.43μmである。
 なお、表皮効果による伝送損失の抑制及び工業製品としての品質管理のし易さを重視した場合、表面処理層は、Saが0.20~0.32μmであり、且つSqが0.26~0.40μmであることが好ましい。
The surface treatment layer preferably has an Sq (root mean square height) of 0.26 to 0.53 μm. Sq is a parameter in the height direction defined in ISO 25178-2: 2012, and represents a variation in the height of the convex portion on the surface of the surface treatment layer.
When the Sq of the surface-treated layer is large, the height of the convex portion on the surface of the surface-treated layer varies widely, and the anchor effect is likely to be exhibited when the surface-treated copper foil is adhered to the resin base material. However, if Sq is too large (the height variation of the convex portion is too large), it may cause a problem from the viewpoint of quality control as an industrial product. Therefore, by setting the Sq of the surface treatment layer within the above range, it is possible to secure a balance between ensuring the anchor effect and the viewpoint of quality control. From the viewpoint of stably obtaining such an effect, the lower limit value of Sq of the surface treatment layer is preferably 0.30 μm, more preferably 0.34 μm, and the upper limit value is preferably 0.48 μm, more preferably 0. It is .43 μm.
When the suppression of transmission loss due to the skin effect and the ease of quality control as an industrial product are emphasized, the surface treatment layer has a Sa of 0.20 to 0.32 μm and an Sq of 0.26 to 0. It is preferably .40 μm.
 表面処理層は、Sdr(展開界面面積率)が38~79%であることが好ましい。Sdrは、ISO 25178-2:2012に規定される複合パラメータであり、表面の増加割合を表す。言い換えると、ある表面を平面視した場合の面積に対する実際の表面積の増加割合を表す。
 表面処理層のSdrが大きすぎると、表面処理層の表面が緻密で起伏が激しくなるため、表面処理銅箔を樹脂基材に接着した場合にアンカー効果が発揮され易くなる一方、表皮効果によって伝送損失が大きくなる。そのため、表面処理層のSdrを上記の範囲とすることにより、アンカー効果の確保と伝送損失の抑制とのバランスを確保することができる。
The surface treatment layer preferably has an Sdr (developed interface area ratio) of 38 to 79%. Sdr is a composite parameter defined in ISO 25178-2: 2012 and represents the rate of increase in the surface. In other words, it represents the rate of increase in the actual surface area with respect to the area when a surface is viewed in a plan view.
If the Sdr of the surface-treated layer is too large, the surface of the surface-treated layer becomes dense and undulating, so that the anchor effect is likely to be exhibited when the surface-treated copper foil is adhered to the resin base material, while transmission is performed by the skin effect. The loss will be large. Therefore, by setting the Sdr of the surface treatment layer within the above range, it is possible to secure a balance between ensuring the anchor effect and suppressing transmission loss.
 表面処理層の種類は、特に限定されず、当該技術分野において公知の各種表面処理層を用いることができる。
 表面処理層の例としては、粗化処理層、耐熱処理層、防錆処理層、クロメート処理層、シランカップリング処理層などが挙げられる。これらの層は、単一又は2種以上を組み合わせて用いることができる。その中でも表面処理層は、樹脂基材との接着性の観点から、粗化処理層を含有することが好ましい。
 また、表面処理層が、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択される1種以上の層を含有する場合、これらの層は粗化処理層上に設けられることが好ましい。
The type of the surface treatment layer is not particularly limited, and various surface treatment layers known in the art can be used.
Examples of the surface treatment layer include a roughening treatment layer, a heat resistance treatment layer, a rust prevention treatment layer, a chromate treatment layer, a silane coupling treatment layer and the like. These layers can be used alone or in combination of two or more. Among them, the surface treatment layer preferably contains a roughening treatment layer from the viewpoint of adhesiveness to the resin base material.
When the surface treatment layer contains one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer, these layers are roughened treatment layers. It is preferably provided on top.
 ここで、一例として、銅箔の一方の面に粗化処理層を有する表面処理銅箔の模式的な拡大断面図を図1に示す。
 図1に示されるように、銅箔10の一方の面に形成された粗化処理層は、粗化粒子20と、粗化粒子20の少なくとも一部を被覆するかぶせめっき層30とを含む。粗化粒子20は、銅箔10の凸部11だけでなく凹部12にも形成されている。また、銅箔10の凸部11に形成された粗化粒子20は、めっき液に微量のタングステン化合物を添加することにより、過成長が抑制されている。そのため、この粗化粒子20は粒径が大きい粒子に過成長しておらず、各方向に向かって成長した複雑な形状を有している。表面処理層のSkuやStrなどのパラメータを上記の範囲に制御することにより、このような構造をとることができると考えられる。
Here, as an example, FIG. 1 shows a schematic enlarged cross-sectional view of a surface-treated copper foil having a roughening-treated layer on one surface of the copper foil.
As shown in FIG. 1, the roughening-treated layer formed on one surface of the copper foil 10 includes roughened particles 20 and a cover plating layer 30 that covers at least a part of the roughened particles 20. The roughened particles 20 are formed not only in the convex portion 11 of the copper foil 10 but also in the concave portion 12. Further, overgrowth of the roughened particles 20 formed on the convex portion 11 of the copper foil 10 is suppressed by adding a trace amount of a tungsten compound to the plating solution. Therefore, the roughened particles 20 do not overgrow into particles having a large particle size, and have a complicated shape that grows in each direction. It is considered that such a structure can be obtained by controlling parameters such as Sk and Str of the surface treatment layer within the above range.
 粗化粒子20としては、特に限定されないが、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択される単一の元素、又はこれらの元素の2種以上を含む合金から形成することができる。その中でも粗化粒子20は、銅又は銅合金、特に銅から形成されることが好ましい。
 かぶせめっき層30としては、特に限定されないが、銅、銀、金、ニッケル、コバルト、亜鉛などから形成することができる。
The roughened particles 20 are not particularly limited, but may be a single element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or two or more of these elements. It can be formed from the containing alloy. Among them, the roughened particles 20 are preferably formed of copper or a copper alloy, particularly copper.
The cover plating layer 30 is not particularly limited, but can be formed of copper, silver, gold, nickel, cobalt, zinc, or the like.
 粗化処理層は、電気めっきによって形成することができる。特に、粗化粒子20は、微量のタングステン化合物を添加しためっき液を用いた電気めっきによって形成することができる。
 タングステン化合物としては、特に限定されないが、例えば、タングステン酸ナトリウム(Na2WO4)などを用いることができる。
 めっき液におけるタングステン化合物の含有量としては、1ppm以上とすることが好ましい。このような含有量であれば、凸部11に形成された粗化粒子20の過成長を抑制するとともに、凹部12に粗化粒子20を形成させ易くすることができる。なお、タングステン化合物の含有量の上限値は、特に限定されないが、電気抵抗の増大を抑制する観点から、20ppmであることが好ましい。
The roughened layer can be formed by electroplating. In particular, the roughened particles 20 can be formed by electroplating using a plating solution to which a trace amount of tungsten compound is added.
The tungsten compound is not particularly limited, but for example, sodium tungstate (Na 2 WO 4 ) or the like can be used.
The content of the tungsten compound in the plating solution is preferably 1 ppm or more. With such a content, it is possible to suppress the overgrowth of the roughened particles 20 formed in the convex portion 11 and facilitate the formation of the roughened particles 20 in the concave portion 12. The upper limit of the content of the tungsten compound is not particularly limited, but is preferably 20 ppm from the viewpoint of suppressing an increase in electrical resistance.
 粗化処理層を形成する際の電気めっきの条件は、使用する電気めっき装置などに応じて調整すればよく特に限定されないが、典型的な条件は以下の通りである。なお、各電気めっきは、1回であってもよいし、複数回行ってもよい。
(粗化粒子20の形成条件)
 めっき液組成:5~15g/LのCu、40~100g/Lの硫酸、1~6ppmのタングステン酸ナトリウム
 めっき液温度:20~50℃
 電気めっき条件:電流密度30~90A/dm2、時間0.1~8秒
The electroplating conditions for forming the roughening treatment layer may be adjusted according to the electroplating apparatus to be used, and are not particularly limited, but typical conditions are as follows. Each electroplating may be performed once or a plurality of times.
(Conditions for forming roughened particles 20)
Plating solution composition: 5 to 15 g / L Cu, 40 to 100 g / L sulfuric acid, 1 to 6 ppm sodium tungstate Plating solution temperature: 20 to 50 ° C.
Electroplating conditions: current density 30-90 A / dm 2 , time 0.1-8 seconds
(かぶせめっき層30の形成条件)
 めっき液組成:10~30g/LのCu、70~130g/Lの硫酸
 めっき液温度:30~60℃
 電気めっき条件:電流密度4.8~15A/dm2、時間0.1~8秒
(Conditions for forming the cover plating layer 30)
Plating solution composition: 10 to 30 g / L Cu, 70 to 130 g / L sulfuric acid Plating solution temperature: 30 to 60 ° C.
Electroplating conditions: current density 4.8 to 15 A / dm 2 , time 0.1 to 8 seconds
 耐熱処理層及び防錆処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。なお、耐熱処理層は防錆処理層としても機能することがあるため、耐熱処理層及び防錆処理層として、耐熱処理層及び防錆処理層の両方の機能を有する1つの層を形成してもよい。
 耐熱処理層及び/又は防錆処理層としては、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選択される1種以上の元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層とすることができる。その中でも耐熱処理層及び/又は防錆処理層はNi-Zn層であることが好ましい。
The heat-resistant treatment layer and the rust-prevention treatment layer are not particularly limited, and can be formed from materials known in the art. Since the heat-resistant treatment layer may also function as a rust-preventive treatment layer, one layer having both the functions of the heat-resistant treatment layer and the rust-preventive treatment layer is formed as the heat-resistant treatment layer and the rust-preventive treatment layer. May be good.
The heat-resistant layer and / or rust-preventive layer includes nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. It can be a layer containing one or more elements (which may be in any form such as metal, alloy, oxide, nitride, sulfide, etc.) selected from the group of. Among them, the heat-resistant treatment layer and / or the rust-prevention treatment layer is preferably a Ni—Zn layer.
 耐熱処理層及び防錆処理層は、電気めっきによって形成することができる。その条件は、使用する電気めっき装置に応じて調整すればよく特に限定されないが、一般的な電気めっき装置を用いて耐熱処理層(Ni-Zn層)を形成する際の条件は以下の通りである。なお、電気めっきは、1回であってもよいし、複数回行ってもよい。
 めっき液組成:1~30g/LのNi、1~30g/LのZn
 めっき液pH:2~5
 めっき液温度:30~50℃
 電気めっき条件:電流密度0.1~10A/dm2、時間0.1~5秒
The heat-resistant treatment layer and the rust-prevention treatment layer can be formed by electroplating. The conditions may be adjusted according to the electroplating apparatus used and are not particularly limited, but the conditions for forming the heat-resistant treatment layer (Ni—Zn layer) using a general electroplating apparatus are as follows. be. The electroplating may be performed once or a plurality of times.
Plating solution composition: 1 to 30 g / L Ni, 1 to 30 g / L Zn
Plating solution pH: 2-5
Plating liquid temperature: 30 to 50 ° C
Electroplating conditions: current density 0.1-10 A / dm 2 , time 0.1-5 seconds
 クロメート処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。
 ここで、本明細書において「クロメート処理層」とは、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む液で形成された層を意味する。クロメート処理層は、コバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素、チタンなどの元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層であることができる。クロメート処理層の例としては、無水クロム酸又は二クロム酸カリウム水溶液で処理したクロメート処理層、無水クロム酸又は二クロム酸カリウム及び亜鉛を含む処理液で処理したクロメート処理層などが挙げられる。
The chromate-treated layer is not particularly limited and can be formed from a material known in the art.
Here, the term "chromate-treated layer" as used herein means a layer formed of a liquid containing chromic anhydride, chromic acid, chromic acid, chromate or dichromate. The chromate-treated layer can be any element (metal, alloy, oxide, nitride, sulfide, etc.) such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, and titanium. It can be a layer containing (may be in the form). Examples of the chromate-treated layer include a chromate-treated layer treated with an aqueous solution of chromic anhydride or potassium dichromate, and a chromate-treated layer treated with a treatment solution containing chromic anhydride or potassium dichromate and zinc.
 クロメート処理層は、浸漬クロメート処理、電解クロメート処理などの公知の方法によって形成することができる。それらの条件は、特に限定されないが、例えば、一般的なクロメート処理層を形成する際の条件は以下の通りである。なお、クロメート処理は、1回であってもよいし、複数回行ってもよい。
 クロメート液組成:1~10g/LのK2Cr27、0.01~10g/LのZn
 クロメート液pH:2~5
 クロメート液温度:30~55℃
 電解条件:電流密度0.1~10A/dm2、時間0.1~5秒(電解クロメート処理の場合)
The chromate-treated layer can be formed by a known method such as immersion chromate treatment and electrolytic chromate treatment. These conditions are not particularly limited, but for example, the conditions for forming a general chromate-treated layer are as follows. The chromate treatment may be performed once or a plurality of times.
Chromate solution composition: 1 to 10 g / L K 2 Cr 2 O 7 , 0.01 to 10 g / L Zn
Chromate solution pH: 2-5
Chromate liquid temperature: 30-55 ° C
Electrolytic conditions: Current density 0.1 to 10 A / dm 2 , time 0.1 to 5 seconds (in the case of electrolytic chromate treatment)
 シランカップリング処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。
 ここで、本明細書において「シランカップリング処理層」とは、シランカップリング剤で形成された層を意味する。
 シランカップリング剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。シランカップリング剤の例としては、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤、メタクリロキシ系シランカップリング剤、ビニル系シランカップリング剤、イミダゾール系シランカップリング剤、トリアジン系シランカップリング剤などが挙げられる。これらの中でも、アミノ系シランカップリング剤、エポキシ系シランカップリング剤が好ましい。上記のシランカップリング剤は、単独又は2種以上を組み合わせて用いることができる。
 代表的なシランカップリング処理層の形成方法としては、上述のシランカップリング剤の1~3体積%水溶液を塗布し、乾燥させることでシランカップリング処理層を形成する方法が挙げられる。
The silane coupling treatment layer is not particularly limited, and can be formed from a material known in the art.
Here, the term "silane coupling-treated layer" as used herein means a layer formed of a silane coupling agent.
The silane coupling agent is not particularly limited, and those known in the art can be used. Examples of silane coupling agents include amino-based silane coupling agents, epoxy-based silane coupling agents, mercapto-based silane coupling agents, metharoxy-based silane coupling agents, vinyl-based silane coupling agents, and imidazole-based silane coupling agents. , Triazine-based silane coupling agent and the like. Among these, amino-based silane coupling agents and epoxy-based silane coupling agents are preferable. The above silane coupling agent can be used alone or in combination of two or more.
As a typical method for forming a silane coupling treatment layer, a method of forming a silane coupling treatment layer by applying a 1 to 3% by volume aqueous solution of the above-mentioned silane coupling agent and drying it can be mentioned.
 銅箔10としては、特に限定されず、電解銅箔又は圧延銅箔のいずれであってもよい。
 電解銅箔は、硫酸銅めっき浴からチタン又はステンレスのドラム上に銅を電解析出させることによって一般に製造されるが、回転ドラム側に形成される平坦なS面(シャイン面)と、S面の反対側に形成されるM面(マット面)とを有する。電解銅箔のM面は、一般に微小な凹凸部を有している。また、電解銅箔のS面は、研磨時に形成された回転ドラムの研磨スジが転写されるため、微小な凹凸部を有する。
 また、圧延銅箔は、圧延時に圧延油によってオイルピットが形成されるため、微小な凹凸部を表面に有する。
The copper foil 10 is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil.
Electrolytic copper foil is generally manufactured by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath, but a flat S surface (shine surface) formed on the rotating drum side and an S surface. It has an M surface (matte surface) formed on the opposite side of the surface. The M surface of the electrolytic copper foil generally has minute uneven portions. Further, the S surface of the electrolytic copper foil has minute uneven portions because the polishing streaks of the rotating drum formed during polishing are transferred.
Further, the rolled copper foil has minute uneven portions on the surface because oil pits are formed by rolling oil during rolling.
 銅箔10の材料としては、特に限定されないが、銅箔10が圧延銅箔の場合、プリント配線板の回路パターンとして通常使用されるタフピッチ銅(JIS H3100 合金番号C1100)、無酸素銅(JIS H3100 合金番号C1020又はJIS H3510 合金番号C1011)などの高純度の銅を用いることができる。また、例えば、Sn入り銅、Ag入り銅、Cr、Zr又はMgなどを添加した銅合金、Ni及びSiなどを添加したコルソン系銅合金のような銅合金も用いることができる。なお、本明細書において「銅箔10」とは、銅合金箔も含む概念である。 The material of the copper foil 10 is not particularly limited, but when the copper foil 10 is a rolled copper foil, tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100) usually used as a circuit pattern of a printed wiring board are used. High-purity copper such as alloy number C1020 or JIS H3510 alloy number C1011) can be used. Further, for example, copper alloys such as Sn-containing copper, Ag-containing copper, copper alloys to which Cr, Zr, Mg and the like are added, and Corson-based copper alloys to which Ni and Si and the like are added can also be used. In addition, in this specification, "copper foil 10" is a concept including copper alloy foil.
 銅箔10の厚みは、特に限定されないが、例えば1~1000μm、或いは1~500μm、或いは1~300μm、或いは3~100μm、或いは5~70μm、或いは6~35μm、或いは9~18μmとすることができる。 The thickness of the copper foil 10 is not particularly limited, but may be, for example, 1 to 1000 μm, 1 to 500 μm, 1 to 300 μm, 3 to 100 μm, 5 to 70 μm, 6 to 35 μm, or 9 to 18 μm. can.
 上記のような構成を有する表面処理銅箔は、当該技術分野において公知の方法に準じて製造することができる。ここで、表面処理層のSku、Strなどのパラメータは、表面処理層の形成条件、特に、上記した粗化処理層の形成条件などを調整することによって制御することができる。 The surface-treated copper foil having the above-mentioned structure can be produced according to a method known in the art. Here, parameters such as Sku and Str of the surface treatment layer can be controlled by adjusting the formation conditions of the surface treatment layer, particularly the above-mentioned formation conditions of the roughening treatment layer.
 本発明の実施形態に係る表面処理銅箔は、酸分解処理して溶液化し、その溶液中のタングステンの含有量を誘導結合プラズマ質量分析によって測定した場合に、タングステンの含有量が1.0×12/t~4.0×12/t[ppm](tは銅箔10の厚みである)であることが好ましい。このような範囲のタングステンの含有量であれば、表面処理層のSku、Strを上記の範囲に制御することができる。
 銅箔10が、プリント配線板の回路パターンとして通常使用される、タフピッチ銅、無酸素銅などの高純度の銅、Sn、Ag、Cr、Zr又はMgなどを添加した銅合金を加工したものである場合、銅箔10にWは通常含有されない。よって、銅箔10を含む表面処理銅箔を溶液化したものを分析することで得たタングステンの量を基に、銅箔10の厚みを考慮した計算を行うことで、表面処理層のタングステンの含有量を推定することができる。上記の計算式はその推定法である。
 酸分解処理による溶液化は、10cm角の表面処理銅箔を硝酸とフッ化水素酸との混合液に溶解し、当該溶液を希釈することによって行う。
 誘導結合プラズマ質量分析は、誘導結合プラズマ質量分析装置(ICP-MS)を用いて行うことができる。
The surface-treated copper foil according to the embodiment of the present invention has a tungsten content of 1.0 × when it is acid-decomposed to a solution and the tungsten content in the solution is measured by inductively coupled plasma mass spectrometry. It is preferably 12 / t to 4.0 × 12 / t [ppm] (t is the thickness of the copper foil 10). If the content of tungsten is within such a range, the Sku and Str of the surface treatment layer can be controlled within the above range.
The copper foil 10 is a processed copper alloy to which high-purity copper such as tough pitch copper and oxygen-free copper, which is usually used as a circuit pattern of a printed wiring board, and Sn, Ag, Cr, Zr, Mg, etc. are added. In some cases, the copper foil 10 usually does not contain W. Therefore, by performing a calculation considering the thickness of the copper foil 10 based on the amount of tungsten obtained by analyzing the solution of the surface-treated copper foil containing the copper foil 10, the tungsten of the surface-treated layer can be obtained. The content can be estimated. The above formula is the estimation method.
The solution by acid decomposition treatment is carried out by dissolving a 10 cm square surface-treated copper foil in a mixed solution of nitric acid and hydrofluoric acid and diluting the solution.
Inductively coupled plasma mass spectrometry can be performed using an inductively coupled plasma mass spectrometer (ICP-MS).
 本発明の実施形態に係る表面処理銅箔は、表面処理層のSkuを2.50~4.50、Strを0.20~0.40に制御しているため、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることができる。 In the surface-treated copper foil according to the embodiment of the present invention, the Sku of the surface-treated layer is controlled to 2.50 to 4.50 and the Str is controlled to 0.20 to 0.40. It is possible to enhance the adhesiveness with a resin base material suitable for the above.
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔と、この表面処理銅箔の表面処理層に接着された樹脂基材とを備える。
 この銅張積層板は、上記の表面処理銅箔の表面処理層に樹脂基材を接着することによって製造することができる。
 樹脂基材としては、特に限定されず、当該技術分野において公知のものを用いることができる。樹脂基材の例としては、紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂、ガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミド樹脂、液晶ポリマー、フッ素樹脂などが挙げられる。これらの中でも樹脂基材はポリイミド樹脂が好ましい。
The copper-clad laminate according to the embodiment of the present invention includes the above-mentioned surface-treated copper foil and a resin base material adhered to the surface-treated layer of the surface-treated copper foil.
This copper-clad laminate can be manufactured by adhering a resin base material to the surface-treated layer of the above-mentioned surface-treated copper foil.
The resin base material is not particularly limited, and those known in the art can be used. Examples of resin base materials include paper base material phenol resin, paper base material epoxy resin, synthetic fiber cloth base material epoxy resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass non-woven composite base material epoxy resin, and glass. Examples thereof include cloth-based epoxy resin, polyester film, polyimide resin, liquid crystal polymer, and fluororesin. Among these, the resin base material is preferably a polyimide resin.
 表面処理銅箔と樹脂基材との接着方法としては、特に限定されず、当該技術分野において公知の方法に準じて行うことができる。例えば、表面処理銅箔と樹脂基材とを積層させて熱圧着すればよい。
 上記のようにして製造された銅張積層板は、プリント配線板の製造に用いることができる。
The method for adhering the surface-treated copper foil to the resin base material is not particularly limited, and can be performed according to a method known in the art. For example, the surface-treated copper foil and the resin base material may be laminated and thermocompression bonded.
The copper-clad laminate manufactured as described above can be used for manufacturing a printed wiring board.
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔を用いているため、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることができる。 Since the copper-clad laminate according to the embodiment of the present invention uses the above-mentioned surface-treated copper foil, it is possible to improve the adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications.
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして形成された回路パターンを備える。
 このプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして回路パターンを形成することによって製造することができる。回路パターンの形成方法としては、特に限定されず、サブトラクティブ法、セミアディティブ法などの公知の方法を用いることができる。その中でも、回路パターンの形成方法はサブトラクティブ法が好ましい。
The printed wiring board according to the embodiment of the present invention includes a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
This printed wiring board can be manufactured by etching the surface-treated copper foil of the copper-clad laminate to form a circuit pattern. The method for forming the circuit pattern is not particularly limited, and a known method such as a subtractive method or a semi-additive method can be used. Among them, the subtractive method is preferable as the method for forming the circuit pattern.
 サブトラクティブ法によってプリント配線板を製造する場合、次のようにして行うことが好ましい。まず、銅張積層板の表面処理銅箔の表面にレジストを塗布、露光及び現像することによって所定のレジストパターンを形成する。次に、レジストパターンが形成されていない部分(不要部)の表面処理銅箔をエッチングによって除去して回路パターンを形成する。最後に、表面処理銅箔上のレジストパターンを除去する。
 なお、このサブトラクティブ法における各種条件は、特に限定されず、当該技術分野において公知の条件に準じて行うことができる。
When the printed wiring board is manufactured by the subtractive method, it is preferable to carry out as follows. First, a predetermined resist pattern is formed by applying, exposing and developing a resist on the surface of the surface-treated copper foil of the copper-clad laminate. Next, the surface-treated copper foil of the portion (unnecessary portion) where the resist pattern is not formed is removed by etching to form a circuit pattern. Finally, the resist pattern on the surface-treated copper foil is removed.
The various conditions in this subtractive method are not particularly limited, and can be performed according to the conditions known in the art.
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板を用いているため、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れている。 Since the printed wiring board according to the embodiment of the present invention uses the above-mentioned copper-clad laminate, it is excellent in adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications, and a circuit pattern. ..
 以下、本発明の実施形態を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(実施例1)
 圧延銅箔(厚さ12μm)を準備し、一方の面を脱脂及び酸洗した後、表面処理層として粗化処理層、耐熱処理層としてNi-Zn層、クロメート処理層、及びシランカップリング処理層を順次形成することによって表面処理銅箔を得た。各処理層の形成条件は次の通りとした。
(1)粗化処理層
<粗化粒子の形成条件>
 めっき液組成:11g/LのCu、50g/Lの硫酸、1ppmのタングステン(タングステン酸ナトリウム2水和物由来)
 めっき液温度:27℃
 電気めっき条件:電流密度38.8A/dm2、時間1.3秒
 電気めっき処理回数:2回
(Example 1)
A rolled copper foil (thickness 12 μm) is prepared, and one surface is degreased and pickled, and then a roughening treatment layer is used as a surface treatment layer, a Ni—Zn layer is used as a heat treatment layer, a chromate treatment layer, and a silane coupling treatment. A surface-treated copper foil was obtained by sequentially forming layers. The formation conditions of each treatment layer were as follows.
(1) Roughening treatment layer <Conditions for forming roughened particles>
Plating solution composition: 11 g / L Cu, 50 g / L sulfuric acid, 1 ppm tungsten (derived from sodium tungstate dihydrate)
Plating liquid temperature: 27 ° C
Electroplating conditions: Current density 38.8 A / dm 2 , time 1.3 seconds Number of electroplating processes: 2 times
<かぶせめっき層の形成条件>
 めっき液組成:20g/LのCu、100g/Lの硫酸
 めっき液温度:50℃
 電気めっき条件:電流密度8.2A/dm2、時間1.4秒
 電気めっき処理回数:2回
<Conditions for forming the cover plating layer>
Plating solution composition: 20 g / L Cu, 100 g / L sulfuric acid Plating solution temperature: 50 ° C.
Electroplating conditions: Current density 8.2 A / dm 2 , Time 1.4 seconds Number of electroplating processes: 2 times
(2)耐熱処理層
<Ni-Zn層の形成条件>
 めっき液組成:23.5g/LのNi、4.5g/LのZn
 めっき液pH:3.6
 めっき液温度:40℃
 電気めっき条件:電流密度0.6A/dm2、時間0.7秒
(2) Heat-resistant treatment layer <Conditions for forming Ni-Zn layer>
Plating solution composition: 23.5 g / L Ni, 4.5 g / L Zn
Plating solution pH: 3.6
Plating liquid temperature: 40 ° C
Electroplating conditions: current density 0.6 A / dm 2 , time 0.7 seconds
(3)クロメート処理層
<電解クロメート処理層の形成条件>
 クロメート液組成:3g/LのK2Cr27、0.33g/LのZn
 クロメート液pH:3.7
 クロメート液温度:55℃
 電解条件:電流密度1.4A/dm2、時間0.7秒
(3) Chromate-treated layer <Conditions for forming electrolytic chromate-treated layer>
Chromate solution composition: 3 g / L K 2 Cr 2 O 7 , 0.33 g / L Zn
Chromate solution pH: 3.7
Chromate liquid temperature: 55 ° C
Electrolysis conditions: current density 1.4 A / dm 2 , time 0.7 seconds
(4)シランカップリング処理層
 N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランの1.2体積%水溶液を塗布し、乾燥させることでシランカップリング処理層を形成した。
(4) Silane Coupling Treatment Layer A silane coupling treatment layer was formed by applying a 1.2% by volume aqueous solution of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane and drying it.
(実施例2)
 粗化粒子の形成条件において、めっき液組成のタングステンの量を2ppmに変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(Example 2)
A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 2 ppm under the conditions for forming the roughened particles.
(実施例3)
 粗化粒子の形成条件において、めっき液組成のタングステンの量を3ppmに変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(Example 3)
A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 3 ppm under the conditions for forming the roughened particles.
(実施例4)
 粗化粒子の形成条件において、めっき液組成のタングステンの量を4ppmに変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(Example 4)
A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 4 ppm under the conditions for forming the roughened particles.
(実施例5)
 粗化粒子の形成条件において、めっき液組成のタングステンの量を5ppmに変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(Example 5)
A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 5 ppm under the conditions for forming the roughened particles.
(実施例6)
 粗化粒子の形成条件において、めっき液組成のタングステンの量を6ppmに変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(Example 6)
A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was changed to 6 ppm under the conditions for forming the roughened particles.
(実施例7)
 実施例1と同じ圧延銅箔を準備し、一方の面を脱脂及び酸洗した後、表面処理層として粗化処理層、耐熱処理層としてNi-Zn層、クロメート処理層、及びシランカップリング処理層を順次形成することによって表面処理銅箔を得た。各処理層の形成条件は次の通りとした。
(1)粗化処理層
<粗化粒子の形成条件>
 めっき液組成:11g/LのCu、50g/Lの硫酸、5ppmのタングステン(タングステン酸ナトリウム2水和物由来)
 めっき液温度:27℃
 電気めっき条件:電流密度46.8A/dm2、時間1.0秒
 電気めっき処理回数:2回
(Example 7)
The same rolled copper foil as in Example 1 was prepared, and after degreasing and pickling one surface, a roughening treatment layer was used as a surface treatment layer, a Ni—Zn layer as a heat treatment layer, a chromate treatment layer, and a silane coupling treatment. A surface-treated copper foil was obtained by sequentially forming layers. The formation conditions of each treatment layer were as follows.
(1) Roughening treatment layer <Conditions for forming roughened particles>
Plating solution composition: 11 g / L Cu, 50 g / L sulfuric acid, 5 ppm tungsten (derived from sodium tungstate dihydrate)
Plating liquid temperature: 27 ° C
Electroplating conditions: Current density 46.8 A / dm 2 , time 1.0 seconds Number of electroplating processes: 2 times
<かぶせめっき層の形成条件>
 めっき液組成:20g/LのCu、100g/Lの硫酸
 めっき液温度:50℃
 電気めっき条件:電流密度8.2A/dm2、時間1.4秒
 電気めっき処理回数:2回
<Conditions for forming the cover plating layer>
Plating solution composition: 20 g / L Cu, 100 g / L sulfuric acid Plating solution temperature: 50 ° C.
Electroplating conditions: Current density 8.2 A / dm 2 , Time 1.4 seconds Number of electroplating processes: 2 times
(2)耐熱処理層
<Ni-Zn層の形成条件>
 めっき液組成:23.5g/LのNi、4.5g/LのZn
 めっき液pH:3.6
 めっき液温度:40℃
 電気めっき条件:電流密度0.7A/dm2、時間0.7秒
(2) Heat-resistant treatment layer <Conditions for forming Ni-Zn layer>
Plating solution composition: 23.5 g / L Ni, 4.5 g / L Zn
Plating solution pH: 3.6
Plating liquid temperature: 40 ° C
Electroplating conditions: current density 0.7 A / dm 2 , time 0.7 seconds
(3)クロメート処理層
<電解クロメート処理層の形成条件>
 クロメート液組成:3g/LのK2Cr27、0.33g/LのZn
 クロメート液pH:3.7
 クロメート液温度:55℃
 電解条件:電流密度1.5A/dm2、時間0.7秒
(3) Chromate-treated layer <Conditions for forming electrolytic chromate-treated layer>
Chromate solution composition: 3 g / L K 2 Cr 2 O 7 , 0.33 g / L Zn
Chromate solution pH: 3.7
Chromate liquid temperature: 55 ° C
Electrolysis conditions: current density 1.5 A / dm 2 , time 0.7 seconds
(4)シランカップリング処理層
 N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランの1.2体積%水溶液を塗布し、乾燥させることでシランカップリング処理層を形成した。
(4) Silane Coupling Treatment Layer A silane coupling treatment layer was formed by applying a 1.2% by volume aqueous solution of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane and drying it.
(実施例8)
 かぶせめっき層の形成条件において、電流密度を9.6A/dm2に変更したこと以外は、実施例7と同様の条件で表面処理銅箔を得た。
(Example 8)
A surface-treated copper foil was obtained under the same conditions as in Example 7 except that the current density was changed to 9.6 A / dm 2 under the conditions for forming the cover plating layer.
(実施例9)
 粗化粒子の形成条件において電流密度を46.0A/dm2に、かぶせめっき層の形成条件において電流密度を9.6A/dm2に、及びNi-Zn層の形成条件において電流密度を0.9A/dm2にそれぞれ変更したこと以外は、実施例7と同様の条件で表面処理銅箔を得た。
(Example 9)
The current density was set to 46.0 A / dm 2 under the conditions for forming the roughened particles, the current density was set to 9.6 A / dm 2 under the conditions for forming the cover plating layer, and the current density was set to 0 under the conditions for forming the Ni—Zn layer. A surface-treated copper foil was obtained under the same conditions as in Example 7 except that the values were changed to 9 A / dm 2 .
(比較例1)
 実施例1で用いた圧延銅箔(表面処理を行っていない銅箔)を比較として用いた。
(Comparative Example 1)
The rolled copper foil (copper foil without surface treatment) used in Example 1 was used as a comparison.
(比較例2)
 粗化粒子の形成条件において、めっき液組成のタングステンの量を0ppm(タングステン酸ナトリウムを添加しなかった)としたこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(Comparative Example 2)
A surface-treated copper foil was obtained under the same conditions as in Example 1 except that the amount of tungsten in the plating solution composition was 0 ppm (sodium tungstate was not added) under the conditions for forming the roughened particles.
 上記の実施例及び比較例で得られた表面処理銅箔又は銅箔について、下記の特性評価を行った。
<Sku、Str、Sa、Sq及びSdr>
 オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4000)を用いて画像撮影を行なった。撮影した画像の解析は、オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4100)の解析ソフトを用いて行った。Sku、Str、Sa、Sq及びSdrの測定はISO 25178-2:2012にそれぞれ準拠して行った。また、これらの測定結果は、任意の5か所で測定した値の平均値を測定結果とした。なお、測定時の温度は23~25℃とした。また、レーザー顕微鏡及び解析ソフトにおける主要な設定条件は下記の通りである。
 対物レンズ:MPLAPON50XLEXT(倍率:50倍、開口数:0.95、液浸タイプ:空気、機械的鏡筒長:∞、カバーガラス厚:0、視野数:FN18)
 光学ズーム倍率:1倍
 走査モード:XYZ高精度(高さ分解能:60nm、取込みデータの画素数:1024×1024)
 取込み画像サイズ[画素数]:横257μm×縦258μm[1024×1024]
(横方向に測定するため、評価長さとしては257μmに相当)
 DIC:オフ
 マルチレイヤー:オフ
 レーザー強度:100
 オフセット:0
 コンフォーカルレベル:0
 ビーム径絞り:オフ
 画像平均:1回
 ノイズリダクション:オン
 輝度むら補正:オン
 光学的ノイズフィルタ:オン
 カットオフ:λc=200μm、λs及びλfは無し
 フィルタ:ガウシアンフィルタ
 ノイズ除去:測定前処理
 表面(傾き)補正:実施
 明るさ:30~50の範囲になるように調整する
 明るさは測定対称の色調によって適宜設定すべき値である。上記の設定はL*が-69~-10、a*が2~32、b*が221の表面処理銅箔の表面を測定する際に適切な値である。
The following characteristic evaluations were performed on the surface-treated copper foils or copper foils obtained in the above Examples and Comparative Examples.
<Sku, Str, Sa, Sq and Sdr>
Images were taken using a laser microscope (LEXT OLS4000) manufactured by Olympus Corporation. The captured image was analyzed using the analysis software of a laser microscope (LEXT OLS4100) manufactured by Olympus Corporation. Measurements of Sku, Str, Sa, Sq and Sdr were performed in accordance with ISO 25178-2: 2012, respectively. Further, as these measurement results, the average value of the values measured at any five places was used as the measurement result. The temperature at the time of measurement was 23 to 25 ° C. The main setting conditions for the laser microscope and analysis software are as follows.
Objective lens: MPLAPON50XLEXT (magnification: 50x, numerical aperture: 0.95, immersion type: air, mechanical lens barrel length: ∞, cover glass thickness: 0, field of view: FN18)
Optical zoom magnification: 1x Scanning mode: XYZ High precision (height resolution: 60 nm, number of pixels of captured data: 1024 x 1024)
Captured image size [number of pixels]: 257 μm wide x 258 μm long [1024 x 1024]
(Since it is measured in the lateral direction, the evaluation length is equivalent to 257 μm)
DIC: Off Multilayer: Off Laser intensity: 100
Offset: 0
Confocal level: 0
Beam diameter Aperture: Off Image average: 1 time Noise reduction: On Brightness unevenness correction: On Optical noise filter: On Cutoff: λc = 200 μm, no λs and λf Filter: Gaussian filter Noise reduction: Pretreatment surface (tilt) ) Correction: Implementation Brightness: Adjust so that it is in the range of 30 to 50. Brightness is a value that should be set appropriately according to the color tone of measurement symmetry. The above setting is an appropriate value when measuring the surface of the surface-treated copper foil in which L * is −69 to −10, a * is 2 to 32, and b * is 221.
<測定対象の色調の測定>
 測定器としてHunterLab社製のMiniScan(登録商標)EZ Model 4000Lを用い、JIS Z8730:2009に準拠してCIE L*a*b*表色系のL*、a*及びb*の測定を行った。具体的には、上記の実施例及び比較例で得られた表面処理銅箔又は銅箔の測定対象面を測定器の感光部に押し当て、外から光が入らないようにしつつ測定した。また、L*、a*及びb*の測定は、JIS Z8722:2009の幾何条件Cに基づいて行った。なお、測定器の主な条件は下記の通りである。
 光学系:d/8°、積分球サイズ:63.5mm、観察光源:D65
 測定方式:反射
 照明径:25.4mm
 測定径:20.0mm
 測定波長・間隔:400~700nm・10nm
 光源:パルスキセノンランプ・1発光/測定
 トレーサビリティ標準:CIE 44及びASTM E259に基づく、米国標準技術研究所(NIST)準拠校正
 標準観察者:10°
 また、測定基準となる白色タイルは、下記の物体色のものを使用した。
 D65/10°にて測定した場合に、CIE XYZ表色系での値がX:81.90、Y:87.02、Z:93.76
<Measurement of color tone of measurement target>
Using MiniScan (registered trademark) EZ Model 4000L manufactured by HunterLab as a measuring instrument, CIE L * a * b * color system L *, a * and b * were measured in accordance with JIS Z8730: 2009. .. Specifically, the surface-treated copper foil or the surface to be measured of the copper foil obtained in the above Examples and Comparative Examples was pressed against the photosensitive portion of the measuring instrument, and the measurement was performed while preventing light from entering from the outside. Further, the measurements of L *, a * and b * were performed based on the geometric condition C of JIS Z8722: 2009. The main conditions of the measuring instrument are as follows.
Optical system: d / 8 °, integrating sphere size: 63.5 mm, observation light source: D65
Measurement method: Reflective illumination diameter: 25.4 mm
Measurement diameter: 20.0 mm
Measurement wavelength / interval: 400-700 nm / 10 nm
Light source: Pulse xenon lamp, 1 emission / measurement Traceability standard: Based on CIE 44 and ASTM E259, National Institute of Standards and Technology (NIST) compliant calibration Standard observer: 10 °
In addition, as the white tile used as the measurement standard, the one with the following object color was used.
When measured at D65 / 10 °, the values in the CIE XYZ color system are X: 81.90, Y: 87.02, Z: 93.76.
<タングステン(W)の含有量>
 表面処理銅箔又は銅箔を酸分解処理して溶液化し、その溶液中のタングステンの含有量を誘導結合プラズマ質量分析によって測定した。溶液化などの条件は、上記した通りとした。
 なお、実施例7~9については、表面処理層中のW濃度は実施例5と同等と考えられるため、この評価は行わなかった。
<Content of tungsten (W)>
The surface-treated copper foil or copper foil was acid-decomposed to form a solution, and the content of tungsten in the solution was measured by inductively coupled plasma mass spectrometry. The conditions such as solution formation were as described above.
Since the W concentration in the surface-treated layer of Examples 7 to 9 is considered to be the same as that of Example 5, this evaluation was not performed.
<ピール強度>
 表面処理銅箔をポリイミド樹脂基材と貼り合わせた後、幅3mmの回路をMD方向(圧延銅箔の長手方向)に形成した。回路の形成は通常の方法に則って実施した。次に、回路(表面処理銅箔)を樹脂基材の表面に対して、50mm/分の速度で90°方向に、すなわち、樹脂基材の表面に対して鉛直上向きに、引き剥がすときの強さ(MD90°ピール強度)をJIS C6471:1995に準拠して測定した。測定は3回行い、その平均値をピール強度の結果とした。ピール強度は、0.50kgf/cm以上であれば、回路(表面処理銅箔)と樹脂基材との接着性が良好であるといえる。
 なお、比較例1の銅箔については、ポリイミド樹脂基材と貼り合わせることができなかったため、この評価は行わなかった。
<Peel strength>
After the surface-treated copper foil was bonded to the polyimide resin base material, a circuit having a width of 3 mm was formed in the MD direction (longitudinal direction of the rolled copper foil). The formation of the circuit was carried out according to a usual method. Next, the strength when the circuit (surface-treated copper foil) is peeled off at a speed of 50 mm / min in the 90 ° direction with respect to the surface of the resin base material, that is, vertically upward with respect to the surface of the resin base material. (MD90 ° peel strength) was measured according to JIS C6471: 1995. The measurement was performed three times, and the average value was used as the result of peel strength. If the peel strength is 0.50 kgf / cm or more, it can be said that the adhesiveness between the circuit (surface-treated copper foil) and the resin base material is good.
The copper foil of Comparative Example 1 could not be bonded to the polyimide resin base material, so this evaluation was not performed.
 上記の特性評価の結果を表1に示す。 Table 1 shows the results of the above characteristic evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、表面処理層のSku及びStrが所定の範囲内にある実施例1~9の表面処理銅箔はピール強度が高かった。
 一方、表面処理層のSaは実施例1~9の表面処理銅箔と同等であるものの、Skuが所定の範囲外である比較例2の表面処理銅箔はピール強度が低かった。一般に、表面処理層のSaが大きいほど樹脂基材との接着性が向上することに鑑みると、この結果、すなわちSaがほぼ同等でありながら、Sku及びStrを制御することでピール強度が向上するという結果は驚くべきものであった。
 実施例1~9の表面処理銅箔と、比較例1の銅箔を比較すると、Strが非常に近い値であることが分かる。実施例1~9の表面処理銅箔は、比較例1の銅箔に表面処理を施したものであること、及びStrが表面の異方性及び等方性を表すことに鑑みると、既に述べたように本発明の実施形態に係る表面処理銅箔は、銅箔表面の微小な凹凸部(圧延銅箔の場合はオイルピット)に沿って表面処理層、特に粗化粒子層が均一に形成されていることが分かる。仮に、微小な凹凸部に沿って粗化粒子層が形成されない場合は、Strの値は表面処理前後で大きく相違するはずである。
 なお、比較例2についてW含有量が0.4ppmとなっているが、これは比較例2の表面処理銅箔を製造した際、表面処理層の形成に用いるいずれかのめっき液に意図せずWが残留していたことが原因と考えられる。本発明者らは、粗化処理層の形成用めっき液にはWは残留しておらず、その他の表面処理層の形成用めっき液中に残留していたものと考えている。
As shown in Table 1, the surface-treated copper foils of Examples 1 to 9 in which the Sku and Str of the surface-treated layer were within a predetermined range had high peel strength.
On the other hand, although the Sa of the surface-treated layer was equivalent to that of the surface-treated copper foils of Examples 1 to 9, the surface-treated copper foil of Comparative Example 2 in which the Sku was out of the predetermined range had a low peel strength. In general, considering that the larger the Sa of the surface treatment layer, the better the adhesiveness with the resin base material, this result, that is, the peel strength is improved by controlling the Sku and Str while the Sa is almost the same. The result was amazing.
Comparing the surface-treated copper foils of Examples 1 to 9 with the copper foils of Comparative Example 1, it can be seen that Str is a very close value. The surface-treated copper foils of Examples 1 to 9 have already been described in view of the fact that the copper foil of Comparative Example 1 is surface-treated and that Str exhibits surface anisotropy and isotropic properties. As described above, in the surface-treated copper foil according to the embodiment of the present invention, the surface-treated layer, particularly the roughened particle layer, is uniformly formed along the minute uneven portion (oil pit in the case of rolled copper foil) on the surface of the copper foil. You can see that it has been done. If the roughened particle layer is not formed along the minute uneven portion, the Str value should be significantly different before and after the surface treatment.
Although the W content of Comparative Example 2 is 0.4 ppm, this is unintentionally applied to any of the plating solutions used for forming the surface-treated layer when the surface-treated copper foil of Comparative Example 2 is manufactured. It is considered that the cause was that W remained. The present inventors consider that W did not remain in the plating solution for forming the roughening treatment layer, but remained in the plating solution for forming the other surface treatment layer.
 以上の結果からわかるように、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。また、本発明の実施形態によれば、銅箔表面の微小な凹凸に沿って粗化粒子が形成された表面処理銅箔を提供することができる。また、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。さらに、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。 As can be seen from the above results, according to the embodiment of the present invention, it is possible to provide a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications. .. Further, according to the embodiment of the present invention, it is possible to provide a surface-treated copper foil in which roughened particles are formed along minute irregularities on the surface of the copper foil. Further, according to the embodiment of the present invention, it is possible to provide a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil. Further, according to the embodiment of the present invention, it is possible to provide a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.
 10 銅箔
 11 凸部
 12 凹部
 20 粗化粒子
 30 かぶせめっき層
10 Copper foil 11 Convex part 12 Concave part 20 Roughened particles 30 Cover plating layer

Claims (10)

  1.  銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有し、
     前記表面処理層は、Skuが2.50~4.50、Strが0.20~0.40である表面処理銅箔。
    It has a copper foil and a surface treatment layer formed on at least one surface of the copper foil.
    The surface-treated layer is a surface-treated copper foil having a Sku of 2.50 to 4.50 and a Str of 0.20 to 0.40.
  2.  前記Skuが2.80~4.00、前記Strが0.26~0.35である、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the Sku is 2.80 to 4.00 and the Str is 0.26 to 0.35.
  3.  前記表面処理層は、Saが0.18~0.43μmである、請求項1又は2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein the surface-treated layer has a Sa of 0.18 to 0.43 μm.
  4.  前記表面処理層は、Sqが0.26~0.53μmである、請求項1~3のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 3, wherein the surface-treated layer has an Sq of 0.26 to 0.53 μm.
  5.  前記表面処理層は、Saが0.20~0.32μmであり、Sqが0.26~0.40μmである、請求項1又は2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein the surface-treated layer has Sa of 0.20 to 0.32 μm and Sq of 0.26 to 0.40 μm.
  6.  前記表面処理層は、Sdrが38~79%である、請求項1~5のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 5, wherein the surface-treated layer has an Sdr of 38 to 79%.
  7.  前記表面処理銅箔を酸分解処理して溶液化し、その溶液中のタングステンの含有量を誘導結合プラズマ質量分析によって測定した場合に、前記タングステンの含有量が1.0×12/t~4.0×12/t[ppm](tは前記銅箔の厚みである)である、請求項1~6のいずれか一項に記載の表面処理銅箔。 When the surface-treated copper foil was acid-decomposed to form a solution and the tungsten content in the solution was measured by inductively coupled plasma mass analysis, the tungsten content was 1.0 × 12 / t to 4. The surface-treated copper foil according to any one of claims 1 to 6, wherein 0 × 12 / t [ppm] (t is the thickness of the copper foil).
  8.  前記表面処理層は粗化処理層を含有する、請求項1~7のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 7, wherein the surface-treated layer contains a roughened-treated layer.
  9.  請求項1~8のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の前記表面処理層に接着された樹脂基材とを備える銅張積層板。 A copper-clad laminate comprising the surface-treated copper foil according to any one of claims 1 to 8 and a resin base material adhered to the surface-treated layer of the surface-treated copper foil.
  10.  請求項9に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板。 A printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate according to claim 9.
PCT/JP2021/026045 2021-01-15 2021-07-09 Surface-treated copper foil, copper-clad laminate, and printed wiring board WO2022153580A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2022/001216 WO2022154102A1 (en) 2021-01-15 2022-01-14 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
TW111101709A TW202229651A (en) 2021-01-15 2022-01-14 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
KR1020237019472A KR20230104700A (en) 2021-01-15 2022-01-14 Surface treatment copper foil, copper clad laminate and printed wiring board
JP2022575656A JPWO2022154102A1 (en) 2021-01-15 2022-01-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-005362 2021-01-15
JP2021005362 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022153580A1 true WO2022153580A1 (en) 2022-07-21

Family

ID=82447065

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/026045 WO2022153580A1 (en) 2021-01-15 2021-07-09 Surface-treated copper foil, copper-clad laminate, and printed wiring board
PCT/JP2022/001216 WO2022154102A1 (en) 2021-01-15 2022-01-14 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001216 WO2022154102A1 (en) 2021-01-15 2022-01-14 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board

Country Status (4)

Country Link
JP (1) JPWO2022154102A1 (en)
KR (1) KR20230104700A (en)
TW (1) TW202229651A (en)
WO (2) WO2022153580A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169169A (en) * 1992-11-19 1994-06-14 Nikko Guurudo Foil Kk Printed circuit copper foil and manufacture thereof
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
WO2013047272A1 (en) * 2011-09-30 2013-04-04 Jx日鉱日石金属株式会社 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
JP2014506202A (en) * 2010-12-14 2014-03-13 スリーエム イノベイティブ プロパティズ カンパニー Image and method for making it
WO2014081041A1 (en) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 Surface-treated electrolytic copper foil, laminate, and printed circuit board
JP2014139336A (en) * 2012-09-11 2014-07-31 Jx Nippon Mining & Metals Corp Copper foil with carrier
WO2018110579A1 (en) * 2016-12-14 2018-06-21 古河電気工業株式会社 Surface treated copper foil and copper-clad laminate
WO2018207786A1 (en) * 2017-05-09 2018-11-15 Jx金属株式会社 Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor
JP2021085095A (en) * 2019-11-27 2021-06-03 長春石油化學股▲分▼有限公司 Electrolytic copper foil, and electrode and lithium-ion battery including the same
WO2021157362A1 (en) * 2020-02-04 2021-08-12 三井金属鉱業株式会社 Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112009A (en) 2010-11-26 2012-06-14 Hitachi Cable Ltd Copper foil, and method for producing copper foil

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169169A (en) * 1992-11-19 1994-06-14 Nikko Guurudo Foil Kk Printed circuit copper foil and manufacture thereof
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
JP2014506202A (en) * 2010-12-14 2014-03-13 スリーエム イノベイティブ プロパティズ カンパニー Image and method for making it
WO2013047272A1 (en) * 2011-09-30 2013-04-04 Jx日鉱日石金属株式会社 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
JP2014139336A (en) * 2012-09-11 2014-07-31 Jx Nippon Mining & Metals Corp Copper foil with carrier
WO2014081041A1 (en) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 Surface-treated electrolytic copper foil, laminate, and printed circuit board
WO2018110579A1 (en) * 2016-12-14 2018-06-21 古河電気工業株式会社 Surface treated copper foil and copper-clad laminate
WO2018207786A1 (en) * 2017-05-09 2018-11-15 Jx金属株式会社 Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor
JP2021085095A (en) * 2019-11-27 2021-06-03 長春石油化學股▲分▼有限公司 Electrolytic copper foil, and electrode and lithium-ion battery including the same
WO2021157362A1 (en) * 2020-02-04 2021-08-12 三井金属鉱業株式会社 Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board

Also Published As

Publication number Publication date
TW202229651A (en) 2022-08-01
JPWO2022154102A1 (en) 2022-07-21
WO2022154102A1 (en) 2022-07-21
KR20230104700A (en) 2023-07-10

Similar Documents

Publication Publication Date Title
JP7330172B2 (en) Surface treated copper foil, copper clad laminate and printed wiring board
TWI716210B (en) Surface treatment copper foil, copper clad laminate and printed wiring board
TW202122642A (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
TWI747088B (en) Surface treatment copper foil, copper clad laminate and printed wiring board
TWI749827B (en) Surface treatment copper foil, copper clad laminate and printed wiring board
WO2022153580A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281759A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2024070245A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2024070246A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2024070247A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2024070248A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281774A1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2023281777A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2023281778A1 (en) Surface-treated copper foil, copper-clad laminate board, and printed wiring board
WO2023281775A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281776A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
TW202413724A (en) Surface treated copper foil, copper clad laminates and printed wiring boards
TW202415156A (en) Surface treated copper foil, copper clad laminates and printed wiring boards
TW202413736A (en) Surface treated copper foil, copper clad laminates and printed wiring boards
TW202415155A (en) Surface treated copper foil, copper clad laminates and printed wiring boards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP