WO2018207786A1 - Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor - Google Patents

Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor Download PDF

Info

Publication number
WO2018207786A1
WO2018207786A1 PCT/JP2018/017824 JP2018017824W WO2018207786A1 WO 2018207786 A1 WO2018207786 A1 WO 2018207786A1 JP 2018017824 W JP2018017824 W JP 2018017824W WO 2018207786 A1 WO2018207786 A1 WO 2018207786A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
less
surface side
layer
Prior art date
Application number
PCT/JP2018/017824
Other languages
French (fr)
Japanese (ja)
Inventor
賢二 犬飼
小林 洋介
一彦 飯田
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2018207786A1 publication Critical patent/WO2018207786A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present disclosure relates to an electrolytic copper foil, a copper-clad laminate, a printed wiring board, a manufacturing method thereof, an electronic device, and a manufacturing method thereof.
  • a printed wiring board is generally manufactured through a process in which an insulating substrate (for example, a resin substrate) is bonded to a copper foil to form a copper-clad laminate, and then a conductor pattern (circuit) is formed on the copper foil by etching.
  • an insulating substrate for example, a resin substrate
  • a conductor pattern circuit
  • Patent Document 1 adds an additive such as a sulfur-containing compound that acts as a brightening agent to the electrolytic solution so that the surface on the deposition surface side is reduced. It has been proposed to form a circuit on an electrolytic copper foil after producing a smooth electrolytic copper foil.
  • the surface of the electrolytic copper foil serving as the conductor pattern may have good adhesion to the solder resist.
  • the surface of the electrolytic copper foil serving as the conductor pattern is smooth, there is a problem that the adhesion with the solder resist is lowered. Therefore, the surface of the electrolytic copper foil used as the conductor pattern needs to have a certain degree of roughness. In this way, the electrolytic copper foil requires smoothness on the surface to be bonded to the insulating substrate in order to increase the adhesion to the insulating substrate and achieve a fine pitch, while ensuring the adhesion of the solder resist. Therefore, a certain degree of roughness is required for the surface to be a conductor pattern.
  • Some embodiments of the present invention have been made in order to solve the above-described problems, and an object of the present invention is to provide an electrolytic copper foil excellent in circuit formability and solder resist adhesion.
  • some embodiments of the present invention provide a copper-clad laminate, a printed wiring board, a manufacturing method thereof, an electronic device, and a manufacturing method thereof using an electrolytic copper foil excellent in circuit formability and solder resist adhesion. It is an issue to provide.
  • the present inventors have controlled the surface roughness Sa and / or the root mean square height Sq on the glossy surface side of the electrolytic copper foil to a predetermined range, At least one of the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the maximum height Sz, the kurtosis Sku, and the skewness Ssk on the deposition surface side of the copper foil is within a predetermined range.
  • the glossy surface is excellent in adhesion to the insulating substrate and the deposited surface is in a surface state excellent in adhesion of the solder resist.
  • both circuit formability and solder resist adhesion can be achieved.
  • the electrolytic copper foil according to the embodiment of the present invention has a glossy surface and a precipitation surface,
  • the glossy surface has a roughening layer
  • the root mean square height Sq of the glossy surface is 0.550 ⁇ m or less
  • the precipitation surface side has the following conditions: (A) Surface roughness Sa is 0.115 ⁇ m or more (b) Root mean square height Sq is 0.120 ⁇ m or more (c) Maximum peak height Sp is 0.900 ⁇ m or more (d) Maximum valley Depth Sv is 0.600 ⁇ m or more (e) Maximum height Sz is 1.500 ⁇ m or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
  • the electrolytic copper foil according to another embodiment of the present invention has a glossy surface and a precipitation surface, It has a roughening treatment layer on the glossy surface side, the surface roughness Sa on the glossy surface side is 0.470 ⁇ m or less, and the precipitation surface side has the following conditions: (A) Surface roughness Sa is 0.115 ⁇ m or more (b) Root mean square height Sq is 0.120 ⁇ m or more (c) Maximum peak height Sp is 0.900 ⁇ m or more (d) Maximum valley Depth Sv is 0.600 ⁇ m or more (e) Maximum height Sz is 1.500 ⁇ m or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
  • the electrolytic copper foil according to another embodiment of the present invention has a glossy surface and a precipitation surface, There is no roughening layer on the glossy surface side, the surface roughness Sa on the glossy surface side is 0.270 ⁇ m or less, and the precipitation surface side has the following conditions: (A) Surface roughness Sa is 0.115 ⁇ m or more (b) Root mean square height Sq is 0.120 ⁇ m or more (c) Maximum peak height Sp is 0.900 ⁇ m or more (d) Maximum valley Depth Sv is 0.600 ⁇ m or more (e) Maximum height Sz is 1.500 ⁇ m or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
  • the electrolytic copper foil according to another embodiment of the present invention has a glossy surface and a precipitation surface,
  • the glossy surface side does not have a roughening treatment layer
  • the root mean square height Sq on the glossy surface side is 0.315 ⁇ m or less
  • the precipitation surface side has the following conditions: (A) Surface roughness Sa is 0.115 ⁇ m or more (b) Root mean square height Sq is 0.120 ⁇ m or more (c) Maximum peak height Sp is 0.900 ⁇ m or more (d) Maximum valley Depth Sv is 0.600 ⁇ m or more (e) Maximum height Sz is 1.500 ⁇ m or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
  • a method for manufacturing a printed wiring board according to another embodiment of the present invention includes: producing a copper-clad laminate by laminating the electrolytic copper foil and an insulating substrate; then, a semi-additive method, a subtractive method, and a partial additive method. Forming a circuit by either a method or a modified semi-additive method.
  • the electronic device which concerns on embodiment of this invention has the said printed wiring board.
  • the method for manufacturing an electronic device according to an embodiment of the present invention uses the printed wiring board.
  • an electrolytic copper foil excellent in circuit formability and solder resist adhesion can be provided.
  • a copper-clad laminate using an electrolytic copper foil excellent in circuit formability and solder resist adhesion, a printed wiring board, a manufacturing method thereof, and an electronic device and A manufacturing method can be provided.
  • (A) is the SEM image of the glossy surface of the electrolytic copper foil of Example 2 before forming a roughening process layer and a surface treatment layer
  • (b) forms a roughening process layer and a surface treatment layer. It is a SEM image of the glossy surface of the electrolytic copper foil of the previous Example 10.
  • the electrolytic copper foil according to the embodiment of the present invention has a glossy surface and a precipitation surface.
  • electrolytic copper foil in the present specification means copper foil and copper alloy foil produced by using an electrolysis drum using the principle of electroplating.
  • the “glossy surface of the electrolytic copper foil” means a surface on the drum side (shiny surface: S surface) when the electrolytic copper foil is produced. "Means the surface (mat surface: M surface) opposite to the drum when the electrolytic copper foil is produced.
  • surface roughness Sa on the glossy surface side and “root mean square height Sq on the glossy surface side” are the roughened layer and / or the glossy surface of the electrolytic copper foil (raw foil). Or when providing a surface treatment layer, the surface roughness Sa and the root mean square height Sq of the surface (surface of the outermost layer) after providing the said layer are each meant.
  • the “surface roughness Sa of the glossy surface” and the “root mean square height Sq of the glossy surface” are the surface of the glossy surface before the roughening treatment layer and / or the surface treatment layer is provided on the glossy surface side ( It means the surface roughness Sa and the root mean square height Sq of the outermost surface.
  • the surface roughness Sa on the precipitation surface side “the root mean square height Sq on the precipitation surface side”, “the maximum peak height Sp on the precipitation surface side”, “the maximum valley depth on the precipitation surface side” “Sv”, “Maximum height Sz on the precipitation surface side”, “Cultosis Sku on the precipitation surface side” and “Skness Ssk on the precipitation surface side”
  • the surface roughness (surface of the outermost layer) after the layer is provided surface roughness Sa, root mean square height Sq, maximum peak height Sp, maximum valley depth Sv) , Mean maximum height Sz, kurtosis Sku and skewness Ssk.
  • the electrolytic copper foil according to the embodiment of the present invention has no roughening treatment layer on the glossy surface side, and the surface roughness Sa on the glossy surface side is 0.270 ⁇ m or less and / or 2 on the glossy surface side.
  • the root mean square height Sq is 0.315 ⁇ m or less.
  • surface roughness Sa is a roughness parameter obtained by extending Ra three-dimensionally, and the average of the absolute values of the height difference of each point with respect to the average surface of the surface.
  • the “root mean square height Sq” is a roughness parameter obtained by expanding Rq in three dimensions, and represents a standard deviation of the distance from the average surface of the surface.
  • the surface roughness Sa on the glossy surface side of the electrolytic copper foil is preferably 0.230 ⁇ m or less, more preferably 0.180 ⁇ m or less, further preferably 0.150 ⁇ m or less, and most preferably from the viewpoint of enhancing the effect of fine pitch. It is 0.133 ⁇ m or less.
  • the lower limit of the surface roughness Sa on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, and still more preferably 0.8. 100 ⁇ m or more.
  • the root mean square height Sq on the glossy surface side of the electrolytic copper foil is preferably 0.200 ⁇ m or less, more preferably 0.180 ⁇ m or less, from the viewpoint of enhancing the effect of fine pitch.
  • the lower limit of the root mean square height Sq on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, and further preferably Is 0.100 ⁇ m or more.
  • the roughened layer is provided on the glossy surface side, and the surface roughness Sa on the glossy surface side is 0.470 ⁇ m or less and / or on the glossy surface side.
  • the root mean square height Sq is 0.550 ⁇ m or less.
  • fine pitch may be reduced, but the surface roughness on the glossy surface side and / or the root mean square height on the glossy surface side
  • a fine pitch of 20 ⁇ m or less / 20 ⁇ m or less can be achieved.
  • the surface roughness Sa on the glossy surface side of the electrolytic copper foil is preferably 0.385 ⁇ m or less, more preferably 0.380 ⁇ m or less, more preferably 0.355 ⁇ m or less, more preferably from the viewpoint of enhancing the effect of fine pitch. It is 0.340 ⁇ m or less, more preferably 0.300 ⁇ m or less, still more preferably 0.295 ⁇ m or less, still more preferably 0.230 ⁇ m or less, and most preferably 0.200 ⁇ m or less.
  • the lower limit of the surface roughness Sa on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, and still more preferably 0.8. 100 ⁇ m or more.
  • the root mean square height Sq on the glossy surface side of the electrolytic copper foil is preferably 0.490 ⁇ m or less, more preferably 0.450 ⁇ m or less, more preferably 0.435 ⁇ m from the viewpoint of enhancing the effect of fine pitch.
  • it is more preferably 0.400 ⁇ m or less, further preferably 0.395 ⁇ m or less, still more preferably 0.330 ⁇ m or less, and most preferably 0.290 ⁇ m or less.
  • the lower limit of the root mean square height Sq on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, and further preferably Is 0.100 ⁇ m or more.
  • the electrolytic copper foil according to the embodiment of the present invention having the glossy surface side roughness Sa and / or the root mean square height Sq as described above has a roughened layer and / or a surface-treated layer on the glossy side. Can be obtained by controlling the surface roughness Sa and / or the root mean square height Sq of the glossy surface.
  • the surface roughness Sa of the glossy surface before providing the roughening treatment layer and / or the surface treatment layer on the glossy surface side is preferably 0.270 ⁇ m. Or less, more preferably 0.230 ⁇ m or less, more preferably 0.180 ⁇ m or less, further preferably 0.150 ⁇ m or less, further preferably 0.133 ⁇ m or less, still more preferably 0.130 ⁇ m or less, and most preferably 0.120 ⁇ m or less. It may be controlled to.
  • the lower limit of the surface roughness Sa of the glossy surface before providing the roughening treatment layer and / or the surface treatment layer on the glossy surface side is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, More preferably, it is 0.050 micrometer or more, More preferably, it is 0.100 micrometer or more.
  • the root mean square height Sq of the glossy surface before providing the roughening treatment layer and / or the surface treatment layer on the glossy surface side is preferably 0.315 ⁇ m or less, more preferably 0.292 ⁇ m or less, more preferably 0.230 ⁇ m or less, even more preferably 0.200 ⁇ m or less, still more preferably 0.180 ⁇ m or less, even more preferably 0.120 ⁇ m or less, and most preferably 0 It may be controlled to 115 ⁇ m or less.
  • the lower limit of the root mean square height Sq of the glossy surface before providing the roughening layer and / or the surface treatment layer on the glossy surface side is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.8. It is 010 ⁇ m or more, more preferably 0.050 ⁇ m or more, and further preferably 0.100 ⁇ m or more.
  • the deposition surface side is the following conditions: (A) Surface roughness Sa is 0.115 ⁇ m or more (b) Root mean square height Sq is 0.120 ⁇ m or more (c) Maximum peak height Sp is 0.900 ⁇ m or more (d) Maximum valley Depth Sv is 0.600 ⁇ m or more (e) Maximum height Sz is 1.500 ⁇ m or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
  • the surface on the deposition surface side has an appropriate roughness, so that the adhesion of the solder resist can be improved.
  • the “maximum peak height Sp” represents the maximum value of the height from the average surface.
  • the “maximum valley depth Sv” represents the absolute value of the minimum value of the height from the average surface.
  • Maximum height Sz represents the distance from the highest point to the lowest point on the surface.
  • the precipitation surface side is preferably at least 2, more preferably at least 3, more preferably at least 4, and even more preferably at least 5, particularly preferably. It is appropriate to satisfy at least 6 and most preferably all 7 conditions.
  • the surface roughness Sa on the deposition surface side is preferably 0.120 ⁇ m or more, more preferably 0.130 ⁇ m or more, and further preferably 0.140 ⁇ m or more from the viewpoint of stably securing the adhesion of the solder resist.
  • the upper limit of the surface roughness Sa on the precipitation side is not particularly limited, but is generally 2.000 ⁇ m or less, preferably 1.800 ⁇ m or less, more preferably 1.500 ⁇ m or less, and most preferably 1.000 ⁇ m or less. is there.
  • the root-mean-square height Sq on the precipitation surface side is preferably 0.130 ⁇ m or more, more preferably 0.140 ⁇ m or more, and further preferably 0.150 ⁇ m or more, from the viewpoint of stably securing the adhesion of the solder resist. is there.
  • the upper limit of the root mean square height Sq on the precipitation side is not particularly limited, but is generally 2.000 ⁇ m or less, preferably 1.800 ⁇ m or less, more preferably 1.500 ⁇ m or less, and most preferably 1.500 ⁇ m or less. 300 ⁇ m or less.
  • the maximum peak height Sp on the deposition surface side is preferably 1.050 ⁇ m or more, more preferably 1.100 ⁇ m or more, and further preferably 1.200 ⁇ m or more, from the viewpoint of stably securing the adhesion of the solder resist.
  • the upper limit of the maximum peak height Sp on the deposition surface side is not particularly limited, but is generally 10.000 ⁇ m or less, preferably 9.000 ⁇ m or less, more preferably 8.000 ⁇ m or less, and most preferably 7.000 ⁇ m or less. is there.
  • the maximum valley depth Sv on the precipitation surface side is preferably 0.740 ⁇ m or more, more preferably 0.800 ⁇ m or more, and still more preferably 0.900 ⁇ m or more from the viewpoint of stably securing the adhesion of the solder resist.
  • the upper limit of the maximum valley depth Sv on the precipitation surface side is not particularly limited, but is generally 10.000 ⁇ m or less, preferably 9.000 ⁇ m or less, and more preferably 8.000 ⁇ m or less.
  • the maximum height Sz on the deposition surface side is preferably 1.800 ⁇ m or more, more preferably 1.900 ⁇ m or more, further preferably 2.000 ⁇ m or more, most preferably, from the viewpoint of stably securing the adhesion of the solder resist. 2. It is 200 ⁇ m or more.
  • the upper limit of the maximum height Sz on the deposition surface side is not particularly limited, but is generally 20.000 ⁇ m or less, preferably 18.000 ⁇ m or less, more preferably 15.000 ⁇ m or less, and most preferably 14.000 ⁇ m or less. is there.
  • the kurtosis Sku on the precipitation surface side is preferably 2.80 or more and 4.00 or less, more preferably 2.85 or more and 3.90 or less, and still more preferably 2.10 from the viewpoint of stably securing the adhesiveness of the solder resist. It is 90 or more and 3.80 or less.
  • the skewness Ssk on the deposition surface side is preferably 0.00 or more and 0.26 or less, more preferably 0.01 or more and 0.20 or less, from the viewpoint of stably securing the adhesion of the solder resist.
  • the electrolytic copper foil according to the embodiment of the present invention that satisfies the conditions on the deposition surface side as described above is the production condition of the electrolytic copper foil (for example, the linear velocity of the electrolytic solution, the current density, the concentration of the component added to the electrolytic solution, etc. ) Can be obtained by controlling.
  • the electrolytic copper foil according to the embodiment of the present invention preferably has a normal temperature tensile strength of 30 kg / mm 2 or more.
  • room temperature tensile strength refers to a tensile strength at room temperature, which is measured according to IPC-TM-650.
  • the normal temperature tensile strength is 30 kg / mm 2 or more, there is an effect that wrinkles are hardly generated during handling. From the viewpoint of stably obtaining this effect, the normal temperature tensile strength is more preferably 35 kg / mm 2 or more.
  • the electrolytic copper foil according to the embodiment of the present invention preferably has a room temperature elongation of 3% or more.
  • room temperature elongation in this specification is an elongation at room temperature and means a value measured according to IPC-TM-650.
  • the room temperature elongation is 3% or more, there is an effect that it is difficult to break. From the viewpoint of stably obtaining this effect, the room temperature elongation is more preferably 4% or more.
  • the electrolytic copper foil according to the embodiment of the present invention preferably has a high-temperature tensile strength of 10 kg / mm 2 or more.
  • the “high temperature tensile strength” means a tensile strength at 180 ° C., which is measured according to IPC-TM-650.
  • the high temperature tensile strength is 10 kg / mm 2 or more, there is an effect that wrinkles are hardly generated when sticking to the resin. From the viewpoint of stably obtaining this effect, the high temperature tensile strength is more preferably 15 kg / mm 2 or more.
  • the electrolytic copper foil according to the embodiment of the present invention preferably has a high temperature elongation of 2% or more.
  • “high temperature elongation” means elongation at 180 ° C., which is measured according to IPC-TM-650.
  • the high temperature elongation is 2% or more, there is an effect in preventing the occurrence of cracks in the circuit. From the viewpoint of stably obtaining this effect, the high temperature elongation is preferably 3% or more, more preferably 6% or more, and further preferably 15% or more.
  • Examples of copper and copper alloy that are materials of the electrolytic copper foil (raw foil) according to the embodiment of the present invention include pure copper; Sn-containing copper; Ag-containing copper; Ti, W, Mo, Cr, Zr, Mg, Ni , Sn alloy, Ag, Co, Fe, As, P, and the like are added.
  • an electrolytic copper foil formed from a copper alloy is an alloy element (e.g., Ti, W, Mo, Cr, Zr, Mg, Ni, Sn, Ag, Co) in an electrolytic solution used when manufacturing the electrolytic copper foil. 1 or more elements selected from the group consisting of Fe, As and P).
  • the thickness of the electrolytic copper foil is not particularly limited, but is typically 0.5 ⁇ m to 3000 ⁇ m, preferably 1.0 ⁇ m to 1000 ⁇ m, more preferably 1.0 ⁇ m to 300 ⁇ m, more preferably 1. 0 ⁇ m to 100 ⁇ m, more preferably 3.0 ⁇ m to 75 ⁇ m, more preferably 4 ⁇ m to 40 ⁇ m, still more preferably 5 ⁇ m to 37 ⁇ m, still more preferably 6 ⁇ m to 28 ⁇ m, still more preferably 7 ⁇ m to 25 ⁇ m, most preferably 8 ⁇ m to 19 ⁇ m Is
  • the electrolytic copper foil (raw foil) is produced by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath. Examples of electrolysis conditions are shown below.
  • Electrolyte composition 50 to 150 g / L Cu, 60 to 150 g / L H 2 SO 4 Current density: 30 to 120 A / dm 2
  • Electrolyte linear flow rate 1.5-5 m / s
  • Electrolyte temperature 50-60 ° C
  • Additive 20 to 80 mass ppm of chloride ion, 0.01 to 5.0 mass ppm of Nicawa Note that the treatment liquid used in the electrolysis, etching, surface treatment or plating described in this specification (etching liquid, The remainder of the electrolyte etc. is water unless otherwise specified.
  • the electrolytic drum used has a surface roughness Sa of the drum surface in order to control the surface roughness Sa and / or the root mean square height Sq of the glossy surface of the formed electrolytic copper foil (raw foil) to a predetermined range.
  • Sa is 0.270 ⁇ m or less and / or the root mean square height Sq is 0.315 ⁇ m or less.
  • the surface roughness Sa of the drum surface is preferably 0.150 ⁇ m or less, and the root mean square height Sq of the drum surface is preferably 0.200 ⁇ m or less.
  • An electrolytic drum having a predetermined surface roughness Sa and / or root mean square height Sq on its surface can be manufactured as follows.
  • the surface of a drum made of titanium or stainless steel is polished by a polishing belt having a count of 300 (P300) to 500 (P500).
  • the polishing belt is wound by winding a predetermined width in the width direction of the drum, and rotating the drum while moving the polishing belt in the width direction of the drum at a predetermined speed.
  • the rotation speed of the drum surface during polishing is 130 m / min to 190 m / min.
  • the polishing time is the product of the time required to pass one point (position in the width direction) on the drum surface and the number of passes in one pass of the polishing belt.
  • the time for passing one point on the drum surface in one pass described above was a value obtained by dividing the width of the polishing belt by the moving speed of the polishing belt in the width direction of the drum.
  • the polishing time was 1.6 minutes to 3 minutes, but in the embodiment of the present invention, it is 3.5 minutes to 10 minutes. When wetting the drum surface with water during polishing, it should be 6 to 10 minutes.
  • the surface roughness Sa of the surface and the root mean square height Sq of the drum surface can be reduced.
  • the surface roughness Sa of the drum surface and the root mean square height Sq of the drum surface can be increased.
  • the polishing time the surface roughness Sa can be reduced, and the root mean square height Sq can be reduced to a greater extent than the extent that Sa is reduced.
  • the count of the above-described abrasive belt means the particle size of the abrasive used in the abrasive belt.
  • the particle size of the abrasive is in accordance with FEPA (Federation of European Producers of Abbreviations) -standard 43-1: 2006, 43-2: 2006.
  • the surface of the drum Sa can be reduced by increasing the root mean square height Sq to a smaller extent than by reducing the root mean square root height Sq by wetting the drum surface with water during polishing. it can.
  • the root mean square height Sq can be increased, and the surface roughness Sa can be increased to a greater extent than the extent that the root mean square height Sq is increased. it can.
  • the electrolytic drum having the predetermined surface roughness Sa and / or the root mean square height Sq produced on the surface as described above, the surface roughness Sa and / or the root mean square of the predetermined glossy surface is used.
  • An electrolytic copper foil (raw foil) having a square root height Sq can be produced.
  • the surface roughness Sa and the root mean square height Sq of the surface of the electrolytic drum can be measured as follows. -A resin film (polyvinyl chloride) is immersed in a solvent (acetone) to swell. -The swollen resin film is brought into contact with the surface of the electrolytic drum, acetone is volatilized from the resin film, the resin film is peeled off, and a replica of the electrolytic drum surface is collected. The replica is measured with a laser microscope, and the surface roughness Sa and the root mean square height Sq are measured. Then, the surface roughness Sa and the root mean square height Sq of the obtained replica are set as the surface roughness Sa and the root mean square height Sq of the electrolytic drum surface.
  • At least one of the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the maximum height Sz, the kurtosis Sku, and the skewness Ssk on the deposition surface side of the electrolytic copper foil is predetermined.
  • the linear velocity of the electrolytic solution, the current density, and the concentration of the component added to the electrolytic solution may be adjusted.
  • the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the maximum height Sz, the kurtosis Sku and the skewness Ssk on the deposition surface side of the electrolytic copper foil are increased.
  • the concentration of chloride ions in the electrolytic solution is 0 or extremely low, or the concentration of glue in the electrolytic solution is 10 ppm or more. You can increase the range. Further, the above values tend to decrease as the roughness of the electrolytic drum used decreases.
  • the surface treatment is not particularly limited, and examples thereof include heat treatment, rust prevention treatment, chromate treatment, and silane coupling treatment.
  • a layer formed by roughening treatment is a “roughening treatment layer”
  • a layer formed by heat resistance treatment is a “heat resistant layer”
  • a layer formed by rust prevention treatment is a “rust prevention layer”.
  • the layer formed by the chromate treatment is called “chromate treatment layer”
  • the layer formed by the silane coupling treatment is called “silane coupling treatment layer”.
  • a roughening treatment layer may be provided on at least one of the glossy surface and the precipitation surface of the electrolytic copper foil according to the embodiment of the present invention in order to improve the adhesion to the insulating substrate (resin substrate).
  • the roughening treatment is not particularly limited, and can be performed by electrodepositing roughened particles on the surface of the electrolytic copper foil.
  • roughened particles of copper or copper alloy may be electrodeposited on the surface of the electrolytic copper foil.
  • the roughened particles can be fine, and the shape thereof can be any of a needle shape, a rod shape, or a particle shape.
  • the roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing at least one of them. Etc. Further, after electrodepositing the roughened particles of copper or copper alloy, it is possible to perform a roughening treatment in which secondary particles and tertiary particles are further electrodeposited with nickel, cobalt, copper, zinc alone or an alloy.
  • a heat-resistant layer or a rust prevention layer is formed on the surface of a roughening process layer, and also a chromate process layer or a silane coupling process layer is formed in the surface.
  • a heat-resistant layer or a rust-preventing layer is formed on the surface of the electrolytic copper foil, and a chromate treatment layer or a silane coupling treatment layer is further formed on the surface.
  • the above heat-resistant layer, rust prevention layer, chromate treatment layer and silane coupling treatment layer may all be a single layer, but may be formed of a plurality of layers (for example, two or more layers, 3 Layer or more).
  • the roughening treatment layer can be formed by using an electrolytic bath made of sulfuric acid / copper sulfate containing at least one kind of substances selected from alkyl sulfate salts, tungsten ions, and arsenic ions.
  • the roughening treatment layer is preferably plated with an electrolytic bath made of sulfuric acid and copper sulfate in order to prevent powder falling and improve peel strength.
  • Cobalt - - Copper as roughening layer when forming a nickel alloy plating layer by electrolytic plating, the content of 15mg / dm 2 ⁇ 40mg / dm 2 of copper, the content of 100 ⁇ g / dm 2 ⁇ 3000 ⁇ g / dm 2 cobalt, and it is preferable that the content is ternary alloy layer such that the nickel 100 ⁇ g / dm 2 ⁇ 1500 ⁇ g / dm 2.
  • the Co content is less than 100 ⁇ g / dm 2 , the heat resistance and the etching property may be lowered.
  • Co content exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching stains may occur, and acid resistance and chemical resistance may decrease. Moreover, heat resistance may fall that Ni content is less than 100 microgram / dm ⁇ 2 >.
  • the etching residue may increase.
  • Preferred Co content is 1000 ⁇ g / dm 2 ⁇ 2500 ⁇ g / dm 2, preferably Ni content is 500 ⁇ g / dm 2 ⁇ 1200 ⁇ g / dm 2.
  • etching spots in this specification means that Co remains without being dissolved when etched with copper chloride.
  • etching residue means that Ni remains without being dissolved when alkali etching is performed with ammonium chloride.
  • Plating bath composition 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni pH: 1 to 4 Temperature: 30-50 ° C Current density: 20-30 A / dm 2 Plating time: 1-5 seconds
  • Plating bath composition 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni pH: 1 to 4 Temperature: 30-50 ° C Current density: 30 to 45 A / dm 2 Plating time: 0.1 to 2.0 seconds
  • the surface roughness Sa and / or the root mean square height Sq on the glossy surface side can be reduced by shortening the plating time.
  • the surface roughness Sa and / or the root mean square height Sq on the glossy surface side can be increased by increasing the plating time.
  • the surface roughness Sa and / or the root mean square height Sq on the glossy surface side can be reduced by increasing the current density and extremely shortening the plating time. It can be made smaller.
  • the surface roughness Sa and / or the root mean square height Sq on the glossy surface side is increased by increasing the current density and increasing the plating time. Can do.
  • a surface treatment layer may be provided on at least one of the glossy surface side and the deposition surface side of the electrolytic copper foil according to the embodiment of the present invention. Although it does not specifically limit as a surface treatment layer, It is preferable that it is 1 or more types of layers selected from the group which consists of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer. Generally, when a roughening treatment layer is formed on at least one of the glossy surface side and the precipitation surface side of the electrolytic copper foil, a heat-resistant layer or a rust prevention layer is formed on the surface, and a chromate treatment layer or A silane coupling treatment layer is formed.
  • the electrolytic copper foil according to the embodiment of the present invention may be provided with a resin layer on at least one of the glossy surface side and the deposition surface side.
  • This resin layer is generally formed on the roughening treatment layer or the surface treatment layer.
  • it does not specifically limit as a resin layer, It is preferable that it is an insulating resin layer.
  • the heat-resistant layer and / or rust-proof layer is made of, for example, nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • It can be a layer containing one or more elements selected from the group consisting of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum It may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of group elements, iron and tantalum.
  • the heat-resistant layer and / or rust-proof layer is made of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron and tantalum.
  • the heat-resistant layer and / or the rust preventive layer may be a copper-zinc alloy layer, a zinc-nickel alloy layer, a nickel-cobalt alloy layer, a copper-nickel alloy layer, or a chromium-zinc alloy layer. Further, the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy. Further, the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer it is preferable to contain 50 mass% to 99 mass% of nickel and 50 mass% to 1 mass% of zinc, excluding inevitable impurities.
  • the total content of zinc and nickel in the nickel-zinc alloy layer is preferably 5 mg / m 2 to 1000 mg / m 2 , more preferably 10 mg / m 2 to 500 mg / m 2 , still more preferably 20 mg / m 2 to 100 mg / m 2. m 2 .
  • the ratio of the nickel content to the zinc content in the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 1.5 to 10.
  • the nickel content of the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , more preferably 1 mg / m 2 to 50 mg / m 2. preferable.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer having a content of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and a content of 1 mg / m 2.
  • a tin layer of 2 to 80 mg / m 2 , preferably 5 mg / m 2 to 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be composed of any one of nickel-molybdenum, nickel-zinc, and nickel-molybdenum-cobalt.
  • the chromate treatment layer is a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • Chromate treatment layer can be any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
  • the chromate treatment layer examples include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like. .
  • silane coupling agent used for the silane coupling treatment is not particularly limited, and known ones can be used.
  • silane coupling agents include amino silane coupling agents, epoxy silane coupling agents, methacryloxy silane coupling agents, mercapto silane coupling agents, and the like.
  • silane coupling agent vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -Aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, Triazinesilane, ⁇ -mercaptopropyltrimethoxysilane, and the like can be used.
  • a silane coupling agent can be used individually or in mixture of 2 or more types.
  • an amino silane coupling agent or an epoxy silane coupling agent is an amino silane coupling agent or an epoxy silane coupling agent
  • amino silane coupling agent examples include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl) Trim
  • the silane coupling treatment layer is preferably 0.05 mg / m 2 to 200 mg / m 2 , more preferably 0.15 mg / m 2 to 20 mg / m 2 , still more preferably 0.3 mg / m 2 in terms of silicon atoms. It is appropriate that it is provided in a range of ⁇ 2.0 mg / m 2 . In this range, the adhesion between the insulating substrate (resin substrate) and the electrolytic copper foil can be further improved.
  • the resin layer may be an adhesive layer, or may be a semi-cured (B-stage) insulating resin layer for bonding.
  • the semi-cured state (B stage state) is a state where there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may be a layer containing a thermosetting resin or a thermoplastic resin.
  • thermosetting resin and thermoplastic resin is not specifically limited, For example, an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound, a maleimide compound, a polyvinyl acetal resin, a urethane resin etc. are mentioned. These can be used individually or in mixture of 2 or more types.
  • the resin layer may be made of any known dielectric such as a known resin, resin curing agent, compound, curing accelerator, dielectric (dielectric including an inorganic compound and / or organic compound, dielectric including a metal oxide). May be formed from a composition containing a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeletal material and the like.
  • the resin layer may be, for example, International Publication No. 2008/004399, International Publication No. 2008/053878, International Publication No. 2009/084533, Japanese Patent Application Laid-Open No. 11-5828, Japanese Patent Application Laid-Open No. 11-140281, Patent No. No. 3184485, International Publication No.
  • Japanese Patent No. 3676375 Japanese Patent Application Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Application Laid-Open No. 2002-179772, Japanese Patent Application Laid-Open No. 2002-359444, Japanese Patent Application Laid-Open No. 2002-359444, 2003-304068, Japanese Patent No. 3992225, Japanese Patent Laid-Open No. 2003-249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 40251177, Japanese Patent Application Laid-Open No. 2004-349654, and Japanese Patent No. 2004-349654.
  • Japanese Patent No. 4286060 Japanese Patent Laid-Open No.
  • JP2013-19056A resin curing agent, compound, curing accelerator, dielectric Body, reaction catalyst, cross-linking agent, polymer, prepreg, skeletal material, etc.
  • the resin is dissolved in a solvent such as methyl ethyl ketone (MEK) and toluene to form a resin solution, which is applied onto the electrolytic copper foil, the roughening treatment layer or the surface treatment layer by a known method such as a roll coater method, If necessary, it is heated and dried to remove the solvent to bring it to the B stage state.
  • a hot air drying furnace may be used for drying, and the drying temperature may be 100 ° C. to 250 ° C., preferably 130 ° C. to 200 ° C.
  • An electrolytic copper foil having a resin layer is a mode in which a predetermined wiring pattern is formed after the resin layer is superposed on an insulating substrate (resin substrate), and the entire resin layer is thermocompressed to thermally cure the resin layer. used.
  • the electrolytic copper foil with the resin layer When the electrolytic copper foil with the resin layer is used, the number of prepreg materials used in the production of the multilayer printed wiring board can be reduced. In addition, the thickness of the resin layer can be set such that interlayer insulation can be ensured, or a copper-clad laminate can be produced even if no prepreg material is used. In addition, the surface smoothness can be further improved by undercoating an insulating resin on the surface of the substrate.
  • the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous.
  • the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 ⁇ m or less can be manufactured.
  • the thickness of the resin layer is not particularly limited, but is preferably 0.1 ⁇ m to 80 ⁇ m.
  • the thickness of the resin layer is less than 0.1 ⁇ m, the adhesive strength is reduced, and when the electrolytic copper foil with the resin layer is laminated on the base material provided with the inner layer material without interposing the prepreg material, It may be difficult to ensure interlayer insulation between the circuit.
  • the thickness of the resin layer is greater than 80 ⁇ m, it is difficult to form a resin layer having a desired thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours.
  • the formed resin layer is inferior in flexibility, cracks or the like are likely to occur during handling, and excessive resin flow may occur during thermocompression bonding with the inner layer material, making smooth lamination difficult. is there.
  • the electrolytic copper foil with a resin layer it is also possible to sell it in a form in which a semi-cured resin layer is formed on the glossy surface or the surface treatment layer.
  • a printed circuit board is completed by mounting electronic components on the printed wiring board.
  • the “printed wiring board” includes a printed wiring board on which electronic components are mounted, a printed circuit board, a printed board, a flexible printed wiring board, and a rigid printed wiring board.
  • an electronic device may be manufactured using a printed wiring board, an electronic device may be manufactured using a printed circuit board on which electronic components are mounted, and a printed circuit board on which electronic components are mounted is used.
  • An electronic device may be manufactured. Below, some examples of the manufacturing process of the printed wiring board using the electrolytic copper foil which concerns on embodiment of this invention are shown.
  • a method for manufacturing a printed wiring board according to an embodiment of the present invention includes forming a copper-clad laminate by laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention, then a semi-additive method, a modified semi-additive method, Forming a circuit by either a partial additive method or a subtractive method.
  • the insulating substrate may include an inner layer circuit.
  • the “semi-additive method” means a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductor pattern is formed using electroplating and etching.
  • the printed wiring board manufacturing method using the semi-additive method, A step of laminating an electrolytic copper foil and an insulating substrate (resin substrate) according to an embodiment of the present invention; Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, Providing a through hole and / or a blind via in the resin exposed by removing the electrolytic copper foil by etching; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including resin and through-holes and / or blind vias; Providing a plating resist on the electroless plating layer; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Removing the plating resist; Removing an electroless plating layer in a
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate (resin substrate); Performing a desmear process on a region including through holes and / or blind vias; Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, A step of providing an electroless plating layer for the resin exposed by removing the electrolytic copper foil by etching or the like and the region including the through hole and / or the blind via; Providing a plating resist on the electroless plating layer; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Remov
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate (resin substrate); Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, Performing a desmear process on a region including through holes and / or blind vias;
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, Providing an electroless plating layer on the surface of the resin exposed by removing the electrolytic copper foil by etching; Providing a plating resist on the electroless plating layer; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Removing the plating resist; And a step of removing the electroless plating layer and the electrolytic copper foil in a region other than the region where the circuit is formed by flash etching or the like.
  • the “modified semi-additive method” means that an electrolytic copper foil is laminated on an insulating substrate, a non-circuit forming part is protected by a plating resist, and a copper thickening of the circuit forming part is performed by electrolytic plating. It means a method of forming a circuit on an insulating substrate by removing the resist and removing the electrolytic copper foil other than the circuit forming part by (flash) etching.
  • the method for manufacturing a printed wiring board according to the embodiment of the present invention using the modified semi-additive method A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention; Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including through holes and / or blind vias; Providing a plating resist on the electrolytic copper foil; Forming a circuit by electrolytic plating after providing a plating resist; Removing the plating resist; Removing the electrolytic copper foil exposed by removing the plating resist by flash etching.
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a plating resist on the electrolytic copper foil; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Removing the plating resist; And a step of removing the electroless plating layer and the electrolytic copper foil in a region other than the region where the circuit is formed by flash etching or the like.
  • the “partial additive method” means that a conductive circuit is formed by applying a catalyst nucleus on a substrate provided with a conductor layer and, if necessary, a substrate provided with a hole for a through hole or a via hole, and etching it.
  • a method of manufacturing a printed wiring board by forming a solder resist or a plating resist as necessary, and then thickening the conductive circuit, through holes, via holes, etc. by electroless plating treatment means.
  • the printed wiring board manufacturing method using the partly additive method, in one aspect, A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention; Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing catalyst nuclei for regions containing through holes and / or blind vias; Providing an etching resist on the electrolytic copper foil; Exposing the etching resist to form a circuit pattern; Removing the electrolytic copper foil and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit; Removing the etching resist; A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the electrolytic copper foil and the catalyst core by a method such as etching or plasma using a corros
  • the “subtractive method” means a method of forming a conductor pattern by selectively removing unnecessary portions of the copper foil on the copper-clad laminate by etching or the like.
  • the printed wiring board manufacturing method using the subtractive method, in one aspect, A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention; Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including through holes and / or blind vias; Providing an electroplating layer on the surface of the electroless plating layer; Providing an etching resist on the surface of the electrolytic plating layer and / or the electrolytic copper foil; Exposing the etching resist to form a circuit pattern; A step of forming a circuit by removing the electrolytic copper foil, the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid; And a step of removing the etching resist.
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including through holes and / or blind vias; Forming a mask on the surface of the electroless plating layer; Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed; Providing an etching resist on the surface of the electrolytic plating layer and / or the electrolytic copper foil; Exposing the etching resist to form a circuit pattern; Removing the electrolytic copper foil and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as acid to form a circuit; And a step of removing
  • the process of providing a through hole and / or a blind via and the subsequent desmear process may not be performed.
  • the polishing time was the product of the time required to pass one point on the drum surface in one pass and the number of passes based on the width of the polishing belt and the moving speed of the polishing belt.
  • the above-described electrolytic drum and electrodes were disposed around the electrolytic drum with a predetermined distance between the electrodes.
  • electrolysis was performed in the electrolytic bath under the following conditions, and copper was deposited on the surface of the electrolytic drum until the thickness described in Table 2 was reached while rotating the electrolytic drum.
  • Electrolyte composition 100 g / L Cu, 100 g / L H 2 SO 4 Current density: 90 A / dm 2
  • Electrolyte flow rate 2.0 m / sec
  • Electrolyte temperature 60 ° C
  • Electrolyte composition 50 to 150 g / L Cu, 60 to 150 g / L H 2 SO 4 Current density: 10 to 80 A / dm 2 Electrolyte flow rate: 1.5-5 m / sec Electrolyte temperature: 50-60 ° C
  • Additive 10 to 100 mass ppm of chloride ion, 10 to 100 mass ppm of bis (3sulfopropyl) disulfide, 10 to 100 mass ppm of tertiary amine compound The following compounds are used as the tertiary amine compound. It was.
  • R 1 and R 2 are both methyl groups.
  • the tertiary amine compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours.
  • Example 1 to 4 and 10 and Comparative Examples 1 and 2 the following (1) to (4) were applied to the surface (glossy surface) of the electrolytic copper foil (raw foil) produced as described above on the electrolytic drum side. ) was performed in this order. Further, for Examples 1 and 2 and Comparative Examples 1 and 2, the following (2) to (2) to the surface (deposition surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above The processing shown in (4) was performed in this order. For Example 10, the following treatments (1) to (4) were performed on the surface (deposition surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above. It carried out in this order.
  • Example 3 the process shown to the following (3) was implemented with respect to the surface (deposition surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as mentioned above.
  • Example 4 the process shown to the following (4) was implemented with respect to the surface (precipitation surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as mentioned above.
  • Examples 5 to 8 and 14 to 18 are shown in the following (1) to (5) with respect to the surface (glossy surface) of the electrolytic copper foil (raw foil) produced as described above on the electrolytic drum side. Processing was performed in this order.
  • Example 14 the process shown to the following (4) and (5) with respect to the surface (precipitation surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as mentioned above. It carried out in this order.
  • Roughening treatment was performed in the following plating bath and plating conditions in order to electrodeposit the roughened particles of the ternary copper-cobalt-nickel alloy plating on the surface.
  • Plating bath composition 16 g / L Cu, 10 g / L Co, 10 g / L Ni pH: 1 to 4 Temperature: 30 ° C Current density: 30 A / dm 2 Plating time: 2 seconds
  • Co—Ni alloy plating was performed.
  • the Co—Ni alloy plating conditions are described below.
  • Example 9 the following (1) was applied to the electrolytic drum side surface (glossy surface) and the opposite surface (deposition surface) of the electrolytic copper foil (raw foil) produced as described above. The processes shown in (3) were performed in this order.
  • NMP N-methyl-2-pyrrolidone
  • toluene 20 g were added, heated at 180 ° C. for 1 hour and cooled to near room temperature, and then 3, 4, 3 ′, 4 '-Biphenyltetracarboxylic dianhydride 29.42 g (100 mmol), 2,2-bis ⁇ 4- (4-aminophenoxy) phenyl ⁇ propane 82.12 g (20 mmol), 200 g of NMP, and toluene 40g was added and after mixing 1 hour at room temperature, and heated for 3 hours at 180 ° C., to obtain a 38% solids polyimide block copolymer.
  • the block copolymerized polyimide solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide solution having a solid content of 10%.
  • bis (4-maleimidophenyl) methane BMI-H, Kay-Isei Chemical Co., Ltd.
  • Bis (4-maleimidophenyl) methane solid content weight: block copolymerized polyimide solid content weight contained in resin solution 35: 65), dissolved and mixed at 60 ° C. for 20 minutes to obtain a resin solution.
  • the resin solution was applied to the surface of the surface treatment layer of the electrolytic copper foil using a reverse roll coating machine, and dried at 120 ° C. for 3 minutes and at 160 ° C. for 3 minutes in a nitrogen atmosphere. Then, heat treatment was performed at 300 ° C. for 2 minutes to prepare an electrolytic copper foil provided with a resin layer. The thickness of the resin layer was 2 ⁇ m.
  • Examples 11 to 13 the surface (glossy surface) on the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above was subjected to the roughening treatment shown in (1) below. The same processes (2) to (5) as in Examples 5 to 8 and 14 were performed in this order. Further, in Examples 11 to 13, the surface (glossy surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above was compared with (2) to ( The same process as 5) was performed in this order.
  • Roughening treatment was performed in the following plating bath and plating conditions in order to electrodeposit the roughened particles of the ternary copper-cobalt-nickel alloy plating on the surface.
  • Plating bath composition 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni pH: 1 to 4
  • Temperature 30-50 ° C
  • Current density 30 to 45
  • the surface roughness Sa and the root mean square height Sq on the glossy surface and the glossy surface side are ISO-25178-2: 2012 with respect to the glossy surface of the electrolytic copper foil before and after the roughening treatment and / or the surface treatment.
  • the measurement was performed using a laser microscope OLS4100 (LEXT OLS 4100) manufactured by Olympus. At this time, in a laser microscope, measurement of 200 ⁇ m ⁇ 1000 ⁇ m area (specifically 200,000 ⁇ m 2 ) was performed at three locations using an objective lens 50 times, and surface roughness Sa and root mean square height Sq were calculated.
  • the arithmetic average values of the surface roughness Sa and the root mean square height Sq obtained at the three locations were taken as the values of the surface roughness Sa and the root mean square height Sq, respectively.
  • the surface roughness Sa and the root mean square height Sq were calculated after performing plane correction.
  • the environmental temperature at the time of measuring the surface roughness Sa with a laser microscope was set to 23 to 25 ° C.
  • the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the kurtosis Sku and the skewness Ssk on the precipitation surface side are the electrolytic copper after the roughening treatment and / or the surface treatment.
  • OLS4100 LEXT OLS 4100
  • a difference ( ⁇ m) between the maximum value and the minimum value of the circuit lower end width as viewed from the circuit upper surface was measured, and an average value obtained by measuring five locations was used as a result. If the difference between the maximum value and the minimum value was 2 ⁇ m or less, it was judged as having excellent circuit linearity and marked with “ ⁇ ”. In addition, the case where the difference between the maximum value and the minimum value was more than 2 ⁇ m and 4 ⁇ m or less was marked as ⁇ . In addition, the case where the difference between the maximum value and the minimum value exceeded 4 ⁇ m was evaluated as x.
  • solder resist adhesion The adhesion of the solder resist was performed as follows. First, a solder resist (product name “PSR-4000AUS308” manufactured by Taiyo Ink Mfg. Co., Ltd., product name) is applied to the deposition surface side of the electrolytic copper foil after the surface treatment, followed by drying (80 ° C. ⁇ 30 minutes), post-cure (150 ° C. ⁇ 60 minutes) and post-UV (high pressure mercury lamp, 1000 mJ / cm 2 ) were successively performed to form a 20-30 ⁇ m thick solder resist resin layer (coating film) to prepare a test piece. Next, this test piece was floated in a solder bath at 260 ° C.
  • FIG.1 (a) is a SEM image of the glossy surface of the electrolytic copper foil of Example 2 before forming a roughening process layer and a surface treatment layer.
  • FIG.1 (b) is the SEM image of the glossy surface of the electrolytic copper foil of Example 10 before forming a roughening process layer and a surface treatment layer.
  • the electrolytic copper foil of Example 9 having no roughening treatment layer on the glossy surface side has a gloss roughness side surface roughness Sa of 0.270 ⁇ m or less and a root mean square height Sq of 0.315 ⁇ m or less,
  • the surface roughness Sa is 0.115 ⁇ m or more
  • the root mean square height Sq is 0.120 ⁇ m or more
  • the maximum peak height Sp is 0.900 ⁇ m or more
  • the maximum valley depth Sv is 0.600 ⁇ m or more.
  • the maximum height Sz was 1.500 ⁇ m or more
  • the kurtosis Sku was 2.75 to 4.00
  • the skewness Ssk was 0.00 to 0.35.
  • the electrolytic copper foil had good circuit formability and solder resist adhesion. Moreover, this electrolytic copper foil also had good results of normal temperature tensile strength, high temperature tensile strength, normal temperature elongation and high temperature elongation.
  • the surface roughness Sa on the glossy surface side is 0.470 ⁇ m or less and the root mean square height Sq is 0. The surface roughness Sa is not less than 0.115 ⁇ m, the root mean square height Sq is not less than 0.120 ⁇ m, the maximum peak height Sp is not less than 0.900 ⁇ m, and the maximum valley depth Sv is about 550 ⁇ m or less.
  • the electrolytic copper foil had good circuit formability and solder resist adhesion. Moreover, this electrolytic copper foil also had good results of normal temperature tensile strength, high temperature tensile strength, normal temperature elongation and high temperature elongation.
  • the electrolytic copper foil of Comparative Example 1 having a roughened layer on the glossy surface side has a surface roughness Sa on the glossy surface side of more than 0.470 ⁇ m and a root mean square height Sq of 0.550 ⁇ m. It was over. Therefore, this electrolytic copper foil was not sufficient in circuit formation.
  • the electrolytic copper foil of Comparative Example 2 having the roughened layer on the glossy surface side has a surface roughness Sa of less than 0.115 ⁇ m and a root mean square height Sq of less than 0.120 ⁇ m and a maximum on the deposition surface side.
  • the peak height Sp is less than 0.900 ⁇ m
  • the maximum valley depth Sv is less than 0.600 ⁇ m
  • the maximum height Sz is less than 1.500 ⁇ m
  • the kurtosis Sku is out of the range of 2.75 to 4.00
  • the skewness Ssk is 0.00. It was outside the range of 00 to 0.35. Therefore, this electrolytic copper foil has insufficient adhesiveness of the solder resist.
  • an electrolytic copper foil excellent in circuit formability and solder resist adhesion As can be seen from the above results, according to the embodiment of the present invention, it is possible to provide an electrolytic copper foil excellent in circuit formability and solder resist adhesion.
  • a copper-clad laminate using an electrolytic copper foil excellent in circuit formability and solder resist adhesion, a printed wiring board, a manufacturing method thereof, an electronic device, and a manufacturing method thereof are provided. Can be provided.

Abstract

An electrolytic copper foil having a glossy surface and a deposition surface. This electrolytic copper foil has a roughened layer on the glossy surface side thereof. The root mean square height Sq of the glossy surface is no more than 0.550 µm. The deposition surface side fulfills at least one condition among the following: (a) the surface roughness Sa is at least 0.115 µm; (b) the root mean square height Sq is at least 0.120 µm; (c) the maximum peak height Sp is at least 0.900 µm; (d) the maximum valley depth Sv is at least 0.600 µm; the maximum height Sz is at least 1.500 µm; (f) the kurtosis Sku is 2.75–4.00; and (g) the skewness Ssk is 0.00–0.35.

Description

電解銅箔、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法Electrolytic copper foil, copper clad laminate, printed wiring board and method for producing the same, and electronic device and method for producing the same
 本開示は、電解銅箔、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法に関する。 The present disclosure relates to an electrolytic copper foil, a copper-clad laminate, a printed wiring board, a manufacturing method thereof, an electronic device, and a manufacturing method thereof.
 プリント配線板は、銅箔に絶縁基板(例えば、樹脂基板)を接着させて銅張積層板とした後、エッチングによって銅箔に導体パターン(回路)を形成するという工程を経て一般的に製造される。
 近年、電子機器の小型化及び高性能化のニーズの増大に伴い、搭載部品の高密度実装化や信号の高周波化等が進展しており、プリント配線板に対しても導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。
A printed wiring board is generally manufactured through a process in which an insulating substrate (for example, a resin substrate) is bonded to a copper foil to form a copper-clad laminate, and then a conductor pattern (circuit) is formed on the copper foil by etching. The
In recent years, with increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and the miniaturization of conductor patterns on printed wiring boards ( Fine pitch) and high frequency response are required.
 そこで、電解銅箔を用いて導体パターンの微細化を実現するために、特許文献1には、光沢剤として作用する硫黄含有化合物等の添加剤を電解液に添加して析出面側の表面が平滑な電解銅箔を作製した後、電解銅箔に回路を形成することが提案されている。 Therefore, in order to realize the miniaturization of the conductor pattern using the electrolytic copper foil, Patent Document 1 adds an additive such as a sulfur-containing compound that acts as a brightening agent to the electrolytic solution so that the surface on the deposition surface side is reduced. It has been proposed to form a circuit on an electrolytic copper foil after producing a smooth electrolytic copper foil.
特開2004-162172号公報JP 2004-162172 A
 しかしながら、特許文献1の方法は、電解液に含まれる添加剤の影響で、電解銅箔の製造時に常温での再結晶及びそれに伴う収縮によって銅箔にシワが発生し易い。そして、このようなシワが発生した場合、その後の電解銅箔を絶縁基板(樹脂基板)と接着させるときにもシワが発生してしまう。このように電解銅箔にシワが発生してしまうと、電解銅箔に導体パターンを形成する際にファインピッチ化が困難となるため、回路形成性が十分であるとは言えない。また、特許文献1の電解銅箔は、電解液に添加された添加剤の影響で、機械的特性(例えば、抗張力や高温伸びなど)が変化し易いという問題もある。 However, in the method of Patent Document 1, due to the influence of the additive contained in the electrolytic solution, wrinkles are likely to occur in the copper foil due to recrystallization at normal temperature and the accompanying shrinkage during the production of the electrolytic copper foil. And when such a wrinkle generate | occur | produces, a wrinkle will also generate | occur | produce when adhering subsequent electrolytic copper foil with an insulated substrate (resin board | substrate). If wrinkles are generated in the electrolytic copper foil in this way, it is difficult to make a fine pitch when forming a conductor pattern on the electrolytic copper foil, and thus it cannot be said that the circuit formability is sufficient. Moreover, the electrolytic copper foil of patent document 1 also has the problem that mechanical characteristics (for example, a tensile strength, high temperature elongation, etc.) are easy to change under the influence of the additive added to electrolyte solution.
 他方、導体パターンには、絶縁性を確保してショートを防止するためにソルダーレジストが塗布されるため、導体パターンとなる電解銅箔の表面にはソルダーレジストとの密着性が良好であることも要求される。しかしながら、導体パターンとなる電解銅箔の表面が平滑であると、ソルダーレジストとの密着性が低下するという問題がある。そのため、導体パターンとなる電解銅箔の表面は、ある程度の粗さが必要である。
 このように、電解銅箔には、絶縁基板との接着性を高めてファインピッチ化を行うために、絶縁基板と接着させる面には平滑性が要求される一方、ソルダーレジストの密着性を確保するために、導体パターンとなる面にはある程度の粗さが要求される。
On the other hand, since a solder resist is applied to the conductor pattern in order to ensure insulation and prevent short-circuiting, the surface of the electrolytic copper foil serving as the conductor pattern may have good adhesion to the solder resist. Required. However, when the surface of the electrolytic copper foil serving as the conductor pattern is smooth, there is a problem that the adhesion with the solder resist is lowered. Therefore, the surface of the electrolytic copper foil used as the conductor pattern needs to have a certain degree of roughness.
In this way, the electrolytic copper foil requires smoothness on the surface to be bonded to the insulating substrate in order to increase the adhesion to the insulating substrate and achieve a fine pitch, while ensuring the adhesion of the solder resist. Therefore, a certain degree of roughness is required for the surface to be a conductor pattern.
 本発明の幾つかの実施形態は、上記のような問題を解決するためになされたものであり、回路形成性及びソルダーレジストの密着性に優れた電解銅箔を提供することを課題とする。
 また、本発明の幾つかの実施形態は、回路形成性及びソルダーレジストの密着性に優れた電解銅箔を用いた銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法を提供することを課題とする。
Some embodiments of the present invention have been made in order to solve the above-described problems, and an object of the present invention is to provide an electrolytic copper foil excellent in circuit formability and solder resist adhesion.
In addition, some embodiments of the present invention provide a copper-clad laminate, a printed wiring board, a manufacturing method thereof, an electronic device, and a manufacturing method thereof using an electrolytic copper foil excellent in circuit formability and solder resist adhesion. It is an issue to provide.
 本発明者らは、上記の問題を解決すべく鋭意研究した結果、電解銅箔の光沢面側の面粗さSa及び/又は2乗平均平方根高さSqを所定の範囲に制御するとともに、電解銅箔の析出面側の面粗さSa、2乗平均平方根高さSq、最大山高さSp、最大谷深さSv、最大高さSz、クルトシスSku及びスキューネスSskの少なくとも1つを所定の範囲に制御することにより、光沢面が絶縁基板との接着性に優れ且つ析出面がソルダーレジストの密着性に優れた表面状態となる結果、回路形成性とソルダーレジストの密着性との両立を図ることができることを見出し、本発明の幾つかの実施形態を完成するに至った。 As a result of earnest research to solve the above problems, the present inventors have controlled the surface roughness Sa and / or the root mean square height Sq on the glossy surface side of the electrolytic copper foil to a predetermined range, At least one of the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the maximum height Sz, the kurtosis Sku, and the skewness Ssk on the deposition surface side of the copper foil is within a predetermined range. By controlling, the glossy surface is excellent in adhesion to the insulating substrate and the deposited surface is in a surface state excellent in adhesion of the solder resist. As a result, both circuit formability and solder resist adhesion can be achieved. We have found that we have completed several embodiments of the present invention.
 すなわち、本発明の実施形態に係る電解銅箔は、光沢面と析出面とを有し、
 前記光沢面側に粗化処理層を有し、前記光沢面の2乗平均平方根高さSqが0.550μm以下であり、前記析出面側が下記の条件:
 (a)面粗さSaが0.115μm以上である
 (b)2乗平均平方根高さSqが0.120μm以上である
 (c)最大山高さSpが0.900μm以上である
 (d)最大谷深さSvが0.600μm以上である
 (e)最大高さSzが1.500μm以上である
 (f)クルトシスSkuが2.75以上4.00以下である
 (g)スキューネスSskが0.00以上0.35以下である
の少なくとも1つを満たす。
That is, the electrolytic copper foil according to the embodiment of the present invention has a glossy surface and a precipitation surface,
The glossy surface has a roughening layer, the root mean square height Sq of the glossy surface is 0.550 μm or less, and the precipitation surface side has the following conditions:
(A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
 また、本発明の別の実施形態に係る電解銅箔は、光沢面と析出面とを有し、
 前記光沢面側に粗化処理層を有し、前記光沢面側の面粗さSaが0.470μm以下であり、前記析出面側が下記の条件:
 (a)面粗さSaが0.115μm以上である
 (b)2乗平均平方根高さSqが0.120μm以上である
 (c)最大山高さSpが0.900μm以上である
 (d)最大谷深さSvが0.600μm以上である
 (e)最大高さSzが1.500μm以上である
 (f)クルトシスSkuが2.75以上4.00以下である
 (g)スキューネスSskが0.00以上0.35以下である
の少なくとも1つを満たす。
Moreover, the electrolytic copper foil according to another embodiment of the present invention has a glossy surface and a precipitation surface,
It has a roughening treatment layer on the glossy surface side, the surface roughness Sa on the glossy surface side is 0.470 μm or less, and the precipitation surface side has the following conditions:
(A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
 また、本発明の別の実施形態に係る電解銅箔は、光沢面と析出面とを有し、
 前記光沢面側に粗化処理層を有さず、前記光沢面側の面粗さSaが0.270μm以下であり、前記析出面側が下記の条件:
 (a)面粗さSaが0.115μm以上である
 (b)2乗平均平方根高さSqが0.120μm以上である
 (c)最大山高さSpが0.900μm以上である
 (d)最大谷深さSvが0.600μm以上である
 (e)最大高さSzが1.500μm以上である
 (f)クルトシスSkuが2.75以上4.00以下である
 (g)スキューネスSskが0.00以上0.35以下である
の少なくとも1つを満たす。
Moreover, the electrolytic copper foil according to another embodiment of the present invention has a glossy surface and a precipitation surface,
There is no roughening layer on the glossy surface side, the surface roughness Sa on the glossy surface side is 0.270 μm or less, and the precipitation surface side has the following conditions:
(A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
 また、本発明の別の実施形態に係る電解銅箔は、光沢面と析出面とを有し、
 前記光沢面側に粗化処理層を有さず、前記光沢面側の2乗平均平方根高さSqが0.315μm以下であり、前記析出面側が下記の条件:
 (a)面粗さSaが0.115μm以上である
 (b)2乗平均平方根高さSqが0.120μm以上である
 (c)最大山高さSpが0.900μm以上である
 (d)最大谷深さSvが0.600μm以上である
 (e)最大高さSzが1.500μm以上である
 (f)クルトシスSkuが2.75以上4.00以下である
 (g)スキューネスSskが0.00以上0.35以下である
の少なくとも1つを満たす。
Moreover, the electrolytic copper foil according to another embodiment of the present invention has a glossy surface and a precipitation surface,
The glossy surface side does not have a roughening treatment layer, the root mean square height Sq on the glossy surface side is 0.315 μm or less, and the precipitation surface side has the following conditions:
(A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less.
 また、本発明の実施形態に係る銅張積層板は、前記電解銅箔を有する。
 また、本発明の実施形態に係るプリント配線板は、前記電解銅箔を有する。
 また、本発明の実施形態に係るプリント配線板の製造方法は、前記電解銅箔を用いる。
 また、本発明の別の実施形態に係るプリント配線板の製造方法は、前記電解銅箔と絶縁基板とを積層して銅張積層板を作製した後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって回路を形成する工程を含む。
 また、本発明の実施形態に係る電子機器は、前記プリント配線板を有する。
 さらに、本発明の実施形態に係る電子機器の製造方法は、前記プリント配線板を用いる。
Moreover, the copper clad laminated board which concerns on embodiment of this invention has the said electrolytic copper foil.
Moreover, the printed wiring board which concerns on embodiment of this invention has the said electrolytic copper foil.
Moreover, the manufacturing method of the printed wiring board which concerns on embodiment of this invention uses the said electrolytic copper foil.
In addition, a method for manufacturing a printed wiring board according to another embodiment of the present invention includes: producing a copper-clad laminate by laminating the electrolytic copper foil and an insulating substrate; then, a semi-additive method, a subtractive method, and a partial additive method. Forming a circuit by either a method or a modified semi-additive method.
Moreover, the electronic device which concerns on embodiment of this invention has the said printed wiring board.
Furthermore, the method for manufacturing an electronic device according to an embodiment of the present invention uses the printed wiring board.
 本発明の幾つかの実施形態によれば、回路形成性及びソルダーレジストの密着性に優れた電解銅箔を提供することができる。また、本発明の幾つかの実施形態によれば、回路形成性及びソルダーレジストの密着性に優れた電解銅箔を用いた銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法を提供することができる。 According to some embodiments of the present invention, an electrolytic copper foil excellent in circuit formability and solder resist adhesion can be provided. In addition, according to some embodiments of the present invention, a copper-clad laminate using an electrolytic copper foil excellent in circuit formability and solder resist adhesion, a printed wiring board, a manufacturing method thereof, and an electronic device and A manufacturing method can be provided.
(a)は、粗化処理層及び表面処理層を形成する前の実施例2の電解銅箔の光沢面のSEM像であり、(b)は、粗化処理層及び表面処理層を形成する前の実施例10の電解銅箔の光沢面のSEM像である。(A) is the SEM image of the glossy surface of the electrolytic copper foil of Example 2 before forming a roughening process layer and a surface treatment layer, (b) forms a roughening process layer and a surface treatment layer. It is a SEM image of the glossy surface of the electrolytic copper foil of the previous Example 10.
 以下、本発明の電解銅箔の実施形態について説明する。
 本発明の実施形態に係る電解銅箔は、光沢面と析出面とを有する。
 ここで、本明細書において「電解銅箔」とは、電気めっきの原理を利用し、電解ドラムを用いて作製される銅箔及び銅合金箔を意味する。
 また、本明細書において「電解銅箔の光沢面」とは、電解銅箔が作製されるときのドラム側の表面(シャイニー面:S面)を意味し、また、「電解銅箔の析出面」とは、電解銅箔が作製されるときのドラムとは反対側の表面(マット面:M面)を意味する。
Hereinafter, embodiments of the electrolytic copper foil of the present invention will be described.
The electrolytic copper foil according to the embodiment of the present invention has a glossy surface and a precipitation surface.
Here, “electrolytic copper foil” in the present specification means copper foil and copper alloy foil produced by using an electrolysis drum using the principle of electroplating.
In addition, in this specification, the “glossy surface of the electrolytic copper foil” means a surface on the drum side (shiny surface: S surface) when the electrolytic copper foil is produced. "Means the surface (mat surface: M surface) opposite to the drum when the electrolytic copper foil is produced.
 また、本明細書において「光沢面側の面粗さSa」及び「光沢面側の2乗平均平方根高さSq」とは、電解銅箔(生箔)の光沢面に粗化処理層及び/又は表面処理層を設ける場合には、当該層を設けた後の表面(最外層の表面)の面粗さSa及び2乗平均平方根高さSqをそれぞれ意味する。また、「光沢面の面粗さSa」及び「光沢面の2乗平均平方根高さSq」とは、光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の表面(最外層の表面)の面粗さSa及び2乗平均平方根高さSqをそれぞれ意味する。 In the present specification, “surface roughness Sa on the glossy surface side” and “root mean square height Sq on the glossy surface side” are the roughened layer and / or the glossy surface of the electrolytic copper foil (raw foil). Or when providing a surface treatment layer, the surface roughness Sa and the root mean square height Sq of the surface (surface of the outermost layer) after providing the said layer are each meant. The “surface roughness Sa of the glossy surface” and the “root mean square height Sq of the glossy surface” are the surface of the glossy surface before the roughening treatment layer and / or the surface treatment layer is provided on the glossy surface side ( It means the surface roughness Sa and the root mean square height Sq of the outermost surface.
 また、本明細書において「析出面側の面粗さSa」、「析出面側の2乗平均平方根高さSq」、「析出面側の最大山高さSp」、「析出面側の最大谷深さSv」、「析出面側の最大高さSz」、「析出面側のクルトシスSku」及び「析出面側のスキューネスSsk」とは、電解銅箔(生箔)の析出面に粗化処理層及び/又は表面処理層を設ける場合には、当該層を設けた後の表面(最外層の表面)の面粗さSa、2乗平均平方根高さSq、最大山高さSp、最大谷深さSv、最大高さSz、クルトシスSku及びスキューネスSskをそれぞれ意味する。 Further, in this specification, “the surface roughness Sa on the precipitation surface side”, “the root mean square height Sq on the precipitation surface side”, “the maximum peak height Sp on the precipitation surface side”, “the maximum valley depth on the precipitation surface side” "Sv", "Maximum height Sz on the precipitation surface side", "Cultosis Sku on the precipitation surface side" and "Skness Ssk on the precipitation surface side" In the case where a surface treatment layer is provided, the surface roughness (surface of the outermost layer) after the layer is provided (surface roughness Sa, root mean square height Sq, maximum peak height Sp, maximum valley depth Sv) , Mean maximum height Sz, kurtosis Sku and skewness Ssk.
<粗化処理層を光沢面側に有さない電解銅箔>
 本発明の実施形態に係る電解銅箔は、一側面において、光沢面側に粗化処理層を有さず、光沢面側の面粗さSaが0.270μm以下及び/又は光沢面側の2乗平均平方根高さSqが0.315μm以下である。
 ここで、本明細書において「面粗さSa」とは、Raを三次元に拡張した粗さのパラメータであり、表面の平均面に対して各点の高さの差の絶対値の平均を表す。また、「2乗平均平方根高さSq」とは、Rqを三次元に拡張した粗さのパラメータであり、表面の平均面からの距離の標準偏差を表す。
 光沢面側の面粗さSa及び/又は光沢面側の2乗平均平方根高さSqを上記の範囲に制御することにより、絶縁基板との接着性が向上するとともに、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
<Electrolytic copper foil without roughening layer on the glossy surface>
In one aspect, the electrolytic copper foil according to the embodiment of the present invention has no roughening treatment layer on the glossy surface side, and the surface roughness Sa on the glossy surface side is 0.270 μm or less and / or 2 on the glossy surface side. The root mean square height Sq is 0.315 μm or less.
Here, in this specification, “surface roughness Sa” is a roughness parameter obtained by extending Ra three-dimensionally, and the average of the absolute values of the height difference of each point with respect to the average surface of the surface. To express. The “root mean square height Sq” is a roughness parameter obtained by expanding Rq in three dimensions, and represents a standard deviation of the distance from the average surface of the surface.
By controlling the surface roughness Sa on the glossy surface side and / or the root mean square height Sq on the glossy surface side to the above range, the adhesiveness with the insulating substrate is improved and formed using electrolytic copper foil. With respect to the pitch of the circuit to be performed, a fine pitch can be achieved such that L / S (line / space) = 22 μm or less / 22 μm or less, preferably 20 μm or less / 20 μm or less.
 電解銅箔の光沢面側の面粗さSaは、ファインピッチ化の効果を高める観点から、好ましくは0.230μm以下、より好ましくは0.180μm以下、さらに好ましくは0.150μm以下、最も好ましくは0.133μm以下である。なお、電解銅箔の光沢面側の面粗さSaの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 また、電解銅箔の光沢面側の2乗平均平方根高さSqは、ファインピッチ化の効果を高める観点から、好ましくは0.200μm以下、より好ましくは0.180μm以下である。なお、電解銅箔の光沢面側の2乗平均平方根高さSqの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
The surface roughness Sa on the glossy surface side of the electrolytic copper foil is preferably 0.230 μm or less, more preferably 0.180 μm or less, further preferably 0.150 μm or less, and most preferably from the viewpoint of enhancing the effect of fine pitch. It is 0.133 μm or less. The lower limit of the surface roughness Sa on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 μm or more, preferably 0.010 μm or more, more preferably 0.050 μm or more, and still more preferably 0.8. 100 μm or more.
Further, the root mean square height Sq on the glossy surface side of the electrolytic copper foil is preferably 0.200 μm or less, more preferably 0.180 μm or less, from the viewpoint of enhancing the effect of fine pitch. The lower limit of the root mean square height Sq on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 μm or more, preferably 0.010 μm or more, more preferably 0.050 μm or more, and further preferably Is 0.100 μm or more.
<粗化処理層を光沢面側に有する電解銅箔>
 本発明の実施形態に係る電解銅箔は、別の一側面において、粗化処理層を光沢面側に有し、光沢面側の面粗さSaが0.470μm以下及び/又は光沢面側の2乗平均平方根高さSqが0.550μm以下である。
 一般的に、粗化処理層を光沢面側に有する電解銅箔では、ファインピッチ化が低下することがあるが、光沢面側の面粗さ及び/又は光沢面側の2乗平均平方根高さSqを上記の範囲に制御することにより、絶縁基板との接着性が向上するとともに、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
<Electrolytic copper foil having a roughened layer on the glossy surface>
In another aspect of the electrolytic copper foil according to the embodiment of the present invention, the roughened layer is provided on the glossy surface side, and the surface roughness Sa on the glossy surface side is 0.470 μm or less and / or on the glossy surface side. The root mean square height Sq is 0.550 μm or less.
In general, in an electrolytic copper foil having a roughened layer on the glossy surface side, fine pitch may be reduced, but the surface roughness on the glossy surface side and / or the root mean square height on the glossy surface side By controlling Sq within the above range, the adhesion to the insulating substrate is improved and the pitch of the circuit formed using the electrolytic copper foil is L / S (line / space) = 22 μm or less / 22 μm or less. Preferably, a fine pitch of 20 μm or less / 20 μm or less can be achieved.
 電解銅箔の光沢面側の面粗さSaは、ファインピッチ化の効果を高める観点から、好ましくは0.385μm以下、より好ましくは0.380μm以下、より好ましくは0.355μm以下、さらに好ましくは0.340μm以下、さらに好ましくは0.300μm以下、またさらに好ましくは0.295μm以下、またさらに好ましくは0.230μm以下、最も好ましくは0.200μm以下である。なお、電解銅箔の光沢面側の面粗さSaの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。 The surface roughness Sa on the glossy surface side of the electrolytic copper foil is preferably 0.385 μm or less, more preferably 0.380 μm or less, more preferably 0.355 μm or less, more preferably from the viewpoint of enhancing the effect of fine pitch. It is 0.340 μm or less, more preferably 0.300 μm or less, still more preferably 0.295 μm or less, still more preferably 0.230 μm or less, and most preferably 0.200 μm or less. The lower limit of the surface roughness Sa on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 μm or more, preferably 0.010 μm or more, more preferably 0.050 μm or more, and still more preferably 0.8. 100 μm or more.
 また、電解銅箔の光沢面側の2乗平均平方根高さSqは、ファインピッチ化の効果を高める観点から、好ましくは0.490μm以下、より好ましくは0.450μm以下、より好ましくは0.435μm以下、さらに好ましくは0.400μm以下、さらに好ましくは0.395μm以下、またさらに好ましくは0.330μm以下、最も好ましくは0.290μm以下である。なお、電解銅箔の光沢面側の2乗平均平方根高さSqの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。 Further, the root mean square height Sq on the glossy surface side of the electrolytic copper foil is preferably 0.490 μm or less, more preferably 0.450 μm or less, more preferably 0.435 μm from the viewpoint of enhancing the effect of fine pitch. Hereinafter, it is more preferably 0.400 μm or less, further preferably 0.395 μm or less, still more preferably 0.330 μm or less, and most preferably 0.290 μm or less. The lower limit of the root mean square height Sq on the glossy surface side of the electrolytic copper foil is not particularly limited, but is generally 0.001 μm or more, preferably 0.010 μm or more, more preferably 0.050 μm or more, and further preferably Is 0.100 μm or more.
 上記のような光沢面側の面粗さSa及び/又は2乗平均平方根高さSqを有する本発明の実施形態に係る電解銅箔は、光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の面粗さSa及び/又は2乗平均平方根高さSqを制御することによって得ることができる。 The electrolytic copper foil according to the embodiment of the present invention having the glossy surface side roughness Sa and / or the root mean square height Sq as described above has a roughened layer and / or a surface-treated layer on the glossy side. Can be obtained by controlling the surface roughness Sa and / or the root mean square height Sq of the glossy surface.
 すなわち、本発明の実施形態に係る電解銅箔を得るためには、光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の面粗さSaを、好ましくは0.270μm以下、より好ましくは0.230μm以下、より好ましくは0.180μm以下、さらに好ましくは0.150μm以下、さらに好ましくは0.133μm以下、またさらに好ましくは0.130μm以下、最も好ましくは0.120μm以下に制御すればよい。なお、光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の面粗さSaの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の面粗さSaを上記の範囲に制御することにより、粗化処理層及び/又は表面処理層を設けた後の光沢面側の面粗さSa及び/又は2乗平均平方根高さSqを上記の範囲に制御することができるため、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、より好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
That is, in order to obtain the electrolytic copper foil according to the embodiment of the present invention, the surface roughness Sa of the glossy surface before providing the roughening treatment layer and / or the surface treatment layer on the glossy surface side is preferably 0.270 μm. Or less, more preferably 0.230 μm or less, more preferably 0.180 μm or less, further preferably 0.150 μm or less, further preferably 0.133 μm or less, still more preferably 0.130 μm or less, and most preferably 0.120 μm or less. It may be controlled to. In addition, the lower limit of the surface roughness Sa of the glossy surface before providing the roughening treatment layer and / or the surface treatment layer on the glossy surface side is not particularly limited, but is generally 0.001 μm or more, preferably 0.010 μm or more, More preferably, it is 0.050 micrometer or more, More preferably, it is 0.100 micrometer or more.
By controlling the surface roughness Sa of the glossy surface before providing the roughening treatment layer and / or the surface treatment layer on the glossy surface side within the above range, the roughening treatment layer and / or the surface treatment layer is provided. Since the surface roughness Sa and / or the root mean square height Sq on the glossy surface side can be controlled within the above range, the pitch of the circuit formed using the electrolytic copper foil is expressed by L / S (line / Space) = 22 μm or less / 22 μm or less, more preferably 20 μm or less / 20 μm or less.
 また、本発明の実施形態に係る電解銅箔を得るためには、光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の2乗平均平方根高さSqを、好ましくは0.315μm以下、より好ましくは0.292μm以下、より好ましくは0.230μm以下、さらに好ましくは0.200μm以下、さらに好ましくは0.180μm以下、またさらに好ましくは0.120μm以下、最も好ましくは0.115μm以下に制御すればよい。なお、光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の2乗平均平方根高さSqの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 光沢面側に粗化処理層及び/又は表面処理層を設ける前の光沢面の2乗平均平方根高さSqを上記の範囲に制御することにより、粗化処理層及び/又は表面処理層を設けた後の光沢面側の面粗さSa及び/又は2乗平均平方根高さSqを上記の範囲に制御することができるため、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、より好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
In order to obtain the electrolytic copper foil according to the embodiment of the present invention, the root mean square height Sq of the glossy surface before providing the roughening treatment layer and / or the surface treatment layer on the glossy surface side is preferably 0.315 μm or less, more preferably 0.292 μm or less, more preferably 0.230 μm or less, even more preferably 0.200 μm or less, still more preferably 0.180 μm or less, even more preferably 0.120 μm or less, and most preferably 0 It may be controlled to 115 μm or less. The lower limit of the root mean square height Sq of the glossy surface before providing the roughening layer and / or the surface treatment layer on the glossy surface side is not particularly limited, but is generally 0.001 μm or more, preferably 0.8. It is 010 μm or more, more preferably 0.050 μm or more, and further preferably 0.100 μm or more.
By providing the root mean square height Sq of the glossy surface before providing the roughening layer and / or surface treatment layer on the glossy surface side, the roughening treatment layer and / or the surface treatment layer is provided. Since the surface roughness Sa and / or the root mean square height Sq on the glossy surface side after the control can be controlled within the above range, the pitch of the circuit formed using the electrolytic copper foil is determined by L / S. (Line / space) = 22 μm or less / 22 μm or less, more preferably 20 μm or less / 20 μm or less is possible.
 本発明の実施形態に係る電解銅箔は、析出面側が下記の条件:
 (a)面粗さSaが0.115μm以上である
 (b)2乗平均平方根高さSqが0.120μm以上である
 (c)最大山高さSpが0.900μm以上である
 (d)最大谷深さSvが0.600μm以上である
 (e)最大高さSzが1.500μm以上である
 (f)クルトシスSkuが2.75以上4.00以下である
 (g)スキューネスSskが0.00以上0.35以下である
の少なくとも1つを満たす。析出面側が上記の条件の少なくとも1つを満たすことにより、析出面側の表面が適度な粗さとなる結果、ソルダーレジストの密着性を向上させることが可能となる。
As for the electrolytic copper foil which concerns on embodiment of this invention, the deposition surface side is the following conditions:
(A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more Satisfy at least one of 0.35 or less. By satisfying at least one of the above conditions on the deposition surface side, the surface on the deposition surface side has an appropriate roughness, so that the adhesion of the solder resist can be improved.
 ここで、本明細書において「最大山高さSp」とは、表面の平均面からの高さの最大値を表す。また、「最大谷深さSv」とは、表面の平均面からの高さの最小値の絶対値を表す。また、「最大高さSz」とは、表面の最も高い点から最も低い点までの距離を表す。また、「クルトシスSku」とは、高さ分布の鋭さを表し、Sku=3のときに高さ分布が正規分布であること、Sku>3のときに表面に鋭い山や谷が多いこと、Sku<3のときに表面が平坦であることを示す。また、「スキューネスSsk」とは、高さ分布の対称性を表し、Ssk=0のときに高さ分布が上下に対称であること、Ssk>0のときに細かい山が多い表面であること、Ssk<0のときに細かい谷が多い表面であることを示す。
 析出面側は、ソルダーレジストの密着性を安定して確保する観点から、好ましくは少なくとも2つ、より好ましくは少なくとも3つ、さらに好ましくは少なくとも4つ、またさらに好ましくは少なくとも5つ、特に好ましくは少なくとも6つ、最も好ましくは7つ全ての条件を満たすことが適切である。
Here, in this specification, the “maximum peak height Sp” represents the maximum value of the height from the average surface. The “maximum valley depth Sv” represents the absolute value of the minimum value of the height from the average surface. “Maximum height Sz” represents the distance from the highest point to the lowest point on the surface. “Cultosis Sku” represents the sharpness of the height distribution. When Sku = 3, the height distribution is a normal distribution, and when Sku> 3, the surface has many sharp peaks and valleys. <3 indicates that the surface is flat. The “skewness Ssk” represents the symmetry of the height distribution. The height distribution is vertically symmetric when Ssk = 0, and the surface has many fine peaks when Ssk> 0. A surface having many fine valleys when Ssk <0.
From the viewpoint of stably securing the adhesiveness of the solder resist, the precipitation surface side is preferably at least 2, more preferably at least 3, more preferably at least 4, and even more preferably at least 5, particularly preferably. It is appropriate to satisfy at least 6 and most preferably all 7 conditions.
 析出面側の面粗さSaは、ソルダーレジストの密着性を安定して確保する観点から、好ましくは0.120μm以上、より好ましくは0.130μm以上、さらに好ましくは0.140μm以上である。なお、析出面側の面粗さSaの上限は、特に限定されないが、一般的に2.000μm以下、好ましくは1.800μm以下、さらに好ましくは1.500μm以下、最も好ましくは1.000μm以下である。 The surface roughness Sa on the deposition surface side is preferably 0.120 μm or more, more preferably 0.130 μm or more, and further preferably 0.140 μm or more from the viewpoint of stably securing the adhesion of the solder resist. The upper limit of the surface roughness Sa on the precipitation side is not particularly limited, but is generally 2.000 μm or less, preferably 1.800 μm or less, more preferably 1.500 μm or less, and most preferably 1.000 μm or less. is there.
 析出面側の2乗平均平方根高さSqは、ソルダーレジストの密着性を安定して確保する観点から、好ましくは0.130μm以上、より好ましくは0.140μm以上、さらに好ましくは0.150μm以上である。なお、析出面側の2乗平均平方根高さSqの上限は、特に限定されないが、一般的に2.000μm以下、好ましくは1.800μm以下、さらに好ましくは1.500μm以下、最も好ましくは1.300μm以下である。 The root-mean-square height Sq on the precipitation surface side is preferably 0.130 μm or more, more preferably 0.140 μm or more, and further preferably 0.150 μm or more, from the viewpoint of stably securing the adhesion of the solder resist. is there. The upper limit of the root mean square height Sq on the precipitation side is not particularly limited, but is generally 2.000 μm or less, preferably 1.800 μm or less, more preferably 1.500 μm or less, and most preferably 1.500 μm or less. 300 μm or less.
 析出面側の最大山高さSpは、ソルダーレジストの密着性を安定して確保する観点から、好ましくは1.050μm以上、より好ましくは1.100μm以上、さらに好ましくは1.200μm以上である。なお、析出面側の最大山高さSpの上限は、特に限定されないが、一般的に10.000μm以下、好ましくは9.000μm以下、さらに好ましくは8.000μm以下、最も好ましくは7.000μm以下である。 The maximum peak height Sp on the deposition surface side is preferably 1.050 μm or more, more preferably 1.100 μm or more, and further preferably 1.200 μm or more, from the viewpoint of stably securing the adhesion of the solder resist. The upper limit of the maximum peak height Sp on the deposition surface side is not particularly limited, but is generally 10.000 μm or less, preferably 9.000 μm or less, more preferably 8.000 μm or less, and most preferably 7.000 μm or less. is there.
 析出面側の最大谷深さSvは、ソルダーレジストの密着性を安定して確保する観点から、好ましくは0.740μm以上、より好ましくは0.800μm以上、さらに好ましくは0.900μm以上である。なお、析出面側の最大谷深さSvの上限は、特に限定されないが、一般的に10.000μm以下、好ましくは9.000μm以下、さらに好ましくは8.000μm以下である。 The maximum valley depth Sv on the precipitation surface side is preferably 0.740 μm or more, more preferably 0.800 μm or more, and still more preferably 0.900 μm or more from the viewpoint of stably securing the adhesion of the solder resist. The upper limit of the maximum valley depth Sv on the precipitation surface side is not particularly limited, but is generally 10.000 μm or less, preferably 9.000 μm or less, and more preferably 8.000 μm or less.
 析出面側の最大高さSzは、ソルダーレジストの密着性を安定して確保する観点から、好ましくは1.800μm以上、より好ましくは1.900μm以上、さらに好ましくは2.000μm以上、最も好ましくは2.200μm以上である。なお、析出面側の最大高さSzの上限は、特に限定されないが、一般的に20.000μm以下、好ましくは18.000μm以下、さらに好ましくは15.000μm以下、最も好ましくは14.000μm以下である。 The maximum height Sz on the deposition surface side is preferably 1.800 μm or more, more preferably 1.900 μm or more, further preferably 2.000 μm or more, most preferably, from the viewpoint of stably securing the adhesion of the solder resist. 2. It is 200 μm or more. The upper limit of the maximum height Sz on the deposition surface side is not particularly limited, but is generally 20.000 μm or less, preferably 18.000 μm or less, more preferably 15.000 μm or less, and most preferably 14.000 μm or less. is there.
 析出面側のクルトシスSkuは、ソルダーレジストの密着性を安定して確保する観点から、好ましくは2.80以上4.00以下、より好ましくは2.85以上3.90以下、さらに好ましくは2.90以上3.80以下である。 The kurtosis Sku on the precipitation surface side is preferably 2.80 or more and 4.00 or less, more preferably 2.85 or more and 3.90 or less, and still more preferably 2.10 from the viewpoint of stably securing the adhesiveness of the solder resist. It is 90 or more and 3.80 or less.
 析出面側のスキューネスSskは、ソルダーレジストの密着性を安定して確保する観点から、好ましくは0.00以上0.26以下、より好ましくは0.01以上0.20以下である。 The skewness Ssk on the deposition surface side is preferably 0.00 or more and 0.26 or less, more preferably 0.01 or more and 0.20 or less, from the viewpoint of stably securing the adhesion of the solder resist.
 上記のような析出面側の条件を満たす本発明の実施形態に係る電解銅箔は、電解銅箔の製造条件(例えば、電解液の線速度、電流密度、電解液に添加する成分の濃度など)を制御することによって得ることができる。 The electrolytic copper foil according to the embodiment of the present invention that satisfies the conditions on the deposition surface side as described above is the production condition of the electrolytic copper foil (for example, the linear velocity of the electrolytic solution, the current density, the concentration of the component added to the electrolytic solution, etc. ) Can be obtained by controlling.
 本発明の実施形態に係る電解銅箔は、常温抗張力が30kg/mm2以上であることが好ましい。ここで、本明細書において「常温抗張力」とは、室温での抗張力であり、IPC-TM-650に準じて測定されるものを意味する。常温抗張力が30kg/mm2以上であると、ハンドリング時にシワが発生し難いという効果がある。この効果を安定して得る観点から、常温抗張力は35kg/mm2以上であるのがより好ましい。 The electrolytic copper foil according to the embodiment of the present invention preferably has a normal temperature tensile strength of 30 kg / mm 2 or more. As used herein, “room temperature tensile strength” refers to a tensile strength at room temperature, which is measured according to IPC-TM-650. When the normal temperature tensile strength is 30 kg / mm 2 or more, there is an effect that wrinkles are hardly generated during handling. From the viewpoint of stably obtaining this effect, the normal temperature tensile strength is more preferably 35 kg / mm 2 or more.
 本発明の実施形態に係る電解銅箔は、常温伸びが3%以上であることが好ましい。ここで、本明細書において「常温伸び」とは、室温での伸びであり、IPC-TM-650に準じて測定されるものを意味する。常温伸びが3%以上であると、破断し難いという効果がある。この効果を安定して得る観点から、常温伸びは4%以上であるのがより好ましい。 The electrolytic copper foil according to the embodiment of the present invention preferably has a room temperature elongation of 3% or more. Here, “room temperature elongation” in this specification is an elongation at room temperature and means a value measured according to IPC-TM-650. When the room temperature elongation is 3% or more, there is an effect that it is difficult to break. From the viewpoint of stably obtaining this effect, the room temperature elongation is more preferably 4% or more.
 本発明の実施形態に係る電解銅箔は、高温抗張力が10kg/mm2以上であることが好ましい。本明細書において「高温抗張力」とは、180℃での抗張力であり、IPC-TM-650に準じて測定されるものを意味する。高温抗張力が10kg/mm2以上であると、樹脂との張り付き時のシワが発生し難いという効果がある。この効果を安定して得る観点から、高温抗張力は15kg/mm2以上であるのがより好ましい。 The electrolytic copper foil according to the embodiment of the present invention preferably has a high-temperature tensile strength of 10 kg / mm 2 or more. In the present specification, the “high temperature tensile strength” means a tensile strength at 180 ° C., which is measured according to IPC-TM-650. When the high temperature tensile strength is 10 kg / mm 2 or more, there is an effect that wrinkles are hardly generated when sticking to the resin. From the viewpoint of stably obtaining this effect, the high temperature tensile strength is more preferably 15 kg / mm 2 or more.
 本発明の実施形態に係る電解銅箔は、高温伸びが2%以上であることが好ましい。本明細書において「高温伸び」とは、180℃での伸びであり、IPC-TM-650に準じて測定されるものを意味する。高温伸びが2%以上であると、回路のクラック発生防止に効果がある。この効果を安定して得る観点から、高温伸びは3%以上であるのが好ましく、6%以上であるのがより好ましく、15%以上であるのがさらに好ましい。 The electrolytic copper foil according to the embodiment of the present invention preferably has a high temperature elongation of 2% or more. In this specification, “high temperature elongation” means elongation at 180 ° C., which is measured according to IPC-TM-650. When the high temperature elongation is 2% or more, there is an effect in preventing the occurrence of cracks in the circuit. From the viewpoint of stably obtaining this effect, the high temperature elongation is preferably 3% or more, more preferably 6% or more, and further preferably 15% or more.
 本発明の実施形態に係る電解銅箔(生箔)の素材である銅及び銅合金の例としては、純銅;Sn入り銅;Ag入り銅;Ti、W、Mo、Cr、Zr、Mg、Ni、Sn、Ag、Co、Fe、As、P等を添加した銅合金等が挙げられる。例えば、銅合金から形成される電解銅箔は、電解銅箔を製造する際に用いる電解液中に合金元素(例えば、Ti、W、Mo、Cr、Zr、Mg、Ni、Sn、Ag、Co、Fe、As及びPからなる群から選択される一種以上の元素)を添加することによって製造することができる。
 電解銅箔(生箔)の厚みは、特に限定されないが、典型的には0.5μm~3000μmであり、好ましくは1.0μm~1000μm、より好ましくは1.0μm~300μm、より好ましくは1.0μm~100μm、さらに好ましくは3.0μm~75μm、さらに好ましくは4μm~40μm、またさらに好ましくは5μm~37μm、またさらに好ましくは6μm~28μm、またさらに好ましくは7μm~25μm、最も好ましくは8μm~19μmである
Examples of copper and copper alloy that are materials of the electrolytic copper foil (raw foil) according to the embodiment of the present invention include pure copper; Sn-containing copper; Ag-containing copper; Ti, W, Mo, Cr, Zr, Mg, Ni , Sn alloy, Ag, Co, Fe, As, P, and the like are added. For example, an electrolytic copper foil formed from a copper alloy is an alloy element (e.g., Ti, W, Mo, Cr, Zr, Mg, Ni, Sn, Ag, Co) in an electrolytic solution used when manufacturing the electrolytic copper foil. 1 or more elements selected from the group consisting of Fe, As and P).
The thickness of the electrolytic copper foil (raw foil) is not particularly limited, but is typically 0.5 μm to 3000 μm, preferably 1.0 μm to 1000 μm, more preferably 1.0 μm to 300 μm, more preferably 1. 0 μm to 100 μm, more preferably 3.0 μm to 75 μm, more preferably 4 μm to 40 μm, still more preferably 5 μm to 37 μm, still more preferably 6 μm to 28 μm, still more preferably 7 μm to 25 μm, most preferably 8 μm to 19 μm Is
<電解銅箔(生箔)の製造方法>
 電解銅箔(生箔)は、硫酸銅めっき浴からチタン又はステンレス製のドラム上に銅を電解析出して製造される。電解条件の例を以下に示す。
 (電解条件)
 電解液組成:50~150g/LのCu、60~150g/LのH2SO4
 電流密度:30~120A/dm2
 電解液の線流速:1.5~5m/s
 電解液温度:50~60℃
 添加物:20~80質量ppmの塩化物イオン、0.01~5.0質量ppmのニカワ
 なお、本明細書に記載の電解、エッチング、表面処理又はめっき等に用いられる処理液(エッチング液、電解液等)の残部は特に明記しない限り水である。
<Method for producing electrolytic copper foil (raw foil)>
The electrolytic copper foil (raw foil) is produced by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath. Examples of electrolysis conditions are shown below.
(Electrolysis conditions)
Electrolyte composition: 50 to 150 g / L Cu, 60 to 150 g / L H 2 SO 4
Current density: 30 to 120 A / dm 2
Electrolyte linear flow rate: 1.5-5 m / s
Electrolyte temperature: 50-60 ° C
Additive: 20 to 80 mass ppm of chloride ion, 0.01 to 5.0 mass ppm of Nicawa Note that the treatment liquid used in the electrolysis, etching, surface treatment or plating described in this specification (etching liquid, The remainder of the electrolyte etc. is water unless otherwise specified.
 使用される電解ドラムは、形成される電解銅箔(生箔)の光沢面の面粗さSa及び/又は2乗平均平方根高さSqを所定の範囲に制御するために、ドラム表面の面粗さSaを0.270μm以下及び/又は2乗平均平方根高さSqを0.315μm以下とする。ドラム表面の面粗さSaは、好ましくは0.150μm以下であり、ドラム表面の2乗平均平方根高さSqは、好ましくは0.200μm以下である。
 所定の面粗さSa及び/又は2乗平均平方根高さSqを表面に有する電解ドラムは、次のようにして製造することができる。まず、チタン又はステンレス製のドラムの表面を、番手が300(P300)~500(P500)番の研磨ベルトによって研磨する。このとき、研磨ベルトを、ドラムの幅方向において所定幅だけ巻き付け、所定速度で研磨ベルトをドラムの幅方向へ移動させながらドラムを回転させることによって研磨する。研磨時のドラム表面の回転速度は130m/分~190m/分とする。また、研磨時間は、研磨ベルトの1回のパスでドラム表面の(幅方向の位置の)1点を通過する時間とパス回数との積とする。なお、前述の1回のパスでドラム表面の1点を通過する時間は、研磨ベルトの幅を、研磨ベルトのドラムの幅方向の移動速度で割った値とした。また、研磨ベルトの1回のパスとは、ドラムの周方向の表面を、ドラムの軸(幅)方向(電解銅箔の幅方向)の一方の端部からもう一方の端部まで1回研磨ベルトで研磨することを意味する。すなわち研磨時間は以下の式で表される。
 研磨時間(分)=1パス当たりの研磨ベルトの幅(cm/回)/研磨ベルトの移動速度(cm/分)×パス回数(回)
The electrolytic drum used has a surface roughness Sa of the drum surface in order to control the surface roughness Sa and / or the root mean square height Sq of the glossy surface of the formed electrolytic copper foil (raw foil) to a predetermined range. Sa is 0.270 μm or less and / or the root mean square height Sq is 0.315 μm or less. The surface roughness Sa of the drum surface is preferably 0.150 μm or less, and the root mean square height Sq of the drum surface is preferably 0.200 μm or less.
An electrolytic drum having a predetermined surface roughness Sa and / or root mean square height Sq on its surface can be manufactured as follows. First, the surface of a drum made of titanium or stainless steel is polished by a polishing belt having a count of 300 (P300) to 500 (P500). At this time, the polishing belt is wound by winding a predetermined width in the width direction of the drum, and rotating the drum while moving the polishing belt in the width direction of the drum at a predetermined speed. The rotation speed of the drum surface during polishing is 130 m / min to 190 m / min. The polishing time is the product of the time required to pass one point (position in the width direction) on the drum surface and the number of passes in one pass of the polishing belt. The time for passing one point on the drum surface in one pass described above was a value obtained by dividing the width of the polishing belt by the moving speed of the polishing belt in the width direction of the drum. The single pass of the polishing belt means that the surface of the drum in the circumferential direction is polished once from one end in the drum axis (width) direction (width direction of the electrolytic copper foil) to the other end. It means polishing with a belt. That is, the polishing time is expressed by the following formula.
Polishing time (minutes) = width of polishing belt per pass (cm / time) / moving speed of polishing belt (cm / minute) × number of passes (times)
 従来の電解銅箔(生箔)の製造においては、研磨時間は1.6分~3分としていたが、本発明の実施形態では3.5分~10分、また、本発明の実施形態において研磨時にドラム表面を水で濡らす場合は6分~10分とする。上記研磨時間の算出の例として、例えば10cmの幅の研磨ベルトで移動速度を20cm/分としたとき、ドラム表面の1点の1パスの研磨時間は0.5分となる。これにトータルのパス回数を掛けることで算出することができる(例えば0.5分×10パス=5分)。研磨ベルトの番手を大きくすること、及び/又は、ドラム表面の回転速度を高くすること、及び/又は、研磨時間を長くすること、及び/又は、研磨時にドラム表面を水でぬらすこと、によりドラム表面の面粗さSa及びドラム表面の2乗平均平方根高さSqを小さくすることができる。逆に、研磨ベルトの番手を小さくすること、及び/又は、ドラム表面の回転速度を低くすること、及び/又は、研磨時間を短くすること、及び/又は、研磨時にドラム表面を乾燥させること、によりドラム表面の面粗さSa及びドラム表面の2乗平均平方根高さSqを大きくすることができる。なお、研磨時間を長くすることで、面粗さSaを小さくするとともに、Saが小さくなる程度よりも大きな程度で2乗平均平方根高さSqを小さくすることができる。逆に、研磨時間を短くすることで、面粗さSaを大きくするとともに、面粗さSaが大きくなる程度よりも大きな程度で2乗平均平方根高さSqを大きくすることができる。なお、前述の研磨ベルトの番手は、研磨ベルトに使用されている研磨材の粒度を意味する。そして、当該研磨材の粒度はFEPA(Federation of European Producers of Abrasives)-standard 43-1:2006、43-2:2006に準拠している。 In the production of conventional electrolytic copper foil (raw foil), the polishing time was 1.6 minutes to 3 minutes, but in the embodiment of the present invention, it is 3.5 minutes to 10 minutes. When wetting the drum surface with water during polishing, it should be 6 to 10 minutes. As an example of calculation of the polishing time, for example, when a moving speed is set to 20 cm / min with a polishing belt having a width of 10 cm, the polishing time for one pass at one point on the drum surface is 0.5 minutes. This can be calculated by multiplying the total number of passes (for example, 0.5 minutes × 10 passes = 5 minutes). By increasing the number of the polishing belt and / or increasing the rotational speed of the drum surface and / or increasing the polishing time and / or wetting the drum surface with water during polishing The surface roughness Sa of the surface and the root mean square height Sq of the drum surface can be reduced. Conversely, reducing the count of the polishing belt and / or reducing the rotation speed of the drum surface and / or shortening the polishing time and / or drying the drum surface during polishing, Thus, the surface roughness Sa of the drum surface and the root mean square height Sq of the drum surface can be increased. By increasing the polishing time, the surface roughness Sa can be reduced, and the root mean square height Sq can be reduced to a greater extent than the extent that Sa is reduced. Conversely, by shortening the polishing time, the surface roughness Sa can be increased, and the root mean square height Sq can be increased to a greater extent than the extent that the surface roughness Sa is increased. The count of the above-described abrasive belt means the particle size of the abrasive used in the abrasive belt. The particle size of the abrasive is in accordance with FEPA (Federation of European Producers of Abbreviations) -standard 43-1: 2006, 43-2: 2006.
 また、研磨時にドラム表面を水で濡らすことにより、2乗平均平方根高さSqを小さくするとともに、2乗平均平方根高さSqが小さくなる程度よりも大きな程度で面粗さSaを小さくすることができる。逆に、研磨時にドラム表面を乾燥させることで、2乗平均平方根高さSqを大きくするとともに、2乗平均平方根高さSqが大きくなる程度よりも大きな程度で面粗さSaを大きくすることができる。
 上記のようにして作製された所定の面粗さSa及び/又は2乗平均平方根高さSqを表面に有する電解ドラムを用いることにより、所定の光沢面の面粗さSa及び/又は2乗平均平方根高さSqを有する電解銅箔(生箔)を製造することができる。
In addition, the surface of the drum Sa can be reduced by increasing the root mean square height Sq to a smaller extent than by reducing the root mean square root height Sq by wetting the drum surface with water during polishing. it can. Conversely, by drying the drum surface during polishing, the root mean square height Sq can be increased, and the surface roughness Sa can be increased to a greater extent than the extent that the root mean square height Sq is increased. it can.
By using the electrolytic drum having the predetermined surface roughness Sa and / or the root mean square height Sq produced on the surface as described above, the surface roughness Sa and / or the root mean square of the predetermined glossy surface is used. An electrolytic copper foil (raw foil) having a square root height Sq can be produced.
 なお、電解ドラムの表面の面粗さSa及び2乗平均平方根高さSqは、以下のようにして測定することができる。
 ・樹脂フィルム(ポリ塩化ビニル)を溶剤(アセトン)に浸漬して膨潤させる。
 ・膨潤させた樹脂フィルムを電解ドラムの表面に接触させ、樹脂フィルムからアセトンを揮発させた後に樹脂フィルムを剥離し、電解ドラム表面のレプリカを採取する。
 ・レプリカをレーザー顕微鏡で測定し、面粗さSa及び2乗平均平方根高さSqの値を測定する。
 そして、得られたレプリカの面粗さSa及び2乗平均平方根高さSqの値を電解ドラム表面の面粗さSa及び2乗平均平方根高さSqとする。
In addition, the surface roughness Sa and the root mean square height Sq of the surface of the electrolytic drum can be measured as follows.
-A resin film (polyvinyl chloride) is immersed in a solvent (acetone) to swell.
-The swollen resin film is brought into contact with the surface of the electrolytic drum, acetone is volatilized from the resin film, the resin film is peeled off, and a replica of the electrolytic drum surface is collected.
The replica is measured with a laser microscope, and the surface roughness Sa and the root mean square height Sq are measured.
Then, the surface roughness Sa and the root mean square height Sq of the obtained replica are set as the surface roughness Sa and the root mean square height Sq of the electrolytic drum surface.
 他方、電解銅箔の析出面側の面粗さSa、2乗平均平方根高さSq、最大山高さSp、最大谷深さSv、最大高さSz、クルトシスSku及びスキューネスSskの少なくとも1つを所定の範囲に制御するためには、電解液の線速度、電流密度、電解液に添加する成分の濃度の調整を行えばよい。
 一般的に、電解銅箔の析出面側の面粗さSa、2乗平均平方根高さSq、最大山高さSp、最大谷深さSv、最大高さSz、クルトシスSku及びスキューネスSskの値を大きくしたい場合には、電解液の線流速を小さくしたり、電流密度を高くしたり、電解液中の塩化物イオンの濃度を高くしたり、電解液中のニカワの濃度を0~数ppmの範囲で高くしたり、表面粗さを増加させる作用を有する添加物を電解液に添加したりすればよい。また、使用する電解ドラムの粗さが大きくなるにつれて、上記の値が増大する傾向にある。
 逆に、電解銅箔の析出面側の面粗さSa、2乗平均平方根高さSq、最大山高さSp、最大谷深さSv、最大高さSz、クルトシスSku及びスキューネスSskの値を小さくしたい場合には、電解銅箔を平滑にする作用を有する添加物を添加したり、電解液中の塩化物イオンの濃度を0又は極端に低くしたり、電解液中のニカワの濃度を10ppm以上の範囲で高くしたりすればよい。また、使用する電解ドラムの粗さが小さくなるにつれて、上記の値が低下する傾向にある。
On the other hand, at least one of the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the maximum height Sz, the kurtosis Sku, and the skewness Ssk on the deposition surface side of the electrolytic copper foil is predetermined. In order to control within this range, the linear velocity of the electrolytic solution, the current density, and the concentration of the component added to the electrolytic solution may be adjusted.
In general, the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the maximum height Sz, the kurtosis Sku and the skewness Ssk on the deposition surface side of the electrolytic copper foil are increased. If you want to reduce the linear flow rate of the electrolyte, increase the current density, increase the concentration of chloride ions in the electrolyte, or set the concentration of glue in the electrolyte in the range of 0 to several ppm. Or an additive having an action of increasing the surface roughness may be added to the electrolytic solution. Further, the above value tends to increase as the roughness of the electrolytic drum used increases.
Conversely, it is desired to reduce the surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the maximum height Sz, the kurtosis Sku, and the skewness Ssk of the electrolytic copper foil. In such a case, an additive having an effect of smoothing the electrolytic copper foil is added, the concentration of chloride ions in the electrolytic solution is 0 or extremely low, or the concentration of glue in the electrolytic solution is 10 ppm or more. You can increase the range. Further, the above values tend to decrease as the roughness of the electrolytic drum used decreases.
<粗化処理及び表面処理>
 表面処理としては、特に限定されないが、耐熱処理、防錆処理、クロメート処理、シランカップリング処理等が挙げられる。
 ここで、本明細書では、粗化処理によって形成される層を「粗化処理層」、耐熱処理によって形成される層を「耐熱層」、防錆処理によって形成される層を「防錆層」、クロメート処理によって形成される層を「クロメート処理層」、シランカップリング処理によって形成される層を「シランカップリング処理層」という。
<Roughening treatment and surface treatment>
The surface treatment is not particularly limited, and examples thereof include heat treatment, rust prevention treatment, chromate treatment, and silane coupling treatment.
Here, in this specification, a layer formed by roughening treatment is a “roughening treatment layer”, a layer formed by heat resistance treatment is a “heat resistant layer”, and a layer formed by rust prevention treatment is a “rust prevention layer”. The layer formed by the chromate treatment is called “chromate treatment layer”, and the layer formed by the silane coupling treatment is called “silane coupling treatment layer”.
 本発明の実施形態に係る電解銅箔の光沢面及び析出面の少なくとも一方の表面には、絶縁基板(樹脂基板)との接着性を向上させるために、粗化処理層を設けてもよい。粗化処理としては、特に限定されず、粗化粒子を電解銅箔の表面に電着させることにより行うことができる。例えば、銅又は銅合金の粗化粒子を電解銅箔の表面に電着させればよい。粗化粒子は微細なものであることができ、また、その形状は、針状、棒状又は粒子状のいずれであってもよい。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層等であってもよい。また、銅又は銅合金の粗化粒子を電着させた後、ニッケル、コバルト、銅、亜鉛の単体又は合金等で二次粒子や三次粒子をさらに電着させる粗化処理を行うこともできる。 A roughening treatment layer may be provided on at least one of the glossy surface and the precipitation surface of the electrolytic copper foil according to the embodiment of the present invention in order to improve the adhesion to the insulating substrate (resin substrate). The roughening treatment is not particularly limited, and can be performed by electrodepositing roughened particles on the surface of the electrolytic copper foil. For example, roughened particles of copper or copper alloy may be electrodeposited on the surface of the electrolytic copper foil. The roughened particles can be fine, and the shape thereof can be any of a needle shape, a rod shape, or a particle shape. The roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing at least one of them. Etc. Further, after electrodepositing the roughened particles of copper or copper alloy, it is possible to perform a roughening treatment in which secondary particles and tertiary particles are further electrodeposited with nickel, cobalt, copper, zinc alone or an alloy.
 粗化処理を行う場合、粗化処理層の表面に耐熱層又は防錆層が形成され、さらにその表面にクロメート処理層又はシランカップリング処理層が形成される。
 表面処理として粗化処理を行わない場合、電解銅箔の表面に耐熱層又は防錆層が形成され、さらにその表面にクロメート処理層又はシランカップリング処理層が形成される。
 なお、上述の耐熱層、防錆層、クロメート処理層及びシランカップリング処理層はいずれも、単層であってよいが、複数の層で形成されていてもよい(例えば、2層以上、3層以上等)。
When performing a roughening process, a heat-resistant layer or a rust prevention layer is formed on the surface of a roughening process layer, and also a chromate process layer or a silane coupling process layer is formed in the surface.
When the roughening treatment is not performed as the surface treatment, a heat-resistant layer or a rust-preventing layer is formed on the surface of the electrolytic copper foil, and a chromate treatment layer or a silane coupling treatment layer is further formed on the surface.
The above heat-resistant layer, rust prevention layer, chromate treatment layer and silane coupling treatment layer may all be a single layer, but may be formed of a plurality of layers (for example, two or more layers, 3 Layer or more).
 粗化処理層は、硫酸アルキルエステル塩、タングステンイオン、砒素イオンから選択した物質の少なくとも一種類以上を含む硫酸・硫酸銅からなる電解浴を用いて形成することができる。粗化処理層は、粉落ち防止及びピール強度向上のために、硫酸・硫酸銅からなる電解浴でかぶせめっきを行うことが好ましい。 The roughening treatment layer can be formed by using an electrolytic bath made of sulfuric acid / copper sulfate containing at least one kind of substances selected from alkyl sulfate salts, tungsten ions, and arsenic ions. The roughening treatment layer is preferably plated with an electrolytic bath made of sulfuric acid and copper sulfate in order to prevent powder falling and improve peel strength.
 その具体的な処理条件は、次の通りである。
 (液組成1)
   CuSO4・5H2O:39.3~120g/L
   H2SO4:10~150g/L
   Na2WO4・2H2O:0~90mg/L
   W:0~50mg/L
   ドデシル硫酸ナトリウム:0~50mg
   As:0~2000mg/L
The specific processing conditions are as follows.
(Liquid composition 1)
CuSO 4 .5H 2 O: 39.3 to 120 g / L
H 2 SO 4 : 10 to 150 g / L
Na 2 WO 4 · 2H 2 O: 0 to 90 mg / L
W: 0-50mg / L
Sodium dodecyl sulfate: 0-50mg
As: 0 to 2000 mg / L
 (電気めっき条件1)
   温度:30~70℃
 (電流条件1)
   電流密度:25~110A/dm2
   めっき時間:0.5~20秒
 (液組成2)
   CuSO4・5H2O:78~314g/L
   H2SO4:50~200g/L
 (電気めっき条件2)
   温度:30~70℃
 (電流条件2)
   電流密度:5~50A/dm2
   粗化クーロン量:50~300As/dm2
   めっき時間:1~60秒
(Electroplating condition 1)
Temperature: 30-70 ° C
(Current condition 1)
Current density: 25 to 110 A / dm 2
Plating time: 0.5 to 20 seconds (Liquid composition 2)
CuSO 4 .5H 2 O: 78 to 314 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
(Current condition 2)
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1-60 seconds
 粗化処理層として銅-コバルト-ニッケル合金めっき層を形成する場合、電解めっきにより、含有量が15mg/dm2~40mg/dm2の銅、含有量が100μg/dm2~3000μg/dm2のコバルト、及び含有量が100μg/dm2~1500μg/dm2のニッケルであるような3元系合金層であることが好ましい。Co含有量が100μg/dm2未満では、耐熱性及びエッチング性が低下することがある。一方、Co含有量が3000μg/dm2を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じると共に、耐酸性及び耐薬品性が低下することがある。また、Ni含有量が100μg/dm2未満であると、耐熱性が低下することがある。一方、Ni含有量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo含有量は1000μg/dm2~2500μg/dm2であり、好ましいNi含有量は500μg/dm2~1200μg/dm2である。
 ここで、本明細書において「エッチングシミ」とは、塩化銅でエッチングした場合にCoが溶解せずに残ってしまうことを意味する。また、「エッチング残」とは、塩化アンモニウムでアルカリエッチングした場合にNiが溶解せずに残ってしまうことを意味する。
Cobalt - - Copper as roughening layer when forming a nickel alloy plating layer by electrolytic plating, the content of 15mg / dm 2 ~ 40mg / dm 2 of copper, the content of 100μg / dm 2 ~ 3000μg / dm 2 cobalt, and it is preferable that the content is ternary alloy layer such that the nickel 100μg / dm 2 ~ 1500μg / dm 2. When the Co content is less than 100 μg / dm 2 , the heat resistance and the etching property may be lowered. On the other hand, if the Co content exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching stains may occur, and acid resistance and chemical resistance may decrease. Moreover, heat resistance may fall that Ni content is less than 100 microgram / dm < 2 >. On the other hand, if the Ni content exceeds 1500 μg / dm 2 , the etching residue may increase. Preferred Co content is 1000μg / dm 2 ~ 2500μg / dm 2, preferably Ni content is 500μg / dm 2 ~ 1200μg / dm 2.
Here, “etching spots” in this specification means that Co remains without being dissolved when etched with copper chloride. Further, “etching residue” means that Ni remains without being dissolved when alkali etching is performed with ammonium chloride.
 このような3元系銅-コバルト-ニッケル合金めっきを形成するためのめっき浴及びめっき条件の一例は、次の通りである:
 めっき浴組成:10~20g/LのCu、1~10g/LのCo、1~10g/LのNi
 pH:1~4
 温度:30~50℃
 電流密度:20~30A/dm2
 めっき時間:1~5秒
An example of a plating bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni
pH: 1 to 4
Temperature: 30-50 ° C
Current density: 20-30 A / dm 2
Plating time: 1-5 seconds
 このような3元系銅-コバルト-ニッケル合金めっきを形成するためのめっき浴及びめっき条件の別の例は、次の通りである:
 めっき浴組成:10~20g/LのCu、1~10g/LのCo、1~10g/LのNi
 pH:1~4
 温度:30~50℃
 電流密度:30~45A/dm2
 めっき時間:0.1~2.0秒
Another example of a plating bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni
pH: 1 to 4
Temperature: 30-50 ° C
Current density: 30 to 45 A / dm 2
Plating time: 0.1 to 2.0 seconds
 なお、上述の粗化処理層を形成する粗化処理において、めっき時間を短くすることで、光沢面側の面粗さSa及び/又は2乗平均平方根高さSqを小さくすることができる。一方、上述の粗化処理層を形成する表面処理において、めっき時間を長くすることで、光沢面側の面粗さSa及び/又は2乗平均平方根高さSqを大きくすることができる。
 また、上述の粗化処理層を形成する粗化処理において、電流密度を高く且つめっき時間を非常に短くすることで、光沢面側の面粗さSa及び/又は2乗平均平方根高さSqをより小さくすることができる。一方、上述の粗化処理層を形成する処理において、電流密度を高く且つめっき時間を長くすることで、光沢面側の面粗さSa及び/又は2乗平均平方根高さSqをより大きくすることができる。
In the roughening treatment for forming the above-mentioned roughening treatment layer, the surface roughness Sa and / or the root mean square height Sq on the glossy surface side can be reduced by shortening the plating time. On the other hand, in the surface treatment for forming the roughening layer, the surface roughness Sa and / or the root mean square height Sq on the glossy surface side can be increased by increasing the plating time.
Further, in the roughening treatment for forming the above-mentioned roughening treatment layer, the surface roughness Sa and / or the root mean square height Sq on the glossy surface side can be reduced by increasing the current density and extremely shortening the plating time. It can be made smaller. On the other hand, in the process for forming the roughened layer, the surface roughness Sa and / or the root mean square height Sq on the glossy surface side is increased by increasing the current density and increasing the plating time. Can do.
 本発明の実施形態に係る電解銅箔の光沢面側及び析出面側の少なくとも一方には、表面処理層を設けてもよい。表面処理層としては、特に限定されないが、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層であることが好ましい。一般的に、電解銅箔の光沢面側及び析出面側の少なくとも一方に粗化処理層が形成されている場合、その表面に耐熱層又は防錆層が形成され、その上にクロメート処理層又はシランカップリング処理層が形成される。 A surface treatment layer may be provided on at least one of the glossy surface side and the deposition surface side of the electrolytic copper foil according to the embodiment of the present invention. Although it does not specifically limit as a surface treatment layer, It is preferable that it is 1 or more types of layers selected from the group which consists of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer. Generally, when a roughening treatment layer is formed on at least one of the glossy surface side and the precipitation surface side of the electrolytic copper foil, a heat-resistant layer or a rust prevention layer is formed on the surface, and a chromate treatment layer or A silane coupling treatment layer is formed.
 本発明の実施形態に係る電解銅箔は、光沢面側及び析出面側の少なくとも一方に樹脂層を設けてもよい。この樹脂層は、粗化処理層又は表面処理層上に一般的に形成される。樹脂層としては、特に限定されないが、絶縁樹脂層であることが好ましい。 The electrolytic copper foil according to the embodiment of the present invention may be provided with a resin layer on at least one of the glossy surface side and the deposition surface side. This resin layer is generally formed on the roughening treatment layer or the surface treatment layer. Although it does not specifically limit as a resin layer, It is preferable that it is an insulating resin layer.
 耐熱層及び/又は防錆層としては、特に限定されず、公知のものを用いることができる。耐熱層及び/又は防錆層は、例えば、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄及びタンタルからなる群から選ばれる1種以上の元素を含む層であることができ、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄及びタンタルからなる群から選ばれる1種以上の元素からなる金属層又は合金層であってもよい。また、耐熱層及び/又は防錆層は、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄及びタンタルからなる群から選ばれる1種以上の元素を含む酸化物、窒化物又は珪化物を含んでもよい。また、耐熱層及び/又は防錆層は、銅-亜鉛合金層、亜鉛-ニッケル合金層、ニッケル-コバルト合金層、銅-ニッケル合金層、クロム-亜鉛合金層であってもよい。また、耐熱層及び/又は防錆層は、ニッケル-亜鉛合金を含む層であってもよい。また、耐熱層及び/又は防錆層は、ニッケル-亜鉛合金層であってもよい。ニッケル-亜鉛合金層の場合、不可避不純物を除き、ニッケルを50質量%~99質量%、亜鉛を50質量%~1質量%含有していることが好ましい。ニッケル-亜鉛合金層の亜鉛及びニッケルの合計含有量は、好ましくは5mg/m2~1000mg/m2、より好ましくは10mg/m2~500mg/m2、さらに好ましくは20mg/m2~100mg/m2である。また、ニッケル-亜鉛合金を含む層又はニッケル-亜鉛合金層のニッケル含有量と亜鉛含有量との比(=ニッケル含有量/亜鉛含有量)は1.5~10であることが好ましい。また、ニッケル-亜鉛合金を含む層又はニッケル-亜鉛合金層のニッケル含有は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。 It does not specifically limit as a heat-resistant layer and / or a rust prevention layer, A well-known thing can be used. The heat-resistant layer and / or rust-proof layer is made of, for example, nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. It can be a layer containing one or more elements selected from the group consisting of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum It may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of group elements, iron and tantalum. The heat-resistant layer and / or rust-proof layer is made of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron and tantalum. An oxide, nitride, or silicide containing one or more elements selected from the group may be included. Further, the heat-resistant layer and / or the rust preventive layer may be a copper-zinc alloy layer, a zinc-nickel alloy layer, a nickel-cobalt alloy layer, a copper-nickel alloy layer, or a chromium-zinc alloy layer. Further, the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy. Further, the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer. In the case of the nickel-zinc alloy layer, it is preferable to contain 50 mass% to 99 mass% of nickel and 50 mass% to 1 mass% of zinc, excluding inevitable impurities. The total content of zinc and nickel in the nickel-zinc alloy layer is preferably 5 mg / m 2 to 1000 mg / m 2 , more preferably 10 mg / m 2 to 500 mg / m 2 , still more preferably 20 mg / m 2 to 100 mg / m 2. m 2 . Further, the ratio of the nickel content to the zinc content in the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer (= nickel content / zinc content) is preferably 1.5 to 10. Further, the nickel content of the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , more preferably 1 mg / m 2 to 50 mg / m 2. preferable.
 例えば、耐熱層及び/又は防錆層は、含有量が1mg/m2~100mg/m2、好ましくは5mg/m2~50mg/m2のニッケル又はニッケル合金層と、含有量が1mg/m2~80mg/m2、好ましくは5mg/m2~40mg/m2のスズ層とを順次積層したものであってもよい。ニッケル合金層は、ニッケル-モリブデン、ニッケル-亜鉛、ニッケル-モリブデン-コバルトのいずれか一種により構成されてもよい。また、耐熱層及び/又は防錆層は、ニッケル又はニッケル合金とスズとの合計含有量が2mg/m2~150mg/m2であることが好ましく、10mg/m2~70mg/m2であることがより好ましい。また、耐熱層及び/又は防錆層は、[ニッケル又はニッケル合金中のニッケル含有量]/[スズ含有量]=0.25~10であることが好ましく、0.33~3であることがより好ましい。 For example, the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer having a content of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and a content of 1 mg / m 2. A tin layer of 2 to 80 mg / m 2 , preferably 5 mg / m 2 to 40 mg / m 2 may be sequentially laminated. The nickel alloy layer may be composed of any one of nickel-molybdenum, nickel-zinc, and nickel-molybdenum-cobalt. The heat-resistant layer and / or rust-preventing layer preferably has a total content of nickel or a nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable. Further, the heat-resistant layer and / or the rust preventive layer preferably has [nickel or nickel content in nickel alloy] / [tin content] = 0.25 to 10, preferably 0.33 to 3. More preferred.
 クロメート処理層は、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む液で処理された層である。クロメート処理層は、コバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素、チタン等の元素(金属、合金、酸化物、窒化物、硫化物等どのような形態でもよい)を含んでいてもよい。クロメート処理層の具体例としては、無水クロム酸又は二クロム酸カリウム水溶液で処理したクロメート処理層や、無水クロム酸又は二クロム酸カリウム及び亜鉛を含む処理液で処理したクロメート処理層等が挙げられる。 The chromate treatment layer is a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate. Chromate treatment layer can be any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included). Specific examples of the chromate treatment layer include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like. .
 シランカップリング処理に用いられるシランカップリング剤としては、特に限定されず公知のものを用いることができる。シランカップリング剤の例としては、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メタクリロキシ系シランカップリング剤、メルカプト系シランカップリング剤等が挙げられる。具体的には、シランカップリング剤として、ビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、4-グリシジルブチルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ-メルカプトプロピルトリメトキシシラン等を用いることができる。なお、シランカップリング剤は、単独又は2種以上混合して使用することができる。また、上記の各種シランカップリング剤の中でも、アミノ系シランカップリング剤又はエポキシ系シランカップリング剤を用いることが好ましい。 The silane coupling agent used for the silane coupling treatment is not particularly limited, and known ones can be used. Examples of silane coupling agents include amino silane coupling agents, epoxy silane coupling agents, methacryloxy silane coupling agents, mercapto silane coupling agents, and the like. Specifically, as a silane coupling agent, vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, γ -Aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, Triazinesilane, γ-mercaptopropyltrimethoxysilane, and the like can be used. In addition, a silane coupling agent can be used individually or in mixture of 2 or more types. Of the various silane coupling agents, an amino silane coupling agent or an epoxy silane coupling agent is preferably used.
 アミノ系シランカップリング剤の具体例としては、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-(3-アクリルオキシ-2-ヒドロキシプロピル)-3-アミノプロピルトリエトキシシラン、4-アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-(2-アミノエチル-3-アミノプロピル)トリメトキシシラン、N-(2-アミノエチル-3-アミノプロピル)トリス(2-エチルヘキソキシ)シラン、6-(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3-(1-アミノプロポキシ)-3,3-ジメチル-1-プロペニルトリメトキシシラン、3-アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、ω-アミノウンデシルトリメトキシシラン、3-(2-N-ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2-ヒドロキシエチル)‐3-アミノプロピルトリエトキシシラン、(N,N-ジエチル-3-アミノプロピル)トリメトキシシラン、(N,N-ジメチル-3-アミノプロピル)トリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン等が挙げられる。 Specific examples of the amino silane coupling agent include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl) Trimethoxysilane N- (2-aminoethyl-3-aminopropyl) tris (2-ethylhexoxy) silane, 6- (aminohexylaminopropyl) trimethoxysilane, aminophenyltrimethoxysilane, 3- (1-aminopropoxy) -3, 3-dimethyl-1-propenyltrimethoxysilane, 3-aminopropyltris (methoxyethoxyethoxy) silane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, ω-aminoundecyltrimethoxysilane, 3- (2-N-benzylaminoethylaminopropyl) trimethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, (N, N-diethyl-3-aminopropyl) trimethoxysilane, (N, N-dimethyl-3-aminopropyl ) Trimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane and the like can be mentioned.
 シランカップリング処理層は、ケイ素原子換算で、好ましくは0.05mg/m2~200mg/m2、より好ましくは0.15mg/m2~20mg/m2、さらに好ましくは0.3mg/m2~2.0mg/m2の範囲で設けられていることが適切である。この範囲である場合、絶縁基板(樹脂基板)と電解銅箔との密着性をより向上させることができる。 The silane coupling treatment layer is preferably 0.05 mg / m 2 to 200 mg / m 2 , more preferably 0.15 mg / m 2 to 20 mg / m 2 , still more preferably 0.3 mg / m 2 in terms of silicon atoms. It is appropriate that it is provided in a range of ˜2.0 mg / m 2 . In this range, the adhesion between the insulating substrate (resin substrate) and the electrolytic copper foil can be further improved.
 樹脂層は、接着剤の層であってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、さらに加熱処理を受けると硬化反応が起こる状態のことを含む。
 また、樹脂層は、熱硬化性樹脂又は熱可塑性樹脂を含む層であってもよい。熱硬化性樹脂及び熱可塑性樹脂の種類は特に限定されないが、例えば、エポキシ樹脂,ポリイミド樹脂,多官能性シアン酸エステル化合物、マレイミド化合物、ポリビニルアセタール樹脂、ウレタン樹脂等が挙げられる。これらは、単独又は2種以上を混合して用いることができる。
The resin layer may be an adhesive layer, or may be a semi-cured (B-stage) insulating resin layer for bonding. The semi-cured state (B stage state) is a state where there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
The resin layer may be a layer containing a thermosetting resin or a thermoplastic resin. Although the kind of thermosetting resin and thermoplastic resin is not specifically limited, For example, an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound, a maleimide compound, a polyvinyl acetal resin, a urethane resin etc. are mentioned. These can be used individually or in mixture of 2 or more types.
 樹脂層は、公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体(無機化合物及び/又は有機化合物を含む誘電体、金属酸化物を含む誘電体等どのような誘電体を用いてもよい)、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含む組成物から形成されてよい。また、樹脂層は、例えば、国際公開第2008/004399号、国際公開第2008/053878号、国際公開第2009/084533号、特開平11-5828号公報、特開平11-140281号公報、特許第3184485号公報、国際公開第97/02728号、特許第3676375号公報、特開2000-43188号公報、特許第3612594号公報、特開2002-179772号公報、特開2002-359444号公報、特開2003-304068号公報、特許第3992225号公報、特開2003-249739号公報、特許第4136509号公報、特開2004-82687号公報、特許第4025177号公報、特開2004-349654号公報、特許第4286060号公報、特開2005-262506号公報、特許第4570070号公報、特開2005-53218号公報、特許第3949676号公報、特許第4178415号公報、国際公開第2004/005588号、特開2006-257153号公報、特開2007-326923号公報、特開2008-111169号公報、特許第5024930号公報、国際公開第2006/028207号、特許第4828427号公報、特開2009-67029号公報、国際公開第2006/134868号、特許第5046927号公報、特開2009-173017号公報、国際公開第2007/105635号、特許第5180815号公報、国際公開第2008/114858号、国際公開第2009/008471号、特開2011-14727号公報、国際公開第2009/001850号、国際公開第2009/145179号、国際公開第2011/068157号、特開2013-19056号公報に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)及び/又は樹脂層の形成方法、形成装置を用いて形成してもよい。 The resin layer may be made of any known dielectric such as a known resin, resin curing agent, compound, curing accelerator, dielectric (dielectric including an inorganic compound and / or organic compound, dielectric including a metal oxide). May be formed from a composition containing a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeletal material and the like. The resin layer may be, for example, International Publication No. 2008/004399, International Publication No. 2008/053878, International Publication No. 2009/084533, Japanese Patent Application Laid-Open No. 11-5828, Japanese Patent Application Laid-Open No. 11-140281, Patent No. No. 3184485, International Publication No. 97/02728, Japanese Patent No. 3676375, Japanese Patent Application Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Application Laid-Open No. 2002-179772, Japanese Patent Application Laid-Open No. 2002-359444, Japanese Patent Application Laid-Open No. 2002-359444, 2003-304068, Japanese Patent No. 3992225, Japanese Patent Laid-Open No. 2003-249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 40251177, Japanese Patent Application Laid-Open No. 2004-349654, and Japanese Patent No. 2004-349654. Japanese Patent No. 4286060, Japanese Patent Laid-Open No. 2005-2005 Japanese Patent No. 62506, Japanese Patent No. 4570070, Japanese Patent Laid-Open No. 2005-53218, Japanese Patent No. 3949676, Japanese Patent No. 4178415, International Publication No. 2004/005588, Japanese Patent Laid-Open No. 2006-257153, Japanese Patent Laid-Open No. 2007-. No. 326923, Japanese Patent Application Laid-Open No. 2008-111169, Japanese Patent No. 5024930, International Publication No. 2006/028207, Japanese Patent No. 4828427, Japanese Patent Application Laid-Open No. 2009-67029, International Publication No. 2006/134868, Japanese Patent No. No. 5046927, JP 2009-173017 A, International Publication No. 2007/105635, Japanese Patent No. 5180815, International Publication No. 2008/114858, International Publication No. 2009/008471, Japanese Unexamined Patent Publication No. 2011-14727, Country Substances described in JP2009 / 001850, WO2009 / 145179, WO2011 / 068157, JP2013-19056A (resin, resin curing agent, compound, curing accelerator, dielectric Body, reaction catalyst, cross-linking agent, polymer, prepreg, skeletal material, etc.) and / or resin layer forming method and forming apparatus.
 例えば、樹脂をメチルエチルケトン(MEK)、トルエン等の溶剤に溶解して樹脂液とし、これを電解銅箔、粗化処理層又は表面処理層上にロールコータ法等の公知の方法によって塗布し、次いで必要に応じて加熱乾燥して溶剤を除去することでBステージ状態にする。乾燥には、例えば熱風乾燥炉を用いればよく、乾燥温度は100℃~250℃、好ましくは130℃~200℃であればよい。 For example, the resin is dissolved in a solvent such as methyl ethyl ketone (MEK) and toluene to form a resin solution, which is applied onto the electrolytic copper foil, the roughening treatment layer or the surface treatment layer by a known method such as a roll coater method, If necessary, it is heated and dried to remove the solvent to bring it to the B stage state. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 ° C. to 250 ° C., preferably 130 ° C. to 200 ° C.
 樹脂層を有する電解銅箔は、その樹脂層を絶縁基板(樹脂基板)に重ね合わせた後、全体を熱圧着して樹脂層を熱硬化させた後、所定の配線パターンを形成するという態様で使用される。 An electrolytic copper foil having a resin layer is a mode in which a predetermined wiring pattern is formed after the resin layer is superposed on an insulating substrate (resin substrate), and the entire resin layer is thermocompressed to thermally cure the resin layer. used.
 上記の樹脂層付きの電解銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張り積層板を製造することができたりする。また、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性をさらに改善することもできる。 When the electrolytic copper foil with the resin layer is used, the number of prepreg materials used in the production of the multilayer printed wiring board can be reduced. In addition, the thickness of the resin layer can be set such that interlayer insulation can be ensured, or a copper-clad laminate can be produced even if no prepreg material is used. In addition, the surface smoothness can be further improved by undercoating an insulating resin on the surface of the substrate.
 なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。 In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.
 樹脂層の厚みは、特に限定されないが、0.1μm~80μmであることが好ましい。樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなく樹脂層付きの電解銅箔を、内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。一方、樹脂層の厚みを80μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる。さらに、形成された樹脂層はその可撓性が劣るので、ハンドリング時にクラック等が発生し易くなり、また内層材との熱圧着時に過剰な樹脂流れが起こって円滑な積層が困難になる場合がある。 The thickness of the resin layer is not particularly limited, but is preferably 0.1 μm to 80 μm. When the thickness of the resin layer is less than 0.1 μm, the adhesive strength is reduced, and when the electrolytic copper foil with the resin layer is laminated on the base material provided with the inner layer material without interposing the prepreg material, It may be difficult to ensure interlayer insulation between the circuit. On the other hand, if the thickness of the resin layer is greater than 80 μm, it is difficult to form a resin layer having a desired thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours. Furthermore, since the formed resin layer is inferior in flexibility, cracks or the like are likely to occur during handling, and excessive resin flow may occur during thermocompression bonding with the inner layer material, making smooth lamination difficult. is there.
 また、樹脂層付きの電解銅箔のもう一つの製品形態としては、光沢面又は表面処理層の上に半硬化状態の樹脂層を形成した形で販売することも可能である。 Moreover, as another product form of the electrolytic copper foil with a resin layer, it is also possible to sell it in a form in which a semi-cured resin layer is formed on the glossy surface or the surface treatment layer.
 さらに、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。本明細書において「プリント配線板」には、電子部品類が搭載されたプリント配線板、プリント回路板、プリント基板、フレキシブルプリント配線板及びリジッドプリント配線板が含まれる。
 また、プリント配線板を用いて電子機器を作製してもよく、電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。以下に、本発明の実施形態に係る電解銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. In this specification, the “printed wiring board” includes a printed wiring board on which electronic components are mounted, a printed circuit board, a printed board, a flexible printed wiring board, and a rigid printed wiring board.
Moreover, an electronic device may be manufactured using a printed wiring board, an electronic device may be manufactured using a printed circuit board on which electronic components are mounted, and a printed circuit board on which electronic components are mounted is used. An electronic device may be manufactured. Below, some examples of the manufacturing process of the printed wiring board using the electrolytic copper foil which concerns on embodiment of this invention are shown.
 本発明の実施形態に係るプリント配線板の製造方法は、本発明の実施形態に係る電解銅箔と絶縁基板を積層して銅張積層板を形成した後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法又はサブトラクティブ法のいずれかの方法によって回路を形成する工程を含む。ここで、絶縁基板は、内層回路入りのものとすることも可能である。 A method for manufacturing a printed wiring board according to an embodiment of the present invention includes forming a copper-clad laminate by laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention, then a semi-additive method, a modified semi-additive method, Forming a circuit by either a partial additive method or a subtractive method. Here, the insulating substrate may include an inner layer circuit.
 本明細書において「セミアディティブ法」とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を意味する。 In this specification, the “semi-additive method” means a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductor pattern is formed using electroplating and etching.
 従って、セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板(樹脂基板)とを積層する工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 電解銅箔をエッチングによって除去することで露出した樹脂にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 樹脂、並びにスルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチング等によって除去する工程と
を含む。
Therefore, the printed wiring board manufacturing method according to the embodiment of the present invention using the semi-additive method,
A step of laminating an electrolytic copper foil and an insulating substrate (resin substrate) according to an embodiment of the present invention;
Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid,
Providing a through hole and / or a blind via in the resin exposed by removing the electrolytic copper foil by etching;
Performing a desmear process on a region including through holes and / or blind vias;
Providing an electroless plating layer for a region including resin and through-holes and / or blind vias;
Providing a plating resist on the electroless plating layer;
After exposing the plating resist, removing the plating resist in the region where the circuit is formed;
A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist;
Removing the plating resist;
Removing an electroless plating layer in a region other than a region where a circuit is formed by flash etching or the like.
 セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板(樹脂基板)にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 電解銅箔をエッチング等によって除去することで露出した樹脂、並びにスルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチング等によって除去する工程と
を含む。
In another aspect of the method for manufacturing a printed wiring board according to the embodiment of the present invention using a semi-additive method,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate (resin substrate);
Performing a desmear process on a region including through holes and / or blind vias;
Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid,
A step of providing an electroless plating layer for the resin exposed by removing the electrolytic copper foil by etching or the like and the region including the through hole and / or the blind via;
Providing a plating resist on the electroless plating layer;
After exposing the plating resist, removing the plating resist in the region where the circuit is formed;
A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist;
Removing the plating resist;
Removing an electroless plating layer in a region other than a region where a circuit is formed by flash etching or the like.
 セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板(樹脂基板)にスルーホール及び/又はブラインドビアを設ける工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 電解銅箔をエッチング等によって除去することで露出した樹脂、並びにスルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチング等によって除去する工程と
を含む。
In another aspect of the method for manufacturing a printed wiring board according to the embodiment of the present invention using a semi-additive method,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate (resin substrate);
Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid,
Performing a desmear process on a region including through holes and / or blind vias;
A step of providing an electroless plating layer for the resin exposed by removing the electrolytic copper foil by etching or the like and the region including the through hole and / or the blind via;
Providing a plating resist on the electroless plating layer;
After exposing the plating resist, removing the plating resist in the region where the circuit is formed;
A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist;
Removing the plating resist;
Removing an electroless plating layer in a region other than a region where a circuit is formed by flash etching or the like.
 セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 電解銅箔をエッチングによって除去することで露出した樹脂の表面について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層及び電解銅箔をフラッシュエッチング等によって除去する工程と
を含む。
In another aspect of the method for manufacturing a printed wiring board according to the embodiment of the present invention using a semi-additive method,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer on the surface of the resin exposed by removing the electrolytic copper foil by etching;
Providing a plating resist on the electroless plating layer;
After exposing the plating resist, removing the plating resist in the region where the circuit is formed;
A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist;
Removing the plating resist;
And a step of removing the electroless plating layer and the electrolytic copper foil in a region other than the region where the circuit is formed by flash etching or the like.
 本明細書において「モディファイドセミアディティブ法」とは、絶縁基板上に電解銅箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきによって回路形成部の銅厚付けを行った後、レジストを除去し、回路形成部以外の電解銅箔を(フラッシュ)エッチングで除去することにより、絶縁基板上に回路を形成する方法を意味する。 In this specification, the “modified semi-additive method” means that an electrolytic copper foil is laminated on an insulating substrate, a non-circuit forming part is protected by a plating resist, and a copper thickening of the circuit forming part is performed by electrolytic plating. It means a method of forming a circuit on an insulating substrate by removing the resist and removing the electrolytic copper foil other than the circuit forming part by (flash) etching.
 従って、モディファイドセミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 電解銅箔にめっきレジストを設ける工程と、
 めっきレジストを設けた後に、電解めっきにより回路を形成する工程と、
 めっきレジストを除去する工程と、
 めっきレジストを除去することによって露出した電解銅箔をフラッシュエッチングによって除去する工程と
を含む。
Therefore, the method for manufacturing a printed wiring board according to the embodiment of the present invention using the modified semi-additive method,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate;
Performing a desmear process on a region including through holes and / or blind vias;
Providing an electroless plating layer for a region including through holes and / or blind vias;
Providing a plating resist on the electrolytic copper foil;
Forming a circuit by electrolytic plating after providing a plating resist;
Removing the plating resist;
Removing the electrolytic copper foil exposed by removing the plating resist by flash etching.
 モディファイドセミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層及び電解銅箔をフラッシュエッチング等によって除去する工程と
を含む。
In another aspect of the method for manufacturing a printed wiring board according to the embodiment of the present invention using the modified semi-additive method,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Providing a plating resist on the electrolytic copper foil;
After exposing the plating resist, removing the plating resist in the region where the circuit is formed;
A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist;
Removing the plating resist;
And a step of removing the electroless plating layer and the electrolytic copper foil in a region other than the region where the circuit is formed by flash etching or the like.
 本明細書において「パートリーアディティブ法」とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダーレジスト又はめっきレジストを設けた後に、導体回路上や、スルーホール、バイアホール等に無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を意味する。 In this specification, the “partial additive method” means that a conductive circuit is formed by applying a catalyst nucleus on a substrate provided with a conductor layer and, if necessary, a substrate provided with a hole for a through hole or a via hole, and etching it. A method of manufacturing a printed wiring board by forming a solder resist or a plating resist as necessary, and then thickening the conductive circuit, through holes, via holes, etc. by electroless plating treatment means.
 従って、パートリーアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について触媒核を付与する工程と、
 電解銅箔にエッチングレジストを設ける工程と、
 エッチングレジストに対して露光し、回路パターンを形成する工程と、
 電解銅箔及び前記触媒核を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して回路を形成する工程と、
 エッチングレジストを除去する工程と、
 電解銅箔及び触媒核を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して露出した前記絶縁基板表面に、ソルダーレジスト又はめっきレジストを設ける工程と、
 ソルダーレジスト又はめっきレジストが設けられていない領域に無電解めっき層を設ける工程と
を含む。
Therefore, the printed wiring board manufacturing method according to the embodiment of the present invention using the partly additive method, in one aspect,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate;
Performing a desmear process on a region including through holes and / or blind vias;
Providing catalyst nuclei for regions containing through holes and / or blind vias;
Providing an etching resist on the electrolytic copper foil;
Exposing the etching resist to form a circuit pattern;
Removing the electrolytic copper foil and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the electrolytic copper foil and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where no solder resist or plating resist is provided.
 本明細書において「サブトラクティブ法」とは、銅張積層板上の銅箔の不要部分を、エッチング等によって選択的に除去して導体パターンを形成する方法を意味する。 In this specification, the “subtractive method” means a method of forming a conductor pattern by selectively removing unnecessary portions of the copper foil on the copper-clad laminate by etching or the like.
 従って、サブトラクティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の表面に電解めっき層を設ける工程と、
 電解めっき層及び/又は電解銅箔の表面にエッチングレジストを設ける工程と、
 エッチングレジストに対して露光し、回路パターンを形成する工程と、
 電解銅箔、無電解めっき層及び前記電解めっき層を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して回路を形成する工程と、
 エッチングレジストを除去する工程と
を含む。
Therefore, the printed wiring board manufacturing method according to the embodiment of the present invention using the subtractive method, in one aspect,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate;
Performing a desmear process on a region including through holes and / or blind vias;
Providing an electroless plating layer for a region including through holes and / or blind vias;
Providing an electroplating layer on the surface of the electroless plating layer;
Providing an etching resist on the surface of the electrolytic plating layer and / or the electrolytic copper foil;
Exposing the etching resist to form a circuit pattern;
A step of forming a circuit by removing the electrolytic copper foil, the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid;
And a step of removing the etching resist.
 サブトラクティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の表面にマスクを形成する工程と、
 マスクが形成されていない無電解めっき層の表面に電解めっき層を設ける工程と、
 電解めっき層及び/又は電解銅箔の表面にエッチングレジストを設ける工程と、
 エッチングレジストに対して露光し、回路パターンを形成する工程と、
 電解銅箔及び無電解めっき層を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して回路を形成する工程と、
 エッチングレジストを除去する工程と
を含む。
The printed wiring board manufacturing method according to the embodiment of the present invention using the subtractive method, in another aspect,
A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention;
Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate;
Performing a desmear process on a region including through holes and / or blind vias;
Providing an electroless plating layer for a region including through holes and / or blind vias;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
Providing an etching resist on the surface of the electrolytic plating layer and / or the electrolytic copper foil;
Exposing the etching resist to form a circuit pattern;
Removing the electrolytic copper foil and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as acid to form a circuit;
And a step of removing the etching resist.
 なお、スルーホール及び/又はブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。 In addition, the process of providing a through hole and / or a blind via and the subsequent desmear process may not be performed.
 以下、実施例及び比較例により本発明の実施形態を詳細に説明するが、これらによって本発明が限定されるものではない。
1.電解銅箔の作製
(実施例1~18、比較例1及び2)
 チタン製の回転ドラム(電解ドラム)を準備した。次に、電解ドラムの表面を表1に記載の条件にて研磨し、所定の面粗さSa及び2乗平均平方根高さSqを有する電解ドラムとした。具体的には、表1に記載の番手の研磨ベルトによって電解ドラムの表面を研磨した。このとき、研磨ベルトを、ドラムの幅方向において所定幅だけ巻き付け、研磨ベルトをドラムの幅方向へ移動させながらドラムを回転させることによって研磨した。研磨時のドラム表面の回転速度を表1に示す。また、研磨時間は、研磨ベルトの幅と研磨ベルトの移動速度から1回のパスでドラム表面の1点を通過する時間とパス回数との積とした。ここで、研磨ベルトの1回のパスとは、回転ドラムの周方向の表面を、軸方向(電解銅箔の幅方向)の一方の端部からもう一方の端部まで1回研磨ベルトで研磨することを意味する。すなわち研磨時間は以下の式で表される。
 研磨時間(分)=1パス当たりの研磨ベルトの幅(cm/回)/研磨ベルトの移動速度(cm/分)×パス回数(回)
Hereinafter, although an embodiment of the present invention is described in detail by an example and a comparative example, the present invention is not limited by these.
1. Preparation of electrolytic copper foil (Examples 1 to 18, Comparative Examples 1 and 2)
A rotating drum (electrolytic drum) made of titanium was prepared. Next, the surface of the electrolytic drum was polished under the conditions shown in Table 1 to obtain an electrolytic drum having a predetermined surface roughness Sa and root mean square height Sq. Specifically, the surface of the electrolytic drum was polished with a count polishing belt shown in Table 1. At this time, the polishing belt was wound by winding a predetermined width in the drum width direction and rotating the drum while moving the polishing belt in the drum width direction. Table 1 shows the rotational speed of the drum surface during polishing. The polishing time was the product of the time required to pass one point on the drum surface in one pass and the number of passes based on the width of the polishing belt and the moving speed of the polishing belt. Here, a single pass of the polishing belt means that the circumferential surface of the rotating drum is polished by one polishing belt from one end in the axial direction (width direction of the electrolytic copper foil) to the other end. It means to do. That is, the polishing time is expressed by the following formula.
Polishing time (minutes) = width of polishing belt per pass (cm / time) / moving speed of polishing belt (cm / minute) × number of passes (times)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、電解槽の中に、上記の電解ドラムと、電解ドラムの周囲に所定の極間距離を置いて電極を配置した。次に、電解槽において下記条件で電解を行い、電解ドラムを回転させながら電解ドラムの表面に銅を表2の記載の厚みとなるまで析出させた。
 <電解条件>
 電解液組成:100g/LのCu、100g/LのH2SO4
 電流密度:90A/dm2
 電解液流速:2.0m/秒
 電解液温度:60℃
 添加物:60質量ppmの塩化物イオン、ニカワ(実施例1、2、5、6及び10~12、並びに比較例1においては、0.02ppmとし、実施例3、4、7~9及び13~18においては4.5ppmとした。)
Next, in the electrolytic cell, the above-described electrolytic drum and electrodes were disposed around the electrolytic drum with a predetermined distance between the electrodes. Next, electrolysis was performed in the electrolytic bath under the following conditions, and copper was deposited on the surface of the electrolytic drum until the thickness described in Table 2 was reached while rotating the electrolytic drum.
<Electrolysis conditions>
Electrolyte composition: 100 g / L Cu, 100 g / L H 2 SO 4
Current density: 90 A / dm 2
Electrolyte flow rate: 2.0 m / sec Electrolyte temperature: 60 ° C
Additives: 60 ppm by weight of chloride ion, glue (Examples 1, 2, 5, 6 and 10-12, and in Comparative Example 1, 0.02 ppm, Examples 3, 4, 7-9 and 13) In -18, it was set to 4.5 ppm.)
 比較例2においては、下記条件で電解を行い、電解ドラムの表面に銅を表2の記載の厚みとなるまで析出させた。
 <電解条件>
 電解液組成:50~150g/LのCu、60~150g/LのH2SO4
 電流密度:10~80A/dm2
 電解液流速:1.5~5m/秒
 電解液温度:50~60℃
 添加物:10~100質量ppmの塩化物イオン、10~100質量ppmのビス(3スルホプロピル)ジスルフィド、10~100質量ppmの3級アミン化合物
 なお、上記3級アミン化合物として以下の化合物を用いた。
In Comparative Example 2, electrolysis was performed under the following conditions, and copper was deposited on the surface of the electrolytic drum until the thickness described in Table 2 was reached.
<Electrolysis conditions>
Electrolyte composition: 50 to 150 g / L Cu, 60 to 150 g / L H 2 SO 4
Current density: 10 to 80 A / dm 2
Electrolyte flow rate: 1.5-5 m / sec Electrolyte temperature: 50-60 ° C
Additive: 10 to 100 mass ppm of chloride ion, 10 to 100 mass ppm of bis (3sulfopropyl) disulfide, 10 to 100 mass ppm of tertiary amine compound The following compounds are used as the tertiary amine compound. It was.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記化学式中、R1及びR2は共にメチル基である。なお、上記3級アミン化合物は、例えば、ナガセケムテックス株式会社製デコナール Ex-314とジメチルアミンとを所定量混合し、60℃で3時間反応させることで得ることができる。 In the above chemical formula, R 1 and R 2 are both methyl groups. The tertiary amine compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours.
 次に、回転している電解ドラムの表面に析出した銅を剥ぎ取り、連続的に電解銅箔を製造した。 Next, the copper deposited on the surface of the rotating electrolytic drum was peeled off to continuously produce an electrolytic copper foil.
 実施例1~4及び10並びに比較例1及び2ついては、上記のようにして作製した電解銅箔(生箔)の電解ドラム側の表面(光沢面)に対し、以下の(1)~(4)に示す処理をこの順で実施した。また、実施例1及び2並びに比較例1及び2ついては、上記のようにして作製した電解銅箔(生箔)の電解ドラム側と反対の表面(析出面)に対し、以下の(2)~(4)に示す処理をこの順で実施した。また、実施例10については、上記のようにして作製した電解銅箔(生箔)の電解ドラム側と反対の表面(析出面)に対し、以下の(1)~(4)に示す処理をこの順で実施した。また、実施例3ついては、上記のようにして作製した電解銅箔(生箔)の電解ドラム側と反対の表面(析出面)に対し、以下の(3)に示す処理を実施した。また、実施例4ついては、上記のようにして作製した電解銅箔(生箔)の電解ドラム側と反対の表面(析出面)に対し、以下の(4)に示す処理を実施した。 For Examples 1 to 4 and 10 and Comparative Examples 1 and 2, the following (1) to (4) were applied to the surface (glossy surface) of the electrolytic copper foil (raw foil) produced as described above on the electrolytic drum side. ) Was performed in this order. Further, for Examples 1 and 2 and Comparative Examples 1 and 2, the following (2) to (2) to the surface (deposition surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above The processing shown in (4) was performed in this order. For Example 10, the following treatments (1) to (4) were performed on the surface (deposition surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above. It carried out in this order. Moreover, about Example 3, the process shown to the following (3) was implemented with respect to the surface (deposition surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as mentioned above. Moreover, about Example 4, the process shown to the following (4) was implemented with respect to the surface (precipitation surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as mentioned above.
 (1)粗化処理
 Cu、H2SO4、As及びWから成る、以下に記す銅粗化めっき浴を用いて粗化粒子を表面に電着させた。
  (液組成1)
    CuSO4・5H2O:120g/L
    H2SO4:120g/L
    Na2WO4・2H2O:20mg/L
    ドデシル硫酸ナトリウム:30mg
    As:1mg/L
(1) Roughening treatment Roughened particles were electrodeposited on the surface using a copper roughening plating bath consisting of Cu, H 2 SO 4 , As and W described below.
(Liquid composition 1)
CuSO 4 .5H 2 O: 120 g / L
H 2 SO 4 : 120 g / L
Na 2 WO 4 · 2H 2 O: 20 mg / L
Sodium dodecyl sulfate: 30mg
As: 1mg / L
  (電気めっき条件1)
    温度:40℃
  (電流条件1)
    電流密度:70A/dm2
    めっき時間:2秒
  (液組成2)
    CuSO4・5H2O:240g/L
    H2SO4:120g/L
  (電気めっき条件2)
    温度:55℃
  (電流条件2)
    電流密度:20A/dm2
    めっき時間:7秒
(Electroplating condition 1)
Temperature: 40 ° C
(Current condition 1)
Current density: 70 A / dm 2
Plating time: 2 seconds (Liquid composition 2)
CuSO 4 .5H 2 O: 240 g / L
H 2 SO 4 : 120 g / L
(Electroplating condition 2)
Temperature: 55 ° C
(Current condition 2)
Current density: 20 A / dm 2
Plating time: 7 seconds
 (2)バリヤー処理(耐熱処理)
 ニッケル亜鉛合金めっきを行った。
(液組成)
   Ni:13g/L
   Zn:5g/L
   pH:2
(電気めっき条件)
   温度:40℃
   電流密度:8A/dm2
(2) Barrier treatment (heat-resistant treatment)
Nickel zinc alloy plating was performed.
(Liquid composition)
Ni: 13 g / L
Zn: 5 g / L
pH: 2
(Electroplating conditions)
Temperature: 40 ° C
Current density: 8 A / dm 2
 (3)クロメート処理
 亜鉛クロメート処理を行った。
(液組成)
   CrO3:2.5g/L
   Zn:0.7g/L
   Na2SO4:10g/L
   pH:4.8
(亜鉛クロメート条件)
   温度:54℃
   電流密度:0.7A/dm2
(3) Chromate treatment Zinc chromate treatment was performed.
(Liquid composition)
CrO 3 : 2.5 g / L
Zn: 0.7 g / L
Na 2 SO 4 : 10 g / L
pH: 4.8
(Zinc chromate condition)
Temperature: 54 ° C
Current density: 0.7 A / dm 2
 (4)シランカップリング処理
(液組成)
   テトラエトキシシラン含有量:0.4vol%
   pH:7.5
   塗布方法:溶液の噴霧
(4) Silane coupling treatment (liquid composition)
Tetraethoxysilane content: 0.4 vol%
pH: 7.5
Application method: Spray of solution
 実施例5~8及び14~18については、上記のようにして作製した電解銅箔(生箔)の電解ドラム側の表面(光沢面)に対し、以下の(1)~(5)に示す処理をこの順で実施した。また、実施例5~8及び15~18については、上記のようにして作製した電解銅箔(生箔)の電解ドラム側と反対の表面(析出面)に対し、以下の(2)~(5)に示す処理をこの順で実施した。また、実施例14については、上記のようにして作製した電解銅箔(生箔)の電解ドラム側と反対の表面(析出面)に対し、以下の(4)及び(5)に示す処理をこの順で実施した。 Examples 5 to 8 and 14 to 18 are shown in the following (1) to (5) with respect to the surface (glossy surface) of the electrolytic copper foil (raw foil) produced as described above on the electrolytic drum side. Processing was performed in this order. For Examples 5 to 8 and 15 to 18, the following (2) to (2) to the surface (precipitation surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above: The processing shown in 5) was performed in this order. Moreover, about Example 14, the process shown to the following (4) and (5) with respect to the surface (precipitation surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as mentioned above. It carried out in this order.
 (1)粗化処理
 3元系銅-コバルト-ニッケル合金めっきの粗化粒子を表面に電着させるため以下のめっき浴及びめっき条件で粗化処理を行った。
 めっき浴組成:16g/LのCu、10g/LのCo、10g/LのNi
 pH:1~4
 温度:30℃
 電流密度:30A/dm2
 めっき時間:2秒
(1) Roughening treatment Roughening treatment was performed in the following plating bath and plating conditions in order to electrodeposit the roughened particles of the ternary copper-cobalt-nickel alloy plating on the surface.
Plating bath composition: 16 g / L Cu, 10 g / L Co, 10 g / L Ni
pH: 1 to 4
Temperature: 30 ° C
Current density: 30 A / dm 2
Plating time: 2 seconds
 (2)耐熱処理
 Co-Ni合金めっきを行った。Co-Ni合金めっき条件を以下に記す。
 (電解液組成)
   Co:10g/L
   Ni:20g/L
   pH:1.0~3.5
 (電解液温)
   35℃
 (電流条件)
   電流密度10A/dm2
   めっき時間:1秒
(2) Heat-resistant treatment Co—Ni alloy plating was performed. The Co—Ni alloy plating conditions are described below.
(Electrolytic solution composition)
Co: 10 g / L
Ni: 20 g / L
pH: 1.0 to 3.5
(Electrolyte temperature)
35 ° C
(Current condition)
Current density 10A / dm 2
Plating time: 1 second
 (3)防錆処理
 亜鉛-ニッケル合金めっきを行った。
 (液組成)
   Ni:15g/L
   Zn:50g/L
   pH:3~4
 (電気めっき条件)
   温度:50℃
   電流密度:0.3A/dm2
   めっき時間:実施例5及び8については2.43秒、実施例6については2.61秒、実施例7については2.32秒、実施例14~18は0.5~5秒
(3) Rust prevention treatment Zinc-nickel alloy plating was performed.
(Liquid composition)
Ni: 15 g / L
Zn: 50 g / L
pH: 3-4
(Electroplating conditions)
Temperature: 50 ° C
Current density: 0.3 A / dm 2
Plating time: 2.43 seconds for Examples 5 and 8, 2.61 seconds for Example 6, 2.32 seconds for Example 7, 0.5 to 5 seconds for Examples 14-18
 (4)クロメート処理
 亜鉛クロメート処理を行った。
 (液組成)
   CrO3:2.5g/L
   Zn:0.7g/L
   Na2SO4:10g/L
   pH:4.8
 (亜鉛クロメート条件)
   温度:54℃
   電流密度:0.7A/dm2
(4) Chromate treatment Zinc chromate treatment was performed.
(Liquid composition)
CrO 3 : 2.5 g / L
Zn: 0.7 g / L
Na 2 SO 4 : 10 g / L
pH: 4.8
(Zinc chromate condition)
Temperature: 54 ° C
Current density: 0.7 A / dm 2
 (5)シランカップリング処理
 (液組成)
   N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン含有量:0.4vol%
   pH:7.5
   塗布方法:溶液の噴霧
(5) Silane coupling treatment (Liquid composition)
N- (2-aminoethyl) -3-aminopropyltrimethoxysilane content: 0.4 vol%
pH: 7.5
Application method: Spray of solution
 実施例9については、上記のようにして作製した電解銅箔(生箔)の電解ドラム側の表面(光沢面)及び電解ドラム側と反対の表面(析出面)に対し、以下の(1)~(3)に示す処理をこの順で実施した。 Regarding Example 9, the following (1) was applied to the electrolytic drum side surface (glossy surface) and the opposite surface (deposition surface) of the electrolytic copper foil (raw foil) produced as described above. The processes shown in (3) were performed in this order.
 (1)バリヤー処理(耐熱処理)
 ニッケル-亜鉛合金めっきを行った。
 (液組成)
   Ni:13g/L
   Zn:5g/L
   pH:2
 (電気めっき条件)
   温度:40℃
   電流密度:8A/dm2
(1) Barrier treatment (heat-resistant treatment)
Nickel-zinc alloy plating was performed.
(Liquid composition)
Ni: 13 g / L
Zn: 5 g / L
pH: 2
(Electroplating conditions)
Temperature: 40 ° C
Current density: 8 A / dm 2
 (2)クロメート処理
 亜鉛クロメート処理を行った。
 (液組成)
   CrO3:2.5g/L
   Zn:0.7g/L
   Na2SO4:10g/L
   pH:4.8
 (亜鉛クロメート条件)
   温度:54℃
   電流密度:0.7A/dm2
(2) Chromate treatment Zinc chromate treatment was performed.
(Liquid composition)
CrO 3 : 2.5 g / L
Zn: 0.7 g / L
Na 2 SO 4 : 10 g / L
pH: 4.8
(Zinc chromate condition)
Temperature: 54 ° C
Current density: 0.7 A / dm 2
 (3)シランカップリング処理
 (液組成)
   テトラエトキシシラン含有量:0.4vol%
   pH:7.5
   塗布方法:溶液の噴霧
(3) Silane coupling treatment (Liquid composition)
Tetraethoxysilane content: 0.4 vol%
pH: 7.5
Application method: Spray of solution
 上述の処理の後、さらに下記の条件で表面処理層の表面に樹脂層の形成を行った。
(樹脂合成例)
 ステンレス製の碇型攪拌棒、窒素導入管及びストップコックのついたトラップ上に、玉付冷却管を備えた還流冷却器を取り付けた2リットルの三つ口フラスコに、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物117.68g(400mmol)、1,3-ビス(3-アミノフェノキシ)ベンゼン87.7g(300mmol)、γ-バレロラクトン4.0g(40mmol)、ピリジン4.8g(60mmol)、N-メチル-2-ピロリドン(以下、NMPと記す)300g、及びトルエン20gを加え、180℃で1時間加熱して室温付近まで冷却した後、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物29.42g(100mmol)、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン82.12g(200mmol)、NMP200g、及びトルエン40gを加え、室温で1時間混合した後、180℃で3時間加熱して、固形分38%のブロック共重合ポリイミドを得た。このブロック共重合ポリイミドは、下記に示す一般式(1):一般式(2)=3:2であり、数平均分子量:70000、重量平均分子量:150000であった。
After the above treatment, a resin layer was formed on the surface of the surface treatment layer under the following conditions.
(Resin synthesis example)
To a 2 liter three-necked flask equipped with a reflux condenser equipped with a condenser tube with a ball on a trap with a stainless steel vertical stirring bar, a nitrogen introduction tube and a stopcock, 3,4,3 ′, 117.68 g (400 mmol) of 4′-biphenyltetracarboxylic dianhydride, 87.7 g (300 mmol) of 1,3-bis (3-aminophenoxy) benzene, 4.0 g (40 mmol) of γ-valerolactone, 4. 8 g (60 mmol), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) 300 g, and toluene 20 g were added, heated at 180 ° C. for 1 hour and cooled to near room temperature, and then 3, 4, 3 ′, 4 '-Biphenyltetracarboxylic dianhydride 29.42 g (100 mmol), 2,2-bis {4- (4-aminophenoxy) phenyl} propane 82.12 g (20 mmol), 200 g of NMP, and toluene 40g was added and after mixing 1 hour at room temperature, and heated for 3 hours at 180 ° C., to obtain a 38% solids polyimide block copolymer. The block copolymerized polyimide had the following general formula (1): general formula (2) = 3: 2, number average molecular weight: 70000, and weight average molecular weight: 150,000.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 合成例で得られたブロック共重合ポリイミド溶液をNMPでさらに希釈し、固形分10%のブロック共重合ポリイミド溶液とした。このブロック共重合ポリイミド溶液にビス(4-マレイミドフェニル)メタン(BMI-H、ケイ・アイ化成)を固形分重量比率35、ブロック共重合ポリイミドの固形分重量比率65として(すなわち、樹脂溶液に含まれるビス(4-マレイミドフェニル)メタン固形分重量:樹脂溶液に含まれるブロック共重合ポリイミド固形分重量=35:65)、60℃で20分間溶解混合して樹脂溶液とした。その後、電解銅箔の表面処理層の表面に、リバースロール塗工機を用いて樹脂溶液を塗工し、窒素雰囲気下、120℃で3分間、160℃で3分間乾燥処理させた後、最後に300℃で2分間加熱処理を行い、樹脂層を備える電解銅箔を作製した。なお、樹脂層の厚みは2μmとした。 The block copolymerized polyimide solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide solution having a solid content of 10%. In this block copolymerized polyimide solution, bis (4-maleimidophenyl) methane (BMI-H, Kay-Isei Chemical Co., Ltd.) has a solid content weight ratio of 35 and a solid content weight ratio of block copolymer polyimide of 65 (that is, included in the resin solution). Bis (4-maleimidophenyl) methane solid content weight: block copolymerized polyimide solid content weight contained in resin solution = 35: 65), dissolved and mixed at 60 ° C. for 20 minutes to obtain a resin solution. After that, the resin solution was applied to the surface of the surface treatment layer of the electrolytic copper foil using a reverse roll coating machine, and dried at 120 ° C. for 3 minutes and at 160 ° C. for 3 minutes in a nitrogen atmosphere. Then, heat treatment was performed at 300 ° C. for 2 minutes to prepare an electrolytic copper foil provided with a resin layer. The thickness of the resin layer was 2 μm.
 実施例11~13については、上記のようにして作製した電解銅箔(生箔)の電解ドラム側の表面(光沢面)に対し、以下の(1)に示す粗化処理を行った後に、実施例5~8及び14と同様の(2)~(5)の処理をこの順で実施した。また、実施例11~13については、上記のようにして作製した電解銅箔(生箔)の電解ドラム側と反対の表面(光沢面)に対し、実施例5~8の(2)~(5)と同様の処理をこの順で実施した。 For Examples 11 to 13, the surface (glossy surface) on the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above was subjected to the roughening treatment shown in (1) below. The same processes (2) to (5) as in Examples 5 to 8 and 14 were performed in this order. Further, in Examples 11 to 13, the surface (glossy surface) opposite to the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above was compared with (2) to ( The same process as 5) was performed in this order.
 (1)粗化処理
 3元系銅-コバルト-ニッケル合金めっきの粗化粒子を表面に電着させるため以下のめっき浴及びめっき条件で粗化処理を行った。
 めっき浴組成:10~20g/LのCu、1~10g/LのCo、1~10g/LのNi
 pH:1~4
 温度:30~50℃
 電流密度:30~45A/dm2
 めっき時間:0.1~1.5秒
(1) Roughening treatment Roughening treatment was performed in the following plating bath and plating conditions in order to electrodeposit the roughened particles of the ternary copper-cobalt-nickel alloy plating on the surface.
Plating bath composition: 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni
pH: 1 to 4
Temperature: 30-50 ° C
Current density: 30 to 45 A / dm 2
Plating time: 0.1 to 1.5 seconds
2.電解銅箔の評価
<光沢面及び光沢面側の面粗さSa及び2乗平均平方根高さSq>
 光沢面及び光沢面側の面粗さSa及び2乗平均平方根高さSqは、粗化処理及び/又は表面処理を行う前後の電解銅箔の光沢面に対し、ISO-25178-2:2012に準拠して、オリンパス社製レーザー顕微鏡OLS4100(LEXT OLS 4100)を用いて測定した。このとき、レーザー顕微鏡において、対物レンズ50倍を使用して200μm×1000μm面積(具体的には200000μm2)の測定を3ヶ所行い、面粗さSa及び2乗平均平方根高さSqを算出した。3ヶ所で得られた面粗さSa及び2乗平均平方根高さSqの算術平均値をそれぞれ面粗さSa及び2乗平均平方根高さSqの値とした。なお、レーザー顕微鏡測定において、測定結果の測定面が平面でない場合(曲面になった場合)は、平面補正を行った後に、面粗さSa及び2乗平均平方根高さSqを算出した。また、レーザー顕微鏡による面粗さSaの測定時の環境温度は23~25℃とした。
2. Evaluation of electrolytic copper foil <Glossy surface and glossy surface side roughness Sa and root mean square height Sq>
The surface roughness Sa and the root mean square height Sq on the glossy surface and the glossy surface side are ISO-25178-2: 2012 with respect to the glossy surface of the electrolytic copper foil before and after the roughening treatment and / or the surface treatment. The measurement was performed using a laser microscope OLS4100 (LEXT OLS 4100) manufactured by Olympus. At this time, in a laser microscope, measurement of 200 μm × 1000 μm area (specifically 200,000 μm 2 ) was performed at three locations using an objective lens 50 times, and surface roughness Sa and root mean square height Sq were calculated. The arithmetic average values of the surface roughness Sa and the root mean square height Sq obtained at the three locations were taken as the values of the surface roughness Sa and the root mean square height Sq, respectively. In the laser microscope measurement, when the measurement surface of the measurement result is not a flat surface (when the measurement surface is a curved surface), the surface roughness Sa and the root mean square height Sq were calculated after performing plane correction. The environmental temperature at the time of measuring the surface roughness Sa with a laser microscope was set to 23 to 25 ° C.
<析出面側の面粗さSa、2乗平均平方根高さSq、最大山高さSp、最大谷深さSv、最大高さSz、クルトシスSku及びスキューネスSsk>
 析出面側の面粗さSa、2乗平均平方根高さSq、最大山高さSp、最大谷深さSv、クルトシスSku及びスキューネスSskは、粗化処理及び/又は表面処理を行った後の電解銅箔の析出面に対し、ISO-25178-2:2012に準拠して、オリンパス社製レーザー顕微鏡OLS4100(LEXT OLS 4100)を用いて測定した。このときの測定条件は、光沢面及び光沢面側の面粗さSa及び2乗平均平方根高さSqの測定条件と同様にした。
<Deposition surface side roughness Sa, root mean square height Sq, maximum peak height Sp, maximum valley depth Sv, maximum height Sz, kurtosis Sku and skewness Ssk>
The surface roughness Sa, the root mean square height Sq, the maximum peak height Sp, the maximum valley depth Sv, the kurtosis Sku and the skewness Ssk on the precipitation surface side are the electrolytic copper after the roughening treatment and / or the surface treatment. Based on ISO-25178-2: 2012, measurement was performed on the deposited surface of the foil using a laser microscope OLS4100 (LEXT OLS 4100) manufactured by Olympus. The measurement conditions at this time were the same as the measurement conditions for the glossy surface and the surface roughness Sa and the root mean square height Sq on the glossy surface side.
<常温抗張力、高温抗張力>
 粗化処理及び/又は表面処理を行った後の電解銅箔について、常温抗張力及び高温抗張力をIPC-TM-650に準じて測定した。
<Normal temperature tensile strength, high temperature tensile strength>
The electrolytic copper foil after the roughening treatment and / or the surface treatment was measured for normal temperature tensile strength and high temperature tensile strength according to IPC-TM-650.
<常温伸び、高温伸び>
 粗化処理及び/又は表面処理を行った後の電解銅箔について、常温伸び及び高温伸びをIPC-TM-650に準じて測定した。なお、上述の通り、「高温抗張力」とは180℃での抗張力を意味する。また、「高温伸び」とは180℃での伸びを意味する。
<Normal temperature elongation, high temperature elongation>
The electrolytic copper foil after the roughening treatment and / or the surface treatment was measured for normal temperature elongation and high temperature elongation according to IPC-TM-650. As described above, “high temperature tensile strength” means tensile strength at 180 ° C. “High temperature elongation” means elongation at 180 ° C.
<回路形成性>
 粗化処理及び/又は表面処理を行った後の電解銅箔を、それぞれ光沢面側から熱圧着によってビスマレイミドトリアジン樹脂プリプレグに貼り合わせた。その後、プリプレグに貼り合せた電解銅箔を、析出面側から厚みが9μmとなるまでエッチングした。そして、エッチングをした後の電解銅箔の表面にエッチングレジストを設け、露光及び現像を行ってレジストパターンを形成した。その後に、塩化第二鉄でエッチングを行い、L/S=25μm/25μm、L/S=22μm/22μm、L/S=20μm/20μm、及びL/S=15μm/15μmで長さ1mmの配線をそれぞれ20本形成した。続いて、回路上面から見た回路下端幅の最大値と最小値との差(μm)を測定し、5ヶ所を測定した平均値を結果とした。最大値と最小値との差が2μm以下であれば、良好な回路直線性を有すると判断して◎とした。また、最大値と最小値との差が2μm超え且つ4μm以下のときを〇とした。また、最大値と最小値との差が4μm超えのときを×とした。
<Circuit formability>
The electrolytic copper foil after the roughening treatment and / or the surface treatment was bonded to the bismaleimide triazine resin prepreg by thermocompression bonding from the glossy surface side. Thereafter, the electrolytic copper foil bonded to the prepreg was etched from the deposition surface side until the thickness became 9 μm. And the etching resist was provided in the surface of the electrolytic copper foil after etching, exposure and image development were performed, and the resist pattern was formed. Thereafter, etching is performed with ferric chloride, and L / S = 25 μm / 25 μm, L / S = 22 μm / 22 μm, L / S = 20 μm / 20 μm, and L / S = 15 μm / 15 μm and a length of 1 mm. 20 pieces of each were formed. Subsequently, a difference (μm) between the maximum value and the minimum value of the circuit lower end width as viewed from the circuit upper surface was measured, and an average value obtained by measuring five locations was used as a result. If the difference between the maximum value and the minimum value was 2 μm or less, it was judged as having excellent circuit linearity and marked with “◎”. In addition, the case where the difference between the maximum value and the minimum value was more than 2 μm and 4 μm or less was marked as ◯. In addition, the case where the difference between the maximum value and the minimum value exceeded 4 μm was evaluated as x.
<ソルダーレジストの密着性>
 ソルダーレジストの密着性は、次のようにして行った。まず、表面処理を行った後の電解銅箔の析出面側にソルダーレジスト(太陽インキ製造株式会社製、品名「PSR-4000AUS308」)を塗布した後、乾燥(80℃×30分)、ポストキュア(150℃×60分)及びポストUV(高圧水銀灯、1000mJ/cm2)を順次行い、20~30μm厚のソルダーレジストの樹脂層(塗膜)を形成することによって試験片を作製した。次に、この試験片を260℃のはんだ槽に20秒間浮かべた後に、はんだ層から取り出し、電解銅箔とソルダーレジストとの界面における膨れ(電解銅箔とソルダ-レジストとの剥離)を観察した。この評価において、電解銅箔の5%以上の面積において膨れによる界面の変色があったものを×(不合格)、電解銅箔の2%以上5%未満の面積において膨れによる界面の変色があったものを○、膨れによる界面の変色が全く発生しなかったか、又は電解銅箔の2%未満の面積において膨れによる界面の変色があったものを◎として評価した。
<Solder resist adhesion>
The adhesion of the solder resist was performed as follows. First, a solder resist (product name “PSR-4000AUS308” manufactured by Taiyo Ink Mfg. Co., Ltd., product name) is applied to the deposition surface side of the electrolytic copper foil after the surface treatment, followed by drying (80 ° C. × 30 minutes), post-cure (150 ° C. × 60 minutes) and post-UV (high pressure mercury lamp, 1000 mJ / cm 2 ) were successively performed to form a 20-30 μm thick solder resist resin layer (coating film) to prepare a test piece. Next, this test piece was floated in a solder bath at 260 ° C. for 20 seconds, then removed from the solder layer, and swelled at the interface between the electrolytic copper foil and the solder resist (peeling between the electrolytic copper foil and the solder resist) was observed. . In this evaluation, the surface of the electrolytic copper foil that had discolored due to blistering in the area of 5% or more was x (failed), and the surface of the electrolytic copper foil that was discolored from 2% to less than 5% had discoloration of the interface due to blistering. Evaluation was made as ◯, where no discoloration of the interface due to blistering occurred, or when there was discoloration of the interface due to blistering in an area of less than 2% of the electrolytic copper foil.
 試験条件及び試験結果を表2及び3に示す。また、図1(a)は、粗化処理層及び表面処理層を形成する前の実施例2の電解銅箔の光沢面のSEM像である。図1(b)は、粗化処理層及び表面処理層を形成する前の実施例10の電解銅箔の光沢面のSEM像である。 Test conditions and test results are shown in Tables 2 and 3. Moreover, Fig.1 (a) is a SEM image of the glossy surface of the electrolytic copper foil of Example 2 before forming a roughening process layer and a surface treatment layer. FIG.1 (b) is the SEM image of the glossy surface of the electrolytic copper foil of Example 10 before forming a roughening process layer and a surface treatment layer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<評価結果>
 光沢面側に粗化処理層を有さない実施例9の電解銅箔は、光沢面側の面粗さSaが0.270μm以下及び2乗平均平方根高さSqが0.315μm以下であり、析出面側については、面粗さSaが0.115μm以上、2乗平均平方根高さSqが0.120μm以上、最大山高さSpが0.900μm以上、最大谷深さSvが0.600μm以上、最大高さSzが1.500μm以上、クルトシスSkuが2.75以上4.00以下、スキューネスSskが0.00以上0.35以下であった。そして、この電解銅箔は、回路形成性及びソルダーレジストの密着性が良好であった。また、この電解銅箔は、常温抗張力、高温抗張力、常温伸び及び高温伸びの結果も良好であった。
 また、光沢面側に粗化処理層を有する実施例1~8及び10~14の電解銅箔は、光沢面側の面粗さSaが0.470μm以下及び2乗平均平方根高さSqが0.550μm以下であり、析出面側については、面粗さSaが0.115μm以上、2乗平均平方根高さSqが0.120μm以上、最大山高さSpが0.900μm以上、最大谷深さSvが0.600μm以上、最大高さSzが1.500μm以上、クルトシスSkuが2.75以上4.00以下、スキューネスSskが0.00以上0.35以下であった。そして、この電解銅箔は、回路形成性及びソルダーレジストの密着性が良好であった。また、この電解銅箔は、常温抗張力、高温抗張力、常温伸び及び高温伸びの結果も良好であった。
<Evaluation results>
The electrolytic copper foil of Example 9 having no roughening treatment layer on the glossy surface side has a gloss roughness side surface roughness Sa of 0.270 μm or less and a root mean square height Sq of 0.315 μm or less, For the precipitation surface side, the surface roughness Sa is 0.115 μm or more, the root mean square height Sq is 0.120 μm or more, the maximum peak height Sp is 0.900 μm or more, and the maximum valley depth Sv is 0.600 μm or more. The maximum height Sz was 1.500 μm or more, the kurtosis Sku was 2.75 to 4.00, and the skewness Ssk was 0.00 to 0.35. The electrolytic copper foil had good circuit formability and solder resist adhesion. Moreover, this electrolytic copper foil also had good results of normal temperature tensile strength, high temperature tensile strength, normal temperature elongation and high temperature elongation.
In addition, in the electrolytic copper foils of Examples 1 to 8 and 10 to 14 having the roughened layer on the glossy surface side, the surface roughness Sa on the glossy surface side is 0.470 μm or less and the root mean square height Sq is 0. The surface roughness Sa is not less than 0.115 μm, the root mean square height Sq is not less than 0.120 μm, the maximum peak height Sp is not less than 0.900 μm, and the maximum valley depth Sv is about 550 μm or less. Was 0.600 μm or more, the maximum height Sz was 1.500 μm or more, the kurtosis Sku was 2.75 or more and 4.00 or less, and the skewness Ssk was 0.00 or more and 0.35 or less. The electrolytic copper foil had good circuit formability and solder resist adhesion. Moreover, this electrolytic copper foil also had good results of normal temperature tensile strength, high temperature tensile strength, normal temperature elongation and high temperature elongation.
 これに対して光沢面側に粗化処理層を有する比較例1の電解銅箔は、光沢面側の面粗さSaが0.470μmを超えるとともに、2乗平均平方根高さSqも0.550μmを超えていた。そのため、この電解銅箔は、回路形成性が十分でなかった。
 また、光沢面側に粗化処理層を有する比較例2の電解銅箔は、析出面側について、面粗さSaが0.115μm未満、2乗平均平方根高さSqが0.120μm未満、最大山高さSpが0.900μm未満、最大谷深さSvが0.600μm未満、最大高さSzが1.500μm未満、クルトシスSkuが2.75以上4.00以下の範囲外、スキューネスSskが0.00以上0.35以下の範囲外であった。そのため、この電解銅箔は、ソルダーレジストの密着性が十分でなかった。
On the other hand, the electrolytic copper foil of Comparative Example 1 having a roughened layer on the glossy surface side has a surface roughness Sa on the glossy surface side of more than 0.470 μm and a root mean square height Sq of 0.550 μm. It was over. Therefore, this electrolytic copper foil was not sufficient in circuit formation.
In addition, the electrolytic copper foil of Comparative Example 2 having the roughened layer on the glossy surface side has a surface roughness Sa of less than 0.115 μm and a root mean square height Sq of less than 0.120 μm and a maximum on the deposition surface side. The peak height Sp is less than 0.900 μm, the maximum valley depth Sv is less than 0.600 μm, the maximum height Sz is less than 1.500 μm, the kurtosis Sku is out of the range of 2.75 to 4.00, and the skewness Ssk is 0.00. It was outside the range of 00 to 0.35. Therefore, this electrolytic copper foil has insufficient adhesiveness of the solder resist.
 以上の結果からわかるように、本発明の実施形態によれば、回路形成性及びソルダーレジストの密着性に優れた電解銅箔を提供することができる。また、本発明の実施形態によれば、回路形成性及びソルダーレジストの密着性に優れた電解銅箔を用いた銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法を提供することができる。 As can be seen from the above results, according to the embodiment of the present invention, it is possible to provide an electrolytic copper foil excellent in circuit formability and solder resist adhesion. In addition, according to the embodiment of the present invention, a copper-clad laminate using an electrolytic copper foil excellent in circuit formability and solder resist adhesion, a printed wiring board, a manufacturing method thereof, an electronic device, and a manufacturing method thereof are provided. Can be provided.

Claims (39)

  1.  光沢面と析出面とを有する電解銅箔であって、
     前記光沢面側に粗化処理層を有し、前記光沢面の2乗平均平方根高さSqが0.550μm以下であり、前記析出面側が下記の条件:
     (a)面粗さSaが0.115μm以上である
     (b)2乗平均平方根高さSqが0.120μm以上である
     (c)最大山高さSpが0.900μm以上である
     (d)最大谷深さSvが0.600μm以上である
     (e)最大高さSzが1.500μm以上である
     (f)クルトシスSkuが2.75以上4.00以下である
     (g)スキューネスSskが0.00以上0.35以下である
    の少なくとも1つを満たす電解銅箔。
    An electrolytic copper foil having a glossy surface and a precipitation surface,
    The glossy surface has a roughening layer, the root mean square height Sq of the glossy surface is 0.550 μm or less, and the precipitation surface side has the following conditions:
    (A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more An electrolytic copper foil satisfying at least one of 0.35 or less.
  2.  前記析出面側が下記の条件:
     (a)面粗さSaが0.120μm以上である
     (b)2乗平均平方根高さSqが0.130μm以上である
     (c)最大山高さSpが1.050μm以上である
     (d)最大谷深さSvが0.740μm以上である
     (e)最大高さSzが1.800μm以上である
     (f)クルトシスSkuが2.80以上4.00以下である
     (g)スキューネスSskが0.00以上0.26以下である
    の少なくとも1つを満たす請求項1に記載の電解銅箔。
    The precipitation surface side has the following conditions:
    (A) Surface roughness Sa is 0.120 μm or more (b) Root mean square height Sq is 0.130 μm or more (c) Maximum peak height Sp is 1.050 μm or more (d) Maximum valley Depth Sv is 0.740 μm or more (e) Maximum height Sz is 1.800 μm or more (f) Kurtosis Sku is 2.80 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more The electrolytic copper foil according to claim 1, satisfying at least one of 0.26 or less.
  3.  前記光沢面側の面粗さSaが0.380μm以下である請求項1又は2に記載の電解銅箔。 The electrolytic copper foil according to claim 1 or 2, wherein the surface roughness Sa on the glossy surface side is 0.380 µm or less.
  4.  前記光沢面側の面粗さSaが0.355μm以下である請求項1~3のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 3, wherein a surface roughness Sa on the glossy surface side is 0.355 µm or less.
  5.  前記光沢面側の面粗さSaが0.300μm以下である請求項1~4のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 4, wherein a surface roughness Sa on the glossy surface side is 0.300 µm or less.
  6.  前記光沢面側の面粗さSaが0.200μm以下である請求項1~5のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 5, wherein a surface roughness Sa on the glossy surface side is 0.200 µm or less.
  7.  前記光沢面側の2乗平均平方根高さSqが0.490μm以下である請求項1~6のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 6, wherein a root mean square height Sq on the glossy surface side is 0.490 µm or less.
  8.  前記光沢面側の2乗平均平方根高さSqが0.450μm以下である請求項1~7のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 7, wherein a root mean square height Sq on the glossy surface side is 0.450 µm or less.
  9.  前記光沢面側の2乗平均平方根高さSqが0.400μm以下である請求項1~8のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 8, wherein a root mean square height Sq on the glossy surface side is 0.400 µm or less.
  10.  前記光沢面側の2乗平均平方根高さSqが0.330μm以下である請求項1~9のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 9, wherein the root mean square height Sq on the glossy surface side is 0.330 µm or less.
  11.  光沢面と析出面とを有する電解銅箔であって、
     前記光沢面側に粗化処理層を有し、前記光沢面側の面粗さSaが0.470μm以下であり、前記析出面側が下記の条件:
     (a)面粗さSaが0.115μm以上である
     (b)2乗平均平方根高さSqが0.120μm以上である
     (c)最大山高さSpが0.900μm以上である
     (d)最大谷深さSvが0.600μm以上である
     (e)最大高さSzが1.500μm以上である
     (f)クルトシスSkuが2.75以上4.00以下である
     (g)スキューネスSskが0.00以上0.35以下である
    の少なくとも1つを満たす電解銅箔。
    An electrolytic copper foil having a glossy surface and a precipitation surface,
    It has a roughening treatment layer on the glossy surface side, the surface roughness Sa on the glossy surface side is 0.470 μm or less, and the precipitation surface side has the following conditions:
    (A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more An electrolytic copper foil satisfying at least one of 0.35 or less.
  12.  前記光沢面側の2乗平均平方根高さSqが0.550μm以下である請求項11に記載の電解銅箔。 The electrolytic copper foil according to claim 11, wherein the root mean square height Sq on the glossy surface side is 0.550 µm or less.
  13.  前記光沢面側に前記粗化処理層を設ける前の前記光沢面の面粗さSaが0.270μm以下である請求項1~12のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 12, wherein a surface roughness Sa of the glossy surface before providing the roughening treatment layer on the glossy surface side is 0.270 µm or less.
  14.  前記光沢面側に前記粗化処理層を設ける前の前記光沢面の面粗さSaが0.130μm以下である請求項1~13のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 13, wherein a surface roughness Sa of the glossy surface before providing the roughening treatment layer on the glossy surface side is 0.130 µm or less.
  15.  前記光沢面側に前記粗化処理層を設ける前の前記光沢面の2乗平均平方根高さSqが0.315μm以下である請求項1~14のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 14, wherein a root mean square height Sq of the glossy surface before providing the roughening layer on the glossy surface side is 0.315 µm or less.
  16.  前記光沢面側に前記粗化処理層を設ける前の前記光沢面の2乗平均平方根高さSqが0.120μm以下である請求項1~15のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 15, wherein a root mean square height Sq of the glossy surface before providing the roughening treatment layer on the glossy surface side is 0.120 µm or less.
  17.  光沢面と析出面とを有する電解銅箔であって、
     前記光沢面側に粗化処理層を有さず、前記光沢面側の面粗さSaが0.270μm以下であり、前記析出面側が下記の条件:
     (a)面粗さSaが0.115μm以上である
     (b)2乗平均平方根高さSqが0.120μm以上である
     (c)最大山高さSpが0.900μm以上である
     (d)最大谷深さSvが0.600μm以上である
     (e)最大高さSzが1.500μm以上である
     (f)クルトシスSkuが2.75以上4.00以下である
     (g)スキューネスSskが0.00以上0.35以下である
    の少なくとも1つを満たす電解銅箔。
    An electrolytic copper foil having a glossy surface and a precipitation surface,
    There is no roughening layer on the glossy surface side, the surface roughness Sa on the glossy surface side is 0.270 μm or less, and the precipitation surface side has the following conditions:
    (A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more An electrolytic copper foil satisfying at least one of 0.35 or less.
  18.  前記光沢面側の2乗平均平方根高さSqが0.315μm以下である請求項17に記載の電解銅箔。 The electrolytic copper foil according to claim 17, wherein the root mean square height Sq on the glossy surface side is 0.315 µm or less.
  19.  光沢面と析出面とを有する電解銅箔であって、
     前記光沢面側に粗化処理層を有さず、前記光沢面側の2乗平均平方根高さSqが0.315μm以下であり、前記析出面側が下記の条件:
     (a)面粗さSaが0.115μm以上である
     (b)2乗平均平方根高さSqが0.120μm以上である
     (c)最大山高さSpが0.900μm以上である
     (d)最大谷深さSvが0.600μm以上である
     (e)最大高さSzが1.500μm以上である
     (f)クルトシスSkuが2.75以上4.00以下である
     (g)スキューネスSskが0.00以上0.35以下である
    の少なくとも1つを満たす電解銅箔。
    An electrolytic copper foil having a glossy surface and a precipitation surface,
    The glossy surface side does not have a roughening treatment layer, the root mean square height Sq on the glossy surface side is 0.315 μm or less, and the precipitation surface side has the following conditions:
    (A) Surface roughness Sa is 0.115 μm or more (b) Root mean square height Sq is 0.120 μm or more (c) Maximum peak height Sp is 0.900 μm or more (d) Maximum valley Depth Sv is 0.600 μm or more (e) Maximum height Sz is 1.500 μm or more (f) Kurtosis Sku is 2.75 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more An electrolytic copper foil satisfying at least one of 0.35 or less.
  20.  前記析出面側が下記の条件:
     (a)面粗さSaが0.120μm以上である
     (b)2乗平均平方根高さSqが0.130μm以上である
     (c)最大山高さSpが1.050μm以上である
     (d)最大谷深さSvが0.740μm以上である
     (e)最大高さSzが1.800μm以上である
     (f)クルトシスSkuが2.80以上4.00以下である
     (g)スキューネスSskが0.00以上0.26以下である
    の少なくとも1つを満たす請求項17~19のいずれか一項に記載の電解銅箔。
    The precipitation surface side has the following conditions:
    (A) Surface roughness Sa is 0.120 μm or more (b) Root mean square height Sq is 0.130 μm or more (c) Maximum peak height Sp is 1.050 μm or more (d) Maximum valley Depth Sv is 0.740 μm or more (e) Maximum height Sz is 1.800 μm or more (f) Kurtosis Sku is 2.80 or more and 4.00 or less (g) Skewness Ssk is 0.00 or more The electrolytic copper foil according to any one of claims 17 to 19, satisfying at least one of 0.26 or less.
  21.  前記光沢面側の面粗さSaが0.150μm以下である請求項17~20のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 17 to 20, wherein a surface roughness Sa on the glossy surface side is 0.150 µm or less.
  22.  前記光沢面側の面粗さSaが0.130μm以下である請求項17~21のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 17 to 21, wherein a surface roughness Sa on the glossy surface side is 0.130 µm or less.
  23.  前記光沢面側の2乗平均平方根高さSqが0.200μm以下である請求項17~22のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 17 to 22, wherein a root mean square height Sq on the glossy surface side is 0.200 µm or less.
  24.  前記光沢面側の2乗平均平方根高さSqが0.120μm以下である請求項17~23のいずれか一項に記載の電解銅箔 The electrolytic copper foil according to any one of claims 17 to 23, wherein a root mean square height Sq on the glossy surface side is 0.120 µm or less.
  25.  常温抗張力が30kg/mm2以上である請求項1~24のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 24, having a normal temperature tensile strength of 30 kg / mm 2 or more.
  26.  常温伸びが3%以上である請求項1~25のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 25, wherein the room temperature elongation is 3% or more.
  27.  高温抗張力が10kg/mm2以上である請求項1~26のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 26, wherein the high-temperature tensile strength is 10 kg / mm 2 or more.
  28.  高温伸びが2%以上である請求項1~27のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 27, wherein the high temperature elongation is 2% or more.
  29.  前記析出面側に前記粗化処理層を有する請求項1~28のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 28, wherein the roughening layer is provided on the precipitation surface side.
  30.  前記粗化処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項1~16のいずれか一項に記載の電解銅箔。 The roughening layer is made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing one or more of them. The electrolytic copper foil according to any one of claims 1 to 16, which is a layer.
  31.  前記電解銅箔の光沢面側及び析出面側の少なくとも一方の粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の表面処理層を有する請求項1~16のいずれか一項に記載の電解銅箔。 One or more selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of at least one roughening treatment layer on the glossy side and the precipitation side of the electrolytic copper foil The electrolytic copper foil according to any one of claims 1 to 16, which has a surface treatment layer.
  32.  前記電解銅箔の光沢面側及び析出面側の少なくとも一方に樹脂層を備える請求項1~31のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 31, further comprising a resin layer on at least one of a glossy surface side and a deposition surface side of the electrolytic copper foil.
  33.  前記樹脂層が、前記粗化処理層又は前記表面処理層上に設けられている請求項32に記載の電解銅箔。 The electrolytic copper foil according to claim 32, wherein the resin layer is provided on the roughening treatment layer or the surface treatment layer.
  34.  請求項1~33のいずれか一項に記載の電解銅箔を有する銅張積層板。 A copper-clad laminate having the electrolytic copper foil according to any one of claims 1 to 33.
  35.  請求項1~33のいずれか一項に記載の電解銅箔を有するプリント配線板。 A printed wiring board having the electrolytic copper foil according to any one of claims 1 to 33.
  36.  請求項1~33のいずれか一項に記載の電解銅箔を用いるプリント配線板の製造方法。 A method for producing a printed wiring board using the electrolytic copper foil according to any one of claims 1 to 33.
  37.  請求項1~33のいずれか一項に記載の電解銅箔と絶縁基板とを積層して銅張積層板を作製した後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって回路を形成する工程を含むプリント配線板の製造方法。 A copper-clad laminate is produced by laminating the electrolytic copper foil according to any one of claims 1 to 33 and an insulating substrate, and then a semi-additive method, a subtractive method, a partial additive method, or a modified semi-additive method. A method for producing a printed wiring board, comprising a step of forming a circuit by any method.
  38.  請求項35に記載のプリント配線板を有する電子機器。 An electronic device having the printed wiring board according to claim 35.
  39.  請求項35に記載のプリント配線板を用いる電子機器の製造方法。 A method for manufacturing an electronic device using the printed wiring board according to claim 35.
PCT/JP2018/017824 2017-05-09 2018-05-08 Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor WO2018207786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-093429 2017-05-09
JP2017093429 2017-05-09

Publications (1)

Publication Number Publication Date
WO2018207786A1 true WO2018207786A1 (en) 2018-11-15

Family

ID=64105379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017824 WO2018207786A1 (en) 2017-05-09 2018-05-08 Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor

Country Status (2)

Country Link
TW (1) TW201900939A (en)
WO (1) WO2018207786A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020156183A1 (en) * 2019-02-01 2020-08-06 长春石油化学股份有限公司 Surface-treated copper foil and copper foil substrate
CN112055474A (en) * 2019-06-05 2020-12-08 鹰克国际股份有限公司 Method for manufacturing circuit board solder mask layer by using liquid solder mask material
CN112864397A (en) * 2019-11-27 2021-05-28 长春石油化学股份有限公司 Electrolytic copper foil, electrode and lithium ion battery comprising same
CN113661587A (en) * 2019-11-21 2021-11-16 Sk纳力世有限公司 Electrolytic copper foil capable of preventing tearing or wrinkling failure, method of manufacturing the same, electrode including the electrolytic copper foil, and secondary battery including the electrode
WO2022153580A1 (en) * 2021-01-15 2022-07-21 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
CN115198319A (en) * 2021-12-15 2022-10-18 长春石油化学股份有限公司 Electrolytic copper foil, electrode comprising electrolytic copper foil and lithium ion battery
WO2023281773A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2023204144A1 (en) * 2022-04-20 2023-10-26 古河電気工業株式会社 Composite film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773613B (en) * 2021-12-15 2022-08-01 長春石油化學股份有限公司 Electrolytic copper foil, electrode and lithium ion battery comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107786A (en) * 2002-07-23 2004-04-08 Nikko Materials Co Ltd Copper electrolyte containing amine compound having specific skeleton and organic sulfur compound as additives and electrolytic copper foil manufactured using the same
JP2007146289A (en) * 2005-10-31 2007-06-14 Mitsui Mining & Smelting Co Ltd Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper foil or surface-treated copper foil
JP2010018885A (en) * 2008-06-12 2010-01-28 Furukawa Electric Co Ltd:The Electrolytic copper coating film, method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coating film
WO2012070589A1 (en) * 2010-11-22 2012-05-31 三井金属鉱業株式会社 Surface treated copper foil
JP2015061939A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and copper foil with carrier, laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2017061718A (en) * 2015-09-24 2017-03-30 Jx金属株式会社 Metal foil, metal foil with release layer, laminated body, printed wiring board, semiconductor package, electronic apparatus, and method for manufacturing printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107786A (en) * 2002-07-23 2004-04-08 Nikko Materials Co Ltd Copper electrolyte containing amine compound having specific skeleton and organic sulfur compound as additives and electrolytic copper foil manufactured using the same
JP2007146289A (en) * 2005-10-31 2007-06-14 Mitsui Mining & Smelting Co Ltd Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper foil or surface-treated copper foil
JP2010018885A (en) * 2008-06-12 2010-01-28 Furukawa Electric Co Ltd:The Electrolytic copper coating film, method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coating film
WO2012070589A1 (en) * 2010-11-22 2012-05-31 三井金属鉱業株式会社 Surface treated copper foil
JP2015061939A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and copper foil with carrier, laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2017061718A (en) * 2015-09-24 2017-03-30 Jx金属株式会社 Metal foil, metal foil with release layer, laminated body, printed wiring board, semiconductor package, electronic apparatus, and method for manufacturing printed wiring board

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989989A (en) * 2019-02-01 2020-11-24 长春石油化学股份有限公司 Surface-treated copper foil and copper foil substrate
US11362337B2 (en) 2019-02-01 2022-06-14 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil and electrode, and lithium-ion secondary battery comprising the same
US10765010B2 (en) 2019-02-01 2020-09-01 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil for printed circuit board with low transmission loss
US10772199B2 (en) 2019-02-01 2020-09-08 Chang Chun Petrochemical Co., Ltd. Low transmission loss copper foil and methods for manufacturing the copper foil
US10787751B2 (en) 2019-02-01 2020-09-29 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil with low profile
CN111936670A (en) * 2019-02-01 2020-11-13 长春石油化学股份有限公司 Surface-treated copper foil and copper foil substrate
CN111519215A (en) * 2019-02-01 2020-08-11 长春石油化学股份有限公司 Electrolytic copper foil with low transmission loss for printed circuit board
US11283080B2 (en) 2019-02-01 2022-03-22 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil, current collector, electrode, and lithium ion secondary battery comprising the same
JP2021524661A (en) * 2019-02-01 2021-09-13 長春石油化學股▲分▼有限公司 Electrolytic copper foil, current collector, electrodes, and lithium-ion secondary battery containing them
CN111936670B (en) * 2019-02-01 2023-07-14 长春石油化学股份有限公司 Surface-treated copper foil and copper foil substrate
CN111989989B (en) * 2019-02-01 2024-03-01 长春石油化学股份有限公司 Surface-treated copper foil and copper foil substrate
US11145867B2 (en) 2019-02-01 2021-10-12 Chang Chun Petrochemical Co., Ltd. Surface treated copper foil
WO2020156183A1 (en) * 2019-02-01 2020-08-06 长春石油化学股份有限公司 Surface-treated copper foil and copper foil substrate
CN112055474A (en) * 2019-06-05 2020-12-08 鹰克国际股份有限公司 Method for manufacturing circuit board solder mask layer by using liquid solder mask material
CN113661587A (en) * 2019-11-21 2021-11-16 Sk纳力世有限公司 Electrolytic copper foil capable of preventing tearing or wrinkling failure, method of manufacturing the same, electrode including the electrolytic copper foil, and secondary battery including the electrode
CN112864397B (en) * 2019-11-27 2022-04-29 长春石油化学股份有限公司 Electrolytic copper foil, electrode and lithium ion battery comprising same
JP2021085095A (en) * 2019-11-27 2021-06-03 長春石油化學股▲分▼有限公司 Electrolytic copper foil, and electrode and lithium-ion battery including the same
CN112864397A (en) * 2019-11-27 2021-05-28 长春石油化学股份有限公司 Electrolytic copper foil, electrode and lithium ion battery comprising same
WO2022153580A1 (en) * 2021-01-15 2022-07-21 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2022154102A1 (en) * 2021-01-15 2022-07-21 Jx金属株式会社 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2023281773A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2023281759A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
CN115198319A (en) * 2021-12-15 2022-10-18 长春石油化学股份有限公司 Electrolytic copper foil, electrode comprising electrolytic copper foil and lithium ion battery
CN115198319B (en) * 2021-12-15 2023-11-17 长春石油化学股份有限公司 Electrolytic copper foil, electrode comprising same and lithium ion battery
WO2023204144A1 (en) * 2022-04-20 2023-10-26 古河電気工業株式会社 Composite film

Also Published As

Publication number Publication date
TW201900939A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2018207786A1 (en) Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor
KR101851882B1 (en) Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
KR101909352B1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
WO2015108191A1 (en) Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board
JP6514635B2 (en) Copper foil with carrier, copper-clad laminate using it, printed wiring board, electronic device, and method of manufacturing printed wiring board
WO2014065430A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
CN107018623B (en) Electrolytic copper foil and method for producing same, copper-clad laminate, printed wiring board and method for producing same, and method for producing electronic device
WO2014084385A1 (en) Copper foil with carrier
WO2014065431A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
JP6396967B2 (en) Copper foil with carrier and copper clad laminate using copper foil with carrier
JP6328821B2 (en) Electrolytic copper foil, electrolytic copper foil manufacturing method, copper-clad laminate, printed wiring board, printed wiring board manufacturing method, and electronic device manufacturing method
JP6821370B2 (en) Metal foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic equipment
JP6522974B2 (en) Copper foil with carrier, laminate, method of producing laminate, and method of producing printed wiring board
WO2018207788A1 (en) Electrolytic copper foil, production method therefor, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor
TWI690622B (en) Electrolytic copper foil and its manufacturing method, copper-clad laminate, printed wiring board and its manufacturing method, and electronic equipment and its manufacturing method
JP6178360B2 (en) Surface-treated copper foil, copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
WO2017051897A1 (en) Metal foil, metal foil with mold release layer, laminate, printed wiring board, semiconductor package, electronic device and method for producing printed wiring board
JP2017013473A (en) Copper foil with carrier, copper clad laminate, laminate, printed wiring board, coreless substrate, electronic device, and manufacturing method of coreless substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP