WO2021157362A1 - Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board - Google Patents

Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board Download PDF

Info

Publication number
WO2021157362A1
WO2021157362A1 PCT/JP2021/001902 JP2021001902W WO2021157362A1 WO 2021157362 A1 WO2021157362 A1 WO 2021157362A1 JP 2021001902 W JP2021001902 W JP 2021001902W WO 2021157362 A1 WO2021157362 A1 WO 2021157362A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
roughened
less
carrier
filter
Prior art date
Application number
PCT/JP2021/001902
Other languages
French (fr)
Japanese (ja)
Inventor
眞 細川
哲聡 ▲高▼梨
美智 溝口
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202180012213.4A priority Critical patent/CN115038819A/en
Priority to JP2021575705A priority patent/JP7259093B2/en
Priority to KR1020227022468A priority patent/KR20220106200A/en
Publication of WO2021157362A1 publication Critical patent/WO2021157362A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
  • the MSAP method is a method suitable for forming an extremely fine circuit, and is performed using a copper foil with a carrier in order to take advantage of its characteristics.
  • the ultrathin copper foil 10 is pressed and adhered to the insulating resin substrate 11 provided with the lower layer circuit 11b on the base material 11a by using the prepreg 12 and the primer layer 13.
  • the carrier (not shown) is peeled off, and then a via hole 14 is formed by laser perforation if necessary (step (b)).
  • step (c) After the chemical copper plating 15 is applied (step (c)), masking is performed in a predetermined pattern by exposure and development using the dry film 16 (step (d)), and the electrolytic copper plating 17 is applied (step (e). )).
  • step (f) After removing the dry film 16 to form the wiring portion 17a (step (f)), unnecessary ultrathin copper foil and the like between the wiring portions 17a and 17a adjacent to each other are removed by etching over their entire thickness (step (f)).
  • Step (g) a wiring 18 formed in a predetermined pattern is obtained.
  • Patent Document 1 Patent No. 6462961
  • a roughening treatment layer, a rust prevention treatment layer and a silane coupling layer are provided on at least one surface of the copper foil.
  • Surface-treated copper foils laminated in this order are disclosed.
  • Patent Document 1 describes the development area ratio Sdr of the interface measured from the surface of the silane coupling layer of the surface-treated copper foil for the purpose of producing a printed wiring board having low transmission loss and excellent reflow heat resistance. It is also disclosed that the root mean square surface gradient Sdq is 25 ° or more and 70 ° or less, and the aspect ratio Str of the surface texture is 0.25 or more and 0.79 or less.
  • Patent Document 2 International Publication No. 2016/117587
  • the average distance between surface peaks on the surface on the release layer side is 20 ⁇ m or less
  • the maximum height difference of the waviness on the surface opposite to the release layer is.
  • a copper foil with a carrier provided with an ultrathin copper foil having a thickness of 1.0 ⁇ m or less is disclosed, and according to such an embodiment, it is said that both fine circuit formability and laser processability can be achieved at the same time.
  • Patent Document 3 Japanese Unexamined Patent Publication No.
  • a copper foil with a carrier having a Sp / Spk ratio of 3.271 or more and 10.739 or less with Spk is disclosed.
  • one of the physical adhesion indexes between the circuit and the substrate is the shear strength, and in order to effectively avoid the above-mentioned circuit peeling, it is required to keep the shear strength above a certain level.
  • the roughened particles of the copper foil must be enlarged, and there is a problem that it is difficult to achieve both etching properties.
  • the present inventors have recently applied a surface profile in a roughened copper foil in which the developed area ratio Sdr of the interface and the level difference Sk of the core portion defined in ISO25178 are controlled within predetermined ranges, respectively. It was found that excellent etching properties and high area strength can be achieved at the same time in the processing of stretched laminated boards or the manufacture of printed wiring boards.
  • an object of the present invention is to provide a roughened copper foil capable of achieving both excellent etching properties and high market share strength in the processing of copper-clad laminates or the production of printed wiring boards.
  • a roughened copper foil having a roughened surface on at least one side.
  • the roughened surface has an interface development area ratio Sdr of 3.50% or more and 12.00 measured under the conditions of a cutoff wavelength of 0.55 ⁇ m by the S filter and a cutoff wavelength of 10 ⁇ m by the L filter in accordance with ISO25178. % Or less, and the level difference Sk of the core portion measured under the conditions of a cutoff wavelength of 0.55 ⁇ m by the S filter and a cutoff wavelength of 10 ⁇ m by the L filter in accordance with ISO25178 is 0.15 ⁇ m or more and 0.35 ⁇ m or less.
  • Roughened copper foil is provided.
  • the carrier, the release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outward are provided.
  • a copper foil with a carrier is provided.
  • a copper-clad laminate provided with the roughened copper foil is provided.
  • a printed wiring board provided with the roughened copper foil is provided.
  • the “interface development area ratio Sdr” indicates how much the development area (surface area) of the definition region, which is measured in accordance with ISO25178, is increased with respect to the area of the definition region. It is a parameter.
  • the developed area ratio Sdr of the interface is expressed as an increase (%) in the surface area. The smaller this value is, the more flat the surface is, and the Sdr of the completely flat surface is 0%. On the other hand, the larger this value is, the more uneven the surface shape is. For example, a surface Sdr of 40% indicates that the surface has a 40% increase in surface area from a perfectly flat surface.
  • the "surface load curve” (hereinafter, simply referred to as “load curve”) is a curve representing the height at which the load area ratio is 0% to 100%, which is measured in accordance with ISO25178. say.
  • the load area ratio is a parameter representing the area of a region having a certain height c or more.
  • the load area ratio at height c corresponds to Smr (c) in FIG.
  • the secant line of the load curve drawn from the load area ratio of 0% along the load curve with the difference of the load area ratio set to 40% is moved from the load area ratio of 0%, and the secant line is used.
  • the position where the slope is the gentlest is called the central part of the load curve.
  • the straight line that minimizes the sum of squares of the deviations in the vertical axis direction with respect to this central portion is called an equivalent straight line.
  • the portion included in the height range of the load area ratio of the equivalent straight line from 0% to 100% is called the core portion.
  • the part higher than the core part is called the protruding peak part, and the part lower than the core part is called the protruding valley part.
  • the “core level difference Sk” is a value obtained by subtracting the minimum height from the maximum height of the core portion measured in accordance with ISO25178, and as shown in FIG. It is a parameter calculated by the difference in height between 0% and 100% of the load area ratio of the equivalent straight line.
  • the "maximum height Sz" is a parameter representing the distance from the highest point to the lowest point on the surface, which is measured in accordance with ISO25178.
  • the "surface texture aspect ratio Str” is a parameter representing the isotropic or anisotropy of the surface texture, which is measured in accordance with ISO25178. Str ranges from 0 to 1, and usually shows strong isotropic when Str> 0.5, and conversely shows strong anisotropy when Str ⁇ 0.3.
  • the “peak peak density Spd” is a parameter representing the number of peak peaks per unit area measured in accordance with ISO25178, and is a peak peak larger than 5% of the maximum amplitude in the contour curved surface. Only points shall be counted. A large value suggests that the number of contact points with other objects is large.
  • the interface development area ratio Sdr, the core level difference Sk, the maximum height Sz, the surface aspect ratio Str, and the peak density Spd of the peaks are two-dimensional regions of a predetermined measurement area (for example, 16384 ⁇ m 2) on the roughened surface. ) Can be calculated by measuring the surface profile with a commercially available laser microscope.
  • each numerical value of the developed area ratio Sdr of the interface, the level difference Sk of the core portion, the maximum height Sz, and the aspect ratio Str of the surface texture is the cutoff wavelength of 0.55 ⁇ m by the S filter and the cutoff by the L filter. The value shall be measured under the condition of a wavelength of 10 ⁇ m.
  • the numerical value of the peak density Spd of the peak is a value measured under the conditions of a cutoff wavelength of 3 ⁇ m by the S filter and a cutoff wavelength of 10 ⁇ m by the L filter.
  • the "electrode surface” of the carrier refers to the surface on the side that was in contact with the cathode when the carrier was manufactured.
  • the "precipitation surface" of the carrier refers to the surface on which electrolytic copper is deposited during carrier production, that is, the surface on the side that is not in contact with the cathode.
  • the copper foil according to the present invention is a roughened copper foil.
  • This roughened copper foil has a roughened surface on at least one side.
  • the developed area ratio Sdr of the interface is 3.50% or more and 12.00% or less
  • the level difference Sk of the core portion is 0.15 ⁇ m or more and 0.35 ⁇ m or less.
  • the present inventors roughened by controlling the level difference Sk of the core portion, which is a parameter not including the protruding peak portion, and the developing area ratio Sdr, which is a parameter including the protruding peak portion.
  • Sk the level difference
  • Sdr the developing area ratio
  • the generation of protruding peaks can be suppressed, and each roughened particle constituting the roughened treated surface can be configured to bite into the resin on average, whereby fine particles having excellent etching properties can be formed. It has been found that a roughened copper foil having a bump height and a specific surface area that is convenient for ensuring a high shear strength while being a surface can be obtained.
  • the roughened copper foil preferably has an interface development area ratio Sdr of 3.50% or more and 12.00% or less on the roughened surface. It is 4.50% or more and 8.50% or less, more preferably 4.50% or more and 6.00% or less. Within such a range, a sufficient adhesive area with the resin laminated at the time of manufacturing a copper-clad laminate or a printed wiring board is secured, even though the surface has a fine surface (roughening height) with excellent etching properties. This can improve the circuit adhesion from the viewpoint of share strength.
  • the roughened copper foil has a core level difference Sk of 0.15 ⁇ m or more and 0.35 ⁇ m or less on the roughened surface, preferably 0. It is 23 ⁇ m or more and 0.35 ⁇ m or less, more preferably 0.25 ⁇ m or more and 0.35 ⁇ m or less.
  • Sk core level difference
  • the roughened particles constituting the roughened surface can bite into the resin on average.
  • Adhesion with resin is improved.
  • the unevenness becomes a protruding peak on the roughening treatment surface.
  • unevenness protruding mountain portion
  • the maximum height Sz and the like used in the conventional evaluation are parameters including the protruding peaks. Therefore, when trying to improve the circuit adhesion based on such a parameter, the roughening height tends to be large, and therefore the etching property tends to be lowered.
  • the level difference Sk of the core portion is a parameter that does not include the protruding peak portion as described above. Therefore, by using the level difference Sk of the core portion as an evaluation index, it is possible to accurately obtain the optimum surface shape for improving the adhesion with the resin, and as a result, the increase in the roughening height can be suppressed. Is also possible.
  • the roughened copper foil has a Sk / Sdr of 0.038 or more and 0.050 or less, which is the ratio of the level difference Sk ( ⁇ m) of the core portion to the developed area ratio Sdr (%) of the interface on the roughened surface.
  • Sk / Sdr 0.038 or more and 0.050 or less
  • the uneven shape of the roughened surface has less unevenness in height, and not only the uneven shape of the roughened surface is large (that is, the surface area is large), but also the core.
  • the height of the part can also be sufficiently secured.
  • the level difference Sk of the core portion is a parameter obtained by excluding the protruding peak portion, while the developed area ratio Sdr is a parameter obtained including the protruding peak portion. Therefore, when the number of protruding peaks increases or decreases, the value of the level difference Sk of the core portion is constant, but the value of the developed area ratio Sdr changes. Therefore, by controlling the ratio of the level difference Sk of the core portion and the developed area ratio Sdr within the above range, it is possible to suppress the occurrence of protruding peaks on the roughened surface. It is possible to make it easy for each roughened particle constituting the roughened surface to bite into the resin on average. As a result, excellent etching properties and high share strength can be realized in a more balanced manner.
  • the roughened copper foil preferably has Sz ⁇ Sk, which is the product of the maximum height Sz ( ⁇ m) on the roughened surface and the level difference Sk ( ⁇ m) of the core portion, of 0.25 or more and 0.50 or less. , More preferably 0.36 or more and 0.50 or less. Within such a range, the uneven shape of the roughened surface is more suitable to suppress the occurrence of protruding peaks, and to realize excellent etching property and high share strength in a well-balanced manner. Become. Further, from the viewpoint of realizing a fine surface having more excellent etching property, the roughened surface of the roughened copper foil preferably has a maximum height Sz of 1.6 ⁇ m or less, more preferably 1.0 ⁇ m. It is 1.4 ⁇ m or more, more preferably 1.0 ⁇ m or more and 1.2 ⁇ m or less.
  • the roughened copper foil preferably has a peak density Spd of 2.00 ⁇ 10 4 mm -2 or more and 3.00 ⁇ 10 4 mm -2 or less on the roughened surface, more preferably 2.20. It is ⁇ 10 4 mm ⁇ 2 or more and 3.00 ⁇ 10 4 mm ⁇ 2 or less, more preferably 2.75 ⁇ 10 4 mm ⁇ 2 or more and 2.85 ⁇ 10 4 mm ⁇ 2 or less. By doing so, it is possible to secure a sufficient adhesion point with the resin laminated at the time of manufacturing the copper-clad laminate or the printed wiring board, and it is possible to more effectively improve the circuit adhesion from the viewpoint of the share strength. can.
  • the roughened copper foil preferably has an aspect ratio Str of the surface texture on the roughened surface of 0.2 or more and 0.5 or less, more preferably 0.24 or more and 0.50 or less, and further preferably 0. It is 45 or more and 0.50 or less. Within such a range, there will be undulations on the roughened surface that are convenient for adhesion to the resin. As a result, it is possible to more effectively improve the circuit adhesion from the viewpoint of share strength, even though the surface is fine with excellent etching properties.
  • the thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 ⁇ m or more and 35 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5.0 ⁇ m or less, and further preferably 1.0 ⁇ m or more and 3.0 ⁇ m or less.
  • the roughened copper foil is not limited to the one obtained by roughening the surface of a normal copper foil, and may be a roughened copper foil surface of a copper foil with a carrier.
  • the thickness of the roughened copper foil does not include the height of the roughened particles formed on the surface of the roughened surface (the thickness of the copper foil itself constituting the roughened copper foil). Is.
  • a copper foil having a thickness in the above range may be referred to as an ultrathin copper foil.
  • the roughened copper foil has a roughened surface on at least one side. That is, the roughened copper foil may have roughened surfaces on both sides, or may have roughened surfaces on only one side.
  • the roughened surface is typically provided with a plurality of roughened particles (humps), and it is preferable that each of the plurality of roughened particles is made of copper particles.
  • the copper particles may be made of metallic copper or may be made of a copper alloy.
  • the roughening treatment for forming the roughened surface can be preferably performed by forming roughened particles with copper or a copper alloy on the copper foil.
  • roughening treatment is performed according to a plating method that goes through at least two types of plating steps, including a burn-plating step of depositing and adhering fine copper particles on a copper foil and a covering plating step for preventing the fine copper grains from falling off. Is preferably performed.
  • carboxybenzotriazole (CBTA) is added to a copper sulfate solution containing a copper concentration of 5 g / L or more and 20 g / L or less and a sulfuric acid concentration of 180 g / L or more and 240 g / L or less to a concentration of 20 ppm or more and 29 ppm or less. It was added as a temperature of 15 °C above 35 ° C. or less, preferably performed 14A / dm 2 or more 24A / dm 2 hands electrodeposition below.
  • the cover plating step is performed in a copper sulfate solution containing a copper concentration of 50 g / L or more and 100 g / L or less and a sulfuric acid concentration of 200 g / L or more and 250 g / L or less at a temperature of 40 ° C. or more and 60 ° C. or less at 2 A / dm 2 or more. It is preferable to carry out electrodeposition at 4 A / dm 2 or less.
  • the burn-plating step by adding carboxybenzotriazole within the above concentration range to the plating solution, the occurrence of protruding peaks is suppressed on the roughened surface while maintaining the etching property close to that of pure copper.
  • the roughened particles constituting the roughened surface can be configured to bite into the resin on average, and it becomes easy to form bumps on the treated surface that are convenient for satisfying the above-mentioned surface parameters. Further, in the burn-plating step and the cover-plating step, by performing electrodeposition with a lower current density than in the conventional method, it becomes easier to form more convenient bumps on the treated surface in order to satisfy the above-mentioned surface parameters.
  • the roughened copper foil may be subjected to a rust preventive treatment to form a rust preventive treatment layer.
  • the rust preventive treatment preferably includes a plating treatment using zinc.
  • the plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment.
  • the zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co.
  • the Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and further preferably 2.7 or more and 4 or less in terms of mass ratio.
  • the rust preventive treatment preferably further includes a chromate treatment, and it is more preferable that the chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc. By doing so, the rust prevention property can be further improved.
  • a particularly preferable rust preventive treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
  • the surface of the roughened copper foil may be treated with a silane coupling agent to form a silane coupling agent layer.
  • a silane coupling agent layer can be formed by appropriately diluting the silane coupling agent, applying it, and drying it.
  • silane coupling agents include epoxy functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N- (2- (2-).
  • Amino-functional silane coupling agent, or mercapto-functional silane coupling agent such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agent such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or 3-methacry.
  • acrylic functional silane coupling agents such as loxypropyltrimethoxysilane
  • imidazole functional silane coupling agents such as imidazole silane
  • triazine functional silane coupling agents such as triazinesilane
  • the roughened copper foil preferably further includes a rust preventive treatment layer and / or a silane coupling agent layer on the roughened surface, and more preferably the rust preventive treatment layer and the silane coupling agent layer. It has both.
  • the rust preventive treatment layer and the silane coupling agent layer may be formed not only on the roughened surface side of the roughened copper foil but also on the side where the roughened surface is not formed.
  • the roughened copper foil of the present invention may be provided in the form of a copper foil with a carrier. That is, according to a preferred embodiment of the present invention, the carrier, the release layer provided on the carrier, and the roughening-treated copper foil provided on the release layer with the roughening-treated surface facing outward are provided. Copper foil with a carrier is provided. However, as the copper foil with a carrier, a known layer structure can be adopted except that the roughened copper foil of the present invention is used.
  • the carrier is a support for supporting the roughened copper foil and improving its handleability, and a typical carrier includes a metal layer.
  • a typical carrier includes a metal layer.
  • Examples of such a carrier include aluminum foil, copper foil, stainless steel (SUS) foil, a resin film or glass whose surface is metal-coated with copper or the like, and copper foil is preferable.
  • the copper foil may be either a rolled copper foil or an electrolytic copper foil, but is preferably an electrolytic copper foil.
  • the thickness of the carrier is typically 250 ⁇ m or less, preferably 9 ⁇ m or more and 200 ⁇ m or less.
  • the surface of the carrier on the release layer side is smooth. That is, in the process of manufacturing a copper foil with a carrier, an ultrathin copper foil (before roughening treatment) is formed on the surface of the carrier on the release layer side.
  • the roughened copper foil of the present invention is used in the form of a copper foil with a carrier, the roughened copper foil can be obtained by subjecting such an ultrathin copper foil to a roughening treatment. Therefore, by smoothing the surface of the carrier on the release layer side, the outer surface of the ultrathin copper foil can also be smoothed, and by applying a roughening treatment to the smooth surface of the ultrathin copper foil, the surface can be roughened.
  • the surface of the carrier on the release layer side can be smoothed, for example, by polishing the surface of the cathode used for electrolytic foil forming of the carrier with a buff having a predetermined count to adjust the surface roughness. That is, the surface profile of the cathode thus adjusted is transferred to the electrode surface of the carrier, and the ultrathin copper foil is formed on the electrode surface of the carrier via the release layer, whereby the outer surface of the ultrathin copper foil is formed. It is possible to impart a smooth surface state that facilitates the realization of the roughened surface described above.
  • the preferred buff count is # 2000 or more and # 3000 or less, and more preferably # 2000 or more and # 2500 or less.
  • the peeling layer is a layer having a function of weakening the peeling strength of the carrier, ensuring the stability of the strength, and further suppressing the mutual diffusion that may occur between the carrier and the copper foil during press molding at a high temperature. ..
  • the release layer is generally formed on one surface of the carrier, but may be formed on both sides.
  • the release layer may be either an organic release layer or an inorganic release layer.
  • the organic component used in the organic exfoliation layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids.
  • the nitrogen-containing organic compound include a triazole compound and an imidazole compound, and among them, the triazole compound is preferable because the peelability is easily stable.
  • triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-. Examples thereof include 1H-1,2,4-triazole and the like.
  • sulfur-containing organic compounds examples include mercaptobenzothiazole, thiothianulic acid, 2-benzimidazole thiol and the like.
  • carboxylic acids include monocarboxylic acids, dicarboxylic acids and the like.
  • examples of the inorganic component used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film.
  • the release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component to the surface of the carrier.
  • this contact may be performed by immersion in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like.
  • a method of forming a film of the release layer component by a vapor phase method such as thin film deposition or sputtering can also be adopted.
  • the release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
  • the thickness of the release layer is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
  • another functional layer may be provided between the release layer and the carrier and / or the roughened copper foil.
  • An example of such another functional layer is an auxiliary metal layer.
  • the auxiliary metal layer is preferably made of nickel and / or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier and / or on the surface side of the roughened copper foil, it may occur between the carrier and the roughened copper foil during hot press molding at a high temperature or for a long time. Mutual diffusion can be suppressed and the stability of the peeling strength of the carrier can be ensured.
  • the thickness of the auxiliary metal layer is preferably 0.001 ⁇ m or more and 3 ⁇ m or less.
  • the roughened copper foil of the present invention is preferably used for producing copper-clad laminates for printed wiring boards. That is, according to a preferred embodiment of the present invention, a copper-clad laminate provided with the roughened copper foil is provided.
  • This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil.
  • the roughened copper foil may be provided on one side of the resin layer or may be provided on both sides.
  • the resin layer contains a resin, preferably an insulating resin.
  • the resin layer is preferably a prepreg and / or a resin sheet.
  • Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper is impregnated with a synthetic resin.
  • Preferred examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin and the like.
  • examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin.
  • the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property.
  • the thickness of the resin layer is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 400 ⁇ m or less, and further preferably 3 ⁇ m or more and 200 ⁇ m or less.
  • the resin layer may be composed of a plurality of layers.
  • a resin layer such as a prepreg and / or a resin sheet may be provided on the roughened copper foil via a primer resin layer previously applied to the surface of the copper foil.
  • the roughened copper foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, a printed wiring board provided with the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both excellent etching properties and high market share strength in the production of a printed wiring board.
  • the printed wiring board according to this embodiment includes a layer structure in which a resin layer and a copper layer are laminated.
  • the copper layer is a layer derived from the roughened copper foil of the present invention.
  • the resin layer is as described above for the copper-clad laminate.
  • the printed wiring board can adopt a known layer structure except that the roughened copper foil of the present invention is used.
  • the printed wiring board examples include a single-sided or double-sided printed wiring board in which a circuit is formed by adhering the roughened copper foil of the present invention to one or both sides of a prepreg to form a cured laminate, or a multilayer of these.
  • Examples include a multi-layer printed wiring board.
  • a flexible printed wiring board, COF, TAB tape, etc., in which the roughened copper foil of the present invention is formed on a resin film to form a circuit can be mentioned.
  • a copper foil with resin (RCC) obtained by applying the above-mentioned resin layer to the roughened copper foil of the present invention was formed, and the resin layer was laminated on the above-mentioned printed circuit board as an insulating adhesive layer.
  • the roughened copper foil is used as the whole or part of the wiring layer, and the build-up wiring board in which the circuit is formed by the modified semi-additive (MSAP) method, the subtractive method, etc., and the roughened copper foil are removed.
  • MSAP modified semi-additive
  • Examples thereof include a build-up wiring board in which a circuit is formed by a semi-additive method, and a direct build-up on wafer in which a copper foil with a resin is laminated and a circuit is formed alternately on a semiconductor integrated circuit.
  • Examples thereof include electronic materials for glass, electromagnetic wave shield films obtained by applying a conductive adhesive to the roughened copper foil of the present invention.
  • the roughened copper foil of the present invention is suitable for the MSAP method.
  • the configuration shown in FIGS. 1 and 2 can be adopted.
  • Examples 1-7, 9 and 10 A copper foil with a carrier provided with a roughened copper foil was prepared and evaluated as follows.
  • the electrode surface of the pickled carrier is placed in a CBTA aqueous solution containing a carboxybenzotriazole (CBTA) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L and a copper concentration of 10 g / L at a liquid temperature of 30 ° C.
  • CBTA carboxybenzotriazole
  • the CBTA component was adsorbed on the electrode surface of the carrier.
  • the CBTA layer was formed as an organic release layer on the electrode surface of the carrier.
  • the carrier on which the organic exfoliation layer is formed is immersed in a solution containing nickel sulfate and having a nickel concentration of 20 g / L, so that the liquid temperature is 45 ° C., pH 3 and the current density is 5 A /. Under the condition of dm 2 , an adhering amount of nickel corresponding to a thickness of 0.001 ⁇ m was adhered on the organic release layer. In this way, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
  • the surface of the ultrathin copper foil thus formed was roughened to form a roughened copper foil, whereby a copper foil with a carrier was obtained.
  • This roughening treatment comprises a burn-plating step of depositing and adhering fine copper particles on an ultrathin copper foil, and a covering plating step for preventing the fine copper grains from falling off.
  • carboxybenzotriazole (CBTA) having a concentration shown in Table 1 is added to an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 200 g / L at a liquid temperature of 25 ° C. and shown in Table 1.
  • Roughening treatment was performed at the current density.
  • electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 240 g / L under smooth plating conditions of a liquid temperature of 52 ° C. and a current density shown in Table 1. ..
  • various samples having different roughening-treated surface characteristics were prepared by appropriately changing the CBTA concentration and current density in the burn-plating step and the current density in the cover plating step as shown in Table 1.
  • the surface of the obtained roughened copper foil with a carrier was subjected to a rust prevention treatment consisting of a zinc-nickel alloy plating treatment and a chromate treatment.
  • a rust prevention treatment consisting of a zinc-nickel alloy plating treatment and a chromate treatment.
  • the roughening treatment layer and carriers are used under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2.
  • the surface of the surface was plated with a zinc-nickel alloy.
  • the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment under the conditions of pH 12 and a current density of 1 A / dm 2.
  • Silane Coupling Agent Treatment A silane coupling agent treatment is performed by adsorbing a commercially available aqueous solution containing a silane coupling agent on the surface of the copper foil with a carrier to roughen the copper foil side and evaporating the water content with an electric heater. Was done. At this time, the silane coupling agent treatment was not performed on the carrier side.
  • the level difference Sk of the core part and the peak density Spd of the peak were measured.
  • the Sz, Sdr, Str and Sk were measured with the cutoff wavelength of the S filter set to 0.55 ⁇ m and the cutoff wavelength of the L filter set to 10 ⁇ m.
  • the cutoff wavelength by the S filter was set to 3 ⁇ m, and the cutoff wavelength by the L filter was set to 10 ⁇ m. The results were as shown in Table 1.
  • An evaluation laminate was prepared using the obtained copper foil with a carrier. That is, as shown in FIG. 5, roughened copper foil with a carrier is provided on the surface of the insulating resin substrate 111 via a prepreg 112 (GHPL-830NSF, thickness 0.1 mm, manufactured by Mitsubishi Gas Chemical Company, Inc.). The foil 110 was laminated and thermocompression bonded at a pressure of 4.0 MPa and a temperature of 220 ° C. for 90 minutes, and then the carrier (not shown) was peeled off to obtain a copper-clad laminate as the evaluation laminate 114. In the example shown in FIG. 5, the roughened copper foil 110 includes roughened particles 110a on its surface.
  • the required etching amount varies depending on the thickness of the ultrathin copper foil. Therefore, as shown in FIG. 5, the thickness of the roughened copper foil 110 in the evaluation laminate 114 is equivalent to 1.5 ⁇ m (excluding the thickness of the roughened particles 110a) for evaluation.
  • the thickness of the laminate 114 was reduced by half-etching or increased by copper sulfate plating, if necessary.
  • the evaluation laminate 114 whose thickness of the roughened copper foil 110 was adjusted to 1.5 ⁇ m was etched with a sulfuric acid-hydrogen peroxide-based etching solution by 0.1 ⁇ m, and the surface copper (roughened particles 110a) was etched. The amount (depth) until completely disappeared (including) was measured.
  • the measurement was performed by confirming with an optical microscope (500 times). More specifically, the work of confirming the presence or absence of copper with an optical microscope was repeated every time 0.1 ⁇ m was etched, and the value ( ⁇ m) obtained by (number of etchings) ⁇ 0.1 ⁇ m was used as an index of etchability.
  • the measured etching amount was rated and evaluated according to the following criteria, and if it was evaluated as any of A to C, it was judged to be acceptable. The results were as shown in Table 1.
  • the shear strength when the circuit 136 was pushed from the side of the circuit sample for shear strength measurement was measured. That is, as shown in FIG. 6, the laminated body 134 on which the circuit 136 is formed is placed on the movable stage 132, and the stage 132 is moved in the direction of the arrow in the drawing to the detector 138 which is fixed in advance. By pressing the circuit 136, a lateral force was applied to the side surface of the circuit 136 to shift the circuit 136 laterally, and the force (gf) at that time was measured by the detector 138 and adopted as the share strength.
  • a junction strength tester 4000 Plus Bondester manufactured by Nordson DAGE
  • the test type was a fracture test, and the measurement was performed under the conditions of a test height of 5 ⁇ m, a descent speed of 0.050 mm / s, a test speed of 200 ⁇ m / s, a tool movement amount of 0.05 mm, and a fracture recognition point of 10%.
  • the obtained share strength was rated and evaluated according to the following criteria, and if it was evaluated as any of A to C, it was judged to be acceptable. The results were as shown in Table 1.
  • Example 8 (comparison) Copper foils with carriers were prepared and evaluated in the same manner as in Example 1 except for the following a) to c). The results were as shown in Table 1.
  • a) Career preparation was performed according to the procedure shown below.
  • b) Instead of the electrode surface of the carrier, a release layer, an auxiliary metal layer and an ultrathin copper foil were formed on the precipitation surface of the carrier in this order.
  • c) instead of the burnt plating step and the cover plating step, the ultrathin copper foil was roughened by the black plating step shown below.
  • a sulfuric acid acidic copper sulfate solution having the composition shown below was used as the copper electrolytic solution, a titanium electrode having a surface roughness Ra of 0.20 ⁇ m was used as the cathode, and DSA (dimensional stability anode) was used as the anode. Electrolysis was performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 , and an electrolytic copper foil having a thickness of 12 ⁇ m was obtained as a carrier.

Abstract

Provided is a roughened copper foil which can achieve both of excellent etching properties and high share strength in the processing of a copper clad laminate plate or the manufacture of a printed wiring board. The roughened copper foil has a roughened surface on at least one side thereof. In the roughened surface, the interface developed area ratio Sdr is 3.50% to 12.00% inclusive as measured in accordance with ISO25178 under the conditions including an S filter cut-off wavelength of 0.55 μm and an L filter cut-off wavelength of 10 μm. In the roughened copper foil, the core part level difference Sk is 0.15 μm to 0.35 μm inclusive as measured in accordance with ISO25178 under the conditions including an S filter cut-off wavelength of 0.55 μm and an L filter cut-off wavelength of 10 μm.

Description

粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
 本発明は、粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板に関する。 The present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
 近年、回路の微細化に適したプリント配線板の製造工法として、MSAP(モディファイド・セミ・アディティブ・プロセス)法が広く採用されている。MSAP法は、極めて微細な回路を形成するのに適した手法であり、その特徴を活かすため、キャリア付銅箔を用いて行われている。例えば、図1及び2に示されるように、極薄銅箔10を、下地基材11a上に下層回路11bを備えた絶縁樹脂基板11上にプリプレグ12とプライマー層13を用いてプレスして密着させ(工程(a))、キャリア(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール14を形成する(工程(b))。次いで、化学銅めっき15を施した(工程(c))後に、ドライフィルム16を用いた露光及び現像により所定のパターンでマスキングし(工程(d))、電気銅めっき17を施す(工程(e))。ドライフィルム16を除去して配線部分17aを形成した後(工程(f))、互いに隣り合う配線部分17aと17a間の不要な極薄銅箔等をそれらの厚み全体にわたってエッチングにより除去して(工程(g))、所定のパターンで形成された配線18を得る。ここで、回路-基板間の物理的密着性を向上すべく、極薄銅箔10の表面に粗化処理を行うことが一般的に行われている。 In recent years, the MSAP (Modified Semi-Additive Process) method has been widely adopted as a manufacturing method for printed wiring boards suitable for circuit miniaturization. The MSAP method is a method suitable for forming an extremely fine circuit, and is performed using a copper foil with a carrier in order to take advantage of its characteristics. For example, as shown in FIGS. 1 and 2, the ultrathin copper foil 10 is pressed and adhered to the insulating resin substrate 11 provided with the lower layer circuit 11b on the base material 11a by using the prepreg 12 and the primer layer 13. (Step (a)), the carrier (not shown) is peeled off, and then a via hole 14 is formed by laser perforation if necessary (step (b)). Next, after the chemical copper plating 15 is applied (step (c)), masking is performed in a predetermined pattern by exposure and development using the dry film 16 (step (d)), and the electrolytic copper plating 17 is applied (step (e). )). After removing the dry film 16 to form the wiring portion 17a (step (f)), unnecessary ultrathin copper foil and the like between the wiring portions 17a and 17a adjacent to each other are removed by etching over their entire thickness (step (f)). Step (g)), a wiring 18 formed in a predetermined pattern is obtained. Here, in order to improve the physical adhesion between the circuit and the substrate, it is common practice to roughen the surface of the ultrathin copper foil 10.
 このような粗化処理を行った銅箔として、例えば、特許文献1(特許第6462961号公報)には、銅箔の少なくとも片面に、粗化処理層、防錆処理層及びシランカップリング層がこの順で積層された表面処理銅箔が開示されている。特許文献1には、伝送損失が少なく、優れたリフロー耐熱性を有するプリント配線板の製造を目的として、かかる表面処理銅箔のシランカップリング層の表面から測定された界面の展開面積比Sdrが8%以上140%以下、二乗平均平方根表面勾配Sdqが25°以上70°以下、及び表面性状のアスペクト比Strが0.25以上0.79以下であることも開示されている。 As a copper foil subjected to such a roughening treatment, for example, in Patent Document 1 (Patent No. 6462961), a roughening treatment layer, a rust prevention treatment layer and a silane coupling layer are provided on at least one surface of the copper foil. Surface-treated copper foils laminated in this order are disclosed. Patent Document 1 describes the development area ratio Sdr of the interface measured from the surface of the silane coupling layer of the surface-treated copper foil for the purpose of producing a printed wiring board having low transmission loss and excellent reflow heat resistance. It is also disclosed that the root mean square surface gradient Sdq is 25 ° or more and 70 ° or less, and the aspect ratio Str of the surface texture is 0.25 or more and 0.79 or less.
 実際、MSAP法等による微細回路形成性に優れたキャリア付銅箔が幾つか提案されている。例えば、特許文献2(国際公開第2016/117587号)には、剥離層側の面の表面ピーク間平均距離が20μm以下であり、かつ、剥離層と反対側の面のうねりの最大高低差が1.0μm以下である極薄銅箔を備えたキャリア付銅箔が開示されており、かかる態様によれば微細回路形成性とレーザー加工性とを両立できるとされている。また、特許文献3(特開2018-26590号公報)には、微細回路形成性を向上することを目的として、極薄銅層側表面のISO25178に準拠した最大山高さSpと突出山部高さSpkとの比Sp/Spkが3.271以上10.739以下であるキャリア付銅箔が開示されている。 In fact, some copper foils with carriers that are excellent in fine circuit formation by the MSAP method and the like have been proposed. For example, in Patent Document 2 (International Publication No. 2016/117587), the average distance between surface peaks on the surface on the release layer side is 20 μm or less, and the maximum height difference of the waviness on the surface opposite to the release layer is. A copper foil with a carrier provided with an ultrathin copper foil having a thickness of 1.0 μm or less is disclosed, and according to such an embodiment, it is said that both fine circuit formability and laser processability can be achieved at the same time. Further, in Patent Document 3 (Japanese Unexamined Patent Publication No. 2018-26590), the maximum mountain height Sp and the protruding mountain height according to ISO25178 on the surface on the ultrathin copper layer side are described for the purpose of improving the fine circuit formability. A copper foil with a carrier having a Sp / Spk ratio of 3.271 or more and 10.739 or less with Spk is disclosed.
特許第6462961号公報Japanese Patent No. 6462961 国際公開第2016/117587号International Publication No. 2016/1157587 特開2018-26590号公報Japanese Unexamined Patent Publication No. 2018-26590
 近年、上述したMSAP法等により更なる微細回路を形成するため、銅箔に対してより一層の平滑化及び粗化粒子の微小化が求められている。しかしながら、銅箔の平滑化及び粗化粒子の微小化により、回路の微細化に関わる銅箔のエッチング性は向上するものの、銅箔と基板樹脂等との物理的密着力は低下することになる。特に、回路の細線化が進むにつれて、プリント配線板の実装工程において、回路に横方向からの物理的な応力(すなわちシェア応力)が加わることで回路が剥がれやすくなり、歩留まりが低下するという課題が顕在化している。この点、回路と基板との物理密着指標の一つにシェア強度(せん断強度)があり、上述の回路剥がれを効果的に回避するためには、シェア強度を一定以上に保つことが求められる。しかしながら、一定以上のシェア強度を確保するためには銅箔の粗化粒子を大きくせざるを得ず、エッチング性との両立を図るのが困難という問題がある。 In recent years, in order to form a finer circuit by the above-mentioned MSAP method or the like, further smoothing and miniaturization of coarsened particles are required for copper foil. However, by smoothing the copper foil and miniaturizing the coarsened particles, the etching property of the copper foil, which is related to the miniaturization of the circuit, is improved, but the physical adhesion between the copper foil and the substrate resin or the like is lowered. .. In particular, as the thinning of the circuit progresses, in the process of mounting the printed wiring board, physical stress from the lateral direction (that is, shear stress) is applied to the circuit, so that the circuit is easily peeled off and the yield is lowered. It has become apparent. In this respect, one of the physical adhesion indexes between the circuit and the substrate is the shear strength, and in order to effectively avoid the above-mentioned circuit peeling, it is required to keep the shear strength above a certain level. However, in order to secure a share strength of a certain level or higher, the roughened particles of the copper foil must be enlarged, and there is a problem that it is difficult to achieve both etching properties.
 本発明者らは、今般、粗化処理銅箔において、ISO25178に規定される界面の展開面積比Sdr及びコア部のレベル差Skをそれぞれ所定の範囲に制御した表面プロファイルを付与することにより、銅張積層板の加工ないしプリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立できるとの知見を得た。 The present inventors have recently applied a surface profile in a roughened copper foil in which the developed area ratio Sdr of the interface and the level difference Sk of the core portion defined in ISO25178 are controlled within predetermined ranges, respectively. It was found that excellent etching properties and high area strength can be achieved at the same time in the processing of stretched laminated boards or the manufacture of printed wiring boards.
 したがって、本発明の目的は、銅張積層板の加工ないしプリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立可能な、粗化処理銅箔を提供することにある。 Therefore, an object of the present invention is to provide a roughened copper foil capable of achieving both excellent etching properties and high market share strength in the processing of copper-clad laminates or the production of printed wiring boards.
 本発明の一態様によれば、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
 前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定される界面の展開面積比Sdrが3.50%以上12.00%以下であり、ISO25178に準拠してSフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定されるコア部のレベル差Skが0.15μm以上0.35μm以下である、粗化処理銅箔が提供される。
According to one aspect of the present invention, a roughened copper foil having a roughened surface on at least one side.
The roughened surface has an interface development area ratio Sdr of 3.50% or more and 12.00 measured under the conditions of a cutoff wavelength of 0.55 μm by the S filter and a cutoff wavelength of 10 μm by the L filter in accordance with ISO25178. % Or less, and the level difference Sk of the core portion measured under the conditions of a cutoff wavelength of 0.55 μm by the S filter and a cutoff wavelength of 10 μm by the L filter in accordance with ISO25178 is 0.15 μm or more and 0.35 μm or less. , Roughened copper foil is provided.
 本発明の他の一態様によれば、キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた前記粗化処理銅箔とを備えた、キャリア付銅箔が提供される。 According to another aspect of the present invention, the carrier, the release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outward are provided. A copper foil with a carrier is provided.
 本発明の更に別の一態様によれば、前記粗化処理銅箔を備えた、銅張積層板が提供される。 According to still another aspect of the present invention, a copper-clad laminate provided with the roughened copper foil is provided.
 本発明の更に別の一態様によれば、前記粗化処理銅箔を備えた、プリント配線板が提供される。 According to still another aspect of the present invention, a printed wiring board provided with the roughened copper foil is provided.
MSAP法を説明するための工程流れ図であり、前半の工程(工程(a)~(d))を示す図である。It is a process flow diagram for demonstrating the MSAP method, and is the figure which shows the process (step (a)-(d)) of the first half. MSAP法を説明するための工程流れ図であり、後半の工程(工程(e)~(g))を示す図である。It is a process flow diagram for demonstrating the MSAP method, and is the figure which shows the process (process (e)-(g)) of the latter half. ISO25178に準拠して決定される負荷曲線及び負荷面積率を説明するための図である。It is a figure for demonstrating the load curve and the load area ratio determined in accordance with ISO25178. ISO25178に準拠して決定される突出山部とコア部を分離する負荷面積率Smr1、突出谷部とコア部を分離する負荷面積率Smr2、及びコア部のレベル差Skを説明するための図である。The figure for explaining the load area ratio Smr1 for separating the protruding peak portion and the core portion, the load area ratio Smr2 for separating the protruding valley portion and the core portion, and the level difference Sk of the core portion determined in accordance with ISO25178. be. 回路形成性(エッチング性評価)におけるエッチングを行う直前の評価用積層体の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the laminated body for evaluation just before performing etching in circuit formability (etchability evaluation). シェア強度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the share strength.
 定義
 本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
Definitions Definitions of terms or parameters used to identify the present invention are shown below.
 本明細書において、「界面の展開面積比Sdr」とは、ISO25178に準拠して測定される、定義領域の展開面積(表面積)が、定義領域の面積に対してどれだけ増大しているかを表すパラメータである。なお、本明細書では、界面の展開面積比Sdrを表面積の増加分(%)として表すものとする。この値が小さいほど、平坦に近い表面形状であることを示し、完全に平坦な表面のSdrは0%となる。一方、この値が大きいほど、凹凸が多い表面形状であることを示す。例えば、表面のSdrが40%である場合、この表面は完全に平坦な表面から40%表面積が増大していることを示す。 In the present specification, the “interface development area ratio Sdr” indicates how much the development area (surface area) of the definition region, which is measured in accordance with ISO25178, is increased with respect to the area of the definition region. It is a parameter. In this specification, the developed area ratio Sdr of the interface is expressed as an increase (%) in the surface area. The smaller this value is, the more flat the surface is, and the Sdr of the completely flat surface is 0%. On the other hand, the larger this value is, the more uneven the surface shape is. For example, a surface Sdr of 40% indicates that the surface has a 40% increase in surface area from a perfectly flat surface.
 本明細書において「面の負荷曲線」(以下、単に「負荷曲線」という)とは、ISO25178に準拠して測定される、負荷面積率が0%から100%となる高さを表した曲線をいう。負荷面積率とは、図3に示されるように、ある高さc以上の領域の面積を表すパラメータである。高さcでの負荷面積率は図3におけるSmr(c)に相当する。図4に示されるように、負荷面積率が0%から負荷曲線に沿って負荷面積率の差を40%にして引いた負荷曲線の割線を、負荷面積率0%から移動させていき、割線の傾斜が最も緩くなる位置を負荷曲線の中央部分という。この中央部分に対して、縦軸方向の偏差の二乗和が最小になる直線を等価直線という。等価直線の負荷面積率0%から100%の高さの範囲に含まれる部分をコア部という。コア部より高い部分を突出山部といい、コア部より低い部分は突出谷部という。 In the present specification, the "surface load curve" (hereinafter, simply referred to as "load curve") is a curve representing the height at which the load area ratio is 0% to 100%, which is measured in accordance with ISO25178. say. As shown in FIG. 3, the load area ratio is a parameter representing the area of a region having a certain height c or more. The load area ratio at height c corresponds to Smr (c) in FIG. As shown in FIG. 4, the secant line of the load curve drawn from the load area ratio of 0% along the load curve with the difference of the load area ratio set to 40% is moved from the load area ratio of 0%, and the secant line is used. The position where the slope is the gentlest is called the central part of the load curve. The straight line that minimizes the sum of squares of the deviations in the vertical axis direction with respect to this central portion is called an equivalent straight line. The portion included in the height range of the load area ratio of the equivalent straight line from 0% to 100% is called the core portion. The part higher than the core part is called the protruding peak part, and the part lower than the core part is called the protruding valley part.
 本明細書において、「コア部のレベル差Sk」とは、ISO25178に準拠して測定される、コア部の最大高さから最小高さを引いた値であり、図4に示されるように、等価直線の負荷面積率0%と100%の高さの差により算出されるパラメータである。 In the present specification, the “core level difference Sk” is a value obtained by subtracting the minimum height from the maximum height of the core portion measured in accordance with ISO25178, and as shown in FIG. It is a parameter calculated by the difference in height between 0% and 100% of the load area ratio of the equivalent straight line.
 本明細書において、「最大高さSz」とは、ISO25178に準拠して測定される、表面の最も高い点から最も低い点までの距離を表すパラメータである。 In the present specification, the "maximum height Sz" is a parameter representing the distance from the highest point to the lowest point on the surface, which is measured in accordance with ISO25178.
 本明細書において、「表面性状のアスペクト比Str」とは、ISO25178に準拠して測定される、表面性状の等方性ないし異方性を表すパラメータである。Strは0から1までの範囲をとり、通常Str>0.5で強い等方性を示し、反対にStr<0.3で強い異方性を示す。 In the present specification, the "surface texture aspect ratio Str" is a parameter representing the isotropic or anisotropy of the surface texture, which is measured in accordance with ISO25178. Str ranges from 0 to 1, and usually shows strong isotropic when Str> 0.5, and conversely shows strong anisotropy when Str <0.3.
 本明細書において、「山の頂点密度Spd」とは、ISO25178に準拠して測定される、単位面積当たりの山頂点の数を表すパラメータであり、輪郭曲面における最大振幅の5%よりも大きな山頂点のみをカウントするものとする。この値が大きいと他の物体との接触点の数が多いことを示唆する。 In the present specification, the “peak peak density Spd” is a parameter representing the number of peak peaks per unit area measured in accordance with ISO25178, and is a peak peak larger than 5% of the maximum amplitude in the contour curved surface. Only points shall be counted. A large value suggests that the number of contact points with other objects is large.
 界面の展開面積比Sdr、コア部のレベル差Sk、最大高さSz、表面性状のアスペクト比Str及び山の頂点密度Spdは、粗化処理面における所定の測定面積(例えば16384μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することによりそれぞれ算出することができる。本明細書において、界面の展開面積比Sdr、コア部のレベル差Sk、最大高さSz及び表面性状のアスペクト比Strの各数値は、Sフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定される値とする。また、本明細書において、山の頂点密度Spdの数値は、Sフィルターによるカットオフ波長3μm及びLフィルターによるカットオフ波長10μmの条件で測定される値とする。 The interface development area ratio Sdr, the core level difference Sk, the maximum height Sz, the surface aspect ratio Str, and the peak density Spd of the peaks are two-dimensional regions of a predetermined measurement area (for example, 16384 μm 2) on the roughened surface. ) Can be calculated by measuring the surface profile with a commercially available laser microscope. In the present specification, each numerical value of the developed area ratio Sdr of the interface, the level difference Sk of the core portion, the maximum height Sz, and the aspect ratio Str of the surface texture is the cutoff wavelength of 0.55 μm by the S filter and the cutoff by the L filter. The value shall be measured under the condition of a wavelength of 10 μm. Further, in the present specification, the numerical value of the peak density Spd of the peak is a value measured under the conditions of a cutoff wavelength of 3 μm by the S filter and a cutoff wavelength of 10 μm by the L filter.
 本明細書において、キャリアの「電極面」とは、キャリア作製時に陰極と接していた側の面を指す。 In the present specification, the "electrode surface" of the carrier refers to the surface on the side that was in contact with the cathode when the carrier was manufactured.
 本明細書において、キャリアの「析出面」とは、キャリア作製時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。 In the present specification, the "precipitation surface" of the carrier refers to the surface on which electrolytic copper is deposited during carrier production, that is, the surface on the side that is not in contact with the cathode.
 粗化処理銅箔
 本発明による銅箔は粗化処理銅箔である。この粗化処理銅箔は、少なくとも一方の側に粗化処理面を有する。この粗化処理面は、界面の展開面積比Sdrが3.50%以上12.00%以下であり、コア部のレベル差Skが0.15μm以上0.35μm以下である。このように、粗化処理銅箔において、界面の展開面積比Sdr及びコア部のレベル差Skをそれぞれ所定の範囲に制御した表面プロファイルを付与することにより、銅張積層板の加工ないしプリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立することが可能となる。
Roughened Copper Foil The copper foil according to the present invention is a roughened copper foil. This roughened copper foil has a roughened surface on at least one side. On this roughened surface, the developed area ratio Sdr of the interface is 3.50% or more and 12.00% or less, and the level difference Sk of the core portion is 0.15 μm or more and 0.35 μm or less. In this way, in the roughened copper foil, by imparting a surface profile in which the development area ratio Sdr of the interface and the level difference Sk of the core portion are controlled within predetermined ranges, the copper-clad laminate is processed or the printed wiring board is provided. It is possible to achieve both excellent etching properties and high share strength in the production of.
 優れたエッチング性と高いシェア強度とは本来的には両立し難いものである。これは、前述したとおり、銅箔のエッチング性を向上させるためには、一般的に粗化粒子を小さくすることが求められる一方、回路のシェア強度を高めるためには、一般的に粗化粒子を大きくすることが求められるためである。とりわけ、シェア強度は従来から評価に用いられてきた比表面積や粗化高さ等に単純には比例せず、その制御を行うことが困難であった。この点、本発明者らは、エッチング性やシェア強度等の物性との相関をとるためには界面の展開面積比Sdr及びコア部のレベル差Skを組み合わせて評価を行うことが有効であることを知見した。そして、これらの表面パラメータをそれぞれ上記所定範囲内に制御することで、エッチング性に優れた微細な表面でありながら、高いシェア強度を確保するのに好都合なコブ高さ及び比表面積を有する粗化処理銅箔が得られることを見出した。このように、本発明の粗化処理銅箔によれば、優れたエッチング性及び高いシェア強度を実現することができ、それ故、優れた微細回路形成性とシェア強度という観点での高い回路密着性とを両立することが可能となる。なお、従来、表面処理銅箔の表面について、展開面積比Sdr、二乗平均平方根表面勾配Sdq及び表面性状のアスペクト比Strをそれぞれ制御する技術が知られている(上述した特許文献1参照)。しかしながら、これらのパラメータは、いずれも突出山部を含んで求められるパラメータであり、突出山部の発生を抑制すると、いずれも値が小さくなりすぎてしまう場合がある。これに対して、本発明者らは、突出山部を含まないパラメータであるコア部のレベル差Skと、突出山部を含むパラメータである展開面積比Sdrとをそれぞれ制御することにより、粗化処理面について、突出山部の発生が抑制され、かつ、粗化処理面を構成する各粗化粒子が平均的に樹脂に食い込む構成とすることができ、これにより、エッチング性に優れた微細な表面でありながら、高いシェア強度を確保するのに好都合なコブ高さ及び比表面積を有する粗化処理銅箔が得られることを見出した。 Originally, it is difficult to achieve both excellent etching properties and high market share strength. As described above, in order to improve the etching property of the copper foil, it is generally required to reduce the roughened particles, while in order to increase the share strength of the circuit, the roughened particles are generally required. This is because it is required to increase the size. In particular, the shear strength is not simply proportional to the specific surface area, roughening height, etc., which have been conventionally used for evaluation, and it has been difficult to control them. In this regard, it is effective for the present inventors to perform evaluation by combining the developed area ratio Sdr of the interface and the level difference Sk of the core portion in order to obtain a correlation with physical properties such as etching property and shear strength. Was found. Then, by controlling each of these surface parameters within the above-mentioned predetermined range, roughening having a bump height and a specific surface area that is convenient for ensuring high shear strength while being a fine surface having excellent etching properties. We have found that treated copper foil can be obtained. As described above, according to the roughened copper foil of the present invention, excellent etching property and high share strength can be realized, and therefore, high circuit adhesion from the viewpoint of excellent fine circuit formability and share strength can be realized. It is possible to achieve both sex and sex. Conventionally, there are known techniques for controlling the developed area ratio Sdr, the root mean square surface gradient Sdq, and the aspect ratio Str of the surface texture on the surface of the surface-treated copper foil (see Patent Document 1 described above). However, all of these parameters are parameters that are obtained including the protruding ridges, and if the occurrence of the protruding ridges is suppressed, the values may become too small. On the other hand, the present inventors roughened by controlling the level difference Sk of the core portion, which is a parameter not including the protruding peak portion, and the developing area ratio Sdr, which is a parameter including the protruding peak portion. With respect to the treated surface, the generation of protruding peaks can be suppressed, and each roughened particle constituting the roughened treated surface can be configured to bite into the resin on average, whereby fine particles having excellent etching properties can be formed. It has been found that a roughened copper foil having a bump height and a specific surface area that is convenient for ensuring a high shear strength while being a surface can be obtained.
 優れたエッチング性及び高いシェア強度をバランス良く実現する観点から、粗化処理銅箔は、粗化処理面における界面の展開面積比Sdrが3.50%以上12.00%以下であり、好ましくは4.50%以上8.50%以下、より好ましくは4.50%以上6.00%以下である。このような範囲内であると、エッチング性に優れた微細な表面(粗化高さ)でありながらも、銅張積層板ないしプリント配線板製造時に積層される樹脂との十分な接着面積を確保することができ、シェア強度という観点での回路密着性が向上する。 From the viewpoint of achieving excellent etching properties and high share strength in a well-balanced manner, the roughened copper foil preferably has an interface development area ratio Sdr of 3.50% or more and 12.00% or less on the roughened surface. It is 4.50% or more and 8.50% or less, more preferably 4.50% or more and 6.00% or less. Within such a range, a sufficient adhesive area with the resin laminated at the time of manufacturing a copper-clad laminate or a printed wiring board is secured, even though the surface has a fine surface (roughening height) with excellent etching properties. This can improve the circuit adhesion from the viewpoint of share strength.
 優れたエッチング性及び高いシェア強度をバランス良く実現する観点から、粗化処理銅箔は、粗化処理面におけるコア部のレベル差Skが0.15μm以上0.35μm以下であり、好ましくは0.23μm以上0.35μm以下、より好ましくは0.25μm以上0.35μm以下である。このような範囲内であると、エッチング性に優れた微細な表面(粗化高さ)でありながらも、粗化処理面を構成する各粗化粒子が平均的に樹脂に食い込むことができる結果、樹脂との密着性が向上する。すなわち、粗化処理にムラがあると、当該ムラは粗化処理面における突出山部になると考えられる。しかしながら、このようなムラ(突出山部)はシェア強度という観点での回路密着性の向上には寄与しにくい。この点、従来評価に用いられてきた最大高さSz等は突出山部を含んだパラメータである。このため、このようなパラメータに基づいて回路密着性の向上を図ろうとする場合、粗化高さが大きくなりやすく、それ故エッチング性が低下しやすい。これに対して、コア部のレベル差Skは上述のとおり突出山部を含まないパラメータである。したがって、コア部のレベル差Skを評価指標とすることで、樹脂との密着性を向上するのに最適な表面形状を的確に得ることができ、結果として粗化高さの増大を抑制することも可能となる。 From the viewpoint of achieving excellent etching properties and high shear strength in a well-balanced manner, the roughened copper foil has a core level difference Sk of 0.15 μm or more and 0.35 μm or less on the roughened surface, preferably 0. It is 23 μm or more and 0.35 μm or less, more preferably 0.25 μm or more and 0.35 μm or less. Within such a range, even though the surface has a fine surface (roughening height) having excellent etching properties, the roughened particles constituting the roughened surface can bite into the resin on average. , Adhesion with resin is improved. That is, if there is unevenness in the roughening treatment, it is considered that the unevenness becomes a protruding peak on the roughening treatment surface. However, such unevenness (protruding mountain portion) does not easily contribute to the improvement of circuit adhesion from the viewpoint of share strength. In this respect, the maximum height Sz and the like used in the conventional evaluation are parameters including the protruding peaks. Therefore, when trying to improve the circuit adhesion based on such a parameter, the roughening height tends to be large, and therefore the etching property tends to be lowered. On the other hand, the level difference Sk of the core portion is a parameter that does not include the protruding peak portion as described above. Therefore, by using the level difference Sk of the core portion as an evaluation index, it is possible to accurately obtain the optimum surface shape for improving the adhesion with the resin, and as a result, the increase in the roughening height can be suppressed. Is also possible.
 粗化処理銅箔は、粗化処理面における界面の展開面積比Sdr(%)に対するコア部のレベル差Sk(μm)の比であるSk/Sdrが0.038以上0.050以下であるのが好ましく、より好ましくは0.045以上0.050以下である。このような範囲内であると、粗化処理面の凹凸形状は、高さのムラがより低減されたものとなり、粗化処理面の凹凸形状が大きい(すなわち表面積が大きい)のみならず、コア部の高さも十分に確保することができる。すなわち、コア部のレベル差Skは突出山部を除外して求められるパラメータである一方で、展開面積比Sdrは突出山部を含んで求められるパラメータである。そのため、突出山部の数が増減した場合、コア部のレベル差Skの値は一定であるものの、展開面積比Sdrの値は変化することとなる。そのため、コア部のレベル差Skと、展開面積比Sdrとの比率を上記範囲に制御することで、粗化処理面について、突出山部の発生が抑制されたものとすることができ、これにより、粗化処理面を構成する各粗化粒子が平均的に樹脂に食い込みやすいものとすることができる。その結果、優れたエッチング性及び高いシェア強度をよりバランス良く実現することができる。 The roughened copper foil has a Sk / Sdr of 0.038 or more and 0.050 or less, which is the ratio of the level difference Sk (μm) of the core portion to the developed area ratio Sdr (%) of the interface on the roughened surface. Is preferable, and more preferably 0.045 or more and 0.050 or less. Within such a range, the uneven shape of the roughened surface has less unevenness in height, and not only the uneven shape of the roughened surface is large (that is, the surface area is large), but also the core. The height of the part can also be sufficiently secured. That is, the level difference Sk of the core portion is a parameter obtained by excluding the protruding peak portion, while the developed area ratio Sdr is a parameter obtained including the protruding peak portion. Therefore, when the number of protruding peaks increases or decreases, the value of the level difference Sk of the core portion is constant, but the value of the developed area ratio Sdr changes. Therefore, by controlling the ratio of the level difference Sk of the core portion and the developed area ratio Sdr within the above range, it is possible to suppress the occurrence of protruding peaks on the roughened surface. It is possible to make it easy for each roughened particle constituting the roughened surface to bite into the resin on average. As a result, excellent etching properties and high share strength can be realized in a more balanced manner.
 粗化処理銅箔は、粗化処理面における最大高さSz(μm)及びコア部のレベル差Sk(μm)の積であるSz×Skが0.25以上0.50以下であるのが好ましく、より好ましくは0.36以上0.50以下である。このような範囲内であると、粗化処理面の凹凸形状が、突出山部の発生がより抑制されたものとなり、優れたエッチング性及び高いシェア強度をバランス良く実現するのにより適したものとなる。また、よりエッチング性に優れた微細な表面を実現する観点から、粗化処理銅箔の粗化処理面は、最大高さSzが1.6μm以下であるのが好ましく、より好ましくは1.0μm以上1.4μm以下、さらに好ましくは1.0μm以上1.2μm以下である。 The roughened copper foil preferably has Sz × Sk, which is the product of the maximum height Sz (μm) on the roughened surface and the level difference Sk (μm) of the core portion, of 0.25 or more and 0.50 or less. , More preferably 0.36 or more and 0.50 or less. Within such a range, the uneven shape of the roughened surface is more suitable to suppress the occurrence of protruding peaks, and to realize excellent etching property and high share strength in a well-balanced manner. Become. Further, from the viewpoint of realizing a fine surface having more excellent etching property, the roughened surface of the roughened copper foil preferably has a maximum height Sz of 1.6 μm or less, more preferably 1.0 μm. It is 1.4 μm or more, more preferably 1.0 μm or more and 1.2 μm or less.
 粗化処理銅箔は、粗化処理面における山の頂点密度Spdが2.00×10mm-2以上3.00×10mm-2以下であるのが好ましく、より好ましくは2.20×10mm-2以上3.00×10mm-2以下、さらに好ましくは2.75×10mm-2以上2.85×10mm-2以下である。こうすることで、銅張積層板ないしプリント配線板製造時に積層される樹脂との十分な接着点を確保することができ、シェア強度という観点での回路密着性をより効果的に向上することができる。 The roughened copper foil preferably has a peak density Spd of 2.00 × 10 4 mm -2 or more and 3.00 × 10 4 mm -2 or less on the roughened surface, more preferably 2.20. It is × 10 4 mm −2 or more and 3.00 × 10 4 mm − 2 or less, more preferably 2.75 × 10 4 mm − 2 or more and 2.85 × 10 4 mm − 2 or less. By doing so, it is possible to secure a sufficient adhesion point with the resin laminated at the time of manufacturing the copper-clad laminate or the printed wiring board, and it is possible to more effectively improve the circuit adhesion from the viewpoint of the share strength. can.
 粗化処理銅箔は、粗化処理面における表面性状のアスペクト比Strが0.2以上0.5以下であるのが好ましく、より好ましくは0.24以上0.50以下、さらに好ましくは0.45以上0.50以下である。このような範囲内であると、粗化処理面に樹脂との密着に好都合なうねりが存在することになる。その結果、エッチング性に優れた微細な表面でありながらも、シェア強度という観点での回路密着性をより効果的に向上することができる。 The roughened copper foil preferably has an aspect ratio Str of the surface texture on the roughened surface of 0.2 or more and 0.5 or less, more preferably 0.24 or more and 0.50 or less, and further preferably 0. It is 45 or more and 0.50 or less. Within such a range, there will be undulations on the roughened surface that are convenient for adhesion to the resin. As a result, it is possible to more effectively improve the circuit adhesion from the viewpoint of share strength, even though the surface is fine with excellent etching properties.
 粗化処理銅箔の厚さは特に限定されないが、0.1μm以上35μm以下が好ましく、より好ましくは0.5μm以上5.0μm以下、さらに好ましくは1.0μm以上3.0μm以下である。なお、粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面に粗化処理を行ったものであってもよい。ここで、粗化処理銅箔の厚さは、粗化処理面の表面に形成された粗化粒子の高さを含まない厚さ(粗化処理銅箔を構成する銅箔自体の厚さ)である。上記範囲の厚さを有する銅箔のことを、極薄銅箔ということがある。 The thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 μm or more and 35 μm or less, more preferably 0.5 μm or more and 5.0 μm or less, and further preferably 1.0 μm or more and 3.0 μm or less. The roughened copper foil is not limited to the one obtained by roughening the surface of a normal copper foil, and may be a roughened copper foil surface of a copper foil with a carrier. Here, the thickness of the roughened copper foil does not include the height of the roughened particles formed on the surface of the roughened surface (the thickness of the copper foil itself constituting the roughened copper foil). Is. A copper foil having a thickness in the above range may be referred to as an ultrathin copper foil.
 粗化処理銅箔は、少なくとも一方の側に粗化処理面を有する。すなわち、粗化処理銅箔は両側に粗化処理面を有するものであってもよいし、一方の側にのみ粗化処理面を有するものであってもよい。粗化処理面は、典型的には複数の粗化粒子(コブ)を備えてなり、これら複数の粗化粒子はそれぞれ銅粒子からなるのが好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。 The roughened copper foil has a roughened surface on at least one side. That is, the roughened copper foil may have roughened surfaces on both sides, or may have roughened surfaces on only one side. The roughened surface is typically provided with a plurality of roughened particles (humps), and it is preferable that each of the plurality of roughened particles is made of copper particles. The copper particles may be made of metallic copper or may be made of a copper alloy.
 粗化処理面を形成するための粗化処理は、銅箔の上に銅又は銅合金で粗化粒子を形成することにより好ましく行うことができる。例えば、銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とを含む少なくとも2種類のめっき工程を経るめっき手法に従って粗化処理が行われるのが好ましい。この場合、焼けめっき工程は、銅濃度5g/L以上20g/L以下及び硫酸濃度180g/L以上240g/L以下を含む硫酸銅溶液にカルボキシベンゾトリアゾール(CBTA)を20ppm以上29ppm以下の濃度となるように添加し、15℃以上35℃以下の温度で、14A/dm以上24A/dm以下にて電着を行うのが好ましい。また、被せめっき工程は、銅濃度50g/L以上100g/L以下及び硫酸濃度200g/L以上250g/L以下を含む硫酸銅溶液中、40℃以上60℃以下の温度で、2A/dm以上4A/dm以下にて電着を行うのが好ましい。とりわけ、焼けめっき工程において、上記濃度範囲内のカルボキシベンゾトリアゾールをめっき液に添加することで、純銅に近いエッチング性を保持しながら、粗化処理面について、突出山部の発生が抑制され、かつ、粗化処理面を構成する各粗化粒子が平均的に樹脂に食い込む構成とすることができ、上述した表面パラメータを満足するのに好都合なコブを処理表面に形成しやすくなる。さらに、焼けめっき工程及び被せめっき工程において、従来の手法よりも電流密度を下げて電着を行うことで、上述した表面パラメータを満足するために好都合なコブを処理表面により一層形成しやすくなる。 The roughening treatment for forming the roughened surface can be preferably performed by forming roughened particles with copper or a copper alloy on the copper foil. For example, roughening treatment is performed according to a plating method that goes through at least two types of plating steps, including a burn-plating step of depositing and adhering fine copper particles on a copper foil and a covering plating step for preventing the fine copper grains from falling off. Is preferably performed. In this case, in the burn-plating step, carboxybenzotriazole (CBTA) is added to a copper sulfate solution containing a copper concentration of 5 g / L or more and 20 g / L or less and a sulfuric acid concentration of 180 g / L or more and 240 g / L or less to a concentration of 20 ppm or more and 29 ppm or less. It was added as a temperature of 15 ℃ above 35 ° C. or less, preferably performed 14A / dm 2 or more 24A / dm 2 hands electrodeposition below. The cover plating step is performed in a copper sulfate solution containing a copper concentration of 50 g / L or more and 100 g / L or less and a sulfuric acid concentration of 200 g / L or more and 250 g / L or less at a temperature of 40 ° C. or more and 60 ° C. or less at 2 A / dm 2 or more. It is preferable to carry out electrodeposition at 4 A / dm 2 or less. In particular, in the burn-plating step, by adding carboxybenzotriazole within the above concentration range to the plating solution, the occurrence of protruding peaks is suppressed on the roughened surface while maintaining the etching property close to that of pure copper. The roughened particles constituting the roughened surface can be configured to bite into the resin on average, and it becomes easy to form bumps on the treated surface that are convenient for satisfying the above-mentioned surface parameters. Further, in the burn-plating step and the cover-plating step, by performing electrodeposition with a lower current density than in the conventional method, it becomes easier to form more convenient bumps on the treated surface in order to satisfy the above-mentioned surface parameters.
 所望により、粗化処理銅箔は防錆処理が施され、防錆処理層が形成されたものであってもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2以上10以下が好ましく、より好ましくは2以上7以下、さらに好ましくは2.7以上4以下である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。 If desired, the roughened copper foil may be subjected to a rust preventive treatment to form a rust preventive treatment layer. The rust preventive treatment preferably includes a plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co. The Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and further preferably 2.7 or more and 4 or less in terms of mass ratio. Further, the rust preventive treatment preferably further includes a chromate treatment, and it is more preferable that the chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc. By doing so, the rust prevention property can be further improved. A particularly preferable rust preventive treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
 所望により、粗化処理銅箔は表面にシランカップリング剤処理が施され、シランカップリング剤層が形成されたものであってもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。 If desired, the surface of the roughened copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. As a result, moisture resistance, chemical resistance, adhesion to an adhesive or the like can be improved. The silane coupling agent layer can be formed by appropriately diluting the silane coupling agent, applying it, and drying it. Examples of silane coupling agents include epoxy functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N- (2- (2-). Aminoethyl) -3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc. Amino-functional silane coupling agent, or mercapto-functional silane coupling agent such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agent such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or 3-methacry. Examples thereof include acrylic functional silane coupling agents such as loxypropyltrimethoxysilane, imidazole functional silane coupling agents such as imidazole silane, and triazine functional silane coupling agents such as triazinesilane.
 上述した理由から、粗化処理銅箔は、粗化処理面に防錆処理層及び/又はシランカップリング剤層をさらに備えることが好ましく、より好ましくは防錆処理層及びシランカップリング剤層の両方を備える。防錆処理層及びシランカップリング剤層は、粗化処理銅箔の粗化処理面側のみならず、粗化処理面が形成されていない側に形成されてもよい。 For the reasons described above, the roughened copper foil preferably further includes a rust preventive treatment layer and / or a silane coupling agent layer on the roughened surface, and more preferably the rust preventive treatment layer and the silane coupling agent layer. It has both. The rust preventive treatment layer and the silane coupling agent layer may be formed not only on the roughened surface side of the roughened copper foil but also on the side where the roughened surface is not formed.
 キャリア付銅箔
 上述したように、本発明の粗化処理銅箔はキャリア付銅箔の形態で提供されてもよい。すなわち、本発明の好ましい態様によれば、キャリアと、キャリア上に設けられた剥離層と、剥離層上に粗化処理面を外側にして設けられた上記粗化処理銅箔とを備えた、キャリア付銅箔が提供される。もっとも、キャリア付銅箔は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。
Copper Foil with Carrier As described above, the roughened copper foil of the present invention may be provided in the form of a copper foil with a carrier. That is, according to a preferred embodiment of the present invention, the carrier, the release layer provided on the carrier, and the roughening-treated copper foil provided on the release layer with the roughening-treated surface facing outward are provided. Copper foil with a carrier is provided. However, as the copper foil with a carrier, a known layer structure can be adopted except that the roughened copper foil of the present invention is used.
 キャリアは、粗化処理銅箔を支持してそのハンドリング性を向上させるための支持体であり、典型的なキャリアは金属層を含む。このようなキャリアの例としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス等が挙げられ、好ましくは、銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよいが、好ましくは電解銅箔である。キャリアの厚さは典型的には250μm以下であり、好ましくは9μm以上200μm以下である。 The carrier is a support for supporting the roughened copper foil and improving its handleability, and a typical carrier includes a metal layer. Examples of such a carrier include aluminum foil, copper foil, stainless steel (SUS) foil, a resin film or glass whose surface is metal-coated with copper or the like, and copper foil is preferable. The copper foil may be either a rolled copper foil or an electrolytic copper foil, but is preferably an electrolytic copper foil. The thickness of the carrier is typically 250 μm or less, preferably 9 μm or more and 200 μm or less.
 キャリアの剥離層側の面は平滑であるのが好ましい。すなわち、キャリア付銅箔の製造プロセスにおいて、キャリアの剥離層側の面には(粗化処理を行う前の)極薄銅箔が形成されることになる。本発明の粗化処理銅箔をキャリア付銅箔の形態で用いる場合、粗化処理銅箔は、このような極薄銅箔に対して粗化処理を施すことにより得ることができる。したがって、キャリアの剥離層側の面を平滑にしておくことで、極薄銅箔の外側の面も平滑にすることができ、この極薄銅箔の平滑面に粗化処理を施すことで、上記所定範囲内の界面の展開面積比Sdr及びコア部のレベル差Skを有する粗化処理面を実現しやすくなる。キャリアの剥離層側の面を平滑にするには、例えばキャリアを電解製箔する際に用いる陰極の表面を所定の番手のバフで研磨して表面粗さを調整することにより行うことができる。すなわち、こうして調整された陰極の表面プロファイルがキャリアの電極面に転写され、このキャリアの電極面上に剥離層を介して極薄銅箔を形成することで、極薄銅箔の外側の面に上述した粗化処理面を実現しやすい平滑な表面状態を付与することができる。好ましいバフの番手は#2000以上#3000以下であり、より好ましくは#2000以上#2500以下である。 It is preferable that the surface of the carrier on the release layer side is smooth. That is, in the process of manufacturing a copper foil with a carrier, an ultrathin copper foil (before roughening treatment) is formed on the surface of the carrier on the release layer side. When the roughened copper foil of the present invention is used in the form of a copper foil with a carrier, the roughened copper foil can be obtained by subjecting such an ultrathin copper foil to a roughening treatment. Therefore, by smoothing the surface of the carrier on the release layer side, the outer surface of the ultrathin copper foil can also be smoothed, and by applying a roughening treatment to the smooth surface of the ultrathin copper foil, the surface can be roughened. It becomes easy to realize a roughened surface having a developed area ratio Sdr of the interface within the predetermined range and a level difference Sk of the core portion. The surface of the carrier on the release layer side can be smoothed, for example, by polishing the surface of the cathode used for electrolytic foil forming of the carrier with a buff having a predetermined count to adjust the surface roughness. That is, the surface profile of the cathode thus adjusted is transferred to the electrode surface of the carrier, and the ultrathin copper foil is formed on the electrode surface of the carrier via the release layer, whereby the outer surface of the ultrathin copper foil is formed. It is possible to impart a smooth surface state that facilitates the realization of the roughened surface described above. The preferred buff count is # 2000 or more and # 3000 or less, and more preferably # 2000 or more and # 2500 or less.
 剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定させること等により行えばよい。キャリアを剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。 The peeling layer is a layer having a function of weakening the peeling strength of the carrier, ensuring the stability of the strength, and further suppressing the mutual diffusion that may occur between the carrier and the copper foil during press molding at a high temperature. .. The release layer is generally formed on one surface of the carrier, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of the organic component used in the organic exfoliation layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Examples of the nitrogen-containing organic compound include a triazole compound and an imidazole compound, and among them, the triazole compound is preferable because the peelability is easily stable. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-. Examples thereof include 1H-1,2,4-triazole and the like. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiothianulic acid, 2-benzimidazole thiol and the like. Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids and the like. On the other hand, examples of the inorganic component used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component to the surface of the carrier. When the carrier is brought into contact with the release layer component-containing solution, this contact may be performed by immersion in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. In addition, a method of forming a film of the release layer component by a vapor phase method such as thin film deposition or sputtering can also be adopted. Further, the release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less.
 所望により、剥離層とキャリア及び/又は粗化処理銅箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリアの表面側及び/又は粗化処理銅箔の表面側に形成することで、高温又は長時間の熱間プレス成形時にキャリアと粗化処理銅箔の間で起こりうる相互拡散を抑制し、キャリアの引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001μm以上3μm以下とするのが好ましい。 If desired, another functional layer may be provided between the release layer and the carrier and / or the roughened copper foil. An example of such another functional layer is an auxiliary metal layer. The auxiliary metal layer is preferably made of nickel and / or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier and / or on the surface side of the roughened copper foil, it may occur between the carrier and the roughened copper foil during hot press molding at a high temperature or for a long time. Mutual diffusion can be suppressed and the stability of the peeling strength of the carrier can be ensured. The thickness of the auxiliary metal layer is preferably 0.001 μm or more and 3 μm or less.
 銅張積層板
 本発明の粗化処理銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えた銅張積層板が提供される。本発明の粗化処理銅箔を用いることで、銅張積層板の加工において、優れたエッチング性と高いシェア強度とを両立することができる。この銅張積層板は、本発明の粗化処理銅箔と、粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介して粗化処理銅箔に設けられていてもよい。
Copper-clad laminate The roughened copper foil of the present invention is preferably used for producing copper-clad laminates for printed wiring boards. That is, according to a preferred embodiment of the present invention, a copper-clad laminate provided with the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both excellent etching properties and high market share strength in the processing of copper-clad laminates. This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil. The roughened copper foil may be provided on one side of the resin layer or may be provided on both sides. The resin layer contains a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper is impregnated with a synthetic resin. Preferred examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin and the like. Further, examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin. Further, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property. The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and further preferably 3 μm or more and 200 μm or less. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the roughened copper foil via a primer resin layer previously applied to the surface of the copper foil.
 プリント配線板
 本発明の粗化処理銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えたプリント配線板が提供される。本発明の粗化処理銅箔を用いることで、プリント配線板の製造において、優れたエッチング性と高いシェア強度とを両立することができる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。銅層は本発明の粗化処理銅箔に由来する層である。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミ・アディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の粗化処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明の粗化処理銅箔はMSAP法に適している。例えば、MSAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。
Printed Wiring Board The roughened copper foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, a printed wiring board provided with the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both excellent etching properties and high market share strength in the production of a printed wiring board. The printed wiring board according to this embodiment includes a layer structure in which a resin layer and a copper layer are laminated. The copper layer is a layer derived from the roughened copper foil of the present invention. The resin layer is as described above for the copper-clad laminate. In any case, the printed wiring board can adopt a known layer structure except that the roughened copper foil of the present invention is used. Specific examples of the printed wiring board include a single-sided or double-sided printed wiring board in which a circuit is formed by adhering the roughened copper foil of the present invention to one or both sides of a prepreg to form a cured laminate, or a multilayer of these. Examples include a multi-layer printed wiring board. Further, as another specific example, a flexible printed wiring board, COF, TAB tape, etc., in which the roughened copper foil of the present invention is formed on a resin film to form a circuit can be mentioned. As yet another specific example, a copper foil with resin (RCC) obtained by applying the above-mentioned resin layer to the roughened copper foil of the present invention was formed, and the resin layer was laminated on the above-mentioned printed circuit board as an insulating adhesive layer. After that, the roughened copper foil is used as the whole or part of the wiring layer, and the build-up wiring board in which the circuit is formed by the modified semi-additive (MSAP) method, the subtractive method, etc., and the roughened copper foil are removed. Examples thereof include a build-up wiring board in which a circuit is formed by a semi-additive method, and a direct build-up on wafer in which a copper foil with a resin is laminated and a circuit is formed alternately on a semiconductor integrated circuit. As a more advanced specific example, an antenna element formed by laminating the above-mentioned copper foil with resin on a base material and forming a circuit, an electronic material for a panel display or a window formed by laminating a pattern on glass or a resin film via an adhesive layer. Examples thereof include electronic materials for glass, electromagnetic wave shield films obtained by applying a conductive adhesive to the roughened copper foil of the present invention. In particular, the roughened copper foil of the present invention is suitable for the MSAP method. For example, when the circuit is formed by the MSAP method, the configuration shown in FIGS. 1 and 2 can be adopted.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described in more detail by the following examples.
 例1~7、9及び10
 粗化処理銅箔を備えたキャリア付銅箔を以下のようにして作製及び評価した。
Examples 1-7, 9 and 10
A copper foil with a carrier provided with a roughened copper foil was prepared and evaluated as follows.
(1)キャリアの準備
 以下に示される組成の銅電解液と、陰極と、陽極としてのDSA(寸法安定性陽極)とを用いて、溶液温度50℃、電流密度70A/dmで電解し、厚さ18μmの電解銅箔をキャリアとして作製した。このとき、陰極として、表面を#2000のバフで研磨して表面粗さを整えた電極を用いた。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:300g/L
‐ 塩素濃度:30mg/L
‐ 膠濃度:5mg/L
(1) Preparation of carrier Using a copper electrolytic solution having the composition shown below, a cathode, and DSA (dimensionally stable anode) as an anode, electrolysis was performed at a solution temperature of 50 ° C. and a current density of 70 A / dm 2 . An electrolytic copper foil having a thickness of 18 μm was produced as a carrier. At this time, as a cathode, an electrode whose surface was polished with a # 2000 buff to adjust the surface roughness was used.
<Composition of copper electrolyte>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 300 g / L
-Chlorine concentration: 30 mg / L
-Glue concentration: 5 mg / L
(2)剥離層の形成
 酸洗処理されたキャリアの電極面を、カルボキシベンゾトリアゾール(CBTA)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/Lを含むCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面にCBTA層を有機剥離層として形成した。
(2) Formation of release layer The electrode surface of the pickled carrier is placed in a CBTA aqueous solution containing a carboxybenzotriazole (CBTA) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L and a copper concentration of 10 g / L at a liquid temperature of 30 ° C. The CBTA component was adsorbed on the electrode surface of the carrier. In this way, the CBTA layer was formed as an organic release layer on the electrode surface of the carrier.
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lを含む溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして、有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of Auxiliary Metal Layer The carrier on which the organic exfoliation layer is formed is immersed in a solution containing nickel sulfate and having a nickel concentration of 20 g / L, so that the liquid temperature is 45 ° C., pH 3 and the current density is 5 A /. Under the condition of dm 2 , an adhering amount of nickel corresponding to a thickness of 0.001 μm was adhered on the organic release layer. In this way, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
(4)極薄銅箔の形成
 補助金属層が形成されたキャリアを、以下に示される組成の銅溶液に浸漬して、溶液温度50℃、電流密度5A/dm以上30A/dm以下で電解し、厚さ1.5μmの極薄銅箔を補助金属層上に形成した。
<溶液の組成>
‐ 銅濃度:60g/L
‐ 硫酸濃度:200g/L
(4) Formation of ultra-thin copper foil The carrier on which the auxiliary metal layer is formed is immersed in a copper solution having the composition shown below, at a solution temperature of 50 ° C. and a current density of 5 A / dm 2 or more and 30 A / dm 2 or less. Electrolysis was performed to form an ultrathin copper foil having a thickness of 1.5 μm on the auxiliary metal layer.
<Solution composition>
-Copper concentration: 60 g / L
-Sulfuric acid concentration: 200 g / L
(5)粗化処理
 こうして形成された極薄銅箔の表面に粗化処理を行うことで粗化処理銅箔を形成し、これによりキャリア付銅箔を得た。この粗化処理は、極薄銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とから構成される。焼けめっき工程では、銅濃度10g/L及び硫酸濃度200g/Lを含む液温25℃の酸性硫酸銅溶液に表1に示される濃度のカルボキシベンゾトリアゾール(CBTA)を添加し、表1に示される電流密度で粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度240g/Lを含む酸性硫酸銅溶液を用いて、液温52℃及び表1に示される電流密度の平滑めっき条件で電着を行った。このとき、焼けめっき工程におけるCBTA濃度及び電流密度、並びに被せめっき工程における電流密度を表1に示されるように適宜変えることで、粗化処理表面の特徴が異なる様々なサンプルを作製した。
(5) Roughing Treatment The surface of the ultrathin copper foil thus formed was roughened to form a roughened copper foil, whereby a copper foil with a carrier was obtained. This roughening treatment comprises a burn-plating step of depositing and adhering fine copper particles on an ultrathin copper foil, and a covering plating step for preventing the fine copper grains from falling off. In the burn-plating step, carboxybenzotriazole (CBTA) having a concentration shown in Table 1 is added to an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 200 g / L at a liquid temperature of 25 ° C. and shown in Table 1. Roughening treatment was performed at the current density. In the subsequent cover plating step, electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 240 g / L under smooth plating conditions of a liquid temperature of 52 ° C. and a current density shown in Table 1. .. At this time, various samples having different roughening-treated surface characteristics were prepared by appropriately changing the CBTA concentration and current density in the burn-plating step and the current density in the cover plating step as shown in Table 1.
(6)防錆処理
 得られたキャリア付銅箔の粗化処理表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度1g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度80g/Lを含む溶液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/Lを含む水溶液を用い、pH12、電流密度1A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(6) Rust prevention treatment The surface of the obtained roughened copper foil with a carrier was subjected to a rust prevention treatment consisting of a zinc-nickel alloy plating treatment and a chromate treatment. First, using a solution containing a zinc concentration of 1 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 80 g / L, the roughening treatment layer and carriers are used under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2. The surface of the surface was plated with a zinc-nickel alloy. Next, using an aqueous solution containing 1 g / L of chromic acid, the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment under the conditions of pH 12 and a current density of 1 A / dm 2.
(7)シランカップリング剤処理
 市販のシランカップリング剤を含む水溶液をキャリア付銅箔の粗化処理銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。
(7) Silane Coupling Agent Treatment A silane coupling agent treatment is performed by adsorbing a commercially available aqueous solution containing a silane coupling agent on the surface of the copper foil with a carrier to roughen the copper foil side and evaporating the water content with an electric heater. Was done. At this time, the silane coupling agent treatment was not performed on the carrier side.
(8)評価
 こうして得られたキャリア付銅箔について、各種特性の評価を以下のとおり行った。
(8) Evaluation Various characteristics of the copper foil with a carrier thus obtained were evaluated as follows.
(8a)粗化処理面の表面性状パラメータ
 レーザー顕微鏡(オリンパス株式会社製、OLS5000)を用いた表面粗さ解析により、粗化処理銅箔の粗化処理面の測定をISO25178に準拠して行った。具体的には、粗化処理銅箔の粗化処理面における面積16384μmの領域の表面プロファイルを、上記レーザー顕微鏡にて開口数(N.A.)0.95の100倍レンズで測定した。得られた粗化処理面の表面プロファイルに対してノイズ除去及び1次線形面傾き補正を行った後、表面性状解析により最大高さSz、界面の展開面積比Sdr、表面性状のアスペクト比Str、コア部のレベル差Sk及び山の頂点密度Spdの測定を実施した。このとき、Sz、Sdr、Str及びSkの測定は、Sフィルターによるカットオフ波長を0.55μmとし、Lフィルターによるカットオフ波長を10μmとして計測した。一方、Spdの測定は、Sフィルターによるカットオフ波長を3μmとし、Lフィルターによるカットオフ波長を10μmとして計測した。結果は表1に示されるとおりであった。
(8a) Surface Texture Parameter of Roughened Surface By surface roughness analysis using a laser microscope (OLS5000, manufactured by Olympus Corporation), the roughened surface of the roughened copper foil was measured in accordance with ISO25178. .. Specifically, the surface profile of a region having an area of 16384 μm 2 on the roughened surface of the roughened copper foil was measured with the above laser microscope with a 100x lens having a numerical aperture (NA) of 0.95. After removing noise and correcting the inclination of the primary linear surface on the surface profile of the obtained roughened surface, the maximum height Sz, the developed area ratio Sdr of the interface, and the aspect ratio Str of the surface texture were analyzed by surface texture analysis. The level difference Sk of the core part and the peak density Spd of the peak were measured. At this time, the Sz, Sdr, Str and Sk were measured with the cutoff wavelength of the S filter set to 0.55 μm and the cutoff wavelength of the L filter set to 10 μm. On the other hand, in the measurement of Spd, the cutoff wavelength by the S filter was set to 3 μm, and the cutoff wavelength by the L filter was set to 10 μm. The results were as shown in Table 1.
(8b)回路形成性(エッチング性評価)
 得られたキャリア付銅箔を用いて評価用積層体を作製した。すなわち、図5に示されるように、絶縁樹脂基板111の表面に、プリプレグ112(三菱ガス化学株式会社製、GHPL-830NSF、厚さ0.1mm)を介してキャリア付銅箔の粗化処理銅箔110を積層し、圧力4.0MPa、温度220℃で90分間熱圧着した後、キャリア(図示せず)を剥離し、評価用積層体114としての銅張積層板を得た。図5に示す例においては、粗化処理銅箔110は、表面に粗化粒子110aを備える。なお、エッチング性評価は極薄銅箔の厚さによって必要なエッチング量が変動する。このため、図5に示されるように、評価用積層体114における粗化処理銅箔110の厚さが1.5μm相当(粗化粒子110aの厚さを含まない)となるように、評価用積層体114に対して必要に応じてハーフエッチングによる厚さの低減ないし硫酸銅メッキによる厚さの増大を行った。この粗化処理銅箔110の厚さを1.5μmに調整した評価用積層体114に対して硫酸-過酸化水素系エッチング液で0.1μmずつエッチングを行い、表面の銅(粗化粒子110aを含む)が完全になくなるまでの量(深さ)を計測した。計測は光学顕微鏡(500倍)で確認することにより行った。より詳しくは、0.1μmエッチングする毎に光学顕微鏡で銅の有無を確認する作業を繰り返し、(エッチングの回数)×0.1μmにより得られた値(μm)をエッチング性の指標として用いた。例えば、エッチング性が2.5μmということは、0.1μmのエッチングを25回行ったところで、光学顕微鏡で残存銅が検出されなくなったことを意味する(すなわち0.1μm×25回=2.5μm)。すなわち、この値が小さいほど少ない回数のエッチングで表面の銅を除去できることを意味する。すなわちこの値が小さいほどエッチング性が良好であることを意味する。計測されたエッチング量を以下の基準で格付け評価し、評価A~Cのいずれかである場合に合格と判定した。結果は表1に示されるとおりであった。
<エッチング性評価基準>
‐評価A:必要なエッチング量が2.3μm以下
‐評価B:必要なエッチング量が2.3μmを超え、2.5μm以下
‐評価C:必要なエッチング量が2.5μmを超え、2.7μm以下
‐評価D:必要なエッチング量が2.7μmを超える
(8b) Circuit formability (evaluation of etchability)
An evaluation laminate was prepared using the obtained copper foil with a carrier. That is, as shown in FIG. 5, roughened copper foil with a carrier is provided on the surface of the insulating resin substrate 111 via a prepreg 112 (GHPL-830NSF, thickness 0.1 mm, manufactured by Mitsubishi Gas Chemical Company, Inc.). The foil 110 was laminated and thermocompression bonded at a pressure of 4.0 MPa and a temperature of 220 ° C. for 90 minutes, and then the carrier (not shown) was peeled off to obtain a copper-clad laminate as the evaluation laminate 114. In the example shown in FIG. 5, the roughened copper foil 110 includes roughened particles 110a on its surface. In the etching property evaluation, the required etching amount varies depending on the thickness of the ultrathin copper foil. Therefore, as shown in FIG. 5, the thickness of the roughened copper foil 110 in the evaluation laminate 114 is equivalent to 1.5 μm (excluding the thickness of the roughened particles 110a) for evaluation. The thickness of the laminate 114 was reduced by half-etching or increased by copper sulfate plating, if necessary. The evaluation laminate 114 whose thickness of the roughened copper foil 110 was adjusted to 1.5 μm was etched with a sulfuric acid-hydrogen peroxide-based etching solution by 0.1 μm, and the surface copper (roughened particles 110a) was etched. The amount (depth) until completely disappeared (including) was measured. The measurement was performed by confirming with an optical microscope (500 times). More specifically, the work of confirming the presence or absence of copper with an optical microscope was repeated every time 0.1 μm was etched, and the value (μm) obtained by (number of etchings) × 0.1 μm was used as an index of etchability. For example, an etching property of 2.5 μm means that after 25 times of etching of 0.1 μm, residual copper is no longer detected by the optical microscope (that is, 0.1 μm × 25 times = 2.5 μm). ). That is, the smaller this value is, the smaller the number of times of etching is required to remove the copper on the surface. That is, the smaller this value is, the better the etching property is. The measured etching amount was rated and evaluated according to the following criteria, and if it was evaluated as any of A to C, it was judged to be acceptable. The results were as shown in Table 1.
<Etching property evaluation criteria>
-Evaluation A: Required etching amount is 2.3 μm or less-Evaluation B: Required etching amount exceeds 2.3 μm and 2.5 μm or less-Evaluation C: Required etching amount exceeds 2.5 μm and 2.7 μm Below-Evaluation D: Required etching amount exceeds 2.7 μm
(8c)めっき回路密着性(シェア強度)
 上述の評価用積層体にドライフィルムを張り合わせ、露光及び現像を行った。現像されたドライフィルムでマスキングされた積層体にパターンめっきで厚さ14μmの銅層を析出させた後、ドライフィルムを剥離した。硫酸-過酸化水素系エッチング液で表出している銅部分をエッチングし、高さ15μm、幅10μm、長さ200μmのシェア強度測定用回路サンプル(図6に示す回路136が形成された積層体134)を作製した。接合強度試験機(Nordson DAGE社製、4000Plus Bondtester)を用い、シェア強度測定用回路サンプルの横から回路136を押しずらした際のシェア強度を測定した。すなわち、図6に示されるように、回路136が形成された積層体134を可動ステージ132上に載置し、ステージ132ごと図中矢印方向に移動させて、予め固定されている検出器138に回路136を押し当てることで、回路136の側面に対して横方向の力を与えて回路136を横にずらし、その時の力(gf)を検出器138にて測定してシェア強度として採用した。このとき、テスト種類は破壊試験とし、テスト高さ5μm、降下スピード0.050mm/s、テストスピード200μm/s、ツール移動量0.05mm、破壊認識点10%の条件で測定を行った。得られたシェア強度を以下の基準で格付け評価し、評価A~Cのいずれかである場合に合格と判定した。結果は表1に示されるとおりであった。
<シェア強度評価基準>
‐評価A:シェア強度が13.50gf以上
‐評価B:シェア強度が12.50gf以上13.50gf未満
‐評価C:シェア強度が12.00gf以上12.50gf未満
‐評価D:シェア強度が12.00gf未満
(8c) Plating circuit adhesion (share strength)
A dry film was attached to the above-mentioned evaluation laminate, and exposure and development were performed. A copper layer having a thickness of 14 μm was deposited on the laminate masked with the developed dry film by pattern plating, and then the dry film was peeled off. A circuit sample for measuring shear strength having a height of 15 μm, a width of 10 μm, and a length of 200 μm by etching the copper portion exposed with a sulfuric acid-hydrogen peroxide-based etching solution (laminate 134 on which the circuit 136 shown in FIG. 6 is formed). ) Was prepared. Using a junction strength tester (4000 Plus Bondester manufactured by Nordson DAGE), the shear strength when the circuit 136 was pushed from the side of the circuit sample for shear strength measurement was measured. That is, as shown in FIG. 6, the laminated body 134 on which the circuit 136 is formed is placed on the movable stage 132, and the stage 132 is moved in the direction of the arrow in the drawing to the detector 138 which is fixed in advance. By pressing the circuit 136, a lateral force was applied to the side surface of the circuit 136 to shift the circuit 136 laterally, and the force (gf) at that time was measured by the detector 138 and adopted as the share strength. At this time, the test type was a fracture test, and the measurement was performed under the conditions of a test height of 5 μm, a descent speed of 0.050 mm / s, a test speed of 200 μm / s, a tool movement amount of 0.05 mm, and a fracture recognition point of 10%. The obtained share strength was rated and evaluated according to the following criteria, and if it was evaluated as any of A to C, it was judged to be acceptable. The results were as shown in Table 1.
<Share strength evaluation criteria>
-Evaluation A: Share strength is 13.50 gf or more-Evaluation B: Share strength is 12.50 gf or more and less than 13.50 gf-Evaluation C: Share strength is 12.00 gf or more and less than 12.50 gf-Evaluation D: Share strength is 12. Less than 00gf
 例8(比較)
 下記a)~c)以外は例1と同様にしてキャリア付銅箔の作製及び評価を行った。結果は表1に示されるとおりであった。
a)キャリアの準備を以下に示される手順で行ったこと。
b)キャリアの電極面に代えて、キャリアの析出面に剥離層、補助金属層及び極薄銅箔をこの順に形成したこと。
c)焼けめっき工程及び被せめっき工程に代えて、以下に示される黒色めっき工程により極薄銅箔の粗化処理を行ったこと。
Example 8 (comparison)
Copper foils with carriers were prepared and evaluated in the same manner as in Example 1 except for the following a) to c). The results were as shown in Table 1.
a) Career preparation was performed according to the procedure shown below.
b) Instead of the electrode surface of the carrier, a release layer, an auxiliary metal layer and an ultrathin copper foil were formed on the precipitation surface of the carrier in this order.
c) Instead of the burnt plating step and the cover plating step, the ultrathin copper foil was roughened by the black plating step shown below.
(キャリアの準備)
 銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極に表面粗さRaが0.20μmのチタン製の電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ12μmの電解銅箔をキャリアとして得た。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:140g/L
‐ ビス(3-スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
(Career preparation)
A sulfuric acid acidic copper sulfate solution having the composition shown below was used as the copper electrolytic solution, a titanium electrode having a surface roughness Ra of 0.20 μm was used as the cathode, and DSA (dimensional stability anode) was used as the anode. Electrolysis was performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 , and an electrolytic copper foil having a thickness of 12 μm was obtained as a carrier.
<Composition of sulfuric acid acidic copper sulfate solution>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 140 g / L
-Bis (3-sulfopropyl) disulfide concentration: 30 mg / L
-Diallyldimethylammonium chloride polymer concentration: 50 mg / L
-Chlorine concentration: 40 mg / L
(黒色めっき工程)
 極薄銅箔の表面に対して、以下に示される組成の黒色粗化用銅電解溶液を用い、溶液温度30℃、電流密度50A/dm、時間4secの条件で電解して、黒色粗化を行った。
<黒色粗化用銅電解溶液の組成>
‐ 銅濃度:13g/L
‐ 硫酸濃度:70g/L
‐ 塩素濃度:35mg/L
‐ ポリアクリル酸ナトリウム濃度:400ppm
(Black plating process)
The surface of the ultrathin copper foil is electrolyzed using a copper electrolytic solution for black roughening having the composition shown below under the conditions of a solution temperature of 30 ° C., a current density of 50 A / dm 2 , and a time of 4 sec to roughen the black. Was done.
<Composition of copper electrolytic solution for black roughening>
-Copper concentration: 13 g / L
-Sulfuric acid concentration: 70 g / L
-Chlorine concentration: 35 mg / L
-Sodium polyacrylate concentration: 400ppm

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

Claims (11)

  1.  少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
     前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定される界面の展開面積比Sdrが3.50%以上12.00%以下であり、ISO25178に準拠してSフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定されるコア部のレベル差Skが0.15μm以上0.35μm以下である、粗化処理銅箔。
    A roughened copper foil having a roughened surface on at least one side.
    The roughened surface has an interface development area ratio Sdr of 3.50% or more and 12.00 measured under the conditions of a cutoff wavelength of 0.55 μm by the S filter and a cutoff wavelength of 10 μm by the L filter in accordance with ISO25178. % Or less, and the level difference Sk of the core portion measured under the conditions of a cutoff wavelength of 0.55 μm by the S filter and a cutoff wavelength of 10 μm by the L filter in accordance with ISO25178 is 0.15 μm or more and 0.35 μm or less. , Roughened copper foil.
  2.  前記界面の展開面積比Sdr(%)に対する前記コア部のレベル差Sk(μm)の比であるSk/Sdrが0.038以上0.050以下である、請求項1に記載の粗化処理銅箔。 The roughened copper according to claim 1, wherein Sk / Sdr, which is the ratio of the level difference Sk (μm) of the core portion to the developed area ratio Sdr (%) of the interface, is 0.038 or more and 0.050 or less. Foil.
  3.  前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定される最大高さSz(μm)及び前記コア部のレベル差Sk(μm)の積であるSz×Skが0.25以上0.50以下である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has a maximum height Sz (μm) measured under the conditions of a cutoff wavelength of 0.55 μm by an S filter and a cutoff wavelength of 10 μm by an L filter in accordance with ISO25178, and a level difference Sk of the core portion. The roughened copper foil according to claim 1 or 2, wherein Sz × Sk, which is the product of (μm), is 0.25 or more and 0.50 or less.
  4.  前記界面の展開面積比Sdrが4.50%以上8.50%以下である、請求項1~3のいずれか一項に記載の粗化処理銅箔。 The roughened copper foil according to any one of claims 1 to 3, wherein the developed area ratio Sdr of the interface is 4.50% or more and 8.50% or less.
  5.  前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長3.0μm及びLフィルターによるカットオフ波長10μmの条件で測定される山の頂点密度Spdが2.00×10mm-2以上3.00×10mm-2以下である、請求項1~4のいずれか一項に記載の粗化処理銅箔。 The roughened surface has a peak density Spd of 2.00 × 10 4 mm- 2 measured under the conditions of a cutoff wavelength of 3.0 μm by the S filter and a cutoff wavelength of 10 μm by the L filter in accordance with ISO25178. The roughened copper foil according to any one of claims 1 to 4, which is 3.00 × 10 4 mm- 2 or less.
  6.  前記粗化処理面は、ISO25178に準拠してSフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定される表面性状のアスペクト比Strが0.2以上0.5以下である、請求項1~5のいずれか一項に記載の粗化処理銅箔。 The roughened surface has a surface aspect ratio Str of 0.2 or more and 0.5 or less measured under the conditions of a cutoff wavelength of 0.55 μm by an S filter and a cutoff wavelength of 10 μm by an L filter in accordance with ISO25178. The roughened copper foil according to any one of claims 1 to 5.
  7.  前記粗化処理面は、ISO25178に準拠して測定されるSフィルターによるカットオフ波長0.55μm及びLフィルターによるカットオフ波長10μmの条件で測定される最大高さSzが1.6μm以下である、請求項1~6のいずれか一項に記載の粗化処理銅箔。 The roughened surface has a maximum height Sz of 1.6 μm or less measured under the conditions of a cutoff wavelength of 0.55 μm by the S filter measured in accordance with ISO25178 and a cutoff wavelength of 10 μm by the L filter. The roughened copper foil according to any one of claims 1 to 6.
  8.  前記粗化処理面に防錆処理層及び/又はシランカップリング剤層をさらに備えた、請求項1~7のいずれか一項に記載の粗化処理銅箔。 The roughened copper foil according to any one of claims 1 to 7, further comprising a rust preventive treatment layer and / or a silane coupling agent layer on the roughened surface.
  9.  キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた請求項1~8のいずれか一項に記載の粗化処理銅箔とを備えた、キャリア付銅箔。 The roughened copper foil according to any one of claims 1 to 8, wherein the carrier, the peeling layer provided on the carrier, and the roughened copper foil provided on the peeling layer with the roughened surface facing outward. Copper foil with carrier.
  10.  請求項1~8のいずれか一項に記載の粗化処理銅箔を備えた、銅張積層板。 A copper-clad laminate provided with the roughened copper foil according to any one of claims 1 to 8.
  11.  請求項1~8のいずれか一項に記載の粗化処理銅箔を備えた、プリント配線板。

     
    A printed wiring board provided with the roughened copper foil according to any one of claims 1 to 8.

PCT/JP2021/001902 2020-02-04 2021-01-20 Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board WO2021157362A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180012213.4A CN115038819A (en) 2020-02-04 2021-01-20 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
JP2021575705A JP7259093B2 (en) 2020-02-04 2021-01-20 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
KR1020227022468A KR20220106200A (en) 2020-02-04 2021-01-20 Roughening process copper foil, copper foil provided with a carrier, copper clad laminated board, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020016980 2020-02-04
JP2020-016980 2020-02-04

Publications (1)

Publication Number Publication Date
WO2021157362A1 true WO2021157362A1 (en) 2021-08-12

Family

ID=77199339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001902 WO2021157362A1 (en) 2020-02-04 2021-01-20 Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board

Country Status (5)

Country Link
JP (1) JP7259093B2 (en)
KR (1) KR20220106200A (en)
CN (1) CN115038819A (en)
TW (1) TWI756039B (en)
WO (1) WO2021157362A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153580A1 (en) * 2021-01-15 2022-07-21 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281759A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317574A (en) * 1998-01-19 1999-11-16 Mitsui Mining & Smelting Co Ltd Composite copper foil, manufacture thereof, copper-plated laminate and printed wiring board provided therewith
JP2001089892A (en) * 1999-09-21 2001-04-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, its producing method and copper-covered laminated sheet using the electrolytic copper foil with carrier foil
JP2005048277A (en) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, and manufacturing method therefor
JP2014506202A (en) * 2010-12-14 2014-03-13 スリーエム イノベイティブ プロパティズ カンパニー Image and method for making it
WO2016117587A1 (en) * 2015-01-22 2016-07-28 三井金属鉱業株式会社 Ultrathin copper foil with carrier and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532322B (en) * 2015-04-28 2019-07-16 三井金属矿业株式会社 Roughening treatment copper foil and printed circuit board
CN107614760B (en) * 2015-07-03 2018-07-13 三井金属矿业株式会社 Roughening treatment copper foil, copper-clad laminated board and printed circuit board
JP6200042B2 (en) 2015-08-06 2017-09-20 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
CN109072472B (en) * 2016-04-14 2020-10-16 三井金属矿业株式会社 Surface-treated copper foil, copper foil with carrier, and copper-clad laminate and printed wiring board manufacturing method using same
CN110088361B (en) 2016-12-14 2021-07-16 古河电气工业株式会社 Surface-treated copper foil and copper-clad laminate
CN110546313A (en) * 2017-04-25 2019-12-06 古河电气工业株式会社 Surface treated copper foil
JP7166335B2 (en) * 2018-03-27 2022-11-07 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
MY186454A (en) * 2018-08-10 2021-07-22 Mitsui Mining & Smelting Co Ltd Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317574A (en) * 1998-01-19 1999-11-16 Mitsui Mining & Smelting Co Ltd Composite copper foil, manufacture thereof, copper-plated laminate and printed wiring board provided therewith
JP2001089892A (en) * 1999-09-21 2001-04-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, its producing method and copper-covered laminated sheet using the electrolytic copper foil with carrier foil
JP2005048277A (en) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, and manufacturing method therefor
JP2014506202A (en) * 2010-12-14 2014-03-13 スリーエム イノベイティブ プロパティズ カンパニー Image and method for making it
WO2016117587A1 (en) * 2015-01-22 2016-07-28 三井金属鉱業株式会社 Ultrathin copper foil with carrier and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153580A1 (en) * 2021-01-15 2022-07-21 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281759A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JPWO2021157362A1 (en) 2021-08-12
JP7259093B2 (en) 2023-04-17
CN115038819A (en) 2022-09-09
KR20220106200A (en) 2022-07-28
TW202146711A (en) 2021-12-16
TWI756039B (en) 2022-02-21

Similar Documents

Publication Publication Date Title
JP6905157B2 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
WO2017179416A1 (en) Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same
JP6529640B2 (en) Ultra-thin copper foil with carrier and method for manufacturing the same
WO2017006739A1 (en) Roughened copper foil, copper-clad laminate and printed wiring board
WO2022255420A1 (en) Roughened copper foil, copper-clad laminated board, and printed wiring board
JP7374298B2 (en) Roughened copper foil, copper clad laminates and printed wiring boards
WO2018211951A1 (en) Roughened copper foil, carrier-attached copper foil, copper clad laminate, and printed wiring board
JP7166335B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2020105289A1 (en) Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
WO2021157362A1 (en) Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board
WO2021157363A1 (en) Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
TWI808765B (en) Roughened copper foil, copper foil with carrier, copper foil laminate and printed wiring board
TWI808775B (en) Coarse treatment of copper foil, copper foil laminates and printed wiring boards
TWI804323B (en) Roughened copper foil, copper foil with carrier, copper foil laminate and printed wiring board
WO2022244827A1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575705

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227022468

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751108

Country of ref document: EP

Kind code of ref document: A1