JP6529640B2 - Ultra-thin copper foil with carrier and method for manufacturing the same - Google Patents

Ultra-thin copper foil with carrier and method for manufacturing the same Download PDF

Info

Publication number
JP6529640B2
JP6529640B2 JP2018103931A JP2018103931A JP6529640B2 JP 6529640 B2 JP6529640 B2 JP 6529640B2 JP 2018103931 A JP2018103931 A JP 2018103931A JP 2018103931 A JP2018103931 A JP 2018103931A JP 6529640 B2 JP6529640 B2 JP 6529640B2
Authority
JP
Japan
Prior art keywords
copper foil
carrier
foil
ultrathin copper
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103931A
Other languages
Japanese (ja)
Other versions
JP2018138702A (en
Inventor
花田 徹
徹 花田
哲聡 ▲高▼梨
哲聡 ▲高▼梨
哲広 松永
哲広 松永
歩 立岡
歩 立岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JP2018138702A publication Critical patent/JP2018138702A/en
Application granted granted Critical
Publication of JP6529640B2 publication Critical patent/JP6529640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、キャリア付極薄銅箔及びその製造方法に関する。   The present invention relates to a carrier-attached ultrathin copper foil and a method of manufacturing the same.

近年、回路の微細化に適したプリント配線板の製造工法として、MSAP(モディファイド・セミ・アディティブ・プロセス)法が広く採用されている。MSAP法は、極めて微細な回路を形成するのに適した手法であり、その特徴を活かすため、キャリア箔付極薄銅箔を用いて行われている。例えば、図1及び2に示されるように、極薄銅箔10を、下地基材11a上にプリプレグ11bを備えた絶縁樹脂基板11(必要に応じて下層回路11cを内在しうる)にプライマー層12を用いてプレスして密着させ(工程(a))、キャリア箔(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール13を形成する(工程(b))。次いで、化学銅めっき14を施した(工程(c))後に、ドライフィルム15を用いた露光及び現像により所定のパターンでマスキングし(工程(d))、電気銅めっき16を施す(工程(e))。ドライフィルム15を除去して配線部分16aを形成した(工程(f))後、隣り合う配線部分16a,16a間の不要な極薄銅箔等をそれらの厚み全体にわたってエッチングにより除去して(工程(g))、所定のパターンで形成された配線17を得る。   In recent years, the MSAP (modified semi-additive process) method has been widely adopted as a method of manufacturing a printed wiring board suitable for circuit miniaturization. The MSAP method is a method suitable for forming an extremely fine circuit, and in order to take advantage of its features, it is carried out using an ultrathin copper foil with a carrier foil. For example, as shown in FIGS. 1 and 2, the ultra-thin copper foil 10 is applied to the insulating resin substrate 11 provided with the prepreg 11b on the base substrate 11a (a lower layer circuit 11c may be embedded if necessary). After pressing and bringing into close contact with each other 12 (step (a)) and peeling off the carrier foil (not shown), the via hole 13 is formed by laser drilling as required (step (b)). Next, chemical copper plating 14 is applied (step (c)), then masking with a predetermined pattern is performed by exposure and development using dry film 15 (step (d)) and electrolytic copper plating 16 is applied (step (e) )). After the dry film 15 is removed to form the wiring portion 16a (step (f)), unnecessary ultrathin copper foil or the like between the adjacent wiring portions 16a and 16a is removed by etching over their entire thickness (step (G) to obtain the wiring 17 formed in a predetermined pattern.

特に、近年、電子回路の小型軽量化に伴い、回路形成性により優れた(例えばライン/スペース=15μm以下/15μm以下の微細回路を形成可能な)MSAP法用銅箔が求められている。例えば、特許文献1(国際公開第2012/046804号)には、JIS−B−06012−1994で規定する表面素地山の凹凸の平均間隔Smが25μm以上のキャリア箔上に、剥離層、銅箔をこの順序に積層し、銅箔をキャリア箔から剥離してなる銅箔が開示されており、この銅箔を用いることで、ライン/スペースが15μm以下の極細幅まで配線ラインの直線性を損なわずにエッチングが可能であるとされている。   In particular, in recent years, with the reduction in size and weight of electronic circuits, copper foils for MSAP method that are superior in circuit formability (for example, capable of forming fine circuits of line / space = 15 μm or less / 15 μm or less) are required. For example, in Patent Document 1 (International Publication No. 2012/046804), a peeling layer, a copper foil is formed on a carrier foil having an average spacing Sm of irregularities of the surface of a body specified by JIS-B-0601-1994 of 25 μm or more. Are laminated in this order, and a copper foil formed by peeling the copper foil from the carrier foil is disclosed. By using this copper foil, the linearity of the wiring line is impaired until the line / space is as thin as 15 .mu.m or less. It is believed that etching is possible without

また、近年の銅張積層板のビアホール加工には、レーザーを極薄銅箔に直接照射してビアホールを形成するダイレクトレーザー穴開け加工が多用されている(例えば、特許文献2(特開平11−346060号公報)参照)。この手法では、一般的に、極薄銅箔の表面に黒化処理を施した後、この黒化処理された表面に炭酸ガスレーザーを照射して極薄銅箔及びその直下の絶縁層の穴開けが行われる。   In recent years, direct laser drilling, in which a via hole is formed by directly irradiating a very thin copper foil with a laser, is frequently used for the via hole processing of a copper clad laminate (see, for example, Patent Document 2 See, for example, JP 346060). In this method, after the surface of the ultrathin copper foil is generally subjected to a blackening treatment, the carbonized gas laser is irradiated to the surface subjected to the blackening treatment to form holes in the ultrathin copper foil and the insulating layer immediately below it. Opening is done.

国際公開第2012/046804号International Publication No. 2012/046804 特開平11−346060号公報JP-A-11-346060

ところで、黒化処理は時間とコストを要する上、歩留まりも低下しうるため、黒化処理を行わずに極薄銅箔表面にダイレクトレーザー穴開け加工を望ましく施すことができれば好都合である。しかしながら、特許文献1に記載のキャリア付極薄銅箔の表面にダイレクトレーザー穴開け加工を行うと、通常の照射条件では所望の穴を開けることが難しく、微細回路形成性とレーザー加工性とを両立できないことが判明した。   By the way, since the blackening treatment requires time and cost, and the yield can be lowered, it is advantageous if direct laser drilling can be desirably performed on the surface of the ultrathin copper foil without performing the blackening treatment. However, when direct laser drilling is performed on the surface of the carrier-attached ultrathin copper foil described in Patent Document 1, it is difficult to make a desired hole under ordinary irradiation conditions, and fine circuit formability and laser processability It turned out that it is not compatible.

本発明者らは、今般、キャリア付極薄銅箔において、極薄銅箔の剥離層側の面の表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、極薄銅箔の剥離層と反対側の面のうねりの最大高低差(Wmax)が1.0μm以下である表面プロファイルを付与することにより、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立できるとの知見を得た。   The present inventors have now found that, in an ultrathin copper foil with a carrier, the average distance (Peak spacing) between the surface peaks of the surface on the peeling layer side of the ultrathin copper foil is 20 μm or less, and By applying a surface profile having a maximum height difference (Wmax) of not more than 1.0 μm in the surface on the opposite side of the peeling layer, processing of a copper clad laminate or production of a printed wiring board We have found that it is compatible with laser processability.

したがって、本発明の目的は、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立可能な、キャリア付極薄銅箔を提供することにある。   Accordingly, an object of the present invention is to provide a carrier-attached ultrathin copper foil capable of achieving both fine circuit formation and laser processability in the processing of a copper-clad laminate or the production of a printed wiring board.

本発明の一態様によれば、キャリア箔、剥離層及び極薄銅箔をこの順に備えたキャリア付極薄銅箔であって、
前記極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である、キャリア付極薄銅箔が提供される。
According to one aspect of the present invention, an ultra thin copper foil with carrier comprising a carrier foil, a peeling layer and an ultra thin copper foil in this order,
The surface on the peeling layer side of the ultra-thin copper foil has an average distance (Peak spacing) between surface peaks of 20 μm or less, and the surface on the opposite side of the peeling layer of the ultra-thin copper foil has a maximum height of waviness There is provided a carrier-attached ultrathin copper foil having a difference (Wmax) of 1.0 μm or less.

本発明の他の一態様によれば、上記態様によるキャリア付極薄銅箔の製造方法であって、
谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である表面を有するキャリア箔を用意する工程と、
前記キャリア箔の前記表面に剥離層を形成する工程と、
前記剥離層上に極薄銅箔を形成する工程と、
を含んでなる、方法が提供される。
According to another aspect of the present invention, there is provided a method of producing a carrier-attached ultrathin copper foil according to the above aspect,
Providing a carrier foil having a surface having an average valley spacing (Valley spacing) of 15 μm or less and a maximum undulation difference (Wmax) of 0.8 μm or less;
Forming a release layer on the surface of the carrier foil;
Forming an ultra-thin copper foil on the release layer;
A method is provided comprising.

本発明の更に別の一態様によれば、上記態様によるキャリア付極薄銅箔を用いて得られた銅張積層板が提供される。   According to still another aspect of the present invention, there is provided a copper-clad laminate obtained using the ultra thin copper foil with a carrier according to the above aspect.

本発明の更に別の一態様によれば、上記態様によるキャリア付極薄銅箔を用いて得られたプリント配線板が提供される。   According to still another aspect of the present invention, there is provided a printed wiring board obtained using the ultra thin copper foil with carrier according to the above aspect.

MSAP法を説明するための工程流れ図であり、前半の工程(工程(a)〜(d))を示す図である。It is a process flowchart for demonstrating MSAP method, and is a figure which shows the first half process (process (a)-(d)). MSAP法を説明するための工程流れ図であり、後半の工程(工程(e)〜(g))を示す図である。It is a process flowchart for demonstrating MSAP method, and is a figure which shows the latter process (process (e)-(g)). 粗化粒子の断面輪郭曲線と、基底面から所定の高さの切断面における粗化粒子の切り口数のカウントの仕方を概念的に説明する図である。It is a figure which illustrates notionally the method of counting the cut surface number of roughening particle | grains in the cut surface of predetermined height from a basal plane. 例7において得られた、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線の一例を示す図である。It is a figure which shows an example of the distribution curve of the cut number of roughening particle | grains in the cut surface according to the height from a basal plane obtained in Example 7. FIG.

定義
本発明を特定するために用いられるパラメータの定義を以下に示す。
Definitions The definitions of the parameters used to identify the invention are given below.

本明細書において「表面ピーク間の平均距離(Peak spacing)」とは、三次元表面構造解析顕微鏡を用いて得られる試料表面の凹凸に関する情報から、高周波のうねり成分を除去したのち、ピークに係る波形データをフィルタリングして抽出したデータにおける、ピーク間の平均距離をいう。   In the present specification, “average distance between surface peaks (Peak spacing)” refers to a peak after removing the high frequency wave component from the information on the unevenness of the sample surface obtained using a three-dimensional surface structure analysis microscope. It refers to the average distance between peaks in data extracted by filtering waveform data.

本明細書において「谷間の平均距離(Valley spacing)」は、三次元表面構造解析顕微鏡を用いて得られる試料表面の凹凸に関する情報から、高周波のうねり成分を除去したのち、谷に係る波形データをフィルタリングして抽出したデータにおける、谷間の平均距離をいう。   In the present specification, “Valley spacing” refers to the waveform data of the valley after removing the high frequency wave component from the information on the unevenness of the sample surface obtained using a three-dimensional surface structure analysis microscope. The mean distance between valleys in the data extracted by filtering.

本明細書において「うねりの最大高低差(Wmax)」とは、三次元表面構造解析顕微鏡を用いて得られる試料表面の凹凸に係る情報から、うねりに係る波形データをフィルタを用いて抽出したときの波形データの高低差の最大値(波形の最大ピーク高さと最大バレー深さの和)をいう。   In the present specification, “maximum difference in height (Wmax) of waviness” refers to when waveform data relating to waviness is extracted using a filter from information relating to the unevenness of the sample surface obtained using a three-dimensional surface structure analysis microscope. Of the height difference of the waveform data (the sum of the maximum peak height and the maximum valley depth of the waveform).

表面ピーク間の平均距離(Peak spacing)、谷間の平均距離(Valley spacing)、及びうねりの最大高低差(Wmax)は、いずれも、市販の三次元表面構造解析顕微鏡(例えば、zygo New View 5032(Zygo社製))と市販の解析ソフト(例えばMetro Pro Ver.8.0.2)を用い、低周波フィルタを11μmの条件に設定して測定することができる。このとき、箔の被測定面を試料台に密着させて固定し、試料片の1cm角の範囲内の中で108μm×144μmの視野を6点選択して測定し、6箇所の測定点から得られた測定値の平均値を代表値として採用するのが好ましい。   The average distance between surface peaks (Peak spacing), the average distance between valleys (Valley spacing), and the maximum height difference (Wmax) of undulations are all commercially available three-dimensional surface structure analysis microscopes (eg, zygo New View 5032 ( It can measure by setting a low frequency filter to 11 μm condition using Zygo's product) and commercially available analysis software (for example, Metro Pro Ver. 8. 0.2). At this time, the surface to be measured of the foil is fixed in contact with the sample table and fixed, and the field of view of 108 μm × 144 μm is selected and measured within 6 cm square of the sample piece and obtained from 6 measurement points. It is preferable to adopt the average value of the measured values as a representative value.

本明細書において、キャリア箔の「電極面」とはキャリア箔作製時に回転陰極と接していた側の面を指す。   In the present specification, the "electrode surface" of the carrier foil refers to the surface of the carrier foil that was in contact with the rotating cathode at the time of production of the carrier foil.

本明細書において、キャリア箔の「析出面」とはキャリア箔作製時に電解銅が析出されていく側の面、すなわち回転陰極と接していない側の面を指す。   In the present specification, the "deposition surface" of the carrier foil refers to the surface on which electrolytic copper is deposited at the time of production of the carrier foil, that is, the surface not in contact with the rotating cathode.

キャリア付極薄銅箔及びその製造方法
本発明のキャリア付極薄銅箔は、キャリア箔、剥離層及び極薄銅箔をこの順に備えてなる。そして、極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である。これにより、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立することが可能となる。しかも、レーザー加工性を確保するためにこれまで一般的に採用されてきた黒化処理を本発明においては不要にすることができる。
Carrier-attached ultrathin copper foil and method of producing the same The carrier-attached ultrathin copper foil of the present invention comprises a carrier foil, a release layer and an ultrathin copper foil in this order. And, the surface on the peeling layer side of the ultra thin copper foil has an average distance (Peak spacing) of 20 μm or less between the surface peaks, and the surface on the opposite side of the peeling layer of the ultra thin copper foil has the maximum height of waviness The difference (Wmax) is 1.0 μm or less. This makes it possible to achieve both fine circuit formability and laser processability in the processing of a copper-clad laminate or in the manufacture of a printed wiring board. In addition, the blackening treatment generally adopted so far for securing the laser processability can be made unnecessary in the present invention.

微細回路形成性とレーザー加工性とは本来的には両立し難いものであるが、本発明によれば予想外にもそれらが両立可能となる。というのも、優れた微細回路形成性を得るためには本来的には剥離層と反対側の表面が平滑な極薄銅箔が求められる。そして、そのような極薄銅箔を得るためには、剥離層側の面が平滑な極薄銅箔が求められるところ、表面が平滑になるほどレーザーが反射されやすくなり、それ故、レーザーが極薄銅箔に吸収されにくくなってレーザー加工性が低下するからである。実際、前述のとおり、特許文献1に記載のキャリア付極薄銅箔の表面にダイレクトレーザー穴開け加工を行うと、通常の照射条件では所望の穴を開けることが難しく、微細回路形成性とレーザー加工性とを両立できないことが判明した。この問題を本発明者らが調査した結果、微細回路形成性を低下させる主たる要因は、極薄銅箔の剥離層と反対側の面のうねりであることを突き止めた。そして、うねりの最大高低差(Wmax)を1.0μm以下に制御することが微細回路形成性の改善を図る上で有効であることを知見した。また、ダイレクトレーザー穴開け加工性を低下させる要因は、極薄銅箔の剥離層側の面の表面ピーク間の平均距離(Peak spacing)が20μmを超える場合であることも突き止めた。このように、本発明のキャリア付極薄銅箔によれば、極薄銅箔(特にMSAP用極薄銅箔)においてWmax及びPeak spacingを制御することにより、ライン/スペース=15μ/15μm以下の回路を形成することが出来る程の優れた微細回路形成性を実現しながら、ダイレクトレーザー穴開け加工も望ましく行うことを可能となる。   Although fine circuit formation and laser processability are inherently incompatible, according to the present invention, they become unexpectedly compatible. In order to obtain excellent fine circuit formation, an ultrathin copper foil having a smooth surface on the side opposite to the release layer is originally required. And in order to obtain such an ultrathin copper foil, although the ultrathin copper foil in which the surface by the side of the exfoliation layer is smooth is called for, a laser becomes easy to be reflected, so that the surface is smoothed. It is because it becomes difficult to be absorbed by thin copper foil and laser processability falls. In fact, as described above, when direct laser drilling is performed on the surface of the carrier-attached ultrathin copper foil described in Patent Document 1, it is difficult to make a desired hole under ordinary irradiation conditions, and microcircuit formation and laser It turned out that it is not compatible with processability. As a result of investigations by the inventors of the present invention, it was found that the main factor for reducing the fine circuit formability was the waviness of the surface of the ultrathin copper foil opposite to the release layer. Then, it was found that controlling the maximum height difference (Wmax) of the waviness to 1.0 μm or less is effective in improving the fine circuit formability. In addition, it was also found out that the factor that reduces the direct laser drilling processability is the case where the average distance (Peak spacing) between surface peaks of the surface on the peeling layer side of the ultrathin copper foil exceeds 20 μm. As described above, according to the ultra thin copper foil with carrier of the present invention, by controlling Wmax and Peak spacing in an ultra thin copper foil (particularly, ultra thin copper foil for MSAP), line / space = 15 μm / 15 μm or less It is possible to desirably perform direct laser drilling while achieving an excellent fine circuit formability that can form a circuit.

このように、極薄銅箔は、表面ピーク間の平均距離(Peak spacing)が20μm以下である表面を剥離層側の面に有し、かつ、うねりの最大高低差(Wmax)が1.0μm以下である表面を剥離層と反対側の面に有する。2つのパラメータが上記範囲内となるようにすることで、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立することが可能となる。極薄銅箔の剥離層側の面における表面ピーク間の平均距離(Peak spacing)は20μm以下であり、好ましくは1〜15μm、より好ましくは5〜15μm、さらに好ましくは10〜15μmである。また、極薄銅箔の剥離層と反対側の面におけるうねりの最大高低差(Wmax)は1.0μm以下であり、好ましくは0.9μm以下、より好ましくは0.8μm以下である。特に、ライン/スペース=15/15μmの微細回路形成を行うためには、極薄銅箔表面のWmaxが0.8μm以下であるのが好ましい。Wmaxは低ければ低い方が良いため、その下限値は特に限定されないが、Wmaxは典型的には0.1μm以上であり、より典型的には0.2μm以上である。   Thus, the ultra-thin copper foil has a surface with an average distance between peak peaks (Peak spacing) of 20 μm or less on the surface on the release layer side, and the maximum height difference (Wmax) of the waviness is 1.0 μm. The following surface is provided on the side opposite to the release layer. By setting the two parameters within the above range, it is possible to achieve both the fine circuit formability and the laser processability in the processing of a copper-clad laminate or in the manufacture of a printed wiring board. The average distance (Peak spacing) between surface peaks in the surface on the peeling layer side of the ultrathin copper foil is 20 μm or less, preferably 1 to 15 μm, more preferably 5 to 15 μm, and still more preferably 10 to 15 μm. Moreover, the maximum height difference (Wmax) of the undulation in the surface on the opposite side to the peeling layer of the ultrathin copper foil is 1.0 μm or less, preferably 0.9 μm or less, more preferably 0.8 μm or less. In particular, in order to form a fine circuit of line / space = 15/15 μm, it is preferable that Wmax of the ultrathin copper foil surface is 0.8 μm or less. The lower limit of Wmax is better as it is lower, so the lower limit is not particularly limited, but Wmax is typically 0.1 μm or more, and more typically 0.2 μm or more.

極薄銅箔の剥離層側の面も、うねりの最大高低差(Wmax)が1.0μm以下であるのが好ましく、より好ましくは0.8μm、さらに好ましくは0.6μm以下である。このように低いWmaxであると、極薄銅箔の剥離層と反対側の面のWmaxを低く抑えることができ、微細回路形成性に優れる。特に、ライン/スペース=15/15μmの微細回路形成を行うためには、Wmaxが0.6μm以下であるのが好ましい。Wmaxは低ければ低い方が良いため、その下限値は特に限定されない。特に、極薄銅箔の厚さを薄くする場合(例えば厚さ2.0μm以下とする場合)にはWmaxは小さい方が好ましい。もっとも、Wmaxは典型的には0.1μm以上であり、より典型的には0.2μm以上である。   The surface on the release layer side of the ultrathin copper foil also preferably has a maximum height difference (Wmax) of waviness of 1.0 μm or less, more preferably 0.8 μm, and still more preferably 0.6 μm or less. Thus, Wmax of the surface on the opposite side to the peeling layer of ultra-thin copper foil can be restrained low as it is low Wmax, and it is excellent in fine circuit formation property. In particular, in order to form a fine circuit of line / space = 15/15 μm, Wmax is preferably 0.6 μm or less. The lower limit of Wmax is not particularly limited because it is better if Wmax is lower. In particular, in the case where the thickness of the ultrathin copper foil is reduced (for example, when the thickness is set to 2.0 μm or less), Wmax is preferably smaller. However, Wmax is typically 0.1 μm or more, and more typically 0.2 μm or more.

極薄銅箔の剥離層と反対側の面は粗化面であるのが好ましい。すなわち、極薄銅箔の一方の面には粗化処理がされていることが好ましい。こうすることで銅張積層板やプリント配線板製造時における樹脂層との密着性を向上することができる。この粗化処理は、極薄銅箔の上に銅又は銅合金で粗化粒子を形成することにより行うことができる。例えば、極薄銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とを含む少なくとも2種類のめっき工程を経る公知のめっき手法に従って行われるのが好ましい。   It is preferable that the surface on the opposite side to the peeling layer of the ultrathin copper foil is a roughened surface. That is, it is preferable that one surface of the ultrathin copper foil is roughened. By doing this, the adhesion to the resin layer at the time of producing a copper-clad laminate or a printed wiring board can be improved. This roughening treatment can be carried out by forming roughened particles with copper or a copper alloy on an extremely thin copper foil. For example, a known plating method through at least two types of plating processes including a burn plating process in which fine copper particles are deposited on very thin copper foil and an overlay plating process for preventing the fine copper particles from falling off Preferably, it is carried out according to

典型的には、粗化面は複数の粗化粒子を備えてなる。好ましくは、これら複数の粗化粒子は、基底面からの平均粗化粒子高さが1.0〜1.4μmであり、かつ、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線の1/10値幅が1.3μm以下である。これらのパラメータは、三次元粗さ解析装置を用いて、粗化面の表面プロファイルを粗化粒子のサイズに応じた所望の倍率(例えば600〜30000倍)で測定することを経て得ることができる。ここで、「基底面」とは、図3に例示されるように、複数の粗化粒子間の谷底のうち最も低い位置に相当する、極薄銅箔と平行な面である。「基底面からの高さに応じた切断面における粗化粒子の切り口数」とは、図3に例示されるように、粗化粒子の断面輪郭曲線と、基底面から所定の高さにおける平行な切断面によって切断されるべき面領域の数である。すなわち、基底面から最大粗化粒子高さに至るまで、高さ方向に一定間隔(例えば0.02μm)ごとに区切りながら切断面を順次設定していき、各切断面における粗化粒子の切り口数をカウントする。「粗化粒子高さ」とは基底面からの粗化粒子の高さを意味し、「平均粗化粒子高さ」とは、図4に例示されるように、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線において、粗化粒子の切り口数が最大となる、基底面からの高さ(粗化粒子高さ)を意味する。また、「1/10値幅」とは、図4に例示されるように、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線において、粗化粒子の切り口数の最大値の10分の1の値における分布幅(粗化粒子高さ分布幅)を意味する。平均粗化粒子高さ及び1/10値幅が上記範囲内であると、粗化粒子高さが低減するため、垂直方向でのフラッシュエッチング性が向上するとともに、粗化粒子のバラつきが低減するため、面方向でのエッチングバラつきが減少し、回路形成時の望ましくない裾引きを効果的に防止することが出来る。その結果、回路形成性が向上する。さらに、上記範囲内であると、粗化粒子のバラつきが低減するため、プリプレグ等の樹脂層に粗化面を貼り付けた場合に、樹脂層との剥離強度の位置によるバラつきが低減される。平均粗化粒子高さは1.0〜1.4μmであり、好ましくは1.0〜1.3μmである。1/10値幅は1.3μm以下であり、好ましくは1.0μm以下である。1/10値幅は小さければ小さいほど良いが、典型的には0.1μm以上である。   Typically, the roughened surface comprises a plurality of roughened particles. Preferably, the plurality of roughening particles have an average roughening particle height from the basal plane of 1.0 to 1.4 μm, and the roughening particles in the cut surface according to the height from the basal plane. The 1/10 value width of the distribution curve of the number of cuts is 1.3 μm or less. These parameters can be obtained by measuring the surface profile of the roughened surface at a desired magnification (for example, 600 to 30,000 times) according to the size of the roughened particles using a three-dimensional roughness analyzer. . Here, as illustrated in FIG. 3, the “base surface” is a surface parallel to the ultrathin copper foil, which corresponds to the lowest position in the valley bottom between the plurality of roughened particles. “The cut number of roughened particles in the cut surface according to the height from the basal plane” means the cross-sectional contour curve of the roughened particles and the parallel at a predetermined height from the basal plane, as illustrated in FIG. Number of surface areas to be cut by the cutting surface. That is, from the base surface to the maximum roughened particle height, cutting surfaces are sequentially set while dividing at regular intervals (for example, 0.02 μm) in the height direction, and the number of cut surface of roughened particles in each cutting surface Count. The “roughened particle height” means the height of the roughened particles from the basal plane, and the “average roughened particle height” means the height from the basal plane as exemplified in FIG. In the distribution curve of the number of roughened particles cut at the corresponding cut surface, it means the height from the basal plane (roughened particle height) at which the number of roughened particles becomes largest. In addition, “1/10 value width” means, as illustrated in FIG. 4, the distribution curve of the number of roughened particles in the cut surface according to the height from the basal plane, in the distribution curve of the number of roughened particles It means the distribution width (roughened particle height distribution width) at a value of one tenth of the maximum value. When the average roughened particle height and the 1/10 value width fall within the above range, the height of the roughened particle is reduced, so that the flash etching property in the vertical direction is improved and the variation of the roughened particle is reduced. The etching variation in the surface direction can be reduced, and undesired tailing at the time of circuit formation can be effectively prevented. As a result, circuit formability is improved. Furthermore, when the roughened surface is attached to a resin layer such as a prepreg, the variance due to the position of the peel strength with the resin layer is reduced because the variance of the roughened particles is reduced when the thickness is within the above range. The average roughened particle height is 1.0 to 1.4 μm, preferably 1.0 to 1.3 μm. The 1/10 value width is 1.3 μm or less, preferably 1.0 μm or less. The smaller the 1/10 value width, the better, but typically it is 0.1 μm or more.

極薄銅箔は、上記特有の表面プロファイルを有すること以外はキャリア付極薄銅箔に採用される公知の構成であってよく特に限定されない。例えば、極薄銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。極薄銅箔の好ましい厚さは0.1〜5.0μmであり、より好ましくは0.5〜3.0μm、さらに好ましくは1.0〜2.0μmである。例えば、ライン/スペース=15/15μmの微細回路形成を行うためには、極薄銅箔の厚さは2.0μm以下が特に好ましい。   The ultra-thin copper foil is not particularly limited and may be a known configuration adopted for the ultra thin copper foil with carrier except having the above-mentioned specific surface profile. For example, the ultrathin copper foil may be formed by a wet film forming method such as an electroless copper plating method and an electrolytic copper plating method, a dry film forming method such as sputtering and chemical vapor deposition, or a combination thereof. The preferable thickness of the ultrathin copper foil is 0.1 to 5.0 μm, more preferably 0.5 to 3.0 μm, and still more preferably 1.0 to 2.0 μm. For example, in order to form a fine circuit of line / space = 15/15 μm, the thickness of the ultrathin copper foil is particularly preferably 2.0 μm or less.

剥離層は、キャリア箔の引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリア箔と銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリア箔の一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2−ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリア箔の少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリア箔の表面に固定されること等により行えばよい。キャリア箔を剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア箔表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm〜1μmであり、好ましくは5nm〜500nmである。   The release layer weakens the peel strength of the carrier foil, ensures the stability of the strength, and further has a function to suppress the interdiffusion which may occur between the carrier foil and the copper foil during press molding at high temperature. It is. The release layer is generally formed on one side of the carrier foil, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. As an example of the organic component used for an organic peeling layer, a nitrogen containing organic compound, a sulfur containing organic compound, carboxylic acid etc. are mentioned. Examples of the nitrogen-containing organic compound include triazole compounds and imidazole compounds. Among these, triazole compounds are preferable in that the releasability is easily stabilized. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- 1H-1,2,4-triazole etc. are mentioned. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like. Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids and the like. On the other hand, examples of the inorganic component used for the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, a chromate-treated film, and the like. The release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier foil and fixing the release layer component to the surface of the carrier foil. When the carrier foil is brought into contact with the peeling layer component-containing solution, the contact may be performed by immersion in the peeling layer component-containing solution, spraying of the peeling layer component-containing solution, or flowing of the peeling layer component-containing solution. In addition, the method of film-forming the peeling layer component by the vapor phase method by vapor deposition, sputtering, etc. is also employable. The fixation of the peeling layer component to the carrier foil surface may be carried out by adsorption or drying of the peeling layer component-containing solution, electrodeposition of the peeling layer component in the peeling layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm to 1 μm, preferably 5 nm to 500 nm.

キャリア箔は、極薄銅箔を支持してそのハンドリング性を向上させるための箔である。キャリア箔の例としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、表面をメタルコーティングした樹脂フィルム等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリア箔の厚さは典型的には250μm以下であり、好ましくは12μm〜200μmである。   Carrier foil is a foil for supporting ultra-thin copper foil and improving its handling property. Examples of the carrier foil include an aluminum foil, a copper foil, a stainless steel (SUS) foil, a resin film with a metal coating on the surface, and the like, and a copper foil is preferable. The copper foil may be either a rolled copper foil or an electrolytic copper foil. The thickness of the carrier foil is typically 250 μm or less, preferably 12 μm to 200 μm.

キャリア箔の剥離層側の面は、谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下であるのが好ましい。キャリア付極薄銅箔の製造プロセスにおいて、キャリア箔の剥離層側の面には極薄銅箔が形成されることになるため、キャリア箔の表面に上記のように低いValley spacingとWmaxを付与しておくことで、極薄銅箔の剥離層側の面と剥離層と反対側の面に前述した望ましい表面プロファイルを付与することができる。すなわち、本発明のキャリア付極薄銅箔は、谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である表面を有するキャリア箔を用意し、このキャリア箔の表面に剥離層を形成し、この剥離層上に極薄銅箔を形成することにより製造することができる。キャリア箔の剥離層側の面における谷間の平均距離(Valley spacing)は15μm以下であるのが好ましく、より好ましくは1〜10μm以下、さらに好ましくは3〜8μm以下である。また、キャリア箔の剥離層側の面におけるうねりの最大高低差(Wmax)は0.8μm以下であるのが好ましく、より好ましくは0.7μm以下、さらに好ましくは0.6μm以下である。Wmaxは低ければ低い方が良いため、その下限値は特に限定されないが、Wmaxは典型的には0.1μm以上であり、より典型的には0.2μm以上である。キャリア箔の表面における上記範囲内の低いValley spacingとWmaxの実現は、キャリア箔を電解製箔する際に用いる回転陰極の表面を所定の番手のバフで研磨して表面粗さを調整することにより行うことができる。すなわち、こうして調整された回転陰極の表面プロファイルがキャリア箔の電極面に転写され、こうして望ましい表面プロファイルが付与されたキャリア箔の電極面上に剥離層を介して極薄銅箔を形成することで、極薄銅箔の剥離層側の面に上述した表面プロファイルを付与することができる。好ましいバフの番手は#1000より大きく#3000未満であり、より好ましくは#1500〜#2500である。   The surface on the release layer side of the carrier foil preferably has an average valley spacing (Valley spacing) of 15 μm or less, and a maximum difference in undulation (Wmax) of 0.8 μm or less. In the manufacturing process of ultra thin copper foil with carrier, ultra thin copper foil is formed on the surface on the release layer side of the carrier foil, so low valley spacing and Wmax are imparted to the surface of the carrier foil as described above. The desirable surface profile mentioned above can be given to the field by the side of the exfoliation layer of ultra-thin copper foil, and the field opposite to the exfoliation layer by carrying out. That is, the carrier-attached ultrathin copper foil of the present invention has a carrier foil having a surface having an average valley spacing (Valley spacing) of 15 μm or less and a maximum undulation (Wmax) of 0.8 μm or less. It can be manufactured by preparing a release layer on the surface of the carrier foil and forming an ultrathin copper foil on the release layer. The average distance (Valley spacing) of valleys in the surface on the release layer side of the carrier foil is preferably 15 μm or less, more preferably 1 to 10 μm or less, and still more preferably 3 to 8 μm or less. The maximum height difference (Wmax) of the waviness on the surface of the carrier foil on the release layer side is preferably 0.8 μm or less, more preferably 0.7 μm or less, and still more preferably 0.6 μm or less. The lower limit of Wmax is better as it is lower, so the lower limit is not particularly limited, but Wmax is typically 0.1 μm or more, and more typically 0.2 μm or more. The realization of low Valley spacing and Wmax within the above range on the surface of the carrier foil is achieved by polishing the surface of the rotating cathode used in electrolytic foiling of the carrier foil with a predetermined count of buff to adjust the surface roughness. It can be carried out. That is, the surface profile of the thus-prepared rotating cathode is transferred to the electrode surface of the carrier foil, and thus an extremely thin copper foil is formed via the release layer on the electrode surface of the carrier foil to which the desired surface profile is applied. The surface profile described above can be applied to the surface on the peeling layer side of the ultrathin copper foil. Preferred buff counts are greater than # 1000 and less than # 3000, and more preferably # 1500 to # 2500.

所望により、剥離層とキャリア箔及び/又は極薄銅箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリア箔の表面側及び/又は極薄銅箔の表面側に形成することで、高温又は長時間の熱間プレス成形時にキャリア箔と極薄銅箔の間で起こりうる相互拡散を抑制し、キャリア箔の引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001〜3μmとするのが好ましい。   If desired, another functional layer may be provided between the release layer and the carrier foil and / or the ultrathin copper foil. Examples of such other functional layers include auxiliary metal layers. The auxiliary metal layer preferably comprises nickel and / or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier foil and / or on the surface side of the ultrathin copper foil, it can occur between the carrier foil and the ultrathin copper foil during hot press forming at high temperatures or for a long time It is possible to suppress interdiffusion and to ensure the stability of the peel strength of the carrier foil. The thickness of the auxiliary metal layer is preferably 0.001 to 3 μm.

所望により、極薄銅箔に防錆処理を施してもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛−ニッケル合金処理が特に好ましい。亜鉛−ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛−ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2〜10が好ましく、より好ましくは2〜7、さらに好ましくは2.7〜4である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛−ニッケル合金めっき処理とその後のクロメート処理との組合せである。   If desired, the ultrathin copper foil may be subjected to an anticorrosion treatment. The antirust treatment preferably includes a plating treatment using zinc. The plating treatment using zinc may be either zinc plating treatment or zinc alloy plating treatment, and zinc alloy plating treatment is particularly preferably zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, Co and the like. The weight ratio of Ni / Zn in the zinc-nickel alloy plating is preferably 1.2 to 10, more preferably 2 to 7, and still more preferably 2.7 to 4. Further, the anticorrosion treatment preferably further includes a chromate treatment, and the chromate treatment is more preferably performed on a surface of a plating containing zinc after a plating treatment using zinc. This can further improve the corrosion resistance. A particularly preferred corrosion protection treatment is the combination of zinc-nickel alloy plating treatment and subsequent chromate treatment.

所望により、極薄銅箔の表面にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4−グリシジルブチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又はγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)ブトキシ)プロピル−3−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又はγ−メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又はγ−メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。   If desired, the surface of the ultrathin copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. Thereby, the moisture resistance, the chemical resistance, the adhesion to the adhesive and the like can be improved. The silane coupling agent layer can be formed by appropriately diluting the silane coupling agent, applying it, and drying it. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, or γ-aminopropyltrimethoxysilane, N-β (amino Amino functions such as ethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, etc. -Functional silane coupling agent, or mercapto functional silane coupling agent such as γ-mercaptopropyltrimethoxysilane or vinyltrimethoxysilane, olefin functional silane coupling agent such as vinylphenyltrimethoxysilane, or γ-methacryloxypropyl Trimetoki Acrylic-functional silane coupling agent such as a silane, or imidazole functional silane coupling agent such as imidazole silane, or triazine functional silane coupling agents such as triazine silane.

銅張積層板
本発明のキャリア付極薄銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、キャリア付極薄銅箔を用いて得られた銅張積層板が提供される。本発明のキャリア付極薄銅箔を用いることで、銅張積層板の加工において、微細回路形成性とレーザー加工性とを両立することができる。この銅張積層板は、本発明のキャリア付極薄銅箔と、該表面処理層に密着して設けられる樹脂層とを備えてなる。キャリア付極薄銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1〜1000μmが好ましく、より好ましくは2〜400μmであり、さらに好ましくは3〜200μmである。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介してキャリア付極薄銅箔に設けられていてもよい。
Ultrathin copper foil with a carrier of the copper-clad laminates present invention is preferably used for manufacturing the copper - clad laminates for printed wiring boards. That is, according to a preferred embodiment of the present invention, there is provided a copper-clad laminate obtained using a carrier-attached ultrathin copper foil. By using the carrier-attached ultrathin copper foil of the present invention, it is possible to achieve both the fine circuit formability and the laser processability in the processing of a copper clad laminate. This copper-clad laminate comprises the carrier-attached ultrathin copper foil of the present invention and a resin layer provided in close contact with the surface treatment layer. The carrier-attached ultrathin copper foil may be provided on one side or both sides of the resin layer. The resin layer comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. A prepreg is a general term for a composite material in which a synthetic resin is impregnated in a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, and paper. Preferred examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin and the like. Moreover, as an example of the insulating resin which comprises a resin sheet, insulating resin, such as an epoxy resin, a polyimide resin, a polyester resin, is mentioned. The resin layer may contain filler particles and the like composed of various inorganic particles such as silica and alumina from the viewpoint of improving the insulation and the like. The thickness of the resin layer is not particularly limited, but is preferably 1 to 1000 μm, more preferably 2 to 400 μm, and still more preferably 3 to 200 μm. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the carrier-attached ultrathin copper foil via a primer resin layer previously applied to the copper foil surface.

プリント配線板
本発明のキャリア付極薄銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、キャリア付極薄銅箔を用いて得られたプリント配線板が提供される。本発明のキャリア付極薄銅箔を用いることで、プリント配線板の製造において、微細回路形成性とレーザー加工性とを両立することができる。本態様によるプリント配線板は、樹脂層と、銅層とがこの順に積層された層構成を含んでなる。銅層は本発明のキャリア付極薄銅箔の極薄銅箔に由来する層である。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は、本発明のキャリア付極薄銅箔を用いること以外は、公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の極薄銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の極薄銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の極薄銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、極薄銅箔を配線層の全部又は一部としてモディファイド・セミアディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、極薄銅箔を除去してセミアディティブ法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の極薄銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明のキャリア付極薄銅箔はMSAP法に適している。例えば、MSAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。
Printed Wiring Board The carrier-attached ultrathin copper foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, there is provided a printed wiring board obtained using a carrier-attached ultrathin copper foil. By using the carrier-attached ultrathin copper foil of the present invention, it is possible to achieve both fine circuit formability and laser processability in the production of a printed wiring board. The printed wiring board according to this aspect includes a layer configuration in which a resin layer and a copper layer are laminated in this order. The copper layer is a layer derived from the ultra-thin copper foil of the ultra-thin copper foil with carrier of the present invention. The resin layer is as described above for the copper clad laminate. Anyway, as the printed wiring board, a known layer configuration can be adopted except that the carrier-attached ultrathin copper foil of the present invention is used. Specific examples of the printed wiring board include a single-sided or double-sided printed wiring board on which a circuit is formed by bonding the ultra-thin copper foil of the present invention to one side or both sides of the prepreg and curing it. A printed wiring board etc. are mentioned. Moreover, as another specific example, the flexible printed wiring board which forms the ultra-thin copper foil of this invention on a resin film, and forms a circuit, COF, a TAB tape etc. are mentioned. As still another specific example, after forming the resin-coated copper foil (RCC) coated with the above-mentioned resin layer on the ultra-thin copper foil of the present invention and laminating the resin layer as the insulating adhesive layer on the above-mentioned printed circuit board , A buildup wiring board in which a circuit is formed by a method such as modified semiadditive (MSAP) method or subtractive method by using ultrathin copper foil as all or part of the wiring layer, or semiadditive by removing ultrathin copper foil And a direct build-up-on-wafer that alternately repeats lamination of resin-coated copper foil and circuit formation on a semiconductor integrated circuit. As a more developed example, an antenna element formed by laminating the above-mentioned resin-coated copper foil on a substrate and forming a circuit, an electronic material for a panel or display formed by laminating on a glass or a resin film through an adhesive layer and a window Also included are electronic materials for glass, electromagnetic wave shielding films in which a conductive adhesive is applied to the ultrathin copper foil of the present invention, and the like. In particular, the carrier-attached ultrathin copper foil of the present invention is suitable for the MSAP method. For example, when the circuit is formed by the MSAP method, the configurations as shown in FIGS. 1 and 2 can be employed.

本発明を以下の例によってさらに具体的に説明する。   The invention is further illustrated by the following examples.

例1〜5
キャリア箔の電極面側に剥離層及び極薄銅箔層を順に形成した後、防錆処理及びシランカップリング剤処理を行うことで、キャリア付極薄銅箔を作製した。そして、得られたキャリア付極薄銅箔について各種評価を行った。具体的な手順は以下のとおりである。
Examples 1 to 5
After forming a peeling layer and an ultrathin copper foil layer in order on the electrode surface side of the carrier foil, an anticorrosive treatment and a silane coupling agent treatment were performed to produce an ultrathin copper foil with carrier. Then, various evaluations were performed on the obtained ultrathin copper foil with carrier. The specific procedure is as follows.

(1)キャリア箔の準備
以下に示される組成の銅電解液と、回転陰極と、陽極としてのDSA(寸法安定性陽極)とを用いて、溶液温度50℃、電流密度70A/dmで電解し、厚さ18μmの電解銅箔をキャリア箔として作製した。このとき、回転陰極として、表面を#2500(例1)、#2000(例2)、#1500(例3)、#1000(例4)又は#3000(例5)のバフで研磨して表面粗さを整えた電極を用いた。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:300g/L
‐ 塩素濃度:30mg/L
‐ 膠濃度:5mg/L
(1) Preparation of Carrier Foil Using a copper electrolyte having the composition shown below, a rotating cathode, and DSA (dimensionally stable anode) as an anode, electrolysis at a solution temperature of 50 ° C. and a current density of 70 A / dm 2 Then, an 18 μm thick electrolytic copper foil was produced as a carrier foil. At this time, the surface is polished with a buff of # 2500 (Example 1), # 2000 (Example 2), # 1500 (Example 3), # 1000 (Example 4) or # 3000 (Example 5) as a rotating cathode. The electrode whose roughness was adjusted was used.
<Composition of Copper Electrolyte>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 300 g / L
-Chlorine concentration: 30 mg / L
-Glue concentration: 5 mg / L

(2)剥離層の形成
酸洗処理されたキャリア箔の電極面を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリア箔の電極面に吸着させた。こうして、キャリア箔の電極面にCBTA層を有機剥離層として形成した。
(2) Formation of exfoliation layer The electrode surface of the pickled carrier foil was treated with an aqueous CBTA solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L and a copper concentration of 10 g / L at a liquid temperature of 30 ° C. The CBTA component was adsorbed onto the electrode surface of the carrier foil. Thus, the CBTA layer was formed as an organic release layer on the electrode surface of the carrier foil.

(3)補助金属層の形成
有機剥離層が形成されたキャリア箔を、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lを含む溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of Auxiliary Metal Layer The carrier foil on which the organic release layer is formed is immersed in a solution containing nickel concentration 20 g / L prepared using nickel sulfate, and the solution temperature is 45 ° C., pH 3, current density 5 A A deposition amount of nickel equivalent to 0.001 μm was deposited on the organic release layer under the condition of dm 2 . Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.

(4)極薄銅箔の形成
補助金属層が形成されたキャリア箔を、以下に示される組成の銅溶液に浸漬して、溶液温度50℃、電流密度5〜30A/dmで電解し、厚さ2μmの極薄銅箔を補助金属層上に形成した。
<溶液の組成>
‐ 銅濃度:60g/L
‐ 硫酸濃度:200g/L
(4) Formation of ultrathin copper foil The carrier foil on which the auxiliary metal layer is formed is immersed in a copper solution of the composition shown below to electrolyze at a solution temperature of 50 ° C. and a current density of 5 to 30 A / dm 2 , An ultra-thin copper foil 2 μm thick was formed on the auxiliary metal layer.
<Composition of solution>
-Copper concentration: 60 g / L
-Sulfuric acid concentration: 200 g / L

(5)粗化処理
こうして形成された極薄銅箔の表面に粗化処理を行った。この粗化処理は、極薄銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とから構成される。焼けめっき工程では、銅濃度10g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温25℃、電流密度15A/dmで粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温40℃及び電流密度15A/dmの平滑めっき条件で電着を行った。
(5) Roughening treatment The surface of the ultrathin copper foil thus formed was roughened. This roughening treatment is composed of a burn plating process in which fine copper particles are deposited and deposited on an extremely thin copper foil, and an overlay plating process for preventing the fine copper particles from falling off. In the burnt plating step, roughening treatment was performed at a liquid temperature of 25 ° C. and a current density of 15 A / dm 2 using an acidic copper sulfate solution containing 10 g / L of copper concentration and 120 g / L of sulfuric acid concentration. In the subsequent plating step, electrodeposition was carried out using a solution of acidic copper sulfate containing 70 g / L of copper and 120 g / L of sulfuric acid under smooth plating conditions at a liquid temperature of 40 ° C. and a current density of 15 A / dm 2 .

(6)防錆処理
得られたキャリア付極薄銅箔の粗化処理層の表面に、亜鉛−ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリア箔の表面に亜鉛−ニッケル合金めっき処理を行った。次いで、クロム酸3g/L水溶液を用い、pH10、電流密度5A/dmの条件で、亜鉛−ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(6) Anticorrosion treatment The surface of the roughened layer of the obtained carrier-attached ultrathin copper foil was subjected to an anticorrosion treatment consisting of zinc-nickel alloy plating treatment and chromate treatment. First, a roughened layer is formed using an electrolyte having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2 And the zinc-nickel alloy plating process was performed to the surface of a carrier foil. Next, the surface treated with zinc-nickel alloy plating was subjected to chromate treatment using a 3 g / L aqueous solution of chromic acid under the conditions of pH 10 and current density 5 A / dm 2 .

(7)シランカップリング剤処理
γ−グリシドキシプロピルトリメトキシシラン2g/L含む水溶液をキャリア付極薄銅箔の極薄銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア箔側には行わなかった。
(7) Silane coupling agent treatment An aqueous solution containing 2 g / L of γ-glycidoxypropyltrimethoxysilane is adsorbed onto the surface of the ultrathin copper foil on the very thin copper foil with carrier, and water is evaporated by an electric heater. , And treated with a silane coupling agent. At this time, the silane coupling agent treatment was not performed on the carrier foil side.

(8)評価
こうして得られたキャリア付極薄銅箔について、各種特性の評価を以下のとおり行った。
(8) Evaluation Evaluation of various characteristics was performed as follows about the ultrathin copper foil with a carrier obtained in this way.

<表面性状パラメータ>
測定機器としてzygo New View 5032(Zygo社製)を用い、解析ソフトとしてMetro Pro Ver.8.0.2を用いて、低周波フィルタを11μmの条件を採用して、キャリア箔と極薄銅箔について、うねりの最大高低差(Wmax)、表面ピーク間の平均距離(Peak spacing)及び谷間の平均距離(Valley spacing)の測定を行った。このとき、極薄銅箔又はキャリア箔を試料台に密着させて固定し、試料片の1cm角の範囲内の中で108μm×144μmの視野を6点選択して測定し、6箇所の測定点から得られた測定値の平均値を代表値として採用した。なお、極薄銅箔の剥離層側の面については、後述するレーザー加工性評価用の銅張積層板を作製した後に測定を行った。
<Surface texture parameter>
Using zygo New View 5032 (manufactured by Zygo) as a measurement device, Metro Pro Ver. The maximum height difference (Wmax), the average distance between surface peaks (Peak spacing), and the maximum height difference (Wmax) of carrier foils and ultra thin copper foils using a low frequency filter of 11 μm, using 8.0.2, The average distance between valleys (Valley spacing) was measured. At this time, ultra-thin copper foil or carrier foil is brought into close contact with the sample base and fixed, and a field of view of 108 μm × 144 μm is selected and measured within 6 cm square area of the sample piece, and 6 measurement points The average value of the measured values obtained from was adopted as a representative value. In addition, about the surface by the side of the peeling layer of ultra-thin copper foil, it measured after producing the copper clad laminated board for laser processability evaluation mentioned later.

例2については、極薄銅箔の表面(粗化面側)における10800μmの領域(120μm×90μm)の表面プロファイルを、3次元粗さ解析装置(ERA−8900、株式会社エリオニクス製)を用いて、測定倍率:1000倍、加速電圧:10kV、Z軸間隔:0.02μmの条件で解析することにより、平均粗化粒子高さと1/10値幅を決定した。この表面解析は、粗化粒子間の谷底のうち最も低い位置(基底面に相当)から最大粗化粒子高さに至るまで、高さ方向に一定間隔(0.02μm)で区切りながら切断面を順次設定していき、各切断面における粗化粒子の切り口数をカウントすることにより行った。切り口の数が多いほど粗化粒子数が多いことを意味し、その逆もまた然りであることはいうまでもない。そして、縦軸を切断面における切り口数とし、横軸を基底面からの高さとしてグラフ化した。この分布曲線及び前述した定義に基づいて平均粗化粒子高さと1/10値幅を決定した。 For Example 2, a surface profile of a 10800 μm 2 area (120 μm × 90 μm) on the surface (roughened surface side) of an ultrathin copper foil was measured using a three-dimensional roughness analyzer (ERA-8900, manufactured by Elionix Co., Ltd.) The average roughened particle height and the 1/10 value width were determined by analyzing under the conditions of measurement magnification: 1000 times, acceleration voltage: 10 kV, Z-axis interval: 0.02 μm. In this surface analysis, the cut surface is divided at constant intervals (0.02 μm) in the height direction from the lowest position (corresponding to the basal surface) of the valley bottoms between the roughened particles to the maximum roughened particle height. It set by one by one and was performed by counting the number of cut edges of roughening particle | grains in each cut surface. It goes without saying that the larger the number of facets, the larger the number of roughened particles, and vice versa. Then, the vertical axis represents the number of cuts in the cut surface, and the horizontal axis represents the height from the base surface. Based on this distribution curve and the definition described above, the average roughened particle height and 1/10 value width were determined.

<レーザー加工性>
キャリア付極薄銅箔を用いて銅張積層板を作製し、レーザー加工性を評価した。まず、内層基板の表面に、プリプレグ(三菱瓦斯化学株式会社製、830NX−A、厚さ0.1mm)を介してキャリア付極薄銅箔の極薄銅箔を積層し、圧力0.4MPa、温度220℃で90分間熱圧着した後、キャリア箔を剥離し、銅張積層板を作製した。その後、炭酸ガスレーザーを用い、パルス幅14μsec.、パルスエネルギー6.4mJ、レーザー光径108μmの条件で銅張積層板にレーザー加工を行った。その際、加工後の穴径が60μm以上となったものをAと判定し、60μm未満をBと判定した。
<Laser processability>
The copper clad laminated board was produced using the carrier-attached ultrathin copper foil, and the laser processability was evaluated. First, an ultrathin copper foil of a carrier-attached ultrathin copper foil is laminated on the surface of the inner layer substrate via a prepreg (Mitsubishi Gas Chemical Co., Ltd., 830NX-A, thickness 0.1 mm) under a pressure of 0.4 MPa. After thermocompression bonding at a temperature of 220 ° C. for 90 minutes, the carrier foil was peeled off to produce a copper-clad laminate. Thereafter, using a carbon dioxide gas laser, a pulse width of 14 μsec. The laser processing was performed on the copper clad laminate under the conditions of pulse energy of 6.4 mJ and laser beam diameter of 108 μm. At that time, a hole diameter after processing of 60 μm or more was determined to be A, and less than 60 μm was determined to be B.

<回路形成性>
回路形成性の評価は次のようにして行った。まず、上述の銅張積層板の表面にドライフィルムを貼り付け、露光及び現像を行い、めっきレジストを形成した。そして、銅張積層板のめっきレジストが形成されていない表面に電解銅めっきを18μmの厚さで形成した。次に、めっきレジストを剥離し、過酸化水素及び硫酸を用いたエッチング液(三菱瓦斯化学株式会社製、CPE800)で処理することにより、回路間に残存している極薄銅箔を溶解除去し、ライン/スペース=15μm/15μmの配線パターンを形成した。このとき、配線パターン幅が±2μm以下であったものをS、±2μm超5μm以下であったものをAと判定し、それ以外をBと判定した。
<Circuit formability>
The evaluation of the circuit formability was performed as follows. First, a dry film was attached to the surface of the above-mentioned copper-clad laminate, exposure and development were performed to form a plating resist. Then, electrolytic copper plating was formed to a thickness of 18 μm on the surface of the copper-clad laminate on which the plating resist was not formed. Next, the plating resist is peeled off and treated with an etching solution (CPE 800, manufactured by Mitsubishi Gas Chemical Co., Ltd.) using hydrogen peroxide and sulfuric acid to dissolve and remove the ultrathin copper foil remaining between the circuits. , And a line / space = 15 μm / 15 μm wiring pattern was formed. At this time, those having a wiring pattern width of ± 2 μm or less were determined as S, those having a width of more than ± 2 μm and 5 μm or less as A, and the other as B.

例6(比較)
キャリア箔の析出面側に剥離層及び極薄銅箔層を順に形成した後、防錆処理及びシランカップリング剤処理を行うことで、キャリア付極薄銅箔を作製した。そして、得られたキャリア付極薄銅箔について各種評価を行った。具体的な手順は以下のとおりである。
Example 6 (comparison)
After forming a peeling layer and an ultrathin copper foil layer in order on the deposition side of the carrier foil, a rustproofing treatment and a silane coupling agent treatment were performed to produce an ultrathin copper foil with carrier. Then, various evaluations were performed on the obtained ultrathin copper foil with carrier. The specific procedure is as follows.

(1)キャリア箔の準備
以下に示される組成の銅電解液と、回転陰極と、陽極としてのDSA(寸法安定性陽極)と用いて、溶液温度50℃、電流密度60A/dmで電解し、厚さ18μmの電解銅箔をキャリア箔として作製した。このとき、回転陰極として、表面を#1000のバフで研磨し表面粗さを整えた電極を用いた。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:280g/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:30mg/L
‐ ビス(3−スルホプロピル)ジスルフィド濃度:5mg/L
(1) Preparation of Carrier Foil Using a copper electrolyte of the composition shown below, a rotating cathode, and DSA (dimensionally stable anode) as an anode, electrolysis is carried out at a solution temperature of 50 ° C. and a current density of 60 A / dm 2 An electrolytic copper foil having a thickness of 18 μm was produced as a carrier foil. At this time, an electrode whose surface roughness was adjusted by polishing the surface with a buff of # 1000 was used as a rotating cathode.
<Composition of Copper Electrolyte>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 280 g / L
-Diallyldimethyl ammonium chloride concentration: 30 mg / L
-Bis (3-sulfopropyl) disulfide concentration: 5 mg / L

(2)剥離層の形成
酸洗処理されたキャリア箔を、CBTA(カルボキシベンゾトリアゾール)1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリア箔の析出面に吸着させた。こうして、キャリア箔の析出面にCBTA層を有機剥離層として形成した。
(2) Formation of exfoliation layer The pickled carrier foil is immersed in an aqueous CBTA solution of 1 g / L of CBTA (Carboxybenzotriazole), 150 g / L of sulfuric acid and 10 g / L of copper at a liquid temperature of 30 ° C. for 30 seconds. The CBTA component was adsorbed to the deposition surface of the carrier foil. Thus, the CBTA layer was formed as an organic release layer on the deposition surface of the carrier foil.

(3)後続工程及び評価
例1〜5の(3)〜(8)に記載されるのと同様の手順に従い、キャリア箔の析出面側に形成された有機剥離層上に、補助金属層の形成、極薄銅箔の形成、粗化処理、防錆処理、シランカップリング処理、及び各種評価を行った。
(3) Subsequent Steps and Evaluation According to the same procedure as described in (3) to (8) of Examples 1 to 5, the auxiliary metal layer was formed on the organic release layer formed on the deposition surface side of the carrier foil. Formation, formation of ultrathin copper foil, roughening treatment, rust prevention treatment, silane coupling treatment, and various evaluations were performed.

例7
粗化処理における焼けめっき工程を、銅濃度10g/L、硫酸濃度120g/L及びカルボキシベンゾトリアゾール2mg/Lを含む酸性硫酸銅溶液を用いて、液温25℃、電流密度15A/dmで粗化処理を行ったこと以外は例2と同様にして、キャリア付極薄銅箔の作製及び評価を行った。基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線は図4に示されるとおりであった。
Example 7
The burnt plating step in the roughening treatment was carried out using an acidic copper sulfate solution containing 10 g / L of copper concentration, 120 g / L of sulfuric acid concentration and 2 mg / L of carboxybenzotriazole at a liquid temperature of 25 ° C. and a current density of 15 A / dm 2 In the same manner as in Example 2 except that the tempering treatment was performed, preparation and evaluation of a carrier-attached ultrathin copper foil were performed. The distribution curve of the number of cut surface of roughened particles in the cut surface according to the height from the basal plane was as shown in FIG.

結果
例1〜7において得られた評価結果は表1に示されるとおりであった。
The evaluation results obtained in Result Examples 1 to 7 are as shown in Table 1.

Figure 0006529640
Figure 0006529640

本発明は以下の態様を包含するものである。
[項1]
キャリア箔、剥離層及び極薄銅箔をこの順に備えたキャリア付極薄銅箔であって、
前記極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である、キャリア付極薄銅箔。
[項2]
前記極薄銅箔の剥離層側の面は、前記表面ピーク間の平均距離(Peak spacing)が1〜15μmである、項1に記載のキャリア付極薄銅箔。
[項3]
前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が0.8μm以下である、項1又は2に記載のキャリア付極薄銅箔。
[項4]
前記極薄銅箔の剥離層と反対側の面が粗化面である、項1〜3のいずれか一項に記載のキャリア付極薄銅箔。
[項5]
前記粗化面が複数の粗化粒子を有し、該複数の粗化粒子は、基底面からの平均粗化粒子高さが1.0〜1.4μmであり、かつ、前記基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線の1/10値幅が1.3μm以下であり、前記基底面が前記複数の粗化粒子間の谷底のうち最も低い位置に相当する、前記極薄銅箔と平行な面である、項4に記載のキャリア付極薄銅箔。
[項6]
前記極薄銅箔の剥離層側の面は、うねりの最大高低差(Wmax)が1.0μm以下である、項1〜5のいずれか一項に記載のキャリア付極薄銅箔。
[項7]
前記極薄銅箔が0.1〜5.0μmの厚さを有する、項1〜6のいずれか一項に記載のキャリア付極薄銅箔。
[項8]
前記キャリア箔の剥離層側の面は、谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である、項1〜7のいずれか一項に記載のキャリア付極薄銅箔。
[項9]
項1〜8のいずれか一項に記載のキャリア付極薄銅箔の製造方法であって、
谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である表面を有するキャリア箔を用意する工程と、
前記キャリア箔の前記表面に剥離層を形成する工程と、
前記剥離層上に極薄銅箔を形成する工程と、
を含んでなる、方法。
[項10]
前記キャリア箔の表面は、谷間の平均距離(Valley spacing)が1〜10μmである、項9に記載の方法。
[項11]
前記キャリア箔の表面は、うねりの最大高低差(Wmax)が0.1〜0.7μmである、項9又は10に記載の方法。
[項12]
項1〜8のいずれか一項に記載のキャリア付極薄銅箔を用いて得られた銅張積層板。
[項13]
項1〜8のいずれか一項に記載のキャリア付極薄銅箔を用いて得られたプリント配線板。
The present invention includes the following aspects.
[Item 1]
An ultra thin copper foil with carrier comprising a carrier foil, a peeling layer and an ultra thin copper foil in this order,
The surface on the peeling layer side of the ultra-thin copper foil has an average distance (Peak spacing) between surface peaks of 20 μm or less, and the surface on the opposite side of the peeling layer of the ultra-thin copper foil has a maximum height of waviness Carrier-attached ultra-thin copper foil with a difference (Wmax) of 1.0 μm or less.
[Section 2]
The carrier-attached ultrathin copper foil according to Item 1, wherein the surface on the peeling layer side of the ultrathin copper foil has an average distance (Peak spacing) between the surface peaks of 1 to 15 μm.
[Section 3]
The extremely thin copper foil with a carrier according to claim 1 or 2, wherein the surface on the opposite side of the peeling layer of the ultra thin copper foil has a maximum height difference (Wmax) of not more than 0.8 μm in undulation.
[Section 4]
The carrier-attached ultrathin copper foil according to any one of Items 1 to 3, wherein the surface of the ultrathin copper foil opposite to the release layer is a roughened surface.
[Section 5]
The roughening surface has a plurality of roughening particles, and the plurality of roughening particles have an average roughening particle height from the basal plane of 1.0 to 1.4 μm, and from the basal plane The 1/10 value width of the distribution curve of the number of cut edges of roughened particles in the cut surface according to the height is 1.3 μm or less, and the base surface corresponds to the lowest position among the valley bottoms among the plurality of roughened particles 5. The ultra thin copper foil with a carrier according to item 4, which is a plane parallel to the ultra thin copper foil.
[Section 6]
The carrier-attached ultrathin copper foil according to any one of Items 1 to 5, wherein the surface on the release layer side of the ultrathin copper foil has a maximum height difference (Wmax) of waviness of 1.0 μm or less.
[Section 7]
The carrier-attached ultrathin copper foil according to any one of Items 1 to 6, wherein the ultrathin copper foil has a thickness of 0.1 to 5.0 μm.
[Section 8]
The surface on the peeling layer side of the carrier foil is any one of items 1 to 7, wherein the average distance between valleys (Valley spacing) is 15 μm or less, and the maximum height difference (Wmax) of undulations is 0.8 μm or less. Ultrathin copper foil with carrier according to one of the claims.
[Section 9]
Item 9. A method for producing a carrier-attached ultrathin copper foil according to any one of items 1 to 8,
Providing a carrier foil having a surface having an average valley spacing (Valley spacing) of 15 μm or less and a maximum undulation difference (Wmax) of 0.8 μm or less;
Forming a release layer on the surface of the carrier foil;
Forming an ultra-thin copper foil on the release layer;
A method comprising.
[Section 10]
10. The method according to item 9, wherein a surface of the carrier foil has an average valley spacing (valley spacing) of 1 to 10 μm.
[Item 11]
11. The method according to item 9 or 10, wherein the surface of the carrier foil has a maximum difference in height (Wmax) of undulation of 0.1 to 0.7 μm.
[Section 12]
Item 9. A copper-clad laminate obtained using the carrier-attached ultrathin copper foil according to any one of Items 1 to 8.
[Section 13]
Item 9. A printed wiring board obtained using the carrier-attached ultrathin copper foil according to any one of items 1 to 8.

Claims (11)

キャリア箔、剥離層及び極薄銅箔をこの順に備えたキャリア付極薄銅箔であって、
前記極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下、うねりの最大高低差(Wmax)が1.0μm以下であり、かつ、前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である、キャリア付極薄銅箔。
An ultra thin copper foil with carrier comprising a carrier foil, a peeling layer and an ultra thin copper foil in this order,
The surface on the peeling layer side of the ultrathin copper foil has an average distance (Peak spacing) between surface peaks of not more than 20 μm, and a maximum height difference (Wmax) of waviness of not more than 1.0 μm, and the ultrathin copper foil The peeling layer and the surface on the opposite side are carrier-attached ultrathin copper foils having a maximum height difference (Wmax) of not more than 1.0 μm.
前記極薄銅箔の剥離層側の面は、前記表面ピーク間の平均距離(Peak spacing)が1〜15μmである、請求項1に記載のキャリア付極薄銅箔。   The carrier-attached ultrathin copper foil according to claim 1, wherein the surface on the peeling layer side of the ultrathin copper foil has an average distance (Peak spacing) between the surface peaks of 1 to 15 m. 前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が0.8μm以下である、請求項1又は2に記載のキャリア付極薄銅箔。   The ultrathin copper foil with a carrier according to claim 1 or 2, wherein the surface on the opposite side of the peeling layer of the ultrathin copper foil has a maximum height difference (Wmax) of not more than 0.8 μm. 前記極薄銅箔の剥離層と反対側の面が粗化面である、請求項1〜3のいずれか一項に記載のキャリア付極薄銅箔。   The ultrathin copper foil with a carrier according to any one of claims 1 to 3, wherein the surface opposite to the peeling layer of the ultrathin copper foil is a roughened surface. 前記粗化面が複数の粗化粒子を有し、該複数の粗化粒子は、基底面からの平均粗化粒子
高さが1.0〜1.4μmであり、かつ、前記基底面からの高さに応じた切断面における
粗化粒子の切り口数の分布曲線の1/10値幅が1.3μm以下であり、前記基底面が前
記複数の粗化粒子間の谷底のうち最も低い位置に相当する、前記極薄銅箔と平行な面であ
り、前記基底面からの高さに応じた切断面における粗化粒子の切り口数が前記粗化粒子の
断面輪郭曲線と、基底面から所定の高さにおける平行な切断面によって切断されるべき面
領域の数であり、前記粗化粒子高さが基底面からの粗化粒子の高さであり、前記平均粗化
粒子高さが基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線にお
いて、粗化粒子の切り口数が最大となる、基底面からの高さであり、前記1/10値幅が
基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線において、粗化
粒子の切り口数の最大値の10分の1の値における分布幅である、請求項4に記載のキャ
リア付極薄銅箔。
The roughening surface has a plurality of roughening particles, and the plurality of roughening particles have an average roughening particle height from the basal plane of 1.0 to 1.4 μm, and from the basal plane The 1/10 value width of the distribution curve of the number of cut edges of roughened particles in the cut surface according to the height is 1.3 μm or less, and the base surface corresponds to the lowest position among the valley bottoms among the plurality of roughened particles Parallel to the extra-thin copper foil
And the number of cut faces of roughened particles in the cut surface according to the height from the basal plane is the same as that of the roughened particles.
Cross-sectional contour curve and plane to be cut by parallel cutting planes at a given height from the base plane
The number of regions, and the height of the roughening particles is the height of the roughening particles from the basal plane, the average roughening
According to the distribution curve of the number of cut surface of roughened particles in the cutting plane according to the height of the particle from the basal plane
And the height from the basal plane where the number of cut roughened particles is maximized, and the 1/10 value width is
Roughening in the distribution curve of the number of cut edges of roughened particles in the cut surface according to the height from the basal plane
5. The ultrathin copper foil with carrier according to claim 4, wherein the distribution width is a value at 1/10 of the maximum value of the number of cut faces of particles.
前記極薄銅箔が0.1〜5.0μmの厚さを有する、請求項1〜5のいずれか一項に記載のキャリア付極薄銅箔。   The carrier-attached ultrathin copper foil according to any one of claims 1 to 5, wherein the ultrathin copper foil has a thickness of 0.1 to 5.0 μm. 請求項1〜6のいずれか一項に記載のキャリア付極薄銅箔の製造方法であって、
谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である表面を有するキャリア箔を用意する工程と、
前記キャリア箔の前記表面に剥離層を形成する工程と、
前記剥離層上に極薄銅箔を形成する工程と、
を含んでなる、方法。
It is a manufacturing method of the carrier with ultra-thin copper foil as described in any one of Claims 1-6, Comprising:
Providing a carrier foil having a surface having an average valley spacing (Valley spacing) of 15 μm or less and a maximum undulation difference (Wmax) of 0.8 μm or less;
Forming a release layer on the surface of the carrier foil;
Forming an ultra-thin copper foil on the release layer;
A method comprising.
前記キャリア箔の表面は、谷間の平均距離(Valley spacing)が1〜10μmである、請求項7に記載の方法。   The method according to claim 7, wherein the surface of the carrier foil has an average valley spacing distance of 1 to 10 μm. 前記キャリア箔の表面は、うねりの最大高低差(Wmax)が0.1〜0.7μmである、請求項7又は8に記載の方法。   The method according to claim 7 or 8, wherein the surface of the carrier foil has a maximum height difference (Wmax) of undulation of 0.1 to 0.7 μm. 請求項1〜6のいずれか一項に記載のキャリア付極薄銅箔を備えた、銅張積層板。   The copper clad laminated board provided with the carrier with ultra-thin copper foil as described in any one of Claims 1-6. 請求項1〜6のいずれか一項に記載のキャリア付極薄銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法。
A method for producing a printed wiring board, comprising producing a printed wiring board using the carrier-attached ultrathin copper foil according to any one of claims 1 to 6.
JP2018103931A 2015-01-22 2018-05-30 Ultra-thin copper foil with carrier and method for manufacturing the same Active JP6529640B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015010431 2015-01-22
JP2015010431 2015-01-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016570671A Division JP6352449B2 (en) 2015-01-22 2016-01-20 Ultra-thin copper foil with carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018138702A JP2018138702A (en) 2018-09-06
JP6529640B2 true JP6529640B2 (en) 2019-06-12

Family

ID=56417128

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016570671A Active JP6352449B2 (en) 2015-01-22 2016-01-20 Ultra-thin copper foil with carrier and method for producing the same
JP2018103931A Active JP6529640B2 (en) 2015-01-22 2018-05-30 Ultra-thin copper foil with carrier and method for manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016570671A Active JP6352449B2 (en) 2015-01-22 2016-01-20 Ultra-thin copper foil with carrier and method for producing the same

Country Status (6)

Country Link
JP (2) JP6352449B2 (en)
KR (2) KR101929844B1 (en)
CN (2) CN110072334B (en)
MY (1) MY174931A (en)
TW (1) TWI572747B (en)
WO (1) WO2016117587A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543001B2 (en) 2017-03-30 2019-07-10 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same
CN107454762A (en) * 2017-09-14 2017-12-08 桐城市闲产网络服务有限公司 A kind of preparation method of computer circuit board
CN108323025B (en) * 2018-02-01 2020-01-14 北京启创驿讯科技有限公司 Preparation method of printed circuit board and copper foil for processing
MY186454A (en) * 2018-08-10 2021-07-22 Mitsui Mining & Smelting Co Ltd Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
CN109518131A (en) * 2018-12-25 2019-03-26 胡旭日 A kind of ultrathin copper foil with carrier, ultrathin copper foil production method and device
WO2021157362A1 (en) * 2020-02-04 2021-08-12 三井金属鉱業株式会社 Roughened copper foil, carrier-attached copper foil, copper clad laminate plate, and printed wiring board
KR20220106199A (en) * 2020-02-04 2022-07-28 미쓰이금속광업주식회사 Roughening process copper foil, copper foil provided with a carrier, copper clad laminated board, and printed wiring board
CN112795964B (en) * 2020-12-07 2021-11-19 安徽铜冠铜箔集团股份有限公司 Ultrathin strippable composite copper foil and preparation method thereof
JPWO2022209989A1 (en) * 2021-03-29 2022-10-06
WO2022209990A1 (en) * 2021-03-29 2022-10-06 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminate and printed wiring board
CN117321253A (en) 2021-05-20 2023-12-29 三井金属矿业株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
WO2022244828A1 (en) 2021-05-20 2022-11-24 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
JPWO2022244827A1 (en) 2021-05-20 2022-11-24
CN115233262B (en) * 2022-08-01 2023-12-12 九江德福科技股份有限公司 Preparation method of extra-thin copper foil with carrier

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432124B (en) * 1996-05-13 2001-05-01 Mitsui Mining & Amp Smelting C Electrolytic copper foil with high post heat tensile strength and its manufacturing method
JP3142270B2 (en) 1998-04-01 2001-03-07 三井金属鉱業株式会社 Manufacturing method of printed wiring board
JP4298943B2 (en) * 2001-10-18 2009-07-22 日鉱金属株式会社 Copper foil surface treatment agent
JP2005048277A (en) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, and manufacturing method therefor
JP4087369B2 (en) * 2003-11-11 2008-05-21 古河サーキットフォイル株式会社 Ultra-thin copper foil with carrier and printed wiring board
EP1531656A3 (en) * 2003-11-11 2007-10-03 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
TW200738913A (en) * 2006-03-10 2007-10-16 Mitsui Mining & Smelting Co Surface treated elctrolytic copper foil and process for producing the same
JP5256747B2 (en) * 2008-01-21 2013-08-07 宇部興産株式会社 Manufacturing method of copper wiring insulating film by semi-additive method, and copper wiring insulating film manufactured therefrom
JP6219034B2 (en) * 2010-10-06 2017-10-25 古河電気工業株式会社 Copper foil and manufacturing method thereof, copper foil with carrier and manufacturing method thereof, printed wiring board, multilayer printed wiring board
WO2014133164A1 (en) * 2013-02-28 2014-09-04 三井金属鉱業株式会社 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
JP6403969B2 (en) * 2013-03-29 2018-10-10 Jx金属株式会社 Copper foil with carrier, printed wiring board, copper-clad laminate, electronic device, and method for manufacturing printed wiring board

Also Published As

Publication number Publication date
CN107002265B (en) 2019-04-26
KR101929844B1 (en) 2018-12-17
JP6352449B2 (en) 2018-07-04
CN110072334A (en) 2019-07-30
KR20170057327A (en) 2017-05-24
WO2016117587A1 (en) 2016-07-28
TW201636457A (en) 2016-10-16
CN107002265A (en) 2017-08-01
KR102031065B1 (en) 2019-10-11
JP2018138702A (en) 2018-09-06
TWI572747B (en) 2017-03-01
KR20180135105A (en) 2018-12-19
MY174931A (en) 2020-05-24
JPWO2016117587A1 (en) 2017-07-06
CN110072334B (en) 2022-04-01

Similar Documents

Publication Publication Date Title
JP6529640B2 (en) Ultra-thin copper foil with carrier and method for manufacturing the same
KR102480377B1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP6945523B2 (en) Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.
JP7166335B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JPWO2018211951A1 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP2015007261A (en) Copper foil, copper-clad laminate for semiconductor package using the same, printed wiring board, printed circuit board, resin substrate, formation method of circuit, semi-additive process, circuit formation substrate for semiconductor package, and semiconductor package
JP7259093B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP6650923B2 (en) Ultra-thin copper foil with carrier, method for producing the same, copper-clad laminate and printed wiring board
WO2022202539A1 (en) Copper foil with carrier, copper-clad laminate, and printed wiring board
TWI804323B (en) Roughened copper foil, copper foil with carrier, copper foil laminate and printed wiring board
WO2022244827A1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250