JP6945523B2 - Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them. - Google Patents

Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them. Download PDF

Info

Publication number
JP6945523B2
JP6945523B2 JP2018511957A JP2018511957A JP6945523B2 JP 6945523 B2 JP6945523 B2 JP 6945523B2 JP 2018511957 A JP2018511957 A JP 2018511957A JP 2018511957 A JP2018511957 A JP 2018511957A JP 6945523 B2 JP6945523 B2 JP 6945523B2
Authority
JP
Japan
Prior art keywords
copper foil
treated
carrier
copper
treated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018511957A
Other languages
Japanese (ja)
Other versions
JPWO2017179416A1 (en
Inventor
翼 加藤
翼 加藤
光由 松田
光由 松田
浩人 飯田
浩人 飯田
吉川 和広
和広 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2017179416A1 publication Critical patent/JPWO2017179416A1/en
Application granted granted Critical
Publication of JP6945523B2 publication Critical patent/JP6945523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor

Description

表面処理銅箔、キャリア付銅箔、並びにそれらを用いた銅張積層板及びプリント配線板の製造方法に関するものである。 It relates to a surface-treated copper foil, a copper foil with a carrier, and a method for manufacturing a copper-clad laminate and a printed wiring board using them.

近年、回路の微細化に適したプリント配線板の製造工法として、セミアディティブ法(SAP法)が広く採用されている。SAP法は、極めて微細な回路を形成するのに適した手法であり、その一例としてキャリア付粗化処理銅箔を用いて行われている。例えば、図1及び2に示されるように、粗化表面を備えた極薄銅箔10を、下地基材11aに下層回路11bを備えた絶縁樹脂基板11上にプリプレグ12とプライマー層13を用いてプレスして密着させ(工程(a))、キャリア(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール14を形成する(工程(b))。次いで、極薄銅箔をエッチングにより除去して、粗化表面プロファイルが付与されたプライマー層13を露出させる(工程(c))。この粗化表面に無電解銅めっき15を施した(工程(d))後に、ドライフィルム16を用いた露光及び現像により所定のパターンでマスキングし(工程(e))、電気銅めっき17を施す(工程(f))。ドライフィルム16を除去して配線部分17aを形成した(工程(g))後、隣り合う配線部分17a,17a間の不要な無電解銅めっき15をエッチングにより除去して(工程(h))、所定のパターンで形成された配線18を得る。 In recent years, the semi-additive method (SAP method) has been widely adopted as a method for manufacturing a printed wiring board suitable for circuit miniaturization. The SAP method is a method suitable for forming an extremely fine circuit, and as an example thereof, a roughened copper foil with a carrier is used. For example, as shown in FIGS. 1 and 2, an ultrathin copper foil 10 having a roughened surface is used, and a prepreg 12 and a primer layer 13 are used on an insulating resin substrate 11 having a lower layer circuit 11b on a base material 11a. (Step (a)), the carrier (not shown) is peeled off, and then a via hole 14 is formed by laser perforation if necessary (step (b)). Next, the ultrathin copper foil is removed by etching to expose the primer layer 13 to which the roughened surface profile is imparted (step (c)). After electroless copper plating 15 is applied to the roughened surface (step (d)), masking is performed in a predetermined pattern by exposure and development using a dry film 16 (step (e)), and electrolytic copper plating 17 is applied. (Step (f)). After the dry film 16 was removed to form the wiring portion 17a (step (g)), the unnecessary electroless copper plating 15 between the adjacent wiring portions 17a and 17a was removed by etching (step (h)). A wiring 18 formed in a predetermined pattern is obtained.

このように粗化処理銅箔を用いたSAP法は、粗化処理銅箔自体はレーザー穿孔後にエッチングにより除去されることになる(工程(c))。そして、粗化処理銅箔が除去された積層体表面には粗化処理銅箔の粗化処理面の凹凸形状が転写されているので、その後の工程において絶縁層(例えばプライマー層13又はそれが無い場合にはプリプレグ12)とめっき回路(例えば配線18)との密着性を確保することができる。なお、工程(c)に相当する銅箔除去工程を行わないモディファイドセミアディティブ法(MSAP法)も広く採用されているが、ドライフィルム除去後のエッチング工程(工程(h)に相当)で銅箔層と無電解銅めっき層の2つの層をエッチングで除去しなければならないため、無電解銅めっき層1層のエッチング除去で済むSAP法よりもエッチングを深く行う必要がある。そのため、より多くのエッチング量を勘案して回路スペースを幾分狭くする必要が生じることから、MSAP法は微細回路形成性においてSAP法よりは幾分劣るといえる。すなわち、更なる微細な回路形成という目的においてはSAP法の方が有利である。 In the SAP method using the roughened copper foil as described above, the roughened copper foil itself is removed by etching after laser drilling (step (c)). Then, since the uneven shape of the roughened surface of the roughened copper foil is transferred to the surface of the laminate from which the roughened copper foil has been removed, the insulating layer (for example, the primer layer 13 or it) is transferred in the subsequent steps. If not, the adhesion between the prepreg 12) and the plating circuit (for example, the wiring 18) can be ensured. Although the modified semi-additive method (MSAP method) in which the copper foil removing step corresponding to the step (c) is not performed is also widely adopted, the copper foil is used in the etching step (corresponding to the step (h)) after removing the dry film. Since the two layers, the layer and the electroless copper plating layer, must be removed by etching, it is necessary to perform etching deeper than the SAP method, which requires only one layer of the electroless copper plating layer to be removed by etching. Therefore, it can be said that the MSAP method is somewhat inferior to the SAP method in terms of fine circuit formability because it is necessary to narrow the circuit space somewhat in consideration of a larger amount of etching. That is, the SAP method is more advantageous for the purpose of forming a finer circuit.

一方、粗化粒子の形状を制御したキャリア付粗化処理銅箔が知られている。例えば、特許文献1(特開2013−199082号公報)には、極薄銅層表面に、粒子長さの10%の位置の粒子根元の平均直径D1が0.2μm〜1.0μmであり、粒子長さL1と粒子根元の平均直径D1との比L1/D1が15以下の粗化処理層を有することを特徴とするキャリア付銅箔が開示されている。この特許文献1では、極薄銅層表面に、粒子長さの50%の位置の粒子中央の平均直径D2と粒子根元の平均直径D1の比D2/D1が1〜4であり、かつ、粒子中央の平均直径D2と粒子長さの90%の位置の粒子先端D3の比D2/D3が0.8〜1.0であることが好ましいとされている。また、特許文献1の実施例には粗化粒子の長さが2.68μm以上であることが開示されている。 On the other hand, a roughened copper foil with a carrier that controls the shape of the roughened particles is known. For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2013-199082), the average diameter D1 of the particle root at a position of 10% of the particle length is 0.2 μm to 1.0 μm on the surface of the ultrathin copper layer. A copper foil with a carrier is disclosed, which comprises a roughened layer having a ratio L1 / D1 of a particle length L1 to an average diameter D1 at a particle root of 15 or less. In Patent Document 1, the ratio D2 / D1 of the average diameter D2 of the center of the particle at the position of 50% of the particle length to the average diameter D1 of the particle root is 1 to 4 on the surface of the ultrathin copper layer, and the particles. It is said that the ratio D2 / D3 of the particle tip D3 at the position of 90% of the particle length to the average diameter D2 in the center is preferably 0.8 to 1.0. Further, in the examples of Patent Document 1, it is disclosed that the length of the roughened particles is 2.68 μm or more.

特開2013−199082号公報Japanese Unexamined Patent Publication No. 2013-199082

前述のように粗化処理銅箔を用いたSAP法は、粗化処理銅箔自体はレーザー穿孔後にエッチングにより除去されることになる(工程(c))。そして、粗化処理銅箔が除去された積層体表面には粗化処理銅箔の粗化処理面の凹凸形状が転写された結果、レプリカ凹凸形状がもたらされる。こうすることで、その後の工程において絶縁層(例えばプライマー層13又はそれが無い場合にはプリプレグ12)とめっき回路(例えば配線18)との密着性を確保することができる。しかしながら、回路の更なる微細化に対応すべく、密着性の更なる向上が望まれる。そこで、粗化処理面の凹凸形状をくびれを有する略球状突起を備えた形状とすることで、対応するレプリカ凹凸形状のくびれた凹部への食い込みによるアンカー効果を活用して、密着性の向上を図ることが考えられる。しかしながら、この場合、工程(d)の無電解銅めっき時にレプリカ凹凸形状の凹部が銅めっきで埋没したり、或いはレプリカ凹凸形状のくびれ部分が銅めっきで閉じられて平坦化することがある。このようなレプリカ凹凸形状の埋没ないし平坦化は、ドライフィルム解像性とエッチング性の低下を招く。すなわち、ドライフィルムのレプリカ凹凸形状への食い込みが低減する結果、ドライフィルムとの密着性が低下し、ドライフィルム解像性が低下する。また、無電解銅めっきがレプリカ凹凸形状のくびれた凹部を埋めている分、残留銅を無くすためにより多くのエッチングを要してしまう。 In the SAP method using the roughened copper foil as described above, the roughened copper foil itself is removed by etching after laser drilling (step (c)). Then, as a result of transferring the uneven shape of the roughened surface of the roughened copper foil to the surface of the laminate from which the roughened copper foil has been removed, a replica uneven shape is obtained. By doing so, the adhesion between the insulating layer (for example, the primer layer 13 or the prepreg 12 in the absence thereof) and the plating circuit (for example, the wiring 18) can be ensured in the subsequent steps. However, further improvement in adhesion is desired in order to cope with further miniaturization of circuits. Therefore, by making the uneven shape of the roughened surface a shape provided with substantially spherical protrusions having a constriction, the adhesion is improved by utilizing the anchor effect due to the biting into the constricted concave portion of the corresponding replica uneven shape. It is conceivable to plan. However, in this case, during the electroless copper plating in the step (d), the concave portion of the replica uneven shape may be buried by the copper plating, or the constricted portion of the replica uneven shape may be closed by the copper plating and flattened. The burial or flattening of such a replica uneven shape causes a decrease in dry film resolution and etching property. That is, as a result of reducing the biting of the dry film into the uneven shape of the replica, the adhesion to the dry film is lowered and the resolution of the dry film is lowered. In addition, since electroless copper plating fills the constricted recesses of the replica uneven shape, more etching is required to eliminate residual copper.

本発明者らは、今般、表面処理銅箔の処理表面に、ISO25178に準拠して測定される山頂点の算術平均曲Spcで規定される特有の表面プロファイルを付与することにより、SAP法に用いた場合に、優れためっき回路密着性のみならず、無電解銅めっきに対するエッチング性にも優れた表面プロファイルを積層体に付与可能な、表面処理銅箔を提供できるとの知見を得た。また、上記表面処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現できるとの知見も得た。 The present inventors have now applied to the treated surface of the surface-treated copper foil for the SAP method by imparting a unique surface profile defined by the arithmetic average curve Spc of the peak peak measured in accordance with ISO25178. It was found that a surface-treated copper foil capable of imparting a surface profile excellent not only in excellent plating circuit adhesion but also in etching property to electroless copper plating to a laminate can be provided. It was also found that by using the surface-treated copper foil, extremely fine dry film resolution can be realized in the dry film developing process in the SAP method.

したがって、本発明の目的は、SAP法に用いた場合に、めっき回路密着性のみならず、無電解銅めっきに対するエッチング性、及びドライフィルム解像性にも優れた表面プロファイルを積層体に付与可能な、表面処理銅箔を提供することにある。また、本発明の他の目的は、そのような表面処理銅箔を備えたキャリア付銅箔を提供することにある。 Therefore, an object of the present invention is that when used in the SAP method, it is possible to impart a surface profile excellent not only in adhesion to the plating circuit but also in etching property to electroless copper plating and dry film resolution to the laminate. The purpose is to provide surface-treated copper foil. Another object of the present invention is to provide a copper foil with a carrier provided with such a surface-treated copper foil.

本発明の一態様によれば、少なくとも一方の側に処理表面を有する表面処理銅箔であって、
前記処理表面は、ISO25178に準拠して測定される山頂点の算術平均曲Spcが55mm−1以上であり、
前記処理表面に樹脂フィルムを熱圧着して前記処理表面の表面形状を前記樹脂フィルムの表面に転写し、エッチングにより前記表面処理銅箔を除去した場合に、残された前記樹脂フィルムの前記表面における、ISO25178に準拠して測定される山頂点の算術平均曲Spcが55mm−1以上となる、表面処理銅箔が提供される。
According to one aspect of the present invention, a surface-treated copper foil having a treated surface on at least one side.
The treated surface has an arithmetic mean song Spc of the peak peak measured in accordance with ISO25178 of 55 mm -1 or more.
When a resin film is thermocompression bonded to the treated surface to transfer the surface shape of the treated surface to the surface of the resin film and the surface-treated copper foil is removed by etching, the surface of the resin film remains. , A surface-treated copper foil having a peak arithmetic average Spc of 55 mm -1 or more measured in accordance with ISO25178 is provided.

本発明の他の一態様によれば、キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記処理表面を外側にして設けられた前記表面処理銅箔とを備えた、キャリア付銅箔が提供される。 According to another aspect of the present invention, the carrier, the peeling layer provided on the carrier, and the surface-treated copper foil provided on the peeling layer with the treated surface facing outward are provided. Copper foil with a carrier is provided.

本発明の他の一態様によれば、前記表面処理銅箔又は前記キャリア付銅箔を用いて銅張積層板を製造することを特徴とする、銅張積層板の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for producing a copper-clad laminate, which comprises producing a copper-clad laminate using the surface-treated copper foil or the carrier-attached copper foil.

本発明の他の一態様によれば、前記表面処理銅箔又は前記キャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for manufacturing a printed wiring board, which comprises manufacturing the printed wiring board using the surface-treated copper foil or the copper foil with a carrier.

SAP法を説明するための工程流れ図であり、前半の工程(工程(a)〜(d))を示す図である。It is a process flow chart for demonstrating the SAP method, and is the figure which shows the process (steps (a)-(d)) of the first half. SAP法を説明するための工程流れ図であり、後半の工程(工程(e)〜(h))を示す図である。It is a process flow chart for demonstrating the SAP method, and is the figure which shows the process (step (e)-(h)) of the latter half. ISO25178に準拠して決定される負荷曲線及び負荷面積率を説明するための図である。It is a figure for demonstrating the load curve and the load area ratio determined in accordance with ISO25178. ISO25178に準拠して決定される突出山部とコア部を分離する負荷面積率Smr1を説明するための図である。It is a figure for demonstrating the load area ratio Smr1 which separates a protruding mountain part and a core part determined in accordance with ISO25178.

定義
本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
Definitions Definitions of terms or parameters used to identify the present invention are shown below.

本明細書において「山頂点の算術平均曲Spc」とは、ISO25178に準拠して測定される、表面の山頂点の主曲率の算術平均を表すパラメータである。この値が小さいことは、他の物体と接触する点が丸みを帯びていることを示す。一方、この値が大きいことは、他の物体と接触する点が尖っていることを示す。端的に言えば、山頂点の算術平均曲Spcは、レーザー顕微鏡にて測定可能な、こぶの丸みを表すパラメータであるといえる。山頂点の算術平均曲Spcは、処理表面における所定の測定面積(例えば100μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。Spcは以下の数式で定義される。

Figure 0006945523
In the present specification, the "arithmetic mean song Spc of the peak peak" is a parameter representing the arithmetic mean of the principal curvature of the peak peak of the surface, which is measured according to ISO25178. A small value indicates that the points of contact with other objects are rounded. On the other hand, a large value indicates that the point of contact with another object is sharp. In short, the arithmetic mean song Spc at the peak can be said to be a parameter representing the roundness of the hump, which can be measured with a laser microscope. The arithmetic mean curve Spc at the peak can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional region of 100 μm 2) on the treated surface with a commercially available laser microscope. Spc is defined by the following formula.
Figure 0006945523

本明細書において「面の負荷曲線」(以下、単に「負荷曲線」という)とは、ISO25178に準拠して測定される、負荷面積率が0%から100%となる高さを表した曲線をいう。負荷面積率とは、図3に示されるように、ある高さc以上の領域の面積を表すパラメータである。高さcでの負荷面積率は図3におけるSmr(c)に相当する。図4に示されるように、負荷面積率が0%から負荷曲線に沿って負荷面積率の差を40%にして引いた負荷曲線の割線を、負荷面積率0%から移動させていき、割線の傾斜が最も緩くなる位置を負荷曲線の中央部分という。この中央部分に対して、縦軸方向の偏差の二乗和が最小になる直線を等価直線という。等価直線の負荷面積率0%から100%の高さの範囲に含まれる部分をコア部という。コア部より高い部分を突出山部といい、コア部より低い部分は突出谷部という。コア部は、初期磨耗が終わった後にほかの物体と接触する領域の高さを表す。 In the present specification, the "surface load curve" (hereinafter, simply referred to as "load curve") is a curve representing the height at which the load area ratio is 0% to 100%, which is measured in accordance with ISO25178. say. As shown in FIG. 3, the load area ratio is a parameter representing the area of a region having a certain height c or more. The load area ratio at the height c corresponds to Smr (c) in FIG. As shown in FIG. 4, the secant line of the load curve drawn from the load area ratio of 0% along the load curve with the difference of the load area ratio set to 40% is moved from the load area ratio of 0%, and the secant line is used. The position where the slope is the gentlest is called the central part of the load curve. The straight line that minimizes the sum of squares of the deviations in the vertical axis direction with respect to this central portion is called an equivalent straight line. The portion included in the height range of the load area ratio of the equivalent straight line from 0% to 100% is called the core portion. The part higher than the core part is called the protruding peak part, and the part lower than the core part is called the protruding valley part. The core portion represents the height of the area that comes into contact with other objects after the initial wear is completed.

本明細書において「突出山部とコア部を分離する負荷面積率Smr1」とは、図4に示されるように、ISO25178に準拠して測定される、コア部の上部の高さと負荷曲線の交点における負荷面積率(すなわちコア部と突出山部をわける負荷面積率)を表すパラメータである。この値が大きいほど、突出山部が占める割合が大きいことを意味する。なお、図4において、Skはコア部の高さを表し、Smr2はコア部と突出谷部をわける負荷面積率を表す。突出山部とコア部を分離する負荷面積率Smr1は、処理表面における所定の測定面積(例えば100μmの領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。In the present specification, the “load area ratio Smr1 that separates the protruding mountain portion and the core portion” is the intersection of the height of the upper part of the core portion and the load curve, which is measured in accordance with ISO25178, as shown in FIG. It is a parameter representing the load area ratio (that is, the load area ratio that separates the core portion and the protruding mountain portion). The larger this value is, the larger the proportion of the protruding mountain portion is. In FIG. 4, Sk represents the height of the core portion, and Smr2 represents the load area ratio that separates the core portion and the protruding valley portion. The load area ratio Smr1 that separates the protruding peak portion and the core portion can be calculated by measuring the surface profile of a predetermined measurement area (for example, a region of 100 μm 2) on the treated surface with a commercially available laser microscope.

本明細書において「山の頂点密度Spd」とは、ISO25178に準拠して測定される、単位面積当たりの山頂点の数を表すパラメータである。この値が大きいと他の物体との接触点の数が多いことを示唆する。山の頂点密度Spdは、処理表面における所定の測定面積(例えば100μmの領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。In the present specification, the “mountain apex density Spd” is a parameter representing the number of mountain vertices per unit area measured in accordance with ISO25178. A large value suggests that the number of contact points with other objects is large. The peak density Spd of the peak can be calculated by measuring the surface profile of a predetermined measurement area (for example, a region of 100 μm 2) on the treated surface with a commercially available laser microscope.

本明細書において、電解銅箔の「電極面」とは電解銅箔作製時に陰極と接していた側の面を指す。 In the present specification, the "electrode surface" of the electrolytic copper foil refers to the surface on the side in contact with the cathode when the electrolytic copper foil is produced.

本明細書において、電解銅箔の「析出面」とは電解銅箔作製時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。 In the present specification, the "precipitation surface" of the electrolytic copper foil refers to the surface on which the electrolytic copper is deposited during the production of the electrolytic copper foil, that is, the surface on the side not in contact with the cathode.

表面処理銅箔
本発明による銅箔は表面処理銅箔である。この表面処理銅箔は、少なくとも一方の側に処理表面を有する。この処理表面は、ISO25178に準拠して測定される山頂点の算術平均曲Spcが55mm−1以上である。また、この表面処理銅箔は、処理表面に樹脂フィルムを熱圧着して処理表面の表面形状を樹脂フィルムの表面に転写し、エッチングにより表面処理銅箔を除去した場合に、残された樹脂フィルム(以下、樹脂レプリカともいう)の表面(以下、転写表面ともいう)における、ISO25178に準拠して測定される山頂点の算術平均曲Spcが55mm−1以上となるものである。このように、表面処理銅箔の処理表面に、ISO25178に準拠して測定される山頂点の算術平均曲Spcで規定される特有の表面プロファイルを付与することにより、SAP法に用いた場合に、優れためっき回路密着性のみならず、無電解銅めっきに対するエッチング性にも優れた表面プロファイルを積層体に付与可能な、表面処理銅箔を提供することができる。また、上記表面処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。
Surface-treated copper foil The copper foil according to the present invention is a surface-treated copper foil. This surface-treated copper foil has a treated surface on at least one side. This treated surface has an arithmetic mean song Spc of the peak peak measured according to ISO25178 of 55 mm -1 or more. Further, this surface-treated copper foil is a resin film left when the surface-treated copper foil is thermocompression-bonded to the treated surface to transfer the surface shape of the treated surface to the surface of the resin film and the surface-treated copper foil is removed by etching. On the surface (hereinafter, also referred to as a transfer surface) of the surface (hereinafter, also referred to as a resin replica), the arithmetic average curve Spc of the peak peak measured in accordance with ISO25178 is 55 mm -1 or more. In this way, by imparting a unique surface profile defined by the arithmetic average curve Spc of the peak peak measured in accordance with ISO25178 to the treated surface of the surface-treated copper foil, when used in the SAP method, It is possible to provide a surface-treated copper foil capable of imparting a surface profile excellent not only to excellent plating circuit adhesion but also excellent etching property to electroless copper plating to a laminate. Further, by using the surface-treated copper foil, extremely fine dry film resolution can be realized in the dry film developing step in the SAP method.

めっき回路密着性と、無電解銅めっきに対するエッチング性は本来的には両立し難いものであるが、本発明によれば予想外にもそれらが両立可能となる。すなわち、前述したように、めっき回路との密着性を上げるのに適したくびれた凹部を有する表面プロファイルは、図2の工程(h)において無電解銅めっきのエッチング性が低下しやすい。すなわち、無電解銅めっきでレプリカ凹凸形状のくびれた凹部が埋まっている分、残留銅を無くすためにより多くのエッチングを要してしまう。しかしながら、本発明の粗化処理銅箔によればそのようなエッチング量の低減を実現しながら、優れためっき回路密着性を確保できる。これは、表面処理銅箔の処理表面Spcと樹脂レプリカの転写表面のSpcをそれぞれ55mm−1以上とすることにより、くびれの無い凹凸形状がもたらされることによるものと考えられる。The adhesion of the plating circuit and the etching property for electroless copper plating are inherently difficult to be compatible with each other, but according to the present invention, they can be unexpectedly compatible with each other. That is, as described above, the surface profile having a constricted recess suitable for improving the adhesion to the plating circuit tends to reduce the etching property of the electroless copper plating in the step (h) of FIG. That is, since the constricted concave portion of the replica uneven shape is filled with electroless copper plating, more etching is required to eliminate the residual copper. However, according to the roughened copper foil of the present invention, it is possible to secure excellent adhesion to the plating circuit while realizing such a reduction in the amount of etching. It is considered that this is because the uneven shape without constriction is brought about by setting the Spc of the treated surface of the surface-treated copper foil and the Spc of the transfer surface of the resin replica to 55 mm -1 or more, respectively.

すなわち、Spcが大きい方が凸部の頂点が尖っており、そのため、くびれの無い処理表面は、くびれの有る処理表面よりも凸部の頂点が尖る、すなわちSpcが大きくなる。処理表面の凹凸形状が転写された樹脂レプリカの転写表面についても、Spcが大きい方が凸部の頂点が尖っているといえる。これは、くびれの有る凹凸形状の場合の転写表面は頂点が平坦となるのに対し、くびれの無い凹凸形状の場合の転写表面は頂点は平坦とはならず、一定の曲率を有する(すなわち尖っている)ためである。その結果、くびれの無い転写表面は、くびれの有る転写表面よりもSpcが大きくなる。すなわち、表面処理銅箔の処理表面Spcと樹脂レプリカの転写表面のSpcをそれぞれ55mm−1以上と高くすることで、くびれの無い凹凸形状がもたらされ、くびれを有する形状に起因する上記問題が好都合に解消されるものと考えられる。すなわち、くびれ形状が無いことで、無電解銅めっきを処理表面の凹凸形状に忠実に追随させてその形状を損なうことなく再現することができ、その結果、優れためっき回路との密着性を、無電解銅めっきに対するエッチング性を損なうことなく実現できるものと考えられる。こうして、めっき回路密着性と、無電解銅めっきに対するエッチング性を両立することができる。そして、そのように優れた密着性と無電解銅めっきに対する優れたエッチング性を両立できたことによって、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現できるものと考えられる。したがって、本発明の表面処理銅箔は、SAP法によるプリント配線板の作製に用いられるのが好ましい。別の表現をすれば、本発明の表面処理銅箔は、プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いられるのが好ましいともいえる。That is, the larger the Spc, the sharper the apex of the convex portion, and therefore, the treated surface without the constriction has a sharper apex of the convex portion, that is, the Spc is larger than the treated surface having the constriction. Regarding the transfer surface of the resin replica to which the uneven shape of the treated surface is transferred, it can be said that the larger the Spc, the sharper the apex of the convex portion. This is because the transfer surface in the case of a concavo-convex shape with a constriction has flat vertices, whereas the transfer surface in the case of a concavo-convex shape without a constriction does not have a flat apex and has a constant curvature (that is, a sharp point). Because). As a result, the transfer surface without constriction has a larger Spc than the transfer surface with constriction. That is, by increasing the Spc of the treated surface of the surface-treated copper foil and the Spc of the transfer surface of the resin replica to 55 mm -1 or more, respectively, a concavo-convex shape without constriction is obtained, and the above problem caused by the constricted shape is caused. It is thought that it will be resolved conveniently. That is, since there is no constriction shape, electroless copper plating can be faithfully followed the uneven shape of the treated surface and reproduced without damaging the shape, and as a result, excellent adhesion to the plating circuit can be achieved. It is considered that this can be realized without impairing the etchability for electroless copper plating. In this way, it is possible to achieve both adhesion to the plating circuit and etching property for electroless copper plating. It is considered that extremely fine dry film resolution can be realized in the dry film developing process in the SAP method by achieving both such excellent adhesion and excellent etching property for electroless copper plating. .. Therefore, the surface-treated copper foil of the present invention is preferably used for producing a printed wiring board by the SAP method. In other words, it can be said that the surface-treated copper foil of the present invention is preferably used for transferring the uneven shape to the insulating resin layer for the printed wiring board.

本発明の表面処理銅箔は、少なくとも一方の側に処理表面を有する。処理表面は何らかの表面処理が施されている面であり、典型的には粗化処理面である。いずれにせよ、表面処理銅箔は両側に処理表面(例えば粗化処理面)を有するものであってもよいし、一方の側にのみ処理表面を有するものであってもよい。両側に処理表面を有する場合は、SAP法に用いた場合にレーザー照射側の面(絶縁樹脂に密着させる面と反対側の面)も表面処理されていることになるので、レーザー吸収性が高まる結果、レーザー穿孔性をも向上させることができる。 The surface-treated copper foil of the present invention has a treated surface on at least one side. The treated surface is a surface that has been subjected to some surface treatment, and is typically a roughened surface. In any case, the surface-treated copper foil may have a treated surface (for example, a roughened surface) on both sides, or may have a treated surface on only one side. When the treated surfaces are provided on both sides, the surface on the laser irradiation side (the surface opposite to the surface in close contact with the insulating resin) is also surface-treated when used in the SAP method, so that the laser absorption is enhanced. As a result, the laser perforation property can also be improved.

本発明の表面処理銅箔の処理表面は、山頂点の算術平均曲Spcが55mm−1以上であり、好ましくは60mm−1以上200mm−1以下、より好ましくは60mm−1以上150mm−1以下である。このような範囲内であるとくびれの無い凹凸形状を実現しやすい。The surface-treated copper foil of the present invention has an arithmetic mean curve Spc of 55 mm -1 or more at the peak, preferably 60 mm -1 or more and 200 mm -1 or less, and more preferably 60 mm -1 or more and 150 mm -1 or less. be. Within such a range, it is easy to realize an uneven shape without a constriction.

本発明の表面処理銅箔は、処理表面に樹脂フィルムを熱圧着して処理表面の表面形状を樹脂フィルムの表面に転写し、エッチングにより表面処理銅箔を除去した場合に、残された樹脂フィルムの表面(すなわち樹脂レプリカの転写表面)における山頂点の算術平均曲Spcが55mm−1以上であり、好ましくは60mm−1以上200mm−1以下、より好ましくは60mm−1以上150mm−1以下、さらに好ましくは60mm−1以上130mm−1以下である。このような範囲内であるとくびれの無い凹凸形状を実現しやすい。樹脂フィルムは熱硬化性樹脂フィルムが好ましく、プリプレグの形態であってもよい。熱硬化性樹脂の例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂、ポリイミド樹脂等が挙げられる。熱圧着は、表面処理銅箔の処理表面の凹凸形状を樹脂フィルムに転写可能な条件で行えばよく特に限定されない。例えば、圧力3.0〜5.0MPa、温度200〜240℃で60〜120分間、熱圧着を行うのが好ましい。The surface-treated copper foil of the present invention is a resin film remaining when a resin film is thermocompression-bonded to the treated surface to transfer the surface shape of the treated surface to the surface of the resin film and the surface-treated copper foil is removed by etching. The arithmetic average curve Spc of the peak on the surface of the resin replica (that is, the transfer surface of the resin replica) is 55 mm -1 or more, preferably 60 mm -1 or more and 200 mm -1 or less, more preferably 60 mm -1 or more and 150 mm -1 or less, and further. It is preferably 60 mm -1 or more and 130 mm -1 or less. Within such a range, it is easy to realize an uneven shape without a constriction. The resin film is preferably a thermosetting resin film, and may be in the form of a prepreg. Examples of the thermosetting resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin, polyimide resin and the like. The thermocompression bonding is not particularly limited as long as the uneven shape of the treated surface of the surface-treated copper foil can be transferred to the resin film. For example, it is preferable to perform thermocompression bonding at a pressure of 3.0 to 5.0 MPa and a temperature of 200 to 240 ° C. for 60 to 120 minutes.

本発明の表面処理銅箔は、上記エッチング後に残された樹脂フィルムの表面(すなわち樹脂レプリカの転写表面)が、突出山部とコア部を分離する負荷面積率Smr1が9.0%以上であるのが好ましく、より好ましくは10〜20%、さらに好ましくは10〜15%である。このような範囲内であると、くびれの無い形状をより望ましく規定することができる。前述のとおり、Smr1の値が大きいほど、突出山部が占める割合が大きいことを意味する。この点、樹脂レプリカの転写表面のくびれ部分は上方からのレーザー顕微鏡による観察で検出されないため、くびれを欠いた矩形状の凹部を有する矩形仮想転写表面の等価物としてレーザー顕微鏡で認識される。その結果、上から輪切りにしていったときの断面積の増加率はすぐに一定になる、すなわち突出山部が小さくなる結果、Smr1が小さくなる。これに対し、くびれの無い転写表面は、くびれの有る転写表面(これは前記矩形仮想転写表面と等価である)よりも突出山部が大きく、それ故、Smr1が大きくなる。すなわち、くびれの無い処理表面は、くびれの有る処理表面よりも突出山部の占める割合が大きくなる、すなわちSmr1が大きくなる。 In the surface-treated copper foil of the present invention, the surface of the resin film left after the etching (that is, the transfer surface of the resin replica) has a load area ratio Smr1 of 9.0% or more that separates the protruding peak portion and the core portion. Is preferable, more preferably 10 to 20%, still more preferably 10 to 15%. Within such a range, a shape without a constriction can be more preferably defined. As described above, the larger the value of Smr1, the larger the proportion of the protruding mountain portion. In this respect, since the constricted portion of the transfer surface of the resin replica is not detected by observation with a laser microscope from above, it is recognized by the laser microscope as an equivalent of a rectangular virtual transfer surface having a rectangular recess lacking the constriction. As a result, the rate of increase in the cross-sectional area when sliced from above becomes constant immediately, that is, the protruding ridge becomes smaller, and as a result, Smr1 becomes smaller. On the other hand, the transfer surface without constriction has a larger protruding peak than the transfer surface with constriction (which is equivalent to the rectangular virtual transfer surface), and therefore Smr1 is larger. That is, the treated surface without constriction has a larger proportion of the protruding peaks than the treated surface with constriction, that is, Smr1 is larger.

本発明の好ましい態様によれば、処理表面には複数の粗化粒子が付着されている。すなわち、処理表面は粗化処理面であるのが好ましい。粗化粒子は銅粒子からなるのが好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。しかしながら、銅粒子が銅合金の場合、銅エッチング液に対する溶解性が低下したり、或いは銅エッチング液への合金成分混入によりエッチング液の寿命が低下したりすることがあるため、銅粒子は金属銅からなることが好ましい。 According to a preferred embodiment of the present invention, a plurality of roughened particles are attached to the treated surface. That is, the treated surface is preferably a roughened surface. The roughened particles are preferably made of copper particles. The copper particles may be made of metallic copper or may be made of a copper alloy. However, when the copper particles are a copper alloy, the solubility in the copper etching solution may be lowered, or the life of the etching solution may be shortened due to the mixing of the alloy component in the copper etching solution. Therefore, the copper particles are metallic copper. It is preferably composed of.

処理表面は、ISO25178に準拠して測定される山の頂点密度Spdが5000mm−2以上20000mm−2以下であるのが好ましく、より好ましくは7000mm−2以上18000mm−2以下、さらに好ましくは10000mm−2以上15000mm−2以下である。これらの範囲内であると、凹凸形状に基づくアンカー効果を十分に発揮させることができ、めっき回路密着性及びドライフィルム解像性が向上する。Treated surface is preferably vertex density Spd mountain which is measured in accordance is 5000 mm -2 or more 20000 mm -2 or less in ISO25178, and more preferably 7000 mm -2 or more 18000Mm -2 or less, more preferably 10000 mm -2 It is 15000 mm- 2 or less. Within these ranges, the anchor effect based on the uneven shape can be sufficiently exhibited, and the adhesion of the plating circuit and the resolution of the dry film are improved.

本発明の表面処理銅箔の厚さは特に限定されないが、0.1〜18μmが好ましく、より好ましくは0.5〜10μm、さらに好ましくは0.5〜7μm、特に好ましくは0.5〜5μm、最も好ましくは0.5〜3μmである。なお、本発明の表面処理銅箔は、通常の銅箔の表面に粗化処理等の表面処理を行ったものに限らず、キャリア付銅箔の銅箔表面の粗化処理等の表面処理を行ったものであってもよい。 The thickness of the surface-treated copper foil of the present invention is not particularly limited, but is preferably 0.1 to 18 μm, more preferably 0.5 to 10 μm, still more preferably 0.5 to 7 μm, and particularly preferably 0.5 to 5 μm. , Most preferably 0.5 to 3 μm. The surface-treated copper foil of the present invention is not limited to the surface of a normal copper foil that has been subjected to surface treatment such as roughening treatment, but the surface treatment such as roughening treatment of the copper foil surface of a copper foil with a carrier is performed. It may be the one that went.

表面処理銅箔の製造方法
本発明による表面処理銅箔の好ましい製造方法の一例を説明するが、本発明による表面処理銅箔は以下に説明する方法に限らず、本発明の表面処理銅箔の表面プロファイルを実現できるかぎり、あらゆる方法によって製造されたものであってよい。
Method for Producing Surface-treated Copper Foil An example of a preferable method for producing the surface-treated copper foil according to the present invention will be described, but the surface-treated copper foil according to the present invention is not limited to the method described below, and the surface-treated copper foil according to the present invention is not limited to the method described below. It may be manufactured by any method as long as a surface profile can be achieved.

(1)銅箔の準備
表面処理銅箔の製造に使用する銅箔として、電解銅箔及び圧延銅箔の双方の使用が可能である。銅箔の厚さは特に限定されないが、0.1〜18μmが好ましく、より好ましくは0.5〜10μm、さらに好ましくは0.5〜7μm、特に好ましくは0.5〜5μm、最も好ましくは0.5〜3μmである。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。
(1) Preparation of Copper Foil Both electrolytic copper foil and rolled copper foil can be used as the copper foil used for producing the surface-treated copper foil. The thickness of the copper foil is not particularly limited, but is preferably 0.1 to 18 μm, more preferably 0.5 to 10 μm, still more preferably 0.5 to 7 μm, particularly preferably 0.5 to 5 μm, and most preferably 0. .5 to 3 μm. When the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is formed by a wet film forming method such as a non-electrolytic copper plating method and an electrolytic copper plating method, a dry film forming method such as sputtering and chemical vapor deposition, or a dry film forming method. It may be formed by a combination thereof.

(2)表面処理(粗化処理)
銅粒子を用いて銅箔の少なくとも一方の表面を粗化する。この粗化は、粗化処理用銅電解溶液を用いた電解により行われる。この電解は2段階のめっき工程を経て行われるのが好ましい。1段階目のめっき工程では、銅濃度8〜12g/L及び硫酸濃度200〜280g/Lを含む硫酸銅溶液を用いて、液温20〜40℃、電流密度15〜35A/dm、時間5〜25秒のめっき条件で電着を行うのが好ましい。この1段階目のめっき工程は、2つの槽を用いて合計2回行われるのが好ましい。2段階目のめっき工程では、銅濃度65〜80g/L及び硫酸濃度200〜280g/Lを含む硫酸銅溶液を用いて、液温45〜55℃及び電流密度5〜30A/dm、時間5〜25秒のめっき条件で電着を行うのが好ましい。各段階における電気量は、1段階目のめっき工程における電気量Qの2段階目のめっき工程における電気量Qに対する比(Q/Q)は1.0未満となるように設定するのが好ましく、より好ましくは0.5〜0.9、さらに好ましくは0.7〜0.9である。このようにQ/Qを低くすることでくびれの無い凹凸形状を備えた粗化処理面を実現することができる。なお、1段階目のめっき工程が複数回行われた場合における電気量Qは複数回の工程の合計電気量である。
(2) Surface treatment (roughening treatment)
Copper particles are used to roughen at least one surface of the copper foil. This roughening is performed by electrolysis using a copper electrolytic solution for roughening treatment. This electrolysis is preferably carried out through a two-step plating step. In the first-step plating step, a copper sulfate solution containing a copper concentration of 8 to 12 g / L and a sulfuric acid concentration of 200 to 280 g / L is used, the liquid temperature is 20 to 40 ° C., the current density is 15 to 35 A / dm 2 , and the time is 5. It is preferable to carry out electrodeposition under plating conditions of ~ 25 seconds. This first-step plating step is preferably performed twice in total using two tanks. In the second-step plating step, a copper sulfate solution containing a copper concentration of 65 to 80 g / L and a sulfuric acid concentration of 200 to 280 g / L is used, the liquid temperature is 45 to 55 ° C., the current density is 5 to 30 A / dm 2 , and the time is 5. It is preferable to carry out electrodeposition under plating conditions of ~ 25 seconds. The amount of electricity in each step is set so that the ratio (Q 1 / Q 2 ) of the amount of electricity Q 1 in the first plating step to the amount of electricity Q 2 in the second plating step is less than 1.0. Is preferable, more preferably 0.5 to 0.9, still more preferably 0.7 to 0.9. By lowering Q 1 / Q 2 in this way, it is possible to realize a roughened surface having a concavo-convex shape without constriction. Incidentally, the quantity of electricity Q 1 when the first stage of the plating process is performed a plurality of times is the total quantity of electricity multiple steps.

(3)防錆処理
所望により、粗化処理後の銅箔に防錆処理を施してもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛−ニッケル合金処理が特に好ましい。亜鉛−ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛−ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2〜10が好ましく、より好ましくは2〜7、さらに好ましくは2.7〜4である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛−ニッケル合金めっき処理とその後のクロメート処理との組合せである。
(3) Rust prevention treatment If desired, the copper foil after the roughening treatment may be subjected to a rust prevention treatment. The rust preventive treatment preferably includes a plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co. The Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 to 10 in terms of mass ratio, more preferably 2 to 7, and even more preferably 2.7 to 4. Further, the rust preventive treatment preferably further includes a chromate treatment, and it is more preferable that the chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc. By doing so, the rust prevention property can be further improved. A particularly preferable rust preventive treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.

(4)シランカップリング剤処理
所望により、銅箔にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4−グリシジルブチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)ブトキシ)プロピル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3−メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3−メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。
(4) Treatment with Silane Coupling Agent If desired, the copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. As a result, moisture resistance, chemical resistance, adhesion to an adhesive or the like can be improved. The silane coupling agent layer can be formed by appropriately diluting the silane coupling agent, applying it, and drying it. Examples of silane coupling agents include epoxy functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane and N-2 (amino). Amino functions such as ethyl) 3-aminopropyltrimethoxysilane, N-3-(4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane A sex silane coupling agent, or a mercapto-functional silane coupling agent such as 3-mercaptopropyltrimethoxysilane, or an olefin-functional silane coupling agent such as vinyltrimethoxysilane or vinylphenyltrimethoxysilane, or 3-methacryloxypropyl. Examples thereof include an acrylic functional silane coupling agent such as trimethoxysilane, an imidazole functional silane coupling agent such as imidazole silane, and a triazine functional silane coupling agent such as triazinesilane.

キャリア付銅箔
本発明の表面処理銅箔は、キャリア付銅箔の形態で提供することができる。この場合、キャリア付銅箔は、キャリアと、このキャリア上に設けられた剥離層と、この剥離層上に処理表面(典型的には粗化処理面)を外側にして設けられた本発明の表面処理銅箔とを備えてなる。もっとも、キャリア付銅箔は、本発明の表面処理銅箔を用いること以外は、公知の層構成が採用可能である。
Copper Foil with Carrier The surface-treated copper foil of the present invention can be provided in the form of a copper foil with a carrier. In this case, the copper foil with a carrier is provided with the carrier, a release layer provided on the carrier, and the release layer provided on the release layer with the treated surface (typically the roughened surface) on the outside. It is equipped with a surface-treated copper foil. However, as the copper foil with a carrier, a known layer structure can be adopted except that the surface-treated copper foil of the present invention is used.

キャリアは、表面処理銅箔を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリアの例としては、アルミニウム箔、銅箔、表面をメタルコーティングした樹脂フィルム等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリアの厚さは典型的には200μm以下であり、好ましくは12μm〜35μmである。 The carrier is a layer (typically a foil) for supporting the surface-treated copper foil and improving its handleability. Examples of the carrier include an aluminum foil, a copper foil, a resin film having a metal coating on the surface, and the like, and a copper foil is preferable. The copper foil may be either rolled copper foil or electrolytic copper foil. The thickness of the carrier is typically 200 μm or less, preferably 12 μm to 35 μm.

キャリアの剥離層側の面は、0.5〜1.5μmの十点表面粗さRzjisを有するのが好ましく、より好ましくは0.6〜1.0μmである。RzjisはJIS B 0601:2001に準拠して決定することができる。このような十点表面粗さRzjisをキャリアの剥離層側の面に付与しておくことで、その上に剥離層を介して作製される本発明の表面処理銅箔に望ましい表面プロファイルを付与しやすくすることができる。 The surface of the carrier on the peeling layer side preferably has a ten-point surface roughness Rzjis of 0.5 to 1.5 μm, and more preferably 0.6 to 1.0 μm. Rzjis can be determined in accordance with JIS B 0601: 2001. By imparting such a ten-point surface roughness Rzjis to the surface of the carrier on the release layer side, a desirable surface profile is imparted to the surface-treated copper foil of the present invention produced via the release layer on the surface. Can be made easier.

剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2−ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定されること等により行えばよい。キャリアの剥離層成分含有溶液への接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm〜1μmであり、好ましくは5nm〜500nmである。 The peeling layer is a layer having a function of weakening the peeling strength of the carrier, ensuring the stability of the strength, and further suppressing the mutual diffusion that may occur between the carrier and the copper foil during press molding at a high temperature. .. The release layer is generally formed on one surface of the carrier, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of the organic component used in the organic exfoliation layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Examples of the nitrogen-containing organic compound include a triazole compound and an imidazole compound, and among them, the triazole compound is preferable because the peelability is easily stable. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-. Examples thereof include 1H-1,2,4-triazole and the like. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiothianulic acid, 2-benzimidazole thiol and the like. Examples of carboxylic acids include monocarboxylic acids and dicarboxylic acids. On the other hand, examples of the inorganic component used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component to the surface of the carrier. The carrier may be brought into contact with the release layer component-containing solution by immersion in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. Further, the release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm to 1 μm, preferably 5 nm to 500 nm.

表面処理銅箔としては、上述した本発明の表面処理銅箔を用いる。本発明の表面処理銅箔は典型的には銅粒子を用いた粗化が施されたものであるが、手順としては、先ず剥離層の表面に銅層を銅箔として形成し、その後少なくとも粗化を行えばよい。粗化の詳細については前述したとおりである。なお、銅箔はキャリア付銅箔としての利点を活かすべく、極薄銅箔の形態で構成されるのが好ましい。極薄銅箔としての好ましい厚さは0.1μm〜7μmであり、より好ましくは0.5μm〜5μm、さらに好ましくは0.5μm〜3μmである。 As the surface-treated copper foil, the surface-treated copper foil of the present invention described above is used. The surface-treated copper foil of the present invention is typically roughened using copper particles, but the procedure is to first form a copper layer as a copper foil on the surface of the release layer, and then at least roughen it. It should be changed. The details of the roughening are as described above. The copper foil is preferably formed in the form of an ultrathin copper foil in order to take advantage of the copper foil with a carrier. The thickness of the ultrathin copper foil is preferably 0.1 μm to 7 μm, more preferably 0.5 μm to 5 μm, and even more preferably 0.5 μm to 3 μm.

剥離層と銅箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。補助金属層の厚さは、0.001〜3μmとするのが好ましい。 Another functional layer may be provided between the release layer and the copper foil. An example of such another functional layer is an auxiliary metal layer. The auxiliary metal layer is preferably made of nickel and / or cobalt. The thickness of the auxiliary metal layer is preferably 0.001 to 3 μm.

銅張積層板
本発明の表面処理銅箔ないしキャリア付銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記表面処理銅箔又は上記キャリア付銅箔を用いて銅張積層板を製造することを特徴とする、銅張積層板の製造方法、あるいは上記表面処理銅箔又は上記キャリア付銅箔を用いて得られた銅張積層板が提供される。本発明の表面処理銅箔ないしキャリア付銅箔を用いることで、SAP法に特に適した銅張積層板を提供することができる。この銅張積層板は、本発明のキャリア付銅箔と、該処理表面に密着して設けられる樹脂層とを備えてなる。キャリア付銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1〜1000μmが好ましく、より好ましくは2〜400μmであり、さらに好ましくは3〜200μmである。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介してキャリア付銅箔に設けられていてもよい。
Copper-clad laminate The surface-treated copper foil or the copper foil with a carrier of the present invention is preferably used for producing a copper-clad laminate for a printed wiring board. That is, according to a preferred embodiment of the present invention, a method for producing a copper-clad laminate, which comprises producing a copper-clad laminate using the surface-treated copper foil or the carrier-attached copper foil, or the surface treatment. A copper-clad laminate obtained by using a copper foil or the copper foil with a carrier is provided. By using the surface-treated copper foil or the copper foil with a carrier of the present invention, it is possible to provide a copper-clad laminate particularly suitable for the SAP method. This copper-clad laminate comprises the copper foil with a carrier of the present invention and a resin layer provided in close contact with the treated surface. The copper foil with a carrier may be provided on one side of the resin layer or may be provided on both sides. The resin layer contains a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper is impregnated with a synthetic resin. Preferred examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin and the like. Further, examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin. Further, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property. The thickness of the resin layer is not particularly limited, but is preferably 1 to 1000 μm, more preferably 2 to 400 μm, and even more preferably 3 to 200 μm. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the copper foil with a carrier via a primer resin layer previously applied to the surface of the copper foil.

プリント配線板
本発明の表面処理銅箔ないしキャリア付銅箔はプリント配線板の作製に用いられるのが好ましく、特に好ましくはSAP法によるプリント配線板の作製に用いられる。すなわち、本発明の好ましい態様によれば、前述した表面処理銅箔又は上記キャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法、あるいは前述した表面処理銅箔又は上記キャリア付銅箔を用いて得られたプリント配線板が提供される。本発明の表面処理銅箔ないしキャリア付銅箔を用いることで、プリント配線板の製造において、優れためっき回路密着性のみならず、無電解銅めっきに対するエッチング性にも優れた表面プロファイルを積層体に付与可能な、表面処理銅箔を提供することができる。また、上記表面処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。したがって、極めて微細な回路形成が施されたプリント配線板を提供することができる。本態様によるプリント配線板は、樹脂層と、銅層とがこの順に積層された層構成を含んでなる。SAP法の場合には本発明の表面処理銅箔は図1の工程(c)において除去されるため、SAP法により作製されたプリント配線板は本発明の表面処理銅箔をもはや含まず、表面処理銅箔の処理表面から転写された表面プロファイルが残存するのみである。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の表面処理銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の表面処理銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の表面処理銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、表面処理銅箔を配線層の全部又は一部としてMSAP法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、表面処理銅箔を除去してSAP法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の表面処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明のキャリア付銅箔はSAP法に適している。例えば、SAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。
Printed Wiring Board The surface-treated copper foil or copper foil with a carrier of the present invention is preferably used for producing a printed wiring board, and particularly preferably used for producing a printed wiring board by the SAP method. That is, according to a preferred embodiment of the present invention, a method for manufacturing a printed wiring board, which comprises manufacturing a printed wiring board using the above-mentioned surface-treated copper foil or the above-mentioned copper foil with a carrier, or the above-mentioned surface treatment. A printed wiring board obtained by using a copper foil or the copper foil with a carrier is provided. By using the surface-treated copper foil or the copper foil with a carrier of the present invention, in the production of printed wiring boards, a laminated body has a surface profile that is excellent not only in excellent plating circuit adhesion but also in etchability for electroless copper plating. It is possible to provide a surface-treated copper foil that can be applied to. Further, by using the surface-treated copper foil, extremely fine dry film resolution can be realized in the dry film developing step in the SAP method. Therefore, it is possible to provide a printed wiring board in which an extremely fine circuit is formed. The printed wiring board according to this embodiment includes a layer structure in which a resin layer and a copper layer are laminated in this order. In the case of the SAP method, the surface-treated copper foil of the present invention is removed in the step (c) of FIG. 1, so that the printed wiring board produced by the SAP method no longer contains the surface-treated copper foil of the present invention and has a surface surface. Only the surface profile transferred from the treated surface of the treated copper foil remains. The resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board. Specific examples of the printed wiring board include a single-sided or double-sided printed wiring board in which a circuit is formed by adhering the surface-treated copper foil of the present invention to one or both sides of a prepreg to form a cured laminate, or a multilayer in which these are multilayered. Examples include printed wiring boards. Further, as another specific example, a flexible printed wiring board, COF, TAB tape, etc., in which the surface-treated copper foil of the present invention is formed on a resin film to form a circuit can be mentioned. As still another specific example, after forming a copper foil with resin (RCC) in which the above-mentioned resin layer is applied to the surface-treated copper foil of the present invention and laminating the resin layer as an insulating adhesive layer on the above-mentioned printed circuit board. , A build-up wiring board in which a circuit is formed by a method such as the MSAP method or a subtractive method using the surface-treated copper foil as all or a part of the wiring layer, or a build in which a circuit is formed by the SAP method by removing the surface-treated copper foil. Examples thereof include an up wiring board, a direct build-up on wafer in which a copper foil with a resin is laminated and a circuit is formed alternately on a semiconductor integrated circuit. As a more advanced specific example, an antenna element formed by laminating the above-mentioned copper foil with resin on a base material and forming a circuit, an electronic material for a panel display or a window formed by laminating a pattern on glass or a resin film via an adhesive layer. Examples thereof include electronic materials for glass, electromagnetic wave shield films obtained by applying a conductive adhesive to the surface-treated copper foil of the present invention, and the like. In particular, the copper foil with a carrier of the present invention is suitable for the SAP method. For example, when the circuit is formed by the SAP method, the configuration shown in FIGS. 1 and 2 can be adopted.

本発明を以下の例によってさらに具体的に説明する。 The present invention will be described in more detail with reference to the following examples.

例1及び2
キャリア付表面処理銅箔として、キャリア付粗化処理銅箔を以下のようにして作製及び評価した。
Examples 1 and 2
As the surface-treated copper foil with a carrier, a roughened copper foil with a carrier was prepared and evaluated as follows.

(1)キャリアの作製
銅電解液として以下に示される組成の硫酸銅溶液を用い、陰極に算術平均表面粗さRa(JIS B 0601:2001に準拠)が0.20μmのチタン製の回転電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ12μmの電解銅箔をキャリアとして得た。得られたキャリアの剥離層側の面の十点平均粗さRzjisをJIS B 0601:2001に準拠して測定したところ、0.9μmであった。
<硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:260g/L
‐ ビス(3−スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
(1) Preparation of carrier Using a copper sulfate solution having the composition shown below as the copper electrolytic solution, a rotating electrode made of titanium having an arithmetic average surface roughness Ra (based on JIS B 0601: 2001) of 0.20 μm was attached to the cathode. A DSA (dimensionally stable anode) was used as the anode, and electrolysis was performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 , to obtain an electrolytic copper foil having a thickness of 12 μm as a carrier. The ten-point average roughness Rzjis of the surface of the obtained carrier on the peeling layer side was measured according to JIS B 0601: 2001 and found to be 0.9 μm.
<Composition of copper sulfate solution>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 260 g / L
-Bis (3-sulfopropyl) disulfide concentration: 30 mg / L
-Diallyldimethylammonium chloride polymer concentration: 50 mg / L
-Chlorine concentration: 40 mg / L

(2)剥離層の形成
酸洗処理されたキャリア用銅箔の電極面側を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリア用銅箔の電極面の表面にCBTA層を有機剥離層として形成した。
(2) Formation of release layer The electrode surface side of the pickled carrier copper foil is put into a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L. The CBTA component was adsorbed on the electrode surface of the carrier by immersing at a temperature of 30 ° C. for 30 seconds. In this way, the CBTA layer was formed as an organic release layer on the surface of the electrode surface of the copper foil for the carrier.

(3)補助金属層の形成
有機剥離層が形成されたキャリア用銅箔を、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of Auxiliary Metal Layer The carrier copper foil on which the organic release layer was formed was immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature was 45 ° C., pH 3, and current density. Under the condition of 5 A / dm 2 , an adhered amount of nickel corresponding to a thickness of 0.001 μm was adhered onto the organic release layer. In this way, a nickel layer was formed as an auxiliary metal layer on the organic release layer.

(4)極薄銅箔形成
補助金属層が形成されたキャリア用銅箔を、以下に示される組成の硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5〜30A/dmで電解し、厚さ3μm(例1、3及び4)又は2.5μm(例2)の極薄銅箔を補助金属層上に形成した。
<溶液の組成>
‐ 銅濃度:60g/L
‐ 硫酸濃度:200g/L
(4) Formation of ultra-thin copper foil A copper foil for a carrier on which an auxiliary metal layer is formed is immersed in a copper sulfate solution having the composition shown below, and electrolyzed at a solution temperature of 50 ° C. and a current density of 5 to 30 A / dm 2. An ultrathin copper foil having a thickness of 3 μm (Examples 1, 3 and 4) or 2.5 μm (Example 2) was formed on the auxiliary metal layer.
<Solution composition>
-Copper concentration: 60 g / L
-Sulfuric acid concentration: 200 g / L

(5)粗化処理
上述の極薄銅箔の析出面に対して粗化処理を行った。この粗化処理は、以下の2段階めっきにより行った。1段階目のめっき工程は2つの槽を用いて合計2回行われ、各めっき工程(すなわち各槽)において銅濃度10.8g/L及び硫酸濃度230〜250g/Lを含む硫酸銅溶液を用いて、溶液温度25℃、電流密度25A/dmのめっき条件で電着を行った。2段階目のめっき工程では、銅濃度70g/L及び硫酸濃度230〜250g/Lを含む硫酸銅溶液を用いて、溶液温度50℃及び電流密度58A/dmのめっき条件で電着を行った。各段階における電気量は、1段階目のめっき工程における電気量Qの2段階目のめっき工程における電気量Qに対する比(Q/Q)が1未満(具体的には0.87)となるように設定した。具体的には表1に示される諸条件で電着を行った。
(5) Roughing treatment A roughening treatment was performed on the deposited surface of the above-mentioned ultrathin copper foil. This roughening treatment was performed by the following two-step plating. The first-step plating step is performed twice in total using two tanks, and each plating step (that is, each tank) uses a copper sulfate solution containing a copper concentration of 10.8 g / L and a sulfuric acid concentration of 230 to 250 g / L. Then, electrodeposition was performed under plating conditions of a solution temperature of 25 ° C. and a current density of 25 A / dm 2. In the second-stage plating step, electrodeposition was performed using a copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 230 to 250 g / L under plating conditions of a solution temperature of 50 ° C. and a current density of 58 A / dm 2. .. As for the amount of electricity in each stage, the ratio (Q 1 / Q 2 ) of the amount of electricity Q 1 in the first plating process to the amount of electricity Q 2 in the second plating process is less than 1 (specifically 0.87). ). Specifically, electrodeposition was performed under the conditions shown in Table 1.

(6)防錆処理
粗化処理後のキャリア付銅箔の両面に、無機防錆処理及びクロメート処理からなる防錆処理を行った。まず、無機防錆処理として、ピロリン酸浴を用い、ピロリン酸カリウム濃度80g/L、亜鉛濃度0.2g/L、ニッケル濃度2g/L、液温40℃、電流密度0.5A/dmで亜鉛−ニッケル合金防錆処理を行った。次いで、クロメート処理として、亜鉛−ニッケル合金防錆処理の上に、更にクロメート層を形成した。このクロメート処理は、クロム酸濃度が1g/L、pH11、溶液温度25℃、電流密度1A/dmで行った。
(6) Rust prevention treatment Both sides of the copper foil with a carrier after the roughening treatment were subjected to a rust prevention treatment consisting of an inorganic rust prevention treatment and a chromate treatment. First, as an inorganic rust preventive treatment, a pyrophosphate bath was used at a potassium pyrophosphate concentration of 80 g / L, a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, a liquid temperature of 40 ° C., and a current density of 0.5 A / dm 2 . Zinc-nickel alloy rust prevention treatment was performed. Next, as a chromate treatment, a chromate layer was further formed on the zinc-nickel alloy rust preventive treatment. This chromate treatment was carried out at a chromic acid concentration of 1 g / L, a pH of 11, a solution temperature of 25 ° C., and a current density of 1 A / dm 2 .

(7)シランカップリング剤処理
上記防錆処理が施された銅箔を水洗し、その後直ちにシランカップリング剤処理を行い、粗化処理面の防錆処理層上にシランカップリング剤を吸着させた。このシランカップリング剤処理は、純水を溶媒とし、3−アミノプロピルトリメトキシシラン濃度が3g/Lの溶液を用い、この溶液をシャワーリングにて粗化処理面に吹き付けて吸着処理することにより行った。シランカップリング剤の吸着後、最終的に電熱器により水分を気散させ、厚さ3μm(例1、3及び4)又は2.5μm(例2)の粗化処理銅箔を備えた、キャリア付銅箔を得た。
(7) Silane Coupling Agent Treatment The copper foil that has been subjected to the above rust preventive treatment is washed with water, and then immediately treated with the silane coupling agent to adsorb the silane coupling agent on the rust preventive treatment layer on the roughened surface. rice field. In this silane coupling agent treatment, pure water is used as a solvent, a solution having a 3-aminopropyltrimethoxysilane concentration of 3 g / L is used, and this solution is sprayed on the roughened surface by showering to adsorb. went. After the adsorption of the silane coupling agent, the moisture is finally dissipated by an electric heater, and the carrier is provided with a roughened copper foil having a thickness of 3 μm (Examples 1, 3 and 4) or 2.5 μm (Example 2). Obtained copper foil.

(8)粗化処理銅箔の評価
得られた粗化処理銅箔について、粗化粒子を含む表面プロファイルの諸特性を以下のとおり行った。
(8) Evaluation of Roughened Copper Foil The obtained roughened copper foil was subjected to various characteristics of the surface profile containing roughened particles as follows.

<粗化処理銅箔のSpc及びSpd>
粗化処理銅箔の粗化処理面における面積100μmの二次元領域(10μm×10μm)の表面プロファイルを、レーザー顕微鏡(株式会社キーエンス製、VK−X100)を用いてレーザー法により解析し、粗化処理銅箔の粗化処理面における山頂点の算術平均曲Spc(mm−1)と山の頂点密度Spd(mm−2)をISO25178に準拠して測定した。この測定は、Sフィルターによるカットオフ波長を0.8μmとし、Lフィルターによるカットオフ波長を0.1μmとして行った。上記測定を同一サンプルに対して合計3回を行い、それらの平均値を測定値として採用した。
<Spc and Spd of roughened copper foil>
The surface profile of a two-dimensional region (10 μm × 10 μm) having an area of 100 μm 2 on the roughened surface of the roughened copper foil was analyzed by a laser method using a laser microscope (Keence Co., Ltd., VK-X100) and roughened. The arithmetic mean curve Spc (mm -1 ) and the peak density Spd (mm -2 ) of the peaks on the roughened surface of the chemical-treated copper foil were measured according to ISO25178. This measurement was performed with the cutoff wavelength of the S filter set to 0.8 μm and the cutoff wavelength of the L filter set to 0.1 μm. The above measurement was performed a total of 3 times for the same sample, and the average value thereof was adopted as the measured value.

<樹脂レプリカ表面のSpc及びSmr1>
粗化処理銅箔の粗化処理面の表面プロファイルのレプリカ形状を樹脂で作製し、得られた樹脂レプリカ表面の表面プロファイルを解析した。具体的には、まず、プリプレグ(三菱瓦斯化学株式会社製、GHPL−830NS、厚さ0.1mm)に対してキャリア付銅箔をその極薄銅箔側が接するように積層し、圧力4.0MPa、温度220℃で90分間熱圧着した。その後、キャリアを剥離し、圧着された極薄銅箔を塩化銅系エッチング液で完全に除去して、粗化処理面の表面プロファイルが転写された樹脂レプリカを得た。この樹脂レプリカの転写面(粗化処理面の表面プロファイルが転写された面)における面積100μmの二次元領域(10μm×10μm)の表面プロファイルを、レーザー顕微鏡(株式会社キーエンス製、VK−X100)を用いてレーザー法により解析し、樹脂レプリカ表面における山頂点の算術平均曲Spc(mm−1)及び突出山部とコア部を分離する負荷面積率Smr1(%)をISO25178に準拠して測定した。この測定は、Sフィルターによるカットオフ波長を0.8μmとし、Lフィルターによるカットオフ波長を0.1μmとして行った。上記測定を同一サンプルに対して合計3回を行い、それらの平均値を測定値として採用した。
<Spc and Smr1 on the surface of the resin replica>
A replica shape of the surface profile of the roughened surface of the roughened copper foil was prepared with a resin, and the surface profile of the obtained resin replica surface was analyzed. Specifically, first, a copper foil with a carrier was laminated on a prepreg (manufactured by Mitsubishi Gas Chemical Company, Limited, GHPL-830NS, thickness 0.1 mm) so that the ultrathin copper foil side was in contact with the prepreg, and the pressure was 4.0 MPa. , Thermocompression bonded at a temperature of 220 ° C. for 90 minutes. Then, the carrier was peeled off, and the crimped ultrathin copper foil was completely removed with a copper chloride-based etching solution to obtain a resin replica to which the surface profile of the roughened surface was transferred. A laser microscope (manufactured by Keyence Co., Ltd., VK-X100) was used to obtain a surface profile of a two-dimensional region (10 μm × 10 μm) having an area of 100 μm 2 on the transfer surface (the surface to which the surface profile of the roughened surface was transferred) of this resin replica. The arithmetic average curve Spc (mm -1 ) of the peak of the peak on the resin replica surface and the load area ratio Smr1 (%) that separates the protruding peak and the core were measured according to ISO25178. .. This measurement was performed with the cutoff wavelength of the S filter set to 0.8 μm and the cutoff wavelength of the L filter set to 0.1 μm. The above measurement was performed a total of 3 times for the same sample, and the average value thereof was adopted as the measured value.

(9)銅張積層板の作製
キャリア付銅箔を用いて銅張積層板を作製した。まず、内層基板の表面に、プリプレグ(三菱瓦斯化学株式会社製、GHPL−830NSF、厚さ0.1mm)を介してキャリア付銅箔の極薄銅箔を積層し、圧力4.0MPa、温度220℃で90分間熱圧着した後、キャリアを剥離し、銅張積層板を作製した。
(9) Preparation of Copper-clad Laminated Plate A copper-clad laminate was prepared using a copper foil with a carrier. First, an ultrathin copper foil with a carrier is laminated on the surface of the inner layer substrate via a prepreg (GHPL-830NSF, thickness 0.1 mm), pressure 4.0 MPa, temperature 220. After thermocompression bonding at ° C. for 90 minutes, the carrier was peeled off to prepare a copper-clad laminate.

(10)SAP評価用積層体の作製
次いで、硫酸・過酸化水素系エッチング液で表面の銅箔をすべて除去した後、脱脂、Pd系触媒付与、及び活性化処理を行った。こうして活性化された表面に無電解銅めっき(厚さ:1μm)を行い、SAP法においてドライフィルムが張り合わせられる直前の積層体(以下、SAP評価用積層体という)を得た。これらの工程はSAP法の公知の条件に従って行った。
(10) Preparation of SAP Evaluation Laminated Body Next, after removing all the copper foil on the surface with a sulfuric acid / hydrogen peroxide-based etching solution, degreasing, Pd-based catalyst addition, and activation treatment were performed. Electroless copper plating (thickness: 1 μm) was performed on the surface activated in this way to obtain a laminate immediately before the dry film was laminated by the SAP method (hereinafter referred to as SAP evaluation laminate). These steps were performed according to the known conditions of the SAP method.

(11)SAP評価用積層体の評価
上記得られたSAP評価用積層体について、各種特性の評価を以下のとおり行った。
(11) Evaluation of SAP Evaluation Laminate The various characteristics of the obtained SAP evaluation laminate were evaluated as follows.

<めっき回路密着性(剥離強度)>
SAP評価用積層体にドライフィルムを張り合わせ、露光及び現像を行った。現像されたドライフィルムでマスキングされた積層体にパターンめっきで厚さ19μmの銅層を析出させた後、ドライフィルムを剥離した。硫酸・過酸化水素系エッチング液で表出している無電解銅めっきを除去し、高さ20μm、幅10mmの剥離強度測定用サンプルを作成した。JIS C 6481(1996)に準拠して、評価用サンプルから銅箔を剥離する際の、剥離強度を測定した。
<Plating circuit adhesion (peeling strength)>
A dry film was attached to the laminate for SAP evaluation, and exposure and development were performed. A copper layer having a thickness of 19 μm was deposited on the laminate masked with the developed dry film by pattern plating, and then the dry film was peeled off. The electroless copper plating exposed with a sulfuric acid / hydrogen peroxide-based etching solution was removed, and a sample for measuring peel strength having a height of 20 μm and a width of 10 mm was prepared. The peel strength at the time of peeling the copper foil from the evaluation sample was measured according to JIS C 6481 (1996).

<エッチング性>
SAP評価用積層体に対して硫酸・過酸化水素系エッチング液で0.2μmずつエッチングを行い、表面の銅が完全になくなるまでの量(深さ)を計測した。計測方法は、光学顕微鏡(500倍)で確認した。より詳しくは、0.2μmエッチングする毎に光学顕微鏡で銅の有無を確認する作業を繰り返し、(エッチングの回数)×0.2μmにより得られた値(μm)をエッチング性の指標として用いた。例えば、エッチング性が1.2μmということは、0.2μmのエッチングを6回行ったところで、光学顕微鏡で残存銅が検出されなくなったことを意味する(すなわち0.2μm×6回=1.2μm)。すなわち、この値が小さいほど少ない回数のエッチングで表面の銅を除去できることを意味する。すなわちこの値が小さいほどエッチング性が良好であることを意味する。
<Etching property>
The SAP evaluation laminate was etched with a sulfuric acid / hydrogen peroxide-based etching solution by 0.2 μm each, and the amount (depth) until the copper on the surface was completely eliminated was measured. The measuring method was confirmed with an optical microscope (500 times). More specifically, the work of confirming the presence or absence of copper with an optical microscope was repeated every time 0.2 μm was etched, and the value (μm) obtained by (number of etchings) × 0.2 μm was used as an index of etchability. For example, an etching property of 1.2 μm means that after etching 0.2 μm 6 times, residual copper is no longer detected by the optical microscope (that is, 0.2 μm × 6 times = 1.2 μm). ). That is, the smaller this value is, the smaller the number of times of etching is required to remove the copper on the surface. That is, the smaller this value is, the better the etching property is.

<ドライフィルム解像性(最小L/S)>
SAP評価用積層体の表面に厚さ25μmのドライフィルムを張り合わせ、ライン/スペース(L/S)が2μm/2μmから15μm/15μmまでのパターンが形成されたマスクを用いて露光及び現像を行った。このときの露光量は125mJとした。現像後のサンプルの表面を光学顕微鏡(500倍)で観察し、問題なく現像が行えたL/Sにおける最小の(すなわち最も微細な)L/Sをドライフィルム解像性の指標として採用した。例えば、ドライフィルム解像性評価の指標である最小L/S=10μm/10μmということは、L/S=15μm/15μmから10μm/10μmまでは問題無く解像できたことを意味する。例えば、問題無く解像できた場合はドライフィルムパターン間で鮮明なコントラストが観察されるのに対し、解像が良好に行われなかった場合にはドライフィルムパターン間に黒ずんだ部分が観察され鮮明なコントラストが観察されない。
<Dry film resolution (minimum L / S)>
A dry film having a thickness of 25 μm was attached to the surface of the SAP evaluation laminate, and exposure and development were performed using a mask having a line / space (L / S) pattern of 2 μm / 2 μm to 15 μm / 15 μm. .. The exposure amount at this time was 125 mJ. The surface of the developed sample was observed with an optical microscope (500 times), and the smallest (that is, the finest) L / S in the L / S that could be developed without any problem was adopted as an index of dry film resolution. For example, the minimum L / S = 10 μm / 10 μm, which is an index for evaluating the resolution of dry film, means that the resolution from L / S = 15 μm / 15 μm to 10 μm / 10 μm could be achieved without any problem. For example, when the resolution is successful, a clear contrast is observed between the dry film patterns, whereas when the resolution is not good, a darkened portion is observed between the dry film patterns and is clear. No contrast is observed.

例3(比較)
粗化処理における、1段階目のめっき工程における電気量Qの2段階目のめっき工程における電気量Qに対する比(Q/Q)を2.16となるように設定したこと(具体的には表1に示される諸条件で電着を行ったこと)以外は例1に関して述べた手順と同様にしてキャリア付粗化処理銅箔の作製及び評価を行った。
Example 3 (comparison)
The ratio (Q 1 / Q 2 ) of the amount of electricity Q 1 in the first-stage plating process to the amount of electricity Q 2 in the second-stage plating process in the roughening process was set to 2.16 (specifically). The roughened copper foil with a carrier was prepared and evaluated in the same manner as in the procedure described for Example 1 except that electrodeposition was performed under the conditions shown in Table 1.

例4(比較)
粗化処理における、1段階目のめっき工程における電気量Qの2段階目のめっき工程における電気量Qに対する比(Q/Q)を3.38となるように設定したこと(具体的には表1に示される諸条件で電着を行ったこと)以外は例1に関して述べた手順と同様にしてキャリア付粗化処理銅箔の作製及び評価を行った。
Example 4 (comparison)
The ratio (Q 1 / Q 2 ) of the amount of electricity Q 1 in the first-stage plating process to the amount of electricity Q 2 in the second-stage plating process in the roughening process was set to 3.38 (specifically). The roughened copper foil with a carrier was prepared and evaluated in the same manner as in the procedure described for Example 1 except that electrodeposition was performed under the conditions shown in Table 1.

結果
例1〜4において得られた評価結果は表2に示されるとおりであった。
Results The evaluation results obtained in Examples 1 to 4 are as shown in Table 2.

Figure 0006945523
Figure 0006945523

Figure 0006945523
Figure 0006945523


Claims (10)

少なくとも一方の側に処理表面を有する表面処理銅箔であって、
前記処理表面は、ISO25178に準拠して測定される山頂点の算術平均曲Spcが60mm −1 以上200mm −1 以下であり、
前記処理表面に樹脂フィルムを熱圧着して前記処理表面の表面形状を前記樹脂フィルムの表面に転写し、エッチングにより前記表面処理銅箔を除去した場合に、残された前記樹脂フィルムの前記表面における、ISO25178に準拠して測定される山頂点の算術平均曲Spcが55mm−1以上となる、表面処理銅箔。
A surface-treated copper foil having a treated surface on at least one side.
The treated surface has an arithmetic mean music Spc of the peak peak measured in accordance with ISO25178 of 60 mm -1 or more and 200 mm -1 or less .
When a resin film is thermocompression bonded to the treated surface to transfer the surface shape of the treated surface to the surface of the resin film and the surface-treated copper foil is removed by etching, the surface of the resin film remains. , A surface-treated copper foil having a peak arithmetic average Spc of 55 mm -1 or more, which is measured in accordance with ISO25178.
前記エッチング後に残された前記前記樹脂フィルムの前記表面は、ISO25178に準拠して測定される、突出山部とコア部を分離する負荷面積率Smr1が9.0%以上である、請求項1に記載の表面処理銅箔。 The surface of the resin film left after the etching has a load area ratio Smr1 for separating the protruding peak portion and the core portion, which is measured in accordance with ISO25178, of 9.0% or more, according to claim 1. The surface-treated copper foil described. 前記処理表面には粗化粒子が付着されている、請求項1又は2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein roughened particles are adhered to the treated surface. 前記処理表面は、ISO25178に準拠して測定される山の頂点密度Spdが5000mm−2以上20000mm−2以下である、請求項1〜3のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 3, wherein the treated surface has a peak density Spd of 5000 mm- 2 or more and 20000 mm- 2 or less measured in accordance with ISO25178. 前記表面処理銅箔が0.5〜5μmの厚さを有する、請求項1〜4のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 4, wherein the surface-treated copper foil has a thickness of 0.5 to 5 μm. プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いられる、請求項1〜5のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 5, which is used for transferring an uneven shape to an insulating resin layer for a printed wiring board. セミアディティブ法によるプリント配線板の作製に用いられる、請求項1〜6のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 6, which is used for producing a printed wiring board by a semi-additive method. キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記処理表面を外側にして設けられた請求項1〜7のいずれか一項に記載の表面処理銅箔とを備えた、キャリア付銅箔。 The carrier, the peeling layer provided on the carrier, and the surface-treated copper foil according to any one of claims 1 to 7 provided on the peeling layer with the treated surface facing outward. , Copper foil with carrier. 請求項1〜7のいずれか一項に記載の表面処理銅箔又は請求項8に記載のキャリア付銅箔を用いて銅張積層板を製造することを特徴とする、銅張積層板の製造方法。 Manufacture of a copper-clad laminate, characterized in that a copper-clad laminate is produced using the surface-treated copper foil according to any one of claims 1 to 7 or the carrier-attached copper foil according to claim 8. Method. 請求項1〜7のいずれか一項に記載の表面処理銅箔又は請求項8に記載のキャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法。

A method for manufacturing a printed wiring board, which comprises manufacturing a printed wiring board using the surface-treated copper foil according to any one of claims 1 to 7 or the copper foil with a carrier according to claim 8.

JP2018511957A 2016-04-14 2017-03-28 Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them. Active JP6945523B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016081447 2016-04-14
JP2016081447 2016-04-14
PCT/JP2017/012678 WO2017179416A1 (en) 2016-04-14 2017-03-28 Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same

Publications (2)

Publication Number Publication Date
JPWO2017179416A1 JPWO2017179416A1 (en) 2019-02-21
JP6945523B2 true JP6945523B2 (en) 2021-10-06

Family

ID=60041506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018511957A Active JP6945523B2 (en) 2016-04-14 2017-03-28 Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.

Country Status (6)

Country Link
JP (1) JP6945523B2 (en)
KR (1) KR102338103B1 (en)
CN (1) CN109072472B (en)
MY (1) MY186859A (en)
TW (1) TWI711139B (en)
WO (1) WO2017179416A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684869B (en) * 2018-03-28 2021-03-19 三井金属矿业株式会社 Method for manufacturing multilayer wiring board
JP6606317B1 (en) * 2018-04-25 2019-11-13 古河電気工業株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
US20210202190A1 (en) * 2018-05-29 2021-07-01 Sekisui Polymatech Co., Ltd. Metal contact member and rubber switch member
US11856688B2 (en) * 2018-07-06 2023-12-26 Tatsuta Electric Wire & Cable Co., Ltd. Adhesive film for printed wiring board
JP6905157B2 (en) * 2018-08-10 2021-07-21 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
KR20210063339A (en) * 2018-09-26 2021-06-01 세키수이 폴리머텍 가부시키가이샤 thermal conductive sheet
JP6895936B2 (en) 2018-09-28 2021-06-30 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminates and circuit boards using this
CN112586098B (en) * 2018-09-28 2021-09-21 三井金属矿业株式会社 Method for manufacturing multilayer wiring board
JP6622443B1 (en) * 2018-09-28 2019-12-18 三井金属鉱業株式会社 Manufacturing method of multilayer wiring board
TWI768213B (en) * 2018-11-08 2022-06-21 日商拓自達電線股份有限公司 Electromagnetic wave shielding film, method for producing electromagnetic wave shielding film, and method for producing shielded printed wiring board
CN112969824A (en) 2018-11-19 2021-06-15 三井金属矿业株式会社 Surface-treated copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
KR102554288B1 (en) * 2019-03-26 2023-07-12 미쓰이금속광업주식회사 Manufacturing method of printed wiring board
WO2020230888A1 (en) * 2019-05-15 2020-11-19 住友電気工業株式会社 Printed wiring board
JP2021095596A (en) * 2019-12-13 2021-06-24 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP7300976B2 (en) * 2019-12-13 2023-06-30 Jx金属株式会社 Surface treated copper foil, copper clad laminate and printed wiring board
JP7421208B2 (en) * 2019-12-24 2024-01-24 日本電解株式会社 Surface treated copper foil and its manufacturing method
JP7177956B2 (en) * 2020-02-04 2022-11-24 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN115038819A (en) * 2020-02-04 2022-09-09 三井金属矿业株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
CN116997683A (en) * 2021-03-26 2023-11-03 三井金属矿业株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
KR20230159392A (en) * 2021-03-26 2023-11-21 미쓰이금속광업주식회사 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN115226325A (en) * 2021-04-14 2022-10-21 鹏鼎控股(深圳)股份有限公司 Manufacturing method of circuit board and circuit board
CN117480282A (en) * 2021-06-03 2024-01-30 三井金属矿业株式会社 Roughened copper foil, copper-clad laminate and printed circuit board

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228965A (en) * 1990-10-30 1993-07-20 Gould Inc. Method and apparatus for applying surface treatment to metal foil
JP4567360B2 (en) * 2004-04-02 2010-10-20 三井金属鉱業株式会社 Copper foil manufacturing method and copper foil obtained by the manufacturing method
JP2011148192A (en) * 2010-01-21 2011-08-04 Jx Nippon Mining & Metals Corp Method of manufacturing copper-clad laminated sheet, copper foil used therefor, and laminator of the copper-clad laminated sheet
CN103125149B (en) * 2010-09-27 2016-09-14 吉坤日矿日石金属株式会社 Copper foil for printed circuit board, its manufacture method, resin substrate for printed circuit board and printed circuit board (PCB)
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
JP5858849B2 (en) * 2012-03-30 2016-02-10 Jx日鉱日石金属株式会社 Metal foil
JP5481577B1 (en) * 2012-09-11 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
TWI543862B (en) * 2013-02-14 2016-08-01 三井金屬鑛業股份有限公司 Surface-treated copper foil and copper clad laminate using the same
JP5705381B2 (en) * 2013-02-28 2015-04-22 三井金属鉱業株式会社 Blackened surface-treated copper foil, method for producing blackened surface-treated copper foil, copper-clad laminate and flexible printed wiring board
WO2014157728A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
CN104120471B (en) * 2013-04-26 2018-06-08 Jx日矿日石金属株式会社 High-frequency circuit copper foil, copper-clad plate, printing distributing board, the copper foil with carrier, electronic equipment and printing distributing board manufacturing method
WO2015012327A1 (en) * 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
JP5470493B1 (en) * 2013-07-23 2014-04-16 Jx日鉱日石金属株式会社 Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
WO2017006739A1 (en) * 2015-07-03 2017-01-12 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminate and printed wiring board
KR102490491B1 (en) * 2015-07-29 2023-01-19 나믹스 코포레이션 Roughened copper foil, copper-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
TW201742212A (en) 2017-12-01
WO2017179416A1 (en) 2017-10-19
MY186859A (en) 2021-08-26
KR102338103B1 (en) 2021-12-10
TWI711139B (en) 2020-11-21
JPWO2017179416A1 (en) 2019-02-21
CN109072472A (en) 2018-12-21
CN109072472B (en) 2020-10-16
KR20180133845A (en) 2018-12-17

Similar Documents

Publication Publication Date Title
JP6945523B2 (en) Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.
KR102273442B1 (en) Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board
KR102480377B1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP7453154B2 (en) Surface treated copper foil, copper foil with carrier, copper clad laminates and printed wiring boards
KR102031065B1 (en) Ultrathin copper foil with carrier and method for manufacturing same, copper-clad laminate, and method for manufacturing printed-wiring board
TWI675748B (en) Roughened copper foil, carrier copper foil, copper foil laminated board and printed wiring board
JP7166335B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
TWI756039B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
KR102531073B1 (en) Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6945523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250