JP5481577B1 - Copper foil with carrier - Google Patents

Copper foil with carrier Download PDF

Info

Publication number
JP5481577B1
JP5481577B1 JP2013012468A JP2013012468A JP5481577B1 JP 5481577 B1 JP5481577 B1 JP 5481577B1 JP 2013012468 A JP2013012468 A JP 2013012468A JP 2013012468 A JP2013012468 A JP 2013012468A JP 5481577 B1 JP5481577 B1 JP 5481577B1
Authority
JP
Japan
Prior art keywords
carrier
copper foil
layer
copper
ultrathin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013012468A
Other languages
Japanese (ja)
Other versions
JP2014139336A (en
Inventor
倫也 古曳
友太 永浦
和彦 坂口
徹 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50278311&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5481577(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013012468A priority Critical patent/JP5481577B1/en
Priority to KR1020177011125A priority patent/KR102050646B1/en
Priority to CN201810371406.9A priority patent/CN108588766B/en
Priority to KR1020157009363A priority patent/KR101766554B1/en
Priority to PCT/JP2013/074585 priority patent/WO2014042201A1/en
Priority to CN201710739142.3A priority patent/CN107641820A/en
Priority to TW102132911A priority patent/TWI504788B/en
Priority to MYPI2015000601A priority patent/MY167704A/en
Priority to TW104115834A priority patent/TWI575120B/en
Priority to CN201811088181.2A priority patent/CN109379858A/en
Priority to CN201380046519.7A priority patent/CN104619889B/en
Priority to MYPI2018701007A priority patent/MY188679A/en
Publication of JP5481577B1 publication Critical patent/JP5481577B1/en
Application granted granted Critical
Publication of JP2014139336A publication Critical patent/JP2014139336A/en
Priority to PH12015500529A priority patent/PH12015500529A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Abstract

【課題】ファインピッチ形成に好適なキャリア付き銅箔を提供する。
【解決手段】銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRzは非接触式粗さ計で測定して1.6μm以下であるキャリア付き銅箔。
【選択図】図1
A copper foil with a carrier suitable for fine pitch formation is provided.
A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, wherein the ultrathin copper layer comprises: A copper foil with a carrier that has been roughened and whose Rz on the surface of the ultrathin copper layer is 1.6 μm or less as measured by a non-contact type roughness meter.
[Selection] Figure 1

Description

本発明は、キャリア付き銅箔に関する。より詳細には、本発明はプリント配線板の材料として使用されるキャリア付き銅箔に関する。   The present invention relates to a copper foil with a carrier. In more detail, this invention relates to the copper foil with a carrier used as a material of a printed wiring board.

プリント配線板は銅箔に絶縁基板を接着させて銅張積層板とした後に、エッチングにより銅箔面に導体パターンを形成するという工程を経て製造されるのが一般的である。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。   Generally, a printed wiring board is manufactured through a process in which an insulating substrate is bonded to a copper foil to form a copper-clad laminate, and then a conductor pattern is formed on the copper foil surface by etching. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.

ファインピッチ化に対応して、最近では厚さ9μm以下、更には厚さ5μm以下の銅箔が要求されているが、このような極薄の銅箔は機械的強度が低くプリント配線板の製造時に破れたり、皺が発生したりしやすいので、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を電着させたキャリア付き銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着後、キャリアは剥離層を介して剥離除去される。露出した極薄銅層上にレジストで回路パターンを形成した後に、極薄銅層を硫酸−過酸化水素系のエッチャントでエッチング除去する手法(MSAP:Modified−Semi−Additive−Process)により、微細回路が形成される。   Recently, copper foils with a thickness of 9 μm or less and further with a thickness of 5 μm or less have been required in response to the fine pitch, but such ultra-thin copper foils have low mechanical strength and are used in the manufacture of printed wiring boards. Copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is electrodeposited through a release layer, since it is easily broken or wrinkled. After bonding the surface of the ultrathin copper layer to an insulating substrate and thermocompression bonding, the carrier is peeled and removed through the peeling layer. After forming a circuit pattern with a resist on the exposed ultrathin copper layer, the ultrathin copper layer is etched away with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi-Additive-Process). Is formed.

ここで、樹脂との接着面となるキャリア付き銅箔の極薄銅層の表面に対しては、主として、極薄銅層と樹脂基材との剥離強度が十分であること、そしてその剥離強度が高温加熱、湿式処理、半田付け、薬品処理等の後でも十分に保持されていることが要求される。極薄銅層と樹脂基材の間の剥離強度を高める方法としては、一般的に、表面のプロファイル(凹凸、粗さ)を大きくした極薄銅層の上に多量の粗化粒子を付着させる方法が代表的である。   Here, for the surface of the ultrathin copper layer of the copper foil with a carrier that becomes the adhesive surface with the resin, the peel strength between the ultrathin copper layer and the resin base material is mainly sufficient, and the peel strength Is required to be sufficiently retained after high-temperature heating, wet processing, soldering, chemical processing, and the like. As a method of increasing the peel strength between the ultrathin copper layer and the resin base material, generally, a large amount of roughened particles are adhered on the ultrathin copper layer having a large surface profile (unevenness, roughness). The method is representative.

しかしながら、プリント配線板の中でも特に微細な回路パターンを形成する必要のある半導体パッケージ基板に、このようなプロファイル(凹凸、粗さ)の大きい極薄銅層を使用すると、回路エッチング時に不要な銅粒子が残ってしまい、回路パターン間の絶縁不良等の問題が発生する。   However, if a very thin copper layer with such a large profile (irregularity, roughness) is used on a semiconductor package substrate that needs to form a particularly fine circuit pattern among printed wiring boards, unnecessary copper particles during circuit etching Will remain, causing problems such as poor insulation between circuit patterns.

このため、WO2004/005588号(特許文献1)では、半導体パッケージ基板をはじめとする微細回路用途のキャリア付銅箔として、極薄銅層の表面に粗化処理を施さないキャリア付銅箔を用いることが試みられている。このような粗化処理を施さない極薄銅層と樹脂との密着性(剥離強度)は、その低いプロファイル(凹凸、粗度、粗さ)の影響で一般的なプリント配線板用銅箔と比較すると低下する傾向がある。そのため、キャリア付銅箔について更なる改善が求められている。   For this reason, in WO2004 / 005588 (Patent Document 1), a copper foil with a carrier that is not subjected to a roughening treatment on the surface of an ultrathin copper layer is used as a copper foil with a carrier for use in a fine circuit including a semiconductor package substrate. It has been tried. The adhesion (peeling strength) between the ultrathin copper layer not subjected to such roughening treatment and the resin is affected by the low profile (unevenness, roughness, roughness) of the general copper foil for printed wiring boards. There is a tendency to decrease when compared. Therefore, the further improvement is calculated | required about copper foil with a carrier.

そこで、特開2007−007937号公報(特許文献2)及び特開2010−006071号公報(特許文献3)では、キャリア付き極薄銅箔のポリイミド系樹脂基板と接触(接着)する面に、Ni層又は/及びNi合金層を設けること、クロメート層を設けること、Cr層又は/及びCr合金層を設けること、Ni層とクロメート層とを設けること、Ni層とCr層とを設けることが記載されている。これらの表面処理層を設けることにより、ポリイミド系樹脂基板とキャリア付き極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)しながら所望の接着強度を得ている。更に、シランカップリング剤で表面処理したり、防錆処理を施したりすることも記載されている。   Therefore, in Japanese Patent Application Laid-Open No. 2007-007937 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2010-006071 (Patent Document 3), the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate is Ni. It is described that a layer or / and a Ni alloy layer are provided, a chromate layer is provided, a Cr layer or / and a Cr alloy layer are provided, a Ni layer and a chromate layer are provided, and a Ni layer and a Cr layer are provided. Has been. By providing these surface treatment layers, the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the desired adhesive strength is achieved while reducing the degree of the roughening treatment (miniaturization). It has gained. Further, it is described that the surface treatment is performed with a silane coupling agent or the rust prevention treatment is performed.

WO2004/005588号WO2004 / 005588 特開2007−007937号公報JP 2007-007937 A 特開2010−006071号公報JP 2010-006071 A

キャリア付き銅箔の開発においては、これまで極薄銅層と樹脂基材との剥離強度を確保することに重きが置かれていた。そのため、ファインピッチ化に関しては未だ十分な検討がなされておらず、未だ改善の余地が残されている。そこで、本発明はファインピッチ形成に好適なキャリア付き銅箔を提供することを課題とする。具体的には、これまでのMSAPで形成できる限界と考えられていたL/S=20μm/20μmよりも微細な配線を形成可能なキャリア付き銅箔を提供することを課題とする。   In the development of a copper foil with a carrier, the emphasis has so far been on ensuring the peel strength between the ultrathin copper layer and the resin substrate. For this reason, the fine pitch has not been sufficiently studied yet, and there is still room for improvement. Then, this invention makes it a subject to provide the copper foil with a carrier suitable for fine pitch formation. Specifically, it is an object to provide a copper foil with a carrier capable of forming wiring finer than L / S = 20 μm / 20 μm, which has been considered to be a limit that can be formed by conventional MSAP.

上記目的を達成するため、本発明者らは鋭意研究を重ねたところ、極薄銅層の表面を低粗度化し、且つ、極薄銅層に微細粗化粒子を形成することで、均一かつ低粗度の粗化処理面を形成することが可能となることを見出した。そして、当該キャリア付き銅箔はファインピッチ形成に極めて効果的であることを見出した。   In order to achieve the above-mentioned object, the present inventors have conducted intensive research. It has been found that a roughened surface with low roughness can be formed. And it discovered that the said copper foil with a carrier was very effective for fine pitch formation.

本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRzは非接触式粗さ計で測定して1.6μm以下であるキャリア付き銅箔である。   The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer. A copper foil with a carrier, the ultrathin copper layer is roughened, and the Rz of the surface of the ultrathin copper layer is 1.6 μm or less as measured by a non-contact type roughness meter. is there.

本発明は別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRaは非接触式粗さ計で測定して0.3μm以下であるキャリア付き銅箔である。   In another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, The ultrathin copper layer is roughened, and Ra on the surface of the ultrathin copper layer is a copper foil with a carrier as measured by a non-contact type roughness meter and is 0.3 μm or less.

本発明は更に別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRtは非接触式粗さ計で測定して2.3μm以下であるキャリア付き銅箔である。   In yet another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer. The ultrathin copper layer is roughened, and Rt on the surface of the ultrathin copper layer is a copper foil with a carrier that is 2.3 μm or less as measured with a non-contact type roughness meter.

本発明に係るキャリア付き銅箔の一実施形態においては、極薄銅層表面のRzは非接触式粗さ計で測定して1.4μm以下である。   In one embodiment of the copper foil with a carrier according to the present invention, Rz on the surface of the ultrathin copper layer is 1.4 μm or less as measured with a non-contact type roughness meter.

本発明に係るキャリア付き銅箔の別の一実施形態においては、極薄銅層表面のRaは非接触式粗さ計で測定して0.24μm以下である。   In another embodiment of the copper foil with a carrier according to the present invention, Ra on the surface of the ultrathin copper layer is 0.24 μm or less as measured by a non-contact type roughness meter.

本発明に係るキャリア付き銅箔の更に別の一実施形態においては、極薄銅層表面のRtは非接触式粗さ計で測定して1.8μm以下である。   In still another embodiment of the copper foil with a carrier according to the present invention, Rt on the surface of the ultrathin copper layer is 1.8 μm or less as measured by a non-contact type roughness meter.

本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面はSskが−0.3〜0.3である。   In still another embodiment of the copper foil with a carrier according to the present invention, the ultrathin copper layer surface has Ssk of −0.3 to 0.3.

本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面はSkuが2.7〜3.3である。   In still another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has a Sku of 2.7 to 3.3.

本発明に係るキャリア付き銅箔の更に別の一実施形態において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面の表面積比が1.05〜1.5である。   In yet another embodiment of the copper foil with a carrier according to the present invention, a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer were provided. It is copper foil with a carrier, Comprising: The ultra-thin copper layer is roughened and the surface area ratio of the ultra-thin copper layer surface is 1.05-1.5.

本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面の表面積比が1.05〜1.5である。   In yet another embodiment of the copper foil with a carrier according to the present invention, the surface area ratio of the ultrathin copper layer surface is 1.05 to 1.5.

本発明に係るキャリア付き銅箔の更に別の一実施形態において、極薄銅層表面の面積66524μm2当たりの体積が300000μm3以上である。 In still another embodiment of the copper foil with a carrier according to the present invention, the volume per area 66524 μm 2 of the surface of the ultrathin copper layer is 300000 μm 3 or more.

本発明は更に別の一側面において、本発明に係るキャリア付き銅箔を用いて製造した銅張積層板である。   In yet another aspect, the present invention is a copper clad laminate produced using the carrier-attached copper foil according to the present invention.

本発明は更に別の一側面において、本発明に係るキャリア付き銅箔を用いて製造したプリント配線板である。   In still another aspect, the present invention is a printed wiring board manufactured using the carrier-attached copper foil according to the present invention.

本発明は更に別の一側面において、キャリア付き銅箔を用いて製造したプリント回路板である。   In still another aspect, the present invention is a printed circuit board manufactured using a copper foil with a carrier.

本発明は更に別の一側面において、
本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法の何れかの方法によって、回路を形成する工程を含むプリント配線板の製造方法である。
In another aspect of the present invention,
Preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, a copper clad laminate is formed through a step of peeling the carrier of the copper foil with carrier,
Thereafter, the printed wiring board manufacturing method includes a step of forming a circuit by any one of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.

本発明に係るキャリア付き銅箔はファインピッチ形成に好適であり、例えば、MSAP工程で形成できる限界と考えられていたL/S=20μm/20μmよりも微細な配線、例えばL/S=15μm/15μmの微細な配線を形成することが可能となる。   The copper foil with a carrier according to the present invention is suitable for fine pitch formation, for example, a wiring finer than L / S = 20 μm / 20 μm, which is considered to be a limit that can be formed by the MSAP process, for example, L / S = 15 μm / It becomes possible to form fine wiring of 15 μm.

実施例1及び実施例2における極薄銅層M面のSEM写真である。It is a SEM photograph of the ultrathin copper layer M surface in Example 1 and Example 2.

<1.キャリア>
本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には70μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12〜70μmであり、より典型的には18〜35μmである。   The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost increases, so it is generally preferable that the thickness is 70 μm or less. Accordingly, the thickness of the carrier is typically 12-70 μm, more typically 18-35 μm.

<2.剥離層>
キャリアの上には剥離層を設ける。剥離層としては、キャリア付き銅箔において当業者に知られた任意の剥離層とすることができる。例えば、剥離層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、又はこれらの合金、またはこれらの水和物、またはこれらの酸化物、あるいは有機物の何れか一種以上を含む層で形成することが好ましい。剥離層は複数の層で構成されても良い。
<2. Release layer>
A release layer is provided on the carrier. As a peeling layer, it can be set as the arbitrary peeling layers known to those skilled in the art in copper foil with a carrier. For example, the release layer may be one or more of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, alloys thereof, hydrates thereof, oxides thereof, or organic substances. It is preferable to form with the layer containing. The release layer may be composed of a plurality of layers.

本発明の一実施形態において、剥離層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Alの元素群の内何れか一種の元素からなる単一金属層、又は、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Alの元素群から選択された一種以上の元素からなる合金層と、その上に積層されたCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Alの元素群から選択された一種以上の元素の水和物若しくは酸化物からなる層とから構成される。   In one embodiment of the present invention, the release layer is a single metal layer made of any one element of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, and Al elements from the carrier side, Or, an alloy layer made of one or more elements selected from the element group of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, and Al, and Cr, Ni, Co, It is comprised from the layer which consists of a hydrate or oxide of 1 or more elements selected from the element group of Fe, Mo, Ti, W, P, Cu, and Al.

剥離層はNi及びCrの2層で構成されることが好ましい。この場合、Ni層は銅箔キャリアとの界面に、Cr層は極薄銅層との界面にそれぞれ接するようにして積層する。   The release layer is preferably composed of two layers of Ni and Cr. In this case, the Ni layer is laminated in contact with the interface with the copper foil carrier and the Cr layer is in contact with the interface with the ultrathin copper layer.

剥離層は、例えば電気めっき、無電解めっき及び浸漬めっきのような湿式めっき、或いはスパッタリング、CVD及びPDVのような乾式めっきにより得ることができる。コストの観点から電気めっきが好ましい。   The release layer can be obtained by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV. Electroplating is preferable from the viewpoint of cost.

<3.極薄銅層>
剥離層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5〜12μmであり、より典型的には2〜5μmである。
<3. Ultrathin copper layer>
An ultrathin copper layer is provided on the release layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. It is typically 0.5-12 μm, more typically 2-5 μm.

<4.粗化処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設ける。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理層は、ファインピッチ形成の観点から微細な粒子で構成されるのが好ましい。粗化粒子を形成する際の電気めっき条件について、電流密度を高く、めっき液中の銅濃度を低く、又は、クーロン量を大きくすると粒子が微細化する傾向にある。
<4. Roughening>
On the surface of the ultrathin copper layer, a roughening treatment layer is provided by performing a roughening treatment, for example, for improving the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening treatment layer is preferably composed of fine particles from the viewpoint of fine pitch formation. Regarding the electroplating conditions for forming the roughened particles, if the current density is increased, the copper concentration in the plating solution is decreased, or the amount of coulomb is increased, the particles tend to become finer.

粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる電着粒で構成することができる。   The roughening layer is composed of electrodeposited grains made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, and zinc, or an alloy containing at least one of them. can do.

また、粗化処理をした後、ニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子及び/又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。   Moreover, after roughening treatment, secondary particles, tertiary particles and / or rust prevention layers are formed with nickel, cobalt, copper, zinc alone or an alloy, etc., and further chromate treatment, silane coupling treatment, etc. on the surface You may perform the process of. That is, one or more layers selected from the group consisting of a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer.

粗化処理等の各種表面処理を施した後の極薄銅層の表面(「粗化処理面」ともいう。)は、非接触式粗さ計で測定したときにRz(十点平均粗さ)を1.6μm以下とすることがファインピッチ形成の観点で極めて有利となる。Rzは好ましくは1.5μm以下、より好ましくは1.4μm以下であり、更により好ましくは1.3μm以下である。但し、Rzは、小さくなりすぎると樹脂との密着力が低下することから、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。   The surface of the ultrathin copper layer after various surface treatments such as roughening treatment (also referred to as “roughened surface”) is Rz (10-point average roughness) when measured with a non-contact type roughness meter. ) Of 1.6 μm or less is extremely advantageous from the viewpoint of fine pitch formation. Rz is preferably 1.5 μm or less, more preferably 1.4 μm or less, and even more preferably 1.3 μm or less. However, Rz is preferably 0.01 μm or more, and more preferably 0.1 μm or more, because if the Rz is too small, the adhesion with the resin is reduced.

粗化処理等の各種表面処理を施した後の極薄銅層の表面(「粗化処理面」ともいう。)は、非接触式粗さ計で測定したときにRa(算術平均粗さ)を0.30μm以下とすることがファインピッチ形成の観点で極めて有利となる。Raは好ましくは0.27μm以下、0.26μm以下、0.24μm以下、より好ましくは0.23μm以下であり、更により好ましくは0.20μm以下である。但し、Raは、小さくなりすぎると樹脂との密着力が低下することから、0.005μm以上であることが好ましく、0.009μm以上、0.01μm以上、0.02μm以上であることがより好ましい。   The surface of the ultrathin copper layer after being subjected to various surface treatments such as roughening treatment (also referred to as “roughened surface”) is Ra (arithmetic mean roughness) when measured with a non-contact type roughness meter. Is 0.30 μm or less from the viewpoint of fine pitch formation. Ra is preferably 0.27 μm or less, 0.26 μm or less, 0.24 μm or less, more preferably 0.23 μm or less, and even more preferably 0.20 μm or less. However, Ra is preferably 0.005 μm or more, more preferably 0.009 μm or more, 0.01 μm or more, or 0.02 μm or more, because if it becomes too small, the adhesive strength with the resin is reduced. .

粗化処理等の各種表面処理を施した後の極薄銅層の表面(「粗化処理面」ともいう。)は、非接触式粗さ計で測定したときにRtを2.3μm以下とすることがファインピッチ形成の観点で極めて有利となる。Rtは好ましくは2.2μm以下、好ましくは2.1μm以下、好ましくは2.0μm以下、より好ましくは1.9μm以下であり、より好ましくは1.8μm以下であり、更により好ましくは1.5μm以下である。但し、Rtは、小さくなりすぎると樹脂との密着力が低下することから、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。   The surface of the ultrathin copper layer after being subjected to various surface treatments such as roughening treatment (also referred to as “roughened surface”) has an Rt of 2.3 μm or less when measured with a non-contact type roughness meter. This is extremely advantageous from the viewpoint of fine pitch formation. Rt is preferably 2.2 μm or less, preferably 2.1 μm or less, preferably 2.0 μm or less, more preferably 1.9 μm or less, more preferably 1.8 μm or less, and even more preferably 1.5 μm. It is as follows. However, Rt is preferably 0.01 μm or more, and more preferably 0.1 μm or more, because if the Rt is too small, the adhesion with the resin is reduced.

また、粗化処理等の各種表面処理を施した後の極薄銅層の表面は、非接触式粗さ計で測定したときにSsk(スキューネス)を−0.3〜0.3とすることがファインピッチ形成の観点で好ましい。Sskは好ましくは−0.2〜0.2であり、より好ましくは−0.1〜0.1である。   In addition, the surface of the ultrathin copper layer after various surface treatments such as roughening treatment has an Ssk (skewness) of −0.3 to 0.3 when measured with a non-contact type roughness meter. Is preferable from the viewpoint of fine pitch formation. Ssk is preferably −0.2 to 0.2, more preferably −0.1 to 0.1.

また、粗化処理等の各種表面処理を施した後の極薄銅層の表面は、非接触式粗さ計で測定したときにSku(クルトシス)を2.7〜3.3とすることがファインピッチ形成の観点で好ましい。Skuは好ましくは2.8〜3.2であり、より好ましくは2.9〜3.1である。   Further, the surface of the ultrathin copper layer after various surface treatments such as roughening treatment may have a Sku (Cultosis) of 2.7 to 3.3 when measured with a non-contact type roughness meter. It is preferable from the viewpoint of fine pitch formation. Sku is preferably 2.8 to 3.2, and more preferably 2.9 to 3.1.

本発明において、極薄銅層表面のRz、Raの粗さパラメータについてはJIS B0601−1994に準拠して、Rtの粗さパラメータについてはJIS B0601−2001に準拠して、Ssk、Skuの粗さパラメータについてはISO25178ドラフトに準拠して非接触式粗さ計で測定する。   In the present invention, the roughness parameters of Rz and Ra on the surface of the ultrathin copper layer conform to JIS B0601-1994, and the roughness parameter of Rt conforms to JIS B0601-2001, the roughness of Ssk and Sku. The parameters are measured with a non-contact type roughness meter in accordance with ISO 25178 draft.

なお、プリント配線板または銅張積層板など、極薄銅層表面に樹脂などの絶縁基板が接着されている場合においては、絶縁基板を溶かして除去することで、銅回路または銅箔表面について、前述の表面粗さ(Ra、Rt、Rz)を測定することができる。   In addition, in the case where an insulating substrate such as a resin is bonded to the surface of an ultrathin copper layer, such as a printed wiring board or a copper clad laminate, by melting and removing the insulating substrate, the copper circuit or copper foil surface, The aforementioned surface roughness (Ra, Rt, Rz) can be measured.

ファインピッチ形成のためには、粗化粒子層のエッチング量を減少させるために、粗化処理面の体積を制御することも重要である。ここでいう体積とは、レーザー顕微鏡にて測定される値を指し、粗化処理面に存在する粗化粒子の体積を評価する指標となる。粗化処理面の体積が大きい場合、極薄銅層と樹脂との密着力が高くなる傾向にある。そして、極薄銅層と樹脂との密着力が高くなると耐マイグレーション性が向上する傾向にある。具体的には、体積は粗化処理面の面積66524μm2当たり300000μm3以上であるのが好ましく、350000μm3以上であるのがより好ましい。但し、体積が大きくなり過ぎるとエッチング量が増加し、ファインピッチを形成できないことから、体積は500000μm3以下とするのが好ましく、450000μm3以下とするのがより好ましい。 In order to form a fine pitch, it is also important to control the volume of the roughened surface in order to reduce the etching amount of the roughened particle layer. The volume here refers to a value measured with a laser microscope and serves as an index for evaluating the volume of the roughened particles present on the roughened surface. When the volume of the roughened surface is large, the adhesion between the ultrathin copper layer and the resin tends to increase. And, when the adhesion between the ultrathin copper layer and the resin is increased, the migration resistance tends to be improved. Specifically, the volume is preferably 300,000 μm 3 or more, more preferably 350,000 μm 3 or more per area 66524 μm 2 of the roughened surface. However, increases the amount of etching the volume is too large, since not form fine pitch, volume may preferably be 500000Myuemu 3 or less, and more preferably, 450000Myuemu 3 or less.

更に、ファインピッチ形成のためには、微細粗化粒子による樹脂との密着性を確保するために、粗化処理面の表面積比を制御することも重要である。ここでいう表面積比とは、レーザー顕微鏡にて測定される値であって、エリア及び実エリアを測定したときの、実エリア/エリアの値である。エリアとは測定基準面積を指し、実エリアとは測定基準面積中の表面積を指す。表面積比は大きくなりすぎると密着強度が増すがエッチング量が増加しファインピッチが形成できない一方で、小さくなりすぎると密着強度が確保できないので、1.05〜1.5であることが好ましく、1.07〜1.47であることが好ましく、1.09〜1.4であることが好ましく、1.1〜1.3であることがより好ましい。   Furthermore, in order to form fine pitch, it is also important to control the surface area ratio of the roughened surface in order to ensure adhesion with the resin by the finely roughened particles. The surface area ratio here is a value measured by a laser microscope, and is a value of actual area / area when the area and the actual area are measured. The area refers to the measurement reference area, and the actual area refers to the surface area in the measurement reference area. If the surface area ratio is too large, the adhesion strength increases, but the etching amount increases and fine pitch cannot be formed. On the other hand, if the surface area ratio is too small, the adhesion strength cannot be ensured. 0.07 to 1.47 is preferable, 1.09 to 1.4 is preferable, and 1.1 to 1.3 is more preferable.

<5.キャリア付き銅箔>
このようにして、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔が製造される。キャリア付き銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がして銅張積層板とし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。更に、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。以下に、本発明に係るキャリア付き銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
<5. Copper foil with carrier>
Thus, the copper foil with a carrier provided with the copper foil carrier, the peeling layer laminated | stacked on the copper foil carrier, and the ultra-thin copper layer laminated | stacked on the peeling layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. Base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern. Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.

本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、前記キャリア付き銅箔と絶縁基板を積層する工程、前記キャリア付き銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。   In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a process of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.

本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。   In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.

従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。   In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.

従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electrolytic plating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.

モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for manufacturing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。   In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.

従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.

本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。   In the present invention, the subtractive method refers to a method of forming a conductor pattern by selectively removing unnecessary portions of a copper foil on a copper clad laminate by etching or the like.

従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of a method for manufacturing a printed wiring board according to the present invention using a subtractive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されいない前記無電解めっき層の表面に電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, the step of peeling the carrier of the copper foil with carrier,
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。   The process of providing a through hole or / and a blind via and the subsequent desmear process may not be performed.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

1.キャリア付き銅箔の製造
<実施例1>
銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)を用意した。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続めっきラインで電気めっきすることにより4000μg/dm2の付着量のNi層を形成した。
1. Production of copper foil with carrier <Example 1>
As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 μm (JTC manufactured by JX Nippon Mining & Metals) was prepared. An Ni layer having an adhesion amount of 4000 μg / dm 2 was formed on the shiny surface of the copper foil by electroplating using a roll-to-roll type continuous plating line under the following conditions.

・Ni層
硫酸ニッケル:250〜300g/L
塩化ニッケル:35〜45g/L
酢酸ニッケル:10〜20g/L
クエン酸三ナトリウム:15〜30g/L
光沢剤:サッカリン、ブチンジオール等
ドデシル硫酸ナトリウム:30〜100ppm
pH:4〜6
浴温:50〜70℃
電流密度:3〜15A/dm2
-Ni layer Nickel sulfate: 250-300 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30-100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3-15 A / dm 2

水洗及び酸洗後、引き続き、ロール・トウ・ロール型の連続めっきライン上で、Ni層の上に11μg/dm2の付着量のCr層を以下の条件で電解クロメート処理することにより付着させた。
・電解クロメート処理
液組成:重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH:3〜4
液温:50〜60℃
電流密度:0.1〜2.6A/dm2
クーロン量:0.5〜30As/dm2
After washing with water and pickling, a Cr layer having an adhesion amount of 11 μg / dm 2 was deposited on the Ni layer by electrolytic chromate treatment under the following conditions on a roll-to-roll type continuous plating line. .
Electrolytic chromate treatment Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0.1-2.6 A / dm 2
Coulomb amount: 0.5-30 As / dm 2

引き続き、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付き銅箔を製造した。なお、本実施例では極薄銅層の厚みを2、5、10μmとしたキャリア付き銅箔についても製造し、極薄銅層の厚みが3μmの実施例と同様に評価した。結果は厚みによらず同じとなった。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
Subsequently, on the roll-to-roll type continuous plating line, an ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer by electroplating under the following conditions to produce a copper foil with a carrier. In this example, a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 μm was also manufactured and evaluated in the same manner as in the example of the ultrathin copper layer thickness of 3 μm. The result was the same regardless of the thickness.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2

次いで、極薄銅層表面に以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
(液組成1)
Cu:10〜30g/L
2SO4:10〜150g/L
W:0〜50mg/L
ドデシル硫酸ナトリウム:0〜50mg/L
As:0〜200mg/L
(電気めっき条件1)
温度:30〜70℃
電流密度:25〜110A/dm2
粗化クーロン量:50〜500As/dm2
めっき時間:0.5〜20秒
・粗化処理2
(液組成2)
Cu:20〜80g/L
2SO4:50〜200g/L
(電気めっき条件2)
温度:30〜70℃
電流密度:5〜50A/dm2
粗化クーロン量:50〜300As/dm2
めっき時間:1〜60秒
・防錆処理
(液組成)
NaOH:40〜200g/L
NaCN:70〜250g/L
CuCN:50〜200g/L
Zn(CN)2:2〜100g/L
As23:0.01〜1g/L
(液温)
40〜90℃
(電流条件)
電流密度:1〜50A/dm2
めっき時間:1〜20秒
・クロメート処理
2Cr27(Na2Cr27或いはCrO3):2〜10g/L
NaOH又はKOH:10〜50g/L
ZnOH又はZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度:0.05〜5A/dm2
時間:5〜30秒
・シランカップリング処理
0.1vol%〜0.3vol%の3−グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100〜200℃の空気中で0.1〜10秒間乾燥・加熱する。
Next, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order on the surface of the ultrathin copper layer.
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4: 10~150g / L
W: 0 to 50 mg / L
Sodium dodecyl sulfate: 0 to 50 mg / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1 to 60 seconds, rust prevention treatment (liquid composition)
NaOH: 40-200 g / L
NaCN: 70 to 250 g / L
CuCN: 50-200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds. Silane coupling treatment After applying 0.1 vol% to 0.3 vol% of 3-glycidoxypropyltrimethoxysilane aqueous solution, 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.

<実施例2>
実施例1と同様の条件で銅箔キャリア上に極薄銅層を形成した後、以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。なお、極薄銅箔の厚みは3μmとした。
・粗化処理1
液組成 :銅10〜20g/L、硫酸50〜100g/L
液温 :25〜50℃
電流密度 :1〜58A/dm2
クーロン量:4〜81As/dm2
・粗化処理2
液組成 :銅10〜20g/L、ニッケル5〜15g/L、コバルト5〜15g/L
pH :2〜3
液温 :30〜50℃
電流密度 :24〜50A/dm2
クーロン量:34〜48As/dm2
・防錆処理
液組成 :ニッケル5〜20g/L、コバルト1〜8g/L
pH :2〜3
液温 :40〜60℃
電流密度 :5〜20A/dm2
クーロン量:10〜20As/dm2
・クロメート処理
液組成 :重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH :3〜4
液温 :50〜60℃
電流密度 :0〜2A/dm2(浸漬クロメート処理のため無電解での実施も可能)
クーロン量:0〜2As/dm2(浸漬クロメート処理のため無電解での実施も可能)
・シランカップリング処理
ジアミノシラン水溶液の塗布(ジアミノシラン濃度:0.1〜0.5wt%)
<Example 2>
After forming an ultrathin copper layer on the copper foil carrier under the same conditions as in Example 1, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order. went. The thickness of the ultrathin copper foil was 3 μm.
・ Roughening 1
Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L
Liquid temperature: 25-50 degreeC
Current density: 1 to 58 A / dm 2
Coulomb amount: 4 to 81 As / dm 2
・ Roughening 2
Liquid composition: Copper 10-20 g / L, nickel 5-15 g / L, cobalt 5-15 g / L
pH: 2-3
Liquid temperature: 30-50 degreeC
Current density: 24 to 50 A / dm 2
Coulomb amount: 34 to 48 As / dm 2
・ Rust prevention treatment Liquid composition: Nickel 5-20g / L, Cobalt 1-8g / L
pH: 2-3
Liquid temperature: 40-60 degreeC
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
-Chromate treatment Liquid composition: Potassium dichromate 1-10 g / L, Zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0 to 2 A / dm 2 (Can also be electroless because of immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (can also be electroless because of immersion chromate treatment)
Silane coupling treatment Application of diaminosilane aqueous solution (diaminosilane concentration: 0.1 to 0.5 wt%)

<実施例3>
実施例1と同様の条件で銅箔キャリア上に極薄銅層を形成した後、次いで、極薄銅層表面に以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。なお、極薄銅箔の厚みは3μmとした。
・粗化処理1
(液組成1)
Cu:10〜30g/L
2SO4:10〜150g/L
As:0〜200mg/L
(電気めっき条件1)
温度:30〜70℃
電流密度:25〜110A/dm2
粗化クーロン量:50〜500As/dm2
めっき時間:0.5〜20秒
・粗化処理2
(液組成2)
Cu:20〜80g/L
2SO4:50〜200g/L
(電気めっき条件2)
温度:30〜70℃
電流密度:5〜50A/dm2
粗化クーロン量:50〜300As/dm2
めっき時間:1〜60秒
・防錆処理
(液組成)
NaOH:40〜200g/L
NaCN:70〜250g/L
CuCN:50〜200g/L
Zn(CN)2:2〜100g/L
As23:0.01〜1g/L
(液温)
40〜90℃
(電流条件)
電流密度:1〜50A/dm2
めっき時間:1〜20秒
・クロメート処理
2Cr27(Na2Cr27或いはCrO3):2〜10g/L
NaOH又はKOH:10〜50g/L
ZnOH又はZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度:0.05〜5A/dm2
時間:5〜30秒
・シランカップリング処理
0.1vol%〜0.3vol%の3−グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100〜200℃の空気中で0.1〜10秒間乾燥・加熱する。
<Example 3>
After forming the ultrathin copper layer on the copper foil carrier under the same conditions as in Example 1, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and The silane coupling treatment was performed in this order. The thickness of the ultrathin copper foil was 3 μm.
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4: 10~150g / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1 to 60 seconds, rust prevention treatment (liquid composition)
NaOH: 40-200 g / L
NaCN: 70 to 250 g / L
CuCN: 50-200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds. Silane coupling treatment After applying 0.1 vol% to 0.3 vol% of 3-glycidoxypropyltrimethoxysilane aqueous solution, 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.

<実施例4>
実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。なお、本実施例では極薄銅層の厚みを2、5、10μmとしたキャリア付銅箔についても製造し、極薄銅層の厚みが3μmの実施例と同様に評価した。結果は厚みによらずほとんど同じとなった。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
ビス(3スルホプロピル)ジスルフィド−濃度:10〜100ppm
3級アミン化合物:10〜100ppm
塩素:10〜100ppm
電解液温度:20〜80℃
電流密度:10〜100A/dm2
なお、前述の3級アミン化合物として以下の化合物を用いた。

Figure 0005481577
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。ここでは、R1及びR2は共にメチル基とした。)
上記化合物は例えばナガセケムテックス株式会社製デコナール Ex−314とジメチルアミンを所定量混合させ、60℃で3時間反応を行うことで得ることができる。 <Example 4>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above. In this example, a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 μm was also manufactured, and evaluated in the same manner as in the example with an ultrathin copper layer thickness of 3 μm. The result was almost the same regardless of the thickness.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Bis (3sulfopropyl) disulfide concentration: 10-100 ppm
Tertiary amine compound: 10 to 100 ppm
Chlorine: 10-100ppm
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
In addition, the following compounds were used as the above-mentioned tertiary amine compound.
Figure 0005481577
(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group. Here, R 1 And R 2 were both methyl groups.)
The above compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours.

銅箔キャリア上に極薄銅層を形成した後、以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
液組成 :銅10〜20g/L、硫酸50〜100g/L
液温 :25〜50℃
電流密度 :1〜58A/dm2
クーロン量:4〜81As/dm2
・粗化処理2
液組成 :銅10〜20g/L、ニッケル5〜15g/L、コバルト5〜15g/L
pH :2〜3
液温 :30〜50℃
電流密度 :24〜50A/dm2
クーロン量:34〜48As/dm2
・防錆処理
液組成 :ニッケル5〜20g/L、コバルト1〜8g/L
pH :2〜3
液温 :40〜60℃
電流密度 :5〜20A/dm2
クーロン量:10〜20As/dm2
・クロメート処理
液組成 :重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH :3〜4
液温 :50〜60℃
電流密度 :0〜2A/dm2(浸漬クロメート処理のため無電解での実施も可能)
クーロン量:0〜2As/dm2(浸漬クロメート処理のため無電解での実施も可能)
・シランカップリング処理
ジアミノシラン水溶液の塗布(ジアミノシラン濃度:0.1〜0.5wt%)
After the ultrathin copper layer was formed on the copper foil carrier, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order.
・ Roughening 1
Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L
Liquid temperature: 25-50 degreeC
Current density: 1 to 58 A / dm 2
Coulomb amount: 4 to 81 As / dm 2
・ Roughening 2
Liquid composition: Copper 10-20 g / L, nickel 5-15 g / L, cobalt 5-15 g / L
pH: 2-3
Liquid temperature: 30-50 degreeC
Current density: 24 to 50 A / dm 2
Coulomb amount: 34 to 48 As / dm 2
・ Rust prevention treatment Liquid composition: Nickel 5-20g / L, Cobalt 1-8g / L
pH: 2-3
Liquid temperature: 40-60 degreeC
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
-Chromate treatment Liquid composition: Potassium dichromate 1-10 g / L, Zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0 to 2 A / dm 2 (Can also be electroless because of immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (can also be electroless because of immersion chromate treatment)
Silane coupling treatment Application of diaminosilane aqueous solution (diaminosilane concentration: 0.1 to 0.5 wt%)

<実施例5>
実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。なお、本実施例では極薄銅層の厚みを2、5、10μmとしたキャリア付銅箔についても製造し、極薄銅層の厚みが3μmの実施例と同様に評価した。結果は厚みによらずほとんど同じとなった。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
ビス(3スルホプロピル)ジスルフィド−濃度:10〜100ppm
3級アミン化合物:10〜100ppm
塩素:10〜100ppm
電解液温度:20〜80℃
電流密度:10〜100A/dm2
なお、前述の3級アミン化合物として以下の化合物を用いた。

Figure 0005481577
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。ここでは、R1及びR2は共にメチル基とした。)
上記化合物は例えばナガセケムテックス株式会社製デコナール Ex−314とジメチルアミンを所定量混合させ、60℃で3時間反応を行うことで得ることができる。) <Example 5>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above. In this example, a copper foil with a carrier having an ultrathin copper layer thickness of 2, 5, and 10 μm was also manufactured, and evaluated in the same manner as in the example with an ultrathin copper layer thickness of 3 μm. The result was almost the same regardless of the thickness.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Bis (3sulfopropyl) disulfide concentration: 10-100 ppm
Tertiary amine compound: 10 to 100 ppm
Chlorine: 10-100ppm
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
In addition, the following compounds were used as the above-mentioned tertiary amine compound.
Figure 0005481577
(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group. Here, R 1 And R 2 were both methyl groups.)
The above compound can be obtained, for example, by mixing a predetermined amount of Deconal Ex-314 manufactured by Nagase ChemteX Corporation and dimethylamine and reacting at 60 ° C. for 3 hours. )

銅箔キャリア上に極薄銅層を形成した後、以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
(液組成1)
Cu:10〜30g/L
2SO4:10〜150g/L
W:0.1〜50mg/L
ドデシル硫酸ナトリウム:0.1〜50mg/L
As:0.1〜200mg/L
(電気めっき条件1)
温度:30〜70℃
電流密度:25〜110A/dm2
粗化クーロン量:50〜500As/dm2
めっき時間:0.5〜20秒
・粗化処理2
(液組成2)
Cu:20〜80g/L
2SO4:50〜200g/L
(電気めっき条件2)
温度:30〜70℃
電流密度:5〜50A/dm2
粗化クーロン量:50〜300As/dm2
めっき時間:1〜60秒
・防錆処理
(液組成)
NaOH:40〜200g/L
NaCN:70〜250g/L
CuCN:50〜200g/L
Zn(CN)2:2〜100g/L
As23:0.01〜1g/L
(液温)
40〜90℃
(電流条件)
電流密度:1〜50A/dm2
めっき時間:1〜20秒
・クロメート処理
2Cr27(Na2Cr27或いはCrO3):2〜10g/L
NaOH又はKOH:10〜50g/L
ZnOH又はZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度:0.05〜5A/dm2
時間:5〜30秒
・シランカップリング処理
0.1vol%〜0.3vol%の3−グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100〜200℃の空気中で0.1〜10秒間乾燥・加熱する。
After the ultrathin copper layer was formed on the copper foil carrier, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order.
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4: 10~150g / L
W: 0.1 to 50 mg / L
Sodium dodecyl sulfate: 0.1 to 50 mg / L
As: 0.1-200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1 to 60 seconds, rust prevention treatment (liquid composition)
NaOH: 40-200 g / L
NaCN: 70 to 250 g / L
CuCN: 50-200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds. Silane coupling treatment After applying 0.1 vol% to 0.3 vol% of 3-glycidoxypropyltrimethoxysilane aqueous solution, 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.

<比較例1>
実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付き銅箔を製造した。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:5〜9A/dm2
・粗化処理1
(液組成1)
Cu:10〜30g/L
2SO4:10〜150g/L
As:0〜200mg/L
(電気めっき条件1)
温度:30〜70℃
電流密度:25〜110A/dm2
粗化クーロン量:50〜500As/dm2
めっき時間:0.5〜20秒
・粗化処理2
(液組成2)
Cu:20〜80g/L
2SO4:50〜200g/L
(電気めっき条件2)
温度:30〜70℃
電流密度:5〜50A/dm2
粗化クーロン量:50〜300As/dm2
めっき時間:1〜60秒
・防錆処理
(液組成)
NaOH:40〜200g/L
NaCN:70〜250g/L
CuCN:50〜200g/L
Zn(CN)2:2〜100g/L
As23:0.01〜1g/L
(液温)
40〜90℃
(電流条件)
電流密度:1〜50A/dm2
めっき時間:1〜20秒
・クロメート処理
2Cr27(Na2Cr27或いはCrO3):2〜10g/L
NaOH又はKOH:10〜50g/L
ZnOH又はZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度:0.05〜5A/dm2
時間:5〜30秒
・シランカップリング処理
0.1vol%〜0.3vol%の3−グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100〜200℃の空気中で0.1〜10秒間乾燥・加熱する。
<Comparative Example 1>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 5-9 A / dm 2
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4: 10~150g / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1 to 60 seconds, rust prevention treatment (liquid composition)
NaOH: 40-200 g / L
NaCN: 70 to 250 g / L
CuCN: 50-200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds. Silane coupling treatment After applying 0.1 vol% to 0.3 vol% of 3-glycidoxypropyltrimethoxysilane aqueous solution, 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.

<比較例2>
実施例1と同様の条件で銅箔キャリア上にNi層及びCr層を形成した後、ロール・トウ・ロール型の連続めっきライン上で、Cr層の上に厚み3μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付き銅箔を製造した。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
・粗化処理1
(液組成1)
Cu:10〜30g/L
2SO4:10〜150g/L
W:0〜50mg/L
ドデシル硫酸ナトリウム:0〜50mg/L
As:0〜200mg/L
(電気めっき条件1)
温度:30〜70℃
電流密度:25〜110A/dm2
粗化クーロン量:50〜500As/dm2
めっき時間:0.5〜20秒
・粗化処理2
(液組成2)
Cu:20〜80g/L
2SO4:50〜200g/L
(電気めっき条件2)
温度:30〜70℃
電流密度:5〜50A/dm2
粗化クーロン量:50〜300As/dm2
めっき時間:1〜60秒
・防錆処理
(液組成)
NaOH:40〜200g/L
NaCN:70〜250g/L
CuCN:50〜200g/L
Zn(CN)2:2〜100g/L
As23:0.01〜1g/L
(液温)
40〜90℃
(電流条件)
電流密度:1〜50A/dm2
めっき時間:1〜20秒
・クロメート処理
2Cr27(Na2Cr27或いはCrO3):2〜10g/L
NaOH又はKOH:10〜50g/L
ZnOH又はZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度:0.05〜5A/dm2
時間:5〜30秒
・シランカップリング処理
0.1vol%〜0.3vol%の3−グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100〜200℃の空気中で0.1〜10秒間乾燥・加熱する。
<Comparative example 2>
After forming the Ni layer and the Cr layer on the copper foil carrier under the same conditions as in Example 1, the ultrathin copper layer having a thickness of 3 μm was formed on the Cr layer on the roll-to-roll continuous plating line. The copper foil with a carrier was manufactured by electroplating under the conditions described above.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4: 10~150g / L
W: 0 to 50 mg / L
Sodium dodecyl sulfate: 0 to 50 mg / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5-20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1 to 60 seconds, rust prevention treatment (liquid composition)
NaOH: 40-200 g / L
NaCN: 70 to 250 g / L
CuCN: 50-200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds. Silane coupling treatment After applying 0.1 vol% to 0.3 vol% of 3-glycidoxypropyltrimethoxysilane aqueous solution, 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.

2.キャリア付き銅箔の特性評価
上記のようにして得られたキャリア付き銅箔について、以下の方法で特性評価を実施した。結果を表1に示す。
(表面粗さ)
極薄銅層の表面粗さ(Ra、Rt、Rz、Ssk、Sku)を非接触式粗さ測定機(オリンパス製 LEXT OLS 4000)を用いて、Ra、RzについてはJIS B0601−1994に準拠して、RtについてはJIS B0601−2001に準拠して、またSsk、SkuについてはISO25178ドラフトに準拠して以下の測定条件で、測定した。
<測定条件>
カットオフ:無
基準長さ:257.9μm
基準面積:66524μm2
測定環境温度:23〜25℃
2. Evaluation of characteristics of copper foil with carrier The characteristics of the copper foil with carrier obtained as described above were evaluated by the following method. The results are shown in Table 1.
(Surface roughness)
The surface roughness (Ra, Rt, Rz, Ssk, Sku) of the ultra-thin copper layer was measured using a non-contact type roughness measuring machine (OLYMPUS LEXT OLS 4000). Rt was measured in accordance with JIS B0601-2001, and Ssk and Sku were measured in accordance with ISO 25178 draft under the following measurement conditions.
<Measurement conditions>
Cut-off: None Reference length: 257.9 μm
Reference area: 66524 μm 2
Measurement ambient temperature: 23-25 ° C

また、比較のため、接触式粗さ測定機(株式会社小阪研究所製接触粗さ計Surfcorder SE−3C)を用いて、JIS B0601−1994(Ra、Rz)及びJIS B0601−2001(Rt)に準拠して以下の測定条件でも極薄銅層の表面粗さ(Ra、Rt、Rz)を測定した。
<測定条件>
カットオフ:0.25mm
基準長さ:0.8mm
測定環境温度:23〜25℃
In addition, for comparison, using a contact-type roughness measuring machine (contact roughness meter Surfcoder SE-3C manufactured by Kosaka Laboratory Ltd.), JIS B0601-1994 (Ra, Rz) and JIS B0601-2001 (Rt). In accordance with the following measurement conditions, the surface roughness (Ra, Rt, Rz) of the ultrathin copper layer was measured.
<Measurement conditions>
Cut-off: 0.25mm
Standard length: 0.8mm
Measurement ambient temperature: 23-25 ° C

(表面積比)
非接触式粗さ測定機(オリンパス製 LEXT OLS 4000)を用いて、以下の測定条件で、測定した。表面積比は、エリア及び実エリアを測定し、実エリア/エリアの値を表面積比とした。ここで、エリアとは測定基準面積を指し、実エリアとは測定基準面積中の表面積を指す。
<測定条件>
カットオフ:無
基準長さ:257.9μm
基準面積:66524μm2
測定環境温度:23〜25℃
(Surface area ratio)
It measured on the following measurement conditions using the non-contact-type roughness measuring machine (OLYMPUS LEXT OLS 4000). For the surface area ratio, the area and the actual area were measured, and the value of the actual area / area was defined as the surface area ratio. Here, the area refers to the measurement reference area, and the actual area refers to the surface area in the measurement reference area.
<Measurement conditions>
Cut-off: None Reference length: 257.9 μm
Reference area: 66524 μm 2
Measurement ambient temperature: 23-25 ° C

(粗化処理面の体積)
非接触式粗さ測定機(レーザー顕微鏡、オリンパス製 LEXT OLS 4000)を用いて、以下の測定条件で、測定した。なお、粗化処理面の体積は以下の様に測定される。
(1)レーザー顕微鏡がサンプルの表面に焦点の合う高さに合わせる。
(2)明るさを調整し、全体照度が飽和点の約80%になるよう調節する。
(3)レーザー顕微鏡をサンプルに近づけ、画面照度が完全に消失した地点をゼロとする。
(4)レーザー顕微鏡をサンプルから遠ざけ、画面照度が完全に消失した地点を上限高さとする。
(5)高さゼロから上限までの粗化処理面の体積を測定する。
<測定条件>
カットオフ:無
基準長さ:257.9μm
基準面積:66524μm2
測定環境温度:23〜25℃
(マイグレーション)
各キャリア付き銅箔をビスマス系樹脂に接着し、次いでキャリア箔を剥離除去した。露出した極薄銅層の厚みをソフトエッチングにより1.5μmとした。その後、洗浄、乾燥を行った後に、極薄銅層上に、DF(日立化成社製、商品名RY−3625)をラミネート塗布した。15mJ/cm2の条件で露光し、現像液(炭酸ナトリウム)を用いて38℃で1分間液噴射揺動し、表1に記載の各種ピッチでレジストパターンを形成した。次いで、硫酸銅めっき(荏原ユージライト製 CUBRITE21)を用いて15μmめっきUPしたのち、剥離液(水酸化ナトリウム)でDFを剥離した。その後、極薄銅層を硫酸−過酸化水素系のエッチャントでエッチング除去して表1に記載の各種ピッチの配線を形成した。
表中に記載されているピッチはライン及びスペースの合計値に相当する。
得られた配線に対して、マイグレーション測定機(IMV製 MIG−9000)を用いて、以下の測定条件で、配線パターン間の絶縁劣化の有無を評価した。
<測定条件>
閾値:初期抵抗60%ダウン
測定時間:1000h
電圧:60V
温度:85℃
相対湿度:85%RH
(Roughening surface volume)
It measured on the following measuring conditions using the non-contact-type roughness measuring machine (a laser microscope, Olympus LEXT OLS 4000). The volume of the roughened surface is measured as follows.
(1) The laser microscope is adjusted to a height at which the surface of the sample is focused.
(2) Adjust the brightness so that the overall illuminance is about 80% of the saturation point.
(3) The laser microscope is brought close to the sample, and the point where the screen illuminance completely disappears is set to zero.
(4) The laser microscope is moved away from the sample, and the point where the screen illuminance completely disappears is set as the upper limit height.
(5) Measure the volume of the roughened surface from zero height to the upper limit.
<Measurement conditions>
Cut-off: None Reference length: 257.9 μm
Reference area: 66524 μm 2
Measurement ambient temperature: 23-25 ° C
(migration)
Each carrier-attached copper foil was bonded to a bismuth-based resin, and then the carrier foil was peeled off. The thickness of the exposed ultrathin copper layer was set to 1.5 μm by soft etching. Then, after washing and drying, DF (manufactured by Hitachi Chemical Co., Ltd., trade name RY-3625) was laminated and applied onto the ultrathin copper layer. Exposure was carried out under the condition of 15 mJ / cm 2 , and liquid jet rocking was performed for 1 minute at 38 ° C. using a developer (sodium carbonate) to form resist patterns at various pitches shown in Table 1. Next, UP was plated by 15 μm using copper sulfate plating (CUBRITE 21 manufactured by Sugawara Eugleite), and then DF was peeled with a peeling solution (sodium hydroxide). Thereafter, the ultrathin copper layer was removed by etching with a sulfuric acid-hydrogen peroxide-based etchant to form wirings having various pitches shown in Table 1.
The pitch described in the table corresponds to the total value of lines and spaces.
With respect to the obtained wiring, the presence or absence of insulation deterioration between the wiring patterns was evaluated using a migration measuring machine (MIG-9000 made by IMV) under the following measurement conditions.
<Measurement conditions>
Threshold: Initial resistance 60% down Measurement time: 1000h
Voltage: 60V
Temperature: 85 ° C
Relative humidity: 85% RH

Figure 0005481577
Figure 0005481577

Figure 0005481577
Figure 0005481577

Claims (23)

銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRzは非接触式粗さ計で測定して1.6μm以下であり、極薄銅層表面のSkuが2.8〜3.3であるキャリア付き銅箔。   A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened Rz on the surface of the ultrathin copper layer is 1.6 μm or less as measured by a non-contact type roughness meter, and the copper foil with a carrier has a Sku of 2.8 to 3.3 on the surface of the ultrathin copper layer. 銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRzは非接触式粗さ計で測定して1.6μm以下であり、極薄銅層表面のSskが−0.058〜0.3であるキャリア付き銅箔。   A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened Rz on the surface of the ultrathin copper layer is 1.6 μm or less as measured by a non-contact type roughness meter, and the copper foil with a carrier whose Ssk on the surface of the ultrathin copper layer is −0.058 to 0.3 . 銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRzは非接触式粗さ計で測定して1.35μm以下であり、レーザー顕微鏡にて測定される極薄銅層表面の面積66524μm2当たりの体積が350000μm3以上であるキャリア付き銅箔。 A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened and which is at 1.35μm or less as measured in Rz of the ultrathin copper layer surface in a non-contact type roughness meter, the volume of the area 66524Myuemu 2 per ultrathin copper layer surface to be measured by a laser microscope 350000Myuemu 3 The copper foil with a carrier which is the above. 銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRaは非接触式粗さ計で測定して0.3μm以下であり、極薄銅層表面のSkuが2.8〜3.3であるキャリア付き銅箔。 A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened and has, very Ra of thin copper layer surface is at 0.3μm or less as measured by non-contact type roughness meter, very Sku thin copper layer surface 2.8 to 3.3 der Ruki Yaria with copper Foil. 銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRaは非接触式粗さ計で測定して0.3μm以下であり、極薄銅層表面のSskが−0.058〜0.3であるキャリア付き銅箔。A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened Ra of the surface of the ultrathin copper layer is 0.3 μm or less as measured by a non-contact type roughness meter, and the copper foil with a carrier whose Ssk of the surface of the ultrathin copper layer is −0.058 to 0.3 . 銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRtは非接触式粗さ計で測定して2.3μm以下であり、極薄銅層表面のSkuが2.8〜3.3であるキャリア付き銅箔。   A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened Rt on the surface of the ultrathin copper layer is 2.3 μm or less as measured by a non-contact type roughness meter, and the copper foil with a carrier whose Sku on the surface of the ultrathin copper layer is 2.8 to 3.3. 銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層の上に積層された極薄銅層とを備えたキャリア付き銅箔であって、極薄銅層は粗化処理されており、極薄銅層表面のRtは非接触式粗さ計で測定して2.3μm以下であり、極薄銅層表面のSskが−0.058〜0.3であるキャリア付き銅箔。   A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer, the ultrathin copper layer being roughened Rt on the surface of the ultrathin copper layer is 2.3 μm or less as measured with a non-contact type roughness meter, and the copper foil with a carrier whose Ssk on the surface of the ultrathin copper layer is −0.058 to 0.3 . 極薄銅層表面のRzは非接触式粗さ計で測定して1.3μm以下である請求項1〜の何れか一項に記載のキャリア付き銅箔。 The Rz on the surface of the ultrathin copper layer is 1.3 µm or less as measured with a non-contact type roughness meter, The copper foil with a carrier according to any one of claims 1 to 7 . 極薄銅層表面のRzは非接触式粗さ計で測定して1.10μm以下である請求項1〜7の何れか一項に記載のキャリア付き銅箔。Rz of the ultra-thin copper layer surface is 1.10 micrometers or less as measured with a non-contact type roughness meter, The copper foil with a carrier as described in any one of Claims 1-7. 極薄銅層表面のRaは非接触式粗さ計で測定して0.25μm以下である請求項1〜の何れか一項に記載のキャリア付き銅箔。 Electrode copper foil with carrier according to any one of claims. 1 to 9 Ra of thin copper layer surface is 0.25μm or less as measured by non-contact type roughness meter. 極薄銅層表面のRaは非接触式粗さ計で測定して0.20μm以下である請求項1〜9の何れか一項に記載のキャリア付き銅箔。The copper foil with a carrier according to any one of claims 1 to 9, wherein Ra on the surface of the ultrathin copper layer is 0.20 µm or less as measured by a non-contact type roughness meter. 極薄銅層表面のRaは非接触式粗さ計で測定して0.16μm以下である請求項1〜9の何れか一項に記載のキャリア付き銅箔。The copper foil with a carrier according to any one of claims 1 to 9, wherein Ra on the surface of the ultrathin copper layer is 0.16 µm or less as measured with a non-contact roughness meter. 極薄銅層表面のRtは非接触式粗さ計で測定して1.8μm以下である請求項1〜12の何れか一項に記載のキャリア付き銅箔。   The copper foil with a carrier according to any one of claims 1 to 12, wherein Rt on the surface of the ultrathin copper layer is 1.8 µm or less as measured by a non-contact type roughness meter. 極薄銅層表面のRtは非接触式粗さ計で測定して1.5μm以下である請求項1〜12の何れか一項に記載のキャリア付き銅箔。The copper foil with a carrier according to any one of claims 1 to 12, wherein Rt on the surface of the ultrathin copper layer is 1.5 µm or less as measured by a non-contact type roughness meter. 極薄銅層表面のRtは非接触式粗さ計で測定して1.35μm以下である請求項1〜12の何れか一項に記載のキャリア付き銅箔。The copper foil with a carrier according to any one of claims 1 to 12, wherein Rt on the surface of the ultrathin copper layer is 1.35 µm or less as measured by a non-contact type roughness meter. 極薄銅層表面は、Sskが−0.058〜0.3である請求項1〜15の何れか一項に記載のキャリア付き銅箔。 The ultrathin copper layer surface has Ssk of -0.058 to 0.3. The copper foil with a carrier according to any one of claims 1 to 15 . 極薄銅層表面は、Skuが2.8〜3.3である請求項1〜16の何れか一項に記載のキャリア付き銅箔。 The copper foil with a carrier according to any one of claims 1 to 16 , wherein the ultrathin copper layer surface has a Sku of 2.8 to 3.3. 極薄銅層表面の表面積比が1.05〜1.5である請求項1〜17の何れか一項に記載のキャリア付き銅箔(ここで、表面積比とは、レーザー顕微鏡にてエリア及び実エリアを測定したときの、実エリア/エリアの値である。エリアとは測定基準面積を指し、実エリアとは測定基準面積中の表面積を指す。)。 The surface area ratio of the surface of the ultrathin copper layer is 1.05 to 1.5. The copper foil with a carrier according to any one of claims 1 to 17 (here, the surface area ratio refers to an area and a surface area with a laser microscope). (The real area / area value when the real area is measured. The area refers to the measurement reference area, and the real area refers to the surface area in the measurement reference area.) 極薄銅層表面の面積66524μm2当たりのレーザー顕微鏡にて測定される体積が350000μm3以上である請求項1〜18の何れか一項に記載のキャリア付き銅箔。 Electrode copper foil with carrier according to any one of claim 1 to 18 vol measured by a laser microscope area 66524Myuemu 2 per thin copper layer surface is 350000Myuemu 3 or more. 請求項1〜19の何れか一項に記載のキャリア付き銅箔を用いて製造した銅張積層板。 Copper-clad laminate produced using the copper foil with carrier according to any one of claims 1 to 19. 請求項1〜19の何れか一項に記載のキャリア付き銅箔を用いて製造したプリント配線板。 Printed wiring board produced using the copper foil with carrier according to any one of claims 1 to 19. 請求項1〜19の何れか一項に記載のキャリア付き銅箔を用いて製造したプリント回路板。 Printed circuit board produced using the copper foil with carrier according to any one of claims 1 to 19. 請求項1〜19の何れか一項に記載のキャリア付き銅箔と絶縁基板とを準備する工程、
前記キャリア付き銅箔と絶縁基板を積層する工程、
前記キャリア付き銅箔と絶縁基板を積層した後に、前記キャリア付き銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法の何れかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。
A step of preparing the carrier-attached copper foil according to any one of claims 1 to 19 and an insulating substrate,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the copper foil with carrier and the insulating substrate, a copper clad laminate is formed through a step of peeling the carrier of the copper foil with carrier,
Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
JP2013012468A 2012-09-11 2013-01-25 Copper foil with carrier Active JP5481577B1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2013012468A JP5481577B1 (en) 2012-09-11 2013-01-25 Copper foil with carrier
TW104115834A TWI575120B (en) 2012-09-11 2013-09-11 Attached copper foil
CN201380046519.7A CN104619889B (en) 2012-09-11 2013-09-11 Copper foil with carrier
KR1020157009363A KR101766554B1 (en) 2012-09-11 2013-09-11 Copper foil provided with carrier
PCT/JP2013/074585 WO2014042201A1 (en) 2012-09-11 2013-09-11 Copper foil provided with carrier
CN201710739142.3A CN107641820A (en) 2012-09-11 2013-09-11 Copper foil with carrier
TW102132911A TWI504788B (en) 2012-09-11 2013-09-11 Attached copper foil
MYPI2015000601A MY167704A (en) 2012-09-11 2013-09-11 Copper foil provided with carrier
KR1020177011125A KR102050646B1 (en) 2012-09-11 2013-09-11 Copper foil provided with carrier
CN201811088181.2A CN109379858A (en) 2012-09-11 2013-09-11 Copper foil with carrier
CN201810371406.9A CN108588766B (en) 2012-09-11 2013-09-11 Copper foil with carrier
MYPI2018701007A MY188679A (en) 2012-09-11 2013-09-11 Copper foil provided with carrier
PH12015500529A PH12015500529A1 (en) 2012-09-11 2015-03-11 Carrier-attached copper foil

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2012200017 2012-09-11
JP2012200017 2012-09-11
JP2012200973 2012-09-12
JP2012200973 2012-09-12
JP2012280024 2012-12-21
JP2012280024 2012-12-21
JP2013012468A JP5481577B1 (en) 2012-09-11 2013-01-25 Copper foil with carrier

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2013143048A Division JP5481591B1 (en) 2012-09-11 2013-07-08 Copper foil with carrier
JP2013215092A Division JP5575320B2 (en) 2012-09-11 2013-10-15 Copper foil with carrier

Publications (2)

Publication Number Publication Date
JP5481577B1 true JP5481577B1 (en) 2014-04-23
JP2014139336A JP2014139336A (en) 2014-07-31

Family

ID=50278311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012468A Active JP5481577B1 (en) 2012-09-11 2013-01-25 Copper foil with carrier

Country Status (7)

Country Link
JP (1) JP5481577B1 (en)
KR (2) KR101766554B1 (en)
CN (4) CN108588766B (en)
MY (2) MY167704A (en)
PH (1) PH12015500529A1 (en)
TW (2) TWI575120B (en)
WO (1) WO2014042201A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108277509A (en) * 2012-11-20 2018-07-13 Jx日矿日石金属株式会社 Copper foil with carrier
TW201446495A (en) * 2013-03-04 2014-12-16 Jx Nippon Mining & Metals Corp Copper foil with attached carrier, copper-clad laminate using same, printed circuit board, electronic device, and method for manufacturing printed circuit board
TWI613940B (en) * 2014-03-31 2018-02-01 Jx Nippon Mining & Metals Corp Copper foil with printed carrier, printed wiring board, laminated body, electronic device, and printed wiring board manufacturing method
JP2015205481A (en) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electronic apparatus and manufacturing method of printed wiring board
JP6591766B2 (en) * 2014-04-24 2019-10-16 Jx金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board
JP6297011B2 (en) * 2014-08-28 2018-03-20 株式会社有沢製作所 Three-layer flexible metal-clad laminate and double-sided three-layer flexible metal-clad laminate
CN105050331B (en) * 2015-07-07 2016-09-07 安徽铜冠铜箔有限公司 A kind of manufacture method of the high roughness electronics Copper Foil for ceramic base high-frequency copper-clad plate
JP6782561B2 (en) * 2015-07-16 2020-11-11 Jx金属株式会社 Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic equipment
CN109072472B (en) * 2016-04-14 2020-10-16 三井金属矿业株式会社 Surface-treated copper foil, copper foil with carrier, and copper-clad laminate and printed wiring board manufacturing method using same
JPWO2018198982A1 (en) * 2017-04-27 2019-06-27 京セラ株式会社 Circuit board and light emitting device provided with the same
WO2019003775A1 (en) 2017-06-29 2019-01-03 京セラ株式会社 Circuit board and light-emitting device provided with same
US10711360B2 (en) * 2017-07-14 2020-07-14 Rohm And Haas Electronic Materials Llc Nickel electroplating compositions with copolymers of arginine and bisepoxides and methods of electroplating nickel
US11950376B2 (en) 2018-03-30 2024-04-02 Mitsui Mining & Smelting Co., Ltd. Copper-clad laminate
KR102098475B1 (en) 2018-07-06 2020-04-07 주식회사 포스코 A Manufacturing Method of Surface-treated Zn-Ni Alloy Electroplated Steel Sheet Having Excellent Corrosion Resistivity and Paintability
JP6895936B2 (en) * 2018-09-28 2021-06-30 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminates and circuit boards using this
US10581081B1 (en) * 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
TWI697549B (en) * 2019-12-23 2020-07-01 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same
TWI740515B (en) 2019-12-23 2021-09-21 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same
EP4132235A4 (en) * 2020-03-30 2024-04-10 Mitsubishi Materials Corp Bonded body and insulating circuit board
CN112226790B (en) * 2020-10-19 2022-04-22 九江德福科技股份有限公司 Production method of ultrathin high-strength electronic copper foil
WO2022153580A1 (en) * 2021-01-15 2022-07-21 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2022244826A1 (en) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board
WO2022255421A1 (en) * 2021-06-03 2022-12-08 三井金属鉱業株式会社 Roughened copper foil, copper clad laminate, and printed wiring board
CN117529976A (en) * 2021-06-24 2024-02-06 京瓷株式会社 Wiring substrate
WO2023281759A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
TWI781818B (en) 2021-11-05 2022-10-21 長春石油化學股份有限公司 Surface-treated copper foil and copper clad laminate

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134858A (en) * 2000-10-25 2002-05-10 Hitachi Cable Ltd Copper foil for printed boards
JP2005008955A (en) * 2003-06-19 2005-01-13 Hitachi Cable Ltd Surface treatment method for copper foil
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2005290519A (en) * 2004-04-02 2005-10-20 Mitsui Mining & Smelting Co Ltd Copper foil and its production method
JP2007314855A (en) * 2006-05-29 2007-12-06 Furukawa Circuit Foil Kk Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP2008285751A (en) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd Surface treated copper foil, copper clad laminate obtainable using the surface treated copper foil, and printed circuit board obtainable using the copper clad laminate
JP2010236072A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Stacked copper foil and method for manufacturing the same
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2011074458A (en) * 2009-09-30 2011-04-14 Jx Nippon Mining & Metals Corp Sn or sn alloy plating film, and composite material having the same
JP2011116074A (en) * 2009-12-07 2011-06-16 Jx Nippon Mining & Metals Corp Metal foil equipped with electric resistance film and board for printed circuit using the metal foil
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
JP2012169598A (en) * 2011-01-26 2012-09-06 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method therefor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536095B2 (en) * 1988-10-20 1996-09-18 日立化成工業株式会社 Manufacturing method of wiring board
TW595280B (en) * 2000-04-25 2004-06-21 Nippon Denkai Kk Copper foil for TAB tape carrier, TAB tape carrier using the copper foil and TAB carrier tape
US7026059B2 (en) 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
US7691487B2 (en) 2002-07-04 2010-04-06 Mitsui Mining & Smelting Co., Ltd. Electrodeposited copper foil with carrier foil
CN100515167C (en) * 2004-02-17 2009-07-15 日矿金属株式会社 Copper foil having blackened surface or layer
JP4429979B2 (en) 2005-06-29 2010-03-10 古河電気工業株式会社 Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier
JP4157898B2 (en) * 2006-10-02 2008-10-01 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent press punchability
US20100084275A1 (en) * 2007-03-15 2010-04-08 Mikio Hanafusa Copper electrolytic solution and two-layer flexible substrate obtained using the same
KR101179106B1 (en) * 2007-10-31 2012-09-07 제이에프이 스틸 가부시키가이샤 Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet
KR101351928B1 (en) * 2007-12-28 2014-01-21 일진머티리얼즈 주식회사 Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
TWI499690B (en) * 2009-03-13 2015-09-11 Ajinomoto Kk Paste metal laminates
JP2010006071A (en) 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
CN102452197B (en) * 2010-10-21 2014-08-20 财团法人工业技术研究院 Foil-attached copper foil and method for producing same
JP2012167297A (en) * 2011-02-09 2012-09-06 Jfe Steel Corp Electrogalvanized steel plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134858A (en) * 2000-10-25 2002-05-10 Hitachi Cable Ltd Copper foil for printed boards
JP2005008955A (en) * 2003-06-19 2005-01-13 Hitachi Cable Ltd Surface treatment method for copper foil
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2005290519A (en) * 2004-04-02 2005-10-20 Mitsui Mining & Smelting Co Ltd Copper foil and its production method
JP2007314855A (en) * 2006-05-29 2007-12-06 Furukawa Circuit Foil Kk Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP2008285751A (en) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd Surface treated copper foil, copper clad laminate obtainable using the surface treated copper foil, and printed circuit board obtainable using the copper clad laminate
JP2010236072A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Stacked copper foil and method for manufacturing the same
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2011074458A (en) * 2009-09-30 2011-04-14 Jx Nippon Mining & Metals Corp Sn or sn alloy plating film, and composite material having the same
JP2011116074A (en) * 2009-12-07 2011-06-16 Jx Nippon Mining & Metals Corp Metal foil equipped with electric resistance film and board for printed circuit using the metal foil
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
JP2012169598A (en) * 2011-01-26 2012-09-06 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method therefor

Also Published As

Publication number Publication date
MY167704A (en) 2018-09-21
KR102050646B1 (en) 2019-11-29
WO2014042201A1 (en) 2014-03-20
KR20170046822A (en) 2017-05-02
CN107641820A (en) 2018-01-30
TW201533280A (en) 2015-09-01
TWI575120B (en) 2017-03-21
CN104619889B (en) 2018-10-09
KR101766554B1 (en) 2017-08-08
PH12015500529B1 (en) 2015-04-27
MY188679A (en) 2021-12-22
CN109379858A (en) 2019-02-22
PH12015500529A1 (en) 2015-04-27
CN104619889A (en) 2015-05-13
CN108588766B (en) 2020-02-18
TW201428144A (en) 2014-07-16
KR20150052315A (en) 2015-05-13
CN108588766A (en) 2018-09-28
TWI504788B (en) 2015-10-21
JP2014139336A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5481577B1 (en) Copper foil with carrier
US9788423B2 (en) Copper foil with carrier
TWI479958B (en) Copper foil for printed wiring board and manufacturing method thereof
JP5373995B2 (en) Copper foil with carrier
US8142905B2 (en) Copper foil for printed circuit board and copper clad laminate for printed circuit board
JP6514635B2 (en) Copper foil with carrier, copper-clad laminate using it, printed wiring board, electronic device, and method of manufacturing printed wiring board
JP5358740B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5352748B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5156873B1 (en) Copper foil with carrier
JP5364838B1 (en) Copper foil with carrier
JP5358739B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP6353193B2 (en) Copper foil with carrier, method for producing a copper-clad laminate using the copper foil with carrier, method for producing a printed wiring board using the copper foil with carrier, and method for producing a printed wiring board
JP2009149977A (en) Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
JP5481591B1 (en) Copper foil with carrier
JP5254491B2 (en) Copper foil for printed circuit board and copper clad laminate for printed circuit board
JP5373993B1 (en) Copper foil with carrier
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6360659B2 (en) Copper foil with carrier, method of producing a printed wiring board using the copper foil with carrier, method of producing a copper clad laminate using the copper foil with carrier, and method of producing a printed wiring board
JP5481586B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014208480A (en) Copper foil with a carrier, printed wiring board, printed circuit board, copper-clad laminate and method for producing printed wiring board
TW201942422A (en) Surface-treated copper foil, copper-cladded laminate, and manufacturing method for printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2927968B2 (en) Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
JP2014024315A (en) Copper foil with carrier

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250