JP5254491B2 - Copper foil for printed circuit board and copper clad laminate for printed circuit board - Google Patents
Copper foil for printed circuit board and copper clad laminate for printed circuit board Download PDFInfo
- Publication number
- JP5254491B2 JP5254491B2 JP2012501763A JP2012501763A JP5254491B2 JP 5254491 B2 JP5254491 B2 JP 5254491B2 JP 2012501763 A JP2012501763 A JP 2012501763A JP 2012501763 A JP2012501763 A JP 2012501763A JP 5254491 B2 JP5254491 B2 JP 5254491B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- copper foil
- mass
- zinc
- peel strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 210
- 239000011889 copper foil Substances 0.000 title claims description 131
- 239000010949 copper Substances 0.000 title claims description 109
- 229910052802 copper Inorganic materials 0.000 title claims description 88
- 239000011701 zinc Substances 0.000 claims description 116
- 229910052725 zinc Inorganic materials 0.000 claims description 93
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 85
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 79
- KOMIMHZRQFFCOR-UHFFFAOYSA-N [Ni].[Cu].[Zn] Chemical compound [Ni].[Cu].[Zn] KOMIMHZRQFFCOR-UHFFFAOYSA-N 0.000 claims description 39
- 229920005989 resin Polymers 0.000 claims description 30
- 239000011347 resin Substances 0.000 claims description 30
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 27
- 238000009713 electroplating Methods 0.000 claims description 26
- 229910052759 nickel Inorganic materials 0.000 claims description 26
- 239000011651 chromium Substances 0.000 claims description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 7
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 4
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 71
- 239000000758 substrate Substances 0.000 description 68
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 58
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 52
- 230000006866 deterioration Effects 0.000 description 49
- 230000000052 comparative effect Effects 0.000 description 41
- 238000007747 plating Methods 0.000 description 35
- 239000000203 mixture Substances 0.000 description 26
- 239000000243 solution Substances 0.000 description 24
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 22
- 239000000126 substance Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 15
- 238000010306 acid treatment Methods 0.000 description 14
- 230000032683 aging Effects 0.000 description 14
- 230000003628 erosive effect Effects 0.000 description 14
- 238000005530 etching Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 238000007788 roughening Methods 0.000 description 11
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910001369 Brass Inorganic materials 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000010951 brass Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 229910017518 Cu Zn Inorganic materials 0.000 description 4
- 229910017752 Cu-Zn Inorganic materials 0.000 description 4
- 229910017943 Cu—Zn Inorganic materials 0.000 description 4
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910018605 Ni—Zn Inorganic materials 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- -1 argon ion Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- LGZNZXOHAFRWEN-UHFFFAOYSA-N 3-[4-(2,5-dioxopyrrol-3-yl)triazin-5-yl]pyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C(=NN=NC=2)C=2C(NC(=O)C=2)=O)=C1 LGZNZXOHAFRWEN-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910017816 Cu—Co Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Electroplating Methods And Accessories (AREA)
Description
本発明は、耐熱性及び耐薬品性に優れた印刷回路基板用銅箔及び印刷回路基板用銅張積層板、特に銅箔の少なくとも樹脂との接着面に、ニッケル、亜鉛及び銅を含む層(以下、「銅ニッケル亜鉛層」という。)、同層上にクロメート皮膜層、さらには必要に応じてシランカップリング剤層を有している印刷回路基板用銅箔及び該銅箔を使用して作製した印刷回路基板用銅張積層板に関する。 The present invention relates to a copper foil for printed circuit boards and a copper clad laminate for printed circuit boards excellent in heat resistance and chemical resistance, in particular, a layer containing nickel, zinc and copper on at least an adhesive surface of the copper foil with a resin ( Hereinafter referred to as “copper nickel zinc layer”), a copper foil for a printed circuit board having a chromate film layer on the same layer and, if necessary, a silane coupling agent layer, and the copper foil. The present invention relates to the produced copper-clad laminate for printed circuit boards.
印刷回路基板の一種である半導体パッケージ基板は、半導体ICチップやその他の半導体素子を実装するために使用される印刷回路基板である。半導体パッケージ基板に形成される回路は通常の印刷回路基板よりも微細であるため、基板材料には一般的な印刷回路基板とは異なる樹脂基材が使用される。 A semiconductor package substrate, which is a kind of printed circuit board, is a printed circuit board used for mounting a semiconductor IC chip and other semiconductor elements. Since the circuit formed on the semiconductor package substrate is finer than a normal printed circuit board, a resin base material different from a general printed circuit board is used as the substrate material.
半導体パッケージ基板は、通常次のような工程により作製される。まず、合成樹脂等の基材に、銅箔を高温高圧下で積層接着する。これを銅張積層板あるいは単に積層板と呼ぶ。次に、積層板上に目的とする導電性の回路を形成するために、銅箔上に耐エッチング性樹脂等の材料により、回路と同等のパターンを印刷する。そして、露出している銅箔の不要部をエッチング処理により除去する。 A semiconductor package substrate is usually manufactured by the following process. First, a copper foil is laminated and bonded to a base material such as a synthetic resin under high temperature and high pressure. This is called a copper clad laminate or simply a laminate. Next, in order to form a target conductive circuit on the laminate, a pattern equivalent to the circuit is printed on the copper foil with a material such as an etching resistant resin. Then, unnecessary portions of the exposed copper foil are removed by an etching process.
エッチング後、印刷部を除去して、基板上に導電性の回路を形成する。形成された導電性の回路には、最終的に所定の素子を半田付けして、エレクトロニクスデバイス用の種々の印刷回路基板を形成する。最終的には、レジスト又はビルドアップ樹脂基板と接合する。
一般に、印刷回路基板用銅箔に対する品質要求は、樹脂基材と接着される接着面(所謂、粗化面)と、非接着面(所謂光沢面)とで異なり、両者を同時に満足させることが必要である。After the etching, the printed part is removed and a conductive circuit is formed on the substrate. A predetermined element is finally soldered to the formed conductive circuit to form various printed circuit boards for electronic devices. Finally, it is joined to a resist or a build-up resin substrate.
In general, quality requirements for copper foil for printed circuit boards differ between an adhesive surface (so-called roughened surface) to be bonded to a resin base material and a non-adhesive surface (so-called glossy surface) and satisfy both at the same time. is necessary.
光沢面に対する要求としては、(1)外観が良好なこと及び保存時における酸化変色のないこと、(2)半田濡れ性が良好なこと、(3)高温加熱時に酸化変色がないこと、(4)レジストとの密着性が良好なこと等が要求される。
他方、粗化面に対しては、主として、(1)保存時における酸化変色のないこと、(2)基材との剥離強度が、高温加熱、湿式処理、半田付け、薬品処理等の後でも十分なこと、(3)基材との積層、エッチング後に生じる、所謂積層汚点のないこと等が挙げられる。
また、近年回路印刷パターンの微細化に伴い、銅箔表面の低粗度化が要求されてきている。The requirements for the glossy surface are: (1) good appearance and no oxidation discoloration during storage, (2) good solder wettability, (3) no oxidation discoloration when heated at high temperature, (4 ) Good adhesion to the resist is required.
On the other hand, for the roughened surface, mainly (1) no oxidation discoloration during storage, (2) the peel strength from the base material is high temperature heating, wet treatment, soldering, chemical treatment, etc. It is sufficient that (3) there is no so-called lamination stain that occurs after lamination with the substrate and etching.
In recent years, with the miniaturization of circuit print patterns, it has been required to reduce the roughness of the copper foil surface.
更に、パソコンや移動体通信等の電子機器では、通信の高速化、大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能な印刷回路基板及び銅箔が求められている。電気信号の周波数が1GHz以上になると、電流が導体の表面にだけ流れる表皮効果の影響が顕著になり、表面の凹凸で電流伝送経路が変化してインピーダンスが増大する影響が無視できなくなる。この点からも銅箔の表面粗さが小さいことが望まれる。
こうした要求に答えるべく、印刷回路基板用銅箔に対して多くの表面処理方法が提唱されてきた。Further, in electronic devices such as personal computers and mobile communications, the frequency of electrical signals has been increased with the increase in communication speed and capacity, and printed circuit boards and copper foils that can cope with this have been demanded. . When the frequency of the electric signal is 1 GHz or more, the influence of the skin effect in which the current flows only on the surface of the conductor becomes significant, and the influence that the current transmission path changes due to the unevenness of the surface and the impedance increases cannot be ignored. Also from this point, it is desired that the surface roughness of the copper foil is small.
In order to meet these requirements, many surface treatment methods have been proposed for printed circuit board copper foils.
表面処理方法は、圧延銅箔と電解銅箔とで異なるが、電解銅箔の表面処理方法の一例を示すと、以下に記載する方法がある。
すなわち、まず銅と樹脂基材との接着力(ピール強度)を高めるため、一般には銅及び酸化銅からなる微粒子を銅箔表面に付与した後(粗化処理)、耐熱特性を持たせるため黄銅又は亜鉛等の耐熱層(障壁層)を形成する。
そして、最後に運搬中又は保管中の表面酸化等を防止するため、浸漬又は電解によるクロメート処理あるいは電解亜鉛クロメート処理等の防錆処理を施すことにより製品とする。Although the surface treatment method differs between the rolled copper foil and the electrolytic copper foil, an example of the surface treatment method for the electrolytic copper foil includes the method described below.
That is, first, in order to increase the adhesive strength (peel strength) between copper and the resin base material, in general, after applying fine particles of copper and copper oxide to the surface of the copper foil (roughening treatment), brass is imparted to have heat resistance characteristics. Alternatively, a heat-resistant layer (barrier layer) such as zinc is formed.
Finally, in order to prevent surface oxidation or the like during transportation or storage, the product is subjected to rust prevention treatment such as immersion or electrolysis chromate treatment or electrolytic zinc chromate treatment.
この中で、特に耐熱層を形成する表面処理方法は、銅箔の表面性状を決定するものとして、大きな鍵を握っている。このため、耐熱層を形成する金属又は合金として、Zn、Cu−Ni合金、Cu−Co合金及びCu−Zn合金等の被覆層を形成した多数の銅箔が実用化されている(例えば、特許文献1参照)。 Of these, the surface treatment method for forming the heat-resistant layer is particularly important as determining the surface properties of the copper foil. For this reason, many copper foils in which a coating layer such as Zn, Cu—Ni alloy, Cu—Co alloy and Cu—Zn alloy is formed as a metal or alloy for forming a heat-resistant layer have been put into practical use (for example, patents). Reference 1).
これらの中で、Cu−Zn合金(黄銅)から成る耐熱層を形成した銅箔は、エポキシ樹脂等から成る印刷回路基板に使用した場合に樹脂層のしみがないこと、また印刷回路基板を高温で保持した後の銅箔のピール強度の劣化が少ない等の優れた特性を有しているため、工業的に広く使用されている。この黄銅から成る耐熱層を形成する方法については、特許文献2に詳述されている。 Among these, the copper foil formed with a heat-resistant layer made of Cu-Zn alloy (brass) has no stain of the resin layer when used for a printed circuit board made of epoxy resin, etc. Since the copper foil has excellent properties such as little deterioration of peel strength of the copper foil after being held in, it is widely used industrially. The method for forming the heat-resistant layer made of brass is described in detail in Patent Document 2.
しかし、近年、印刷回路基板、特にパッケージ基板の製造工程の中で、レジスト又はビルドアップ樹脂基板と回路面である銅箔の光沢面との密着性を向上させるために、硫酸と過酸化水素の混合液によりソフトエッチングを行って銅箔光沢面を粗面化する処理が使用されるようになっており、特許文献1等に記載の公知の耐熱層を形成した銅箔を用いた印刷回路基板の銅箔回路光沢面を、上記の硫酸と過酸化水素の混合液によりソフトエッチングを行うと、先に形成した回路パターン両側端部(エッジ部)の浸食(回路浸食)現象が起り、樹脂基材との剥離強度が劣化するという問題がある。 However, in recent years, in the manufacturing process of printed circuit boards, particularly package substrates, in order to improve the adhesion between the resist or build-up resin substrate and the glossy surface of the copper foil as the circuit surface, sulfuric acid and hydrogen peroxide are used. A process of soft etching with a mixed solution to roughen the glossy surface of the copper foil is used, and a printed circuit board using a copper foil on which a known heat-resistant layer described in Patent Document 1 is formed When the copper foil circuit glossy surface is soft-etched with the above mixture of sulfuric acid and hydrogen peroxide, the erosion (circuit erosion) phenomenon of both ends (edge portions) of the circuit pattern formed earlier occurs, and the resin base There is a problem that the peel strength with the material deteriorates.
この回路浸食現象とは、銅箔回路と樹脂基材との接着境界層が、前記の硫酸と過酸化水素の混合液より浸食され、これによりその部分の銅箔のピール強度が著しく劣化する現象をいう。そして、この現象が回路パターン全面に発生すれば、回路パターンが基材から剥離することになり、重大な問題となる。 This circuit erosion phenomenon is a phenomenon in which the adhesive boundary layer between the copper foil circuit and the resin base material is eroded by the mixed solution of sulfuric acid and hydrogen peroxide, and the peel strength of the copper foil in that portion is significantly deteriorated. Say. If this phenomenon occurs on the entire surface of the circuit pattern, the circuit pattern is peeled off from the substrate, which becomes a serious problem.
そこで、回路浸食現象の防止に優れる表面処理層として、黄銅にニッケルを添加したニッケル−亜鉛−銅層が有効であることが、一般に知られている。しかしながら、ニッケルの添加により回路浸食現象を防止できるが、ニッケルの添加の量によっては、耐熱性(耐熱ピール強度)の低下や回路形成時の足残りの発生等、Cu−Zn合金(黄銅)から成る表面層より劣る場合があることを発明者らは見出した。 Therefore, it is generally known that a nickel-zinc-copper layer in which nickel is added to brass is effective as a surface treatment layer excellent in preventing a circuit erosion phenomenon. However, although the circuit erosion phenomenon can be prevented by the addition of nickel, depending on the amount of the addition of nickel, such as a decrease in heat resistance (heat-resistant peel strength) and the occurrence of a foot residue during circuit formation, the Cu-Zn alloy (brass) The inventors have found that they may be inferior to the surface layer comprising.
本発明の課題は、Cu−Zn合金(黄銅)から成る表面層の諸特性(銅箔と樹脂基材を積層して作製した印刷回路基板の銅箔の常態ピール強度、および印刷回路板を高温で所定時間保持した後のピール強度(以下、耐熱ピール強度という)、および耐薬品性(塩酸))を劣化することなく、上記の回路浸食現象を低減させた半導体パッケージ基板用として好適な銅箔を開発することである。
特に、樹脂基材に銅箔を積層し、耐熱ピール強度を大きく向上させると共に、硫酸−過酸化水素系エッチング液を使用して回路をソフトエッチングする場合において、同エッチング液による回路浸食現象を効果的に防止出来る(以下、必要に応じて「耐薬品性」と言う。)銅箔の表面処理技術を確立することにある。The object of the present invention is to obtain various characteristics of a surface layer made of a Cu—Zn alloy (brass) (normal peel strength of a copper foil of a printed circuit board produced by laminating a copper foil and a resin base material, Copper foil suitable for a semiconductor package substrate in which the above circuit erosion phenomenon is reduced without deteriorating the peel strength (hereinafter referred to as heat-resistant peel strength) and chemical resistance (hydrochloric acid) after being held for a predetermined time at Is to develop.
In particular, when copper foil is laminated on the resin base material to greatly improve the heat-resistant peel strength, and when the circuit is soft etched using a sulfuric acid-hydrogen peroxide etchant, the circuit erosion phenomenon caused by the etchant is effective. (Hereinafter referred to as “chemical resistance” if necessary) to establish a copper foil surface treatment technology.
上記課題を解決するために、本発明者が銅箔上に表面処理を行う条件等について鋭意検討した結果、以下の銅箔の耐熱ピール強度向上及び耐薬品性、すなわち硫酸−過酸化水素系エッチング液による銅箔光沢面のソフトエッチング時の、粗化面の耐浸食性(耐回路浸食性)に有効であることが分かった。 In order to solve the above-mentioned problems, the present inventors diligently studied the conditions for performing surface treatment on the copper foil. As a result, the following copper foil has improved heat peel strength and chemical resistance, that is, sulfuric acid-hydrogen peroxide etching. It was found that this was effective for erosion resistance (circuit erosion resistance) of the roughened surface during soft etching of the glossy surface of the copper foil.
以上から、本願発明は、
1)銅箔の表面に、ニッケル、亜鉛及び銅を含む層(以下、「銅ニッケル亜鉛層」という。)を備える印刷回路基板用銅箔であって、前記銅ニッケル亜鉛層の単位面積当りの亜鉛付着重量が200μg/dm2以上、2000μg/dm2以下であり、前記銅ニッケル亜鉛層中、Niが1〜50質量%、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.3以上、(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.3以上であることを特徴とする印刷回路基板用銅箔、を提供する。From the above, the present invention is
1) A copper foil for a printed circuit board provided with a layer containing nickel, zinc and copper (hereinafter referred to as “copper nickel zinc layer”) on the surface of the copper foil, wherein the copper nickel zinc layer per unit area zinc deposition weight 200 [mu] g / dm 2 or more and 2000 [mu] g / dm 2 or less, the copper nickel zinc layer, Ni is from 1 to 50% by weight, (zinc deposition amount (mass%)) / {100- (copper deposition amount (Mass%))} is 0.3 or more, and (copper adhesion amount (mass%)) / {100- (zinc adhesion quantity (mass%))} is 0.3 or more. For copper foil.
また、本発明は、
2)前記銅ニッケル亜鉛層の上に、クロメート皮膜層を備えることを特徴とする上記1記載の印刷回路基板用銅箔
3)前記クロメート皮膜層において、クロム付着重量が単位面積当たり30μg/dm2以上、100μg/dm2以下であることを特徴とする上記3に記載の印刷回路基板用銅箔
4)前記クロメート皮膜層の上に、さらにシランカップリング剤層を備えることを特徴とする上記2又は3に記載の印刷回路基板用銅箔
5)銅箔が電解銅箔であり、前記銅ニッケル亜鉛層が、電解めっき時の粗面又は電解銅箔の光沢面に形成されることを特徴とする上記1〜5のいずれか一に記載の印刷回路基板用銅箔、
6)銅箔が圧延銅箔であることを特徴とする上記1〜5のいずれか一に記載の印刷回路基板用銅箔
7)上記1〜上記7のいずれか一に記載の印刷回路基板用銅箔と印刷回路基板用樹脂とを、張り合わせて作製した印刷回路基板用銅張積層板、を提供する。The present invention also provides:
2) The copper foil for a printed circuit board according to 1 above, wherein a chromate film layer is provided on the copper nickel zinc layer. 3) In the chromate film layer, the chromium adhesion weight is 30 μg / dm 2 per unit area. The printed circuit board copper foil according to 3 above, which is 100 μg / dm 2 or less as described above 4) A silane coupling agent layer is further provided on the chromate film layer. 5) The copper foil for printed circuit board according to 3), wherein the copper foil is an electrolytic copper foil, and the copper nickel zinc layer is formed on a rough surface during electrolytic plating or a glossy surface of the electrolytic copper foil. The copper foil for printed circuit boards according to any one of 1 to 5 above,
6) The copper foil for printed circuit boards according to any one of 1 to 5 above, wherein the copper foil is a rolled copper foil. 7) For the printed circuit board according to any one of 1 to 7 above. Provided is a copper-clad laminate for a printed circuit board produced by bonding a copper foil and a resin for a printed circuit board.
以上示したように、本発明の印刷回路基板用銅箔は、印刷回路基板を高温保持した後の銅箔のピール強度を劣化させないために銅ニッケル亜鉛層を使用するものである。これによって、銅箔の耐熱ピール強度を飛躍的に向上させることができる。
また、これによって薬品による回路浸食現象を効果的に防止でき、特に耐硫酸−過酸化水素性を向上することができるという新しい特性が付与されたものであり、印刷回路基板用銅箔(特に、半導体パッケージ基板用銅箔)及び銅箔と樹脂基材を張り合わせて作製した銅張積層板(特に、半導体パッケージ基板用銅張積層板)として極めて有効である。当然のことであるが、一般的な印刷回路基板用銅箔としても使用できることは言うまでもない。As described above, the copper foil for a printed circuit board according to the present invention uses a copper nickel zinc layer so as not to deteriorate the peel strength of the copper foil after the printed circuit board is held at a high temperature. Thereby, the heat-resistant peel strength of the copper foil can be dramatically improved.
In addition, the circuit erosion phenomenon caused by chemicals can be effectively prevented, and a new characteristic that sulfuric acid-hydrogen peroxide resistance can be improved is provided. Copper foil for printed circuit boards (in particular, This is extremely effective as a copper clad laminate for a semiconductor package substrate) and a copper clad laminate produced by bonding a copper foil and a resin base material (particularly, a copper clad laminate for a semiconductor package substrate). Of course, it can be used as a general copper foil for a printed circuit board.
次に、本発明の理解を容易にするため、本発明を具体的かつ詳細に説明する。
本願発明の銅箔は、電解銅箔及び圧延銅箔のいずれも使用できるが、電解銅箔の場合は、電解めっき時の粗面又は電解銅箔の光沢面に適用することができる。また、さらにこれらの表面にさらに粗化処理を施しても良い。例えば、樹脂基材と積層後の銅箔の剥離(ピール)強度を向上させることを目的として、脱脂後の銅箔の表面に、例えば銅の「ふしこぶ」状の電着を行う粗化処理が施した電解銅箔であり、これをそのまま使用することができる。Next, in order to facilitate understanding of the present invention, the present invention will be described specifically and in detail.
As the copper foil of the present invention, either an electrolytic copper foil or a rolled copper foil can be used. In the case of an electrolytic copper foil, it can be applied to a rough surface during electrolytic plating or a glossy surface of the electrolytic copper foil. Further, these surfaces may be further subjected to a roughening treatment. For example, for the purpose of improving the peeling (peel) strength of the copper foil after lamination with the resin base material, for example, a roughening treatment is performed on the surface of the copper foil after degreasing, for example, “fist-knot” -shaped electrodeposition of copper Is an electrolytic copper foil that can be used as it is.
一般に、ドラム型の電解銅箔の製造装置においては、片側(ドラム側)が光沢面で、反対側が粗面となる。圧延銅箔においては、いずれも光沢のある圧延面となる。本発明においては、電解銅箔に粗面と光沢面があるが、粗面の場合は、そのまま使用することができる。電解銅箔の光沢面については、さらにピール強度を高めるために粗化処理を施して粗化面とすることができる。
圧延銅箔においても同様に粗化処理を施す。粗化処理は、いずれの場合にも、すでに公知の粗化処理を用いることができ、特に制限はない。
本発明の粗化面は、電解めっき時の粗面をもつ電解銅箔又は粗化処理を施した電解銅箔及び圧延銅箔を意味するものであり、いずれの銅箔にも適用できる。In general, in a drum-type electrolytic copper foil manufacturing apparatus, one side (drum side) is a glossy surface and the opposite side is a rough surface. In rolled copper foil, all become a glossy rolled surface. In the present invention, the electrolytic copper foil has a rough surface and a glossy surface, but in the case of a rough surface, it can be used as it is. The glossy surface of the electrolytic copper foil can be roughened by applying a roughening treatment to further increase the peel strength.
A roughening treatment is similarly applied to the rolled copper foil. As for the roughening treatment, any known roughening treatment can be used in any case, and there is no particular limitation.
The roughened surface of the present invention means an electrolytic copper foil having a roughened surface during electrolytic plating, or an electrolytic copper foil and a rolled copper foil subjected to a roughening treatment, and can be applied to any copper foil.
上記の通り、本願発明の半導体パッケージ基板用銅箔は、樹脂との接着面となる銅箔の表面に形成された銅ニッケル亜鉛層、クロメート皮膜層及び必要に応じてシランカップリング剤層からなる。銅箔としては、上記の圧延銅箔又は電解銅箔を使用することができる。
またクロメート皮膜層は、電解クロメート皮膜層又は浸漬クロメート皮膜層を用いることができる。As described above, the copper foil for a semiconductor package substrate of the present invention is composed of a copper nickel zinc layer, a chromate film layer, and a silane coupling agent layer as required, which are formed on the surface of the copper foil to be an adhesive surface with the resin. . As the copper foil, the above rolled copper foil or electrolytic copper foil can be used.
As the chromate film layer, an electrolytic chromate film layer or an immersion chromate film layer can be used.
本願発明は、上記の通り、例えば銅箔の表面に、ニッケル、亜鉛及び銅を含む層(以下、「銅ニッケル亜鉛層」という。)を形成するものである。
銅箔が高温加熱後のピール強度を劣化させないためには、前記銅ニッケル亜鉛層における銅箔の単位面積当たりの亜鉛付着量は200μg/dm2以上とすることが必要である。銅ニッケル亜鉛層の組成にかかわらず、亜鉛付着重量が200μg/dm2未満であると、層形成の効果がなく、高温加熱後のピール強度の劣化が大きくなるからである。一方、亜鉛付着重量が2000μg/dm2を超えると、硫酸−過酸化水素系エッチング液による回路端部の浸食が顕著となる。従って前記銅ニッケル亜鉛層における銅箔の単位面積当たりの亜鉛付着量は200μg/dm2以上2000μg/dm2以下が好ましい。As described above, the present invention forms a layer containing nickel, zinc and copper (hereinafter referred to as “copper nickel zinc layer”) on the surface of a copper foil, for example.
In order for the copper foil not to deteriorate the peel strength after high-temperature heating, the zinc adhesion amount per unit area of the copper foil in the copper nickel zinc layer needs to be 200 μg / dm 2 or more. This is because, regardless of the composition of the copper nickel zinc layer, if the zinc adhesion weight is less than 200 μg / dm 2 , there is no effect of layer formation and the deterioration of the peel strength after high-temperature heating becomes large. On the other hand, when the zinc adhesion weight exceeds 2000 μg / dm 2 , erosion of the circuit end portion by the sulfuric acid-hydrogen peroxide etching solution becomes significant. Therefore zinc coating weight per unit area of the copper foil in the copper-nickel zinc layer is 200 [mu] g / dm 2 or more 2000 [mu] g / dm 2 or less is preferable.
さらに発明者らは、銅ニッケル亜鉛層において各金属の組成のバランスが重要であり、図1のCu−Ni−Zn三元合金の組成領域に示す領域Xの銅ニッケル亜鉛層を形成することで、高温加熱後のピール強度、耐薬品性(耐塩酸性、耐硫酸−過酸化水素性)に優れることを見出した。以下に具体的に述べる。 Furthermore, the inventors have an important balance of the composition of each metal in the copper nickel zinc layer. By forming the copper nickel zinc layer in the region X shown in the composition region of the Cu—Ni—Zn ternary alloy in FIG. It was found that the peel strength after high-temperature heating and chemical resistance (hydrochloric acid resistance, sulfuric acid-hydrogen peroxide resistance) were excellent. The details will be described below.
耐薬品性のためには、ニッケル添加は不可避であり、銅ニッケル亜鉛層中のニッケル比率が1%以上であればよい。1%未満であると、回路浸食現象を効果的に防止出来ない。ただし、銅ニッケル亜鉛層中のニッケル比率が50%を超えると後述する銅ニッケル亜鉛層中の亜鉛、銅のバランスがくずれ、耐熱ピール強度が低下し、回路形成時の足残りが多発するため好ましくない。したがって、銅ニッケル亜鉛層中のニッケル比率は1%以上、50%以下が好ましい。 Addition of nickel is inevitable for chemical resistance, and the nickel ratio in the copper nickel zinc layer may be 1% or more. If it is less than 1%, the circuit erosion phenomenon cannot be effectively prevented. However, it is preferable that the nickel ratio in the copper nickel zinc layer exceeds 50% because the balance of zinc and copper in the copper nickel zinc layer described later is lost, the heat-resistant peel strength is lowered, and the foot residue during circuit formation frequently occurs. Absent. Therefore, the nickel ratio in the copper nickel zinc layer is preferably 1% or more and 50% or less.
さらに、銅ニッケル亜鉛層中のニッケル比率は1%以上、50%以下において、銅ニッケル亜鉛層中の亜鉛と銅の付着量の比率が耐熱ピール強度か耐薬品性(塩酸)に影響を与える。具体的には、以下の式を満たす必要がある。すなわち、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}(式1)が0.3以上、(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}(式2)が0.3以上であることが必要である(図1のXの領域)。なお、理解が容易となるように、上の式にそれぞれ(式1)と(式2)を付記した。 Furthermore, when the nickel ratio in the copper nickel zinc layer is 1% or more and 50% or less, the ratio of the adhesion amount of zinc and copper in the copper nickel zinc layer affects the heat peel strength or chemical resistance (hydrochloric acid). Specifically, it is necessary to satisfy the following formula. That is, (Zinc adhesion amount (% by mass)) / {100- (Copper adhesion amount (% by mass))} (Formula 1) is 0.3 or more, (Copper adhesion amount (% by mass)) / {100- (Zinc Adhesion amount (mass%))} (Formula 2) must be 0.3 or more (region X in FIG. 1). In order to facilitate understanding, (Expression 1) and (Expression 2) are added to the above expressions, respectively.
例えば、亜鉛付着量が多すぎると、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}(式1)は0.3以上となるが、銅付着量が少なくなるので、銅付着量(質量%))/{100−(亜鉛付着量(質量%))}(式2)が0.3を下回る場合がある(図1の領域c)。この場合、亜鉛付着量に対して銅付着量が少なくなるので、耐薬品性(塩酸)が低下する。
一方、銅付着量が多すぎると、(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}(式2)は0.3以上となるが、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}(式1)が0.3を下回る場合がある(図1の領域b)。For example, when there is too much zinc adhesion amount, (zinc adhesion amount (mass%)) / {100- (copper adhesion amount (mass%))} (Formula 1) will be 0.3 or more, but copper adhesion amount is Since it decreases, copper adhesion amount (mass%)) / {100- (zinc adhesion quantity (mass%))} (Formula 2) may be less than 0.3 (region c in FIG. 1). In this case, since the copper adhesion amount is smaller than the zinc adhesion amount, the chemical resistance (hydrochloric acid) is lowered.
On the other hand, when there is too much copper adhesion amount, (copper adhesion amount (mass%)) / {100- (zinc adhesion amount (mass%))} (Formula 2) becomes 0.3 or more, (Mass%)) / {100- (copper adhesion amount (mass%))} (formula 1) may be less than 0.3 (region b in FIG. 1).
この場合には、銅付着量に対して亜鉛付着量が少なくなるので、耐熱ピール強度が低下する。したがって、銅ニッケル亜鉛層中の亜鉛と銅の付着量の比率について(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}(式1)が0.3以上、(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}(式2)が0.3以上の両式を満たすことが好ましい(図1のXの領域)。 In this case, since the zinc adhesion amount is smaller than the copper adhesion amount, the heat-resistant peel strength is lowered. Therefore, about the ratio of the adhesion amount of zinc and copper in the copper nickel zinc layer (zinc adhesion amount (mass%)) / {100- (copper adhesion amount (mass%))} (formula 1) is 0.3 or more, It is preferable that (copper adhesion amount (% by mass)) / {100- (zinc adhesion amount (% by mass))} (Formula 2) satisfies both formulas of 0.3 or more (region X in FIG. 1).
銅ニッケル亜鉛層は、通常下記の条件で形成する。しかし、銅ニッケル亜鉛層の単位面積当りの亜鉛付着重量が、200μg/dm2以上、2000μg/dm2以下であり、前記銅ニッケル亜鉛層中、Niが1〜50重量%、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}(式1)が0.3以上、(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}(式2)が0.3以上であることを達成できる電気めっき条件であれば、特に制限されるものではなく、他の電気めっき条件を使用することもできる。The copper nickel zinc layer is usually formed under the following conditions. However, zinc deposition weight per unit area of the copper nickel zinc layer, 200 [mu] g / dm 2 or more and 2000 [mu] g / dm 2 or less, the copper nickel zinc layer, Ni is 1-50 wt%, (zinc deposition amount ( Mass%)) / {100- (copper adhesion amount (mass%))} (Formula 1) is 0.3 or more, (copper adhesion amount (mass%)) / {100- (zinc adhesion amount (mass%)) } (Equation 2) is not particularly limited as long as the electroplating conditions can achieve 0.3 or more, and other electroplating conditions can also be used.
(めっき液組成)
Ni:0.1g/L〜30g/L、 Zn:0.1g/L〜12g/L、 Cu:0.1 g/L〜2 g/L、硫酸(H2SO4):0.1g/L〜10g/L、を基本浴とする。また、硫酸に替わりに他の無機酸又は有機カルボン酸(クエン酸、リンゴ酸など)を用いることもできる。
(電流密度)3〜25 A/dm2 (Plating solution composition)
Ni: 0.1 g / L to 30 g / L, Zn: 0.1 g / L to 12 g / L, Cu: 0.1 g / L to 2 g / L, sulfuric acid (H 2 SO 4 ): 0.1 g / L to 10 g / L is a basic bath. Also, other inorganic acids or organic carboxylic acids (citric acid, malic acid, etc.) can be used instead of sulfuric acid.
(Current density) 3-25 A / dm 2
次に、クロメート処理であるが、このクロメート皮膜層の作製には、電解クロメート処理、浸漬クロメート処理およびクロメート浴中に亜鉛を含んだ亜鉛クロメート処理のいずれも適用することが可能である。
いずれの場合においても、クロム付着重量が30μg/dm2未満では、耐酸性と耐熱性を増す効果が少ないので、クロム付着重量は30μg/dm2以上とする。また、クロム付着重量が100μg/dm2を超えるとクロメート処理の効果が飽和してこれ以上クロム付着重量が増えなくなる。これらを総合すると、クロメート処理層中単位面積あたりのクロム付着重量は30〜100μg/dm2であることが望ましいと言える。Next, regarding the chromate treatment, any of an electrolytic chromate treatment, an immersion chromate treatment, and a zinc chromate treatment containing zinc in a chromate bath can be applied to produce the chromate film layer.
In any case, if the chromium adhesion weight is less than 30 μg / dm 2 , the effect of increasing acid resistance and heat resistance is small, so the chromium adhesion weight is 30 μg / dm 2 or more. On the other hand, if the chromium adhesion weight exceeds 100 μg / dm 2 , the effect of chromate treatment is saturated and the chromium adhesion weight does not increase any more. When these are put together, it can be said that the chromium adhesion weight per unit area in the chromate treatment layer is preferably 30 to 100 μg / dm 2 .
前記クロメート皮膜層を形成するための条件の例を、以下に記載する。しかし、上記の通り、この条件に限定される必要はなく、すでに公知のクロメート処理はいずれも使用できる。
一般に、浸漬クロメート処理の場合は、単位面積あたりのクロム付着重量30〜40μg/dm2を達成できる。また電解クロメート処理の場合は、単位面積あたりのクロム付着重量30〜100μg/dm2を達成できる。
この防錆処理は、銅箔の耐酸性と耐熱性に影響を与える因子の一つであり、クロメート処理により、銅箔の耐薬品性と耐熱性はより向上するので有効である。Examples of conditions for forming the chromate film layer are described below. However, as described above, it is not necessary to be limited to this condition, and any known chromate treatment can be used.
In general, in the case of the immersion chromate treatment, a chromium adhesion weight of 30 to 40 μg / dm 2 per unit area can be achieved. In the case of electrolytic chromate treatment, a chromium adhesion weight per unit area of 30 to 100 μg / dm 2 can be achieved.
This rust prevention treatment is one of the factors affecting the acid resistance and heat resistance of the copper foil, and is effective because the chromate treatment improves the chemical resistance and heat resistance of the copper foil.
(a)浸漬クロメート処理の一例
CrO3またはK2Cr2O7:1〜12g/L、Zn(OH)2またはZnSO4・7H2O :0〜10g/L、Na2SO4 :0〜20g/L、pH 2.5〜12.5、温 度:20〜60°C、時間:0.5〜20秒
(b)電解クロメート処理の一例
CrO3またはK2Cr2O7:1〜12g/L、Zn(OH)2またはZnSO4・7H2O :0〜10g/L、Na2SO4 :0〜20g/L、pH 2.5〜12.5、温 度:20〜60°C、電流密度0.5〜5A/dm2、時間:0.5〜20秒(A) Example of immersion chromate treatment CrO 3 or K 2 Cr 2 O 7 : 1 to 12 g / L, Zn (OH) 2 or ZnSO 4 · 7H 2 O: 0 to 10 g / L, Na 2 SO 4 : 0 20 g / L, pH 2.5 to 12.5, Temperature: 20 to 60 ° C., Time: 0.5 to 20 seconds (b) Example of electrolytic chromate treatment CrO 3 or K 2 Cr 2 O 7 : 1 12 g / L, Zn (OH) 2 or ZnSO 4 .7H 2 O: 0 to 10 g / L, Na 2 SO 4 : 0 to 20 g / L, pH 2.5 to 12.5, temperature: 20 to 60 ° C, current density 0.5 to 5 A / dm 2 , time: 0.5 to 20 seconds
本発明の印刷回路基板用銅箔に使用するシランカップリング剤としては、例えば少なくともテトラアルコキシシランと、樹脂との反応性を有する官能基を備えたアルコキシシランを1種以上含んでいることが望ましい。このシランカップリング剤の選択も任意ではあるが、樹脂との接着性を考慮した選択が望ましい。
さらに、本願発明は、上記1)〜7)のいずれか一項に記載の印刷回路基板用銅箔、及び8)に記載の印刷回路基板用銅箔と樹脂基材を張り合わせて作製した銅張積層板を提供する。As a silane coupling agent used for the copper foil for printed circuit boards of this invention, it is desirable to contain 1 or more types of alkoxysilane provided with the functional group which has the reactivity of at least tetraalkoxysilane and resin, for example. . Although the selection of this silane coupling agent is arbitrary, the selection considering the adhesiveness with the resin is desirable.
Further, the present invention provides a copper clad produced by laminating the printed circuit board copper foil according to any one of 1) to 7) above and the printed circuit board copper foil according to 8) and a resin base material. Provide a laminate.
次に、この防錆層の上に、シランカップリング剤処理(塗布後、乾燥)を施した。
シランカップリング剤処理の条件は、次の通りである。
エポキシシラン0.5体積%を含む水溶液をpH7に調整して塗布し、その後乾燥した。Next, a silane coupling agent treatment (after application and drying) was performed on the rust preventive layer.
The conditions for the silane coupling agent treatment are as follows.
An aqueous solution containing 0.5% by volume of epoxysilane was applied after adjusting to pH 7 and then dried.
(試験方法)
銅箔と積層する樹脂基材には、以下の2種類のものを使用した。
FR−4樹脂(ガラスクロス基材エポキシ樹脂)
BT樹脂(トリアジン−ビスマレイミド系樹脂、商標名:三菱ガス化学製GHPL-830)
なお、BT樹脂は、耐熱性が高く、半導体パッケージ用印刷回路基板に使用されている材料である。(Test method)
The following two types of resin base materials to be laminated with the copper foil were used.
FR-4 resin (glass cloth base epoxy resin)
BT resin (triazine-bismaleimide resin, trade name: GHPL-830 manufactured by Mitsubishi Gas Chemical)
The BT resin is a material having high heat resistance and being used for a printed circuit board for a semiconductor package.
(1)FR−4基板を用いた常態ピール強度と耐熱ピール強度の測定
銅箔の銅ニッケル亜鉛層を形成した面とFR−4樹脂基材を積層して作製した積層板上の銅箔をエッチングして、積層板上に10mm幅の銅箔回路を形成する。
この回路を剥離して常態ピール強度を測定する。次に、前記の10mm幅の銅箔回路を形成した積層板を大気中にて180°Cで2日間加熱した後のピール強度(以下耐熱ピール強度という)とその常態ピール強度からの相対劣化率(ロス%)を測定した。FR−4基板はBT基板と比較すると耐熱性が劣る。
そのため、FR−4基板を用いた時に良好な耐熱ピール強度と低い劣化率を有すれば、BT基板を用いた時も十分な耐熱ピール強度と劣化率を有する。(1) Measurement of normal peel strength and heat-resistant peel strength using an FR-4 substrate A copper foil on a laminate produced by laminating a surface of a copper foil on which a copper nickel zinc layer is formed and an FR-4 resin base material. Etching forms a 10 mm wide copper foil circuit on the laminate.
The circuit is peeled and the normal peel strength is measured. Next, the peel strength (hereinafter referred to as heat-resistant peel strength) after heating the laminate having the copper foil circuit having a width of 10 mm for 2 days in the air at 180 ° C. and the relative deterioration rate from the normal peel strength. (Loss%) was measured. The FR-4 substrate is inferior in heat resistance compared to the BT substrate.
Therefore, if it has a good heat-resistant peel strength and a low deterioration rate when using the FR-4 substrate, it has a sufficient heat-resistant peel strength and deterioration rate even when using the BT substrate.
(2)BT基板を用いた常態ピール強度と耐硫酸過酸化水素性の測定
銅箔の銅ニッケル亜鉛層を形成した面とBT樹脂基材を積層して作製した積層板上の銅箔をエッチングして、積層板上に0.4mm幅の銅箔回路を形成する。この回路を剥離して常態ピール強度を測定する。次に、前記の0.4mm幅の銅箔回路を形成した積層板を用いて耐硫酸−過酸化水素性試験及び耐塩酸性試験を行った。(2) Measurement of normal peel strength and hydrogen peroxide resistance using a BT substrate Etching the copper foil on a laminated board prepared by laminating the copper nickel zinc layer surface of the copper foil and the BT resin base material Then, a 0.4 mm wide copper foil circuit is formed on the laminate. The circuit is peeled and the normal peel strength is measured. Next, a sulfuric acid-hydrogen peroxide resistance test and a hydrochloric acid resistance test were performed using the laminate on which the 0.4 mm-wide copper foil circuit was formed.
耐硫酸−過酸化水素性試験では積層板上の銅箔回路を、硫酸5〜20体積%及び過酸化水素1〜10体積%を含むエッチング液に浸漬して銅箔回路厚みを2μmエッチングした後、ピール強度とその常態ピール強度からの相対劣化率(ロス%)を測定する。
この場合のピール強度の測定は、過酷な環境下にあると言え、FR−4基板を用いた時に一般に行われている耐薬品性の評価よりも過酷な条件である。
したがって、BT基板を用いた時に良好な耐硫酸−過酸化水素性を有すれば、FR−4基板でも十分な耐薬品性(特に耐硫酸−過酸化水素性)を有する。
耐塩酸試験では積層板上の銅箔回路を、塩酸12重量%を含む60°Cの液に90分間浸漬した後のピール強度とその常態ピール強度からの相対劣化率(ロス%)を測定する。In the sulfuric acid-hydrogen peroxide resistance test, after the copper foil circuit on the laminate was immersed in an etching solution containing 5 to 20% by volume of sulfuric acid and 1 to 10% by volume of hydrogen peroxide, the thickness of the copper foil circuit was etched by 2 μm. The relative deterioration rate (loss%) from the peel strength and its normal peel strength is measured.
The measurement of the peel strength in this case can be said to be in a harsh environment, and is a more severe condition than the chemical resistance evaluation generally performed when using the FR-4 substrate.
Accordingly, if the BT substrate has good sulfuric acid-hydrogen peroxide resistance, the FR-4 substrate also has sufficient chemical resistance (particularly sulfuric acid-hydrogen peroxide resistance).
In the hydrochloric acid resistance test, the peel strength after immersing the copper foil circuit on the laminated board in a 60 ° C solution containing 12% by weight of hydrochloric acid for 90 minutes and the relative deterioration rate (loss%) from the normal peel strength are measured. .
(3)単位面積あたりのニッケル及び亜鉛のめっき付着重量の測定
銅箔に銅ニッケル亜鉛層を形成した面が表面に露出するようにFR−4樹脂基材と積層し、積層板を作製する。次に、積層板表面に露出した銅ニッケル亜鉛層とその母層の銅を塩酸または硝酸で溶解し、溶解液中の亜鉛濃度の化学分析を行うことで単位面積あたりの亜鉛の付着重量を測定した。(3) Measurement of nickel and zinc plating adhesion weight per unit area A laminate is prepared by laminating with an FR-4 resin base material so that the surface of the copper foil on which the copper nickel zinc layer is formed is exposed. Next, measure the adhesion weight of zinc per unit area by dissolving the copper nickel zinc layer exposed on the laminate surface and the copper of its mother layer with hydrochloric acid or nitric acid and conducting chemical analysis of the zinc concentration in the solution. did.
(4)亜鉛、ニッケル及び銅の存在比の解析
XPS(X線光電子分光法)を用いて、銅ニッケル亜鉛層中に含まれるニッケル、亜鉛及び銅の存在比を測定した。測定はアルゴンイオンスパッタにより銅箔厚みをエッチングしながら、最表面から銅ニッケル亜鉛層の下地である銅層に至るまで断続的に行い、各深さにおいて得られたニッケル、亜鉛及び銅の存在比を最表面からの深さで積分することにより、ニッケル、亜鉛及び銅の、銅ニッケル亜鉛層全体での平均的な存在比を計算した。
測定に使用した機器はKRATOS社製AXIS-HSで、アルゴンイオンスパッタの出力は52.5Wである。この条件において、銅箔厚みは1分間で約20Åエッチングされる。スパッタ時間は15〜100分間の条件で行った。(4) Analysis of abundance ratio of zinc, nickel and copper Using XPS (X-ray photoelectron spectroscopy), the abundance ratio of nickel, zinc and copper contained in the copper nickel zinc layer was measured. The measurement is performed intermittently from the outermost surface to the copper layer which is the base of the copper nickel zinc layer while etching the copper foil thickness by argon ion sputtering, and the abundance ratio of nickel, zinc and copper obtained at each depth Was integrated with the depth from the outermost surface, and the average abundance ratio of nickel, zinc and copper in the entire copper nickel zinc layer was calculated.
The instrument used for the measurement was AXIS-HS manufactured by KRATOS, and the output of argon ion sputtering was 52.5W. Under this condition, the copper foil thickness is etched by about 20 mm per minute. The sputtering time was 15 to 100 minutes.
次に、実施例及び比較例について説明する。その結果を、以下の各表に示す。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思想に含まれる変形、他の実施例又は態様は、全て本発明に含まれる。
なお、本発明との対比のために、比較例を掲載した。Next, examples and comparative examples will be described. The results are shown in the following tables. In addition, a present Example shows a suitable example, This invention is not limited to these Examples. Accordingly, all modifications and other examples or aspects included in the technical idea of the present invention are included in the present invention.
In addition, the comparative example was published for contrast with this invention.
(実施例1−9)
厚さ12μmの電解銅箔を用い、この銅箔の粗化面(表面平均粗さ:3.8μm)に、下記に示す条件で、銅ニッケル亜鉛層を電気めっきによって形成した。ニッケル、亜鉛、銅の存在比率を、表1に示す。(Example 1-9)
Using an electrolytic copper foil having a thickness of 12 μm, a copper nickel zinc layer was formed by electroplating on the roughened surface (surface average roughness: 3.8 μm) of this copper foil under the conditions shown below. Table 1 shows the abundance ratios of nickel, zinc, and copper.
(実施例1の電気めっき液組成)
Ni:3g/L、Zn:6g/L、Cu:0.5g/L、硫酸(H2SO4):7.5g/L
(実施例2の電気めっき液組成)
Ni:20g/L、Zn:3g/L、Cu:0.2g/L、硫酸(H2SO4):8.5g/L
(実施例3の電気めっき液組成)
Ni:13g/L、Zn:1g/L、Cu:2g/L、硫酸(H2SO4):8.5g/L
(実施例4の電気めっき液組成)
Ni:10g/L、Zn:12g/L、Cu:0.2g/L、硫酸(H2SO4):8.5g/L
(実施例5の電気めっき液組成)
Ni:28g/L、Zn:8g/L、Cu:0.5g/L、硫酸(H2SO4):8.5g/L
(実施例6の電気めっき液組成)
Ni:10g/L、Zn:5g/L、Cu:1.0g/L、硫酸(H2SO4):8.5g/L
(実施例7の電気めっき液組成)
Ni:0.3g/L、Zn:0.3g/L、Cu:2.0g/L、硫酸(H2SO4):8.5g/L
(実施例8の電気めっき液組成)
Ni:28g/L、Zn:1g/L、Cu:0.8g/L、硫酸(H2SO4):8.5g/L
(実施例9の電気めっき液組成)
Ni:7g/L、Zn:10g/L、Cu:0.5g/L、硫酸(H2SO4):8.5g/L
(電流密度)5 A/dm2又は10 A/dm2 (Electroplating solution composition of Example 1)
Ni: 3 g / L, Zn: 6 g / L, Cu: 0.5 g / L, sulfuric acid (H 2 SO 4 ): 7.5 g / L
(Electroplating solution composition of Example 2)
Ni: 20 g / L, Zn: 3 g / L, Cu: 0.2 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Example 3)
Ni: 13 g / L, Zn: 1 g / L, Cu: 2 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Example 4)
Ni: 10 g / L, Zn: 12 g / L, Cu: 0.2 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Example 5)
Ni: 28 g / L, Zn: 8 g / L, Cu: 0.5 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Example 6)
Ni: 10 g / L, Zn: 5 g / L, Cu: 1.0 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Example 7)
Ni: 0.3 g / L, Zn: 0.3 g / L, Cu: 2.0 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Example 8)
Ni: 28 g / L, Zn: 1 g / L, Cu: 0.8 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Example 9)
Ni: 7 g / L, Zn: 10 g / L, Cu: 0.5 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Current density) 5 A / dm 2 or 10 A / dm 2
さらに、この銅ニッケル亜鉛層上に、クロメート処理を行い、防錆層を形成させた。以下に、処理条件を示す。
CrO3:4.0g/L、ZnSO4・7H2O:2.0g/L、Na2SO4 :15g/L、pH :4.2、温 度:45°C、電流密度3.0A/dm2、時間:1.5秒Further, chromate treatment was performed on the copper nickel zinc layer to form a rust preventive layer. The processing conditions are shown below.
CrO 3 : 4.0 g / L, ZnSO 4 · 7H 2 O: 2.0 g / L, Na 2 SO 4 : 15 g / L, pH: 4.2, temperature: 45 ° C, current density 3.0A / dm 2 , time: 1.5 seconds
(実施例1)
実施例1においては、めっき皮膜中の亜鉛(Zn)付着量が924μg/dm2で、めっき皮膜中、Ni:9質量%、Zn:42質量%、Cu:49質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.83、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.85で、いずれも本願発明の条件の範囲にあった。この結果、この実施例1では、FR基板での常態BT基板でのピール強度は1.47kN/m、2日間エージング後のピール強度は1.20kN/m、劣化率は18%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は1.05kN/m、塩酸処理後のピール強度は0.85kN/m、劣化率は20%となり、さらに耐硫酸−過酸化水素でのピール強度は0.98kN/m、劣化率は7%となり、いずれも良好な結果となった。
以上の結果を、表1に示す。Example 1
In Example 1, the adhesion amount of zinc (Zn) in the plating film was 924 μg / dm 2 , and in the plating film, Ni: 9 mass%, Zn: 42 mass%, Cu: 49 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.83, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%)) )} Was 0.85, and both were within the range of the conditions of the present invention. As a result, in Example 1, the peel strength of the normal BT substrate in the FR substrate was 1.47 kN / m, the peel strength after aging for 2 days was 1.20 kN / m, and the deterioration rate was 18%.
Further, the normal peel strength on a normal BT substrate (in a harsh environment) is 1.05 kN / m, the peel strength after hydrochloric acid treatment is 0.85 kN / m, the deterioration rate is 20%, and sulfuric acid-hydrogen peroxide resistant The peel strength was 0.98 kN / m and the deterioration rate was 7%, both of which were good results.
The results are shown in Table 1.
(実施例2)
実施例2においては、めっき皮膜中の亜鉛(Zn)付着量が320μg/dm2で、めっき皮膜中、Ni:31質量%、Zn:34質量%、Cu:36質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.52、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.54で、いずれも本願発明の条件の範囲にあった。この結果、この実施例2では、FR基板での常態BT基板でのピール強度は1.56kN/m、2日間エージング後のピール強度は1.42kN/m、劣化率は9%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は0.99kN/m、塩酸処理後のピール強度は0.89kN/m、劣化率は10%となり、さらに耐硫酸−過酸化水素でのピール強度は0.86kN/m、劣化率は14%となり、いずれも良好な結果となった。
以上の結果を、同様に表1に示す。(Example 2)
In Example 2, the zinc (Zn) adhesion amount in the plating film was 320 μg / dm 2 , and in the plating film, Ni: 31 mass%, Zn: 34 mass%, Cu: 36 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.52, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%) )} Was 0.54, both of which were within the range of the present invention. As a result, in Example 2, the peel strength of the normal BT substrate in the FR substrate was 1.56 kN / m, the peel strength after aging for 2 days was 1.42 kN / m, and the deterioration rate was 9%.
In addition, the normal peel strength on a normal BT substrate (in a harsh environment) is 0.99 kN / m, the peel strength after treatment with hydrochloric acid is 0.89 kN / m, the deterioration rate is 10%, and sulfuric acid-hydrogen peroxide resistant The peel strength was 0.86 kN / m and the deterioration rate was 14%, both of which were good results.
The above results are similarly shown in Table 1.
(実施例3)
実施例3においては、めっき皮膜中の亜鉛(Zn)付着量が465μg/dm2で、めっき皮膜中、Ni:18質量%、Zn:12質量%、Cu:70質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.39、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.79で、いずれも本願発明の条件の範囲にあった。この結果、この実施例3では、FR基板での常態BT基板でのピール強度は1.55kN/m、2日間エージング後のピール強度は1.53kN/m、劣化率は2%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は0.99kN/m、塩酸処理後のピール強度は0.93kN/m、劣化率は6%となり、さらに耐硫酸−過酸化水素でのピール強度は0.88kN/m、劣化率は11%となり、いずれも良好な結果となった。
以上の結果を、同様に表1に示す。(Example 3)
In Example 3, the zinc (Zn) adhesion amount in the plating film was 465 μg / dm 2 , and in the plating film, Ni: 18 mass%, Zn: 12 mass%, Cu: 70 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.39, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%)) )} Was 0.79, both of which were within the range of the present invention. As a result, in Example 3, the peel strength of the normal BT substrate in the FR substrate was 1.55 kN / m, the peel strength after aging for 2 days was 1.53 kN / m, and the deterioration rate was 2%.
In addition, the normal peel strength on a normal BT substrate (in a harsh environment) is 0.99 kN / m, the peel strength after hydrochloric acid treatment is 0.93 kN / m, the deterioration rate is 6%, and sulfuric acid-hydrogen peroxide resistant The peel strength was 0.88 kN / m and the deterioration rate was 11%, both of which were good results.
The above results are similarly shown in Table 1.
(実施例4)
実施例4においては、めっき皮膜中の亜鉛(Zn)付着量が390μg/dm2で、めっき皮膜中、Ni:2質量%、Zn:93質量%、Cu:5質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.98、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.77で、いずれも本願発明の条件の範囲にあった。この結果、この実施例4では、FR基板での常態BT基板でのピール強度は1.46kN/m、2日間エージング後のピール強度は1.28kN/m、劣化率は12%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は1.01kN/m、塩酸処理後のピール強度は0.86kN/m、劣化率は15%となり、さらに耐硫酸−過酸化水素でのピール強度は0.92kN/m、劣化率は9%となり、いずれも良好な結果となった。
以上の結果を、同様に表1に示す。Example 4
In Example 4, the adhesion amount of zinc (Zn) in the plating film was 390 μg / dm 2 , and in the plating film, Ni: 2 mass%, Zn: 93 mass%, Cu: 5 mass%, and Formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.98, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%)) )} Was 0.77, both of which were within the range of the present invention. As a result, in Example 4, the peel strength of the normal BT substrate in the FR substrate was 1.46 kN / m, the peel strength after aging for 2 days was 1.28 kN / m, and the deterioration rate was 12%.
Further, the normal peel strength on a normal BT substrate (in a harsh environment) is 1.01 kN / m, the peel strength after hydrochloric acid treatment is 0.86 kN / m, the deterioration rate is 15%, and sulfuric acid-hydrogen peroxide resistant The peel strength was 0.92 kN / m and the deterioration rate was 9%, both of which were good results.
The above results are similarly shown in Table 1.
(実施例5)
実施例5においては、めっき皮膜中の亜鉛(Zn)付着量が378μg/dm2で、めっき皮膜中、Ni:40質量%、Zn:36質量%、Cu:24質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.47、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.37で、いずれも本願発明の条件の範囲にあった。この結果、この実施例5では、FR基板での常態BT基板でのピール強度は1.48kN/m、2日間エージング後のピール強度は1.43kN/m、劣化率は3%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は1.04kN/m、塩酸処理後のピール強度は0.91kN/m、劣化率は13%となり、さらに耐硫酸−過酸化水素でのピール強度は0.93kN/m、劣化率は11%となり、いずれも良好な結果となった。
以上の結果を、表1に示す。(Example 5)
In Example 5, the zinc (Zn) adhesion amount in the plating film was 378 μg / dm 2 , and in the plating film, Ni: 40 mass%, Zn: 36 mass%, Cu: 24 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.47, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%)) )} Was 0.37, both of which were within the range of the present invention. As a result, in Example 5, the peel strength of the normal BT substrate in the FR substrate was 1.48 kN / m, the peel strength after aging for 2 days was 1.43 kN / m, and the deterioration rate was 3%.
Further, the normal peel strength on a normal BT substrate (in a harsh environment) is 1.04 kN / m, the peel strength after hydrochloric acid treatment is 0.91 kN / m, the deterioration rate is 13%, and sulfuric acid-hydrogen peroxide resistant The peel strength was 0.93 kN / m and the deterioration rate was 11%, both of which were good results.
The results are shown in Table 1.
(実施例6)
実施例6においては、めっき皮膜中の亜鉛(Zn)付着量が617μg/dm2で、めっき皮膜中、Ni:18質量%、Zn:12質量%、Cu:70質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.39、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.79で、いずれも本願発明の条件の範囲にあった。この結果、この実施例6では、FR基板での常態BT基板でのピール強度は1.45kN/m、2日間エージング後のピール強度は1.42kN/m、劣化率は2%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は1.10kN/m、塩酸処理後のピール強度は0.87kN/m、劣化率は21%となり、さらに耐硫酸−過酸化水素でのピール強度は0.98kN/m、劣化率は11%となり、いずれも良好な結果となった。
以上の結果を、同様に表1に示す。(Example 6)
In Example 6, the zinc (Zn) adhesion amount in the plating film was 617 μg / dm 2 , and in the plating film, Ni: 18 mass%, Zn: 12 mass%, Cu: 70 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.39, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%)) )} Was 0.79, both of which were within the range of the present invention. As a result, in Example 6, the peel strength of the normal BT substrate in the FR substrate was 1.45 kN / m, the peel strength after aging for 2 days was 1.42 kN / m, and the deterioration rate was 2%.
Further, the normal peel strength on a normal BT substrate (harsh environment) was 1.10 kN / m, the peel strength after hydrochloric acid treatment was 0.87 kN / m, the deterioration rate was 21%, and sulfuric acid-hydrogen peroxide resistance The peel strength was 0.98 kN / m and the deterioration rate was 11%, both of which were good results.
The above results are similarly shown in Table 1.
(実施例7)
実施例7においては、めっき皮膜中の亜鉛(Zn)付着量が1860μg/dm2で、めっき皮膜中、Ni:7質量%、Zn:9質量%、Cu:84質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.56、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.92で、いずれも本願発明の条件の範囲にあった。この結果、この実施例7では、FR基板での常態BT基板でのピール強度は1.48kN/m、2日間エージング後のピール強度は1.40kN/m、劣化率は5%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は1.02kN/m、塩酸処理後のピール強度は0.98kN/m、劣化率は4%となり、さらに耐硫酸−過酸化水素でのピール強度は0.96kN/m、劣化率は2%となり、いずれも良好な結果となった。
以上の結果を、同様に表1に示す。(Example 7)
In Example 7, the zinc (Zn) adhesion amount in the plating film was 1860 μg / dm 2 , and in the plating film, Ni: 7 mass%, Zn: 9 mass%, Cu: 84 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.56, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%) )} Was 0.92, and both were within the range of the conditions of the present invention. As a result, in Example 7, the peel strength of the normal BT substrate in the FR substrate was 1.48 kN / m, the peel strength after aging for 2 days was 1.40 kN / m, and the deterioration rate was 5%.
Further, the normal peel strength on a normal BT substrate (in a harsh environment) is 1.02 kN / m, the peel strength after hydrochloric acid treatment is 0.98 kN / m, the deterioration rate is 4%, and sulfuric acid-hydrogen peroxide resistant The peel strength was 0.96 kN / m and the deterioration rate was 2%, both of which were good results.
The above results are similarly shown in Table 1.
(実施例8)
実施例8においては、めっき皮膜中の亜鉛(Zn)付着量が746μg/dm2で、めっき皮膜中、Ni:47質量%、Zn:30質量%、Cu:23質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.39、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.33で、いずれも本願発明の条件の範囲にあった。この結果、この実施例8では、FR基板での常態BT基板でのピール強度は1.47kN/m、2日間エージング後のピール強度は1.46kN/m、劣化率は1%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は1.03kN/m、塩酸処理後のピール強度は0.95kN/m、劣化率は8%となり、さらに耐硫酸−過酸化水素でのピール強度は0.95kN/m、劣化率は0%となり、いずれも良好な結果となった。
以上の結果を、表1に示す。(Example 8)
In Example 8, the zinc (Zn) adhesion amount in the plating film was 746 μg / dm 2 , and in the plating film, Ni: 47 mass%, Zn: 30 mass%, Cu: 23 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.39, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%)) )} Was 0.33, both of which were within the range of the present invention. As a result, in Example 8, the peel strength of the normal BT substrate in the FR substrate was 1.47 kN / m, the peel strength after aging for 2 days was 1.46 kN / m, and the deterioration rate was 1%.
Further, the normal peel strength on a normal BT substrate (harsh environment) is 1.03 kN / m, the peel strength after hydrochloric acid treatment is 0.95 kN / m, the deterioration rate is 8%, and the sulfuric acid-hydrogen peroxide resistant The peel strength was 0.95 kN / m and the deterioration rate was 0%, both of which were good results.
The results are shown in Table 1.
(実施例9)
実施例9においては、めっき皮膜中の亜鉛(Zn)付着量が220μg/dm2で、めっき皮膜中、Ni:20質量%、Zn:69質量%、Cu:11質量%であり、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.78、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.35で、いずれも本願発明の条件の範囲にあった。この結果、この実施例9では、FR基板での常態BT基板でのピール強度は1.45kN/m、2日間エージング後のピール強度は1.42kN/m、劣化率は2%であった。
また、常態BT基板(苛酷な環境下)での常態ピール強度は1.06kN/m、塩酸処理後のピール強度は0.92kN/m、劣化率は13%となり、さらに耐硫酸−過酸化水素でのピール強度は0.98kN/m、劣化率は11%となり、いずれも良好な結果となった。
以上の結果を、同様に表1に示す。Example 9
In Example 9, the zinc (Zn) adhesion amount in the plating film was 220 μg / dm 2 , and in the plating film, Ni: 20 mass%, Zn: 69 mass%, Cu: 11 mass%, and the formula 1 ( Zinc adhesion (mass%)) / {100- (copper adhesion (mass%))} is 0.78, Formula 2 (copper adhesion (mass%)) / {100- (zinc adhesion (mass%)) )} Was 0.35, and both were within the range of the conditions of the present invention. As a result, in Example 9, the peel strength of the normal BT substrate in the FR substrate was 1.45 kN / m, the peel strength after aging for 2 days was 1.42 kN / m, and the deterioration rate was 2%.
Further, the normal peel strength on a normal BT substrate (in a harsh environment) is 1.06 kN / m, the peel strength after hydrochloric acid treatment is 0.92 kN / m, the deterioration rate is 13%, and sulfuric acid-hydrogen peroxide resistant The peel strength was 0.98 kN / m and the deterioration rate was 11%, both of which were good results.
The above results are similarly shown in Table 1.
上記の通り、実施例のめっき層は、単位面積あたりの亜鉛の付着重量は220μg/dm2〜1860μg/dm2となり、FR−4基板での常態ピール強度は1.45kN/m〜1.56kN/m、耐熱ピール強度は1.20kN/m〜1.53kN/m、劣化率は18%以下の範囲であり、いずれも良好な常態ピール強度と耐熱ピール強度を示した。
また、BT基板での常態ピール強度は、0.99kN/m〜1.10kN/mの範囲となった。塩酸・硫酸過水液での処理後のピール強度はそれぞれ0.85kN/m〜0.93kN/m、0.86kN/m〜0.98kN/mであり、劣化率はそれぞれ4%〜21%、0%〜14%であり、良好な性質を示した。As described above, the plating layers of Examples, adhesion weight of zinc per unit area 220μg / dm 2 ~1860μg / dm 2, and the normal peel strength at FR-4 substrate is 1.45kN / m~1.56kN / M, the heat-resistant peel strength is 1.20 kN / m to 1.53 kN / m, and the deterioration rate is in the range of 18% or less, and both showed good normal peel strength and heat-resistant peel strength.
Further, the normal peel strength on the BT substrate was in the range of 0.99 kN / m to 1.10 kN / m. The peel strength after treatment with hydrochloric acid / sulfuric acid / hydrogen peroxide solution is 0.85 kN / m to 0.93 kN / m and 0.86 kN / m to 0.98 kN / m, respectively, and the deterioration rate is 4% to 21%, respectively. 0% to 14%, showing good properties.
(比較例1−7)
下記に示す条件でめっき浴組成を変化させ、銅ニッケル亜鉛層を形成した。単位面積あたり亜鉛付着量とめっき皮膜中の、ニッケル、亜鉛、銅の存在比率を、表2に示す。(Comparative Example 1-7)
The plating bath composition was changed under the conditions shown below to form a copper nickel zinc layer. Table 2 shows the zinc adhesion amount per unit area and the abundance ratio of nickel, zinc, and copper in the plating film.
(比較例1の電気めっき液組成)
Ni:13g/L、Zn:5g/L、Cu:0g/L、硫酸(H2SO4):8.5g/L
(比較例2の電気めっき液組成)
Ni:13g/L、Zn:0g/L、Cu:6.5g/L、硫酸(H2SO4):8.5g/L
(比較例3の電気めっき液組成)
Ni:0g/L、Zn:5g/L、Cu:0.5g/L、硫酸(H2SO4):8.5g/L
(比較例4の電気めっき液組成)
Ni:13g/L、Zn:15g/L、Cu:0.9g/L、硫酸(H2SO4):8.5g/L
(比較例5の電気めっき液組成)
Ni:15g/L、Zn:0.1g/L、Cu:3g/L、硫酸(H2SO4):8.5g/L
(比較例6の電気めっき液組成)
Ni:3g/L、Zn:16g/L、Cu:0.1g/L、硫酸(H2SO4):1g/L
(比較例7の電気めっき液組成)
Ni:13g/L、Zn:3g/L、Cu:0.5g/L、硫酸(H2SO4):1g/L
(比較例8の電気めっき液組成)
Ni:40g/L、Zn:3g/L、Cu:0.1g/L、硫酸(H2SO4):1g/L
(比較例9の電気めっき液組成)
Ni:32g/L、Zn:0.05g/L、Cu:3.4g/L、硫酸(H2SO4):1g/L
(比較例10の電気めっき液組成)
Ni:25g/L、Zn:16g/L、Cu:0.05g/L、硫酸(H2SO4):1g/L
(電流密度)
2.5A/dm2〜30A/dm2 (Electroplating solution composition of Comparative Example 1)
Ni: 13 g / L, Zn: 5 g / L, Cu: 0 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Comparative Example 2)
Ni: 13 g / L, Zn: 0 g / L, Cu: 6.5 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Comparative Example 3)
Ni: 0 g / L, Zn: 5 g / L, Cu: 0.5 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Comparative Example 4)
Ni: 13 g / L, Zn: 15 g / L, Cu: 0.9 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Comparative Example 5)
Ni: 15 g / L, Zn: 0.1 g / L, Cu: 3 g / L, sulfuric acid (H 2 SO 4 ): 8.5 g / L
(Electroplating solution composition of Comparative Example 6)
Ni: 3 g / L, Zn: 16 g / L, Cu: 0.1 g / L, sulfuric acid (H 2 SO 4 ): 1 g / L
(Composition of electroplating solution of Comparative Example 7)
Ni: 13 g / L, Zn: 3 g / L, Cu: 0.5 g / L, sulfuric acid (H 2 SO 4 ): 1 g / L
(Electroplating solution composition of Comparative Example 8)
Ni: 40 g / L, Zn: 3 g / L, Cu: 0.1 g / L, sulfuric acid (H 2 SO 4 ): 1 g / L
(Electroplating solution composition of Comparative Example 9)
Ni: 32 g / L, Zn: 0.05 g / L, Cu: 3.4 g / L, sulfuric acid (H 2 SO 4 ): 1 g / L
(Electroplating solution composition of Comparative Example 10)
Ni: 25 g / L, Zn: 16 g / L, Cu: 0.05 g / L, sulfuric acid (H 2 SO 4 ): 1 g / L
(Current density)
2.5 A / dm 2 to 30 A / dm 2
(比較例1)
比較例1においては、めっき皮膜中に銅が存在せず、さらにめっき皮膜中のニッケルの存在比が50質量%を超えており、本願発明から逸脱している。また、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.49であるが、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.00で、本願発明の条件の範囲にない。
この比較例1では、FR基板での常態BT基板でのピール強度は1.50kN/m、2日間エージング後のピール強度は1.47kN/m、劣化率は2%であった。また、常態BT基板(苛酷な環境下)での常態ピール強度は0.98kN/mであったが、塩酸処理後のピール強度は0.15kN/mで、劣化率は85%と著しく低下し、さらに耐硫酸−過酸化水素でのピール強度は0.75kN/m、劣化率は24%となり、いずれも耐薬品性が大きく低下した。以上の結果を、表2に示す。(Comparative Example 1)
In Comparative Example 1, copper does not exist in the plating film, and the abundance ratio of nickel in the plating film exceeds 50% by mass, thus deviating from the present invention. Moreover, although Formula 1 (Zinc adhesion amount (mass%)) / {100- (Copper adhesion amount (mass%))} is 0.49, Formula 2 (Copper adhesion amount (mass%)) / {100- (Zinc adhesion amount (mass%))} is 0.00, which is not within the range of the present invention.
In Comparative Example 1, the peel strength of the normal BT substrate of the FR substrate was 1.50 kN / m, the peel strength after aging for 2. days was 1.47 kN / m, and the deterioration rate was 2%. Further, the normal peel strength on a normal BT substrate (in a harsh environment) was 0.98 kN / m, but the peel strength after hydrochloric acid treatment was 0.15 kN / m, and the deterioration rate was significantly reduced to 85%. Furthermore, the peel strength with sulfuric acid-hydrogen peroxide was 0.75 kN / m, the deterioration rate was 24%, and the chemical resistance was greatly lowered in all cases. The results are shown in Table 2.
(比較例2)
比較例2では、めっき皮膜中に亜鉛が存在せず、さらにめっき皮膜中のニッケルの存在比が50質量%を超えており、本願発明から逸脱している。また、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が0.45であるが、式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.00であり、本願発明の条件の範囲にない。
この比較例2では、FR基板での常態BT基板でのピール強度は1.51kN/m、2日間エージング後のピール強度は1.06kN/m、劣化率は30%となり、FR−4基板での耐熱ピール強度が大きく低下した。以上の結果を、同様に表2に示す。(Comparative Example 2)
In Comparative Example 2, zinc does not exist in the plating film, and the abundance ratio of nickel in the plating film exceeds 50% by mass, thus deviating from the present invention. Moreover, although Formula 2 (copper adhesion amount (mass%)) / {100- (zinc adhesion amount (mass%))} is 0.45, Formula 1 (zinc adhesion amount (mass%)) / {100- (Copper adhesion amount (mass%))} is 0.00, which is not within the range of the present invention.
In Comparative Example 2, the peel strength of the normal BT substrate in the FR substrate was 1.51 kN / m, the peel strength after aging for 2 days was 1.06 kN / m, and the degradation rate was 30%. The heat peel strength of the steel was greatly reduced. The above results are similarly shown in Table 2.
(比較例3)
比較例3では、めっき皮膜中の亜鉛(Zn)付着量が620μg/dm2であるが、めっき皮膜中にニッケルが存在せず、本願発明から逸脱している。式1(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が1.00、式2(銅付着量(質量%))/{100−(亜鉛付着量(質量%))}が1.00である。
この比較例3では、常態BT基板(苛酷な環境下)での常態ピール強度は0.96kN/mであったが、塩酸処理後のピール強度は0.65kN/mで、劣化率は32%と著しく低下し、さらに耐硫酸−過酸化水素でのピール強度は0.69kN/m、劣化率は28%となり、いずれも耐薬品性が大きく低下した。以上の結果を、同様に表2に示す。(Comparative Example 3)
In Comparative Example 3, the adhesion amount of zinc (Zn) in the plating film is 620 μg / dm 2 , but nickel does not exist in the plating film and deviates from the present invention. Formula 1 (Zinc adhesion amount (% by mass)) / {100- (Copper adhesion amount (% by mass))} is 1.00, Formula 2 (Copper adhesion amount (% by mass)) / {100- (Zinc adhesion amount ( Mass%))} is 1.00.
In Comparative Example 3, the normal peel strength on a normal BT substrate (in a harsh environment) was 0.96 kN / m, but the peel strength after hydrochloric acid treatment was 0.65 kN / m, and the deterioration rate was 32%. Furthermore, the peel strength with sulfuric acid-hydrogen peroxide was 0.69 kN / m, the deterioration rate was 28%, and the chemical resistance was greatly reduced. The above results are similarly shown in Table 2.
(比較例4)
比較例4では、単位面積あたりの亜鉛の付着量は2564μg/dm2となり、本願発明から逸脱している。この比較例4では、常態BT基板(苛酷な環境下)での常態ピール強度は1.02kN/mであったが、塩酸処理後のピール強度は0.20kN/mで、劣化率は80%と著しく低下し、さらに耐硫酸−過酸化水素でのピール強度は0.62kN/m、劣化率は39%となり、いずれも耐薬品性が大きく低下した。
以上の結果を、同様に表2に示す。(Comparative Example 4)
In Comparative Example 4, the adhesion amount of zinc per unit area is 2564 μg / dm 2 , which is a departure from the present invention. In Comparative Example 4, the normal peel strength on a normal BT substrate (in a harsh environment) was 1.02 kN / m, but the peel strength after hydrochloric acid treatment was 0.20 kN / m and the deterioration rate was 80%. Furthermore, the peel strength with sulfuric acid-hydrogen peroxide was 0.62 kN / m, the deterioration rate was 39%, and the chemical resistance was greatly reduced in all cases.
The above results are similarly shown in Table 2.
(比較例5)
比較例5では、めっき皮膜中に存在する銅が80質量%と多く、亜鉛が4質量%、ニッケルが16質量%となり、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.2と本願発明の範囲から逸脱している。この比較例5では、FR−4基板での常態ピール強度は1.12kN/mであったが、塩酸処理後のピール強度は1.12kN/mで、劣化率は25%となり、FR−4基板での耐熱ピール強度が大きく低下した。
以上の結果を、同様に表2に示す。(Comparative Example 5)
In Comparative Example 5, the amount of copper present in the plating film was as large as 80% by mass, zinc was 4% by mass, and nickel was 16% by mass. (Zinc adhesion amount (% by mass)) / {100- (copper adhesion amount ( Mass%))} is 0.2, which is out of the scope of the present invention. In Comparative Example 5, the normal peel strength on the FR-4 substrate was 1.12 kN / m, but the peel strength after hydrochloric acid treatment was 1.12 kN / m, the degradation rate was 25%, and FR-4 The heat-resistant peel strength on the substrate was greatly reduced.
The above results are similarly shown in Table 2.
(比較例6)
比較例6において、めっき皮膜中に存在する亜鉛が70質量%と多く銅が6質量%と少ないため、(銅付着量(質量%))/{100−(亜鉛付着量(質量%)}が0.20となり本願発明の範囲から逸脱している。この比較例6では、BT基板での常態ピール強度は1.04kN/mであったが、塩酸処理後のピール強度は0.16kN/mとなり、劣化率は85%と大きく、耐薬品性(塩酸)が大きく低下した。以上の結果を、同様に表2に示す。(Comparative Example 6)
In Comparative Example 6, since the zinc present in the plating film is as large as 70% by mass and the copper is as small as 6% by mass, (copper adhesion amount (% by mass)) / {100- (zinc adhesion amount (% by mass)) is In Comparative Example 6, the normal peel strength on the BT substrate was 1.04 kN / m, but the peel strength after hydrochloric acid treatment was 0.16 kN / m. The deterioration rate was as high as 85%, and the chemical resistance (hydrochloric acid) was greatly reduced.
(比較例7)
比較例7では、単位面積あたりの亜鉛の付着量は150μg/dm2と少なく、本願発明から逸脱している。この比較例7では、FR−4基板での2日間エージング後のピール強度は1.01kN/mで、劣化率は31%と大きくなり、耐熱性が大きく低下した。
以上の結果を、同様に表2に示す。(Comparative Example 7)
In Comparative Example 7, the adhesion amount of zinc per unit area is as small as 150 μg / dm 2, which deviates from the present invention. In Comparative Example 7, the peel strength after aging for 2 days on the FR-4 substrate was 1.01 kN / m, the deterioration rate was as large as 31%, and the heat resistance was greatly reduced.
The above results are similarly shown in Table 2.
(比較例8)
比較例8では、めっき皮膜中のニッケルの存在比が50質量%を超えており、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.27と本願発明の範囲から逸脱している。この比較例8では、FR−4基板での2日間エージング後のピール強度は1.10kN/mで、劣化率は23%と大きくなり、FR−4基板での耐熱ピール強度が大きく低下した。以上の結果を、同様に表2に示す。(Comparative Example 8)
In Comparative Example 8, the abundance ratio of nickel in the plating film exceeds 50% by mass, and (Zinc adhesion amount (% by mass)) / {100- (Copper adhesion amount (% by mass))} is 0.27. It deviates from the scope of the present invention. In Comparative Example 8, the peel strength after aging for 2 days on the FR-4 substrate was 1.10 kN / m, the deterioration rate increased to 23%, and the heat-resistant peel strength on the FR-4 substrate was greatly reduced. The above results are similarly shown in Table 2.
(比較例9)
比較例9では、(亜鉛付着量(質量%))/{100−(銅付着量(質量%))}が0.25と本願発明の範囲から逸脱している。この比較例9では、FR−4基板での2日間エージング後のピール強度は1.19kN/mで、劣化率は22%と大きくなり、FR−4基板での耐熱ピール強度が大きく低下した。以上の結果を、同様に表2に示す。(Comparative Example 9)
In Comparative Example 9, (zinc adhesion amount (mass%)) / {100- (copper adhesion quantity (mass%))} is 0.25, which is out of the scope of the present invention. In Comparative Example 9, the peel strength after aging for 2 days on the FR-4 substrate was 1.19 kN / m, the deterioration rate increased to 22%, and the heat-resistant peel strength on the FR-4 substrate was greatly reduced. The above results are similarly shown in Table 2.
また、比較例10では、銅付着量(質量%))/{100−(亜鉛付着量(質量%)}が0.28となり本願発明の範囲から逸脱している。この比較例10では、BT基板での常態ピール強度は1.01kN/mであったが、塩酸処理後のピール強度は0.71kN/mとなり、劣化率は30%と大きく、耐薬品性(塩酸)が大きく低下した。
以上の結果を、同様に表2に示す。In Comparative Example 10, the copper adhesion amount (% by mass)) / {100- (Zinc adhesion amount (% by mass)) is 0.28, which departs from the scope of the present invention. The normal peel strength on the substrate was 1.01 kN / m, but the peel strength after hydrochloric acid treatment was 0.71 kN / m, the deterioration rate was as high as 30%, and the chemical resistance (hydrochloric acid) was greatly reduced.
The above results are similarly shown in Table 2.
以上から、本願発明の銅ニッケル亜鉛層を作製する上でのめっき浴の条件は、Ni:0.1g/L〜30g/L、 Zn:0.1g/L〜12g/L、 Cu:0.1 g/L〜2 g/L、硫酸(H2SO4):0.1g/L〜10g/L、を基本浴とするのが好ましい。
これらの濃度の範囲を外れ、ニッケル、亜鉛あるいは銅の濃度が濃くなると、廃水処理に支障をきたすようになるため、めっき浴の条件としては好ましくない。また、成分濃度が低く外れると、めっきによる濃度変化等の要因によりめっき浴の管理が難しくなるほか、電流効率が極端に低下するため、めっき浴の条件としては好ましくない。From the above, the plating bath conditions for producing the copper nickel zinc layer of the present invention are: Ni: 0.1 g / L to 30 g / L, Zn: 0.1 g / L to 12 g / L, Cu: 0.00. The basic bath is preferably 1 g / L to 2 g / L, sulfuric acid (H 2 SO 4 ): 0.1 g / L to 10 g / L.
When the concentration of nickel, zinc or copper is out of the range of these concentrations and the concentration of nickel, zinc or copper is increased, the waste water treatment is hindered. If the component concentration is too low, it is difficult to manage the plating bath due to factors such as concentration change due to plating, and the current efficiency is extremely reduced.
上記においては、電解銅箔の粗化面に適用した場合について説明したが、光沢面に粗化処理を施した電解銅箔においても同様であることは云うまでもない。さらに粗化処理を施した圧延銅箔においても同様である。電解銅箔及び圧延銅箔の粗化面を使用していれば、粗化処理の形状や表面粗さの違いにより常態ピール強度の絶対値に違いが出ることはあるものの、耐熱ピール強度および硫酸・過酸化水素水処理後のピール強度の常態ピールからの相対劣化率を小さくすることができる。 In the above description, the case of applying to the roughened surface of the electrolytic copper foil has been described, but it goes without saying that the same applies to the electrolytic copper foil in which the roughened surface is subjected to the roughening treatment. The same applies to the rolled copper foil subjected to the roughening treatment. If the roughened surface of electrolytic copper foil and rolled copper foil is used, the absolute value of normal peel strength may differ depending on the shape of the roughening treatment and the surface roughness, but the heat-resistant peel strength and sulfuric acid -The relative deterioration rate from the normal peel of the peel strength after the hydrogen peroxide treatment can be reduced.
本願発明の印刷回路基板用銅箔においては、特に銅ニッケル亜鉛層の最適な条件を選択することを発明の中心的課題とするものである。これによって、銅箔の耐熱ピール強度を飛躍的に向上させると共に、回路浸食現象を効果的に防止し、耐硫酸・過酸化水素性を恒常的に安定して効力を発揮させるものである。
したがって、電解銅箔及び圧延銅箔の選択又は粗化面の選択は、目的に応じて任意に選択できることは、容易に理解されるべきことである。In the copper foil for printed circuit boards according to the present invention, it is a central subject of the invention to select the optimum conditions for the copper nickel zinc layer. As a result, the heat-resistant peel strength of the copper foil is drastically improved, the circuit erosion phenomenon is effectively prevented, and the sulfuric acid / hydrogen peroxide resistance is constantly and stably exerted.
Therefore, it should be easily understood that the selection of the electrolytic copper foil and the rolled copper foil or the selection of the roughened surface can be arbitrarily selected according to the purpose.
以上に示したように、本発明の印刷回路基板用銅箔は、高温加熱後の樹脂との剥離強度を劣化させないために銅ニッケル亜鉛層を使用するものであり、銅箔の耐熱ピール強度を飛躍的に向上させることができる。また、これによって回路浸食現象を効果的に防止でき、耐薬品性(耐硫酸−過酸化水素系性)を恒常的に安定して効力を発揮できるという新しい特性が付与されたものであり、近年印刷回路のファインパターン化及び高周波化が進む中で印刷回路基板用銅箔(特に半導体パッケージ基板用銅箔)及び銅箔と樹脂基材を張り合わせて作製した印刷回路基板(特に半導体パッケージ基板)用銅張積層板として有用である。 As shown above, the copper foil for printed circuit boards of the present invention uses a copper nickel zinc layer so as not to deteriorate the peel strength with the resin after high-temperature heating, and the heat-resistant peel strength of the copper foil is reduced. It can be improved dramatically. In addition, this has given new characteristics that the circuit erosion phenomenon can be effectively prevented and the chemical resistance (sulfuric acid-hydrogen peroxide system resistance) can be constantly and stably exerted. For printed circuit board copper foil (especially copper foil for semiconductor package board) and printed circuit board (especially semiconductor package board) produced by bonding copper foil and resin base material while fine pattern and high frequency of printed circuit are progressing It is useful as a copper clad laminate.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012501763A JP5254491B2 (en) | 2010-02-24 | 2011-02-21 | Copper foil for printed circuit board and copper clad laminate for printed circuit board |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010038285 | 2010-02-24 | ||
JP2010038285 | 2010-02-24 | ||
PCT/JP2011/053646 WO2011105318A1 (en) | 2010-02-24 | 2011-02-21 | Copper foil for printed circuit board and copper-clad laminate for printed circuit board |
JP2012501763A JP5254491B2 (en) | 2010-02-24 | 2011-02-21 | Copper foil for printed circuit board and copper clad laminate for printed circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011105318A1 JPWO2011105318A1 (en) | 2013-06-20 |
JP5254491B2 true JP5254491B2 (en) | 2013-08-07 |
Family
ID=44506726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012501763A Active JP5254491B2 (en) | 2010-02-24 | 2011-02-21 | Copper foil for printed circuit board and copper clad laminate for printed circuit board |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5254491B2 (en) |
KR (1) | KR101344176B1 (en) |
CN (1) | CN102783255B (en) |
MY (1) | MY162078A (en) |
TW (1) | TWI509113B (en) |
WO (1) | WO2011105318A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5497808B2 (en) * | 2012-01-18 | 2014-05-21 | Jx日鉱日石金属株式会社 | Surface-treated copper foil and copper-clad laminate using the same |
KR101519314B1 (en) * | 2013-10-18 | 2015-05-11 | 미쓰비시덴키 가부시키가이샤 | Jig for processing table, manufacturing method of jig for processing table, and laser processing method |
CN112041485B (en) * | 2018-04-27 | 2023-07-14 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate, and printed wiring board |
JP7435444B2 (en) * | 2018-07-18 | 2024-02-21 | 株式会社レゾナック | Method for manufacturing copper-clad laminates, printed wiring boards, semiconductor packages, and copper-clad laminates |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202367A (en) * | 1993-12-28 | 1995-08-04 | Japan Energy Corp | Surface treatment method of copper foil for printed circuit |
JP4172704B2 (en) * | 2003-07-31 | 2008-10-29 | 日鉱金属株式会社 | Surface-treated copper foil and substrate using the same |
JP2009226874A (en) * | 2008-03-25 | 2009-10-08 | Nippon Steel Chem Co Ltd | Flexible copper clad laminate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3292774B2 (en) * | 1994-02-15 | 2002-06-17 | 三井金属鉱業株式会社 | Copper foil for printed wiring board and method for producing the same |
JP3142259B2 (en) * | 1998-11-30 | 2001-03-07 | 三井金属鉱業株式会社 | Copper foil for printed wiring board excellent in chemical resistance and heat resistance and method for producing the same |
JP3670185B2 (en) * | 2000-01-28 | 2005-07-13 | 三井金属鉱業株式会社 | Method for producing surface-treated copper foil for printed wiring board |
KR101188147B1 (en) * | 2008-06-17 | 2012-10-05 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Copper foil for printed circuit board and copper clad laminate plate for printed circuit board |
-
2011
- 2011-02-21 WO PCT/JP2011/053646 patent/WO2011105318A1/en active Application Filing
- 2011-02-21 CN CN201180010771.3A patent/CN102783255B/en active Active
- 2011-02-21 JP JP2012501763A patent/JP5254491B2/en active Active
- 2011-02-21 MY MYPI2012003731A patent/MY162078A/en unknown
- 2011-02-21 KR KR1020127019538A patent/KR101344176B1/en active IP Right Grant
- 2011-02-23 TW TW100105943A patent/TWI509113B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202367A (en) * | 1993-12-28 | 1995-08-04 | Japan Energy Corp | Surface treatment method of copper foil for printed circuit |
JP4172704B2 (en) * | 2003-07-31 | 2008-10-29 | 日鉱金属株式会社 | Surface-treated copper foil and substrate using the same |
JP2009226874A (en) * | 2008-03-25 | 2009-10-08 | Nippon Steel Chem Co Ltd | Flexible copper clad laminate |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011105318A1 (en) | 2013-06-20 |
MY162078A (en) | 2017-05-31 |
WO2011105318A1 (en) | 2011-09-01 |
TWI509113B (en) | 2015-11-21 |
CN102783255A (en) | 2012-11-14 |
CN102783255B (en) | 2017-04-19 |
KR101344176B1 (en) | 2013-12-20 |
TW201137183A (en) | 2011-11-01 |
KR20120115339A (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4938130B2 (en) | Copper foil for printed circuit board and copper clad laminate for printed circuit board | |
JP5512567B2 (en) | Method for producing copper foil for printed wiring board | |
KR102104161B1 (en) | Copper foil for printed wiring board and method for producing same | |
US9028972B2 (en) | Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board and printed wiring board | |
TWI645073B (en) | Copper foil and semiconductor package substrate | |
JP4955104B2 (en) | Method for forming an electronic circuit | |
JP5254491B2 (en) | Copper foil for printed circuit board and copper clad laminate for printed circuit board | |
KR20120115310A (en) | Electronic circuit, method for forming same, and copper clad laminate for electronic circuit formation | |
US20130189538A1 (en) | Method of manufacturing copper foil for printed wiring board, and copper foil printed wiring board | |
JP2739507B2 (en) | Copper foil electrolytic treatment method | |
JP5443157B2 (en) | High frequency copper foil, copper clad laminate using the same, and method for producing the same | |
WO2012132572A1 (en) | Copper foil with copper carrier, method for producing said copper foil, copper foil for electronic circuit, method for producing said copper foil, and method for forming electronic circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5254491 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |