JP5443157B2 - High frequency copper foil, copper clad laminate using the same, and method for producing the same - Google Patents

High frequency copper foil, copper clad laminate using the same, and method for producing the same Download PDF

Info

Publication number
JP5443157B2
JP5443157B2 JP2009299121A JP2009299121A JP5443157B2 JP 5443157 B2 JP5443157 B2 JP 5443157B2 JP 2009299121 A JP2009299121 A JP 2009299121A JP 2009299121 A JP2009299121 A JP 2009299121A JP 5443157 B2 JP5443157 B2 JP 5443157B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
electrolytic
current density
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009299121A
Other languages
Japanese (ja)
Other versions
JP2011138980A (en
Inventor
安浩 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP2009299121A priority Critical patent/JP5443157B2/en
Publication of JP2011138980A publication Critical patent/JP2011138980A/en
Application granted granted Critical
Publication of JP5443157B2 publication Critical patent/JP5443157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高周波における伝送損失の小さな高周波用銅箔、それを用いた銅張積層板及びその製造方法に関するものである。   The present invention relates to a high-frequency copper foil with low transmission loss at high frequencies, a copper-clad laminate using the same, and a method for manufacturing the same.

通信情報の大容量化、多様化に伴い、通信の基地局用プリント基板、サーバ用プリント基板、ルータ用プリント基板などは通信速度の高速化が進んでいる。通信速度の高速化は、信号の高周波化につながる。これらの高周波用基板には、出力信号の品質を確保するため、伝送損失の低減が求められている。   Along with the increase in capacity and diversification of communication information, communication base station printed boards, server printed boards, router printed boards and the like are increasing in communication speed. Higher communication speeds lead to higher signal frequencies. These high-frequency substrates are required to reduce transmission loss in order to ensure the quality of output signals.

伝送損失は、主に、樹脂に起因する誘電体損失と、導体に起因する導体損失からなっている。誘電体損失は、樹脂の誘電率及び誘電正接が小さくなるほど減少する。また、導体損失は、周波数が高くなるほど表皮効果によって電流が流れる断面積が減少し、抵抗値が高くなることに由来している。   Transmission loss mainly consists of dielectric loss due to resin and conductor loss due to conductor. The dielectric loss decreases as the dielectric constant and dielectric loss tangent of the resin decrease. The conductor loss is derived from the fact that as the frequency increases, the cross-sectional area through which current flows due to the skin effect decreases and the resistance value increases.

抵抗値の増加には、表皮効果による断面積減少以外にも要因がある。プリント基板用に用いられる銅箔は、圧延法又は電解法によって得られるベースとなる銅箔(ベース銅箔)の少なくとも片面に樹脂基材との接着力を向上させるための粗化処理及び防錆処理が施されているものである。   The increase in resistance value is caused by factors other than the reduction in cross-sectional area due to the skin effect. Copper foil used for printed circuit boards is roughened and rust-prevented to improve the adhesion to the resin base material on at least one side of the copper foil (base copper foil) that is the base obtained by rolling or electrolytic methods. It has been processed.

抵抗値には、ベース銅箔自体の抵抗、粗化処理層の抵抗及びそれらの界面で発生する抵抗も影響する。特に周波数が1GHz以上では、信号電流の流れる表皮深さが2.1μm以下となるため、ベース銅箔と粗化層の界面及び粗化層の抵抗の影響が大きくなる。   The resistance value is also influenced by the resistance of the base copper foil itself, the resistance of the roughened layer, and the resistance generated at the interface between them. In particular, when the frequency is 1 GHz or more, the skin depth through which the signal current flows is 2.1 μm or less, so that the influence of the interface between the base copper foil and the roughened layer and the resistance of the roughened layer becomes large.

ベース銅箔と粗化層の界面及び粗化層の抵抗を低減させるための手段として、粗化層を形成せずに化学処理のみで樹脂基材と接着する方法が公開されている。しかし、化学処理のみでは熱履歴による樹脂基材との接着力の劣化や耐薬品性において、粗化処理銅箔と同等の特性を得ることは難しい。一方、エッチング法によりベース銅箔表面を粗面化させる方法が公開されている(例えば、特許文献1を参照。)。しかし、エッチング法の場合は、下地の結晶状態によって粗面化後の形状が変化するため、下地結晶状態に合わせてエッチング条件を制御する難しさがある。   As a means for reducing the interface between the base copper foil and the roughened layer and the resistance of the roughened layer, a method of bonding to the resin base material only by chemical treatment without forming the roughened layer is disclosed. However, with chemical treatment alone, it is difficult to obtain the same characteristics as the roughened copper foil in terms of deterioration of adhesive strength with a resin base material due to thermal history and chemical resistance. On the other hand, a method for roughening the surface of the base copper foil by an etching method is disclosed (for example, see Patent Document 1). However, in the case of the etching method, the shape after the roughening changes depending on the crystal state of the base, so that it is difficult to control the etching conditions in accordance with the base crystal state.

特開2006−351677号公報JP 2006-351777 A

本発明は、表面付近の電気抵抗が小さく、高周波回路用導体として用いた場合に伝送損失を小さくすることのできる高周波回路用銅箔を提供することを目的とする。   An object of the present invention is to provide a copper foil for a high-frequency circuit that has a small electrical resistance near the surface and can reduce transmission loss when used as a conductor for a high-frequency circuit.

本発明は、電解銅箔の少なくとも片面を粗化処理した高周波用銅箔であって、該高周波用銅箔と樹脂基材とを該粗化処理面が樹脂基材と接するようにして積層成形して銅張積層板とし、ハーフエッチングにより該高周波用銅箔を重量換算厚さで3μm厚の銅層としたときの該銅層の抵抗率が2.2×10-8Ωm以下、好ましくは2.0×10-8Ωm以下であることを特徴とする高周波用銅箔を提供するものである。 The present invention is a high-frequency copper foil in which at least one surface of an electrolytic copper foil is roughened, and the high-frequency copper foil and a resin base material are laminated so that the roughened surface is in contact with the resin base material. When the copper foil for high frequency is made into a copper layer having a thickness of 3 μm in terms of weight by half-etching, the resistivity of the copper layer is 2.2 × 10 −8 Ωm or less, preferably The present invention provides a high-frequency copper foil characterized by being 2.0 × 10 −8 Ωm or less.

また、本発明は、電解銅箔の粗化処理が、電解銅箔を陰極として、銅イオンを含有するメッキ浴を用いて、メッキ浴の限界電流密度以上の電流密度で電解処理し、次いでメッキ浴の限界電流密度未満の電流密度で電解処理することにより、該電解銅箔の少なくとも片面上にコブ状の銅粒子を形成することによる粗化処理である上記の高周波用銅箔を提供するものである。   Further, in the present invention, the roughening treatment of the electrolytic copper foil is performed by electrolytically treating the electrolytic copper foil as a cathode, using a plating bath containing copper ions at a current density equal to or higher than a limiting current density of the plating bath, and then plating. Provided is the above high-frequency copper foil that is a roughening treatment by forming bump-shaped copper particles on at least one surface of the electrolytic copper foil by electrolytic treatment at a current density lower than the limiting current density of the bath It is.

また、本発明は、上記の高周波用銅箔を用いたことを特徴とする銅張積層板を提供するものである。   Moreover, this invention provides the copper clad laminated board characterized by using said copper foil for high frequencies.

また、本発明は、上記の高周波用銅箔と樹脂基材とを、該高周波用銅箔の粗化処理面が樹脂基材と接するように積層して加熱加圧することを特徴とする銅張積層板の製造方法を提供するものである。   Further, the present invention provides a copper-clad characterized in that the high-frequency copper foil and the resin base material are laminated and heated and pressed so that the roughened surface of the high-frequency copper foil is in contact with the resin base material. The manufacturing method of a laminated board is provided.

本発明の高周波用銅箔を用いた銅張積層板は、高周波回路を形成した場合に、伝送損失が少ないという利点がある。   The copper-clad laminate using the high-frequency copper foil of the present invention has the advantage of low transmission loss when a high-frequency circuit is formed.

比較例における銅張積層板作製及び及びハーフエッチング後の銅箔の断面を示す電子顕微鏡写真である。It is an electron micrograph which shows the copper clad laminated board preparation in a comparative example, and the cross section of the copper foil after half etching. 実施例における銅張積層板作製及びハーフエッチング後の銅箔の断面を示す電子顕微鏡写真である。It is an electron micrograph which shows the cross section of the copper foil after copper clad laminated board preparation and a half etching in an Example.

回路基板作製に用いられる銅張積層板では、一般に回路形成用の導体として電解銅箔が使用され、本発明も電解銅箔を用いた高周波用銅箔に関する。銅張積層板では樹脂基材と銅箔との接着性が強く要求されることから、銅箔には、樹脂基材と接する少なくとも片面に、一般に粗化処理と呼ばれる微細な凹凸を形成する処理が行われる。本発明の高周波用銅箔も、電解銅箔の少なくとも片面が粗化処理されたものである(以下、この粗化処理された電解銅箔を、単に銅箔と呼ぶことがある。)。   In copper-clad laminates used for circuit board fabrication, electrolytic copper foil is generally used as a circuit-forming conductor, and the present invention also relates to a high-frequency copper foil using electrolytic copper foil. Because copper-clad laminates require strong adhesion between the resin substrate and the copper foil, the copper foil is a process that forms fine irregularities, generally called roughening treatment, on at least one side that contacts the resin substrate. Is done. The high-frequency copper foil of the present invention is also obtained by roughening at least one surface of the electrolytic copper foil (hereinafter, this roughened electrolytic copper foil may be simply referred to as a copper foil).

電解銅箔は、通常、チタン、ステンレス鋼等を陰極として、銅イオンを含有する銅電解浴中で直流電流を通電することにより陰極上に銅を析出させ、陰極上に析出した銅を剥離することにより製造されるものである。通常、陰極に接していた面は光沢のある光沢面となり、電解浴側の面は粗面となるが、陰極表面形状や、電解浴の組成を調整することにより、電解銅箔の両面の表面粗さが調整されることもある。本発明では、電解銅箔の陰極に接していた側を光沢面と、電解浴側の面を粗面と呼ぶ。   Electrolytic copper foil usually deposits copper on the cathode by applying a direct current in a copper electrolytic bath containing copper ions, using titanium, stainless steel or the like as a cathode, and peels the copper deposited on the cathode. It is manufactured by this. Normally, the surface in contact with the cathode is a glossy glossy surface, and the surface on the electrolytic bath side is rough. However, the surface of both surfaces of the electrolytic copper foil can be adjusted by adjusting the cathode surface shape and the composition of the electrolytic bath. The roughness may be adjusted. In the present invention, the side of the electrolytic copper foil in contact with the cathode is referred to as a glossy surface, and the surface on the electrolytic bath side is referred to as a rough surface.

本発明に用いられる電解銅箔は、その厚みに特に制限はないが、9〜105μmであることが好ましく、12〜35μmであることがより好ましい。本発明に用いられる電解銅箔は、その少なくとも片面に粗化処理が施されるが、粗化処理を施す面は、光沢面、粗面又は両面のいずれでもよい。電解銅箔の粗化処理を施す側(粗化処理前)の表面粗さRz(JIS B 0601に準じて測定)は、3μm以下であることが好ましく、0.5〜2.5μmであることがより好ましい。粗化処理を施す側の表面粗さRzが0.5μm未満では、粗化処理を銅箔表面へのコブ状銅粒子の形成によって行う場合、コブ状銅粒子が形成されにくい傾向があり、3μmを超えると、粗化処理後の銅箔の3μm厚での抵抗率が高くなる傾向がある。   The thickness of the electrolytic copper foil used in the present invention is not particularly limited, but is preferably 9 to 105 μm, and more preferably 12 to 35 μm. The electrolytic copper foil used in the present invention is subjected to a roughening treatment on at least one surface thereof, and the surface subjected to the roughening treatment may be any of a glossy surface, a rough surface, or both surfaces. The surface roughness Rz (measured according to JIS B 0601) on the side of the electrolytic copper foil subjected to the roughening treatment (before the roughening treatment) is preferably 3 μm or less, and preferably 0.5 to 2.5 μm. Is more preferable. When the surface roughness Rz on the side subjected to the roughening treatment is less than 0.5 μm, when the roughening treatment is performed by forming bumpy copper particles on the surface of the copper foil, the bumpy copper particles tend to be difficult to be formed. If it exceeds 1, the copper foil after the roughening treatment tends to have a high resistivity at a thickness of 3 μm.

電解銅箔の粗化処理後の銅箔処理面の表面粗さRz(JIS B 0601に準じて測定)は、1.0〜4.5μm以下であることが好ましく、1.5〜4.0μmであることがより好ましく、2.5〜3.5μmであることが更に好ましい。粗化処理後の銅箔処理面の表面粗Rzが1.5μm未満では、樹脂基材との接着力が低くなる傾向があり、特に高周波用プリント配線板で用いられる低誘電率の樹脂は極性が小さく化学的な結合を形成しにくいため、製造工程中で銅箔が剥離する危険がある。また、粗化処理後の銅箔処理面の表面粗さが4.5μmを超えると、粗化処理後の銅箔の3μm厚での抵抗率が高くなったり、微細回路形成時のエッチング残りによる残銅や、粗化処理をコブ状銅粒子の形成によって行った場合、銅張積層板の製造工程中の摩擦によりコブ状銅粒子が脱落する粉落ちが発生しやすくなる傾向がある。   The surface roughness Rz (measured according to JIS B 0601) of the copper foil treated surface after the roughening treatment of the electrolytic copper foil is preferably 1.0 to 4.5 μm or less, and 1.5 to 4.0 μm. It is more preferable that the thickness is 2.5 to 3.5 μm. If the surface roughness Rz of the copper foil treated surface after the roughening treatment is less than 1.5 μm, the adhesive strength with the resin substrate tends to be low, and the low dielectric constant resin used in the printed wiring board for high frequency is particularly polar. However, it is difficult to form a chemical bond, so that there is a risk that the copper foil is peeled off during the manufacturing process. Moreover, when the surface roughness of the copper foil treated surface after the roughening treatment exceeds 4.5 μm, the resistivity at the thickness of 3 μm of the copper foil after the roughening treatment increases, or due to the etching residue at the time of microcircuit formation When the remaining copper or the roughening treatment is performed by forming bumpy copper particles, there is a tendency that powder falling off the bumpy copper particles due to friction during the manufacturing process of the copper clad laminate tends to occur.

電解銅箔の粗化処理方法は、粗化処理後の銅箔の本発明で規定する試験方法で測定した抵抗率が2.2×10-8Ωm以下になる方法であれば特に制限はない。通常、電解銅箔表面に、銅からなる粗化層を形成することが好ましい。銅からなる粗化層形成の好適な方法としては、電解銅箔を陰極として、銅イオンを含有するメッキ浴を用いて、メッキ浴の限界電流密度以上の電流密度で電解処理し、次いでメッキ浴の限界電流密度未満の電流密度で電解処理することにより、電解銅箔の少なくとも片面上にコブ状の銅粒子を形成することによる粗化処理方法がある。この方法では、限界電流密度以上の電流密度による電解処理により、いわゆるコガシメッキによる樹枝状銅電着層が電解銅箔面上に形成され、更にこの樹枝状銅電着層上に限界電流密度未満の電流密度による電解処理により、樹枝状銅電着層上に平滑な銅電着層(カブセメッキ)が形成され、その結果、樹枝状銅がいわゆるコブ状銅に変化する。このコブ状銅を形成することにより、電解処理前と比べて銅箔の被表面積が増大するとともに、コブ状銅によるアンカー効果が発揮されて樹脂基材と銅箔間の接着強度が向上する。 The roughening treatment method of the electrolytic copper foil is not particularly limited as long as the resistivity of the copper foil after the roughening treatment measured by the test method specified in the present invention is 2.2 × 10 −8 Ωm or less. . Usually, it is preferable to form a roughened layer made of copper on the surface of the electrolytic copper foil. As a suitable method for forming a roughened layer made of copper, an electrolytic copper foil is used as a cathode, a plating bath containing copper ions is used, and an electrolytic treatment is performed at a current density equal to or higher than the limiting current density of the plating bath, and then the plating bath. There is a roughening treatment method by forming bump-shaped copper particles on at least one surface of an electrolytic copper foil by electrolytic treatment at a current density lower than the limit current density. In this method, a dendritic copper electrodeposition layer by so-called kogashi plating is formed on the surface of the electrolytic copper foil by electrolytic treatment at a current density equal to or higher than the limit current density, and the dendritic copper electrodeposition layer has a density less than the limit current density. By electrolytic treatment with current density, a smooth copper electrodeposition layer (Kabse plating) is formed on the dendritic copper electrodeposition layer, and as a result, the dendritic copper changes to so-called bumpy copper. By forming this bumpy copper, the surface area of the copper foil is increased as compared with that before the electrolytic treatment, and the anchor effect by the bumpy copper is exhibited to improve the adhesive strength between the resin substrate and the copper foil.

上記のコガシメッキ及びカブセメッキによる粗化処理は、硫酸銅を銅イオン源とする硫酸酸性硫酸銅浴(水溶液)を用いて行うことが好ましいが、同様なコブ状銅粒子を形成する方法であれば、銅イオン源は限定されない。硫酸酸性硫酸銅浴の好ましい組成は、下記のとおりである。   The roughening treatment by the above-described kogashi plating and kabuse plating is preferably performed using a sulfuric acid copper sulfate bath (aqueous solution) using copper sulfate as a copper ion source, but if it is a method of forming similar bumpy copper particles, The copper ion source is not limited. The preferred composition of the sulfuric acid copper sulfate bath is as follows.

硫酸銅5水和物(CuSO4・5H2O):20〜300g/l(銅金属換算:5〜75g/l、より好ましくは50〜200g/l(銅金属換算:10〜50g/l)、特に好ましくは80〜160g/l(銅金属換算:20〜40g/l)。硫酸銅5水和物の濃度が20g/l未満(銅金属換算:5g/l未満)であると、カブセメッキ時の限界電流密度が3A/dm2未満となり、所定のメッキ厚さを得るためのカブセメッキ時間が長くなりすぎて生産性の面から実用的でなく、300g/l(銅金属換算:75g/l)を超えると、コガシメッキ時の限界電流密度が100A/dm2以上となり、大電流を使用する必要があるため実用的でない。 Copper sulfate pentahydrate (CuSO 4 .5H 2 O): 20 to 300 g / l (copper metal conversion: 5 to 75 g / l, more preferably 50 to 200 g / l (copper metal conversion: 10 to 50 g / l) Particularly preferably 80 to 160 g / l (in terms of copper metal: 20 to 40 g / l) When the concentration of copper sulfate pentahydrate is less than 20 g / l (in terms of copper metal: less than 5 g / l) The limit current density is less than 3 A / dm 2, and the Kabuse plating time for obtaining a predetermined plating thickness becomes too long to be practical from the viewpoint of productivity. 300 g / l (copper metal conversion: 75 g / l) If it exceeds 1, the limit current density at the time of kogashi plating becomes 100 A / dm 2 or more, and it is necessary to use a large current, which is not practical.

硫酸:40〜200g/l、より好ましくは80〜160g/l、特に好ましくは90〜120g/l。硫酸の濃度が40g/l未満であると、メッキ時の液抵抗が増加して消費電力が増加するため実用的でなく、200g/lを超えると、粘度の上昇により液抵抗が増加するため実用的でない。   Sulfuric acid: 40 to 200 g / l, more preferably 80 to 160 g / l, particularly preferably 90 to 120 g / l. If the concentration of sulfuric acid is less than 40 g / l, the liquid resistance at the time of plating increases and power consumption increases, which is not practical. If it exceeds 200 g / l, the liquid resistance increases due to an increase in viscosity. Not right.

浴温:20〜60℃、好ましくは25〜50℃、特に好ましくは30〜40℃。浴温が20℃未満であると、カブセメッキ時の限界電流密度が低下してカブセメッキ時間が長くなる傾向があり、60℃を超えると、メッキ槽で発生する水蒸気が多量になり、結露した水滴によって外観上のムラが発生する。   Bath temperature: 20-60 ° C, preferably 25-50 ° C, particularly preferably 30-40 ° C. If the bath temperature is less than 20 ° C, the limit current density at the time of Kabuse plating tends to decrease and the Kabuse plating time tends to be longer. If the bath temperature exceeds 60 ° C, the amount of water vapor generated in the plating tank increases, resulting in condensed water drops. Unevenness in appearance occurs.

メッキ浴には、更に銅メッキの均一析出性を向上させるために、銅以外の金属を含む化合物を添加してもよいが、添加する場合、その濃度は5g/l以下とすることが好ましく、2g/l以下とすることがより好ましい。銅以外の金属を含む化合物の濃度が5g/lを超えると、未粗化の電解銅箔表面と粗化層との界面への銅以外の金属の共析量が増加し、銅箔の表面層の抵抗率低減が不十分となる。   In the plating bath, a compound containing a metal other than copper may be added in order to further improve the uniform precipitation of copper plating, but when added, the concentration is preferably 5 g / l or less, More preferably, it is 2 g / l or less. If the concentration of the compound containing a metal other than copper exceeds 5 g / l, the amount of eutectoid of metal other than copper on the interface between the unroughened electrolytic copper foil surface and the roughened layer increases, and the surface of the copper foil The layer resistivity is insufficiently reduced.

コガシメッキ及びカブセメッキの好ましい電解処理条件は、下記のとおりである。
電流密度:
コガシメッキ(限界電流密度以上):[限界電流密度+0A/dm2]〜[限界電流密度+40A/dm2]、より好ましくは[限界電流密度+5A/dm2]〜[限界電流密度+30A/dm2]、特に好ましくは限界電流密度+10A/dm2]〜[限界電流密度+20A/dm2。限界電流密度未満であると、樹枝状銅の析出が得られず、[限界電流密度+40A/dm2]を超えると、メッキで発生する水素ガスの影響で、円形のムラが発生する傾向がある。
The preferable electrolytic treatment conditions for Kogashi plating and Kabuse plating are as follows.
Current density:
Kogashi plating (more than limit current density): [limit current density + 0 A / dm 2 ] to [limit current density + 40 A / dm 2 ], more preferably [limit current density + 5 A / dm 2] to [limit current density + 30 A / dm 2 ] Particularly preferably, limiting current density + 10 A / dm 2] to [limiting current density + 20 A / dm 2 . When the current density is less than the limit current density, no dendritic copper precipitates are obtained. When the value exceeds [limit current density + 40 A / dm 2 ], circular unevenness tends to occur due to the influence of hydrogen gas generated by plating. .

カブセメッキ(限界電流密度未満):[限界電流密度−2A/dm2]〜[限界電流密度−20A/dm2]、より好ましくは[限界電流密度−5A/dm2]〜[限界電流密度−10A/dm2]。[限界電流密度−20A/dm2]未満であると、カブセメッキ時間が長くなる傾向があり、[限界電流密度−2A/dm2]を超えると、電流密度分布のばらつきが発生した場合に、部分的なコゲが発生し、残銅や粉落ちが発生することがある。 Kabuse plating (less than the limit current density): [limit current density −2 A / dm 2 ] to [limit current density −20 A / dm 2 ], more preferably [limit current density −5 A / dm 2 ] to [limit current density −10 A / Dm 2 ]. If it is less than [the limiting current density -20A / dm 2], tend to Kabusemekki time is prolonged, it exceeds the critical current density -2A / dm 2], when the variation in the current density distribution occurs, partial Can cause residual copper and powder falling.

電解処理時間:
コガシメッキ:0.2〜10秒、より好ましくは0.5〜8秒、特に好ましくは1〜5秒。コガシメッキは1回で規定時間をメッキしても、パルスメッキのように複数回に分割して行ってもよい。コガシメッキの合計時間が0.2秒未満では、コガシメッキで析出する樹枝状銅が十分に成長せず、樹脂基材との接着力が十分に得られない傾向があり、10秒を超えると、樹枝状銅が長く成長しすぎ、接着力は得られても残銅や粉落ちが発生する傾向がある。
カブセメッキ:カブセメッキ時間は樹脂基材との接着力が十分に得られ、残銅や粉落ちが発生しない条件であれば特に限定されないが、通常、10〜200秒の範囲が好ましい。
Electrolytic treatment time:
Kogashi plating: 0.2 to 10 seconds, more preferably 0.5 to 8 seconds, and particularly preferably 1 to 5 seconds. Kogashi plating may be performed once for a specified time or divided into a plurality of times such as pulse plating. When the total time of the kogashi plating is less than 0.2 seconds, the dendritic copper deposited by the kogashi plating does not grow sufficiently, and there is a tendency that the adhesive strength with the resin base material cannot be sufficiently obtained. Even if the copper-like copper grows too long and the adhesive force is obtained, there is a tendency that residual copper and powder fall off occur.
Kabuse plating: The Kabuse plating time is not particularly limited as long as sufficient adhesive strength with the resin base material is obtained and no residual copper or powder falling off occurs, but a range of 10 to 200 seconds is usually preferable.

本発明の粗化処理された銅箔には、粗化処理後、必要に応じて、銅張積層板用の銅箔に通常設けられるクロメート層からなる防錆処理層や、カップリング剤処理層、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂等の接着樹脂層を設けてもよい。   In the roughened copper foil of the present invention, after the roughening treatment, if necessary, a rust preventive treatment layer composed of a chromate layer usually provided on a copper foil for a copper clad laminate, or a coupling agent treatment layer An adhesive resin layer such as a phenol resin, an epoxy resin, or a polyimide resin may be provided.

クロメート層の形成方法は特に限定されず、防錆のために必要なクロメート被膜が形成される条件であれば特に限定されない。樹脂基材との濡れ性を向上させ、化学的な結合を形成するカップリング処理層の形成は、通常、各処理剤の塗布・乾燥、又は処理剤中への浸漬・乾燥によって行われる。   The method of forming the chromate layer is not particularly limited, and is not particularly limited as long as the chromate film necessary for rust prevention is formed. Formation of a coupling treatment layer that improves wettability with a resin substrate and forms a chemical bond is usually performed by applying and drying each treatment agent, or dipping and drying in a treatment agent.

本発明において、銅箔の抵抗率測定に用いる試料の作製に際しては、まず、銅箔と樹脂基材とを、銅箔の粗化処理した面が樹脂基材に接するようにして積層成形して銅張積層板を作製する。次いで、銅張積層板の銅箔を露出面からハーフエッチングによって3μm厚さになるまでエッチングし、次いで、抵抗率測定に適した回路パターンにパターンエッチングする。樹脂基材としては特に制限はないが、積層成形後に適当な剛性を有するものであることが好ましく、例えば、ガラス布基材エポキシ樹脂プリプレグやポリイミド樹脂フィルムが適当である。本発明の銅張積層板の製造方法に用いられる樹脂基材も同様である。なお、銅箔の抵抗率測定に用いる試料の作製においては、プリプレグの重量が大きいと測定誤差が大きくなりやすいので、薄いプリプレグやフィルムを選択することが好ましく、通常それらの厚みは、プリプレグの場合、0.1〜1.0mmであることが好ましく、フィルムの場合、25〜50μmであることが好ましい。本発明の銅張積層板の製造方法においては、それらの厚みは、用途に応じて適宜選択可能である。積層成形は、通常、加熱加圧によって行われ、150〜230℃、圧力3.0〜5.0MPaで60〜120分間加熱加圧することが好ましい。試料作製において、ハーフエッチング後の銅箔の厚さは、銅箔の重量を測定して求める。実際には正確に3μmまでエッチングすることは困難なので、3μm前後の厚さにエッチングした試料を数点、例えば、3〜10点作製し、内挿により測定値を求めることとなる。抵抗値の測定は4端子法により行う。なお、ハーフエッチング及びパターンエッチングには、塩化銅エッチング液や塩化鉄エッチング液、また、各種の公知のハーフエッチング液を用いることができる。ハーフエッチングの場合、エッチング後の銅箔の厚さを均一にするため、エッチング液を均一に噴射することが重要である。   In the present invention, when preparing a sample used for measuring the resistivity of a copper foil, first, the copper foil and the resin base material are laminated and formed such that the roughened surface of the copper foil is in contact with the resin base material. A copper clad laminate is produced. Next, the copper foil of the copper-clad laminate is etched from the exposed surface to a thickness of 3 μm by half etching, and then pattern-etched into a circuit pattern suitable for resistivity measurement. Although there is no restriction | limiting in particular as a resin base material, It is preferable that it has a suitable rigidity after lamination molding, for example, a glass cloth base material epoxy resin prepreg and a polyimide resin film are suitable. The same applies to the resin base material used in the method for producing a copper-clad laminate of the present invention. In the preparation of the sample used for measuring the resistivity of the copper foil, it is preferable to select a thin prepreg or film because the measurement error tends to increase if the weight of the prepreg is large. 0.1 to 1.0 mm, and in the case of a film, it is preferably 25 to 50 μm. In the manufacturing method of the copper clad laminated board of this invention, those thickness can be suitably selected according to a use. Lamination molding is usually performed by heat and pressure, and it is preferable to heat and press at 150 to 230 ° C. and a pressure of 3.0 to 5.0 MPa for 60 to 120 minutes. In sample preparation, the thickness of the copper foil after half-etching is obtained by measuring the weight of the copper foil. In practice, since it is difficult to etch precisely to 3 μm, several samples, for example, 3 to 10 samples etched to a thickness of about 3 μm are prepared, and the measured value is obtained by interpolation. The resistance value is measured by the 4-terminal method. For the half etching and pattern etching, a copper chloride etching solution, an iron chloride etching solution, and various known half etching solutions can be used. In the case of half etching, in order to make the thickness of the copper foil after etching uniform, it is important to spray the etching solution uniformly.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1]
1.銅箔の製造
(1)厚さ18μmの電解銅箔(日本電解(株)製、HL箔、粗面粗さRz1.5μm、JIS B 0601に準拠して測定)を10wt%硫酸溶液で20秒間酸洗処理した。
(2)この電解銅箔を水洗し、電解銅箔を陰極として硫酸銅5水和物150g/l、硫酸100g/l、浴温度30℃に調整しためっき浴(限界電流密度:15A/dm2)を用いて、(1)電流密度30A/dm2で3秒間電解処理し、(2)電流密度5A/dm2で80秒間電解処理を施してコブ状の銅粒子からなる粗化層を粗面側に形成した。粗化後の表面粗さはRz3.0μmであった。
(3)次にこの粗化処理した銅箔を水洗し、重クロム酸ナトリウム2水和物3.5g/l、pH4.0、浴温度28℃に調整した水溶液を用いて電流密度0.5A/dm2で2.5秒間電解処理し、粗化層上にクロメート層を形成した。
(4)この銅箔を水洗し、3−グリシドキシプロピルトリメトキシシラン0.1wt%の水溶液に10秒間浸漬後、直ちに80℃で乾燥して、クロメート層上にシランカップリング剤処理層を形成した。
2.抵抗率の測定
(1)厚さ0.25mmのFR−4プリプレグ(日立化成工業(株)製、商品名:GEA−67N、厚み:0.25mm)1枚の片側に上記の18μmの銅箔を粗化面がプリプレグに接するように重ね、温度:168℃、圧力:3.8MPaで90分間加熱・加圧成形して銅張積層板とし、200mm×40mmの大きさに裁断後に銅張積層板の重量を0.1mgの単位まで測定した。なお、測定前に100℃で10分乾燥し、デシケータ中で放冷した。
(2)次に、銅張積層板の銅箔をシャワー式エッチングマシン中で塩化銅エッチング液を用いて露出面側からハーフエッチングし、重量を0.1mgの単位まで測定した(表1中の各測定厚みの前後となる重量の銅張積層板を各5枚作製した。)。
(3)重量測定後の各銅張積層板を塩化第二鉄エッチング液でスプレーエッチングして幅10mm、長さ200mmのテストパターンを作製し、室温20℃中でアドバンテスト社製デジタルマルチメータ(型番:R6561)を用いて4端子法により100mm間の直流抵抗値を測定した。
(4)更に、測定後の各銅張積層板のテストパターンをシャワー式エッチングマシン中で塩化銅エッチング液を用いてエッチングした後の重量を0.1mgの単位まで測定し、エッチング前後の重量差から銅箔厚さを算出した。ただし、銅の比重を8.92g/cm3として銅箔厚さを算出した。
(5)上記の抵抗値と銅箔厚さを用いて、抵抗率を算出した。
3.ベース箔(未処理電解銅箔)−粗化層の界面観察
(1)銅箔をエポキシ樹脂に埋め込み断面観察を行った。ベース箔と粗化層の界面は認められなかった。断面は鏡面研磨仕上げをした後に硫酸−過酸化水素系化学エッチング液(三菱瓦斯化学製、CPB−60)を用いて30℃中で10秒浸漬し、水洗、乾燥を行ったサンプルを電子顕微鏡で観察した。
[Example 1]
1. Manufacture of copper foil (1) An electrolytic copper foil having a thickness of 18 μm (manufactured by Nihon Denki Co., Ltd., HL foil, roughness Rz 1.5 μm, measured in accordance with JIS B 0601) with a 10 wt% sulfuric acid solution for 20 seconds Pickled.
(2) This electrolytic copper foil was washed with water, and a plating bath (limit current density: 15 A / dm 2) adjusted to a copper sulfate pentahydrate 150 g / l, sulfuric acid 100 g / l, and bath temperature 30 ° C. using the electrolytic copper foil as a cathode. ) (1) Electrolytic treatment at a current density of 30 A / dm 2 for 3 seconds, (2) Electrolytic treatment at a current density of 5 A / dm 2 for 80 seconds to roughen a roughened layer made of bumpy copper particles. Formed on the surface side. The surface roughness after roughening was Rz 3.0 μm.
(3) Next, this roughened copper foil was washed with water, and using an aqueous solution adjusted to sodium dichromate dihydrate 3.5 g / l, pH 4.0, bath temperature 28 ° C., current density 0.5 A Electrolytic treatment was carried out at / dm 2 for 2.5 seconds to form a chromate layer on the roughened layer.
(4) This copper foil is washed with water, immersed in a 0.1 wt% 3-glycidoxypropyltrimethoxysilane aqueous solution for 10 seconds, and then immediately dried at 80 ° C. to form a silane coupling agent-treated layer on the chromate layer. Formed.
2. Measurement of resistivity (1) FR-4 prepreg with a thickness of 0.25 mm (manufactured by Hitachi Chemical Co., Ltd., trade name: GEA-67N, thickness: 0.25 mm) The above 18 μm copper foil on one side Are laminated so that the roughened surface is in contact with the prepreg, and is heated and pressure-molded at a temperature of 168 ° C. and a pressure of 3.8 MPa for 90 minutes to form a copper-clad laminate, cut into a size of 200 mm × 40 mm, and then a copper-clad laminate The weight of the plate was measured to the nearest 0.1 mg. In addition, it dried at 100 degreeC for 10 minutes before the measurement, and stood to cool in a desiccator.
(2) Next, the copper foil of the copper clad laminate was half-etched from the exposed surface side using a copper chloride etchant in a shower type etching machine, and the weight was measured to the unit of 0.1 mg (in Table 1) Five copper-clad laminates having a weight before and after each measured thickness were produced.
(3) Each copper-clad laminate after weight measurement is spray-etched with a ferric chloride etchant to produce a test pattern with a width of 10 mm and a length of 200 mm, and a digital multimeter manufactured by Advantest (model number) : R6561), the direct current resistance value between 100 mm was measured by the 4-terminal method.
(4) Furthermore, the weight after etching the test pattern of each copper clad laminate after etching using a copper chloride etchant in a shower type etching machine was measured to the unit of 0.1 mg, and the weight difference before and after etching From this, the copper foil thickness was calculated. However, the copper foil thickness was calculated with the specific gravity of copper being 8.92 g / cm 3 .
(5) The resistivity was calculated using the resistance value and the copper foil thickness.
3. Interface observation of base foil (untreated electrolytic copper foil) -roughened layer (1) A copper foil was embedded in an epoxy resin, and a cross-section was observed. No interface between the base foil and the roughened layer was observed. The cross-section was mirror polished and then immersed in sulfuric acid-hydrogen peroxide chemical etchant (Mitsubishi Gas Chemical Co., CPB-60) at 30 ° C. for 10 seconds, washed and dried with an electron microscope. Observed.

[実施例2]
FR−4プリプレグの代わりにポリイミド樹脂(宇部興産製、品番:U−ワニス−A)を厚さ210μmとなるように処理後の銅箔に塗布し、350℃で30分間乾燥して乾燥後のポリイミド厚さ25μmとして銅張積層板を作製したほかは、実施例1と同様に銅張積層板を作製し、特性を評価した。結果を表1に合わせて示した。
[Example 2]
Instead of FR-4 prepreg, a polyimide resin (manufactured by Ube Industries, product number: U-Varnish-A) was applied to the treated copper foil to a thickness of 210 μm, dried at 350 ° C. for 30 minutes and dried. A copper clad laminate was produced in the same manner as in Example 1 except that a copper clad laminate was produced with a polyimide thickness of 25 μm, and the characteristics were evaluated. The results are shown in Table 1.

[実施例3]
粗化処理として、硫酸銅5水和物150g/l、硫酸100g/l、浴温度30℃に調整したメッキ浴を用いて、(1)電流密度30A/dm2で0.5秒間の電解処理を6回行い、(2)電流密度5A/dm2で80秒間電解処理を施してコブ状の銅粒子からなる粗化層を形成したほかは、実施例1と同様に行った。結果を表1に合わせて示した。
[Example 3]
As a roughening treatment, using a plating bath adjusted to copper sulfate pentahydrate 150 g / l, sulfuric acid 100 g / l, and bath temperature 30 ° C., (1) Electrolytic treatment at a current density of 30 A / dm 2 for 0.5 seconds. (2) Electrolytic treatment was performed at a current density of 5 A / dm 2 for 80 seconds to form a roughened layer made of bump-shaped copper particles. The results are shown in Table 1.

[実施例4]
粗面粗さRz2.0μmの電解銅箔(日本電解(株)製、SLP箔、厚さ18μm)を用い、粗化処理として、硫酸銅5水和物100g/l、硫酸100g/l、浴温度30℃に調整したメッキ浴(限界電流密度:10A/dm2)を用いて、(1)電流密度40A/dm2で2秒間電解処理し、(2)電流密度5A/dm2で80秒間電解処理を施してコブ状の銅粒子からなる粗化層を粗面側に形成したほかは、実施例1と同様に行った。結果を表1に合わせて示した。
[Example 4]
Using an electrolytic copper foil having a rough surface roughness of Rz 2.0 μm (manufactured by Nippon Denki Co., Ltd., SLP foil, thickness 18 μm), as a roughening treatment, copper sulfate pentahydrate 100 g / l, sulfuric acid 100 g / l, bath Using a plating bath adjusted to a temperature of 30 ° C. (limit current density: 10 A / dm 2 ), (1) electrolytic treatment at a current density of 40 A / dm 2 for 2 seconds, and (2) current density of 5 A / dm 2 for 80 seconds. The same procedure as in Example 1 was performed except that a roughened layer made of bump-shaped copper particles was formed on the rough surface side by electrolytic treatment. The results are shown in Table 1.

[実施例5]
光沢面粗さRz1.0μmの電解銅箔(日本電解(株)製、HL箔、厚さ18μm)を用い、光沢面側に粗化処理を施したほかは、実施例1と同様に行った。結果を表1に合わせて示した。
[Example 5]
The same procedure as in Example 1 was performed except that an electrolytic copper foil having a glossy surface roughness Rz of 1.0 μm (manufactured by Nihon Denki Co., Ltd., HL foil, thickness 18 μm) was used, and the glossy surface side was roughened. . The results are shown in Table 1.

[比較例1]
粗面粗さRz1.5μmの電解銅箔(日本電解(株)製、HL箔、厚さ18μm)を用い、粗化処理として、硫酸銅5水和物100g/l、硫酸100g/l、亜ヒ酸カリウム10g/l、浴温度30℃に調整したメッキ浴(限界電流密度:10A/dm2)を用いて、(1)電流密度30A/dm2で3秒間の電解処理を行い、(2)電流密度5A/dm2で80秒間電解処理を施してコブ状の銅粒子からなる粗化層を粗面側に形成したほかは、実施例1と同様に行った。結果を表1に合わせて示した。
[Comparative Example 1]
An electrolytic copper foil having a rough surface roughness Rz of 1.5 μm (manufactured by Nippon Electrolytic Co., Ltd., HL foil, thickness 18 μm) was used as a roughening treatment, and copper sulfate pentahydrate 100 g / l, sulfuric acid 100 g / l, Using a plating bath (limit current density: 10 A / dm 2 ) adjusted to 10 g / l potassium arsenate and a bath temperature of 30 ° C., (1) electrolytic treatment was performed at a current density of 30 A / dm 2 for 3 seconds, (2 ) The same operation as in Example 1 was conducted except that an electrolytic treatment was performed at a current density of 5 A / dm 2 for 80 seconds to form a roughened layer made of bump-shaped copper particles on the rough surface side. The results are shown in Table 1.

[比較例2]
粗面粗さRz2.0μmの電解銅箔(日本電解(株)製、SLP箔、厚さ18μm)を用い、粗化処理として、硫酸銅5水和物100g/l、硫酸100g/l、モリブデン酸ナトリウム2水和物15g/l、浴温度30℃に調整したメッキ浴(限界電流密度:10A/dm2)を用いて、(1)電流密度40A/dm2で2秒間の電解処理を行い、(2)電流密度5A/dm2で80秒間電解処理を施してコブ状の銅粒子からなる粗化層を粗面側に形成したほかは、実施例1と同様に行った。結果を表1に合わせて示した。
[Comparative Example 2]
Using an electrolytic copper foil having a rough surface roughness of Rz 2.0 μm (manufactured by Nippon Denki Co., Ltd., SLP foil, thickness 18 μm), as a roughening treatment, copper sulfate pentahydrate 100 g / l, sulfuric acid 100 g / l, molybdenum Using a plating bath (limit current density: 10 A / dm 2 ) adjusted to 15 g / l of sodium acid dihydrate and a bath temperature of 30 ° C., (1) Electrolytic treatment was performed at a current density of 40 A / dm 2 for 2 seconds. (2) The same operation as in Example 1 was conducted except that an electrolytic treatment was performed for 80 seconds at a current density of 5 A / dm 2 to form a roughened layer made of bump-shaped copper particles on the rough surface side. The results are shown in Table 1.

[比較例3]
粗面粗さRz5.0μmの電解銅箔(日本電解(株)製、Y箔)を用いたほかは、実施例1と同様に行った。結果を表1に合わせて示した。
[Comparative Example 3]
The same procedure as in Example 1 was performed except that an electrolytic copper foil having a rough surface roughness Rz of 5.0 μm (manufactured by Nippon Electrolytic Co., Ltd., Y foil) was used. The results are shown in Table 1.

[比較例4]
光沢面粗さRz1.0μmの電解銅箔(日本電解(株)製、HL箔、厚さ18μm)を用い、光沢面側に粗化処理を施したほかは、比較例1と同様に行った。結果を表1に合わせて示した。
[Comparative Example 4]
The same procedure as in Comparative Example 1 was performed, except that an electrolytic copper foil having a glossy surface roughness Rz of 1.0 μm (manufactured by Nippon Denki Co., Ltd., HL foil, thickness 18 μm) was used, and the glossy surface was roughened. . The results are shown in Table 1.

Figure 0005443157
表1中、界面有りとは、図1の電子顕微鏡写真に示されるように(比較例1)、ベース銅箔の表面形状に沿って粗化層との間に界面が観察されたことを意味する。界面無しとは、図1の電子顕微鏡写真に示されるように(実施例1)、ベース銅箔と粗化層との間に界面が観察されないことを意味する。
Figure 0005443157
In Table 1, the presence of an interface means that the interface was observed between the roughened layer and the surface shape of the base copper foil, as shown in the electron micrograph of FIG. 1 (Comparative Example 1). To do. “No interface” means that no interface is observed between the base copper foil and the roughened layer as shown in the electron micrograph of FIG. 1 (Example 1).

本発明の高周波用銅箔を用いた高周波回路は抵抗損失が少なく、伝送特性に優れる。   The high frequency circuit using the high frequency copper foil of the present invention has low resistance loss and excellent transmission characteristics.

Claims (5)

電解銅箔の少なくとも片面を粗化処理した高周波用銅箔であって、電解銅箔の粗化処理が、電解銅箔を陰極として、銅イオンを含有し銅以外の金属を含む化合物の濃度が0〜5g/lであるメッキ浴を用いて、メッキ浴の限界電流密度以上の電流密度で電解処理し、次いでメッキ浴の限界電流密度未満の電流密度で電解処理することにより、該電解銅箔の少なくとも片面上にコブ状の銅粒子で形成される粗化層を形成した粗化処理であって、粗化処理後の粗化処理面の表面粗さRzが1.5〜4.5μmであり、該高周波用銅箔の断面を電子顕微鏡観察したときに電解銅箔と粗化層との間に界面が観察されず、該高周波用銅箔と樹脂基材とを該粗化処理面が樹脂基材と接するようにして積層成形して銅張積層板とし、ハーブエッチングにより該高周波用銅箔を重量換算厚さで3μm厚の銅層としたときの該銅層の抵抗率が2.2×10-8Ωm以下であることを特徴とする高周波用銅箔。 A copper foil for high frequency in which at least one surface of an electrolytic copper foil is roughened , and the electrolytic copper foil roughening treatment uses the electrolytic copper foil as a cathode, the concentration of the compound containing copper ions and containing a metal other than copper is By using a plating bath of 0 to 5 g / l, electrolytic treatment at a current density equal to or higher than the limiting current density of the plating bath, and then electrolytic treatment at a current density lower than the limiting current density of the plating bath, the electrolytic copper foil A roughening treatment in which a roughening layer formed of bump-shaped copper particles is formed on at least one side of the surface, and the surface roughness Rz of the roughening treatment surface after the roughening treatment is 1.5 to 4.5 μm. When the cross section of the high-frequency copper foil is observed with an electron microscope, no interface is observed between the electrolytic copper foil and the roughened layer, and the high-frequency copper foil and the resin base Laminated to form a copper-clad laminate in contact with the resin substrate, and herb etching High frequency copper foil, wherein the resistivity of the copper layer when 3μm thick copper layer at a high frequency copper foil in terms of weight thickness is 2.2 × 10 -8 Ωm or less. 粗化処理面の表面粗さRzが2.5〜4.5μmである請求項1に記載の高周波用銅箔。The high-frequency copper foil according to claim 1, wherein the roughened surface has a surface roughness Rz of 2.5 to 4.5 μm. 粗化処理に用いられるメッキ浴の銅以外の金属を含む化合物の濃度が0〜2g/lである請求項1又は2に記載の高周波用銅箔。The high-frequency copper foil according to claim 1 or 2, wherein the concentration of the compound containing a metal other than copper in the plating bath used for the roughening treatment is 0 to 2 g / l. 請求項1〜3いずれかに記載の高周波用銅箔を用いたことを特徴とする銅張積層板。 A copper-clad laminate comprising the high-frequency copper foil according to any one of claims 1 to 3 . 請求項1〜3いずれかに記載の高周波用銅箔と樹脂基材とを、該高周波用銅箔の粗化処理面が樹脂基材と接するように積層して加熱加圧することを特徴とする銅張積層板の製造方法。 The high frequency copper foil according to any one of claims 1 to 3 and a resin base material are laminated and heated and pressed so that the roughened surface of the high frequency copper foil is in contact with the resin base material. A method for producing a copper clad laminate.
JP2009299121A 2009-12-29 2009-12-29 High frequency copper foil, copper clad laminate using the same, and method for producing the same Expired - Fee Related JP5443157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299121A JP5443157B2 (en) 2009-12-29 2009-12-29 High frequency copper foil, copper clad laminate using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299121A JP5443157B2 (en) 2009-12-29 2009-12-29 High frequency copper foil, copper clad laminate using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011138980A JP2011138980A (en) 2011-07-14
JP5443157B2 true JP5443157B2 (en) 2014-03-19

Family

ID=44350098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299121A Expired - Fee Related JP5443157B2 (en) 2009-12-29 2009-12-29 High frequency copper foil, copper clad laminate using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5443157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709629A (en) * 2015-08-12 2018-02-16 古河电气工业株式会社 Surface treatment copper foil and the copper clad laminate or printed wiring board manufactured using the surface treatment copper foil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815233B2 (en) * 1986-12-25 1996-02-14 住友ベークライト株式会社 High frequency band low loss printed circuit board
JP2006103189A (en) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk Surface-treated copper foil and circuit board
JP5105137B2 (en) * 2006-04-25 2012-12-19 日立化成工業株式会社 Manufacturing method of substrate having copper foil and substrate having copper foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709629A (en) * 2015-08-12 2018-02-16 古河电气工业株式会社 Surface treatment copper foil and the copper clad laminate or printed wiring board manufactured using the surface treatment copper foil

Also Published As

Publication number Publication date
JP2011138980A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
TWI452953B (en) Copper cladding for printed circuit boards and copper clad laminates for printed circuit boards
TWI479958B (en) Copper foil for printed wiring board and manufacturing method thereof
JP5512567B2 (en) Method for producing copper foil for printed wiring board
JP5684328B2 (en) Method for producing surface roughened copper plate and surface roughened copper plate
JP5399489B2 (en) Copper foil and manufacturing method thereof
US20120285734A1 (en) Roughened copper foil, method for producing same, copper clad laminated board, and printed circuit board
RU2287618C2 (en) Laminate foil and its production method
TWI645073B (en) Copper foil and semiconductor package substrate
KR20010089713A (en) Surface-treated copper foil and method for manufacturing the surface-treated copper foil
JPH0335394B2 (en)
JP4966368B2 (en) Improved peel strength of copper laminate
JPWO2012039285A1 (en) Method for producing copper foil for printed wiring board and copper foil for printed wiring board
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP5254491B2 (en) Copper foil for printed circuit board and copper clad laminate for printed circuit board
JP3429290B2 (en) Manufacturing method of copper foil for fine wiring
JP4524026B2 (en) Copper or copper alloy foil and method for producing the same
JP5443157B2 (en) High frequency copper foil, copper clad laminate using the same, and method for producing the same
JP2739507B2 (en) Copper foil electrolytic treatment method
KR102504286B1 (en) Surface treated copper foil and Method for producing the same
TWI415742B (en) A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool
JP2004162143A (en) Method for manufacturing copper foil for printed circuit board
JPH0376798B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees