JP6591766B2 - Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board - Google Patents

Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board Download PDF

Info

Publication number
JP6591766B2
JP6591766B2 JP2015065006A JP2015065006A JP6591766B2 JP 6591766 B2 JP6591766 B2 JP 6591766B2 JP 2015065006 A JP2015065006 A JP 2015065006A JP 2015065006 A JP2015065006 A JP 2015065006A JP 6591766 B2 JP6591766 B2 JP 6591766B2
Authority
JP
Japan
Prior art keywords
carrier
layer
copper foil
copper
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015065006A
Other languages
Japanese (ja)
Other versions
JP2015214750A (en
Inventor
友太 永浦
友太 永浦
倫也 古曳
倫也 古曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015065006A priority Critical patent/JP6591766B2/en
Publication of JP2015214750A publication Critical patent/JP2015214750A/en
Application granted granted Critical
Publication of JP6591766B2 publication Critical patent/JP6591766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、キャリア付銅箔、プリント配線板、積層体、電子機器及びプリント配線板の製造方法に関する。   The present invention relates to a carrier-attached copper foil, a printed wiring board, a laminate, an electronic device, and a method for manufacturing a printed wiring board.

プリント配線板は銅箔に絶縁基板を接着させて銅張積層板とした後に、エッチングにより銅箔面に導体パターンを形成するという工程を経て製造されるのが一般的である。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。   Generally, a printed wiring board is manufactured through a process in which an insulating substrate is bonded to a copper foil to form a copper-clad laminate, and then a conductor pattern is formed on the copper foil surface by etching. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.

ファインピッチ化に対応して、最近では厚さ9μm以下、更には厚さ5μm以下の銅箔が要求されているが、このような極薄の銅箔は機械的強度が低くプリント配線板の製造時に破れたり、皺が発生したりしやすいので、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を電着させたキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着後、キャリアは剥離層を介して剥離除去される。露出した極薄銅層上にレジストで回路パターンを形成した後に、所定の回路が形成される(特許文献1等)。   Recently, copper foils with a thickness of 9 μm or less and further with a thickness of 5 μm or less have been required in response to the fine pitch, but such ultra-thin copper foils have low mechanical strength and are used in the manufacture of printed wiring boards. Copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is electrodeposited through a release layer, since it is easily broken or wrinkled. After bonding the surface of the ultrathin copper layer to an insulating substrate and thermocompression bonding, the carrier is peeled and removed through the peeling layer. After a circuit pattern is formed with a resist on the exposed ultrathin copper layer, a predetermined circuit is formed (Patent Document 1, etc.).

WO2004/005588号WO2004 / 005588

キャリア付銅箔は、上述のように極薄銅層の表面を絶縁基板に貼り合わせて熱圧着(加熱プレス)した後、キャリアを剥離除去して使用する。この際のキャリアの剥離強度は、ユーザーが所望する強度となっていることが好ましい。しかしながら、キャリア付銅箔を製造した段階で調整されているキャリアの剥離強度は、上記絶縁基板との加熱プレス後に低下してしまい、キャリア付銅箔を絶縁基板と貼り合わせて使用するユーザーが所望するキャリアの剥離強度が得られないという問題が生じている。このような所望する剥離強度が得られない場合、絶縁基板に貼り合わせたキャリア付銅箔においてキャリアを剥離除去させる際、剥離が困難となって歩留まりが低下する、又は、剥離の際に無理な力がかかって極薄銅層に皺が発生するという問題が生じる。   As described above, the carrier-attached copper foil is used after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded (heat press), and then the carrier is peeled off. The carrier peel strength at this time is preferably the strength desired by the user. However, the peel strength of the carrier adjusted at the stage of manufacturing the copper foil with a carrier is lowered after the heat press with the insulating substrate, and the user who uses the copper foil with the carrier bonded to the insulating substrate is desired. There arises a problem that the peel strength of the carrier cannot be obtained. When such a desired peel strength cannot be obtained, when the carrier is peeled and removed from the carrier-attached copper foil bonded to the insulating substrate, the peel becomes difficult and the yield decreases, or the peel is impossible. The problem is that wrinkles occur in the ultrathin copper layer due to the force applied.

そこで、本発明は、キャリア付銅箔の加熱プレス前後における、キャリアの剥離強度の変化が良好に抑制されたキャリア付銅箔を提供することを課題とする。   Then, this invention makes it a subject to provide the copper foil with a carrier by which the change of the peeling strength of a carrier was suppressed favorably before and behind the hot press of the copper foil with a carrier.

上記目的を達成するため、本発明者は鋭意研究を重ねたところ、キャリア付銅箔の加熱プレス前後におけるキャリアの剥離強度の変化が、キャリア付銅箔の加熱プレス前後におけるキャリアの抗張力(引張強度)の低下率を調整することによって制御できることを見出した。そして、当該キャリア付銅箔の加熱プレス前後におけるキャリアの抗張力(引張強度)の低下率を所定の範囲に制御することで、キャリア付銅箔の加熱プレス前後における、キャリアの剥離強度の変化を良好に抑制することができることを見出した。   In order to achieve the above object, the present inventor has conducted extensive research and found that the change in the peel strength of the carrier before and after the hot pressing of the carrier-added copper foil is the tensile strength (tensile strength of the carrier before and after the hot pressing of the copper foil with the carrier. ) Was found to be controllable by adjusting the rate of decrease. And by controlling the decrease rate of the tensile strength (tensile strength) of the carrier before and after the hot pressing of the copper foil with carrier to a predetermined range, the change in the peel strength of the carrier before and after the hot pressing of the copper foil with carrier is good. It was found that it can be suppressed.

本発明は上記知見を基礎として完成したものであり、一側面において、キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、前記キャリアの厚みが5μm以上70μm以下であり、前記極薄銅層が前記キャリアより薄く、前記キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後の前記キャリアの抗張力低下率Aが0.0001%以上20%以下であるキャリア付銅箔である。 The present invention has been completed on the basis of the above knowledge, and in one aspect, a carrier-attached copper foil comprising a carrier, an intermediate layer, and an ultrathin copper layer in this order, wherein the thickness of the carrier is 5 μm or more. 70 μm or less, the ultrathin copper layer is thinner than the carrier, and the carrier-reduced copper foil is pressed under pressure at 20 kgf / cm 2 at 220 ° C. for 2 hours after the carrier is pressed. It is a copper foil with a carrier whose rate A is 0.0001% or more and 20% or less.

本発明は別の一側面において、キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、前記キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、続いて無圧力、220℃で4時間の条件下で加熱した後の前記キャリアの抗張力低下率0.0001%以上20%以下であるキャリア付銅箔である。 Another aspect of the present invention is a copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order, wherein the copper foil with a carrier has a pressure of 20 kgf / cm 2 and 220 ° C. With the carrier, the tensile strength reduction rate B of the carrier is 0.0001% or more and 20% or less after being heated and pressed at 2 hours under pressure and then heated under no pressure at 220 ° C. for 4 hours. Copper foil.

本発明のキャリア付銅箔は一実施形態において、以下の(3−1)及び(3−2)の内いずれか一つ以上を満たす。
(3−1)前記キャリアの抗張力低下率が15%以下である
(3−2)前記キャリアの抗張力低下率Bが15%以下である
In one embodiment, the copper foil with a carrier of the present invention satisfies at least one of the following (3-1) and (3-2).
(3-1) The tensile strength reduction rate A of the carrier is 15% or less .
(3-2) The tensile strength reduction rate B of the carrier is 15% or less .

本発明のキャリア付銅箔は別の一実施形態において、以下の(4−1)及び(4−2)の内いずれか一つ以上を満たす。
(4−1)前記キャリアの抗張力低下率が12%以下である
(4−2)前記キャリアの抗張力低下率Bが12%以下である
In another embodiment, the copper foil with a carrier of the present invention satisfies at least one of the following (4-1) and (4-2).
(4-1) The tensile strength reduction rate A of the carrier is 12% or less .
(4-2) The tensile strength reduction rate B of the carrier is 12% or less .

本発明のキャリア付銅箔は更に別の一実施形態において、以下の(5−1)及び(5−2)の内いずれか一つ以上を満たす。
(5−1)前記キャリアの抗張力低下率が10%以下である
(5−2)前記キャリアの抗張力低下率Bが10%以下である
In yet another embodiment, the carrier-attached copper foil of the present invention satisfies at least one of the following (5-1) and (5-2).
(5-1) The tensile strength reduction rate A of the carrier is 10% or less .
(5-2) The tensile strength reduction rate B of the carrier is 10% or less .

本発明のキャリア付銅箔は更に別の一実施形態において、以下の(6−1)及び(6−2)の内いずれか一つ以上を満たす。
(6−1)前記キャリアの抗張力低下率が8%以下である
(6−2)前記キャリアの抗張力低下率Bが8%以下である
In yet another embodiment, the carrier-attached copper foil of the present invention satisfies at least one of the following (6-1) and (6-2).
(6-1) The tensile strength reduction rate A of the carrier is 8% or less .
(6-2) The tensile strength reduction rate B of the carrier is 8% or less .

本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層表面及び前記キャリアの表面のいずれか一方または両方に粗化処理層を有する。   In another embodiment, the copper foil with a carrier according to the present invention has a roughened layer on one or both of the surface of the ultrathin copper layer and the surface of the carrier.

本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。   In another embodiment of the copper foil with a carrier of the present invention, the roughening treatment layer is selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc. It is a layer made of any single substance or an alloy containing one or more kinds.

本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In yet another embodiment, the carrier-attached copper foil of the present invention is one type selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the roughened layer. It has the above layers.

本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In yet another embodiment, the carrier-attached copper foil of the present invention is one type selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has the above layers.

本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層上に樹脂層を備える。   In still another embodiment, the carrier-attached copper foil of the present invention includes a resin layer on the ultrathin copper layer.

本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層上に樹脂層を備える。   In yet another embodiment, the carrier-attached copper foil of the present invention includes a resin layer on the roughening treatment layer.

本発明のキャリア付銅箔は更に別の一実施形態において、前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える。   In yet another embodiment, the carrier-attached copper foil of the present invention is a resin layer on one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer. Is provided.

本発明のキャリア付銅箔は更に別の一実施形態において、前記キャリアの一方の面に、中間層及び極薄銅層をこの順に有するキャリア付銅箔であり、前記キャリアの、前記極薄銅層側の面とは反対側の面に、前記粗化処理層が設けられている。   In another embodiment, the copper foil with a carrier of the present invention is a copper foil with a carrier having an intermediate layer and an ultrathin copper layer in this order on one surface of the carrier, and the ultrathin copper of the carrier. The roughening treatment layer is provided on the surface opposite to the surface on the layer side.

本発明のキャリア付銅箔は更に別の一実施形態において、前記キャリア両方の面に中間層及び極薄銅層をこの順に有する。   In another embodiment, the copper foil with a carrier of the present invention has an intermediate layer and an ultrathin copper layer in this order on both sides of the carrier.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造した積層体である。   In another aspect of the present invention, there is provided a laminate manufactured using the carrier-attached copper foil of the present invention.

本発明は更に別の一側面において、本発明のキャリア付銅箔と樹脂とを含む積層体であって、前記キャリア付銅箔の端面の一部または全部が前記樹脂により覆われている積層体である。   According to still another aspect of the present invention, there is provided a laminate including the carrier-attached copper foil of the present invention and a resin, wherein the end face of the carrier-attached copper foil is partially or entirely covered with the resin. It is.

本発明は更に別の一側面において、一つの本発明のキャリア付銅箔を前記キャリア側又は前記極薄銅層側から、もう一つの本発明のキャリア付銅箔の前記キャリア側又は前記極薄銅層側に積層した積層体である。   In yet another aspect of the present invention, the carrier-attached copper foil of the present invention is separated from the carrier side or the ultrathin copper layer side of the present invention, and the carrier-side copper foil of the present invention of the present invention It is the laminated body laminated | stacked on the copper layer side.

本発明の積層体は一実施形態において、前記一つのキャリア付銅箔の前記キャリア側表面又は前記極薄銅層側表面と前記もう一つのキャリア付銅箔の前記キャリア側表面又は前記極薄銅層側表面とが、必要に応じて接着剤を介して、直接積層させて構成されている。   In one embodiment of the laminate of the present invention, the carrier-side surface or ultrathin copper layer side surface of the one carrier-attached copper foil and the carrier-side surface or ultrathin copper of the another carrier-attached copper foil. The layer-side surface is configured to be directly laminated through an adhesive as necessary.

本発明の積層体は別の一実施形態において、前記一つのキャリア付銅箔の前記キャリア又は前記極薄銅層と前記もう一つのキャリア付銅箔の前記キャリア又は前記極薄銅層とが接合されている。   In another embodiment of the laminate of the present invention, the carrier or the ultrathin copper layer of the one carrier-attached copper foil and the carrier or the ultrathin copper layer of the other carrier-attached copper foil are joined. Has been.

本発明は更に別の一側面において、本発明の積層体であって、前記積層体の端面の一部または全部が樹脂により覆われている積層体である。   In another aspect of the present invention, the laminate of the present invention is a laminate in which part or all of the end surface of the laminate is covered with a resin.

本発明は更に別の一側面において、本発明の積層体を用いたプリント配線板の製造方法である。   In yet another aspect, the present invention is a method for producing a printed wiring board using the laminate of the present invention.

本発明は更に別の一側面において、本発明の積層体に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、前記樹脂層及び回路の2層を少なくとも1回形成した後に、前記積層体のキャリア付銅箔から前記極薄銅層又は前記キャリアを剥離させる工程を含むプリント配線板の製造方法である。   In another aspect of the present invention, the step of providing the laminate of the present invention with two layers of a resin layer and a circuit at least once, and after forming the resin layer and the two layers of the circuit at least once, It is a manufacturing method of a printed wiring board including the process of peeling the ultra-thin copper layer or the carrier from the copper foil with a carrier of the layered product.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。   In still another aspect, the present invention is a printed wiring board manufactured using the carrier-attached copper foil of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を用いて製造した電子機器である。   In yet another aspect, the present invention is an electronic device manufactured using the printed wiring board of the present invention.

本発明は更に別の一側面において、本発明のキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板とを積層する工程、及び、前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法である。   In yet another aspect of the present invention, the step of preparing the copper foil with carrier and the insulating substrate of the present invention, the step of laminating the copper foil with carrier and the insulating substrate, and the copper foil with carrier and the insulating substrate And then forming a copper-clad laminate through a step of peeling the carrier of the copper foil with carrier, and then by any one of the semi-additive method, subtractive method, partly additive method or modified semi-additive method A method of manufacturing a printed wiring board including a step of forming a circuit.

本発明は更に別の一側面において、本発明のキャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に回路を形成する工程、前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に樹脂層を形成する工程、前記樹脂層上に回路を形成する工程、前記樹脂層上に回路を形成した後に、前記キャリア又は前記極薄銅層を剥離させる工程、及び、前記キャリア又は前記極薄銅層を剥離させた後に、前記極薄銅層又は前記キャリアを除去することで、前記極薄銅層側表面又は前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程を含むプリント配線板の製造方法である。   In another aspect of the present invention, the step of forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil of the present invention, the carrier-attached copper foil so that the circuit is buried. A step of forming a resin layer on the surface of the ultrathin copper layer or the surface of the carrier, a step of forming a circuit on the resin layer, and after forming a circuit on the resin layer, the carrier or the ultrathin copper layer And after the carrier or the ultrathin copper layer is peeled off, the ultrathin copper layer or the carrier is removed to form the ultrathin copper layer side surface or the carrier side surface. And a method of manufacturing a printed wiring board including a step of exposing a circuit buried in the resin layer.

本発明は更に別の一側面において、本発明のキャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に回路を形成する工程、前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に樹脂層を形成する工程、前記キャリア又は前記極薄銅層を剥離させる工程、及び、前記キャリア又は前記極薄銅層を剥離させた後に、前記極薄銅層又は前記キャリアを除去することで、前記極薄銅層側表面又は前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程を含むプリント配線板の製造方法である。   In another aspect of the present invention, the step of forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil of the present invention, the carrier-attached copper foil so that the circuit is buried. After forming the resin layer on the ultrathin copper layer side surface or the carrier side surface, peeling the carrier or the ultrathin copper layer, and peeling the carrier or the ultrathin copper layer, A method for producing a printed wiring board, comprising: removing an ultrathin copper layer or the carrier to expose a circuit embedded in the resin layer formed on the ultrathin copper layer side surface or the carrier side surface It is.

本発明は更に別の一側面において、本発明のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面と樹脂基板とを積層する工程、前記キャリア付銅箔の樹脂基板と積層した側とは反対側の前記極薄銅層側表面または前記キャリア側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアまたは前記極薄銅層を剥離させる工程を含むプリント配線板の製造方法である。   In yet another aspect of the present invention, the step of laminating the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier of the present invention and the resin substrate, laminating with the resin substrate of the copper foil with carrier. After forming the two layers of the resin layer and the circuit at least once on the ultrathin copper layer side surface or the carrier side surface opposite to the side, and forming the two layers of the resin layer and the circuit, It is a manufacturing method of a printed wiring board including the process of peeling the carrier or the ultra-thin copper layer from the copper foil with a carrier.

本発明は更に別の一側面において、本発明のキャリア付銅箔の前記キャリア側表面と樹脂基板とを積層する工程、前記キャリア付銅箔の樹脂基板と積層した側とは反対側の極薄銅層側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記極薄銅層を剥離させる工程を含むプリント配線板の製造方法である。   In yet another aspect of the present invention, the step of laminating the carrier-side surface of the copper foil with a carrier and a resin substrate of the present invention, the ultrathin side opposite to the side of the copper foil with carrier and laminating the resin substrate The step of providing at least one layer of a resin layer and a circuit on the copper layer side surface, and after forming the two layers of the resin layer and the circuit, the ultrathin copper layer is peeled from the copper foil with carrier. It is a manufacturing method of a printed wiring board including a process.

本発明によれば、キャリア付銅箔の加熱プレス前後における、キャリアの剥離強度の変化が良好に抑制されたキャリア付銅箔を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil with a carrier in which the change of the peeling strength of a carrier before and behind the hot press of the copper foil with a carrier was suppressed favorably can be provided.

A〜Cは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、回路めっき・レジスト除去までの工程における配線板断面の模式図である。AC is a schematic diagram of the wiring board cross section in the process to circuit plating and the resist removal based on the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention. D〜Fは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、樹脂及び2層目キャリア付銅箔積層からレーザー穴あけまでの工程における配線板断面の模式図である。DF is a schematic diagram of a cross section of a wiring board in a process from lamination of a resin and copper foil with a second layer carrier to laser drilling according to a specific example of a method for producing a printed wiring board using a copper foil with a carrier of the present invention. It is. G〜Iは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、ビアフィル形成から1層目のキャリア剥離までの工程における配線板断面の模式図である。GI is a schematic diagram of the wiring board cross section in the process from the via fill formation to the first layer carrier peeling according to a specific example of the method for manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. J〜Kは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、フラッシュエッチングからバンプ・銅ピラー形成までの工程における配線板断面の模式図である。J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.

<キャリア付銅箔>
本発明のキャリア付銅箔は、キャリアと、キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備える。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。
<Copper foil with carrier>
The copper foil with a carrier of the present invention includes a carrier, an intermediate layer laminated on the carrier, and an ultrathin copper layer laminated on the intermediate layer. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Ultra-thin bonded to an insulating substrate, bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board.

本発明のキャリア付銅箔は、キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後のキャリアの抗張力(引張強度)低下率が20%以下である。このような構成によれば、キャリア付銅箔の加熱プレス前後における、キャリアの剥離強度の変化を良好に抑制することができる。一般に、キャリアは加熱によってある程度抗張力が変化するが、その際、キャリアの金属が再結晶化することでキャリアが収縮する。このキャリアの収縮によって中間層に応力がかかり、この中間層に対する応力によって、中間層を介して極薄銅層からキャリアを剥離除去する際の剥離強度が変化すると考えられる。本発明では、このようなキャリア付銅箔の加熱プレス前後におけるキャリアの抗張力(引張強度)の低下率を調整することによって、キャリア付銅箔の加熱プレス前後におけるキャリアの剥離強度の変化を抑制している。当該キャリアの抗張力低下率は、15%以下であるのが好ましく、12%以下であるのがより好ましく、10%以下であるのが更により好ましく、8%以下であるのが更により好ましい。当該キャリアの抗張力低下率は、典型的には0.0001%以上20%以下、あるいは0.001%以上20%以下、あるいは0.01%以上20%以下、あるいは0.1%以上20%以下、あるいは0.5%以上20%以下、あるいは0.8%以上20%以下である。なお、上記「圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレス」は、キャリア付銅箔を絶縁基板に貼り合わせて熱圧着する場合の典型的な加熱プレス条件を示している。
上記キャリア付銅箔のキャリアの抗張力(引張強度)低下率は、後述する製造方法によってキャリアを作製することで実現される。
The carrier-attached copper foil of the present invention has a carrier tensile strength (tensile strength) reduction rate of 20% or less after heat-pressing the carrier-attached copper foil under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. for 2 hours. is there. According to such a structure, the change of the peeling strength of the carrier before and after the hot pressing of the copper foil with a carrier can be satisfactorily suppressed. In general, the tensile strength of a carrier changes to some extent by heating. At this time, the carrier shrinks due to recrystallization of the metal of the carrier. It is considered that a stress is applied to the intermediate layer due to the contraction of the carrier, and the peel strength when the carrier is peeled and removed from the ultrathin copper layer via the intermediate layer is changed by the stress applied to the intermediate layer. In the present invention, by adjusting the decrease rate of the tensile strength (tensile strength) of the carrier before and after the hot pressing of the copper foil with carrier, the change in the peel strength of the carrier before and after the hot pressing of the copper foil with carrier is suppressed. ing. The tensile strength reduction rate of the carrier is preferably 15% or less, more preferably 12% or less, still more preferably 10% or less, and even more preferably 8% or less. The tensile strength reduction rate of the carrier is typically 0.0001% to 20%, alternatively 0.001% to 20%, alternatively 0.01% to 20%, alternatively 0.1% to 20%. Or 0.5% to 20%, or 0.8% to 20%. The above “pressure: 20 kgf / cm 2 , heat-pressed at 220 ° C. for 2 hours” shows typical heat-press conditions when a carrier-attached copper foil is bonded to an insulating substrate and thermocompression bonded. Yes.
The rate of decrease in the tensile strength (tensile strength) of the carrier of the copper foil with carrier is realized by producing the carrier by the production method described later.

本発明のキャリア付銅箔は、別の側面において、キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、続いて無圧力、220℃で4時間の条件下で加熱した後のキャリアの抗張力(引張強度)低下率が20%以下である。キャリア付銅箔を絶縁基板に貼り付けるために加熱プレスをした後、絶縁基板が樹脂基板である場合等では、当該基板を用いたプリント配線板の製造の際に他の基板に積層して熱処理を行うと、樹脂が収縮して樹脂基板の寸法が変化してしまい、精度の良いプリント配線板の作製に問題が生じる。このようなプリント配線板の製造途中での樹脂の収縮を防止するため、あらかじめ樹脂を十分硬化させるために加熱処理を行っておくことがある。ここで、このようにあらかじめ樹脂を十分硬化させるために行う加熱処理の前後によっても、キャリアの剥離強度が変化する問題が生じるが、本発明では上述のように当該加熱処理前後のキャリアの抗張力(引張強度)の低下率が制御されているため、キャリアの剥離強度の変化も良好に抑制することができる。当該キャリアの抗張力低下率は、15%以下であるのが好ましく、12%以下であるのがより好ましく、10%以下であるのが更により好ましく、8%以下であるのが更により好ましい。当該キャリアの抗張力低下率は、典型的には0.0001%以上20%以下、あるいは0.001%以上20%以下、あるいは0.01%以上20%以下、あるいは0.1%以上20%以下、あるいは0.5%以上20%以下、あるいは0.8%以上20%以下である。なお、上記「無圧力、220℃で4時間の条件下で加熱」は、キャリア付銅箔を絶縁基板に貼り合わせて熱圧着した後に続いて行われる、あらかじめ絶縁基板を収縮させておくための典型的な熱処理条件を示している。
上記キャリア付銅箔のキャリアの抗張力(引張強度)低下率は、後述する製造方法によってキャリアを作製することで実現される。
Another aspect of the copper foil with a carrier according to the present invention is that the copper foil with a carrier is hot-pressed under a pressure of 20 kgf / cm 2 and a temperature of 220 ° C. for 2 hours, followed by no pressure and a pressure of 4 at 220 ° C. The rate of decrease in the tensile strength (tensile strength) of the carrier after heating under conditions of time is 20% or less. After heat-pressing to attach the carrier-attached copper foil to the insulating substrate, when the insulating substrate is a resin substrate, etc., when the printed wiring board using the substrate is manufactured, it is laminated on another substrate and heat-treated If this is done, the resin shrinks and the dimensions of the resin substrate change, causing problems in the production of a printed wiring board with high accuracy. In order to prevent shrinkage of the resin during the production of such a printed wiring board, heat treatment may be performed in advance to sufficiently cure the resin. Here, there is a problem that the peel strength of the carrier changes before and after the heat treatment performed in order to sufficiently cure the resin in advance, but in the present invention, as described above, the tensile strength of the carrier before and after the heat treatment ( Since the decrease rate of (tensile strength) is controlled, a change in the peel strength of the carrier can also be satisfactorily suppressed. The tensile strength reduction rate of the carrier is preferably 15% or less, more preferably 12% or less, still more preferably 10% or less, and even more preferably 8% or less. The tensile strength reduction rate of the carrier is typically 0.0001% to 20%, alternatively 0.001% to 20%, alternatively 0.01% to 20%, alternatively 0.1% to 20%. Or 0.5% to 20%, or 0.8% to 20%. The “heating under no pressure at 220 ° C. for 4 hours” is performed after the carrier-attached copper foil is bonded to the insulating substrate and thermocompression bonded, in order to shrink the insulating substrate in advance. Typical heat treatment conditions are shown.
The rate of decrease in the tensile strength (tensile strength) of the carrier of the copper foil with carrier is realized by producing the carrier by the production method described later.

<キャリア>
本発明に用いることのできるキャリアは金属箔であり、例えば銅箔、銅合金箔、ニッケル箔、ニッケル合金箔、鉄箔、鉄合金箔、ステンレス箔、アルミニウム箔、アルミニウム合金箔の形態で提供される。
本発明に用いることのできるキャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<Career>
The carrier that can be used in the present invention is a metal foil, and is provided in the form of, for example, copper foil, copper alloy foil, nickel foil, nickel alloy foil, iron foil, iron alloy foil, stainless steel foil, aluminum foil, aluminum alloy foil. The
Carriers that can be used in the present invention are typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば5μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には70μm以下とするのが好ましい。従って、キャリアの厚みは典型的には8〜70μmであり、より典型的には12〜70μmであり、より典型的には18〜35μmである。また、原料コストを低減する観点からはキャリアの厚みは小さいことが好ましい。そのため、キャリアの厚みは、典型的には5μm以上35μm以下であり、好ましくは5μm以上18μm以下であり、好ましくは5μm以上12μm以下であり、好ましくは5μm以上11μm以下であり、好ましくは5μm以上10μm以下である。なお、キャリアの厚みが小さい場合には、キャリアの通箔の際に折れシワが発生しやすい。折れシワの発生を防止するため、例えばキャリア付銅箔製造装置の搬送ロールを平滑にすることや、搬送ロールと、その次の搬送ロールとの距離を短くすることが有効である。なお、プリント配線板の製造方法の一つである埋め込み工法(エンベッティド法(Enbedded Process))にキャリア付銅箔が用いられる場合には、キャリアの剛性が高いことが必要である。そのため、埋め込み工法に用いる場合には、キャリアの厚みは18μm以上300μm以下であることが好ましく、25μm以上150μm以下であることが好ましく、35μm以上100μm以下であることが好ましく、35μm以上70μm以下であることが更により好ましい。
なお、キャリアの極薄銅層を設ける側の表面とは反対側の表面に粗化処理層を設けてもよい。当該粗化処理層を公知の方法を用いて設けてもよく、後述の粗化処理により設けてもよい。キャリアの極薄銅層を設ける側の表面とは反対側の表面に粗化処理層を設けることは、キャリアを当該粗化処理層を有する表面側から樹脂基板などの支持体に積層する際、キャリアと樹脂基板が剥離し難くなるという利点を有する。
The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, and may be, for example, 5 μm or more. However, if it is too thick, the production cost increases, so it is generally preferable that the thickness is 70 μm or less. Accordingly, the thickness of the carrier is typically 8 to 70 μm, more typically 12 to 70 μm, and more typically 18 to 35 μm. Moreover, it is preferable that the thickness of a carrier is small from a viewpoint of reducing raw material cost. Therefore, the thickness of the carrier is typically 5 μm or more and 35 μm or less, preferably 5 μm or more and 18 μm or less, preferably 5 μm or more and 12 μm or less, preferably 5 μm or more and 11 μm or less, preferably 5 μm or more and 10 μm or less. It is as follows. In addition, when the thickness of a carrier is small, it is easy to generate | occur | produce a wrinkle in the case of a carrier foil. In order to prevent the generation of folding wrinkles, for example, it is effective to smooth the transport roll of the copper foil manufacturing apparatus with a carrier and to shorten the distance between the transport roll and the next transport roll. In addition, when the copper foil with a carrier is used for the embedding method (embedded process) which is one of the manufacturing methods of a printed wiring board, the rigidity of a carrier needs to be high. Therefore, when used in the embedding method, the thickness of the carrier is preferably 18 μm or more and 300 μm or less, preferably 25 μm or more and 150 μm or less, preferably 35 μm or more and 100 μm or less, and 35 μm or more and 70 μm or less. Even more preferred.
In addition, you may provide a roughening process layer in the surface on the opposite side to the surface in the side which provides the ultra-thin copper layer of a carrier. The said roughening process layer may be provided using a well-known method, and may be provided by the below-mentioned roughening process. Providing a roughened layer on the surface opposite to the surface on which the ultrathin copper layer of the carrier is provided, when laminating the carrier from the surface side having the roughened layer to a support such as a resin substrate, There is an advantage that the carrier and the resin substrate are hardly separated.

本発明のキャリアは、以下の電解銅箔の作製条件によって作製することができる。なお、本発明に用いられる電解、表面処理又はめっき等に用いられる処理液の残部は特に明記しない限り水である。
<電解液組成>
銅:80〜110g/L
硫酸:70〜110g/L
塩素:10〜100質量ppm
ニカワ:1〜15質量ppm、好ましくは1〜10質量ppm(なお、ニカワ濃度が5質量ppm以上である場合については、塩素は不要である。)
The carrier of the present invention can be produced under the following conditions for producing an electrolytic copper foil. The balance of the treatment liquid used for electrolysis, surface treatment or plating used in the present invention is water unless otherwise specified.
<Electrolyte composition>
Copper: 80-110 g / L
Sulfuric acid: 70-110 g / L
Chlorine: 10-100 ppm by mass
Nika: 1 to 15 ppm by mass, preferably 1 to 10 ppm by mass (in the case where the concentration of glue is 5 ppm by mass or more, chlorine is unnecessary).

<製造条件>
電流密度:50〜200A/dm2
電解液温度:40〜70℃
電解液線速:3〜5m/sec
電解時間:0.5〜10分間
<Production conditions>
Current density: 50 to 200 A / dm 2
Electrolyte temperature: 40-70 ° C
Electrolyte linear velocity: 3-5 m / sec
Electrolysis time: 0.5 to 10 minutes

<中間層>
キャリアの片面又は両面上には中間層を設ける。キャリアと中間層との間には他の層を設けてもよい。本発明で用いる中間層は、キャリア付銅箔が絶縁基板への積層工程前にはキャリアから極薄銅層が剥離し難い一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能となるような構成であれば特に限定されない。例えば、本発明のキャリア付銅箔の中間層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Zn、これらの合金、これらの水和物、これらの酸化物、有機物からなる群から選択される一種又は二種以上を含んでも良い。また、中間層は複数の層であっても良い。
また、例えば、中間層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種の元素からなる単一金属層、或いは、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素からなる合金層を形成し、その上にCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素の水和物または酸化物からなる層を形成することで構成することができる。
中間層を片面にのみ設ける場合、キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。なお、中間層をクロメート処理や亜鉛クロメート処理やめっき処理で設けた場合には、クロムや亜鉛など、付着した金属の一部は水和物や酸化物となっている場合があると考えられる。
また、例えば、中間層は、キャリア上に、ニッケル、ニッケル−リン合金又はニッケル−コバルト合金と、クロムとがこの順で積層されて構成することができる。ニッケルと銅との接着力はクロムと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とクロムとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。中間層におけるニッケルの付着量は好ましくは100μg/dm2以上40000μg/dm2以下、より好ましくは100μg/dm2以上4000μg/dm2以下、より好ましくは100μg/dm2以上2500μg/dm2以下、より好ましくは100μg/dm2以上1000μg/dm2未満であり、中間層におけるクロムの付着量は5μg/dm2以上100μg/dm2以下であることが好ましい。中間層を片面にのみ設ける場合、キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。
<Intermediate layer>
An intermediate layer is provided on one or both sides of the carrier. Another layer may be provided between the carrier and the intermediate layer. In the intermediate layer used in the present invention, the ultrathin copper layer is hardly peeled off from the carrier before the copper foil with the carrier is laminated on the insulating substrate, while the ultrathin copper layer is separated from the carrier after the lamination step on the insulating substrate. There is no particular limitation as long as it can be peeled off. For example, the intermediate layer of the copper foil with a carrier of the present invention is Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates thereof, oxides thereof, One or two or more selected from the group consisting of organic substances may be included. The intermediate layer may be a plurality of layers.
Further, for example, the intermediate layer is a single metal layer composed of one kind of element selected from the element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn from the carrier side. Or forming an alloy layer composed of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, A layer made of a hydrate or oxide of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn. It can comprise by forming.
When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier. When the intermediate layer is provided by chromate treatment, zinc chromate treatment, or plating treatment, it is considered that some of the attached metal such as chromium and zinc may be hydrates or oxides.
Further, for example, the intermediate layer can be configured by laminating nickel, a nickel-phosphorus alloy or a nickel-cobalt alloy, and chromium in this order on a carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer. Adhesion amount of nickel in the intermediate layer is preferably 100 [mu] g / dm 2 or more 40000μg / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 4000μg / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 2500 g / dm 2 or less, more Preferably, it is 100 μg / dm 2 or more and less than 1000 μg / dm 2 , and the amount of chromium deposited on the intermediate layer is preferably 5 μg / dm 2 or more and 100 μg / dm 2 or less. When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier.

<極薄銅層>
中間層の上には極薄銅層を設ける。中間層と極薄銅層との間には他の層を設けてもよい。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5〜12μmであり、より典型的には1〜5μm、更に典型的には1.5〜5μm、更に典型的には2〜5μmである。なお、キャリアの両面に極薄銅層を設けてもよい。
<Ultrathin copper layer>
An ultrathin copper layer is provided on the intermediate layer. Another layer may be provided between the intermediate layer and the ultrathin copper layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. It is typically 0.5 to 12 μm, more typically 1 to 5 μm, more typically 1.5 to 5 μm, and more typically 2 to 5 μm. In addition, you may provide an ultra-thin copper layer on both surfaces of a carrier.

本発明のキャリア付銅箔を用いて積層体(銅張積層体等)を作製することができる。当該積層体としては、例えば、「極薄銅層/中間層/キャリア/樹脂又はプリプレグ」の順に積層された構成であってもよく、「キャリア/中間層/極薄銅層/樹脂又はプリプレグ」の順に積層された構成であってもよく、「極薄銅層/中間層/キャリア/樹脂又はプリプレグ/キャリア/中間層/極薄銅層」の順に積層された構成であってもよく、「キャリア/中間層/極薄銅層/樹脂又はプリプレグ/極薄銅層/中間層/キャリア」の順に積層された構成であってもよく、「キャリア/中間層/極薄銅層/樹脂又はプリプレグ/キャリア/中間層/極薄銅層」の順に積層された構成であってもよい。前記樹脂又はプリプレグは後述する樹脂層であってもよく、後述する樹脂層に用いる樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでもよい。なお、キャリア付銅箔は平面視したときに樹脂又はプリプレグより小さくてもよい。   A laminated body (a copper clad laminated body etc.) can be produced using the copper foil with a carrier of the present invention. For example, the laminate may have a structure in which “ultra-thin copper layer / intermediate layer / carrier / resin or prepreg” is laminated in this order, and “carrier / intermediate layer / ultra-thin copper layer / resin or prepreg”. It may be a configuration laminated in this order, or may be a configuration laminated in the order of "ultra thin copper layer / intermediate layer / carrier / resin or prepreg / carrier / intermediate layer / ultra thin copper layer" The structure may be laminated in the order of “carrier / intermediate layer / ultra thin copper layer / resin or prepreg / ultra thin copper layer / intermediate layer / carrier”, “carrier / intermediate layer / ultra thin copper layer / resin or prepreg”. The configuration may be such that “/ carrier / intermediate layer / ultra-thin copper layer” is laminated in this order. The resin or prepreg may be a resin layer which will be described later. A resin, a resin curing agent, a compound, a curing accelerator, a dielectric, a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeleton material, and the like used for the resin layer which will be described later. May be included. The carrier-attached copper foil may be smaller than the resin or prepreg when viewed in plan.

<粗化処理およびその他の表面処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層または防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ複数の層で形成されてもよい(例えば2層以上、3層以上など)。
<Roughening treatment and other surface treatment>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing one or more of them. It may be. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface thereof may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed from nickel, cobalt, copper, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, 2 layers or more, 3 layers or more, etc.).

例えば、粗化処理としての銅−コバルト−ニッケル合金めっきは、電解めっきにより、付着量が15〜40mg/dm2の銅−100〜3000μg/dm2のコバルト−100〜1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000〜2500μg/dm2であり、好ましいニッケル付着量は500〜1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。 For example, copper as a roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, deposition amount in the nickel-cobalt -100~1500μg / dm 2 of copper -100~3000μg / dm 2 of 15~40mg / dm 2 Such a ternary alloy layer can be formed. If the amount of deposited Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.

このような3元系銅−コバルト−ニッケル合金めっきを形成するための一般的浴及びめっき条件の一例は次の通りである:
めっき浴組成:Cu10〜20g/L、Co1〜10g/L、Ni1〜10g/L
pH:1〜4
温度:30〜50℃
電流密度Dk:20〜30A/dm2
めっき時間:1〜5秒
An example of a general bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1-4
Temperature: 30-50 ° C
Current density D k : 20 to 30 A / dm 2
Plating time: 1-5 seconds

このようにして、キャリアと、キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がして銅張積層板とし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。   In this manner, a carrier-attached copper foil including a carrier, an intermediate layer laminated on the carrier, and an ultrathin copper layer laminated on the intermediate layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern.

また、キャリア付銅箔は、極薄銅層上に粗化処理層を備えても良く、粗化処理層上に、耐熱層、防錆層、クロメート処理層およびシランカップリング処理層からなる群のから選択された層を一つ以上備えても良い。
また、極薄銅層上に粗化処理層を備えても良く、粗化処理層上に、耐熱層、防錆層を備えてもよく、耐熱層、防錆層上にクロメート処理層を備えてもよく、クロメート処理層上にシランカップリング処理層を備えても良い。
また、キャリア付銅箔は極薄銅層上、あるいは粗化処理層上、あるいは耐熱層、防錆層、あるいはクロメート処理層、あるいはシランカップリング処理層の上に樹脂層を備えても良い。樹脂層は絶縁樹脂層であってもよい。
Moreover, the copper foil with a carrier may be provided with a roughening treatment layer on an ultrathin copper layer, and the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the roughening treatment layer. One or more layers selected from the above may be provided.
In addition, a roughened layer may be provided on the ultrathin copper layer, a heat-resistant layer and a rust-proof layer may be provided on the roughened layer, and a chromate-treated layer may be provided on the heat-resistant layer and the rust-proof layer. Alternatively, a silane coupling treatment layer may be provided on the chromate treatment layer.
The carrier-attached copper foil may be provided with a resin layer on an ultrathin copper layer, a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, or a silane coupling-treated layer. The resin layer may be an insulating resin layer.

前記樹脂層は接着剤であってもよく、接着用樹脂であってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。   The resin layer may be an adhesive, an adhesive resin, or an insulating resin layer in a semi-cured state (B stage state) for adhesion. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.

また前記樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記樹脂層は熱可塑性樹脂を含んでもよい。その種類は格別限定されるものではないが、例えば、エポキシ樹脂,ポリイミド樹脂,多官能性シアン酸エステル化合物、マレイミド化合物、ポリビニルアセタール樹脂、ウレタン樹脂、ポリエーテルサルホン、ポリエーテルスルホン樹脂、芳香族ポリアミド樹脂、ポリアミドイミド樹脂、ゴム変成エポキシ樹脂、フェノキシ樹脂、カルボキシル基変性アクリロニトリル−ブタジエン樹脂、ポリフェニレンオキサイド、ビスマレイミドトリアジン樹脂、熱硬化性ポリフェニレンオキサイド樹脂、シアネートエステル系樹脂、多価カルボン酸の無水物、液晶ポリマー、フッ素樹脂などを含む樹脂またはプリプレグを好適なものとしてあげることができる。   The resin layer may contain a thermosetting resin or may be a thermoplastic resin. The resin layer may include a thermoplastic resin. The type is not particularly limited. For example, epoxy resin, polyimide resin, polyfunctional cyanate compound, maleimide compound, polyvinyl acetal resin, urethane resin, polyethersulfone, polyethersulfone resin, aromatic Polyamide resin, polyamideimide resin, rubber-modified epoxy resin, phenoxy resin, carboxyl group-modified acrylonitrile-butadiene resin, polyphenylene oxide, bismaleimide triazine resin, thermosetting polyphenylene oxide resin, cyanate ester resin, polyhydric carboxylic acid anhydride A resin or prepreg containing a liquid crystal polymer, a fluororesin, or the like can be mentioned as a preferable one.

前記樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体(無機化合物及び/または有機化合物を含む誘電体、金属酸化物を含む誘電体等どのような誘電体を用いてもよい)、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記樹脂層は例えば国際公開番号WO2008/004399、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11−5828号、特開平11−140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000−43188号、特許第3612594号、特開2002−179772号、特開2002−359444号、特開2003−304068号、特許第3992225号、特開2003−249739号、特許第4136509号、特開2004−82687号、特許第4025177号、特開2004−349654号、特許第4286060号、特開2005−262506号、特許第4570070号、特開2005−53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006−257153号、特開2007−326923号、特開2008−111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009−67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009−173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011−14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013−19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。   The resin layer may be made of any known dielectric such as a known resin, resin curing agent, compound, curing accelerator, dielectric (dielectric including an inorganic compound and / or organic compound, dielectric including a metal oxide). May be included), a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeleton material, and the like. The resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Laid-Open No. 2002-179772, Japanese Patent Laid-Open No. 2002-359444, Japanese Patent Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Laid-Open No. 2003 No. 249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, Japanese Patent Application Laid-Open No. No. 5-53218, Japanese Patent No. 3949676, Japanese Patent No. 4178415, International Publication No. WO2004 / 005588, Japanese Patent Laid-Open No. 2006-257153, Japanese Patent Laid-Open No. 2007-326923, Japanese Patent Laid-Open No. 2008-111169, Japanese Patent No. 5024930, International Publication No. WO2006 / 028207, Japanese Patent No. 4828427, JP 2009-67029, International Publication No. WO 2006/134868, Japanese Patent No. 5046927, JP 2009-173017, International Publication No. WO 2007/105635, Patent No. 5180815, International Publication Number WO2008 / 114858, International Publication Number WO2009 / 008471, Japanese Patent Application Laid-Open No. 2011-14727, International Publication Number WO2009 / 001850, International Publication Number WO2009 / 145179, International Publication Number Nos. WO2011 / 068157, JP-A-2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.

これらの樹脂を例えばメチルエチルケトン(MEK),トルエンなどの溶剤に溶解して樹脂液とし、これを前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート皮膜層、あるいは前記シランカップリング剤層の上に、例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100〜250℃、好ましくは130〜200℃であればよい。   These resins are dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to obtain a resin solution, which is used on the ultrathin copper layer, the heat-resistant layer, the rust-proof layer, the chromate film layer, or the silane cup. On the ring agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary to remove the solvent to obtain a B-stage state. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C, preferably 130 to 200 ° C.

前記樹脂層を備えたキャリア付銅箔(樹脂付きキャリア付銅箔)は、その樹脂層を基材に重ね合わせたのち全体を熱圧着して該樹脂層を熱硬化せしめ、ついでキャリヤを剥離して極薄銅層を表出せしめ(当然に表出するのは該極薄銅層の中間層側の表面である)、そこに所定の配線パターンを形成するという態様で使用される。   The copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompressed to thermally cure the resin layer, and then the carrier is peeled off. Thus, the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.

この樹脂付きキャリア付銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張り積層板を製造することができる。またこのとき、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。   If this resin-attached copper foil with a carrier is used, the number of prepreg materials used when manufacturing a multilayer printed wiring board can be reduced. In addition, the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.

なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。
この樹脂層の厚みは0.1〜80μmであることが好ましい。
In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.
The thickness of this resin layer is preferably 0.1 to 80 μm.

樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付きキャリア付銅箔を内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。   When the thickness of the resin layer is less than 0.1 μm, the adhesive strength is reduced, and when this copper foil with a carrier with a resin is laminated on a base material provided with an inner layer material without interposing a prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.

一方、樹脂層の厚みを80μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる。更には、形成された樹脂層はその可撓性が劣るので、ハンドリング時にクラックなどが発生しやすくなり、また内層材との熱圧着時に過剰な樹脂流れが起こって円滑な積層が困難になる場合がある。   On the other hand, if the thickness of the resin layer is greater than 80 μm, it is difficult to form a resin layer having a target thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours. Furthermore, since the formed resin layer is inferior in flexibility, cracks are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. There is.

更に、この樹脂付きキャリア付銅箔のもう一つの製品形態としては、前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング処理層の上に樹脂層で被覆し、半硬化状態とした後、ついでキャリアを剥離して、キャリアが存在しない樹脂付き銅箔の形で製造することも可能である。   Furthermore, as another product form of this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer After coating with a resin layer and making it into a semi-cured state, the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.

更に、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。本発明において、「プリント配線板」にはこのように電子部品類が搭載されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。
また、当該プリント配線板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。以下に、本発明に係るキャリア付銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted as described above.
In addition, an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a print on which the electronic components are mounted. An electronic device may be manufactured using a substrate. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.

本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。   In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.

本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。   In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.

従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Performing a desmear process on the region including the through hole or / and the blind via,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。   In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.

従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electrolytic plating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.

モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。   In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.

従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.

本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。   In the present invention, the subtractive method refers to a method of forming a conductor pattern by selectively removing unnecessary portions of a copper foil on a copper clad laminate by etching or the like.

従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されいない前記無電解めっき層の表面に電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。   The process of providing a through hole or / and a blind via and the subsequent desmear process may not be performed.

本発明のプリント配線板の製造方法は、本発明のキャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に回路を形成する工程、前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に樹脂層を形成する工程、前記樹脂層上に回路を形成する工程、前記樹脂層上に回路を形成した後に、前記キャリア又は前記極薄銅層を剥離させる工程、及び、前記キャリア又は前記極薄銅層を剥離させた後に、前記極薄銅層又は前記キャリアを除去することで、前記極薄銅層側表面又は前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程を含んでもよい。また、プリント配線板の製造方法は、本発明のキャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に回路を形成する工程、前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に樹脂層を形成する工程、前記キャリア又は前記極薄銅層を剥離させる工程、及び、前記キャリア又は前記極薄銅層を剥離させた後に、前記極薄銅層又は前記キャリアを除去することで、前記極薄銅層側表面又は前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程を含んでもよい。   The method for producing a printed wiring board of the present invention includes a step of forming a circuit on the surface of the ultrathin copper layer or the surface of the carrier of the copper foil with a carrier of the present invention, and the copper foil with a carrier so that the circuit is buried. A step of forming a resin layer on the surface of the ultrathin copper layer or the surface of the carrier, a step of forming a circuit on the resin layer, a circuit on the resin layer, the carrier or the ultrathin copper Forming the layer on the surface of the ultrathin copper layer or the carrier side by removing the ultrathin copper layer or the carrier after peeling the carrier or the ultrathin copper layer. The step of exposing the circuit buried in the resin layer may be included. Moreover, the manufacturing method of a printed wiring board is the process of forming a circuit in the said ultra-thin copper layer side surface or the said carrier side surface of the copper foil with a carrier of this invention, The said copper foil with a carrier so that the said circuit may be embedded. After forming the resin layer on the ultrathin copper layer side surface or the carrier side surface, peeling the carrier or the ultrathin copper layer, and peeling the carrier or the ultrathin copper layer, You may include the process of exposing the circuit embedded in the said resin layer formed in the said ultra-thin copper layer side surface or the said carrier side surface by removing an ultra-thin copper layer or the said carrier.

ここで、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例を図面を用いて詳細に説明する。なお、ここでは粗化処理層が形成された極薄銅層を有するキャリア付銅箔を例に説明するが、これに限られず、粗化処理層が形成されていない極薄銅層を有するキャリア付銅箔を用いても同様に下記のプリント配線板の製造方法を行うことができる。
まず、図1−Aに示すように、表面に粗化処理層が形成された極薄銅層を有するキャリア付銅箔(1層目)を準備する。なお、当該工程で表面に粗化処理層が形成されたキャリアを有するキャリア付銅箔(1層目)を準備してもよい。
次に、図1−Bに示すように、極薄銅層の粗化処理層上にレジストを塗布し、露光・現像を行い、レジストを所定の形状にエッチングする。なお、当該工程でキャリアの粗化処理層上にレジストを塗布し、露光・現像を行い、レジストを所定の形状にエッチングしてもよい。
次に、図1−Cに示すように、回路用のめっきを形成した後、レジストを除去することで、所定の形状の回路めっきを形成する。
次に、図2−Dに示すように、回路めっきを覆うように(回路めっきが埋没するように)極薄銅層上に埋め込み樹脂を設けて樹脂層を積層し、続いて別のキャリア付銅箔(2層目)を極薄銅層側から接着させる。なお、当該工程で回路メッキを覆うように(回路メッキが埋没するように)キャリア上に埋め込み樹脂を設けて樹脂層を積層し、続いて別のキャリア付銅箔(2層目)をキャリア側または極薄銅層から接着させてもよい。
次に、図2−Eに示すように、2層目のキャリア付銅箔からキャリアを剥がす。なお、2層目のキャリア付銅箔をキャリア側から接着させた場合には、2層目のキャリア付銅箔から極薄銅層を剥がしてもよい。
次に、図2−Fに示すように、樹脂層の所定位置にレーザー穴あけを行い、回路めっきを露出させてブラインドビアを形成する。
次に、図3−Gに示すように、ブラインドビアに銅を埋め込みビアフィルを形成する。
次に、図3−Hに示すように、ビアフィル上に、上記図1−B及び図1−Cのようにして回路めっきを形成する。
次に、図3−Iに示すように、1層目のキャリア付銅箔からキャリアを剥がす。なお、当該工程で1層目のキャリア付銅箔から極薄銅層を剥がしてもよい。
次に、図4−Jに示すように、フラッシュエッチングにより両表面の極薄銅層(2層目に銅箔を設けた場合には銅箔、1層目の回路用のめっきをキャリアの粗化処理層上に設けた場合にはキャリア)を除去し、樹脂層内の回路めっきの表面を露出させる。
次に、図4−Kに示すように、樹脂層内の回路めっき上にバンプを形成し、当該はんだ上に銅ピラーを形成する。このようにして本発明のキャリア付銅箔を用いたプリント配線板を作製する。
Here, the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing. Here, the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example. However, the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed. The following method for producing a printed wiring board can be similarly performed using an attached copper foil.
First, as shown to FIG. 1-A, the copper foil with a carrier (1st layer) which has the ultra-thin copper layer in which the roughening process layer was formed on the surface is prepared. In addition, you may prepare copper foil with a carrier (1st layer) which has the carrier by which the roughening process layer was formed in the surface at the said process.
Next, as shown in FIG. 1-B, a resist is applied onto the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape. In this step, a resist may be applied onto the roughening layer of the carrier, exposed and developed, and etched to a predetermined shape.
Next, as shown in FIG. 1-C, after the plating for the circuit is formed, the resist is removed to form a circuit plating having a predetermined shape.
Next, as shown in FIG. 2-D, an embedding resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, followed by another carrier. A copper foil (second layer) is bonded from the ultrathin copper layer side. In addition, a resin layer is provided by laminating resin on the carrier so as to cover the circuit plating in this step (so that the circuit plating is buried), and then another carrier-attached copper foil (second layer) is placed on the carrier side. Or you may make it adhere | attach from an ultra-thin copper layer.
Next, as shown to FIG. 2-E, a carrier is peeled from the copper foil with a carrier of the 2nd layer. When the second-layer copper foil with carrier is bonded from the carrier side, the ultrathin copper layer may be peeled off from the second-layer copper foil with carrier.
Next, as shown in FIG. 2-F, laser drilling is performed at a predetermined position of the resin layer to expose the circuit plating and form a blind via.
Next, as shown in FIG. 3G, copper is embedded in the blind via to form a via fill.
Next, as shown in FIG. 3H, circuit plating is formed on the via fill as shown in FIGS. 1-B and 1-C.
Next, as shown to FIG. 3-I, a carrier is peeled from the copper foil with a carrier of the 1st layer. In addition, you may peel an ultra-thin copper layer from the copper foil with a 1st layer at the said process.
Next, as shown in FIG. 4-J, ultrathin copper layers on both surfaces by flash etching (in the case where a copper foil is provided as the second layer, the copper foil, the plating for the first layer is applied to the rough surface of the carrier). When provided on the chemical treatment layer, the carrier) is removed to expose the surface of the circuit plating in the resin layer.
Next, as shown in FIG. 4K, bumps are formed on the circuit plating in the resin layer, and copper pillars are formed on the solder. Thus, the printed wiring board using the copper foil with a carrier of this invention is produced.

上記別のキャリア付銅箔(2層目)は、本発明のキャリア付銅箔を用いてもよく、従来のキャリア付銅箔を用いてもよく、さらに通常の銅箔を用いてもよい。また、図3−Hに示される2層目の回路上に、さらに回路を1層或いは複数層形成してもよく、それらの回路形成をセミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行ってもよい。   As the another copper foil with a carrier (second layer), the copper foil with a carrier of the present invention may be used, a conventional copper foil with a carrier may be used, and a normal copper foil may be further used. Further, one or more circuits may be formed on the second layer circuit shown in FIG. 3H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.

上述のようなプリント配線板の製造方法によれば、回路めっきが樹脂層に埋め込まれた構成となっているため、例えば図4−Jに示すようなフラッシュエッチングによる極薄銅層の除去の際に、回路めっきが樹脂層によって保護され、その形状が保たれ、これにより微細回路の形成が容易となる。また、回路めっきが樹脂層によって保護されるため、耐マイグレーション性が向上し、回路の配線の導通が良好に抑制される。このため、微細回路の形成が容易となる。また、図4−J及び図4−Kに示すようにフラッシュエッチングによって極薄銅層を除去したとき、回路めっきの露出面が樹脂層から凹んだ形状となるため、当該回路めっき上にバンプが、さらにその上に銅ピラーがそれぞれ形成しやすくなり、製造効率が向上する。   According to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, for example, when removing the ultrathin copper layer by flash etching as shown in FIG. In addition, the circuit plating is protected by the resin layer, and the shape thereof is maintained, thereby facilitating the formation of a fine circuit. Further, since the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 4-J and 4-K, when the ultra-thin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.

なお、埋め込み樹脂(レジン)には公知の樹脂、プリプレグを用いることができる。例えば、BT(ビスマレイミドトリアジン)レジンやBTレジンを含浸させたガラス布であるプリプレグ、味の素ファインテクノ株式会社製ABFフィルムやABFを用いることができる。また、前記埋め込み樹脂(レジン)には本明細書に記載の樹脂層および/または樹脂および/またはプリプレグを使用することができる。   A known resin or prepreg can be used as the embedding resin (resin). For example, a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used. Moreover, the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).

また、前記一層目に用いられるキャリア付銅箔は、当該キャリア付銅箔の表面に基板または樹脂層を有してもよい。当該基板または樹脂層を有することで一層目に用いられるキャリア付銅箔は支持され、しわが入りにくくなるため、生産性が向上するという利点がある。なお、前記基板または樹脂層には、前記一層目に用いられるキャリア付銅箔を支持する効果するものであれば、全ての基板または樹脂層を用いることが出来る。例えば前記基板または樹脂層として本願明細書に記載のキャリア、プリプレグ、樹脂層や公知のキャリア、プリプレグ、樹脂層、金属板、金属箔、無機化合物の板、無機化合物の箔、有機化合物の板、有機化合物の箔を用いることができる。   Moreover, the copper foil with a carrier used for the first layer may have a substrate or a resin layer on the surface of the copper foil with a carrier. By having the said board | substrate or resin layer, the copper foil with a carrier used for the first layer is supported, and since it becomes difficult to wrinkle, there exists an advantage that productivity improves. As the substrate or resin layer, any substrate or resin layer can be used as long as it has an effect of supporting the carrier-attached copper foil used in the first layer. For example, as the substrate or resin layer, the carrier, prepreg, resin layer and known carrier, prepreg, resin layer, metal plate, metal foil, inorganic compound plate, inorganic compound foil, organic compound plate described in the present specification, Organic compound foils can be used.

更に、本発明のプリント配線板に電子部品類を搭載することで、プリント回路板が完成する。本発明において、「プリント配線板」にはこのように電子部品類が搭載されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。
また、当該プリント配線板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。
Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board of the present invention. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted as described above.
In addition, an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a print on which the electronic components are mounted. An electronic device may be manufactured using a substrate.

また、本発明のプリント配線板の製造方法は、本発明のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面と樹脂基板とを積層する工程、前記樹脂基板と積層した極薄銅層側表面または前記キャリア側表面とは反対側のキャリア付銅箔の表面に、樹脂層と回路との2層を、少なくとも1回設ける工程、及び、前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアまたは前記極薄銅層を剥離させる工程を含むプリント配線板の製造方法(コアレス工法)であってもよい。当該コアレス工法について、具体的な例としては、まず、本発明のキャリア付銅箔の極薄銅層側表面またはキャリア側表面と樹脂基板とを積層する。その後、樹脂基板と積層した極薄銅層側表面または前記キャリア側表面とは反対側のキャリア付銅箔の表面に樹脂層を形成する。キャリア側表面又は極薄銅層側表面に形成した樹脂層には、さらに別のキャリア付銅箔をキャリア側又は極薄銅層側から積層してもよい。この場合、樹脂基板を中心として当該樹脂基板の両表面側に、キャリア/中間層/極薄銅層の順あるいは極薄銅層/中間層/キャリアの順でキャリア付銅箔が積層された構成となっている。両端の極薄銅層あるいはキャリアの露出した表面には、別の樹脂層を設け、さらに銅層又は金属層を設けた後、当該銅層又は金属層を加工することで回路を形成してもよい。さらに、別の樹脂層を当該回路上に、当該回路を埋め込むように設けても良い。また、このような回路及び樹脂層の形成を1回以上行ってもよい(ビルドアップ工法)。そして、このようにして形成した積層体(以下、積層体Bとも言う)について、それぞれのキャリア付銅箔の極薄銅層またはキャリアをキャリアまたは極薄銅層から剥離させてコアレス基板を作製することができる。なお、前述のコアレス基板の作製には、2つのキャリア付銅箔を用いて、後述する極薄銅層/中間層/キャリア/キャリア/中間層/極薄銅層の構成を有する積層体や、キャリア/中間層/極薄銅層/極薄銅層/中間層/キャリアの構成を有する積層体や、キャリア/中間層/極薄銅層/キャリア/中間層/極薄銅層の構成を有する積層体を作製し、当該積層体を中心に用いることもできる。これら積層体(以下、積層体Aとも言う)の両側の極薄銅層またはキャリアの表面に樹脂層及び回路の2層を1回以上設け、樹脂層及び回路の2層を1回以上設けた後に、それぞれのキャリア付銅箔の極薄銅層またはキャリアをキャリアまたは極薄銅層から剥離させてコアレス基板を作製することができる。前述の積層体は、極薄銅層の表面、キャリアの表面、キャリアとキャリアとの間、極薄銅層と極薄銅層との間、極薄銅層とキャリアとの間には他の層を有してもよい。なお、本明細書において「極薄銅層の表面」、「極薄銅層側表面」、「極薄銅層表面」、「キャリアの表面」、「キャリア側表面」、「キャリア表面」、「積層体の表面」、「積層体表面」は、極薄銅層、キャリア、積層体が、極薄銅層表面、キャリア表面、積層体表面に他の層を有する場合には、当該他の層の表面(最表面)を含む概念とする。また、積層体は極薄銅層/中間層/キャリア/キャリア/中間層/極薄銅層の構成を有することが好ましい。当該積層体を用いてコアレス基板を作製した際、コアレス基板側に極薄銅層が配置されるため、モディファイドセミアディティブ法を用いてコアレス基板上に回路を形成しやすくなるためである。また、極薄銅層の厚みは薄いため、当該極薄銅層の除去がしやすく、極薄銅層の除去後にセミアディティブ法を用いて、コアレス基板上に回路を形成しやすくなるためである。
なお、本明細書において、「積層体A」または「積層体B」と特に記載していない「積層体」は、少なくとも積層体A及び積層体Bを含む積層体を示す。
Further, the method for producing a printed wiring board of the present invention includes a step of laminating the ultrathin copper layer side surface or the carrier side surface of the copper foil with a carrier of the present invention and a resin substrate, and an ultrathin layer laminated with the resin substrate. A step of providing at least once a resin layer and a circuit on the surface of the copper layer with carrier on the opposite side of the copper layer side surface or the carrier side surface, and forming two layers of the resin layer and the circuit Then, a printed wiring board manufacturing method (coreless method) including a step of peeling the carrier or the ultra-thin copper layer from the copper foil with carrier may be used. As a specific example of the coreless construction method, first, the ultrathin copper layer side surface or carrier side surface of the copper foil with carrier of the present invention and a resin substrate are laminated. Thereafter, a resin layer is formed on the surface of the ultrathin copper layer side surface laminated with the resin substrate or the surface of the carrier-attached copper foil opposite to the carrier side surface. You may laminate | stack another copper foil with a carrier from the carrier side or the ultra-thin copper layer side to the resin layer formed in the carrier side surface or the ultra-thin copper layer side surface. In this case, a copper foil with a carrier is laminated in the order of carrier / intermediate layer / ultra-thin copper layer or ultra-thin copper layer / intermediate layer / carrier in this order on both surface sides of the resin substrate with the resin substrate as the center It has become. Even if an ultrathin copper layer on both ends or the exposed surface of the carrier is provided with another resin layer, and further provided with a copper layer or metal layer, a circuit may be formed by processing the copper layer or metal layer. Good. Further, another resin layer may be provided on the circuit so as to embed the circuit. Further, such a circuit and a resin layer may be formed one or more times (build-up method). And about the laminated body formed in this way (henceforth the laminated body B), a coreless board | substrate is produced by peeling the ultra-thin copper layer or carrier of each copper foil with a carrier from a carrier or an ultra-thin copper layer. be able to. In addition, for the production of the coreless substrate described above, a laminate having a configuration of an ultrathin copper layer / intermediate layer / carrier / carrier / intermediate layer / ultra thin copper layer, which will be described later, using two copper foils with a carrier, Laminate having a structure of carrier / intermediate layer / ultra thin copper layer / ultra thin copper layer / intermediate layer / carrier, or a structure of carrier / intermediate layer / ultra thin copper layer / carrier / intermediate layer / ultra thin copper layer It is also possible to produce a laminated body and use the laminated body as a center. Two layers of the resin layer and the circuit are provided at least once on the surface of the ultra-thin copper layer or carrier on both sides of these laminates (hereinafter also referred to as the laminate A), and the two layers of the resin layer and the circuit are provided at least once. Later, the coreless substrate can be manufactured by peeling off the ultrathin copper layer or carrier of each copper foil with carrier from the carrier or the ultrathin copper layer. The above-mentioned laminated body has other surfaces between the surface of the ultrathin copper layer, the surface of the carrier, between the carrier, between the ultrathin copper layer and the ultrathin copper layer, and between the ultrathin copper layer and the carrier. You may have a layer. In this specification, “surface of ultrathin copper layer”, “surface of ultrathin copper layer side”, “surface of ultrathin copper layer”, “surface of carrier”, “surface of carrier side”, “carrier surface”, “ "Surface of laminated body" and "laminated body surface" means an ultrathin copper layer, a carrier, and a laminated body, if the ultrathin copper layer surface, carrier surface, and laminated body surface have other layers, the other layer The concept includes the surface (outermost surface). Moreover, it is preferable that a laminated body has the structure of an ultra-thin copper layer / intermediate layer / carrier / carrier / intermediate layer / ultra-thin copper layer. This is because, when a coreless substrate is manufactured using the laminate, an ultrathin copper layer is disposed on the coreless substrate side, so that a circuit can be easily formed on the coreless substrate using the modified semi-additive method. In addition, since the thickness of the ultrathin copper layer is thin, it is easy to remove the ultrathin copper layer, and it becomes easier to form a circuit on the coreless substrate using the semi-additive method after the ultrathin copper layer is removed. .
In this specification, “laminate” not specifically described as “laminate A” or “laminate B” indicates a laminate including at least laminate A and laminate B.

なお、上述のコアレス基板の製造方法において、キャリア付銅箔または積層体(積層体A)の端面の一部または全部を樹脂で覆うことにより、ビルドアップ工法でプリント配線板を製造する際に、中間層または積層体を構成する1つのキャリア付銅箔ともう1つのキャリア付銅箔の間の薬液の染み込みを防止することができ、薬液の染み込みによる極薄銅層とキャリアの分離やキャリア付銅箔の腐食を防止することができ、歩留りを向上させることができる。ここで用いる「キャリア付銅箔の端面の一部または全部を覆う樹脂」または「積層体の端面の一部または全部を覆う樹脂」としては、樹脂層に用いることができる樹脂を使用することができる。また、上述のコアレス基板の製造方法において、キャリア付銅箔または積層体において平面視したときにキャリア付銅箔または積層体の積層部分(キャリアと極薄銅層との積層部分、または、1つのキャリア付銅箔ともう1つのキャリア付銅箔との積層部分)の外周の少なくとも一部が樹脂又はプリプレグで覆ってもよい。また、上述のコアレス基板の製造方法で形成する積層体(積層体A)は、一対のキャリア付銅箔を互いに分離可能に接触させて構成されていてもよい。また、当該キャリア付銅箔において平面視したときにキャリア付銅箔または積層体の積層部分(キャリアと極薄銅層との積層部分、または、1つのキャリア付銅箔ともう1つのキャリア付銅箔との積層部分)の外周の全体にわたって樹脂又はプリプレグで覆われてなるものであってもよい。このような構成とすることにより、キャリア付銅箔または積層体を平面視したときに、キャリア付銅箔または積層体の積層部分が樹脂又はプリプレグにより覆われ、他の部材がこの部分の側方向、すなわち積層方向に対して横からの方向から当たることを防ぐことができるようになり、結果としてハンドリング中のキャリアと極薄銅層またはキャリア付銅箔同士の剥がれを少なくすることができる。また、キャリア付銅箔または積層体の積層部分の外周を露出しないように樹脂又はプリプレグで覆うことにより、前述したような薬液処理工程におけるこの積層部分の界面への薬液の浸入を防ぐことができ、キャリア付銅箔の腐食や侵食を防ぐことができる。なお、積層体の一対のキャリア付銅箔から一つのキャリア付銅箔を分離する際、またはキャリア付銅箔のキャリアと銅箔(極薄銅層)を分離する際には、樹脂又はプリプレグで覆われているキャリア付銅箔又は積層体の積層部分(キャリアと極薄銅層との積層部分、または、1つのキャリア付銅箔ともう1つのキャリア付銅箔との積層部分)を切断等により除去する必要がある。   In the above-described coreless substrate manufacturing method, by covering part or all of the end face of the copper foil with carrier or the laminate (laminate A) with a resin, when producing a printed wiring board by the build-up method, Infiltration of the chemical solution between one copper foil with a carrier and another copper foil with a carrier constituting the intermediate layer or laminate can be prevented, and the ultra-thin copper layer and the carrier are separated or impregnated with the chemical solution. Corrosion of the copper foil can be prevented and the yield can be improved. As the “resin that covers part or all of the end face of the copper foil with carrier” or “resin that covers part or all of the end face of the laminate” used herein, a resin that can be used for the resin layer may be used. it can. Further, in the above-described coreless substrate manufacturing method, the carrier-attached copper foil or laminate when viewed in plan, the carrier-attached copper foil or laminate portion (a laminate portion of the carrier and the ultrathin copper layer, or one At least a part of the outer periphery of the laminated copper foil with carrier and another copper foil with carrier may be covered with resin or prepreg. Moreover, the laminated body (laminated body A) formed with the manufacturing method of the above-mentioned coreless board | substrate may be comprised by making a pair of copper foil with a carrier contact each other so that isolation | separation is possible. Further, when viewed in plan in the copper foil with carrier, the copper foil with carrier or the laminated portion of the laminated body (the laminated portion of the carrier and the ultrathin copper layer, or one copper foil with carrier and another copper with carrier) It may be formed by being covered with a resin or a prepreg over the entire outer periphery of the laminated portion with the foil. By adopting such a configuration, when the copper foil with a carrier or a laminate is viewed in plan, the laminated portion of the copper foil with a carrier or the laminate is covered with a resin or prepreg, and other members are in the lateral direction of this portion. That is, it becomes possible to prevent the stacking direction from being hit from the side, and as a result, peeling of the carrier during handling and the ultrathin copper layer or the copper foil with carrier can be reduced. Moreover, by covering the outer periphery of the copper foil with a carrier or the laminated part with a resin or prepreg so as not to be exposed, it is possible to prevent the chemical solution from entering the interface of the laminated part in the chemical treatment process as described above. , Corrosion and erosion of the copper foil with carrier can be prevented. When separating a single copper foil with a carrier from a pair of copper foils with a carrier, or when separating a carrier of a copper foil with a carrier and a copper foil (ultra-thin copper layer), a resin or prepreg is used. Cutting a covered copper foil with a carrier or a laminated part of a laminated body (a laminated part of a carrier and an ultrathin copper layer or a laminated part of one copper foil with a carrier and another copper foil with a carrier), etc. Need to be removed.

本発明のキャリア付銅箔をキャリア側又は極薄銅層側から、もう一つの本発明のキャリア付銅箔のキャリア側または極薄銅層側に積層して積層体を構成してもよい。また、前記一つのキャリア付銅箔の前記キャリア側表面又は前記極薄銅層側表面と前記もう一つのキャリア付銅箔の前記キャリア側表面又は前記極薄銅層側表面とが、必要に応じて接着剤を介して、直接積層させて得られた積層体であってもよい。また、前記一つのキャリア付銅箔のキャリア又は極薄銅層と、前記もう一つのキャリア付銅箔のキャリア又は極薄銅層とが接合されていてもよい。ここで、当該「接合」は、キャリア又は極薄銅層が表面処理層を有する場合は、当該表面処理層を介して互いに接合されている態様も含む。また、当該積層体の端面の一部または全部が樹脂により覆われていてもよい。   The copper foil with a carrier of the present invention may be laminated from the carrier side or the ultrathin copper layer side to the carrier side or the ultrathin copper layer side of another copper foil with a carrier of the present invention. Moreover, the said carrier side surface or said ultra-thin copper layer side surface of said one copper foil with a carrier and the said carrier side surface or said ultra-thin copper layer side surface of said another copper foil with a carrier are as needed. Alternatively, a laminate obtained by directly laminating through an adhesive may be used. Further, the carrier or ultrathin copper layer of the one copper foil with carrier and the carrier or ultrathin copper layer of the other copper foil with carrier may be joined. Here, in the case where the carrier or the ultrathin copper layer has a surface treatment layer, the “joining” includes a mode in which the carriers or the ultrathin copper layer are joined to each other via the surface treatment layer. Further, part or all of the end face of the laminate may be covered with resin.

キャリア同士の積層は、単に重ね合わせる他、例えば以下の方法で行うことができる。
(a)冶金的接合方法:融接(アーク溶接、TIG(タングステン・イナート・ガス)溶接、MIG(メタル・イナート・ガス)溶接、抵抗溶接、シーム溶接、スポット溶接)、圧接(超音波溶接、摩擦撹拌溶接)、ろう接;
(b)機械的接合方法:かしめ、リベットによる接合(セルフピアッシングリベットによる接合、リベットによる接合)、ステッチャー;
(c)物理的接合方法:接着剤、(両面)粘着テープ
Lamination of carriers can be performed by, for example, the following method, in addition to simply overlapping.
(A) Metallurgical joining method: fusion welding (arc welding, TIG (tungsten inert gas) welding, MIG (metal inert gas) welding, resistance welding, seam welding, spot welding), pressure welding (ultrasonic welding, Friction stir welding), brazing;
(B) Mechanical joining method: caulking, joining with rivets (joining with self-piercing rivets, joining with rivets), stitcher;
(C) Physical joining method: adhesive, (double-sided) adhesive tape

一方のキャリアの一部または全部と他方のキャリアの一部または全部とを、上記接合方法を用いて接合することにより、一方のキャリアと他方のキャリアを積層し、キャリア同士を分離可能に接触させて構成される積層体を製造することができる。一方のキャリアと他方のキャリアとが弱く接合されて、一方のキャリアと他方のキャリアとが積層されている場合には、一方のキャリアと他方のキャリアとの接合部を除去しなくても、一方のキャリアと他方のキャリアとは分離可能である。また、一方のキャリアと他方のキャリアとが強く接合されている場合には、一方のキャリアと他方のキャリアとが接合されている箇所を切断や化学研磨(エッチング等)、機械研磨等により除去することにより、一方のキャリアと他方のキャリアを分離することができる。   By joining a part or all of one carrier and a part or all of the other carrier using the joining method described above, one carrier and the other carrier are stacked, and the carriers are brought into contact with each other in a separable manner. It is possible to manufacture a laminated body configured as described above. When one carrier and the other carrier are weakly bonded and one carrier and the other carrier are laminated, one of the carriers and the other carrier can be removed without removing the bonding portion. One carrier and the other carrier can be separated. In addition, when one carrier and the other carrier are strongly bonded, the portion where one carrier and the other carrier are bonded is removed by cutting, chemical polishing (etching, etc.), mechanical polishing, or the like. Thus, one carrier and the other carrier can be separated.

また、このように構成した積層体に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、前記樹脂層及び回路の2層を少なくとも1回形成した後に、前記積層体のキャリア付銅箔から前記極薄銅層又はキャリアを剥離させる工程を実施することでプリント配線板を作製することができる。なお、当該積層体の一方または両方の表面に、樹脂層と回路との2層を設けてもよい。   Also, a step of providing at least one layer of the resin layer and the circuit on the laminate thus configured, and after forming the two layers of the resin layer and the circuit at least once, the carrier of the laminate is provided with a carrier. A printed wiring board can be produced by carrying out a process of peeling the ultrathin copper layer or carrier from the copper foil. Note that two layers of a resin layer and a circuit may be provided on one or both surfaces of the laminate.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

1.キャリア付銅箔の作製
〔キャリア〕
以下の条件にて電解銅箔を作製し、キャリアとした。表1には各電解液組成におけるニカワ濃度を示す。
(実施例のキャリア)
<電解液組成>
銅:80〜110g/L
硫酸:70〜110g/L
塩素:10〜100質量ppm
ニカワ:1〜10質量ppm(なお、ニカワ濃度が5質量ppm以上である実施例6、7、10、11については、塩素は添加しなかった。)
<製造条件>
電流密度:50〜200A/dm2
電解液温度:40〜70℃
電解液線速:3〜5m/sec
電解時間:0.5〜10分間
1. Preparation of copper foil with carrier [Carrier]
An electrolytic copper foil was produced under the following conditions and used as a carrier. Table 1 shows the glue concentration in each electrolyte composition.
(Example carrier)
<Electrolyte composition>
Copper: 80-110 g / L
Sulfuric acid: 70-110 g / L
Chlorine: 10-100 ppm by mass
Nika: 1 to 10 ppm by mass (Note that chlorine was not added in Examples 6, 7, 10, and 11 where the Nika concentration was 5 ppm by mass or more.)
<Production conditions>
Current density: 50 to 200 A / dm 2
Electrolyte temperature: 40-70 ° C
Electrolyte linear velocity: 3-5 m / sec
Electrolysis time: 0.5 to 10 minutes

(比較例のキャリア)
<電解液組成>
銅:80〜110g/L
硫酸:70〜110g/L
塩素:10〜100質量ppm
ニカワ:0.01〜0.1質量ppm
<製造条件>
電流密度:50〜200A/dm2
電解液温度:40〜70℃
電解液線速:3〜5m/sec
電解時間:0.5〜10分間
(Comparative carrier)
<Electrolyte composition>
Copper: 80-110 g / L
Sulfuric acid: 70-110 g / L
Chlorine: 10-100 ppm by mass
Nika: 0.01-0.1 mass ppm
<Production conditions>
Current density: 50 to 200 A / dm 2
Electrolyte temperature: 40-70 ° C
Electrolyte linear velocity: 3-5 m / sec
Electrolysis time: 0.5 to 10 minutes

〔中間層〕
各実施例、比較例について表1に記載の通り、以下の中間層を設けた。
表1の例えば「Ni/クロメート」はキャリアの表面に以下のNi層を設けた後に、以下のクロメート処理層を設けたことを意味する。
・「Ni」:Ni層
この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続めっきラインで電気めっきすることにより8000μg/dm2の付着量のNi層を形成した。
<電解液組成>
硫酸ニッケル:270〜280g/L
塩化ニッケル:35〜45g/L
酢酸ニッケル:10〜20g/L
クエン酸三ナトリウム:15〜25g/L
光沢剤:サッカリン、ブチンジオール等
ドデシル硫酸ナトリウム:55〜75質量ppm
pH:4〜6
浴温:55〜65℃
電流密度:7〜11A/dm2
[Middle layer]
As shown in Table 1 for each example and comparative example, the following intermediate layer was provided.
For example, “Ni / chromate” in Table 1 means that the following chromate treatment layer is provided after the following Ni layer is provided on the surface of the carrier.
“Ni”: Ni layer A Ni layer having an adhesion amount of 8000 μg / dm 2 was formed on the shiny surface of this copper foil by electroplating on a roll-to-roll-type continuous plating line under the following conditions. .
<Electrolyte composition>
Nickel sulfate: 270-280 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-25 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 55-75 mass ppm
pH: 4-6
Bath temperature: 55-65 ° C
Current density: 7 to 11 A / dm 2

水洗及び酸洗後、引き続き、ロール・トウ・ロール型の連続めっきライン上で、Ni層の上に11μg/dm2の付着量のCr層を以下の条件で電解クロメート処理することにより付着させた。
・「クロメート」:クロメート処理層
・電解クロメート処理
液組成:重クロム酸カリウム1〜10g/L
pH:7〜10
液温:40〜60℃
電流密度:0.1〜2.6A/dm2
クーロン量:0.5〜30As/dm2
・「Ni-Mo」:Ni−Mo層(ニッケルモリブデン合金メッキ)
キャリアに対して、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより3000μg/dm2の付着量のNi-Mo層を形成した。具体的なメッキ条件を以下に記す。
(液組成)硫酸Ni六水和物:50g/dm3、モリブデン酸ナトリウム二水和物:60g/dm3、クエン酸ナトリウム:90g/dm3
(液温)30℃
(電流密度)1〜4A/dm2
(通電時間)3〜25秒
・「有機物」:有機物層(有機物層形成処理)
上述のNi層の上に濃度1〜30g/Lのカルボキシベンゾトリアゾール(CBTA)を含む、液温40℃、pH5の水溶液を、20〜120秒間シャワーリングして噴霧することにより有機物層を形成した。
・「Co−Mo」:Co-Mo層(コバルトモリブデン合金メッキ)
キャリアに対して、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより4000μg/dm2の付着量のCo-Mo層を形成した。具体的なメッキ条件を以下に記す。
(液組成)硫酸Co:50g/dm3、モリブデン酸ナトリウム二水和物:60g/dm3、クエン酸ナトリウム:90g/dm3
(液温)30℃
(電流密度)1〜4A/dm2
(通電時間)3〜25秒
・「Cr」:クロム層
キャリアに対して、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより500μg/dm2の付着量のCr層を形成した。具体的なメッキ条件を以下に記す。
(液組成)CrO3: 200〜400g/L、H2SO4: 1.5〜4g/L
(pH) 1〜4
(液温) 45〜60℃
(電流密度)10〜40A/dm2
After washing with water and pickling, a Cr layer having an adhesion amount of 11 μg / dm 2 was deposited on the Ni layer by electrolytic chromate treatment under the following conditions on a roll-to-roll type continuous plating line. .
・ "Chromate": Chromate treatment layer / Electrolytic chromate treatment Liquid composition: Potassium dichromate 1-10g / L
pH: 7-10
Liquid temperature: 40-60 degreeC
Current density: 0.1-2.6 A / dm 2
Coulomb amount: 0.5-30 As / dm 2
・ "Ni-Mo": Ni-Mo layer (nickel molybdenum alloy plating)
A Ni—Mo layer having an adhesion amount of 3000 μg / dm 2 was formed on the carrier by electroplating on a roll-to-roll continuous plating line under the following conditions. Specific plating conditions are described below.
(Liquid composition) Ni sulfate sulfate hexahydrate: 50 g / dm 3 , sodium molybdate dihydrate: 60 g / dm 3 , sodium citrate: 90 g / dm 3
(Liquid temperature) 30 ° C
(Current density) 1 to 4 A / dm 2
(Energization time) 3 to 25 seconds ・ "Organic substance": Organic substance layer (Organic substance layer forming treatment)
An organic layer was formed by showering and spraying an aqueous solution having a liquid temperature of 40 ° C. and pH 5 containing carboxybenzotriazole (CBTA) at a concentration of 1 to 30 g / L on the above Ni layer for 20 to 120 seconds. .
"Co-Mo": Co-Mo layer (cobalt molybdenum alloy plating)
A Co—Mo layer having an adhesion amount of 4000 μg / dm 2 was formed on the carrier by electroplating on a roll-to-roll continuous plating line under the following conditions. Specific plating conditions are described below.
(Liquid composition) Co sulfate 50 g / dm 3 , sodium molybdate dihydrate: 60 g / dm 3 , sodium citrate: 90 g / dm 3
(Liquid temperature) 30 ° C
(Current density) 1 to 4 A / dm 2
(Energizing time) 3 to 25 sec. “Cr”: chromium layer A carrier layer of 500 μg / dm 2 is deposited by electroplating a carrier on a roll-to-roll-type continuous plating line under the following conditions. Formed. Specific plating conditions are described below.
(Liquid composition) CrO 3 : 200 to 400 g / L, H 2 SO 4 : 1.5 to 4 g / L
(PH) 1-4
(Liquid temperature) 45-60 ° C
(Current density) 10-40 A / dm 2

〔極薄銅層〕
引き続き、ロール・トウ・ロール型の連続めっきライン上で、中間層の上に厚み2〜10μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
(Ultra-thin copper layer)
Subsequently, on a roll-to-roll type continuous plating line, an ultrathin copper layer having a thickness of 2 to 10 μm was formed on the intermediate layer by electroplating under the following conditions to produce a copper foil with a carrier.
Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2

〔表面処理層〕
また、実施例2、比較例2に対しては極薄銅層表面に以下の粗化処理、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理
Cu: 10〜20g/L
Co: 1〜10g/L
Ni: 1〜10g/L
pH: 1〜4
液温: 40〜50℃
電流密度Dk : 20〜30A/dm2
時間: 1〜5秒
Cu付着量:15〜40mg/dm2
Co付着量:100〜3000μg/dm2
Ni付着量:100〜1000μg/dm2
・防錆処理
Zn:0を超え〜20g/L
Ni:0を超え〜5g/L
pH:2.5〜4.5
液温:30〜50℃
電流密度Dk :0を超え〜1.7A/dm2
時間:1秒
Zn付着量:5〜250μg/dm2
Ni付着量:5〜300μg/dm2
・クロメート処理
2Cr27
(Na2Cr27或いはCrO3):2〜10g/L
NaOH或いはKOH:10〜50g/L
ZnO或いはZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度 0.05〜5A/dm2
時間:5〜30秒
Cr付着量:10〜150μg/dm2
・シランカップリング処理
ビニルトリエトキシシラン水溶液
(ビニルトリエトキシシラン濃度:0.1〜1.4wt%)
pH:4〜5
浴温:25〜60℃
浸漬時間:5〜30秒
[Surface treatment layer]
For Example 2 and Comparative Example 2, the surface of the ultrathin copper layer was subjected to the following roughening treatment, rust prevention treatment, chromate treatment, and silane coupling treatment in this order.
・ Roughening Cu: 10 to 20 g / L
Co: 1-10 g / L
Ni: 1 to 10 g / L
pH: 1-4
Liquid temperature: 40-50 degreeC
Current density Dk: 20 to 30 A / dm 2
Time: 1-5 seconds Cu adhesion amount: 15-40 mg / dm 2
Co adhesion amount: 100 to 3000 μg / dm 2
Ni adhesion amount: 100 to 1000 μg / dm 2
・ Rust prevention treatment Zn: over 0 to 20 g / L
Ni: more than 0 to 5 g / L
pH: 2.5-4.5
Liquid temperature: 30-50 degreeC
Current density Dk: over 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5-250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnO or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density 0.05-5A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Bath temperature: 25-60 ° C
Immersion time: 5 to 30 seconds

また、実施例3、6、11、比較例3に対しては極薄銅層表面に以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
(液組成1)
Cu:10〜30g/L
2SO4:10〜150g/L
W:0〜50mg/L
ドデシル硫酸ナトリウム:0〜50mg/L
As:0〜200mg/L
(電気めっき条件1)
温度:30〜70℃
電流密度:25〜110A/dm2
粗化クーロン量:50〜500As/dm2
めっき時間:0.5〜20秒
・粗化処理2
(液組成2)
Cu:20〜80g/L
2SO4:50〜200g/L
(電気めっき条件2)
温度:30〜70℃
電流密度:5〜50A/dm2
粗化クーロン量:50〜300As/dm2
めっき時間:1〜60秒
・防錆処理
(液組成)
NaOH:40〜200g/L
NaCN:70〜250g/L
CuCN:50〜200g/L
Zn(CN)2:2〜100g/L
As23:0.01〜1g/L
(液温)
40〜90℃
(電流条件)
電流密度:1〜50A/dm2
めっき時間:1〜20秒
・クロメート処理
2Cr27(Na2Cr27或いはCrO3):2〜10g/L
NaOH又はKOH:10〜50g/L
ZnOH又はZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度:0.05〜5A/dm2
時間:5〜30秒
・シランカップリング処理
0.1vol%〜0.3vol%の3‐グリシドキシプロピルトリメトキシシラン水溶液をスプレー塗布した後、100〜200℃の空気中で0.1〜10秒間乾燥・加熱する。
For Examples 3, 6, and 11 and Comparative Example 3, the following roughening treatment 1, roughening treatment 2, antirust treatment, chromate treatment, and silane coupling treatment were applied to the surface of the ultrathin copper layer. I went in order.
・ Roughening 1
(Liquid composition 1)
Cu: 10-30 g / L
H 2 SO 4: 10~150g / L
W: 0 to 50 mg / L
Sodium dodecyl sulfate: 0 to 50 mg / L
As: 0 to 200 mg / L
(Electroplating condition 1)
Temperature: 30-70 ° C
Current density: 25 to 110 A / dm 2
Roughening coulomb amount: 50 to 500 As / dm 2
Plating time: 0.5 to 20 seconds, roughening treatment 2
(Liquid composition 2)
Cu: 20-80 g / L
H 2 SO 4 : 50 to 200 g / L
(Electroplating condition 2)
Temperature: 30-70 ° C
Current density: 5 to 50 A / dm 2
Roughening coulomb amount: 50 to 300 As / dm 2
Plating time: 1 to 60 seconds, rust prevention treatment (liquid composition)
NaOH: 40-200 g / L
NaCN: 70 to 250 g / L
CuCN: 50-200 g / L
Zn (CN) 2 : 2 to 100 g / L
As 2 O 3 : 0.01 to 1 g / L
(Liquid temperature)
40-90 ° C
(Current condition)
Current density: 1 to 50 A / dm 2
Plating time: 1 to 20 seconds, chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnOH or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds. Silane coupling treatment After applying 0.1 vol% to 0.3 vol% of 3-glycidoxypropyltrimethoxysilane aqueous solution, 0.1 to 10 in air at 100 to 200 ° C. Dry and heat for seconds.

また、実施例4、比較例4に対しては極薄銅層表面に以下の粗化処理1、粗化処理2、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理1
液組成 :銅10〜20g/L、硫酸50〜100g/L
液温 :25〜50℃
電流密度 :1〜58A/dm2
クーロン量:4〜81As/dm2
・粗化処理2
液組成 :銅10〜20g/L、ニッケル5〜15g/L、コバルト5〜15g/L
pH :2〜3
液温 :30〜50℃
電流密度 :24〜50A/dm2
クーロン量:34〜48As/dm2
・防錆処理
液組成 :ニッケル5〜20g/L、コバルト1〜8g/L
pH :2〜3
液温 :40〜60℃
電流密度 :5〜20A/dm2
クーロン量:10〜20As/dm2
・クロメート処理
液組成 :重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH :3〜4
液温 :50〜60℃
電流密度 :0〜2A/dm2(浸漬クロメート処理のため無電解での実施も可能)
クーロン量:0〜2As/dm2(浸漬クロメート処理のため無電解での実施も可能)
・シランカップリング処理
ジアミノシラン水溶液の塗布(ジアミノシラン濃度:0.1〜0.5wt%)
For Example 4 and Comparative Example 4, the following roughening treatment 1, roughening treatment 2, rust prevention treatment, chromate treatment, and silane coupling treatment were performed in this order on the surface of the ultrathin copper layer.
・ Roughening 1
Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L
Liquid temperature: 25-50 degreeC
Current density: 1 to 58 A / dm 2
Coulomb amount: 4 to 81 As / dm 2
・ Roughening 2
Liquid composition: Copper 10-20 g / L, nickel 5-15 g / L, cobalt 5-15 g / L
pH: 2-3
Liquid temperature: 30-50 degreeC
Current density: 24 to 50 A / dm 2
Coulomb amount: 34 to 48 As / dm 2
・ Rust prevention treatment Liquid composition: Nickel 5-20g / L, Cobalt 1-8g / L
pH: 2-3
Liquid temperature: 40-60 degreeC
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
-Chromate treatment Liquid composition: Potassium dichromate 1-10 g / L, Zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0 to 2 A / dm 2 (Can also be electroless because of immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (can also be electroless because of immersion chromate treatment)
Silane coupling treatment Application of diaminosilane aqueous solution (diaminosilane concentration: 0.1 to 0.5 wt%)

2.キャリア付銅箔の評価
<極薄銅層の厚みの評価>
作製したキャリア付銅箔の極薄銅層の厚みは、FIB−SIMを用いて観察した(倍率:10000〜30000倍)。極薄銅層の断面を観察することで30μm間隔で5箇所測定し、平均値を求めた。
2. Evaluation of copper foil with carrier <Evaluation of thickness of ultrathin copper layer>
The thickness of the ultra-thin copper layer of the produced copper foil with a carrier was observed using FIB-SIM (magnification: 10,000 to 30,000 times). By observing the cross section of the ultrathin copper layer, five points were measured at intervals of 30 μm, and the average value was obtained.

<抗張力(引張強度(引張強さ))の評価>
(1)加熱プレス前の抗張力(引張強度):作製したキャリア付銅箔について、ロードセルにてキャリアを剥がし、当該キャリアについて、JIS Z 2241に準じて、引張り試験により抗張力(引張強度)を求めた。
(2)加熱プレス後の抗張力(引張強度):作製したキャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、ロードセルにてキャリアを剥がし、当該キャリアについて、JIS Z 2241に準じて、引張り試験により抗張力(引張強度)を求めた。
(3)加熱プレス後でさらに無圧力加熱後の抗張力(引張強度):作製したキャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、続いて無圧力(プレス無し)、220℃で4時間の条件下で加熱した後、ロードセルにてキャリアを剥がし、当該キャリアについて、JIS Z 2241に準じて、引張り試験により抗張力(引張強度)を求めた。
上記(1)〜(3)で得られた各抗張力(引張強度)を用いて、抗張力(引張強度)の低下率A:〔(加熱プレス前の抗張力―加熱プレス後の抗張力)/加熱プレス前の抗張力〕×100%)、及び、抗張力(引張強度)の低下率B:〔(加熱プレス前の抗張力―加熱プレス後でさらに無圧力加熱後の抗張力)/加熱プレス前の抗張力〕×100%)を算出した。
<Evaluation of tensile strength (tensile strength (tensile strength))>
(1) Tensile strength before heating press (tensile strength): For the produced copper foil with carrier, the carrier was peeled off with a load cell, and the tensile strength (tensile strength) was determined for the carrier according to JIS Z 2241 by a tensile test. .
(2) Tensile strength (tensile strength) after hot pressing: The ultrathin copper layer side of the produced copper foil with carrier is bonded onto an insulating substrate, and the atmosphere is 20 kgf / cm 2 at 220 ° C. for 2 hours. Then, the carrier was peeled off with a load cell, and the tensile strength (tensile strength) of the carrier was determined by a tensile test according to JIS Z 2241.
(3) Tensile strength (tensile strength) after pressureless heating after heating press: The ultrathin copper layer side of the prepared copper foil with carrier is bonded onto an insulating substrate, and is 20 kgf / cm 2 at 220 ° C. in the air. And then heated and pressed at 2 hours under no pressure (no pressing), heated at 220 ° C. for 4 hours, and then peeled off with a load cell, and the carrier is in accordance with JIS Z 2241 The tensile strength (tensile strength) was determined by a tensile test.
Decrease rate A of tensile strength (tensile strength) using each tensile strength (tensile strength) obtained in (1) to (3) above: [(Tension before heating press-Tensile strength after heating press) / Before heating press Tensile strength] × 100%), and decrease rate B of tensile strength (tensile strength): [(Tension before heating press-Tensile strength after no pressure heating after heating press) / Tension before heating press] × 100% ) Was calculated.

<剥離強度の評価>
(1)加熱プレス前の剥離強度:作製したキャリア付銅箔について、ロードセルにてキャリア側を引っ張り、90°剥離法(JIS C 6471 8.1)に準拠して測定した。
(2)加熱プレス後の剥離強度:作製したキャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、ロードセルにてキャリア側を引っ張り、90°剥離法(JIS C 6471 8.1)に準拠して測定した。
(3)加熱プレス後でさらに無圧力加熱後の剥離強度:作製したキャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、続いて無圧力(プレス無し)、220℃で4時間の条件下で加熱した後、ロードセルにてキャリア側を引っ張り、90°剥離法(JIS C 6471 8.1)に準拠して測定した。
上記(1)〜(3)で得られた各剥離強度を用いて、剥離強度の変化率A:(|加熱プレス前の剥離強度―加熱プレス後の剥離強度|/加熱プレス前の剥離強度)×100%、及び、剥離強度の変化率B:(|加熱プレス前の剥離強度―加熱プレス後でさらに無圧力加熱後の剥離強度|/加熱プレス前の剥離強度)×100%を算出した。
試験条件及び試験結果を表1に示す。
<Evaluation of peel strength>
(1) Peeling strength before hot pressing: About the produced copper foil with a carrier, the carrier side was pulled with the load cell, and it measured based on the 90 degree peeling method (JIS C6471 8.1).
(2) Peel strength after hot pressing: The ultrathin copper layer side of the produced copper foil with carrier is bonded to an insulating substrate, and heated and pressed in air at 20 kgf / cm 2 and 220 ° C. for 2 hours. Then, the carrier side was pulled with a load cell, and measurement was performed in accordance with a 90 ° peeling method (JIS C 6471 8.1).
(3) Peel strength after pressureless heating after heating press: The ultrathin copper layer side of the produced copper foil with carrier is bonded onto an insulating substrate, and the atmosphere is 20 kgf / cm 2 at 220 ° C. for 2 hours. Then, after heating and pressing under the conditions of no pressure (no pressing) and heating at 220 ° C. for 4 hours, the carrier side was pulled with a load cell and the 90 ° peeling method (JIS C 6471 8.1). ) And measured.
Using each of the peel strengths obtained in the above (1) to (3), the peel strength change rate A: (| Peel strength before heating press-Peel strength after heat press | / Peel strength before heat press) X100% and peel strength change rate B: (| peeling strength before heating press-peeling strength after pressureless heating after pressure-pressing | / peeling strength before heating press) / 100% was calculated.
Table 1 shows the test conditions and test results.

(評価結果)
実施例1〜11は、いずれも、キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後のキャリアの抗張力低下率が20%以下であり、また、キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、続いて無圧力、220℃で4時間の条件下で加熱した後のキャリアの抗張力低下率が20%以下であった。このため、実施例1〜11は、いずれも、剥離強度の変化率が良好に抑制されていた。
比較例1〜9は、いずれも、キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後のキャリアの抗張力低下率が20%を超えており、また、キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、続いて無圧力、220℃で4時間の条件下で加熱した後のキャリアの抗張力低下率が20%を超えていた。このため、比較例1〜9は、いずれも、剥離強度の変化率が不良であった。
(Evaluation results)
In each of Examples 1 to 11, the carrier tensile strength reduction rate after heat-pressing the carrier-attached copper foil under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. for 2 hours is 20% or less. The carrier-attached copper foil was heated and pressed under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. for 2 hours, and subsequently the tensile strength of the carrier was reduced after heating under no pressure at 220 ° C. for 4 hours. The rate was 20% or less. For this reason, in all of Examples 1 to 11, the rate of change in peel strength was well suppressed.
In each of Comparative Examples 1 to 9, the carrier tensile strength reduction rate after heat-pressing the copper foil with carrier under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. for 2 hours exceeds 20%, Moreover, the carrier tensile strength after the copper foil with a carrier was heated and pressed under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. for 2 hours and then heated under the condition of no pressure and 220 ° C. for 4 hours. The decrease rate exceeded 20%. For this reason, all of Comparative Examples 1 to 9 had a poor rate of change in peel strength.

Claims (30)

キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、
前記キャリアの厚みが5μm以上70μm以下であり、前記極薄銅層が前記キャリアより薄く、
前記キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後の前記キャリアの抗張力低下率Aが0.0001%以上20%以下であるキャリア付銅箔。
A copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order,
The thickness of the carrier is 5 μm or more and 70 μm or less, and the ultrathin copper layer is thinner than the carrier,
The carrier-attached copper foil having a tensile strength reduction rate A of 0.0001% or more and 20% or less after heat-pressing the copper foil with carrier at a pressure of 20 kgf / cm 2 and 220 ° C. for 2 hours. .
前記キャリア付銅箔を、圧力:20kgf/cm2、220℃で2時間の条件下で加熱プレスした後、続いて無圧力、220℃で4時間の条件下で加熱した後の前記キャリアの抗張力低下率Bが0.0001%以上20%以下である請求項1に記載のキャリア付銅箔。 Tensile strength of the carrier after heating and pressing the copper foil with carrier under pressure: 20 kgf / cm 2 at 220 ° C. for 2 hours and then heating under pressure at 220 ° C. for 4 hours The copper foil with a carrier according to claim 1, wherein the decrease rate B is 0.0001% or more and 20% or less. 以下の(3−1)及び(3−2)の内いずれか一つ以上を満たす請求項1又は2に記載のキャリア付銅箔。
(3−1)前記キャリアの抗張力低下率Aが15%以下である。
(3−2)前記キャリアの抗張力低下率Bが15%以下である。
The copper foil with a carrier according to claim 1 or 2, satisfying at least one of the following (3-1) and (3-2).
(3-1) The tensile strength reduction rate A of the carrier is 15% or less.
(3-2) The tensile strength reduction rate B of the carrier is 15% or less.
以下の(4−1)及び(4−2)の内いずれか一つ以上を満たす請求項3に記載のキャリア付銅箔。
(4−1)前記キャリアの抗張力低下率Aが12%以下である。
(4−2)前記キャリアの抗張力低下率Bが12%以下である。
The copper foil with a carrier according to claim 3, which satisfies at least one of the following (4-1) and (4-2).
(4-1) The tensile strength reduction rate A of the carrier is 12% or less.
(4-2) The tensile strength reduction rate B of the carrier is 12% or less.
以下の(5−1)及び(5−2)の内いずれか一つ以上を満たす請求項4に記載のキャリア付銅箔。
(5−1)前記キャリアの抗張力低下率Aが10%以下である。
(5−2)前記キャリアの抗張力低下率Bが10%以下である。
The copper foil with a carrier according to claim 4 satisfying any one or more of the following (5-1) and (5-2).
(5-1) The tensile strength reduction rate A of the carrier is 10% or less.
(5-2) The tensile strength reduction rate B of the carrier is 10% or less.
以下の(6−1)及び(6−2)の内いずれか一つ以上を満たす請求項5に記載のキャリア付銅箔。
(6−1)前記キャリアの抗張力低下率Aが8%以下である。
(6−2)前記キャリアの抗張力低下率Bが8%以下である。
The copper foil with a carrier according to claim 5, which satisfies at least one of the following (6-1) and (6-2).
(6-1) The tensile strength reduction rate A of the carrier is 8% or less.
(6-2) The tensile strength reduction rate B of the carrier is 8% or less.
前記極薄銅層表面及び前記キャリアの表面のいずれか一方または両方に粗化処理層を有する請求項1〜のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier as described in any one of Claims 1-6 which has a roughening process layer in any one or both of the said ultra-thin copper layer surface and the surface of the said carrier. 前記粗化処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項に記載のキャリア付銅箔。 The roughening layer is made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing one or more of them. The copper foil with a carrier according to claim 7 which is a layer. 前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項又はに記載のキャリア付銅箔。 The copper with a carrier according to claim 7 or 8 , comprising at least one layer selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the roughened layer. Foil. 前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜のいずれか一項に記載のキャリア付銅箔。 The surface of the said ultra-thin copper layer has 1 or more types of layers selected from the group which consists of a heat-resistant layer, a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer as described in any one of Claims 1-6. The copper foil with a carrier of description. 前記極薄銅層上に樹脂層を備える請求項1〜のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier as described in any one of Claims 1-6 provided with a resin layer on the said ultra-thin copper layer. 前記粗化処理層上に樹脂層を備える請求項又はに記載のキャリア付銅箔。 The copper foil with a carrier according to claim 7 or 8 , comprising a resin layer on the roughening treatment layer. 前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える請求項又は10に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 9 or 10 , comprising a resin layer on one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer. 前記キャリアの一方の面に、中間層及び極薄銅層をこの順に有するキャリア付銅箔であり、
前記キャリアの、前記極薄銅層側の面とは反対側の面に、前記粗化処理層が設けられている請求項1〜13のいずれか一項に記載のキャリア付銅箔。
On one surface of the carrier is a copper foil with a carrier having an intermediate layer and an ultrathin copper layer in this order,
Of the carrier, the pole on the side opposite to the thin copper layer-side surface, the copper foil with carrier according to any one of the roughened layer claim wherein are provided 1-13.
前記キャリア両方の面に中間層及び極薄銅層をこの順に有する請求項1〜13のいずれか一項に記載のキャリア付銅箔。 Copper foil with carrier according to any one of claims 1 to 13 having the intermediate layer and the ultra-thin copper layer on the surface of both the carrier in this order. 請求項1〜15のいずれか一項に記載のキャリア付銅箔を用いて製造した積層体。 The laminated body manufactured using the copper foil with a carrier as described in any one of Claims 1-15 . 請求項1〜15のいずれか一項に記載のキャリア付銅箔と樹脂とを含む積層体であって、前記キャリア付銅箔の端面の一部または全部が前記樹脂により覆われている積層体。 It is a laminated body containing the copper foil with a carrier and resin as described in any one of Claims 1-15 , Comprising: The laminated body by which one part or all part of the end surface of the said copper foil with a carrier is covered with the said resin. . 一つの請求項1〜15のいずれか一項に記載のキャリア付銅箔を前記キャリア側又は前記極薄銅層側から、もう一つの請求項1〜15のいずれか一項に記載のキャリア付銅箔の前記キャリア側又は前記極薄銅層側に積層した積層体。 From one of claim 1 to 15 copper foil with carrier said carrier side or the ultra-thin copper layer side according to any one of, with a carrier according to any one of another claim from 1 to 15 The laminated body laminated | stacked on the said carrier side or the said ultra-thin copper layer side of copper foil. 前記一つのキャリア付銅箔の前記キャリア側表面又は前記極薄銅層側表面と前記もう一つのキャリア付銅箔の前記キャリア側表面又は前記極薄銅層側表面とが、必要に応じて接着剤を介して、直接積層させて構成されている請求項18に記載の積層体。 The carrier side surface or the ultrathin copper layer side surface of the one copper foil with carrier and the carrier side surface or the ultrathin copper layer side surface of the other copper foil with carrier are bonded as necessary. The laminate according to claim 18 , wherein the laminate is directly laminated via an agent. 前記一つのキャリア付銅箔の前記キャリア又は前記極薄銅層と前記もう一つのキャリア付銅箔の前記キャリア又は前記極薄銅層とが接合されている請求項18又は19に記載の積層体。 The laminate according to claim 18 or 19 , wherein the carrier or the ultrathin copper layer of the one copper foil with carrier and the carrier or the ultrathin copper layer of the other copper foil with carrier are joined. . 請求項1620のいずれか一項に記載の積層体であって、前記積層体の端面の一部または全部が樹脂により覆われている積層体。 A laminate according to any one of claims 16-20, laminate part or all of an end face of the laminate is covered with a resin. 請求項1621のいずれか一項に記載の積層体を用いたプリント配線板の製造方法。 Method for manufacturing a printed wiring board using the laminate according to any one of claims 16-21. 請求項1621のいずれか一項に記載の積層体に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、
前記樹脂層及び回路の2層を少なくとも1回形成した後に、前記積層体のキャリア付銅箔から前記極薄銅層又は前記キャリアを剥離させる工程
を含むプリント配線板の製造方法。
A step of providing at least once two layers of a resin layer and a circuit on the laminate according to any one of claims 16 to 21 , and
A method for producing a printed wiring board, comprising: forming the resin layer and the circuit layer at least once, and then peeling the ultrathin copper layer or the carrier from the copper foil with a carrier of the laminate.
請求項1〜15のいずれか一項に記載のキャリア付銅箔を用いて製造したプリント配線板。 The printed wiring board manufactured using the copper foil with a carrier as described in any one of Claims 1-15 . 請求項24に記載のプリント配線板を用いて製造した電子機器。 The electronic device manufactured using the printed wiring board of Claim 24 . 請求項1〜15のいずれか一項に記載のキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板とを積層する工程、及び、
前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程
を含むプリント配線板の製造方法。
A step of preparing the carrier-attached copper foil according to any one of claims 1 to 15 and an insulating substrate,
A step of laminating the copper foil with carrier and an insulating substrate; and
After laminating the carrier-attached copper foil and the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the carrier-attached copper foil,
Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
請求項1〜15のいずれか一項に記載のキャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に回路を形成する工程、
前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に樹脂層を形成する工程、
前記樹脂層上に回路を形成する工程、
前記樹脂層上に回路を形成した後に、前記キャリア又は前記極薄銅層を剥離させる工程、及び、
前記キャリア又は前記極薄銅層を剥離させた後に、前記極薄銅層又は前記キャリアを除去することで、前記極薄銅層側表面又は前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
を含むプリント配線板の製造方法。
A step of forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil according to any one of claims 1 to 15 .
Forming a resin layer on the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier so that the circuit is buried;
Forming a circuit on the resin layer;
After forming a circuit on the resin layer, peeling the carrier or the ultra-thin copper layer; and
After the carrier or the ultra-thin copper layer is peeled off, the ultra-thin copper layer or the carrier is removed to be buried in the resin layer formed on the ultra-thin copper layer-side surface or the carrier-side surface. A method of manufacturing a printed wiring board including a step of exposing a circuit that is connected.
請求項1〜15のいずれか一項に記載のキャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に回路を形成する工程、
前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面又は前記キャリア側表面に樹脂層を形成する工程、
前記キャリア又は前記極薄銅層を剥離させる工程、及び、
前記キャリア又は前記極薄銅層を剥離させた後に、前記極薄銅層又は前記キャリアを除去することで、前記極薄銅層側表面又は前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
を含むプリント配線板の製造方法。
A step of forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil according to any one of claims 1 to 15 .
Forming a resin layer on the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier so that the circuit is buried;
Peeling the carrier or the ultra-thin copper layer, and
After the carrier or the ultra-thin copper layer is peeled off, the ultra-thin copper layer or the carrier is removed to be buried in the resin layer formed on the ultra-thin copper layer-side surface or the carrier-side surface. A method of manufacturing a printed wiring board including a step of exposing a circuit that is connected.
請求項1〜15のいずれか一項に記載のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面と樹脂基板とを積層する工程、
前記キャリア付銅箔の樹脂基板と積層した側とは反対側の前記極薄銅層側表面または前記キャリア側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、
前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアまたは前記極薄銅層を剥離させる工程
を含むプリント配線板の製造方法。
The process of laminating | stacking the said ultra-thin copper layer side surface or the said carrier side surface of the copper foil with a carrier as described in any one of Claims 1-15 , and a resin substrate,
A step of providing at least once two layers of a resin layer and a circuit on the surface of the ultrathin copper layer opposite to the side laminated with the resin substrate of the copper foil with carrier or on the surface of the carrier; and
A method for producing a printed wiring board, comprising: a step of peeling the carrier or the ultrathin copper layer from the copper foil with a carrier after forming the resin layer and the two layers of the circuit.
請求項1〜15のいずれか一項に記載のキャリア付銅箔の前記キャリア側表面と樹脂基板とを積層する工程、
前記キャリア付銅箔の樹脂基板と積層した側とは反対側の極薄銅層側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、
前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記極薄銅層を剥離させる工程
を含むプリント配線板の製造方法。
The process of laminating | stacking the said carrier side surface of the copper foil with a carrier as described in any one of Claims 1-15 , and a resin substrate,
A step of providing two layers of a resin layer and a circuit at least once on the surface of the ultrathin copper layer side opposite to the side laminated with the resin substrate of the copper foil with carrier, and
A method of manufacturing a printed wiring board, comprising: forming the ultrathin copper layer from the copper foil with a carrier after forming the resin layer and the two layers of the circuit.
JP2015065006A 2014-04-24 2015-03-26 Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board Active JP6591766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065006A JP6591766B2 (en) 2014-04-24 2015-03-26 Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014090046 2014-04-24
JP2014090046 2014-04-24
JP2015065006A JP6591766B2 (en) 2014-04-24 2015-03-26 Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2015214750A JP2015214750A (en) 2015-12-03
JP6591766B2 true JP6591766B2 (en) 2019-10-16

Family

ID=54380143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065006A Active JP6591766B2 (en) 2014-04-24 2015-03-26 Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board

Country Status (4)

Country Link
JP (1) JP6591766B2 (en)
KR (1) KR101705975B1 (en)
CN (1) CN105007687B (en)
TW (1) TWI641294B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124533A (en) * 2016-01-13 2017-07-20 Jx金属株式会社 Copper foil with carrier, laminate, method for manufacturing copper foil with carrier, method for manufacturing printed wiring board, and method for manufacturing electric equipment
WO2017141985A1 (en) * 2016-02-18 2017-08-24 三井金属鉱業株式会社 Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
KR20180113987A (en) * 2016-02-18 2018-10-17 미쓰이금속광업주식회사 Manufacturing method of printed wiring board
US10820414B2 (en) 2016-12-05 2020-10-27 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
JP7409760B2 (en) * 2016-12-05 2024-01-09 Jx金属株式会社 Method for manufacturing surface-treated copper foil, copper foil with carrier, laminate, printed wiring board, and manufacturing method for electronic equipment
WO2018181061A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Surface-treated copper foil and copper-clad laminate using same
JP7032578B2 (en) * 2019-01-11 2022-03-08 三井金属鉱業株式会社 Laminate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143376A (en) * 1997-07-23 1999-02-16 Sumitomo Kinzoku Electro Device:Kk Production of ceramic green sheet and production of ceramic multi-layered circuit substrate
JP3466506B2 (en) * 1999-04-23 2003-11-10 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil, method for producing the electrolytic copper foil, and copper-clad laminate using the electrolytic copper foil
US7691487B2 (en) 2002-07-04 2010-04-06 Mitsui Mining & Smelting Co., Ltd. Electrodeposited copper foil with carrier foil
JP4930724B2 (en) * 2005-04-04 2012-05-16 宇部興産株式会社 Copper-clad laminate
JP5204908B1 (en) 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
JP5228130B1 (en) * 2012-08-08 2013-07-03 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5481577B1 (en) * 2012-09-11 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5352748B1 (en) * 2012-10-26 2013-11-27 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5298252B1 (en) * 2013-02-14 2013-09-25 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5470493B1 (en) 2013-07-23 2014-04-16 Jx日鉱日石金属株式会社 Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method

Also Published As

Publication number Publication date
CN105007687B (en) 2018-11-23
KR20150123184A (en) 2015-11-03
KR101705975B1 (en) 2017-02-10
JP2015214750A (en) 2015-12-03
TWI641294B (en) 2018-11-11
CN105007687A (en) 2015-10-28
TW201545611A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6488354B2 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6591766B2 (en) Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board
JP6339636B2 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6058182B1 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6591893B2 (en) Copper foil with carrier, copper clad laminate, printed wiring board, electronic device, resin layer, method for producing copper foil with carrier, and method for producing printed wiring board
KR101956428B1 (en) Copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
JP6006445B1 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6622103B2 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6023367B1 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6236120B2 (en) Copper foil with carrier, laminate, laminate production method, printed wiring board production method, and electronic device production method
JP6236119B2 (en) Copper foil with carrier, laminate, laminate production method, printed wiring board production method, and electronic device production method
JP6557493B2 (en) Copper foil with carrier, laminate, printed wiring board, electronic device, method for producing copper foil with carrier, and method for producing printed wiring board
JP2018168409A (en) Copper foil with carrier, laminate, production method of copper foil with carrier, production method of laminate, production method of printed wiring board, and production method of electronic device
JP2017088943A (en) Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device
JP2018192775A (en) Carrier-attached copper foil, laminate, method for producing laminate, method for manufacturing printed wiring board, and method for producing electronic apparatus
JP6023366B1 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP2017088961A (en) Copper foil with carrier, printed wiring board, laminate, electronic device, manufacturing method of copper foil with carrier and manufacturing method of printed wiring board
JP6509608B2 (en) Carrier-coated copper foil, laminate, printed wiring board, electronic device, and method of manufacturing printed wiring board
JP2018009237A (en) Copper foil with carrier, method for producing copper foil with carrier, laminate, method for producing laminate, method for manufacturing printed wiring board and method for manufacturing electronic equipment
JP2018111850A (en) Copper foil with carrier, laminate, production method of laminate, production method of printed circuit board, and production method of electronic device
JP2016050364A (en) Copper foil with carrier, copper-clad laminate, printed wiring board, electronic device, and laminate, and methods for manufacturing copper foil with carrier, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6591766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250