JP2017088943A - Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device - Google Patents

Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device Download PDF

Info

Publication number
JP2017088943A
JP2017088943A JP2015218935A JP2015218935A JP2017088943A JP 2017088943 A JP2017088943 A JP 2017088943A JP 2015218935 A JP2015218935 A JP 2015218935A JP 2015218935 A JP2015218935 A JP 2015218935A JP 2017088943 A JP2017088943 A JP 2017088943A
Authority
JP
Japan
Prior art keywords
carrier
layer
copper foil
copper
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218935A
Other languages
Japanese (ja)
Inventor
友太 永浦
Yuta Nagaura
友太 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015218935A priority Critical patent/JP2017088943A/en
Publication of JP2017088943A publication Critical patent/JP2017088943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil with a carrier good in circuit formation property.SOLUTION: There is provided a copper foil with a carrier having the carrier, an intermediate layer and an ultra-thin copper layer in this order, wherein the abnormal electrodeposition number of an ultra-thin copper layer side surface is 5000/mmor less and one or both of the ultra-thin copper film layer surface and the carrier has a roughening treated layer. Preferably the abnormal electrodeposition number is 2000/mmor less, more preferably 1000/mmor less and especially preferably 600/mmor less.SELECTED DRAWING: Figure 1

Description

本発明は、キャリア付銅箔、積層体、積層体の製造方法、プリント配線板の製造方法、及び、電子機器の製造方法に関する。   The present invention relates to a carrier-attached copper foil, a laminate, a method for producing a laminate, a method for producing a printed wiring board, and a method for producing an electronic device.

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められており、特にプリント配線板上にICチップを載せる場合、L(ライン)/S(スペース)=20μm/20μm以下のファインピッチ化が求められている。   Printed wiring boards have made great progress over the last half century and are now used in almost all electronic devices. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. In particular, when an IC chip is mounted on a printed wiring board, a fine pitch of L (line) / S (space) = 20 μm / 20 μm or less is required.

プリント配線板はまず、銅箔とガラスエポキシ基板、BT樹脂、ポリイミドフィルムなどを主とする絶縁基板を貼り合わせた銅張積層体として製造される。貼り合わせは、絶縁基板と銅箔を重ね合わせて加熱加圧させて形成する方法(ラミネート法)、または、絶縁基板材料の前駆体であるワニスを銅箔の被覆層を有する面に塗布し、加熱・硬化する方法(キャスティング法)が用いられる。   A printed wiring board is first manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, BT resin, polyimide film or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (laminating method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.

ファインピッチ化に伴って銅張積層体に使用される銅箔の厚みも9μm、さらには5μm以下になるなど、箔厚が薄くなりつつある。ところが、箔厚が9μm以下になると前述のラミネート法やキャスティング法で銅張積層体を形成するときのハンドリング性が極めて悪化する。そこで、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を形成したキャリア付銅箔が登場している。キャリア付銅箔の一般的な使用方法としては、特許文献1等に開示されているように、極薄銅層の表面を絶縁基板に貼り合わせて熱圧着後に、キャリアを、剥離層を介して剥離する。   Along with the fine pitch, the thickness of the copper foil used for the copper clad laminate is also 9 μm, and further, 5 μm or less. However, when the foil thickness is 9 μm or less, the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer. As a general method of using the copper foil with a carrier, as disclosed in Patent Document 1, etc., the surface of an ultrathin copper layer is bonded to an insulating substrate, and after thermocompression bonding, the carrier is passed through a release layer. Peel off.

キャリア付銅箔を用いたプリント配線板の作製において、キャリア付銅箔の典型的な使用方法は、まず、キャリア付銅箔を絶縁基板へ積層した後に極薄銅層からキャリアを剥離する。次に、キャリアを剥がして露出した極薄銅層の上に光硬化性樹脂で形成されためっきレジストを設ける。次に、めっきレジストの所定領域に対して露光することで当該領域を硬化させる。続いて、非露光領域の硬化されていないめっきレジストを除去した後、当該レジスト除去領域に電解めっき層を設ける。次に、硬化しためっきレジストを除去することで、回路が形成された絶縁基板が得られ、これを用いてプリント配線板を作製する。   In the production of a printed wiring board using a carrier-attached copper foil, a typical method for using the carrier-attached copper foil is to first laminate the carrier-attached copper foil on an insulating substrate and then peel the carrier from the ultrathin copper layer. Next, a plating resist formed of a photocurable resin is provided on the ultrathin copper layer exposed by peeling off the carrier. Next, the said area | region is hardened by exposing with respect to the predetermined area | region of a plating resist. Subsequently, after removing the uncured plating resist in the non-exposed area, an electrolytic plating layer is provided in the resist removed area. Next, by removing the cured plating resist, an insulating substrate on which a circuit is formed is obtained, and a printed wiring board is produced using the insulating substrate.

特開2006−022406号公報JP 2006-022406 A

キャリア付銅箔を製造する際、キャリアに中間層及び極薄銅層をこの順で電解めっき等により設けるが、このとき、得られたキャリア付銅箔の極薄銅層側表面に異常電着が発生することがある。このような異常電着が多く発生したキャリア付銅箔を用いて前述のようにプリント配線板を作製すると、形成される回路に、当該異常電着に起因する短絡が発生するという問題が生じる。   When producing a copper foil with a carrier, an intermediate layer and an ultrathin copper layer are provided on the carrier in this order by electrolytic plating or the like. At this time, abnormal electrodeposition is performed on the surface of the obtained copper foil with a carrier on the ultrathin copper layer side. May occur. When a printed wiring board is produced as described above using the carrier-added copper foil in which a large amount of abnormal electrodeposition has occurred, there is a problem that a short circuit due to the abnormal electrodeposition occurs in the formed circuit.

そこで、本発明は、回路形成性が良好なキャリア付銅箔を提供することを課題とする。   Then, this invention makes it a subject to provide the copper foil with a carrier with favorable circuit formation property.

上記目的を達成するため、本発明者は鋭意研究を重ねたところ、極薄銅層側表面の異常電着個数を所定値以下に制御することで当該回路形成性が向上することを見出した。   In order to achieve the above object, the present inventor has conducted extensive research and found that the circuit formability is improved by controlling the number of abnormal electrodepositions on the surface of the ultrathin copper layer to a predetermined value or less.

本発明は上記知見を基礎として完成したものであり、一側面において、キャリア、中間層、極薄銅層をこの順に有するキャリア付銅箔であって、極薄銅層側表面の異常電着個数が5000個/mm2以下であるキャリア付銅箔である。 The present invention has been completed on the basis of the above knowledge, and in one aspect, a carrier-attached copper foil having a carrier, an intermediate layer, and an ultrathin copper layer in this order, and the number of abnormal electrodepositions on the surface of the ultrathin copper layer side Is a copper foil with a carrier of 5000 pieces / mm 2 or less.

本発明のキャリア付銅箔は一実施形態において、前記極薄銅層側表面の異常電着個数が2000個/mm2以下である。 In one embodiment of the copper foil with a carrier of the present invention, the number of abnormal electrodepositions on the surface of the ultrathin copper layer is 2000 pieces / mm 2 or less.

本発明のキャリア付銅箔は別の一実施形態において、前記極薄銅層側表面の異常電着個数が1000個/mm2以下である。 In another embodiment of the copper foil with a carrier of the present invention, the number of abnormal electrodepositions on the surface of the ultrathin copper layer is 1000 pieces / mm 2 or less.

本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層側表面の異常電着個数が600個/mm2以下である。 In still another embodiment of the copper foil with a carrier of the present invention, the number of abnormal electrodepositions on the surface of the ultrathin copper layer is 600 pieces / mm 2 or less.

本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層表面及び前記キャリアの表面のいずれか一方または両方に粗化処理層を有する。   In another embodiment, the copper foil with a carrier according to the present invention has a roughened layer on one or both of the surface of the ultrathin copper layer and the surface of the carrier.

本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。   In another embodiment of the copper foil with a carrier of the present invention, the roughening treatment layer is selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc. It is a layer made of any single substance or an alloy containing one or more kinds.

本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In yet another embodiment, the carrier-attached copper foil of the present invention is one type selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the roughened layer. It has the above layers.

本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In yet another embodiment, the carrier-attached copper foil of the present invention is one type selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has the above layers.

本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層上に樹脂層を備える。   In still another embodiment, the carrier-attached copper foil of the present invention includes a resin layer on the ultrathin copper layer.

本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層上に樹脂層を備える。   In yet another embodiment, the carrier-attached copper foil of the present invention includes a resin layer on the roughening treatment layer.

本発明のキャリア付銅箔は更に別の一実施形態において、前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える。   In yet another embodiment, the carrier-attached copper foil of the present invention is a resin layer on one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer. Is provided.

本発明のキャリア付銅箔は更に別の一実施形態において、前記樹脂層が接着用樹脂である。   In another embodiment of the carrier-attached copper foil of the present invention, the resin layer is an adhesive resin.

本発明のキャリア付銅箔は更に別の一実施形態において、前記樹脂層が半硬化状態の樹脂である。   In yet another embodiment of the copper foil with a carrier according to the present invention, the resin layer is a resin in a semi-cured state.

本発明は別の一側面において、本発明のキャリア付銅箔を有する積層体である。   In another aspect, the present invention is a laminate having the carrier-attached copper foil of the present invention.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて積層体を製造する積層体の製造方法である。   In yet another aspect, the present invention is a method for manufacturing a laminate, which uses the copper foil with a carrier of the present invention to produce a laminate.

本発明は更に別の一側面において、本発明のキャリア付銅箔と樹脂とを含む積層体であって、前記キャリア付銅箔の端面の一部または全部が前記樹脂により覆われている積層体である。   According to still another aspect of the present invention, there is provided a laminate including the carrier-attached copper foil of the present invention and a resin, wherein the end face of the carrier-attached copper foil is partially or entirely covered with the resin. It is.

本発明は更に別の一側面において、本発明のキャリア付銅箔と樹脂とを二組有し、前記二組のうちの一方のキャリア付銅箔の極薄銅層側表面と、他方のキャリア付銅箔の極薄銅層側表面とがそれぞれ露出するように設けられた積層体である。   In yet another aspect of the present invention, the carrier-attached copper foil and resin of the present invention have two sets, the ultrathin copper layer side surface of one of the two sets of the carrier-attached copper foil, and the other carrier It is the laminated body provided so that the ultra-thin copper layer side surface of an attached copper foil might each be exposed.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いてプリント配線板を製造するプリント配線板の製造方法である。   In yet another aspect, the present invention provides a printed wiring board manufacturing method for manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を用いて電子機器を製造する電子機器の製造方法である。   In still another aspect of the present invention, there is provided an electronic device manufacturing method for manufacturing an electronic device using the printed wiring board of the present invention.

本発明は更に別の一側面において、本発明のキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板とを積層する工程、及び、
前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法である。
In another aspect of the present invention, a step of preparing the carrier-attached copper foil of the present invention and an insulating substrate,
A step of laminating the copper foil with carrier and an insulating substrate; and
After laminating the carrier-attached copper foil and the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the carrier-attached copper foil,
Thereafter, the printed wiring board manufacturing method includes a step of forming a circuit by any one of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.

本発明は更に別の一側面において、本発明のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に回路を形成する工程、
前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に樹脂層を形成する工程、
前記樹脂層上に回路を形成する工程、
前記樹脂層上に回路を形成した後に、前記キャリアまたは前記極薄銅層を剥離させる工程、及び、
前記キャリアまたは前記極薄銅層を剥離させた後に、前記極薄銅層または前記キャリアを除去することで、前記極薄銅層側表面または前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
を含むプリント配線板の製造方法である。
In another aspect of the present invention, a process of forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil of the present invention,
Forming a resin layer on the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier so that the circuit is buried;
Forming a circuit on the resin layer;
After forming a circuit on the resin layer, peeling the carrier or the ultra-thin copper layer; and
After the carrier or the ultrathin copper layer is peeled off, the ultrathin copper layer or the carrier is removed to be buried in the resin layer formed on the ultrathin copper layer side surface or the carrier side surface. It is a manufacturing method of a printed wiring board including the process of exposing the circuit which has been carried out.

本発明は更に別の一側面において、本発明のキャリア付銅箔を前記キャリア側から樹脂基板に積層する工程、
前記キャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に回路を形成する工程、
前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に樹脂層を形成する工程、
前記樹脂層上に回路を形成する工程、
前記樹脂層上に回路を形成した後に、前記キャリアまたは前記極薄銅層を剥離させる工程、及び、
前記キャリアまたは前記極薄銅層を剥離させた後に、前記極薄銅層または前記キャリアを除去することで、前記極薄銅層側表面または前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
を含むプリント配線板の製造方法である。
In another aspect of the present invention, the step of laminating the carrier-attached copper foil of the present invention on the resin substrate from the carrier side,
Forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil,
Forming a resin layer on the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier so that the circuit is buried;
Forming a circuit on the resin layer;
After forming a circuit on the resin layer, peeling the carrier or the ultra-thin copper layer; and
After the carrier or the ultrathin copper layer is peeled off, the ultrathin copper layer or the carrier is removed to be buried in the resin layer formed on the ultrathin copper layer side surface or the carrier side surface. It is a manufacturing method of a printed wiring board including the process of exposing the circuit which has been carried out.

本発明は更に別の一側面において、本発明のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面と樹脂基板とを積層する工程、
前記キャリア付銅箔の樹脂基板と積層した側とは反対側の極薄銅層側表面または前記キャリア側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、
前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアまたは前記極薄銅層を剥離させる工程
を含むプリント配線板の製造方法である。
In another aspect of the present invention, the step of laminating the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier of the present invention and a resin substrate,
A step of providing at least once two layers of a resin layer and a circuit on the surface of the ultrathin copper layer opposite to the side laminated with the resin substrate of the copper foil with carrier or on the surface of the carrier; and
It is a manufacturing method of a printed wiring board including the process of exfoliating the carrier or the ultra-thin copper layer from the copper foil with a carrier after forming the resin layer and the two layers of the circuit.

本発明は更に別の一側面において、本発明のキャリア付銅箔の前記キャリア側表面と樹脂基板とを積層する工程、
前記キャリア付銅箔の樹脂基板と積層した側とは反対側の極薄銅層側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、
前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアを剥離させる工程
を含むプリント配線板の製造方法である。
In yet another aspect of the present invention, the step of laminating the carrier-side surface of the copper foil with a carrier of the present invention and a resin substrate,
A step of providing two layers of a resin layer and a circuit at least once on the surface of the ultrathin copper layer side opposite to the side laminated with the resin substrate of the copper foil with carrier, and
After forming the said resin layer and two layers of a circuit, it is a manufacturing method of the printed wiring board including the process of peeling the said carrier from the said copper foil with a carrier.

本発明によれば、回路形成性が良好なキャリア付銅箔を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil with a carrier with favorable circuit formation property can be provided.

A〜Cは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、回路めっき・レジスト除去までの工程における配線板断面の模式図である。AC is a schematic diagram of the wiring board cross section in the process to circuit plating and the resist removal based on the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention. D〜Fは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、樹脂及び2層目キャリア付銅箔積層からレーザー穴あけまでの工程における配線板断面の模式図である。DF is a schematic diagram of a cross section of a wiring board in a process from lamination of a resin and copper foil with a second layer carrier to laser drilling according to a specific example of a method for producing a printed wiring board using a copper foil with a carrier of the present invention. It is. G〜Iは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、ビアフィル形成から1層目のキャリア剥離までの工程における配線板断面の模式図である。GI is a schematic diagram of the wiring board cross section in the process from the via fill formation to the first layer carrier peeling according to a specific example of the method for manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. J〜Kは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、フラッシュエッチングからバンプ・銅ピラー形成までの工程における配線板断面の模式図である。J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. 銅異常電着の代表的なSEM像である。It is a typical SEM image of copper abnormal electrodeposition. 異常電着を取り囲む円の例、及び、裾引き部が重なり合って群を成す異常電着の数のカウントの仕方について示すための極薄銅層側表面の異常電着のSEM像である。It is the SEM image of the abnormal electrodeposition of the ultrathin copper layer side surface for showing about the example of the circle surrounding abnormal electrodeposition, and the method of counting the number of abnormal electrodepositions which a bottom part overlaps and forms a group.

<キャリア付銅箔>
本発明のキャリア付銅箔は、キャリア、中間層、極薄銅層をこの順に有する。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。
<Copper foil with carrier>
The copper foil with a carrier of this invention has a carrier, an intermediate | middle layer, and an ultra-thin copper layer in this order. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Ultra-thin bonded to an insulating substrate, bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board.

<キャリア>
本発明に用いることのできるキャリアは典型的には金属箔または樹脂フィルムであり、例えば銅箔、銅合金箔、ニッケル箔、ニッケル合金箔、鉄箔、鉄合金箔、ステンレス箔、アルミニウム箔、アルミニウム合金箔、絶縁樹脂フィルム、ポリイミドフィルム、LCDフィルムの形態で提供される。
本発明に用いることのできるキャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅(JIS H3100 合金番号C1100)や無酸素銅(JIS H3100 合金番号C1020またはJIS H3510 合金番号C1011)といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<Career>
Carriers that can be used in the present invention are typically metal foils or resin films, such as copper foil, copper alloy foil, nickel foil, nickel alloy foil, iron foil, iron alloy foil, stainless steel foil, aluminum foil, aluminum. It is provided in the form of alloy foil, insulating resin film, polyimide film, LCD film.
Carriers that can be used in the present invention are typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. Examples of copper foil materials include high-purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011), for example, Sn-containing copper, Ag-containing copper, Cr A copper alloy such as a copper alloy added with Zr or Mg, or a Corson copper alloy added with Ni, Si or the like can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば5μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には8〜70μmであり、より典型的には12〜70μmであり、より典型的には18〜35μmである。また、原料コストを低減する観点からはキャリアの厚みは小さいことが好ましい。そのため、キャリアの厚みは、典型的には5μm以上35μm以下であり、好ましくは5μm以上18μm以下であり、好ましくは5μm以上12μm以下であり、好ましくは5μm以上11μm以下であり、好ましくは5μm以上10μm以下である。なお、キャリアの厚みが小さい場合には、キャリアの通箔の際に折れシワが発生しやすい。折れシワの発生を防止するため、例えばキャリア付銅箔製造装置の搬送ロールを平滑にすることや、搬送ロールと、その次の搬送ロールとの距離を短くすることが有効である。なお、プリント配線板の製造方法の一つである埋め込み工法(エンベッディド法(Enbedded Process))にキャリア付銅箔が用いられる場合には、キャリアの剛性が高いことが必要である。そのため、埋め込み工法に用いる場合には、キャリアの厚みは18μm以上300μm以下であることが好ましく、25μm以上150μm以下であることが好ましく、35μm以上100μm以下であることが好ましく、35μm以上70μm以下であることが更により好ましい。
なお、キャリアの極薄銅層を設ける側の表面とは反対側の表面に粗化処理層を設けてもよい。当該粗化処理層を公知の方法を用いて設けてもよく、後述の粗化処理により設けてもよい。キャリアの極薄銅層を設ける側の表面とは反対側の表面に粗化処理層を設けることは、キャリアを当該粗化処理層を有する表面側から樹脂基板などの支持体に積層する際、キャリアと樹脂基板が剥離し難くなるという利点を有する。
The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, and may be, for example, 5 μm or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the carrier is typically 8 to 70 μm, more typically 12 to 70 μm, and more typically 18 to 35 μm. Moreover, it is preferable that the thickness of a carrier is small from a viewpoint of reducing raw material cost. Therefore, the thickness of the carrier is typically 5 μm or more and 35 μm or less, preferably 5 μm or more and 18 μm or less, preferably 5 μm or more and 12 μm or less, preferably 5 μm or more and 11 μm or less, preferably 5 μm or more and 10 μm or less. It is as follows. In addition, when the thickness of a carrier is small, it is easy to generate | occur | produce a wrinkle in the case of a carrier foil. In order to prevent the generation of folding wrinkles, for example, it is effective to smooth the transport roll of the copper foil manufacturing apparatus with a carrier and to shorten the distance between the transport roll and the next transport roll. In addition, when the copper foil with a carrier is used for the embedding method (embedded process) which is one of the manufacturing methods of a printed wiring board, the rigidity of a carrier needs to be high. Therefore, when used in the embedding method, the thickness of the carrier is preferably 18 μm or more and 300 μm or less, preferably 25 μm or more and 150 μm or less, preferably 35 μm or more and 100 μm or less, and 35 μm or more and 70 μm or less. Even more preferred.
In addition, you may provide a roughening process layer in the surface on the opposite side to the surface in the side which provides the ultra-thin copper layer of a carrier. The said roughening process layer may be provided using a well-known method, and may be provided by the below-mentioned roughening process. Providing a roughened layer on the surface opposite to the surface on which the ultrathin copper layer of the carrier is provided, when laminating the carrier from the surface side having the roughened layer to a support such as a resin substrate, There is an advantage that the carrier and the resin substrate are hardly separated.

<中間層>
キャリアの片面又は両面上には中間層を設ける。キャリアと中間層との間には他の層を設けてもよい。本発明で用いる中間層は、キャリア付銅箔が絶縁基板への積層工程前にはキャリアから極薄銅層が剥離し難い一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能となるような構成であれば特に限定されない。例えば、本発明のキャリア付銅箔の中間層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Zn、これらの合金、これらの水和物、これらの酸化物、有機物からなる群から選択される一種又は二種以上を含んでも良い。また、中間層は複数の層であっても良い。
また、例えば、中間層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種の元素からなる単一金属層、或いは、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素を含む(または、当該元素からなる)合金層を形成し、その上にCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素の水和物または酸化物または有機物を含む(または、からなる)層を形成することで構成することができる。
また、例えば、中間層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種の元素からなる単一金属層、或いは、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素を含む(または、当該元素からなる)合金層または有機物を含む(または、からなる)層を形成し、その上にCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種の元素からなる単一金属層、或いは、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素を含む(または、当該元素からなる)合金層を形成することで構成することができる。
中間層を片面にのみ設ける場合、キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。なお、中間層をクロメート処理や亜鉛クロメート処理やめっき処理で設けた場合には、クロムや亜鉛など、付着した金属の一部は水和物や酸化物となっている場合があると考えられる。
また、例えば、中間層は、キャリア上に、ニッケル、ニッケル−リン合金又はニッケル−コバルト合金と、クロムとがこの順で積層されて構成することができる。ニッケルと銅との接着力はクロムと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とクロムとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。中間層におけるニッケルの付着量は好ましくは100μg/dm2以上40000μg/dm2以下、より好ましくは100μg/dm2以上4000μg/dm2以下、より好ましくは100μg/dm2以上2500μg/dm2以下、より好ましくは100μg/dm2以上1000μg/dm2未満であり、中間層におけるクロムの付着量は5μg/dm2以上100μg/dm2以下であることが好ましい。中間層を片面にのみ設ける場合、キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。
<Intermediate layer>
An intermediate layer is provided on one or both sides of the carrier. Another layer may be provided between the carrier and the intermediate layer. In the intermediate layer used in the present invention, the ultrathin copper layer is hardly peeled off from the carrier before the copper foil with the carrier is laminated on the insulating substrate, while the ultrathin copper layer is separated from the carrier after the lamination step on the insulating substrate. There is no particular limitation as long as it can be peeled off. For example, the intermediate layer of the copper foil with a carrier of the present invention is Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates thereof, oxides thereof, One or two or more selected from the group consisting of organic substances may be included. The intermediate layer may be a plurality of layers.
Further, for example, the intermediate layer is a single metal layer composed of one kind of element selected from the element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn from the carrier side. Or one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn (or consisting of the elements) ) An alloy layer is formed, and water of one or more elements selected from the group of elements composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn is formed thereon It can be configured by forming a layer containing (or consisting of) a hydrate, an oxide, or an organic substance.
Further, for example, the intermediate layer is a single metal layer composed of one kind of element selected from the element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn from the carrier side. Or one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn (or consisting of the elements) ) An alloy layer or a layer containing (or consisting of) an organic substance is formed, and selected from an element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn. A single metal layer composed of one kind of element selected from the group consisting of elements consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn Alloy layers containing (or consisting of) these elements It can be configured by.
When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier. When the intermediate layer is provided by chromate treatment, zinc chromate treatment, or plating treatment, it is considered that some of the attached metal such as chromium and zinc may be hydrates or oxides.
Further, for example, the intermediate layer can be configured by laminating nickel, a nickel-phosphorus alloy or a nickel-cobalt alloy, and chromium in this order on a carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer. Adhesion amount of nickel in the intermediate layer is preferably 100 [mu] g / dm 2 or more 40000μg / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 4000μg / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 2500 g / dm 2 or less, more Preferably, it is 100 μg / dm 2 or more and less than 1000 μg / dm 2 , and the amount of chromium deposited on the intermediate layer is preferably 5 μg / dm 2 or more and 100 μg / dm 2 or less. When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier.

<極薄銅層>
中間層の上には極薄銅層を設ける。中間層と極薄銅層との間には他の層を設けてもよい。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.1〜12μmであり、より典型的には0.5〜12μmであり、より典型的には1〜5μm、更に典型的には1.5〜5μm、更に典型的には2〜5μmである。なお、キャリアの両面に極薄銅層を設けてもよい。
<Ultrathin copper layer>
An ultrathin copper layer is provided on the intermediate layer. Another layer may be provided between the intermediate layer and the ultrathin copper layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. Typically 0.1 to 12 μm, more typically 0.5 to 12 μm, more typically 1 to 5 μm, more typically 1.5 to 5 μm, and more typically 2-5 μm. In addition, you may provide an ultra-thin copper layer on both surfaces of a carrier.

本発明のキャリア付銅箔を用いて積層体(銅張積層体等)を作製することができる。当該積層体としては、例えば、「極薄銅層/中間層/キャリア/樹脂又はプリプレグ」の順に積層された構成であってもよく、「キャリア/中間層/極薄銅層/樹脂又はプリプレグ」の順に積層された構成であってもよく、「極薄銅層/中間層/キャリア/樹脂又はプリプレグ/キャリア/中間層/極薄銅層」の順に積層された構成であってもよく、「極薄銅層/中間層/キャリア/樹脂又はプリプレグ/樹脂又はプリプレグ/キャリア/中間層/極薄銅層」の順に積層された構成であってもよく、「キャリア/中間層/極薄銅層/樹脂又はプリプレグ/極薄銅層/中間層/キャリア」の順に積層された構成であってもよい。前記樹脂又はプリプレグは後述する樹脂層であってもよく、後述する樹脂層に用いる樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでもよい。なお、キャリア付銅箔は平面視したときに樹脂又はプリプレグより小さくてもよい。   A laminated body (a copper clad laminated body etc.) can be produced using the copper foil with a carrier of the present invention. For example, the laminate may have a structure in which “ultra-thin copper layer / intermediate layer / carrier / resin or prepreg” is laminated in this order, and “carrier / intermediate layer / ultra-thin copper layer / resin or prepreg”. It may be a configuration laminated in this order, or may be a configuration laminated in the order of "ultra thin copper layer / intermediate layer / carrier / resin or prepreg / carrier / intermediate layer / ultra thin copper layer" The structure may be laminated in the order of “ultra-thin copper layer / intermediate layer / carrier / resin or prepreg / resin or prepreg / carrier / intermediate layer / ultra-thin copper layer”, “carrier / intermediate layer / ultra-thin copper layer” The structure may be laminated in the order of “/ resin or prepreg / ultra thin copper layer / intermediate layer / carrier”. The resin or prepreg may be a resin layer which will be described later. A resin, a resin curing agent, a compound, a curing accelerator, a dielectric, a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeleton material, and the like used for the resin layer which will be described later. May be included. The carrier-attached copper foil may be smaller than the resin or prepreg when viewed in plan.

<極薄銅層側表面の異常電着個数>
本発明のキャリア付銅箔は、極薄銅層側表面の異常電着個数が5000個/mm2以下に制御されている。ここで、「異常電着」とは取り囲む円の最小直径が5μm以上のサイズを有する電着を示す。このような構成により、本発明のキャリア付銅箔を用いてプリント配線板を作製するとき等において、当該極薄銅層を用いて形成する回路における短絡の発生を良好に抑制することができ、その結果、回路形成性が良好となる。薄銅層側表面の異常電着個数は、5000個/mm2以下であるのが好ましく、2000個/mm2以下であるのがより好ましく、1000個/mm2以下であるのが更により好ましく、600個/mm2以下であるのが更により好ましい。
<Number of abnormal electrodeposition on the surface of the ultrathin copper layer>
Copper foil with a carrier of the present invention, abnormal electrodeposition number of ultra-thin copper layer surface is controlled to be 5000 / mm 2 or less. Here, “abnormal electrodeposition” refers to electrodeposition in which the minimum diameter of the surrounding circle is 5 μm or more. With such a configuration, when producing a printed wiring board using the carrier-attached copper foil of the present invention, it is possible to satisfactorily suppress the occurrence of a short circuit in a circuit formed using the ultrathin copper layer, As a result, the circuit formability is improved. The number of abnormal electrodepositions on the surface of the thin copper layer is preferably 5000 pieces / mm 2 or less, more preferably 2000 pieces / mm 2 or less, and even more preferably 1000 pieces / mm 2 or less. More preferably, it is 600 pieces / mm 2 or less.

<極薄銅層側表面の異常電着個数の制御手段>
極薄銅層を電解めっきで形成する際に電解液を用いるが、本発明では、当該電解液(めっき液)中に存在する微小な金属粉や異物等が極薄銅層側表面に付着することで異常電着が生じることを見出した。そして、極薄銅層を形成するための電解液を2.5μm径以下の目を有するフィルターで濾過することで、当該微小な金属粉や異物等を電解液中から除去し、これによって極薄銅層側表面に生じる異常電着を5000個/mm2以下に制御することができる。当該フィルターの目は、1μm径以下のサイズであるのが好ましく、0.5μm径以下のサイズであるのがより好ましい。
<Means for controlling the number of abnormal electrodeposition on the surface of the ultrathin copper layer>
When forming an ultrathin copper layer by electrolytic plating, an electrolytic solution is used. In the present invention, minute metal powders or foreign substances present in the electrolytic solution (plating solution) adhere to the surface of the ultrathin copper layer. It was found that abnormal electrodeposition occurs. Then, by filtering the electrolytic solution for forming the ultrathin copper layer with a filter having an eye having a diameter of 2.5 μm or less, the fine metal powder or foreign matter is removed from the electrolytic solution, thereby Abnormal electrodeposition occurring on the copper layer side surface can be controlled to 5000 pieces / mm 2 or less. The size of the filter eyes is preferably 1 μm or less, more preferably 0.5 μm or less.

また、キャリア表面に中間層を電解めっきで形成する際に電解液を用いるが、本発明では、中間層の金属層形成後の当該電解液におけるキャリアの浸漬時間を制御することで、極薄銅層側表面の異常電着の発生を抑制することができる。具体的には、中間層の金属層形成後の当該電解液におけるキャリアの浸漬時間を2〜10秒にすることで、極薄銅層側表面に生じる異常電着を5000個/mm2以下に制御することができる。 In addition, an electrolytic solution is used when an intermediate layer is formed on the carrier surface by electrolytic plating. In the present invention, ultrathin copper is controlled by controlling the immersion time of the carrier in the electrolytic solution after forming the metal layer of the intermediate layer. The occurrence of abnormal electrodeposition on the layer side surface can be suppressed. Specifically, by setting the immersion time of the carrier in the electrolytic solution after forming the metal layer of the intermediate layer to 2 to 10 seconds, abnormal electrodeposition generated on the surface of the ultrathin copper layer is reduced to 5000 pieces / mm 2 or less. Can be controlled.

また、キャリア表面に中間層の金属層を電解めっきで形成した後に、キャリアの中間層側表面をpH1.5〜3の洗浄液によって酸洗することで、極薄銅層側表面に生じる異常電着を5000個/mm2以下に制御することができる。当該洗浄液としては、例えば、希硫酸、Niめっき液等を用いることができる。なお、キャリア表面に、金属層を形成後、さらに酸化物層等の酸によって溶けない層(クロメート層等)を形成することで中間層を設ける場合は、当該金属層の形成後に上記酸洗を行う。これは、酸化物層等の酸によって溶けない層(クロメート層等)を形成した後に酸洗を行っても中間層の異常電着を除去することが困難であるためである。 Also, after forming an intermediate metal layer on the carrier surface by electrolytic plating, the surface of the intermediate layer side of the carrier is pickled with a cleaning solution having a pH of 1.5 to 3, thereby generating abnormal electrodeposition on the surface of the ultrathin copper layer. Can be controlled to 5000 pieces / mm 2 or less. As the cleaning solution, for example, dilute sulfuric acid, Ni plating solution or the like can be used. In addition, when forming an intermediate layer by forming a layer (chromate layer or the like) that is not dissolved by an acid such as an oxide layer after forming a metal layer on the carrier surface, the pickling is performed after the formation of the metal layer. Do. This is because it is difficult to remove the abnormal electrodeposition of the intermediate layer even if pickling is performed after forming a layer (chromate layer or the like) that is not soluble by an acid such as an oxide layer.

<粗化処理およびその他の表面処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層または防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ複数の層で形成されてもよい(例えば2層以上、3層以上など)。
<Roughening treatment and other surface treatment>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing at least one of them. It may be. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface thereof may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed from nickel, cobalt, copper, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, 2 layers or more, 3 layers or more, etc.).

例えば、粗化処理としての銅−コバルト−ニッケル合金めっきは、電解めっきにより、付着量が15〜40mg/dm2の銅−100〜3000μg/dm2のコバルト−100〜1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000〜2500μg/dm2であり、好ましいニッケル付着量は500〜1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。 For example, copper as a roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, deposition amount in the nickel-cobalt -100~1500μg / dm 2 of copper -100~3000μg / dm 2 of 15~40mg / dm 2 Such a ternary alloy layer can be formed. If the amount of deposited Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.

このような3元系銅−コバルト−ニッケル合金めっきを形成するための一般的浴及びめっき条件の一例は次の通りである:
めっき浴組成:Cu10〜20g/L、Co1〜10g/L、Ni1〜10g/L
pH:1〜4
温度:30〜50℃
電流密度Dk:20〜30A/dm2
めっき時間:1〜5秒
An example of a general bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1-4
Temperature: 30-50 ° C
Current density D k : 20 to 30 A / dm 2
Plating time: 1-5 seconds

このようにして、キャリアと、キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がして銅張積層板とし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。   In this manner, a carrier-attached copper foil including a carrier, an intermediate layer laminated on the carrier, and an ultrathin copper layer laminated on the intermediate layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern.

また、キャリアと、キャリア上に中間層が積層され、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔は、前記極薄銅層上に粗化処理層を備えても良く、前記粗化処理層上に、耐熱層、防錆層、クロメート処理層およびシランカップリング処理層からなる群のから選択された層を一つ以上備えても良い。
また、前記極薄銅層上に粗化処理層を備えても良く、前記粗化処理層上に、耐熱層、防錆層を備えてもよく、前記耐熱層、防錆層上にクロメート処理層を備えてもよく、前記クロメート処理層上にシランカップリング処理層を備えても良い。
また、前記キャリア付銅箔は前記極薄銅層上、あるいは前記粗化処理層上、あるいは前記耐熱層、防錆層、あるいはクロメート処理層、あるいはシランカップリング処理層の上に樹脂層を備えても良い。前記樹脂層は絶縁樹脂層であってもよい。
Further, the carrier-attached copper foil comprising a carrier and an ultra-thin copper layer laminated on the intermediate layer on the carrier comprises a roughening treatment layer on the ultra-thin copper layer. Alternatively, one or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be provided on the roughening treatment layer.
Further, a roughening treatment layer may be provided on the ultrathin copper layer, a heat resistant layer and a rust prevention layer may be provided on the roughening treatment layer, and a chromate treatment is performed on the heat resistance layer and the rust prevention layer. A layer may be provided, and a silane coupling treatment layer may be provided on the chromate treatment layer.
The carrier-attached copper foil includes a resin layer on the ultrathin copper layer, the roughened layer, the heat-resistant layer, the rust-proof layer, the chromate-treated layer, or the silane coupling-treated layer. May be. The resin layer may be an insulating resin layer.

前記樹脂層は接着剤であってもよく、接着用の半硬化状態(Bステージ)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。   The resin layer may be an adhesive or may be a semi-cured (B stage) insulating resin layer for bonding. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.

また前記樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記樹脂層は熱可塑性樹脂を含んでもよい。その種類は格別限定されるものではないが、例えば、エポキシ樹脂、ポリイミド樹脂、多官能性シアン酸エステル化合物、マレイミド化合物、ポリビニルアセタール樹脂、ウレタン樹脂などを含む樹脂を好適なものとしてあげることができる。   The resin layer may contain a thermosetting resin or may be a thermoplastic resin. The resin layer may include a thermoplastic resin. Although the type is not particularly limited, for example, a resin including an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound, a maleimide compound, a polyvinyl acetal resin, a urethane resin, or the like can be given as a preferable one. .

前記樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体(無機化合物及び/または有機化合物を含む誘電体、金属酸化物を含む誘電体等どのような誘電体を用いてもよい)、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記樹脂層は例えば国際公開番号WO2008/004399、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11−5828号、特開平11−140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000−43188号、特許第3612594号、特開2002−179772号、特開2002−359444号、特開2003−304068号、特許第3992225号、特開2003−249739号、特許第4136509号、特開2004−82687号、特許第4025177号、特開2004−349654号、特許第4286060号、特開2005−262506号、特許第4570070号、特開2005−53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006−257153号、特開2007−326923号、特開2008−111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009−67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009−173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011−14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013−19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。   The resin layer may be made of any known dielectric such as a known resin, resin curing agent, compound, curing accelerator, dielectric (dielectric including an inorganic compound and / or organic compound, dielectric including a metal oxide). May be included), a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeleton material, and the like. The resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Laid-Open No. 2002-179772, Japanese Patent Laid-Open No. 2002-359444, Japanese Patent Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Laid-Open No. 2003 No. 249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, Japanese Patent Application Laid-Open No. No. 5-53218, Japanese Patent No. 3949676, Japanese Patent No. 4178415, International Publication No. WO2004 / 005588, Japanese Patent Application Laid-Open No. 2006-257153, Japanese Patent Application Laid-Open No. 2007-326923, Japanese Patent Application Laid-Open No. 2008-11169, and Japanese Patent No. 5024930. No. WO2006 / 028207, Japanese Patent No. 4828427, JP 2009-67029, International Publication No. WO 2006/134868, Japanese Patent No. 5046927, JP 2009-173017, International Publication No. WO 2007/105635, Patent No. 5180815, International Publication Number WO2008 / 114858, International Publication Number WO2009 / 008471, Japanese Patent Application Laid-Open No. 2011-14727, International Publication Number WO2009 / 001850, International Publication Number WO2009 / 145179, International Publication Number Nos. WO2011 / 068157, JP-A-2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.

これらの樹脂を例えばメチルエチルケトン(MEK)、トルエンなどの溶剤に溶解して樹脂液とし、これを前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート皮膜層、あるいは前記シランカップリング剤層の上に、例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100〜250℃、好ましくは130〜200℃であればよい。   These resins are dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to obtain a resin solution, which is used on the ultrathin copper layer, the heat-resistant layer, the rust-proof layer, the chromate film layer, or the silane cup. On the ring agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary to remove the solvent to obtain a B-stage state. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C, preferably 130 to 200 ° C.

前記樹脂層を備えたキャリア付銅箔(樹脂付きキャリア付銅箔)は、その樹脂層を基材に重ね合わせたのち全体を熱圧着して該樹脂層を熱硬化せしめ、ついでキャリアを剥離して極薄銅層を表出せしめ(当然に表出するのは該極薄銅層の中間層側の表面である)、そこに所定の配線パターンを形成するという態様で使用される。   The copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompression bonded to thermally cure the resin layer, and then the carrier is peeled off. Thus, the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.

この樹脂付きキャリア付銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張り積層板を製造することができる。またこのとき、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。   If this resin-attached copper foil with a carrier is used, the number of prepreg materials used when manufacturing a multilayer printed wiring board can be reduced. In addition, the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.

なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。   In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.

この樹脂層の厚みは0.1〜80μmであることが好ましい。樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付きキャリア付銅箔を内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。   The thickness of the resin layer is preferably 0.1 to 80 μm. When the thickness of the resin layer is less than 0.1 μm, the adhesive strength is reduced, and when the copper foil with a carrier with the resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.

一方、樹脂層の厚みを80μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる。更には、形成された樹脂層はその可撓性が劣るので、ハンドリング時にクラックなどが発生しやすくなり、また内層材との熱圧着時に過剰な樹脂流れが起こって円滑な積層が困難になる場合がある。   On the other hand, if the thickness of the resin layer is greater than 80 μm, it is difficult to form a resin layer having a desired thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours. Furthermore, since the formed resin layer is inferior in flexibility, cracks are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. There is.

更に、この樹脂付きキャリア付銅箔のもう一つの製品形態としては、前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング処理層の上に樹脂層で被覆し、半硬化状態とした後、ついでキャリアを剥離して、キャリアが存在しない樹脂付き銅箔の形で製造することも可能である。   Furthermore, as another product form of this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer After coating with a resin layer and making it into a semi-cured state, the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.

更に、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。本発明において、「プリント配線板」にはこのように電子部品類が搭載されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。
また、当該プリント配線板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。以下に、本発明に係るキャリア付銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted as described above.
In addition, an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a print on which the electronic components are mounted. An electronic device may be manufactured using a substrate. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.

本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。   In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.

本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。   In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.

従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Performing a desmear process on the region including the through hole or / and the blind via,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。   In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.

従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electrolytic plating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.

モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。   In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.

従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.

本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。   In the present invention, the subtractive method refers to a method of forming a conductor pattern by selectively removing unnecessary portions of a copper foil on a copper clad laminate by etching or the like.

従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されいない前記無電解めっき層の表面に電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。   The process of providing a through hole or / and a blind via and the subsequent desmear process may not be performed.

ここで、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例を図面を用いて詳細に説明する。なお、ここでは粗化処理層が形成された極薄銅層を有するキャリア付銅箔を例に説明するが、これに限らず、粗化処理層が形成されていない極薄銅層を有するキャリア付銅箔を用いても同様に下記のプリント配線板の製造方法を行うことができる。
まず、図1−Aに示すように、表面に粗化処理層が形成された極薄銅層を有するキャリア付銅箔(1層目)を準備する。
次に、図1−Bに示すように、極薄銅層の粗化処理層上にレジストを塗布し、露光・現像を行い、レジストを所定の形状にエッチングする。
次に、図1−Cに示すように、回路用のめっきを形成した後、レジストを除去することで、所定の形状の回路めっきを形成する。
次に、図2−Dに示すように、回路めっきを覆うように(回路めっきが埋没するように)極薄銅層上に埋め込み樹脂を設けて樹脂層を積層し、続いて別のキャリア付銅箔(2層目)を極薄銅層側から接着させる。
次に、図2−Eに示すように、2層目のキャリア付銅箔からキャリアを剥がす。
次に、図2−Fに示すように、樹脂層の所定位置にレーザー穴あけを行い、回路めっきを露出させてブラインドビアを形成する。
次に、図3−Gに示すように、ブラインドビアに銅を埋め込みビアフィルを形成する。
次に、図3−Hに示すように、ビアフィル上に、上記図1−B及び図1−Cのようにして回路めっきを形成する。
次に、図3−Iに示すように、1層目のキャリア付銅箔からキャリアを剥がす。
次に、図4−Jに示すように、フラッシュエッチングにより両表面の極薄銅層を除去し、樹脂層内の回路めっきの表面を露出させる。
次に、図4−Kに示すように、樹脂層内の回路めっき上にバンプを形成し、当該はんだ上に銅ピラーを形成する。このようにして本発明のキャリア付銅箔を用いたプリント配線板を作製する。
Here, the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing. Here, the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example. However, the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed. The following method for producing a printed wiring board can be similarly performed using an attached copper foil.
First, as shown to FIG. 1-A, the copper foil with a carrier (1st layer) which has the ultra-thin copper layer in which the roughening process layer was formed on the surface is prepared.
Next, as shown in FIG. 1-B, a resist is applied onto the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
Next, as shown in FIG. 1-C, after the plating for the circuit is formed, the resist is removed to form a circuit plating having a predetermined shape.
Next, as shown in FIG. 2-D, an embedding resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, followed by another carrier. A copper foil (second layer) is bonded from the ultrathin copper layer side.
Next, as shown to FIG. 2-E, a carrier is peeled from the copper foil with a carrier of the 2nd layer.
Next, as shown in FIG. 2-F, laser drilling is performed at a predetermined position of the resin layer to expose the circuit plating and form a blind via.
Next, as shown in FIG. 3G, copper is embedded in the blind via to form a via fill.
Next, as shown in FIG. 3H, circuit plating is formed on the via fill as shown in FIGS. 1-B and 1-C.
Next, as shown to FIG. 3-I, a carrier is peeled from the copper foil with a carrier of the 1st layer.
Next, as shown in FIG. 4J, the ultrathin copper layers on both surfaces are removed by flash etching, and the surface of the circuit plating in the resin layer is exposed.
Next, as shown in FIG. 4K, bumps are formed on the circuit plating in the resin layer, and copper pillars are formed on the solder. Thus, the printed wiring board using the copper foil with a carrier of this invention is produced.

上記別のキャリア付銅箔(2層目)は、本発明のキャリア付銅箔を用いてもよく、従来のキャリア付銅箔を用いてもよく、さらに通常の銅箔を用いてもよい。また、図3−Hに示される2層目の回路上に、さらに回路を1層或いは複数層形成してもよく、それらの回路形成をセミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行ってもよい。   As the another copper foil with a carrier (second layer), the copper foil with a carrier of the present invention may be used, a conventional copper foil with a carrier may be used, and a normal copper foil may be further used. Further, one or more circuits may be formed on the second layer circuit shown in FIG. 3H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.

上述のようなプリント配線板の製造方法によれば、回路めっきが樹脂層に埋め込まれた構成となっているため、例えば図4−Jに示すようなフラッシュエッチングによる極薄銅層の除去の際に、回路めっきが樹脂層によって保護され、その形状が保たれ、これにより微細回路の形成が容易となる。また、回路めっきが樹脂層によって保護されるため、耐マイグレーション性が向上し、回路の配線の導通が良好に抑制される。このため、微細回路の形成が容易となる。また、図4−J及び図4−Kに示すようにフラッシュエッチングによって極薄銅層を除去したとき、回路めっきの露出面が樹脂層から凹んだ形状となるため、当該回路めっき上にバンプが、さらにその上に銅ピラーがそれぞれ形成しやすくなり、製造効率が向上する。   According to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, for example, when removing the ultrathin copper layer by flash etching as shown in FIG. In addition, the circuit plating is protected by the resin layer, and the shape thereof is maintained, thereby facilitating the formation of a fine circuit. Further, since the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 4-J and 4-K, when the ultra-thin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.

なお、埋め込み樹脂(レジン)には公知の樹脂、プリプレグを用いることができる。例えば、BT(ビスマレイミドトリアジン)レジンやBTレジンを含浸させたガラス布であるプリプレグ、味の素ファインテクノ株式会社製ABFフィルムやABFを用いることができる。また、前記埋め込み樹脂(レジン)には本明細書に記載の樹脂層および/または樹脂および/またはプリプレグを使用することができる。   A known resin or prepreg can be used as the embedding resin (resin). For example, a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used. Moreover, the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).

また、前記一層目に用いられるキャリア付銅箔は、当該キャリア付銅箔の表面に基板または樹脂層を有してもよい。当該基板または樹脂層を有することで一層目に用いられるキャリア付銅箔は支持され、しわが入りにくくなるため、生産性が向上するという利点がある。なお、前記基板または樹脂層には、前記一層目に用いられるキャリア付銅箔を支持する効果するものであれば、全ての基板または樹脂層を用いることが出来る。例えば前記基板または樹脂層として本願明細書に記載のキャリア、プリプレグ、樹脂層や公知のキャリア、プリプレグ、樹脂層、金属板、金属箔、無機化合物の板、無機化合物の箔、有機化合物の板、有機化合物の箔を用いることができる。   Moreover, the copper foil with a carrier used for the first layer may have a substrate or a resin layer on the surface of the copper foil with a carrier. By having the said board | substrate or resin layer, the copper foil with a carrier used for the first layer is supported, and since it becomes difficult to wrinkle, there exists an advantage that productivity improves. As the substrate or resin layer, any substrate or resin layer can be used as long as it has an effect of supporting the copper foil with carrier used in the first layer. For example, as the substrate or resin layer, the carrier, prepreg, resin layer and known carrier, prepreg, resin layer, metal plate, metal foil, inorganic compound plate, inorganic compound foil, organic compound plate described in the present specification, Organic compound foils can be used.

また、本発明のプリント配線板の製造方法は、本発明のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面と樹脂基板とを積層する工程、前記樹脂基板と積層した極薄銅層側表面または前記キャリア側表面とは反対側のキャリア付銅箔の表面に、樹脂層と回路との2層を、少なくとも1回設ける工程、及び、前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアまたは前記極薄銅層を剥離させる工程を含むプリント配線板の製造方法(コアレス工法)であってもよい。当該コアレス工法について、具体的な例としては、まず、本発明のキャリア付銅箔の極薄銅層側表面またはキャリア側表面と樹脂基板とを積層する。その後、樹脂基板と積層した極薄銅層側表面または前記キャリア側表面とは反対側のキャリア付銅箔の表面に樹脂層を形成する。キャリア側表面に形成した樹脂層には、さらに別のキャリア付銅箔をキャリア側から積層してもよい。この場合、樹脂基板を中心として当該樹脂基板の両表面側に、キャリア/中間層/極薄銅層の順あるいは極薄銅層/中間層/キャリアの順でキャリア付銅箔が積層された構成となっている。このようにして、本発明のキャリア付銅箔を、コアレスプリント配線板を製造するために用いることができる。両端の極薄銅層あるいはキャリアの露出した表面には、別の樹脂層を設け、さらに銅層を設けた後、当該銅層を加工することで回路を形成してもよい。さらに、別の樹脂層を当該回路上に、当該回路を埋め込むように設けても良い。また、このような回路及び樹脂層の形成を1回以上設けてもよい(ビルドアップ工法)。そして、このようにして形成した積層体について、それぞれのキャリア付銅箔の極薄銅層またはキャリアをキャリアまたは極薄銅層から剥離させてコアレス基板を作製することができる。   Further, the method for producing a printed wiring board of the present invention includes a step of laminating the ultrathin copper layer side surface or the carrier side surface of the copper foil with a carrier of the present invention and a resin substrate, and an ultrathin layer laminated with the resin substrate. A step of providing at least once a resin layer and a circuit on the surface of the copper layer with carrier on the opposite side of the copper layer side surface or the carrier side surface, and forming two layers of the resin layer and the circuit Then, a printed wiring board manufacturing method (coreless method) including a step of peeling the carrier or the ultrathin copper layer from the carrier-attached copper foil may be used. As a specific example of the coreless construction method, first, the ultrathin copper layer side surface or carrier side surface of the copper foil with carrier of the present invention and a resin substrate are laminated. Thereafter, a resin layer is formed on the surface of the ultrathin copper layer side surface laminated with the resin substrate or the surface of the carrier-attached copper foil opposite to the carrier side surface. Another copper foil with a carrier may be laminated from the carrier side to the resin layer formed on the carrier side surface. In this case, a copper foil with a carrier is laminated in the order of carrier / intermediate layer / ultra-thin copper layer or ultra-thin copper layer / intermediate layer / carrier in this order on both surface sides of the resin substrate with the resin substrate as the center It has become. Thus, the copper foil with a carrier of the present invention can be used for manufacturing a coreless printed wiring board. Another ultra-thin copper layer or the exposed surface of the carrier on both ends may be provided with another resin layer, a copper layer may be further provided, and then the copper layer may be processed to form a circuit. Further, another resin layer may be provided on the circuit so as to embed the circuit. Moreover, you may provide such a circuit and formation of a resin layer 1 or more times (build-up construction method). And about a laminated body formed in this way, a coreless board | substrate can be produced by peeling the ultra-thin copper layer or carrier of each copper foil with a carrier from a carrier or an ultra-thin copper layer.

なお、上述のコアレス基板の製造方法において、キャリア付銅箔の端面の一部または全部を樹脂で覆うことにより、ビルドアップ工法でプリント配線板を製造する際に、中間層への薬液の染み込みを防止することができ、薬液の染み込みによる極薄銅層とキャリアの分離を防止することができ、歩留りを向上させることができる。ここで用いる「キャリア付銅箔の端面の一部または全部を覆う樹脂」としては、樹脂層に用いることができる樹脂を使用することができる。なお、キャリアと極薄銅層とを分離する際には、キャリア付銅箔の端面の樹脂で覆われた部分は、切断等により除去する必要がある。また、上述のコアレス基板の製造方法において、キャリア付銅箔において平面視したときにキャリア付銅箔の積層部分の外周の少なくとも一部が樹脂又はプリプレグで覆ってもよい。また、上述のコアレス基板の製造方法で形成する積層体は、一対のキャリア付銅箔を互いに分離可能に接触させて構成されていてもよい。また、当該キャリア付銅箔において平面視したときにキャリア付銅箔の積層部分の外周の全体にわたって樹脂又はプリプレグで覆われてなるものであってもよい。このような構成とすることにより、キャリア付銅箔を平面視したときに、キャリア付銅箔の積層部分が樹脂又はプリプレグにより覆われ、他の部材がこの部分の側方向、すなわち積層方向に対して横からの方向から当たることを防ぐことができるようになり、結果としてハンドリング中のキャリア付銅箔同士の剥がれを少なくすることができる。また、キャリア付銅箔の積層部分の外周を露出しないように樹脂又はプリプレグで覆うことにより、前述したような薬液処理工程におけるこの界面への薬液の浸入を防ぐことができ、キャリア付銅箔の腐食や侵食を防ぐことができる。なお、一対のキャリア付銅箔から一つのキャリア付銅箔を分離する際、またはキャリア付銅箔のキャリアと銅箔(極薄銅層)を分離する際には、樹脂又はプリプレグで覆われているキャリア付銅箔の積層部分を切断等により除去する必要がある。   In addition, in the manufacturing method of the coreless substrate described above, when a printed wiring board is manufactured by a build-up method by covering a part or all of the end face of the copper foil with a carrier with a resin, the intermediate layer is impregnated with a chemical solution. It is possible to prevent the separation of the ultrathin copper layer and the carrier due to the penetration of the chemical solution, and the yield can be improved. As the “resin that covers part or all of the end face of the copper foil with carrier” used here, a resin that can be used for the resin layer can be used. When the carrier and the ultrathin copper layer are separated, it is necessary to remove the portion covered with the resin on the end face of the carrier-attached copper foil by cutting or the like. Moreover, in the manufacturing method of the above-mentioned coreless board | substrate, when planarly viewing in copper foil with a carrier, at least one part of the outer periphery of the laminated part of copper foil with a carrier may be covered with resin or a prepreg. Moreover, the laminated body formed with the manufacturing method of the above-mentioned coreless board | substrate may be comprised by making a pair of copper foil with a carrier contact so that separation | separation is mutually possible. Moreover, when planarly viewed in the said copper foil with a carrier, the whole outer periphery of the lamination | stacking part of a copper foil with a carrier may be covered with resin or a prepreg. By adopting such a configuration, when the carrier-attached copper foil is viewed in plan, the laminated portion of the carrier-attached copper foil is covered with resin or prepreg, and the other members are in the lateral direction of this portion, that is, in the lamination direction. Therefore, it is possible to prevent the copper foil with a carrier from being peeled off during handling. Further, by covering the outer periphery of the laminated portion of the copper foil with carrier with a resin or prepreg so as not to be exposed, it is possible to prevent the intrusion of the chemical liquid into this interface in the chemical treatment process as described above. Corrosion and erosion can be prevented. In addition, when separating one copper foil with a carrier from a pair of copper foils with a carrier, or when separating a carrier of a copper foil with a carrier and a copper foil (ultra-thin copper layer), it is covered with a resin or a prepreg. It is necessary to remove the laminated portion of the carrier-attached copper foil by cutting or the like.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1〜37、比較例1〜4)
1.キャリア付銅箔の作製
キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)及び厚さ35μmの長尺の圧延銅箔(JX日鉱日石金属社製 JIS H3100 合金番号C1100に規格されるタフピッチ銅の箔)を用意した。用意したキャリアに対して以下の様に中間層を設けた。なお、表の「中間層」の欄の例えば「Ni/電解クロメート」は、キャリアの上にNiめっきを行い、Niめっきの後に電解クロメート処理を行ったことを意味する。実施例36については前述の圧延銅箔をキャリアに用い、それ以外の実施例および比較例については前述の電解銅箔をキャリアに用いた。
(Examples 1-37, Comparative Examples 1-4)
1. Production of Copper Foil with Carrier As a carrier, a long electrolytic copper foil with a thickness of 35 μm (JTC made by JX Nippon Mining & Metals) and a long rolled copper foil with a thickness of 35 μm (JIS H3100 made by JX Nippon Mining & Metals) (Tough pitch copper foil standardized to Alloy No. C1100) was prepared. An intermediate layer was provided as follows for the prepared carrier. For example, “Ni / electrolytic chromate” in the column of “intermediate layer” in the table means that Ni was plated on the carrier, and electrolytic chromate treatment was performed after the Ni plating. For Example 36, the above-mentioned rolled copper foil was used for the carrier, and for the other Examples and Comparative Examples, the above-mentioned electrolytic copper foil was used for the carrier.

・Niめっき(Ni)
上記銅箔(キャリア)のシャイニー面(圧延銅箔については一方の面もしくは他方の面)に対して、以下の条件でロール・トウ・ロール型の連続めっきラインで電気めっきすることにより、4000μm/dm2の付着量のNi層を形成した。
・ Ni plating (Ni)
By subjecting the shiny surface of the copper foil (carrier) (one surface or the other surface with respect to the rolled copper foil) to electroplating in a roll-to-roll continuous plating line under the following conditions, 4000 μm / A Ni layer having an adhesion amount of dm 2 was formed.

(液組成)硫酸ニッケル:250〜300g/L、塩化ニッケル:35〜45g/L、酢酸ニッケル:10〜20g/L、ホウ酸:15〜30g/L、光沢剤:サッカリン、ブチンジオール等、ドデシル硫酸ナトリウム:30〜100ppm
(pH)表1に記載
(めっき後の浸漬時間)表1に記載
(浴温)50〜70℃
(電流密度)3〜15A/dm2
(Liquid composition) Nickel sulfate: 250-300 g / L, Nickel chloride: 35-45 g / L, Nickel acetate: 10-20 g / L, Boric acid: 15-30 g / L, Brightener: Saccharin, butynediol, dodecyl Sodium sulfate: 30-100ppm
(PH) described in Table 1 (immersion time after plating) described in Table 1 (Bath temperature) 50 to 70 ° C
(Current density) 3-15 A / dm 2

次に、水洗し、さらに実施例8〜12、20〜24、34〜37については、表1に記載のpHの洗浄液を用いて固定した状態で5秒間酸洗した後、実施例1〜7、13〜19、30〜33、比較例1〜4については前述の酸洗を行わずに、引き続き、ロール・トウ・ロール型の連続めっきライン上で、Ni層の上に11μg/dm2の付着量のCr層を以下の条件で電解クロメート処理することにより付着させた。 Next, after washing with water, and Examples 8 to 20, 20 to 24, and 34 to 37, the samples were pickled for 5 seconds in a state of being fixed using the pH cleaning liquid described in Table 1, and then Examples 1 to 7 were used. , 13-19, 30-33, and Comparative Examples 1-4, without performing the above-mentioned pickling, continuously on a Ni-layer on a roll-to-roll type continuous plating line of 11 μg / dm 2 The deposited amount of Cr layer was deposited by electrolytic chromate treatment under the following conditions.

・電解クロメート処理(電解クロメート)
(液組成)重クロム酸カリウム:1〜10g/L、亜鉛:0〜5g/L
(pH)3〜4
(液温)50〜60℃
(電流密度)0.1〜2.6A/dm2
(クーロン量)0.5〜30As/dm2
・ Electrolytic chromate treatment (electrolytic chromate)
(Liquid composition) potassium dichromate: 1 to 10 g / L, zinc: 0 to 5 g / L
(PH) 3-4
(Liquid temperature) 50-60 ° C
(Current density) 0.1-2.6 A / dm 2
(Coulomb amount) 0.5-30 As / dm 2

・Ni−Mo層(ニッケルモリブデン合金めっき)
実施例25については、キャリアに対して、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより3000μg/dm2の付着量のNi-Mo層を形成した。具体的なメッキ条件を以下に記す。
(液組成)硫酸Ni六水和物:50g/dm3、モリブデン酸ナトリウム二水和物:60g/dm3、クエン酸ナトリウム:90g/dm3
(pH)表1に記載
(めっき後の浸漬時間)表1に記載
(液温)30℃
(電流密度)1〜4A/dm2
(通電時間)3〜25秒
・ Ni-Mo layer (nickel molybdenum alloy plating)
For Example 25, a Ni—Mo layer having an adhesion amount of 3000 μg / dm 2 was formed on a carrier by electroplating on a roll-to-roll type continuous plating line under the following conditions. Specific plating conditions are described below.
(Liquid composition) Ni sulfate hexahydrate: 50 g / dm 3 , sodium molybdate dihydrate: 60 g / dm 3 , sodium citrate: 90 g / dm 3
(PH) described in Table 1 (immersion time after plating) described in Table 1 (Liquid temperature) 30 ° C.
(Current density) 1 to 4 A / dm 2
(Energization time) 3 to 25 seconds

・有機物層(有機物層形成処理)
実施例26については上記の「Niめっき(Ni)」を形成した後に表1に記載のpHの洗浄液を用いて固定した状態で5秒間酸洗した後、また、実施例29についてはキャリアに対して、それぞれ、濃度1〜30g/Lのカルボキシベンゾトリアゾール(CBTA)を含む、液温40℃、pH5の水溶液を、20〜120秒間シャワーリングして噴霧することにより有機物層を形成した。また、実施例29については、有機物層形成後、上記の「Niめっき(Ni)」を形成した後に表1に記載のpHの洗浄液を用いて固定した状態で5秒間酸洗した。
・ Organic material layer (Organic material layer formation treatment)
For Example 26, after forming the above-mentioned “Ni plating (Ni)”, pickling was performed for 5 seconds in a state of being fixed using the cleaning solution having the pH shown in Table 1, and Example 29 was applied to the carrier. Then, an organic substance layer was formed by spraying an aqueous solution containing carboxybenzotriazole (CBTA) having a concentration of 1 to 30 g / L and having a liquid temperature of 40 ° C. and a pH of 5 for 20 to 120 seconds. In Example 29, after the organic layer was formed, the above-mentioned “Ni plating (Ni)” was formed, and then pickled for 5 seconds in a state of being fixed using a cleaning solution having a pH shown in Table 1.

・Co−Mo層(コバルトモリブデン合金めっき)
実施例27についてはキャリアに対して、また、実施例28についてはキャリアに対して上記の「Niめっき(Ni)」を形成した後に表1に記載のpHの洗浄液を用いて固定した状態で5秒間酸洗した後、それぞれ、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより4000μg/dm2の付着量のCo−Mo層を形成した。具体的なメッキ条件を以下に記す。なお、実施例27、28は、当該Co−Mo層を形成した後にさらに表1に記載のpHの洗浄液を用いて固定した状態で5秒間酸洗した。
(液組成)硫酸Co:50g/dm3、モリブデン酸ナトリウム二水和物:60g/dm3、クエン酸ナトリウム:90g/dm3
(pH)表1に記載
(めっき後の浸漬時間)表1に記載
(液温)30℃
(電流密度)1〜4A/dm2
(通電時間)3〜25秒
・ Co-Mo layer (cobalt molybdenum alloy plating)
In Example 27, the above-mentioned “Ni plating (Ni)” was formed on the carrier, and in Example 28, the above-mentioned “Ni plating (Ni)” was formed and then fixed using the cleaning solution having the pH shown in Table 1. After pickling for 2 seconds, a Co—Mo layer having an adhesion amount of 4000 μg / dm 2 was formed by electroplating on a roll-to-roll continuous plating line under the following conditions. Specific plating conditions are described below. In Examples 27 and 28, after the Co—Mo layer was formed, pickling was further performed for 5 seconds in a state of being fixed using a cleaning solution having a pH described in Table 1.
(Liquid composition) Co sulfate 50 g / dm 3 , sodium molybdate dihydrate: 60 g / dm 3 , sodium citrate: 90 g / dm 3
(PH) described in Table 1 (immersion time after plating) described in Table 1 (Liquid temperature) 30 ° C.
(Current density) 1 to 4 A / dm 2
(Energization time) 3 to 25 seconds

引き続き、ロール・トウ・ロール型の連続めっきライン上で、中間層の上に、厚み2μmの極薄銅層を電解槽内にて下記の電解条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。また、このとき、表1に記載のフィルター径の目を有するフィルターを電解槽に接続された給液用の配管の途中に設けることで、電解槽に上がる液が全てフィルターを通過した直後の液となり、これによって電解液中の微小な金属粉や異物等を除去した。なお、実施例1、2、14、28については、それぞれ極薄銅層の厚みを1、3、5μmとした場合のキャリア付銅箔についても製造して同様の評価を行った。その結果、極薄銅層の厚みを2μmとした場合とそれぞれ同じ結果となった。
(電解条件)
液組成:銅濃度:30〜120g/L、H2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
Subsequently, an ultrathin copper layer having a thickness of 2 μm was formed on the intermediate layer on the roll-toe-roll type continuous plating line by electroplating in the electrolytic cell under the following electrolysis conditions, and the copper with carrier A foil was produced. Also, at this time, by providing a filter having a filter diameter as shown in Table 1 in the middle of the liquid supply pipe connected to the electrolytic cell, the liquid immediately after the liquid that goes up to the electrolytic cell passes through the filter. As a result, fine metal powders and foreign matters in the electrolytic solution were removed. In addition, about Example 1, 2, 14, 28, it manufactured also about the copper foil with a carrier in case the thickness of an ultra-thin copper layer was 1, 3, and 5 micrometers, respectively, and performed the same evaluation. As a result, the same results were obtained as when the thickness of the ultrathin copper layer was 2 μm.
(Electrolysis conditions)
Liquid composition: Copper concentration: 30 to 120 g / L, H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2

実施例13〜24及び比較例3〜4について、上記方法により得られたキャリア付銅箔の極薄銅層表面に対し、粗化処理等の表面処理として以下の粗化処理、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理
Cu:5〜30g/L (硫酸銅5水和物として添加)
2SO4:30〜120g/L
W:10mg/L (タングステン酸ナトリウム2水和物として添加)
液温:30℃
電流密度Dk:20〜40A/dm2
時間:4秒
・防錆処理
Zn:0を超え〜20g/L
Ni:0を超え〜5g/L
pH:2.5〜4.5
液温:30〜50℃
電流密度Dk:0を超え〜1.7A/dm2
時間:1秒
Zn付着量:5〜250μg/dm2
Ni付着量:5〜300μg/dm2
・クロメート処理
2Cr27
(Na2Cr27或いはCrO3):2〜10g/L
NaOH或いはKOH:10〜50g/L
ZnO或いはZnSO4・7H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度 0.05〜5A/dm2
時間:5〜30秒
Cr付着量:10〜150μg/dm2
・シランカップリング処理
ビニルトリエトキシシラン水溶液
(ビニルトリエトキシシラン濃度:0.1〜1.4wt%)
pH:4〜5
浴温:25〜60℃
浸漬時間:5〜30秒
For Examples 13 to 24 and Comparative Examples 3 to 4, the following roughening treatment, antirust treatment as surface treatment such as roughening treatment, etc. on the surface of the ultrathin copper layer of the copper foil with carrier obtained by the above method, Chromate treatment and silane coupling treatment were performed in this order.
・ Roughening treatment Cu: 5 to 30 g / L (added as copper sulfate pentahydrate)
H 2 SO 4: 30~120g / L
W: 10 mg / L (added as sodium tungstate dihydrate)
Liquid temperature: 30 ° C
Current density Dk: 20 to 40 A / dm 2
Time: 4 seconds, rust prevention treatment Zn: over 0 to 20 g / L
Ni: more than 0 to 5 g / L
pH: 2.5-4.5
Liquid temperature: 30-50 degreeC
Current density Dk: more than 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5-250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnO or ZnSO 4 .7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density 0.05-5A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Bath temperature: 25-60 ° C
Immersion time: 5 to 30 seconds

上記のようにして得られた実施例及び比較例のキャリア付銅箔について、以下の方法で各評価を実施した。   Each evaluation was implemented with the following method about the copper foil with a carrier of the Example and comparative example which were obtained as mentioned above.

<極薄銅層側表面の異常電着個数>
キャリア付銅箔を水平位置から45°傾けたステージ上に載せ、極薄銅層側表面について、倍率を500倍としてSEM写真を撮影した。図5に、極薄銅層側表面の異常電着の代表的なSEM像の例を示す。枠線で囲まれた部分に観察される凸部が異常電着である。また、図6に、異常電着を取り囲む円の例、及び、裾引き部が重なり合って群を成す異常電着の数のカウントの仕方について示すための極薄銅層側表面の異常電着のSEM像の例を示す。図6に示すように、異常電着の直径は裾引き部までを考慮して取り囲む円を設定し、その円の直径とした。また、裾引き部が重なり合って群を成す異常電着の数は、当該群における頂点の数とした。なお、異常電着個数の測定は1視野のサンプルの大きさを250μm×270μmとし、10視野観察することにより行った。
当該SEM写真において、異常電着を取り囲む円の最小直径が5μm以上かつ影を有している異常電着の数をカウントし、下記の評価基準によって異常電着密度合否判定を行った。影を有している異常電着は、影を有していない異常電着よりもその高さが高く、回路形成性に悪影響を及ぼす可能性が高いためである。
◎:600個/mm2以下
○:600個/mm2超1000個/mm2以下
△:1000個/mm2超5000個/mm2以下
×:5000個/mm2
<Number of abnormal electrodeposition on the surface of the ultrathin copper layer>
The copper foil with a carrier was placed on a stage inclined 45 ° from a horizontal position, and an SEM photograph was taken with respect to the ultrathin copper layer side surface at a magnification of 500 times. FIG. 5 shows an example of a typical SEM image of abnormal electrodeposition on the ultrathin copper layer side surface. The convex portion observed in the portion surrounded by the frame line is abnormal electrodeposition. In addition, FIG. 6 shows an example of a circle surrounding abnormal electrodeposition, and abnormal electrodeposition on the surface of the ultrathin copper layer for showing how to count the number of abnormal electrodepositions in which the tailings overlap to form a group. An example of an SEM image is shown. As shown in FIG. 6, the diameter of abnormal electrodeposition was set to a circle that encloses the skirt, taking the diameter of the circle. In addition, the number of abnormal electrodepositions in which a group of overlapping skirts overlaps is the number of vertices in the group. The number of abnormal electrodepositions was measured by observing 10 fields of view with a sample size of 1 field of view of 250 μm × 270 μm.
In the SEM photograph, the number of abnormal electrodepositions in which the minimum diameter of the circle surrounding the abnormal electrodeposition was 5 μm or more and had a shadow was counted, and the abnormal electrodeposition density pass / fail judgment was performed according to the following evaluation criteria. This is because the abnormal electrodeposition having a shadow is higher in height than the abnormal electrodeposition not having a shadow and has a high possibility of adversely affecting circuit formation.
◎: 600 pieces / mm 2 or less ○: 600 pieces / mm 2 more than 1000 pieces / mm 2 or less △: 1000 pieces / mm 2 more than 5000 pieces / mm 2 or less ×: 5000 pieces / mm 2 or less

<回路形成性>
キャリア付銅箔の極薄銅層に対し、MSAP(モディファイドセミアディティブ)工法によって、L(ライン)/S(スペース)=30μm/30μm、25μm/25μm、20μm/20μm、15μm/20μm及び15μm/15μmの回路(各L/Sの回路をそれぞれ100個ずつ)の形成を試みた。作製した100個の回路のうち、回路のショートが発生した割合が30%未満(ショートした回路が30個未満)のものを○と判定し、30%以上(ショートした回路が30個以上)のものを×と判定した。
試験条件及び試験結果を表1及び2に示す。
<Circuit formability>
L (line) / S (space) = 30 μm / 30 μm, 25 μm / 25 μm, 20 μm / 20 μm, 15 μm / 20 μm and 15 μm / 15 μm by MSAP (Modified Semi-additive) method for the ultra-thin copper layer of the copper foil with carrier Of the circuit (100 circuits of each L / S). Of the 100 circuits produced, the percentage of circuit shorts that occurred was less than 30% (less than 30 shorted circuits) was judged as ○, and 30% or more (30 or more shorted circuits). The thing was determined as x.
Test conditions and test results are shown in Tables 1 and 2.

(評価結果)
実施例1〜37は、いずれも極薄銅層側表面の異常電着個数が5000個/mm2以下であり、回路形成性が良好であった。
比較例1〜4は、いずれも極薄銅層を形成するための電解液の濾過に用いたフィルターが、2.5μm径より大きいサイズの目を有するものであり、極薄銅層側表面の異常電着個数が5000個/mm2を超え、回路形成性が不良であった。
(Evaluation results)
In each of Examples 1 to 37, the number of abnormal electrodepositions on the surface of the ultrathin copper layer was 5000 / mm 2 or less, and the circuit formability was good.
In each of Comparative Examples 1 to 4, the filter used for filtering the electrolytic solution for forming the ultrathin copper layer has eyes having a size larger than 2.5 μm in diameter. The number of abnormal electrodepositions exceeded 5000 / mm 2 , and the circuit formability was poor.

Claims (24)

キャリア、中間層、極薄銅層をこの順に有するキャリア付銅箔であって、
極薄銅層側表面の異常電着個数が5000個/mm2以下であるキャリア付銅箔。
A carrier-attached copper foil having a carrier, an intermediate layer, and an ultrathin copper layer in this order,
A copper foil with a carrier, wherein the number of abnormal electrodepositions on the surface of the ultrathin copper layer is 5000 / mm 2 or less.
前記極薄銅層側表面の異常電着個数が2000個/mm2以下である請求項1に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 1, wherein the number of abnormal electrodepositions on the surface of the ultrathin copper layer is 2000 pieces / mm 2 or less. 前記極薄銅層側表面の異常電着個数が1000個/mm2以下である請求項2に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 2, wherein the number of abnormal electrodepositions on the surface of the ultrathin copper layer is 1000 pieces / mm 2 or less. 前記極薄銅層側表面の異常電着個数が600個/mm2以下である請求項3に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 3, wherein the number of abnormal electrodepositions on the surface of the ultrathin copper layer is 600 pieces / mm 2 or less. 前記極薄銅層表面及び前記キャリアの表面のいずれか一方または両方に粗化処理層を有する請求項1〜4のいずれか一項に記載のキャリア付銅箔。   The copper foil with a carrier as described in any one of Claims 1-4 which has a roughening process layer in any one or both of the said ultra-thin copper layer surface and the surface of the said carrier. 前記粗化処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項5に記載のキャリア付銅箔。   The roughening layer is made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing one or more of them. The copper foil with a carrier according to claim 5 which is a layer. 前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項5又は6に記載のキャリア付銅箔。   The copper with a carrier according to claim 5 or 6 which has one or more sorts of layers chosen from the group which consists of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of said roughening treatment layer. Foil. 前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜7のいずれか一項に記載のキャリア付銅箔。   The surface of the ultra-thin copper layer has at least one layer selected from the group consisting of a heat-resistant layer, a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer. The copper foil with a carrier of description. 前記極薄銅層上に樹脂層を備える請求項1〜7のいずれか一項に記載のキャリア付銅箔。   The copper foil with a carrier as described in any one of Claims 1-7 provided with a resin layer on the said ultra-thin copper layer. 前記粗化処理層上に樹脂層を備える請求項5又は6に記載のキャリア付銅箔。   The copper foil with a carrier according to claim 5 or 6, comprising a resin layer on the roughening treatment layer. 前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える請求項7又は8に記載のキャリア付銅箔。   The copper foil with a carrier according to claim 7 or 8, comprising a resin layer on one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer. 前記樹脂層が接着用樹脂である請求項9〜11のいずれか一項に記載のキャリア付銅箔。   The said resin layer is resin for adhesion | attachment, Copper foil with a carrier as described in any one of Claims 9-11. 前記樹脂層が半硬化状態の樹脂である請求項9〜12のいずれか一項に記載のキャリア付銅箔。   The copper foil with a carrier according to any one of claims 9 to 12, wherein the resin layer is a semi-cured resin. 請求項1〜13のいずれか一項に記載のキャリア付銅箔を有する積層体。   The laminated body which has a copper foil with a carrier as described in any one of Claims 1-13. 請求項1〜13のいずれか一項に記載のキャリア付銅箔を用いて積層体を製造する積層体の製造方法。   The manufacturing method of the laminated body which manufactures a laminated body using the copper foil with a carrier as described in any one of Claims 1-13. 請求項1〜13のいずれか一項に記載のキャリア付銅箔と樹脂とを含む積層体であって、前記キャリア付銅箔の端面の一部または全部が前記樹脂により覆われている積層体。   It is a laminated body containing the copper foil with a carrier and resin as described in any one of Claims 1-13, Comprising: The laminated body with which one part or all part of the end surface of the said copper foil with a carrier is covered with the said resin. . 請求項1〜13のいずれか一項に記載のキャリア付銅箔と樹脂とを二組有し、前記二組のうちの一方のキャリア付銅箔の極薄銅層側表面と、他方のキャリア付銅箔の極薄銅層側表面とがそれぞれ露出するように設けられた積層体。   It has two sets of copper foil with a carrier and resin as described in any one of Claims 1-13, the ultra-thin copper layer side surface of one copper foil with a carrier of the said two sets, and the other carrier The laminated body provided so that the ultra-thin copper layer side surface of an attached copper foil might each be exposed. 請求項1〜13のいずれか一項に記載のキャリア付銅箔を用いてプリント配線板を製造するプリント配線板の製造方法。   The manufacturing method of a printed wiring board which manufactures a printed wiring board using the copper foil with a carrier as described in any one of Claims 1-13. 請求項18に記載のプリント配線板を用いて電子機器を製造する電子機器の製造方法。   The manufacturing method of the electronic device which manufactures an electronic device using the printed wiring board of Claim 18. 請求項1〜13のいずれか一項に記載のキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板とを積層する工程、及び、
前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。
Preparing the carrier-attached copper foil according to any one of claims 1 to 13 and an insulating substrate;
A step of laminating the copper foil with carrier and an insulating substrate; and
After laminating the carrier-attached copper foil and the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the carrier-attached copper foil,
Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
請求項1〜13のいずれか一項に記載のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に回路を形成する工程、
前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に樹脂層を形成する工程、
前記樹脂層上に回路を形成する工程、
前記樹脂層上に回路を形成した後に、前記キャリアまたは前記極薄銅層を剥離させる工程、及び、
前記キャリアまたは前記極薄銅層を剥離させた後に、前記極薄銅層または前記キャリアを除去することで、前記極薄銅層側表面または前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
を含むプリント配線板の製造方法。
A step of forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil according to any one of claims 1 to 13,
Forming a resin layer on the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier so that the circuit is buried;
Forming a circuit on the resin layer;
After forming a circuit on the resin layer, peeling the carrier or the ultra-thin copper layer; and
After the carrier or the ultrathin copper layer is peeled off, the ultrathin copper layer or the carrier is removed to be buried in the resin layer formed on the ultrathin copper layer side surface or the carrier side surface. A method of manufacturing a printed wiring board including a step of exposing a circuit that is connected.
請求項1〜13のいずれか一項に記載のキャリア付銅箔を前記キャリア側から樹脂基板に積層する工程、
前記キャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に回路を形成する工程、
前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面に樹脂層を形成する工程、
前記樹脂層上に回路を形成する工程、
前記樹脂層上に回路を形成した後に、前記キャリアまたは前記極薄銅層を剥離させる工程、及び、
前記キャリアまたは前記極薄銅層を剥離させた後に、前記極薄銅層または前記キャリアを除去することで、前記極薄銅層側表面または前記キャリア側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
を含むプリント配線板の製造方法。
A step of laminating the carrier-attached copper foil according to any one of claims 1 to 13 on the resin substrate from the carrier side,
Forming a circuit on the ultrathin copper layer side surface or the carrier side surface of the carrier-attached copper foil,
Forming a resin layer on the ultrathin copper layer side surface or the carrier side surface of the copper foil with carrier so that the circuit is buried;
Forming a circuit on the resin layer;
After forming a circuit on the resin layer, peeling the carrier or the ultra-thin copper layer; and
After the carrier or the ultrathin copper layer is peeled off, the ultrathin copper layer or the carrier is removed to be buried in the resin layer formed on the ultrathin copper layer side surface or the carrier side surface. A method of manufacturing a printed wiring board including a step of exposing a circuit that is connected.
請求項1〜13のいずれか一項に記載のキャリア付銅箔の前記極薄銅層側表面または前記キャリア側表面と樹脂基板とを積層する工程、
前記キャリア付銅箔の樹脂基板と積層した側とは反対側の極薄銅層側表面または前記キャリア側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、
前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアまたは前記極薄銅層を剥離させる工程
を含むプリント配線板の製造方法。
The step of laminating the ultrathin copper layer side surface or the carrier side surface of the copper foil with a carrier according to any one of claims 1 to 13 and a resin substrate,
A step of providing at least once two layers of a resin layer and a circuit on the surface of the ultrathin copper layer opposite to the side laminated with the resin substrate of the copper foil with carrier or on the surface of the carrier; and
A method for producing a printed wiring board, comprising: a step of peeling the carrier or the ultrathin copper layer from the copper foil with a carrier after forming the resin layer and the two layers of the circuit.
請求項1〜13のいずれか一項に記載のキャリア付銅箔の前記キャリア側表面と樹脂基板とを積層する工程、
前記キャリア付銅箔の樹脂基板と積層した側とは反対側の極薄銅層側表面に樹脂層と回路との2層を、少なくとも1回設ける工程、及び、
前記樹脂層及び回路の2層を形成した後に、前記キャリア付銅箔から前記キャリアを剥離させる工程
を含むプリント配線板の製造方法。
A step of laminating the carrier-side surface of the copper foil with a carrier according to any one of claims 1 to 13 and a resin substrate,
A step of providing two layers of a resin layer and a circuit at least once on the surface of the ultrathin copper layer side opposite to the side laminated with the resin substrate of the copper foil with carrier, and
A method for producing a printed wiring board, comprising the step of peeling the carrier from the copper foil with a carrier after forming the resin layer and the two layers of the circuit.
JP2015218935A 2015-11-06 2015-11-06 Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device Pending JP2017088943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218935A JP2017088943A (en) 2015-11-06 2015-11-06 Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218935A JP2017088943A (en) 2015-11-06 2015-11-06 Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device

Publications (1)

Publication Number Publication Date
JP2017088943A true JP2017088943A (en) 2017-05-25

Family

ID=58767804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218935A Pending JP2017088943A (en) 2015-11-06 2015-11-06 Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device

Country Status (1)

Country Link
JP (1) JP2017088943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219230A (en) * 2017-07-03 2019-01-15 三星电机株式会社 Multilayer board
CN112492747A (en) * 2021-01-04 2021-03-12 深圳和美精艺半导体科技股份有限公司 Packaging substrate with three-layer plate structure and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011684A (en) * 1999-06-29 2001-01-16 Nippon Denkai Kk Production of electrolytic copper foil
JP2007217791A (en) * 2005-03-31 2007-08-30 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
JP2009004423A (en) * 2007-06-19 2009-01-08 Hitachi Cable Ltd Copper foil with carrier foil
JP2009293103A (en) * 2008-06-09 2009-12-17 Nippon Denkai Kk Ultrathin copper foil with support and method of manufacturing the same
JP2010132959A (en) * 2008-12-03 2010-06-17 Mitsui Mining & Smelting Co Ltd Method for manufacturing copper foil with carrier and copper foil with carrier obtained by using the method
US20130171457A1 (en) * 2011-12-28 2013-07-04 Mitsui Mining & Smelting Co., Ltd. Electro-deposited copper-alloy foil and electro-deposited copper-alloy foil provided with carrier foil
JP2013199707A (en) * 2013-05-30 2013-10-03 Jx Nippon Mining & Metals Corp Copper foil with carrier, method of manufacturing the same, copper foil with carrier for printed wiring board, and printed circuit board
WO2014033917A1 (en) * 2012-08-31 2014-03-06 Jx日鉱日石金属株式会社 Electrolytic copper foil and process for producing same
WO2014196576A1 (en) * 2013-06-04 2014-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011684A (en) * 1999-06-29 2001-01-16 Nippon Denkai Kk Production of electrolytic copper foil
JP2007217791A (en) * 2005-03-31 2007-08-30 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
JP2009004423A (en) * 2007-06-19 2009-01-08 Hitachi Cable Ltd Copper foil with carrier foil
JP2009293103A (en) * 2008-06-09 2009-12-17 Nippon Denkai Kk Ultrathin copper foil with support and method of manufacturing the same
JP2010132959A (en) * 2008-12-03 2010-06-17 Mitsui Mining & Smelting Co Ltd Method for manufacturing copper foil with carrier and copper foil with carrier obtained by using the method
US20130171457A1 (en) * 2011-12-28 2013-07-04 Mitsui Mining & Smelting Co., Ltd. Electro-deposited copper-alloy foil and electro-deposited copper-alloy foil provided with carrier foil
WO2014033917A1 (en) * 2012-08-31 2014-03-06 Jx日鉱日石金属株式会社 Electrolytic copper foil and process for producing same
JP2013199707A (en) * 2013-05-30 2013-10-03 Jx Nippon Mining & Metals Corp Copper foil with carrier, method of manufacturing the same, copper foil with carrier for printed wiring board, and printed circuit board
WO2014196576A1 (en) * 2013-06-04 2014-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219230A (en) * 2017-07-03 2019-01-15 三星电机株式会社 Multilayer board
JP2019016768A (en) * 2017-07-03 2019-01-31 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer printed circuit board
CN109219230B (en) * 2017-07-03 2023-11-28 三星电机株式会社 Multi-layer printed circuit board
CN112492747A (en) * 2021-01-04 2021-03-12 深圳和美精艺半导体科技股份有限公司 Packaging substrate with three-layer plate structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR102362399B1 (en) Surface treated copper foil, surface treated copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
KR101975086B1 (en) Copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
JP6058182B1 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6006445B1 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6403969B2 (en) Copper foil with carrier, printed wiring board, copper-clad laminate, electronic device, and method for manufacturing printed wiring board
TWI623422B (en) Carrier copper foil, laminated body, method for producing laminated body, method for producing printed wiring board, and method for manufacturing electronic device
JP6149016B2 (en) Copper foil with carrier, method for producing copper-clad laminate, method for producing electronic device, method for producing copper foil with carrier, and method for producing printed wiring board
WO2014196576A1 (en) Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board
WO2014157728A1 (en) Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
TWI641294B (en) Carrier copper foil, printed wiring board, laminated body, electronic device, and printed wiring board manufacturing method
JP2023123687A (en) Surface treated copper foil, surface treated copper foil with resin layer, copper foil with carrier, laminate, method for producing printed circuit board, and method for producing electronic device
JP7033905B2 (en) Manufacturing method of surface-treated copper foil, copper foil with carrier, laminate, printed wiring board and manufacturing method of electronic equipment
JP6247829B2 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate and printed wiring board manufacturing method
JP2017088971A (en) Copper foil with carrier, manufacturing method of copper foil with carrier, laminate, manufacturing method of printed wiring board and manufacturing method of electronic device
JP2014208484A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP2017088943A (en) Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device
JP2014208909A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP2014208481A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP6522974B2 (en) Copper foil with carrier, laminate, method of producing laminate, and method of producing printed wiring board
JP2018192775A (en) Carrier-attached copper foil, laminate, method for producing laminate, method for manufacturing printed wiring board, and method for producing electronic apparatus
JP2017088961A (en) Copper foil with carrier, printed wiring board, laminate, electronic device, manufacturing method of copper foil with carrier and manufacturing method of printed wiring board
JP6570430B2 (en) Method for producing copper foil with carrier, method for producing printed wiring board, and method for producing electronic device
JP2014208485A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP2017133105A (en) Copper foil with carrier, printed wiring board, printed circuit, copper clad laminate and manufacturing method of printed wiring board
JP7002200B2 (en) Manufacturing method of surface-treated copper foil, copper foil with carrier, laminate, printed wiring board and manufacturing method of electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804