WO2017141985A1 - Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate - Google Patents

Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate Download PDF

Info

Publication number
WO2017141985A1
WO2017141985A1 PCT/JP2017/005579 JP2017005579W WO2017141985A1 WO 2017141985 A1 WO2017141985 A1 WO 2017141985A1 JP 2017005579 W JP2017005579 W JP 2017005579W WO 2017141985 A1 WO2017141985 A1 WO 2017141985A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
copper foil
etching
carrier
Prior art date
Application number
PCT/JP2017/005579
Other languages
French (fr)
Japanese (ja)
Inventor
光由 松田
哲聡 ▲高▼梨
浩人 飯田
吉川 和広
翼 加藤
金子 智一
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020187020097A priority Critical patent/KR20180113996A/en
Priority to MYPI2018702817A priority patent/MY188258A/en
Priority to JP2018500170A priority patent/JP6836580B2/en
Priority to CN201780012182.6A priority patent/CN108702847B/en
Publication of WO2017141985A1 publication Critical patent/WO2017141985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a copper foil for producing a printed wiring board, a copper foil with a carrier and a copper clad laminate, and a method for producing a printed wiring board using them.
  • the MSAP (Modified Semi-Additive Process) method is widely used as a printed wiring board manufacturing method suitable for circuit miniaturization.
  • the MSAP method is a method suitable for forming an extremely fine circuit, and is performed using an ultrathin copper foil with a carrier in order to take advantage of the feature.
  • an ultrathin copper foil 110 is applied to a primer layer on an insulating resin substrate 111 having a prepreg 111b on a base substrate 111a (a lower circuit 111c may be included if necessary).
  • 112 is used for pressing (step (a)), the carrier (not shown) is peeled off, and then via holes 113 are formed by laser drilling as necessary (step (b)).
  • step (c) After applying chemical copper plating 114 (step (c)), masking with a predetermined pattern by exposure and development using a dry film 115 (step (d)) and applying electrolytic copper plating 116 (step (e) )). After the dry film 115 was removed to form the wiring portion 116a (step (f)), unnecessary ultrathin copper foil or the like between the adjacent wiring portions 116a and 116a was removed by etching over the entire thickness (step). (G)), the wiring 117 formed in a predetermined pattern is obtained.
  • a wiring layer is formed on a metal layer on the surface of a support (core), and a buildup layer is further formed.
  • a manufacturing method using a coreless build-up method is employed. Since a printed wiring board manufactured by such a method is of a type in which a circuit pattern is embedded in an insulating layer, this method is called an ETS (Embedded Trace Substrate) method.
  • 11 and 12 show a conventional example of a method for manufacturing a printed wiring board by a coreless buildup method using a copper foil with a carrier as a member for a support having a metal layer on the surface. In the example shown in FIGS.
  • a copper foil with carrier 210 including a carrier 212, a peeling layer 214, and a copper foil 216 in this order is laminated on a coreless support 218 such as a prepreg.
  • a photoresist pattern 220 is formed on the copper foil 216, and a wiring pattern 224 is formed through formation of pattern plating (electrocopper plating) 222 and peeling of the photoresist pattern 220.
  • a pre-stacking process such as a roughening process is performed on the pattern plating as necessary to form the first wiring layer 226.
  • a copper foil 230 with a carrier (a carrier 232, a release layer 234, and a seed layer for the insulating layer 228 and, if necessary, the second wiring layer 238 to form a build-up layer 242).
  • the copper foil 236 is provided), the carrier 232 is peeled off, and the copper foil 236 and the insulating layer 228 immediately below it are punched with a laser or the like.
  • patterning is performed by chemical copper plating, photoresist processing, electrolytic copper plating, photoresist stripping, flash etching, or the like to form the second wiring layer 238, and this patterning is repeated as necessary to repeat the nth wiring layer 240.
  • N is an integer of 2 or more).
  • the coreless support 218 is peeled off together with the carrier 212 to form a build-up wiring board 244 (also referred to as a coreless wiring board), and the copper foil 216 exposed between the wiring patterns of the first wiring layer 226 and the build if present.
  • the copper foil 236 and the like exposed between the wiring patterns of the n-th wiring layer 240 of the up layer 242 are removed by flash etching to obtain a predetermined wiring pattern, and a printed wiring board 246 is obtained.
  • the lower layer circuit 111c on the bottom surface of the via hole is formed.
  • micro-etching Cu etching
  • the thickness of the ultrathin copper layer 110 is made thinner than before, and the seed layer (ultrathin copper foil 110) at the time after the microetching is about 0.3 ⁇ m. It has come to be desired to become the thickness of.
  • the etching stopper layer 215 that should not be removed is slightly present in the copper etching process. Elution may occur.
  • the copper circuit (first wiring layer 226) may be locally exposed in the copper etching process. Thus, if the copper circuit (first wiring layer 226) is locally exposed due to non-uniform elution, dissolution of Cu constituting the copper circuit is accelerated and a large circuit recess 226a is generated locally.
  • a selective etching process for removing the etching stopper layer 215 is separately required, and thus the number of manufacturing processes is increased.
  • the present inventors have recently used an additional etching step by using a copper foil in which an etching sacrificial layer having a high etching rate is interposed between the first copper layer and the second copper layer. It was found that the in-plane variation of Cu etching was significantly reduced without the necessity, and as a result, generation of seed layer defects and circuit dents as described above could be suppressed.
  • an object of the present invention is to provide a printed wiring board that can significantly reduce in-plane variation of Cu etching without requiring an additional etching step, and as a result, can suppress seed layer defects and circuit dents. It is to provide a copper foil for production.
  • the first copper layer, the etching sacrificial layer, and the second copper layer are provided in this order, and a ratio r of the etching sacrificial layer to the etching rate of Cu is less than 1.0.
  • a high copper foil for producing printed wiring boards is provided.
  • a copper foil with a carrier provided with a carrier, a release layer, and the copper foil in this order.
  • a copper clad laminate provided with the copper foil is provided.
  • a method for manufacturing a printed wiring board wherein the printed wiring board is manufactured using the copper foil or the copper foil with a carrier.
  • the copper foil according to the present invention is a copper foil used for manufacturing a printed wiring board.
  • FIG. 1 shows a schematic cross-sectional view of the copper foil of the present invention.
  • the copper foil 10 includes a first copper layer 11, an etching sacrificial layer 12, and a second copper layer 13 in this order.
  • the etching sacrificial layer 12 may be a copper alloy layer, it is not a metal copper layer, and thus the copper foil 10 contains a metal or alloy other than copper as its inner layer.
  • the copper foil of this invention can also be called sacrificial layer containing copper foil or metal foil, since both surfaces are comprised with a copper layer, it is recognized as copper foil as a product category.
  • the names of “first copper layer” and “second copper layer” are generally referred to as “first copper layer” when the copper foil 10 is laminated with the insulating resin, and the copper layer that is not in close contact with the insulating resin.
  • the copper layer that is in close contact with the insulating resin is the “second copper layer”.
  • the etching sacrificial layer 12 is characterized by a ratio r of the etching rate of the etching sacrificial layer 12 to the etching rate of Cu being higher than 1.0.
  • a ratio r of the etching rate of the etching sacrificial layer 12 to the etching rate of Cu being higher than 1.0.
  • the etching sacrificial layer 12 having an etching rate ratio r higher than 1.0 is sandwiched between the two copper layers 13 and 11, even if non-uniform dissolution occurs during Cu etching, the second copper layer
  • the etching sacrificial layer 12 is not uniformly dissolved but 13. Therefore, even if the situation where Cu is locally exposed occurs, the etching sacrificial layer 12 can be preferentially dissolved by the local battery reaction, and as a result, dissolution of the underlying second copper layer 13 is suppressed.
  • the etching sacrificial layer 12 is dissolved non-uniformly during the microetching of the laminated body of the copper foil 10 and the insulating layer 28, and the second copper layer 13. Even if locally exposed, the etching sacrificial layer 12 is preferentially dissolved. As a result, the thickness of the second copper layer 13 is generally kept uniform, and defects are less likely to occur.
  • the MSAP method using the conventional ultrathin copper foil 110 see FIGS. 4 and 5
  • the ultrathin copper foil 110 and the insulating resin substrate During microetching of the laminate with 111, defects 110a may be partially generated in the ultrathin copper foil 110 (seed layer) due to in-plane variation of microetching.
  • the said technical subject can be advantageously eliminated by using the copper foil 10 of this invention.
  • the etching sacrificial layer 12 is dissolved non-uniformly during the Cu etching and / or Even if Cu (the second copper layer 13 or the Cu of the first wiring layer 26) is locally exposed due to a pinhole or the like that may be accidentally present in the etching sacrificial layer 12, the local cell reaction causes the underlying first layer to be exposed. Dissolution of the two-copper layer 13 or the first wiring layer 26 (copper layer) is suppressed. As a result, the second copper layer 13 is uniformly etched in the plane, and local circuit dents in the first wiring layer 26 can be suppressed.
  • ETS method coreless buildup method
  • the etching sacrificial layer 12 is dissolved and removed along with the Cu etching, so that an additional step for removing the etching sacrificial layer 12 is not required, and the productivity is improved. Furthermore, there is an advantage that the circuit dents can be reduced on the average in the plane of the first wiring layer 26 by the effect of the high etching rate itself. In this regard, as described above, when the method of Patent Document 2 is adopted, as conceptually shown in FIG. 10, not only the copper foil 216 to be removed but also not originally removed in the copper etching process.
  • the etching stopper layer 215 elutes slightly, and the underlying copper circuit (first wiring layer 226) is locally exposed due to pinholes or the like generated in the stage of forming the etching stopper layer 215. There is a fear. When the copper circuit (first wiring layer 226) is locally exposed in this way, dissolution of Cu constituting the copper circuit is accelerated, and a large circuit recess 226a is locally generated. In the first place, when the etching stopper layer 215 is provided, a selective etching process for removing the etching stopper layer 215 is separately required, and thus the number of manufacturing processes is increased. On the other hand, these technical problems can be advantageously solved by using the copper foil 10 of the present invention.
  • the 1st copper layer 11 may be a well-known copper foil structure, and is not specifically limited. By providing the first copper layer 11, it becomes possible to control the etching sacrificial layer 12 having a high dissolution rate in the pre-treatment in the Cu etching process so as not to be exposed, and the releasability from the following release layer is easy. There is an advantage that it can be.
  • the first copper layer 11 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof.
  • the cuprous layer 11 preferably has a thickness d 1 of 0.1 to 2.5 ⁇ m, more preferably 0.1 to 2 ⁇ m, still more preferably 0.2 to 1.5 ⁇ m, and particularly preferably 0.2. ⁇ 1 ⁇ m, most preferably 0.3 to 0.8 ⁇ m.
  • the thickness d 1 is in such a range, the etching sacrificial layer 12 can be more effectively protected in the previous step of Cu etching (for example, a chemical solution step such as desmear), and d 2 / d 1 ⁇ r and the later-described / Or d 1 + d 2 + d 3 ⁇ 3.0 ⁇ m is easily satisfied, and as a result, defects such as defects during Cu etching can be more effectively prevented.
  • the first copper layer 11 can protect the etching sacrificial layer 12 from dissolution by a chemical solution in a pre-process of Cu etching (for example, a chemical process such as desmear). Defects may occur in the layer 13. From the viewpoint of effectively preventing such defects, it is preferable that d 2 / d 1 ⁇ r is satisfied when the thickness of the first copper layer 11 is d 1 and the thickness of the etching sacrificial layer 12 is d 2. . This will be described as follows with reference to a laminate of the copper foils 10 and 10 'and the insulating layer 28 conceptually shown in FIGS. First, as shown in FIG.
  • the number of pinholes per unit area of the first copper layer 11 is preferably 2 / mm 2 or less.
  • the number of pinholes in the first copper layer 11 is small as described above, in the manufacturing process of the copper foil 10, there are also pinholes that can be generated in the etching sacrificial layer 12 and the second copper layer 13 plated on the first copper layer 11. It can also be reduced. As a result, defects such as defects due to chemical erosion during Cu etching can be further reduced.
  • the etching sacrificial layer 12 is not particularly limited as long as the etching rate is higher than that of Cu.
  • the ratio r of the etching rate of the etching sacrificial layer 12 to the etching rate of Cu (hereinafter referred to as the etching rate ratio r) is higher than 1.0. If the etching rate is higher than Cu (if the etching rate ratio r is higher than 1.0), it can be simultaneously dissolved and removed by Cu etching, and the etching sacrificial layer 12 is unevenly dissolved and Cu is locally exposed.
  • the local battery reaction suppresses the dissolution of the underlying copper layer, thereby enabling uniform etching of the copper layer in the surface, and suppressing the occurrence of seed layer defects and local circuit dents and defects. Can do.
  • This etching rate is the same as that of the etching sacrificial layer 12 and the copper foil sample as a reference sample is processed for the same time in the etching process, and the change in thickness of each sample due to etching is determined by the dissolution time. It is calculated by dividing. The thickness change may be determined by measuring the weight reduction amount of both samples and converting the thickness from the density of each metal.
  • a preferable etching rate ratio r is 1.2 or more from the viewpoint of obtaining a high sacrifice effect, more preferably 1.25 or more, and further preferably 1.3 or more.
  • the upper limit of the etching rate ratio r is not particularly limited, but in order to keep the dissolution rate of the etching sacrificial layer 12 in the plane uniform and cause the local cell reaction with the second copper layer 13 to act uniformly in the plane, the etching rate
  • the ratio r is preferably 5.0 or less, more preferably 4.5 or less, still more preferably 4.0 or less, particularly preferably 3.5 or less, and most preferably 3.0 or less.
  • the etching solution a known solution capable of dissolving copper by an oxidation-reduction reaction can be employed.
  • the etching solution examples include cupric chloride (CuCl 2 ) aqueous solution, ferric chloride (FeCl 3 ) aqueous solution, ammonium persulfate aqueous solution, sodium persulfate aqueous solution, potassium persulfate aqueous solution, sulfuric acid / hydrogen peroxide aqueous solution and the like. Etc.
  • the Cu etching rate can be precisely controlled, and from the viewpoint of ensuring a difference in etching time with the etching sacrificial layer 12, a sodium persulfate aqueous solution, a potassium persulfate aqueous solution, and a sulfuric acid / hydrogen peroxide solution are preferable.
  • sulfuric acid / hydrogen peroxide solution is most preferable.
  • a spray method, a dipping method, or the like can be employed as an etching method.
  • the etching temperature can be appropriately set within the range of 25 to 70 ° C.
  • the etching rate in the present invention is adjusted by a combination of the above etching solution and etching method and the selection of the material of the etching sacrificial layer 12 described below.
  • the material constituting the etching sacrificial layer 12 is preferably an electrochemically base metal rather than Cu.
  • a preferable metal include a Cu—Zn alloy, a Cu—Sn alloy, a Cu—Mn alloy, and Cu—Al. Alloys, Cu—Mg alloys, Fe metals, Zn metals, Co metals, Mo metals and oxides thereof, and combinations thereof are particularly preferable, and Cu—Zn alloys are particularly preferable.
  • the Cu—Zn alloy that can constitute the etching sacrificial layer 12 preferably contains 40% by weight or more of Zn, more preferably 50% by weight or more, and even more preferably 60% by weight or more.
  • the Zn content in the Cu—Zn alloy is preferably from the viewpoint of the uniform retention of the in-plane dissolution rate of the etching sacrificial layer 12 and the in-plane uniform action of the local cell reaction with the second copper layer 13. It is 98 weight% or less, More preferably, it is 96 weight% or less, More preferably, it is 94% weight% or less.
  • the etching sacrificial layer 12 preferably has a thickness d 2 of 0.1 to 5 ⁇ m, more preferably 0.1 to 4.5 ⁇ m, still more preferably 0.2 to 4 ⁇ m, and particularly preferably 0.2 to 3. 5 ⁇ m, most preferably 0.3 to 3 ⁇ m.
  • the cupric layer 13 may have a known configuration and is not particularly limited.
  • the second copper layer 13 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof.
  • Cupric layer 13 preferably has a thickness d 3 of 0.1 ⁇ 2.5 [mu] m, more preferably 0.1 ⁇ 2 [mu] m, more preferably 0.1 ⁇ 1.5 [mu] m, particularly preferably 0.2 It is ⁇ 1 ⁇ m, most preferably 0.2 to 0.8 ⁇ m.
  • the surface of the second copper layer 13 is roughened.
  • the roughened particles formed by the roughening treatment are attached to the surface of the second copper layer, thereby improving the adhesion with the insulating resin layer at the time of manufacturing the copper-clad laminate or the printed wiring board. Can do.
  • the ETS method it is possible to facilitate image inspection after the wiring pattern is formed and to improve the adhesion with the photoresist pattern 20.
  • the roughened particles preferably have an average particle size D of 0.04 to 0.53 ⁇ m by image analysis, more preferably 0.08 to 0.13 ⁇ m, still more preferably 0.09 to 0.12 ⁇ m. .
  • the roughness of the roughened surface is given an appropriate roughness to ensure excellent adhesion with the photoresist, while opening the unnecessary areas of the photoresist during photoresist development.
  • the average particle diameter D by image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). Measurement is preferably performed by performing image processing with commercially available image analysis software. For example, 200 particles arbitrarily selected may be used as an object, and the average diameter of these particles may be adopted as the average particle diameter D.
  • SEM scanning electron microscope
  • the roughened particles preferably have a particle density ⁇ by image analysis of 4 to 200 particles / ⁇ m 2 , more preferably 40 to 170 particles / ⁇ m 2 , and 70 to 100 particles / ⁇ m 2 .
  • the roughened particles on the copper foil surface are dense and dense, photoresist development residues are likely to occur in the ETS method, but such development residues occur when within the above preferred range. Therefore, the developability of the photoresist pattern 20 is also excellent. Therefore, it can be said that it is suitable for fine formation of the wiring pattern 24 within the above-mentioned preferable range.
  • the particle density ⁇ based on the image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). It is preferable to perform measurement by performing image processing using commercially available image analysis software. For example, in a field where 200 particles enter, the value obtained by dividing the number of particles (for example, 200) by the field area is used as the particle density ⁇ . do it.
  • SEM scanning electron microscope
  • the surface of the cupric layer 13 is preferably subjected to rust prevention treatment such as nickel-zinc / chromate treatment, coupling treatment with a silane coupling agent, etc. in addition to the adhesion of the roughened particles by the above-mentioned roughening treatment. .
  • rust prevention treatment such as nickel-zinc / chromate treatment, coupling treatment with a silane coupling agent, etc.
  • the thickness d 1 of the first copper layer 11, the total thickness d 1 + d 2 + d 3 of the thickness d 3 of the thickness d 2 and the second copper layer 13 of the etching sacrificial layer 12 is less than 3.0 ⁇ m of the Preferably, it is 0.3 to 2.8 ⁇ m, more preferably 0.6 to 2.8 ⁇ m, and particularly preferably 0.9 to 2.6 ⁇ m.
  • the total thickness within such a range means that the thickness of the copper foil 10 is sufficiently thin, and the direct laser drilling property of the copper foil 10 is improved.
  • the copper foil 10 has a three-layer configuration including the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13, so that the MSAP is different from the two-layer configuration of the etching sacrificial layer and the copper layer.
  • Benefits at various stages of the law That is, when considering a two-layer structure composed of an etching sacrificial layer and a copper layer, the etching sacrificial layer is not protected at all, so there is a concern that the etching sacrificial layer may be dissolved and lost in a chemical process such as desmear before microetching. is there.
  • the etching sacrificial layer 12 can be maintained until the microetching process without impairing laser processability, resulting in defects. Without etching. That is, laser processing can be performed without any problem by reducing the total thickness of the copper foil 10 (preferably d 1 + d 2 + d 3 ⁇ 3.0 ⁇ m). In the desmear process after laser processing, the etching sacrificial layer 12 is protected by the outermost first copper layer 11, so that the etching sacrificial layer 12 remains. In microetching, microetching can be performed without causing defects due to the sacrificial effect of the remaining etching sacrificial layer 12.
  • another layer may be provided between the first copper layer 11 and the etching sacrificial layer 12 and / or between the second copper layer 13 and the etching sacrificial layer 12 as long as the sacrificial effect of the etching sacrificial layer 12 is not prevented. May be present.
  • Copper foil 10 (or second copper layer 13, a laminate of etching the sacrificial layer 12 and the first copper layer 11) with a carrier may be provided in the form of free carrier copper foil, as shown in FIG. 1
  • the carrier-attached copper foil 14 may include a carrier 15, a release layer 16, a first copper layer 11, an etching sacrificial layer 12, and a second copper layer 13 in this order, or the carrier 15,
  • the one copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 may be provided in this order. That is, the release layer 16 may be provided, or the release layer 16 may not be provided as a single layer.
  • a preferable copper foil with a carrier comprises a carrier 15, a release layer 16, and a copper foil 10 in this order.
  • the carrier 15 is a layer (typically a foil) for supporting the copper foil and improving its handleability.
  • the carrier include an aluminum foil, a copper foil, a stainless steel foil, a resin film, a resin film whose surface is metal-coated, a glass plate, and the like, preferably a copper foil.
  • the copper foil may be a rolled copper foil or an electrolytic copper foil.
  • the thickness of the carrier is typically 250 ⁇ m or less, preferably 12 ⁇ m to 200 ⁇ m.
  • the release layer 16 has a function of weakening the peeling strength of the carrier 15, ensuring stability of the strength, and further suppressing interdiffusion that may occur between the carrier and the copper foil during press molding at a high temperature. It is.
  • the release layer is generally formed on one side of the carrier, but may be formed on both sides.
  • the release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability.
  • triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- And 1H-1,2,4-triazole.
  • sulfur-containing organic compound examples include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like.
  • carboxylic acid examples include monocarboxylic acid and dicarboxylic acid.
  • examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, a chromate-treated film, and a carbon layer.
  • the release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and adsorbing the release layer component on the surface of the carrier in the solution.
  • this contact may be performed by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like.
  • a method of forming a release layer component by a plating method such as electrolytic plating or electroless plating, or a vapor phase method such as vapor deposition or sputtering.
  • the release layer component may be fixed to the carrier surface by drying the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
  • the thickness of the release layer is typically 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm.
  • the peel strength between the release layer 16 and the carrier is preferably 5 gf / cm to 50 gf / cm, more preferably 5 gf / cm to 40 gf / cm, and still more preferably 6 gf / cm to 30 gf / cm.
  • the copper foil of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board provided with the copper foil mentioned above is provided.
  • the copper clad laminate may comprise a copper foil in the form of a copper foil with a carrier. Moreover, copper foil may be provided in the single side
  • the resin layer typically comprises a resin, preferably an insulating resin.
  • the resin layer is preferably a prepreg and / or a resin sheet, more preferably a prepreg.
  • the prepreg is a general term for composite materials in which a synthetic resin is impregnated or laminated on a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper.
  • a synthetic resin plate such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper.
  • the insulating resin impregnated in the prepreg include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin, polyamide resin and the like.
  • the insulating resin constituting the resin sheet include insulating resins such as an epoxy resin, a polyimide resin, and a polyester resin (liquid crystal polymer).
  • the resin layer may contain filler particles composed of various inorganic particles such as silica and alumina from the viewpoint of decreasing the thermal expansion coefficient and increasing the rigidity.
  • the thickness of the resin layer is not particularly limited, but is preferably 3 to 1000 ⁇ m, more preferably 5 to 400 ⁇ m, and still more preferably 10 to 200 ⁇ m.
  • the resin layer may be composed of a plurality of layers.
  • a resin layer such as a prepreg and / or a resin sheet may be provided on the copper foil with a carrier via a primer resin layer previously applied to the surface of the copper foil.
  • a printed wiring board can be preferably produced using the copper foil of the present invention or the copper foil with carrier as described above.
  • Preferred examples of the method for producing a printed wiring board include an MSAP (Modified Semi-Additive Process) method and a coreless build-up method (ETS method), but are not limited to these methods, and the copper foil or carrier of the present invention.
  • the attached copper foil can be used in various methods that can expect some advantage due to the sacrificial effect of the etching sacrificial layer 12.
  • a method for manufacturing a printed wiring board by a coreless buildup method (ETS method) employing the copper foil of the present invention will be described below.
  • ETS method coreless buildup method
  • a support is obtained using a copper foil 10 provided with at least a second copper layer 13, an etching sacrificial layer 12, and a first copper layer 11.
  • a buildup wiring layer including at least a copper first wiring layer 26 and an insulating layer 28 is formed on the second copper layer 13 to form a laminate with a buildup wiring layer. Get the body.
  • FIG. 6 only the first wiring layer 26 is drawn for the sake of simplicity of explanation, but as shown in FIG.
  • the layers are formed up to the n-th wiring layer 40 (n is an integer of 2 or more). Needless to say, a multilayer build-up wiring layer can be used. Thereafter, the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 are removed with an etching solution to expose the first wiring layer 26, thereby obtaining a printed wiring board including a build-up wiring layer.
  • FIGS. 7 and 8 in addition to FIG. 7 and 8 are drawn so as to form the build-up wiring layer 42 by providing the copper foil 14 with a carrier on one side of the coreless support 18 for the sake of simplicity of explanation. It is desirable to provide the copper foil 14 with a carrier on both surfaces of the support 18 and form the build-up wiring layer 42 on both surfaces.
  • the copper foil 10 or the copper foil 14 with a carrier including the same is prepared as a support. If desired, prior to the formation of the laminate with the buildup wiring layer, the copper foil 10 (first copper layer 11 side) or the copper foil with carrier 14 (carrier 15 side) is laminated on one or both surfaces of the coreless support 18. A laminate may be formed. That is, at this stage, the above-described copper-clad laminate may be formed. This lamination may be performed in accordance with known conditions and techniques adopted for lamination of copper foil and prepreg in a normal printed wiring board manufacturing process.
  • the coreless support 18 typically comprises a resin, preferably an insulating resin.
  • the coreless support 18 is preferably a prepreg and / or a resin sheet, more preferably a prepreg. That is, the coreless support 18 corresponds to the resin layer in the above-described copper-clad laminate, and therefore the preferred embodiment described above with respect to the copper-clad laminate or resin layer applies to the coreless support 18 as it is.
  • a build-up wiring layer 42 including at least the first wiring layer 26 made of copper and the insulating layer 28 is formed to laminate with the build-up wiring layer. Get the body.
  • the insulating layer 28 may be made of the insulating resin as described above.
  • the build-up wiring layer 42 may be formed according to a known method for manufacturing a printed wiring board, and is not particularly limited. According to a preferred embodiment of the present invention, as described below, the first wiring layer 26 is formed by performing (i) forming a photoresist pattern, (ii) performing electrolytic copper plating, and (iii) stripping the photoresist pattern. After that, (iv) the build-up wiring layer 42 is formed.
  • a photoresist pattern 20 is formed on the surface of the second copper layer 13.
  • the formation of the photoresist pattern 20 may be performed by either a negative resist or a positive resist, and the photoresist may be either a film type or a liquid type.
  • the developing solution may be a developing solution such as sodium carbonate, sodium hydroxide, an amine-based aqueous solution, etc., and may be carried out in accordance with various methods and conditions generally used in the production of printed wiring boards, and is not particularly limited.
  • the electro copper plating 22 is applied to the second copper layer 13 on which the photoresist pattern 20 is formed.
  • the formation of the electrolytic copper plating 22 is not particularly limited as long as it is performed in accordance with various pattern plating methods and conditions generally used in the production of printed wiring boards such as a copper sulfate plating solution and a copper pyrophosphate plating solution.
  • (Iii) Stripping of photoresist pattern The photoresist pattern 20 is stripped to form a wiring pattern 24. Stripping of the photoresist pattern 20 is not particularly limited as long as an aqueous sodium hydroxide solution, an amine-based solution or an aqueous solution thereof is employed, and may be performed in accordance with various stripping methods and conditions generally used in the manufacture of printed wiring boards. Thus, a wiring pattern 24 in which wiring portions (lines) made of the first wiring layer 26 are arranged with a gap (space) therebetween is directly formed on the surface of the second copper layer 13.
  • the line / space (L / S) is highly fine, such as 13 ⁇ m or less / 13 ⁇ m or less (for example, 12 ⁇ m / 12 ⁇ m, 10 ⁇ m / 10 ⁇ m, 5 ⁇ m / 5 ⁇ m, 2 ⁇ m / 2 ⁇ m). It is preferable to form a simplified wiring pattern.
  • Build-up wiring layer 42 is formed on second copper layer 13 to produce a laminate with build-up wiring layer.
  • the insulating layer 28 and the second wiring layer 38 can be formed in order to form the build-up wiring layer 42.
  • an insulating layer 28 and a copper foil 30 with a carrier are laminated to form a buildup wiring layer 42, and the carrier 32 is peeled off.
  • the copper foil 36 and the insulating layer 28 immediately below it may be laser processed by a carbon dioxide laser or the like.
  • n is an integer greater than or equal to 2).
  • the method for forming the build-up layer after the second wiring layer 38 is not limited to the above method, but is a subtractive method, an MSAP (Modified Semi-Additive Process) method, an SAP (Semi-Additive) method, or a full additive method. Etc. can be used.
  • MSAP Modified Semi-Additive Process
  • SAP Semi-Additive
  • Etc. can be used.
  • a metal foil typified by a resin layer and a copper foil is bonded together by pressing
  • the panel plating layer and the metal foil are etched in combination with the formation of interlayer conduction means such as via hole formation and panel plating.
  • a wiring pattern can be formed.
  • a wiring pattern can be formed on the surface by a semi-additive method.
  • n-th wiring layer 40 (n is an integer of 2 or more) is formed. It is preferable to obtain a laminate. This process may be repeated until a desired number of build-up wiring layers are formed. At this stage, if necessary, solder resist, bumps for mounting such as pillars, and the like may be formed on the outer layer surface. Further, an outer layer wiring pattern may be formed on the outermost layer surface of the build-up wiring layer in a later outer layer processing step.
  • the laminate with build-up wiring layer is separated from the release layer 16. Etc. can be separated.
  • the carrier-attached copper foil comprises the carrier 15, the release layer 16, the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 in this order, the method of the present invention is prior to removal with an etching solution described later, It is preferable to separate the laminated body with the buildup wiring layer by the release layer 16 to expose the first copper layer 11.
  • the separation method physical peeling is preferable, and for this peeling method, a machine or jig, manual work, or a combination thereof may be employed.
  • the carrier-attached copper foil comprises the carrier 15, the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 in this order (that is, when the peeling layer 16 is not provided as a single layer)
  • the method of the invention separates the laminate with a build-up wiring layer between the carrier 15 and the first copper layer 11 or inside the first copper layer 11 prior to the removal with an etching solution described later, and the first copper layer 11 Is preferably exposed.
  • etching sacrificial layer and copper layer In the method of the present invention, the first copper layer 11, the etching sacrificial layer 12 and the second copper layer 13 are removed with an etching solution to expose the first wiring layer 26; Thereby, a printed wiring board 46 including the build-up wiring layer 42 is obtained.
  • the printed wiring board 46 is preferably a multilayer printed wiring board. In any case, due to the presence of the etching sacrificial layer 12, it is possible to efficiently remove each layer uniformly by etching in the surface by Cu etching without the need for an additional etching step, and local circuit dents are generated. Can be suppressed.
  • the removal of the second copper layer 13, the etching sacrificial layer 12, and the first copper layer 11 with the etching solution can be performed in one step.
  • the etching solution and etching method used at this time are as described above.
  • the printed wiring board 46 as shown in FIG. 8 can be processed into an outer layer by various methods.
  • an insulating layer and a wiring layer as build-up wiring layers may be further laminated on the first wiring layer 26 of the printed wiring board 46 as an arbitrary number of layers, or a solder resist layer is formed on the surface of the first wiring layer 26.
  • surface treatment as an outer layer pad such as Ni—Au plating, Ni—Pd—Au plating, or water-soluble preflux treatment may be performed.
  • a columnar pillar or the like may be provided on the outer layer pad.
  • the first wiring layer 26 formed using the etching sacrificial layer in the present invention can maintain the uniformity of the circuit thickness in the plane, and the surface of the first wiring layer 26 has a local circuit depression. Is less likely to occur. For this reason, there is a low incidence of defects such as local processing failures and solder-resist residue failures in the surface treatment process due to extremely thin parts of the circuit thickness, circuit recesses, etc., and mounting failures due to mounting pad irregularities. A printed wiring board having excellent mounting reliability can be obtained.
  • the printed wiring board manufacturing method described above is based on the coreless buildup method (ETS method), but the printed wiring board manufacturing method based on the MSAP method is based on the conventional MSAP method described with reference to FIGS.
  • ETS method coreless buildup method
  • the printed wiring board manufacturing method based on the MSAP method is based on the conventional MSAP method described with reference to FIGS.
  • a printed wiring board can be preferably manufactured.
  • Rotating cathode and anode are copper sulfate having a copper concentration of 80 g / L, a sulfuric acid concentration of 260 g / L, a bis (3-sulfopropyl) disulfide concentration of 30 mg / L, a diallyldimethylammonium chloride polymer concentration of 50 mg / L, and a chlorine concentration of 40 mg / L. It was immersed in a solution and electrolyzed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil having a thickness of 18 ⁇ m as a carrier.
  • the electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier.
  • a CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier copper foil.
  • the carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm 2. Under the conditions, nickel having a thickness equivalent to 0.001 ⁇ m was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
  • the carrier on which the auxiliary metal layer was formed was changed to a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L. Immersion was performed and electrolysis was performed at a solution temperature of 50 ° C. and a current density of 5 to 30 A / dm 2 to form a first copper layer (ultra-thin copper foil) having a thickness of 0.3 ⁇ m on the auxiliary metal layer.
  • the first copper layer was not formed.
  • Table 1 shows carriers (Examples 1 to 9 and 12) on which the first copper layer (ultra-thin copper foil) is formed or carriers (Example 11) on which the auxiliary metal layer is formed.
  • the film was immersed in a plating bath and electrolyzed under the plating conditions shown in Table 1, and an etching sacrificial layer having the composition and thickness shown in Table 2 was formed on the first copper layer or the auxiliary metal layer.
  • the etching sacrificial layer was not formed.
  • a carrier having an etching sacrificial layer (Examples 1 to 9, 11 and 12) or a carrier having an auxiliary metal layer formed (Example 10), having a copper concentration of 60 g / L and a sulfuric acid concentration It is immersed in a 145 g / L copper sulfate solution, electrolyzed at a solution temperature of 45 ° C. and a current density of 30 A / dm 2 , and a second copper layer having a thickness shown in Table 2 is formed on the etching sacrificial layer or the auxiliary metal layer. Formed.
  • This roughening treatment includes a baking plating process in which fine copper grains are deposited on the copper foil, and a covering plating process for preventing the fine copper grains from falling off.
  • a roughening treatment was performed at an acid density of 25 A / dm 2 using an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 120 g / L.
  • electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 120 g / L under smooth plating conditions of a liquid temperature of 40 ° C. and a current density of 15 A / dm 2 .
  • Rust prevention treatment The surface of the obtained copper foil with carrier was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment.
  • a roughening treatment layer using an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2.
  • the surface of the carrier was subjected to a zinc-nickel alloy plating treatment.
  • a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 3 g / L aqueous solution of chromic acid under the conditions of pH 10 and a current density of 5 A / dm 2 .
  • Silane coupling agent treatment Silane coupling is performed by adsorbing an aqueous solution containing 2 g / L of 3-glycidoxypropyltrimethoxysilane on the copper foil side surface of the copper foil with a carrier and evaporating water with an electric heater. Agent treatment was performed. At this time, the silane coupling agent treatment was not performed on the carrier side.
  • Evaluation 1 Etching rate ratio r
  • the carrier whose outermost surface obtained in (5) is an etching sacrificial layer (that is, the etching sacrificial layer is formed).
  • An intermediate product) in which the formation of the second copper layer and the subsequent treatment were not performed was prepared.
  • the copper foil with a carrier whose outermost surface obtained by said (6) is a 2nd copper layer (namely, intermediate product by which the 2nd copper layer is formed and the subsequent process is not performed) Prepared.
  • the etching rate of each target plating film was determined by dividing the obtained thickness change by the dissolution time.
  • the etching rate of Example 10 thus obtained is the etching rate of Cu
  • the etching rates of Examples 1 to 9, 11 and 12 are the etching rates of the respective etching sacrificial layers.
  • the etching rate ratio r was calculated by dividing the etching rate of the etching sacrificial layer by the etching rate of Cu. The results were as shown in Table 2.
  • Evaluation 2 Number of pinholes per unit area
  • the outermost surface obtained in (4) above is the first copper layer (ultra-thin copper foil)
  • An ultra-thin copper foil with a carrier that is, an intermediate product in which a copper layer having a thickness of 0.3 ⁇ m was formed and an etching sacrificial layer and subsequent processing were not performed
  • This ultrathin copper foil with a carrier is laminated so that the first copper layer (ultrathin copper foil) side is in contact with an insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm), and pressure 4.
  • Thermocompression bonding was performed at 0 MPa and a temperature of 190 ° C. for 90 minutes. Thereafter, the carrier was peeled off to obtain a laminate. This laminated plate was observed with an optical microscope while applying a backlight in a dark room, and the number of pinholes was counted. Thus, when the number of pinholes per 1 mm 2 was measured, in all of Examples 1 to 9, 11 and 12, the number of pinholes per unit area of the first copper layer was 2 / mm 2 or less.
  • Evaluation 3 Defects The copper foil with a carrier obtained in (9) above was in contact with the insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm) on the second copper layer side. The laminate was laminated and thermocompression bonded at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes. The carrier of the copper-clad laminate thus obtained was peeled off, cut into a size of 10 cm ⁇ 10 cm, and immersed in the etching solution prepared in Evaluation 1 until the etching sacrificial layer completely disappeared. The presence or absence was confirmed, and rating was evaluated according to the following criteria.
  • deletion here refers to the state which can see the base material of a foundation
  • Evaluation 4 Laser workability After the carrier was peeled from the copper clad laminate produced in Evaluation 3, the energy density was 6.5 MW / cm 2 and the laser beam diameter was measured with a laser processing machine (Mitsubishi Electric, ML605GTWIII-H). Laser processing was performed at 20 points under the condition of 75.6 ⁇ m. The openings thus formed were observed with an optical microscope and rated according to the following criteria. The opening diameter was measured at the upper end. The results were as shown in Table 2. ⁇ Evaluation A: No opening, and the minimum value of 20 opening diameters is 40 ⁇ m or more ⁇ Evaluation B: No opening, but the minimum value of 20 opening diameters is less than 40 ⁇ m Items / Evaluation C: One with unopened items
  • Evaluation 5 Circuit recess
  • the carrier-side copper foil obtained in the above (9) was brought into contact with the first insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm). And thermocompression bonded at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes.
  • the copper-clad laminate thus obtained was washed with the etching solution prepared in Evaluation 1, and then a 19 ⁇ m thick dry film was laminated on the copper foil side.
  • Line / space (L / S) It exposed and developed using the 10/10 micrometer mask.
  • a second insulating resin base material prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm
  • Thermocompression bonding was performed at a temperature of 190 ° C. for 90 minutes.
  • the carrier and the first insulating resin substrate to which it was adhered were peeled off with the release layer as a boundary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

The purpose of the present invention is to provide a copper foil that is for printed circuit board production and that significantly reduces in-plane Cu etching variations without the need for a separate additional etching step and can thereby suppress the occurrence of damage to a seed layer, circuit depressions, etc. This copper foil comprises, in order, a first copper layer, an etching sacrificial layer, and a second copper layer. The ratio r of the etching rate of the etching sacrificial layer to the etching rate of Cu is higher than 1.0.

Description

プリント配線板製造用銅箔、キャリア付銅箔及び銅張積層板、並びにそれらを用いたプリント配線板の製造方法Copper foil for manufacturing printed wiring board, copper foil with carrier and copper-clad laminate, and method for manufacturing printed wiring board using them
 本発明は、プリント配線板製造用銅箔、キャリア付銅箔及び銅張積層板、並びにそれらを用いたプリント配線板の製造方法に関する。 The present invention relates to a copper foil for producing a printed wiring board, a copper foil with a carrier and a copper clad laminate, and a method for producing a printed wiring board using them.
 回路の微細化に適したプリント配線板の製造工法として、MSAP(モディファイド・セミ・アディティブ・プロセス)法が広く採用されている。MSAP法は、極めて微細な回路を形成するのに適した手法であり、その特徴を活かすため、キャリア付極薄銅箔を用いて行われている。例えば、図4及び5に示されるように、極薄銅箔110を、下地基材111a上にプリプレグ111bを備えた絶縁樹脂基板111(必要に応じて下層回路111cを内在しうる)にプライマー層112を用いてプレスして密着させ(工程(a))、キャリア(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール113を形成する(工程(b))。次いで、化学銅めっき114を施した(工程(c))後に、ドライフィルム115を用いた露光及び現像により所定のパターンでマスキングし(工程(d))、電気銅めっき116を施す(工程(e))。ドライフィルム115を除去して配線部分116aを形成した(工程(f))後、隣り合う配線部分116a,116a間の不要な極薄銅箔等をそれらの厚み全体にわたってエッチングにより除去して(工程(g))、所定のパターンで形成された配線117を得る。特に、近年、電子回路の小型軽量化に伴い、回路形成性により優れた(例えばライン/スペース=15μm以下/15μm以下の微細回路を形成可能な)MSAP法用銅箔が求められている。例えば、特許文献1(国際公開第2012/046804号)には、JIS-B-06012-1994で規定する表面素地山の凹凸の平均間隔Smが25μm以上のキャリア上に、剥離層、銅箔をこの順序に積層し、銅箔をキャリアから剥離してなる銅箔が開示されており、この銅箔を用いることで、ライン/スペースが15μm以下の極細幅まで配線ラインの直線性を損なわずにエッチングが可能であるとされている。 The MSAP (Modified Semi-Additive Process) method is widely used as a printed wiring board manufacturing method suitable for circuit miniaturization. The MSAP method is a method suitable for forming an extremely fine circuit, and is performed using an ultrathin copper foil with a carrier in order to take advantage of the feature. For example, as shown in FIGS. 4 and 5, an ultrathin copper foil 110 is applied to a primer layer on an insulating resin substrate 111 having a prepreg 111b on a base substrate 111a (a lower circuit 111c may be included if necessary). 112 is used for pressing (step (a)), the carrier (not shown) is peeled off, and then via holes 113 are formed by laser drilling as necessary (step (b)). Next, after applying chemical copper plating 114 (step (c)), masking with a predetermined pattern by exposure and development using a dry film 115 (step (d)) and applying electrolytic copper plating 116 (step (e) )). After the dry film 115 was removed to form the wiring portion 116a (step (f)), unnecessary ultrathin copper foil or the like between the adjacent wiring portions 116a and 116a was removed by etching over the entire thickness (step). (G)), the wiring 117 formed in a predetermined pattern is obtained. In particular, with the recent reduction in size and weight of electronic circuits, there is a need for MSAP copper foils that are more excellent in circuit formability (for example, can form fine circuits of line / space = 15 μm or less / 15 μm or less). For example, in Patent Document 1 (International Publication No. 2012/046804), a release layer and a copper foil are provided on a carrier having an average spacing Sm of surface irregularities of stipulated in JIS-B-06020-1994 of 25 μm or more. A copper foil obtained by laminating in this order and peeling the copper foil from the carrier has been disclosed. By using this copper foil, the line / space can be reduced to a very narrow width of 15 μm or less without reducing the linearity of the wiring line. It is said that etching is possible.
 一方、軽量化や小型化に適したプリント配線板の製造工法として、支持体(コア)表面の金属層上に配線層を形成し、更にビルドアップ層を形成した後、支持体(コア)を分離するコアレスビルドアップ法を用いた製造方法が採用されている。かかる方法により製造されるプリント配線板は回路パターンが絶縁層の中に埋め込まれているタイプのものであるため、この工法はETS(Embedded Trace Substrate)工法と呼ばれている。表面に金属層が備わった支持体用の部材としてキャリア付銅箔を用いたコアレスビルドアップ法によるプリント配線板の製造方法の従来例が図11及び12に示される。図11及び12に示される例では、まず、キャリア212、剥離層214及び銅箔216をこの順に備えたキャリア付銅箔210を、プリプレグ等のコアレス支持体218に積層する。次いで、銅箔216にフォトレジストパターン220を形成し、パターンめっき(電気銅めっき)222の形成及びフォトレジストパターン220の剥離を経て配線パターン224を形成する。そして、パターンめっきに必要に応じて粗化処理等の積層前処理を施して第一配線層226とする。次いで、図12に示されるように、ビルドアップ層242を形成すべく絶縁層228、及び必要に応じて第二配線層238のシード層となるキャリア付銅箔230(キャリア232、剥離層234及び銅箔236を備える)を積層し、キャリア232を剥離し、かつ、レーザー等により銅箔236及びその直下の絶縁層228を孔開け加工する。続いて、化学銅めっき、フォトレジスト加工、電解銅めっき、フォトレジスト剥離及びフラッシュエッチング等によりパターニングを行って第二配線層238を形成し、このパターニングを必要に応じて繰り返して第n配線層240(nは2以上の整数)まで形成する。そして、コアレス支持体218をキャリア212とともに剥離してビルドアップ配線板244(コアレス配線板とも呼ばれる)とし、第一配線層226の配線パターン間に露出する銅箔216と、存在する場合にはビルドアップ層242の第n配線層240の配線パターン間に露出する銅箔236等とをフラッシュエッチングにより除去して所定の配線パターンとし、プリント配線板246を得る。 On the other hand, as a manufacturing method of a printed wiring board suitable for weight reduction and miniaturization, a wiring layer is formed on a metal layer on the surface of a support (core), and a buildup layer is further formed. A manufacturing method using a coreless build-up method is employed. Since a printed wiring board manufactured by such a method is of a type in which a circuit pattern is embedded in an insulating layer, this method is called an ETS (Embedded Trace Substrate) method. 11 and 12 show a conventional example of a method for manufacturing a printed wiring board by a coreless buildup method using a copper foil with a carrier as a member for a support having a metal layer on the surface. In the example shown in FIGS. 11 and 12, first, a copper foil with carrier 210 including a carrier 212, a peeling layer 214, and a copper foil 216 in this order is laminated on a coreless support 218 such as a prepreg. Next, a photoresist pattern 220 is formed on the copper foil 216, and a wiring pattern 224 is formed through formation of pattern plating (electrocopper plating) 222 and peeling of the photoresist pattern 220. Then, a pre-stacking process such as a roughening process is performed on the pattern plating as necessary to form the first wiring layer 226. Next, as shown in FIG. 12, a copper foil 230 with a carrier (a carrier 232, a release layer 234, and a seed layer for the insulating layer 228 and, if necessary, the second wiring layer 238 to form a build-up layer 242). The copper foil 236 is provided), the carrier 232 is peeled off, and the copper foil 236 and the insulating layer 228 immediately below it are punched with a laser or the like. Subsequently, patterning is performed by chemical copper plating, photoresist processing, electrolytic copper plating, photoresist stripping, flash etching, or the like to form the second wiring layer 238, and this patterning is repeated as necessary to repeat the nth wiring layer 240. (N is an integer of 2 or more). Then, the coreless support 218 is peeled off together with the carrier 212 to form a build-up wiring board 244 (also referred to as a coreless wiring board), and the copper foil 216 exposed between the wiring patterns of the first wiring layer 226 and the build if present. The copper foil 236 and the like exposed between the wiring patterns of the n-th wiring layer 240 of the up layer 242 are removed by flash etching to obtain a predetermined wiring pattern, and a printed wiring board 246 is obtained.
国際公開第2012/046804号International Publication No. 2012/046804 特開2014-63950号公報JP 2014-63950 A
 ところで、MSAP法(図4及び5を参照)において、ビアホール113の形成(工程(b))後で、かつ、化学銅めっき114の形成(工程c))前に、ビアホール底面の下層回路111cのクリーニングやビアホール周囲に付着したスプラッシュの除去を目的としてマイクロエッチング(Cuエッチング)が行われる場合がある。近年、回路を微細化する観点から、従来よりも極薄銅層110の厚さを予め薄くしておき、前記マイクロエッチング後の時点でのシード層(極薄銅箔110)が0.3μm程度の厚さとなるようにすることが望まれるようになってきた。しかしながら、このように薄くされた極薄銅箔110と絶縁樹脂基板111との積層体をマイクロエッチングしようとすると、図3に概念的に示されるように、マイクロエッチング中、マイクロエッチングの面内ばらつきにより部分的に極薄銅箔110(シード層)に欠損110aが生じることがある。このため、そのような欠損の発生を抑制する手法が望まれる。 By the way, in the MSAP method (see FIGS. 4 and 5), after the formation of the via hole 113 (step (b)) and before the formation of the chemical copper plating 114 (step c)), the lower layer circuit 111c on the bottom surface of the via hole is formed. In some cases, micro-etching (Cu etching) is performed for the purpose of cleaning or removing the splash adhered around the via hole. In recent years, from the viewpoint of circuit miniaturization, the thickness of the ultrathin copper layer 110 is made thinner than before, and the seed layer (ultrathin copper foil 110) at the time after the microetching is about 0.3 μm. It has come to be desired to become the thickness of. However, if the laminated body of the ultrathin copper foil 110 and the insulating resin substrate 111 thus thinned is to be microetched, the in-plane variation of the microetching during the microetching is conceptually shown in FIG. As a result, a defect 110a may partially occur in the ultrathin copper foil 110 (seed layer). For this reason, a technique for suppressing the occurrence of such defects is desired.
 一方、ETS工法においては、コアレス配線板製造工程におけるフラッシュエッチング工程(図11及び12を参照)では、露出している銅箔216に存在する微小なピンホールや、フラッシュエッチング液の面内液被着圧の不均一性等が影響して、第一配線層226の面内でフラッシュエッチングされる量が不均一になりがちである。この場合、図9に概念的に示されるように、除去されるべき銅箔216のみならず、残されるべき銅回路(第一配線層226)の一部までもが不均一にエッチングされてしまい、規格値を超える不均一な回路凹み226aが発生してしまう。このような不均一な回路凹み226aは、プリント配線板の実装工程や信頼性試験環境下において、接続不良や断線等の不具合につながるおそれがある。そこで、かかる配線層のエッチングを低減するための試みが提案されている。例えば、特許文献2(特開2014-63950号公報)には、ニッケルで形成されるエッチングストッパー層を設け、このエッチングストッパー層を選択エッチングにより除去することにより、銅回路の不均一な溶解を抑制し、面内で不均一に発生する回路凹みを抑制することが開示されている。しかしながら、特許文献2の手法を採用した場合、図10に概念的に示されるように、銅エッチング工程で、除去されるべき銅箔216のみならず、本来除去されないはずのエッチングストッパー層215が僅かながら溶出してしまう場合がある。また、エッチングストッパー層215を形成する時にも僅かながらピンホールが存在する場合は、銅エッチング工程において、銅回路(第一配線層226)が局所的に露出してしまうこともあり得る。こうして不均一な溶出により銅回路(第一配線層226)が局所的に露出してしまうと、銅回路を構成するCuの溶解が加速され、局所的に大きな回路凹み226aが生じてしまう。そもそも、エッチングストッパー層215を設けた場合、エッチングストッパー層215を除去するための選択エッチング工程が別途必要となるため、製造工程が多くなる。 On the other hand, in the ETS method, in the flash etching process (see FIGS. 11 and 12) in the coreless wiring board manufacturing process, minute pinholes existing in the exposed copper foil 216 and the in-plane liquid coating of the flash etching liquid are used. The amount of flash etching within the surface of the first wiring layer 226 tends to be non-uniform due to the non-uniformity of the contact pressure. In this case, as conceptually shown in FIG. 9, not only the copper foil 216 to be removed but also a part of the copper circuit (first wiring layer 226) to be left is etched unevenly. As a result, a non-uniform circuit recess 226a exceeding the standard value is generated. Such non-uniform circuit recesses 226a may lead to problems such as poor connection and disconnection in the printed wiring board mounting process and reliability test environment. Therefore, an attempt to reduce the etching of the wiring layer has been proposed. For example, in Patent Document 2 (Japanese Patent Laid-Open No. 2014-63950), an etching stopper layer formed of nickel is provided, and this etching stopper layer is removed by selective etching, thereby suppressing uneven dissolution of the copper circuit. However, it is disclosed to suppress a circuit dent that occurs non-uniformly in a plane. However, when the method of Patent Document 2 is adopted, as shown conceptually in FIG. 10, not only the copper foil 216 to be removed but also the etching stopper layer 215 that should not be removed is slightly present in the copper etching process. Elution may occur. In addition, if pinholes are present slightly when the etching stopper layer 215 is formed, the copper circuit (first wiring layer 226) may be locally exposed in the copper etching process. Thus, if the copper circuit (first wiring layer 226) is locally exposed due to non-uniform elution, dissolution of Cu constituting the copper circuit is accelerated and a large circuit recess 226a is generated locally. In the first place, when the etching stopper layer 215 is provided, a selective etching process for removing the etching stopper layer 215 is separately required, and thus the number of manufacturing processes is increased.
 本発明者らは、今般、プリント配線板の製造において、第一銅層と第二銅層の間にエッチングレートが高いエッチング犠牲層を介在させた銅箔を用いることで、追加のエッチング工程を別途要することなく、Cuエッチングの面内ばらつきを有意に低減させ、その結果、上述したようなシード層の欠損や回路凹みの発生を抑制できるとの知見を得た。 In the manufacture of printed wiring boards, the present inventors have recently used an additional etching step by using a copper foil in which an etching sacrificial layer having a high etching rate is interposed between the first copper layer and the second copper layer. It was found that the in-plane variation of Cu etching was significantly reduced without the necessity, and as a result, generation of seed layer defects and circuit dents as described above could be suppressed.
 したがって、本発明の目的は、追加のエッチング工程を別途要することなく、Cuエッチングの面内ばらつきを有意に低減させ、その結果、シード層の欠損や回路凹みの発生を抑制可能な、プリント配線板製造用銅箔を提供することにある。 Accordingly, an object of the present invention is to provide a printed wiring board that can significantly reduce in-plane variation of Cu etching without requiring an additional etching step, and as a result, can suppress seed layer defects and circuit dents. It is to provide a copper foil for production.
 本発明の一態様によれば、第一銅層、エッチング犠牲層、及び第二銅層をこの順に備え、Cuのエッチングレートに対する、前記エッチング犠牲層のエッチングレートの比rが1.0よりも高い、プリント配線板製造用銅箔が提供される。 According to an aspect of the present invention, the first copper layer, the etching sacrificial layer, and the second copper layer are provided in this order, and a ratio r of the etching sacrificial layer to the etching rate of Cu is less than 1.0. A high copper foil for producing printed wiring boards is provided.
 本発明の他の一態様によれば、キャリア、剥離層、及び前記銅箔をこの順に備えた、キャリア付銅箔が提供される。 According to another aspect of the present invention, there is provided a copper foil with a carrier provided with a carrier, a release layer, and the copper foil in this order.
 本発明の他の一態様によれば、前記銅箔を備えた、銅張積層板が提供される。 According to another aspect of the present invention, a copper clad laminate provided with the copper foil is provided.
 本発明の他の一態様によれば、前記銅箔又は前記キャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for manufacturing a printed wiring board, wherein the printed wiring board is manufactured using the copper foil or the copper foil with a carrier.
本発明の銅箔を含むキャリア付銅箔の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the copper foil with a carrier containing the copper foil of this invention. MSAP法におけるエッチング犠牲層の機能を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the function of the etching sacrificial layer in a MSAP method. 従来の銅箔を用いたMSAP法におけるシード層(極薄銅箔)の不均一エッチングを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the nonuniform etching of the seed layer (ultra-thin copper foil) in the MSAP method using the conventional copper foil. MSAP法を用いたプリント配線板の製造方法の従来例における、前半の工程を示す図である。It is a figure which shows the process of the first half in the prior art example of the manufacturing method of the printed wiring board using MSAP method. MSAP法を用いたプリント配線板の製造方法の従来例における、図4に示される工程に続く後半の工程を示す。The latter half process following the process shown by FIG. 4 in the prior art example of the manufacturing method of the printed wiring board using MSAP method is shown. コアレスビルドアップ法(ETS工法)におけるエッチング犠牲層の機能を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the function of the etching sacrificial layer in a coreless buildup method (ETS construction method). 本発明の銅箔を用いたコアレスビルドアップ法(ETS工法)によるプリント配線板の製造方法の一例における、前半の工程を示す図である。It is a figure which shows the process of the first half in an example of the manufacturing method of the printed wiring board by the coreless buildup method (ETS construction method) using the copper foil of this invention. 本発明の銅箔を用いたコアレスビルドアップ法(ETS工法)によるプリント配線板の製造方法の一例における、図7に示される工程に続く後半の工程を示す。The latter half process following the process shown by FIG. 7 in an example of the manufacturing method of the printed wiring board by the coreless buildup method (ETS construction method) using the copper foil of this invention is shown. 従来の銅箔を用いたETS工法における銅回路の不均一エッチングを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the non-uniform etching of the copper circuit in the ETS construction method using the conventional copper foil. 従来の銅箔を用いたETS工法におけるエッチングストッパー層及び銅回路の不均一エッチングを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the etching stopper layer and the non-uniform etching of a copper circuit in the ETS method using the conventional copper foil. コアレスビルドアップ法(ETS工法)を用いたプリント配線板の製造方法の従来例における、前半の工程を示す図である。It is a figure which shows the process of the first half in the prior art example of the manufacturing method of the printed wiring board using the coreless buildup method (ETS construction method). コアレスビルドアップ法(ETS工法)を用いたプリント配線板の製造方法の従来例における、図11に示される工程に続く後半の工程を示す。The latter half process following the process shown by FIG. 11 in the prior art example of the manufacturing method of the printed wiring board using the coreless buildup method (ETS construction method) is shown. 第二銅層に欠損が生じない場合のエッチング過程を説明する図である。It is a figure explaining the etching process in case a defect does not arise in a 2nd copper layer. 第一銅層の残存が第二銅層の欠損を引き起こす場合のエッチング過程を概念的に説明する図である。It is a figure which illustrates notionally the etching process in case the residue of a 1st copper layer causes the defect | deletion of a 2nd copper layer.
 プリント配線板製造用銅箔
 本発明による銅箔は、プリント配線板の製造に用いられる銅箔である。図1に本発明の銅箔の模式断面図が示される。図1に示されるように、銅箔10は、第一銅層11、エッチング犠牲層12、及び第二銅層13をこの順に備える。エッチング犠牲層12は銅合金層ではありうるとしても、金属銅層ではないため、銅箔10はその内層として銅以外の金属又は合金を含むことになる。このため、本発明の銅箔は犠牲層含有銅箔、又は金属箔と称することもできるが、両表面が銅層で構成されるため、製品カテゴリーとしては銅箔として認識されるものである。また、「第一銅層」及び「第二銅層」なる名称は、一般的には銅箔10の絶縁樹脂との積層の際、絶縁樹脂と密着しない銅層が「第一銅層」であり、絶縁樹脂と密着する銅層が「第二銅層」である。なお、本発明の銅箔をETS工法に適用する場合は、回路パターンが形成されない側の銅層が「第一銅層」であり、回路パターンが形成される側の銅層が「第二銅層」である。これらの名称に含まれる序列は製造時における製造順序に従ったものである。例えば、銅箔10が図1に示されるようなキャリア付銅箔14の形態で供される場合、キャリア15、剥離層16、第一銅層11、エッチング犠牲層12、及び第二銅層13の順に製造されることになる。
Copper foil for manufacturing a printed wiring board The copper foil according to the present invention is a copper foil used for manufacturing a printed wiring board. FIG. 1 shows a schematic cross-sectional view of the copper foil of the present invention. As shown in FIG. 1, the copper foil 10 includes a first copper layer 11, an etching sacrificial layer 12, and a second copper layer 13 in this order. Although the etching sacrificial layer 12 may be a copper alloy layer, it is not a metal copper layer, and thus the copper foil 10 contains a metal or alloy other than copper as its inner layer. For this reason, although the copper foil of this invention can also be called sacrificial layer containing copper foil or metal foil, since both surfaces are comprised with a copper layer, it is recognized as copper foil as a product category. In addition, the names of “first copper layer” and “second copper layer” are generally referred to as “first copper layer” when the copper foil 10 is laminated with the insulating resin, and the copper layer that is not in close contact with the insulating resin. The copper layer that is in close contact with the insulating resin is the “second copper layer”. When the copper foil of the present invention is applied to the ETS method, the copper layer on the side where the circuit pattern is not formed is the “first copper layer”, and the copper layer on the side where the circuit pattern is formed is the “second copper layer”. Layer ". The order contained in these names follows the manufacturing sequence at the time of manufacture. For example, when the copper foil 10 is provided in the form of a copper foil 14 with a carrier as shown in FIG. 1, the carrier 15, the release layer 16, the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13. Will be manufactured in this order.
 そして、エッチング犠牲層12は、Cuのエッチングレートに対する、エッチング犠牲層12のエッチングレートの比rが1.0よりも高いことによって特徴付けられる。このように、プリント配線板の製造において、第一銅層11と第二銅層13の間にエッチングレートが高いエッチング犠牲層12を介在させた銅箔10を用いることで、追加のエッチング工程を別途要することなく、Cuエッチングの面内ばらつきを有意に低減させ、その結果、前述したようなシード層の欠損や回路凹みの発生を抑制することができる。すなわち、エッチングレート比rが1.0よりも高いエッチング犠牲層12が2つの銅層13,11間にサンドイッチされることで、Cuエッチング時に不均一な溶解が起こったとしても、第二銅層13ではなくエッチング犠牲層12が不均一に溶解する。したがって、Cuが局部的に露出する状況が生じてしまっても、局部電池反応によりエッチング犠牲層12が優先的に溶解することができ、その結果、下地の第二銅層13の溶解が抑制される。 The etching sacrificial layer 12 is characterized by a ratio r of the etching rate of the etching sacrificial layer 12 to the etching rate of Cu being higher than 1.0. Thus, in the production of the printed wiring board, an additional etching process is performed by using the copper foil 10 in which the etching sacrificial layer 12 having a high etching rate is interposed between the first copper layer 11 and the second copper layer 13. Without being separately required, the in-plane variation of Cu etching can be significantly reduced, and as a result, generation of seed layer defects and circuit recesses as described above can be suppressed. That is, even if the etching sacrificial layer 12 having an etching rate ratio r higher than 1.0 is sandwiched between the two copper layers 13 and 11, even if non-uniform dissolution occurs during Cu etching, the second copper layer The etching sacrificial layer 12 is not uniformly dissolved but 13. Therefore, even if the situation where Cu is locally exposed occurs, the etching sacrificial layer 12 can be preferentially dissolved by the local battery reaction, and as a result, dissolution of the underlying second copper layer 13 is suppressed. The
 例えば、MSAP法の場合、図2に概念的に示されるように、銅箔10と絶縁層28との積層体に対するマイクロエッチング中、エッチング犠牲層12が不均一に溶解して第二銅層13が局所的に露出しても、エッチング犠牲層12が優先的に溶解する。その結果、第二銅層13の厚さは概して均一に保たれることになり、欠損が発生しにくくなる。この点、前述したように、従来の極薄銅箔110を用いたMSAP法(図4及び5を参照)では、図3に概念的に示されるように、極薄銅箔110と絶縁樹脂基板111との積層体に対するマイクロエッチング中、マイクロエッチングの面内ばらつきにより部分的に極薄銅箔110(シード層)に欠損110aが生じることがある。これに対し、本発明の銅箔10を用いることで、上記技術的課題を好都合に解消することができる。 For example, in the case of the MSAP method, as conceptually shown in FIG. 2, the etching sacrificial layer 12 is dissolved non-uniformly during the microetching of the laminated body of the copper foil 10 and the insulating layer 28, and the second copper layer 13. Even if locally exposed, the etching sacrificial layer 12 is preferentially dissolved. As a result, the thickness of the second copper layer 13 is generally kept uniform, and defects are less likely to occur. In this regard, as described above, in the MSAP method using the conventional ultrathin copper foil 110 (see FIGS. 4 and 5), as conceptually shown in FIG. 3, the ultrathin copper foil 110 and the insulating resin substrate During microetching of the laminate with 111, defects 110a may be partially generated in the ultrathin copper foil 110 (seed layer) due to in-plane variation of microetching. On the other hand, the said technical subject can be advantageously eliminated by using the copper foil 10 of this invention.
 一方、コアレスビルドアップ法(ETS工法)の場合、図6(b)及び(c)に概念的に示されるように、Cuエッチングの際にエッチング犠牲層12が不均一に溶解して且つ/又はエッチング犠牲層12に偶発的に存在しうるピンホール等に起因してCu(第二銅層13又は第一配線層26のCu)が局所的に露出したとしても、局部電池反応により下地の第二銅層13又は第一配線層26(銅層)の溶解が抑制される。その結果、面内で均一に第二銅層13がエッチングされるとともに、第一配線層26の局所的な回路凹みの発生を抑制することができる。しかも、この方法によれば、エッチング犠牲層12はCuエッチングに伴い溶解除去されるので、エッチング犠牲層12を除去するための追加工程が不要になり、生産性も向上する。さらには、高エッチングレートであること自体の効果により、第一配線層26の面内において回路凹みを平均的に低減できるとの利点もある。この点、前述したように、特許文献2の手法を採用した場合、図10に概念的に示されるように、銅エッチング工程で、除去されるべき銅箔216のみならず、本来除去されないはずのエッチングストッパー層215が僅かながら溶出してしまう他、エッチングストッパー層215を形成する段階に発生するピンホール等に起因して、下層である銅回路(第一配線層226)が局所的に露出するおそれがある。こうして銅回路(第一配線層226)が局所的に露出してしまうと、銅回路を構成するCuの溶解が加速され、局所的に大きな回路凹み226aが生じてしまう。そもそも、エッチングストッパー層215を設けた場合、エッチングストッパー層215を除去するための選択エッチング工程が別途必要となるため、製造工程が多くなる。これに対し、本発明の銅箔10を用いることで、これらの技術的課題を好都合に解消することができる。 On the other hand, in the case of the coreless buildup method (ETS method), as conceptually shown in FIGS. 6B and 6C, the etching sacrificial layer 12 is dissolved non-uniformly during the Cu etching and / or Even if Cu (the second copper layer 13 or the Cu of the first wiring layer 26) is locally exposed due to a pinhole or the like that may be accidentally present in the etching sacrificial layer 12, the local cell reaction causes the underlying first layer to be exposed. Dissolution of the two-copper layer 13 or the first wiring layer 26 (copper layer) is suppressed. As a result, the second copper layer 13 is uniformly etched in the plane, and local circuit dents in the first wiring layer 26 can be suppressed. In addition, according to this method, the etching sacrificial layer 12 is dissolved and removed along with the Cu etching, so that an additional step for removing the etching sacrificial layer 12 is not required, and the productivity is improved. Furthermore, there is an advantage that the circuit dents can be reduced on the average in the plane of the first wiring layer 26 by the effect of the high etching rate itself. In this regard, as described above, when the method of Patent Document 2 is adopted, as conceptually shown in FIG. 10, not only the copper foil 216 to be removed but also not originally removed in the copper etching process. The etching stopper layer 215 elutes slightly, and the underlying copper circuit (first wiring layer 226) is locally exposed due to pinholes or the like generated in the stage of forming the etching stopper layer 215. There is a fear. When the copper circuit (first wiring layer 226) is locally exposed in this way, dissolution of Cu constituting the copper circuit is accelerated, and a large circuit recess 226a is locally generated. In the first place, when the etching stopper layer 215 is provided, a selective etching process for removing the etching stopper layer 215 is separately required, and thus the number of manufacturing processes is increased. On the other hand, these technical problems can be advantageously solved by using the copper foil 10 of the present invention.
 第一銅層11は公知の銅箔構成であってよく特に限定されない。第一銅層11を備えることでCuエッチング工程における前処理等で溶解速度の速いエッチング犠牲層12を露出させないように制御することが可能になる、また、下記剥離層との剥離性を容易なものとすることができるといった利点がある。第一銅層11は、無電解めっき法及び電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。第一銅層11は0.1~2.5μmの厚さdを有するのが好ましく、より好ましくは0.1~2μm、さらに好ましくは0.2~1.5μm、特に好ましくは0.2~1μm、最も好ましくは0.3~0.8μmである。このような範囲内の厚さdであるとCuエッチングの前工程(例えばデスミア等の薬液工程)においてエッチング犠牲層12をより効果的に保護できるとともに、後述するd/d≧r及び/又はd+d+d<3.0μmの条件を満たしやすくなり、その結果、Cuエッチング時の欠損等の不具合をより効果的に防止することができる。 The 1st copper layer 11 may be a well-known copper foil structure, and is not specifically limited. By providing the first copper layer 11, it becomes possible to control the etching sacrificial layer 12 having a high dissolution rate in the pre-treatment in the Cu etching process so as not to be exposed, and the releasability from the following release layer is easy. There is an advantage that it can be. The first copper layer 11 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof. The cuprous layer 11 preferably has a thickness d 1 of 0.1 to 2.5 μm, more preferably 0.1 to 2 μm, still more preferably 0.2 to 1.5 μm, and particularly preferably 0.2. ˜1 μm, most preferably 0.3 to 0.8 μm. When the thickness d 1 is in such a range, the etching sacrificial layer 12 can be more effectively protected in the previous step of Cu etching (for example, a chemical solution step such as desmear), and d 2 / d 1 ≧ r and the later-described / Or d 1 + d 2 + d 3 <3.0 μm is easily satisfied, and as a result, defects such as defects during Cu etching can be more effectively prevented.
 ところで、第一銅層11はCuエッチングの前工程(例えばデスミア等の薬液工程)で薬液による溶解からエッチング犠牲層12を保護することができる一方で、過剰に厚い場合はエッチング後の第二銅層13に欠損が生じることがある。かかる欠損を効果的に防止する観点から、第一銅層11の厚さをdとし、エッチング犠牲層12の厚さをdとした場合、d/d≧rを満たすのが好ましい。このことは図13及び14に概念的に示される銅箔10,10’と絶縁層28との積層体を参照しながら以下のように説明される。まず、図14(a)に示されるように第一銅層11’が過剰に厚い場合には、第一銅層11’が不均一に溶解してエッチング犠牲層12が露出し(図14(b))、露出したエッチング犠牲層12が直ちに(残った第一銅層11’よりも優先的に)溶解して第二銅層13が露出しうる(図14(c))。その結果、残存した第一銅層11’の溶解と並行して、露出した第二銅層13の溶解が進行してしまい(図14(d))、第二銅層13に欠損13aが発生しうる(図14(e)参照)。これに対して、図13(a)に示されるように第一銅層11が適度に薄い場合には、第一銅層11が薄いが故に溶解時のばらつきが少なく(図13(b))、エッチング犠牲層12が溶解して第二銅層13が露出する前に第一銅層11が溶け切ることになる(図13(c))。その結果、エッチング犠牲層12と第二銅層13が同時にエッチング液に接触することにより、エッチング犠牲層12による犠牲効果が発現し(図13(d))、第二銅層13には欠損が生じないこととなる(図13(e))。してみると、第一銅層11が溶け切る時間が、エッチング犠牲層12が溶け切る時間よりも短いことが欠損防止の観点から望ましいといえる。したがって、第一銅層11のエッチングレートをvとし、エッチング犠牲層のエッチングレートをvとした場合、以下の関係:
   d/v≧d/v1 ⇔ d/d≧v/v1 ⇔ d/d≧r
が満たすのが望ましいといえる。すなわち、第一銅層11のエッチングレートvはCuに対するエッチングレートに他ならないことから、前述したエッチングレート比rを用いると、v/v=rである。よって、上記のとおりd/d≧rを満たすのが好ましいといえる。
By the way, the first copper layer 11 can protect the etching sacrificial layer 12 from dissolution by a chemical solution in a pre-process of Cu etching (for example, a chemical process such as desmear). Defects may occur in the layer 13. From the viewpoint of effectively preventing such defects, it is preferable that d 2 / d 1 ≧ r is satisfied when the thickness of the first copper layer 11 is d 1 and the thickness of the etching sacrificial layer 12 is d 2. . This will be described as follows with reference to a laminate of the copper foils 10 and 10 'and the insulating layer 28 conceptually shown in FIGS. First, as shown in FIG. 14A, when the first copper layer 11 ′ is excessively thick, the first copper layer 11 ′ is dissolved non-uniformly to expose the etching sacrificial layer 12 (FIG. 14 ( b)) The exposed etching sacrificial layer 12 can be immediately dissolved (preferentially over the remaining first copper layer 11 ′) to expose the second copper layer 13 (FIG. 14C). As a result, in parallel with the dissolution of the remaining first copper layer 11 ′, the dissolution of the exposed second copper layer 13 proceeds (FIG. 14D), and the defect 13 a is generated in the second copper layer 13. (See FIG. 14 (e)). On the other hand, as shown in FIG. 13 (a), when the first copper layer 11 is reasonably thin, the first copper layer 11 is thin, so there is little variation at the time of dissolution (FIG. 13 (b)). The first copper layer 11 is completely melted before the etching sacrificial layer 12 is dissolved and the second copper layer 13 is exposed (FIG. 13C). As a result, when the etching sacrificial layer 12 and the second copper layer 13 are simultaneously brought into contact with the etching solution, the sacrificial effect by the etching sacrificial layer 12 appears (FIG. 13D), and the second copper layer 13 has a defect. This will not occur (FIG. 13 (e)). Accordingly, it can be said that it is desirable from the viewpoint of preventing defects that the time for the first copper layer 11 to melt is shorter than the time for the etching sacrificial layer 12 to melt. Therefore, when the etching rate of the first copper layer 11 is v 1 and the etching rate of the etching sacrificial layer is v 2 , the following relationship:
d 2 / v 2 ≧ d 1 / v 1 ⇔d 2 / d 1 ≧ v 2 / v 1 dd 2 / d 1 ≧ r
It is desirable to satisfy. That is, since the etching rate v 1 of the first copper layer 11 is nothing but the etching rate with respect to Cu, v 2 / v 1 = r when using the etching rate ratio r described above. Therefore, it can be said that it is preferable to satisfy d 2 / d 1 ≧ r as described above.
 第一銅層11の単位面積当たりのピンホール数が2個/mm以下であるのが好ましい。第一銅層11におけるピンホール数が上記のとおり少ないと、銅箔10の製造プロセスにおいて、第一銅層11にめっきされるエッチング犠牲層12及び第二銅層13において発生しうるピンホールもまた少なくすることができる。その結果、Cuエッチング時の薬液浸食による欠損等の不具合をより一層低減することができる。 The number of pinholes per unit area of the first copper layer 11 is preferably 2 / mm 2 or less. When the number of pinholes in the first copper layer 11 is small as described above, in the manufacturing process of the copper foil 10, there are also pinholes that can be generated in the etching sacrificial layer 12 and the second copper layer 13 plated on the first copper layer 11. It can also be reduced. As a result, defects such as defects due to chemical erosion during Cu etching can be further reduced.
 エッチング犠牲層12は、エッチングレートがCuよりも高いものであれば特に限定されない。換言すれば、Cuのエッチングレートに対する、エッチング犠牲層12のエッチングレートの比r(以下、エッチングレート比rという)が1.0よりも高い。エッチングレートがCuより高ければ(エッチングレート比rが1.0より高ければ)Cuエッチングによって同時に溶解除去することができるとともに、エッチング犠牲層12が不均一に溶解してCuが局所的に露出したとしても、局部電池反応により下地の銅層の溶解が抑制され、それにより面内で均一に銅層のエッチングを行えるとともに、シード層の欠損や局所的な回路凹みや欠損の発生を抑制することができる。このエッチングレートは、エッチング犠牲層12と同じ材料で構成される箔サンプルと、参照試料としての銅箔サンプルとを、エッチング工程において同じ時間処理を行い、エッチングによる各サンプルの厚み変化を溶解時間で除することにより算出されるものである。なお、厚み変化は両サンプルの重量減少量を測定して、それぞれの金属の密度から厚さに換算することにより決定されてもよい。好ましいエッチングレート比rは、高い犠牲効果を得る観点から、1.2以上であり、より好ましくは1.25以上、さらに好ましくは1.3以上である。エッチングレート比rの上限は特に限定されないが、面内におけるエッチング犠牲層12の溶解速度を均一に保ち、第二銅層13との局部電池反応を面内均一に作用させるためには、エッチングレート比rは5.0以下が好ましく、より好ましくは4.5以下であり、さらに好ましくは4.0以下であり、特に好ましくは3.5以下であり、最も好ましくは3.0以下である。ここで、エッチング液としては、酸化還元反応により銅を溶解できる公知の液が採用可能である。エッチング液の例としては、塩化第二銅(CuCl)水溶液、塩化第二鉄(FeCl)水溶液、過硫酸アンモニウム水溶液、過硫酸ナトリウム水溶液、過硫酸カリウム水溶液、硫酸/過酸化水素水等の水溶液等が挙げられる。この中でもCuのエッチングレートを精密に制御でき、エッチング犠牲層12とのエッチング時間差を確保するのに好適な点から、過硫酸ナトリウム水溶液、過硫酸カリウム水溶液、及び硫酸/過酸化水素水が好ましく、この中でも硫酸/過酸化水素水が最も好ましい。エッチング方式としては、スプレー法、浸漬法等が採用できる。また、エッチング温度としては、25~70℃の範囲で適宜設定されうるものである。本発明におけるエッチングレートは、上記エッチング液やエッチング方式等の組合せと、下記に示すエッチング犠牲層12の材料の選択とによって調整されるものである。 The etching sacrificial layer 12 is not particularly limited as long as the etching rate is higher than that of Cu. In other words, the ratio r of the etching rate of the etching sacrificial layer 12 to the etching rate of Cu (hereinafter referred to as the etching rate ratio r) is higher than 1.0. If the etching rate is higher than Cu (if the etching rate ratio r is higher than 1.0), it can be simultaneously dissolved and removed by Cu etching, and the etching sacrificial layer 12 is unevenly dissolved and Cu is locally exposed. However, the local battery reaction suppresses the dissolution of the underlying copper layer, thereby enabling uniform etching of the copper layer in the surface, and suppressing the occurrence of seed layer defects and local circuit dents and defects. Can do. This etching rate is the same as that of the etching sacrificial layer 12 and the copper foil sample as a reference sample is processed for the same time in the etching process, and the change in thickness of each sample due to etching is determined by the dissolution time. It is calculated by dividing. The thickness change may be determined by measuring the weight reduction amount of both samples and converting the thickness from the density of each metal. A preferable etching rate ratio r is 1.2 or more from the viewpoint of obtaining a high sacrifice effect, more preferably 1.25 or more, and further preferably 1.3 or more. The upper limit of the etching rate ratio r is not particularly limited, but in order to keep the dissolution rate of the etching sacrificial layer 12 in the plane uniform and cause the local cell reaction with the second copper layer 13 to act uniformly in the plane, the etching rate The ratio r is preferably 5.0 or less, more preferably 4.5 or less, still more preferably 4.0 or less, particularly preferably 3.5 or less, and most preferably 3.0 or less. Here, as the etching solution, a known solution capable of dissolving copper by an oxidation-reduction reaction can be employed. Examples of the etching solution include cupric chloride (CuCl 2 ) aqueous solution, ferric chloride (FeCl 3 ) aqueous solution, ammonium persulfate aqueous solution, sodium persulfate aqueous solution, potassium persulfate aqueous solution, sulfuric acid / hydrogen peroxide aqueous solution and the like. Etc. Among these, the Cu etching rate can be precisely controlled, and from the viewpoint of ensuring a difference in etching time with the etching sacrificial layer 12, a sodium persulfate aqueous solution, a potassium persulfate aqueous solution, and a sulfuric acid / hydrogen peroxide solution are preferable. Of these, sulfuric acid / hydrogen peroxide solution is most preferable. As an etching method, a spray method, a dipping method, or the like can be employed. The etching temperature can be appropriately set within the range of 25 to 70 ° C. The etching rate in the present invention is adjusted by a combination of the above etching solution and etching method and the selection of the material of the etching sacrificial layer 12 described below.
 エッチング犠牲層12を構成する材料はCuよりも電気化学的に卑な金属が好ましく、そのような好ましい金属の例としては、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Fe金属、Zn金属、Co金属、Mo金属及びこれらの酸化物、並びにこれらの組合せが挙げられ、特に好ましくはCu-Zn合金である。エッチング犠牲層12を構成しうるCu-Zn合金は、高い犠牲効果を得る観点から、Znを40重量%以上含むのが好ましく、より好ましくは50重量%以上、さらに好ましくは60重量%以上、特に好ましくは70重量%以上である。また、Cu-Zn合金におけるZn含有量は、上述したエッチング犠牲層12の面内溶解速度の均一な保持、及び第二銅層13との局部電池反応の面内均一作用の観点から、好ましくは98重量%以下、より好ましくは96重量%以下であり、さらに好ましくは94%重量%以下である。エッチング犠牲層12は0.1~5μmの厚さdを有するのが好ましく、より好ましくは0.1~4.5μm、さらに好ましくは0.2~4μm、特に好ましくは0.2~3.5μm、最も好ましくは0.3~3μmである。 The material constituting the etching sacrificial layer 12 is preferably an electrochemically base metal rather than Cu. Examples of such a preferable metal include a Cu—Zn alloy, a Cu—Sn alloy, a Cu—Mn alloy, and Cu—Al. Alloys, Cu—Mg alloys, Fe metals, Zn metals, Co metals, Mo metals and oxides thereof, and combinations thereof are particularly preferable, and Cu—Zn alloys are particularly preferable. From the viewpoint of obtaining a high sacrificial effect, the Cu—Zn alloy that can constitute the etching sacrificial layer 12 preferably contains 40% by weight or more of Zn, more preferably 50% by weight or more, and even more preferably 60% by weight or more. Preferably it is 70 weight% or more. In addition, the Zn content in the Cu—Zn alloy is preferably from the viewpoint of the uniform retention of the in-plane dissolution rate of the etching sacrificial layer 12 and the in-plane uniform action of the local cell reaction with the second copper layer 13. It is 98 weight% or less, More preferably, it is 96 weight% or less, More preferably, it is 94% weight% or less. The etching sacrificial layer 12 preferably has a thickness d 2 of 0.1 to 5 μm, more preferably 0.1 to 4.5 μm, still more preferably 0.2 to 4 μm, and particularly preferably 0.2 to 3. 5 μm, most preferably 0.3 to 3 μm.
 第二銅層13は、公知の構成であってよく特に限定されない。例えば、第二銅層13は、無電解めっき法及び電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。第二銅層13は0.1~2.5μmの厚さdを有するのが好ましく、より好ましくは0.1~2μm、さらに好ましくは0.1~1.5μm、特に好ましくは0.2~1μm、最も好ましくは0.2~0.8μmである。このような範囲内の厚さdであると、回路形成に好都合な十分な薄さでありながらも、Cuエッチング時の欠損等の不具合をより効果的に防止することができる。 The cupric layer 13 may have a known configuration and is not particularly limited. For example, the second copper layer 13 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof. Cupric layer 13 preferably has a thickness d 3 of 0.1 ~ 2.5 [mu] m, more preferably 0.1 ~ 2 [mu] m, more preferably 0.1 ~ 1.5 [mu] m, particularly preferably 0.2 It is ˜1 μm, most preferably 0.2 to 0.8 μm. When a thick d 3 in such a range, it is also yet convenient thin enough circuit formation, to more effectively prevent a defect of the defect or the like during Cu etching.
 第二銅層13の表面には、粗化処理がされていることが好ましい。このように第二銅層の表面に粗化処理により形成された粗化粒子が付着されていることで、銅張積層板やプリント配線板製造時における絶縁樹脂層との密着性を向上することができる。また、ETS工法において、配線パターン形成後の画像検査をしやすくするとともにフォトレジストパターン20との密着性を向上することができる。粗化粒子は画像解析による平均粒径Dが0.04~0.53μmであるのが好ましく、より好ましくは0.08~0.13μmであり、さらに好ましくは0.09~0.12μmである。上記好適範囲内であると、ETS工法において、粗化面に適度な粗さを持たせてフォトレジストとの優れた密着性を確保しながら、フォトレジスト現像時にフォトレジストの不要領域の開口性を良好に実現することができ、その結果、十分に開口しきれなかったフォトレジストに起因してめっきされにくくなることで生じうるパターンめっき22のライン欠損を効果的に防止することができる。したがって、上記好適範囲内であるとフォトレジスト現像性とパターンめっき性に優れるといえ、それ故、配線パターン24の微細形成に適する。なお、粗化粒子の画像解析による平均粒径Dは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000~3000個)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトで画像処理を行うことにより測定するのが好ましく、例えば任意に選択した200個の粒子を対象とし、それら粒子の平均直径を平均粒径Dとして採用すればよい。 It is preferable that the surface of the second copper layer 13 is roughened. In this way, the roughened particles formed by the roughening treatment are attached to the surface of the second copper layer, thereby improving the adhesion with the insulating resin layer at the time of manufacturing the copper-clad laminate or the printed wiring board. Can do. Further, in the ETS method, it is possible to facilitate image inspection after the wiring pattern is formed and to improve the adhesion with the photoresist pattern 20. The roughened particles preferably have an average particle size D of 0.04 to 0.53 μm by image analysis, more preferably 0.08 to 0.13 μm, still more preferably 0.09 to 0.12 μm. . Within the above preferred range, in the ETS method, the roughness of the roughened surface is given an appropriate roughness to ensure excellent adhesion with the photoresist, while opening the unnecessary areas of the photoresist during photoresist development. As a result, it is possible to effectively prevent line deficiency of the pattern plating 22 that may be caused by difficulty in plating due to the photoresist that cannot be fully opened. Therefore, it can be said that it is excellent in photoresist developability and pattern plating property within the above-mentioned preferable range, and is therefore suitable for fine formation of the wiring pattern 24. The average particle diameter D by image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). Measurement is preferably performed by performing image processing with commercially available image analysis software. For example, 200 particles arbitrarily selected may be used as an object, and the average diameter of these particles may be adopted as the average particle diameter D.
 また、粗化粒子は画像解析による粒子密度ρが4~200個/μmであるのが好ましく、より好ましくは40~170個/μm、70~100個/μmである。また、銅箔表面の粗化粒子が緻密で密集している場合には、ETS工法において、フォトレジストの現像残渣が発生しやすいが、上記好適範囲内であるとそのような現像残渣が発生しにくく、それ故、フォトレジストパターン20の現像性にも優れる。したがって、上記好適範囲内であると配線パターン24の微細形成に適するといえる。なお、粗化粒子の画像解析による粒子密度ρは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000~3000個)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトを用いて画像処理を行うことにより測定するのが好ましく、例えば粒子200個が入る視野においてそれらの粒子個数(例えば200個)を視野面積で除算した値を粒子密度ρとして採用すればよい。 The roughened particles preferably have a particle density ρ by image analysis of 4 to 200 particles / μm 2 , more preferably 40 to 170 particles / μm 2 , and 70 to 100 particles / μm 2 . Also, when the roughened particles on the copper foil surface are dense and dense, photoresist development residues are likely to occur in the ETS method, but such development residues occur when within the above preferred range. Therefore, the developability of the photoresist pattern 20 is also excellent. Therefore, it can be said that it is suitable for fine formation of the wiring pattern 24 within the above-mentioned preferable range. The particle density ρ based on the image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). It is preferable to perform measurement by performing image processing using commercially available image analysis software. For example, in a field where 200 particles enter, the value obtained by dividing the number of particles (for example, 200) by the field area is used as the particle density ρ. do it.
 第二銅層13の表面は、上述した粗化処理による粗化粒子の付着の他、ニッケル-亜鉛/クロメート処理等の防錆処理や、シランカップリング剤によるカップリング処理等を施すことも好ましい。これらの表面処理により銅箔表面の化学的安定性の向上や、絶縁層積層時の密着性の向上を図ることができる。 The surface of the cupric layer 13 is preferably subjected to rust prevention treatment such as nickel-zinc / chromate treatment, coupling treatment with a silane coupling agent, etc. in addition to the adhesion of the roughened particles by the above-mentioned roughening treatment. . By these surface treatments, it is possible to improve the chemical stability of the copper foil surface and to improve the adhesion when laminating the insulating layer.
 第一銅層11の厚さd、エッチング犠牲層12の厚さd及び第二銅層13の厚さdの合計厚さd+d+dは3.0μm未満であるのが好ましく、より好ましくは0.3~2.8μm、さらに好ましくは0.6~2.8μm、特に好ましくは0.9~2.6μmである。このような範囲内の合計厚さは銅箔10の厚さが十分に薄いことを意味し、銅箔10のダイレクトレーザー孔開け性が向上する。 The thickness d 1 of the first copper layer 11, the total thickness d 1 + d 2 + d 3 of the thickness d 3 of the thickness d 2 and the second copper layer 13 of the etching sacrificial layer 12 is less than 3.0μm of the Preferably, it is 0.3 to 2.8 μm, more preferably 0.6 to 2.8 μm, and particularly preferably 0.9 to 2.6 μm. The total thickness within such a range means that the thickness of the copper foil 10 is sufficiently thin, and the direct laser drilling property of the copper foil 10 is improved.
 特に、銅箔10は、第一銅層11、エッチング犠牲層12及び第二銅層13からなる3層構成を有することで、エッチング犠牲層と銅層の2層構成のものに対して、MSAP法の様々な段階で利点をもたらす。すなわち、エッチング犠牲層及び銅層からなる2層構成を考えた場合、エッチング犠牲層が何ら保護されないため、マイクロエッチング前のデスミア等の薬液工程でエッチング犠牲層が溶解して消失してしまう懸念がある。そこで、薬液工程での溶解分を考慮してエッチング犠牲層を厚くすると、今度はその厚さに起因してダイレクトレーザー加工が困難となる。これに対し、本発明の銅箔10の3層構成を採用することで、レーザー加工性を損なうことなく、マイクロエッチング工程までエッチング犠牲層12を維持することができ、その結果、欠損を生じさせずにマイクロエッチングを行うことができる。すなわち、銅箔10の合計厚さを薄くする(好ましくはd+d+d<3.0μm)ことで問題無くレーザー加工を行うことができる。そして、レーザー加工後のデスミア工程においては、最表面の第一銅層11でエッチング犠牲層12が保護される結果、エッチング犠牲層12が残ることになる。そして、マイクロエッチングにおいては残存するエッチング犠牲層12による犠牲効果により、欠損を生じさせることなくマイクロエッチングを行うことができる。 In particular, the copper foil 10 has a three-layer configuration including the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13, so that the MSAP is different from the two-layer configuration of the etching sacrificial layer and the copper layer. Benefits at various stages of the law. That is, when considering a two-layer structure composed of an etching sacrificial layer and a copper layer, the etching sacrificial layer is not protected at all, so there is a concern that the etching sacrificial layer may be dissolved and lost in a chemical process such as desmear before microetching. is there. Therefore, if the etching sacrificial layer is made thick in consideration of the dissolved part in the chemical process, direct laser processing becomes difficult due to the thickness. On the other hand, by adopting the three-layer configuration of the copper foil 10 of the present invention, the etching sacrificial layer 12 can be maintained until the microetching process without impairing laser processability, resulting in defects. Without etching. That is, laser processing can be performed without any problem by reducing the total thickness of the copper foil 10 (preferably d 1 + d 2 + d 3 <3.0 μm). In the desmear process after laser processing, the etching sacrificial layer 12 is protected by the outermost first copper layer 11, so that the etching sacrificial layer 12 remains. In microetching, microetching can be performed without causing defects due to the sacrificial effect of the remaining etching sacrificial layer 12.
 所望により、第一銅層11とエッチング犠牲層12の間、及び/又は第二銅層13とエッチング犠牲層12との間には、エッチング犠牲層12の犠牲効果を妨げないかぎり、別の層が存在していてもよい。 If desired, another layer may be provided between the first copper layer 11 and the etching sacrificial layer 12 and / or between the second copper layer 13 and the etching sacrificial layer 12 as long as the sacrificial effect of the etching sacrificial layer 12 is not prevented. May be present.
 キャリア付銅箔
 銅箔10(すなわち第二銅層13、エッチング犠牲層12及び第一銅層11の積層体)は、キャリア無し銅箔の形態で提供されてもよいし、図1に示されるようにキャリア付銅箔14の形態で提供されてもよいが、キャリア付銅箔14の形態で提供されるのが好ましい。この場合、キャリア付銅箔14は、キャリア15、剥離層16、第一銅層11、エッチング犠牲層12、及び第二銅層13を順に備えるものであってもよいし、あるいはキャリア15、第一銅層11、エッチング犠牲層12、及び第二銅層13を順に備えるものであってもよい。すなわち、剥離層16を有していてもよいし、剥離層16を単独の層として有しない構成であってもよい。好ましいキャリア付銅箔は、キャリア15、剥離層16、及び銅箔10をこの順に備えたものである。
Copper foil 10 (or second copper layer 13, a laminate of etching the sacrificial layer 12 and the first copper layer 11) with a carrier may be provided in the form of free carrier copper foil, as shown in FIG. 1 Thus, it may be provided in the form of the copper foil 14 with a carrier, but is preferably provided in the form of the copper foil 14 with a carrier. In this case, the carrier-attached copper foil 14 may include a carrier 15, a release layer 16, a first copper layer 11, an etching sacrificial layer 12, and a second copper layer 13 in this order, or the carrier 15, The one copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 may be provided in this order. That is, the release layer 16 may be provided, or the release layer 16 may not be provided as a single layer. A preferable copper foil with a carrier comprises a carrier 15, a release layer 16, and a copper foil 10 in this order.
 キャリア15は、銅箔を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリアの例としては、アルミニウム箔、銅箔、ステンレス箔、樹脂フィルム、表面をメタルコーティングした樹脂フィルム、ガラス板等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリアの厚さは典型的には250μm以下であり、好ましくは12μm~200μmである。 The carrier 15 is a layer (typically a foil) for supporting the copper foil and improving its handleability. Examples of the carrier include an aluminum foil, a copper foil, a stainless steel foil, a resin film, a resin film whose surface is metal-coated, a glass plate, and the like, preferably a copper foil. The copper foil may be a rolled copper foil or an electrolytic copper foil. The thickness of the carrier is typically 250 μm or less, preferably 12 μm to 200 μm.
 剥離層16は、キャリア15の引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜、炭素層等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に溶液中で吸着されること等により行えばよい。キャリアを剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、電解めっきや無電解めっき等のめっき法、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm~1μmであり、好ましくは5nm~500nmである。なお、剥離層16とキャリアとの剥離強度は5gf/cm~50gf/cmであることが好ましく、より好ましくは5gf/cm~40gf/cm、さらに好ましくは6gf/cm~30gf/cmである。 The release layer 16 has a function of weakening the peeling strength of the carrier 15, ensuring stability of the strength, and further suppressing interdiffusion that may occur between the carrier and the copper foil during press molding at a high temperature. It is. The release layer is generally formed on one side of the carrier, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- And 1H-1,2,4-triazole. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like. Examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid. On the other hand, examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, a chromate-treated film, and a carbon layer. The release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and adsorbing the release layer component on the surface of the carrier in the solution. When the carrier is brought into contact with the release layer component-containing solution, this contact may be performed by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like. In addition, it is also possible to employ a method of forming a release layer component by a plating method such as electrolytic plating or electroless plating, or a vapor phase method such as vapor deposition or sputtering. The release layer component may be fixed to the carrier surface by drying the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm to 1 μm, preferably 5 nm to 500 nm. The peel strength between the release layer 16 and the carrier is preferably 5 gf / cm to 50 gf / cm, more preferably 5 gf / cm to 40 gf / cm, and still more preferably 6 gf / cm to 30 gf / cm.
 銅張積層板
 本発明の銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上述した銅箔を備えた銅張積層板が提供される。銅張積層板は銅箔をキャリア付銅箔の形態で備えていてもよい。また、銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、典型的には樹脂、好ましくは絶縁樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましく、より好ましくはプリプレグである。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸又は積層させた複合材料の総称である。プリプレグに含浸される絶縁樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂、ポリアミド樹脂等が挙げられる。また、樹脂シートを構成する絶縁樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂(液晶ポリマー)等の絶縁樹脂が挙げられる。また、樹脂層には熱膨脹係数を下げ、剛性を上げる等の観点から等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、3~1000μmが好ましく、より好ましくは5~400μmであり、さらに好ましくは10~200μmである。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介してキャリア付銅箔に設けられていてもよい。
Copper- clad laminate The copper foil of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board provided with the copper foil mentioned above is provided. The copper clad laminate may comprise a copper foil in the form of a copper foil with a carrier. Moreover, copper foil may be provided in the single side | surface of a resin layer, and may be provided in both surfaces. The resin layer typically comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet, more preferably a prepreg. The prepreg is a general term for composite materials in which a synthetic resin is impregnated or laminated on a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper. Preferable examples of the insulating resin impregnated in the prepreg include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin, polyamide resin and the like. Examples of the insulating resin constituting the resin sheet include insulating resins such as an epoxy resin, a polyimide resin, and a polyester resin (liquid crystal polymer). Further, the resin layer may contain filler particles composed of various inorganic particles such as silica and alumina from the viewpoint of decreasing the thermal expansion coefficient and increasing the rigidity. The thickness of the resin layer is not particularly limited, but is preferably 3 to 1000 μm, more preferably 5 to 400 μm, and still more preferably 10 to 200 μm. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the copper foil with a carrier via a primer resin layer previously applied to the surface of the copper foil.
 プリント配線板の製造方法
 上述したような本発明の銅箔又はキャリア付銅箔を用いてプリント配線板を好ましく製造することができる。プリント配線板の製造方法の好ましい例として、MSAP(モディファイド・セミ・アディティブ・プロセス)法及びコアレスビルドアップ法(ETS工法)が挙げられるが、これらの工法に限らず、本発明の銅箔又はキャリア付銅箔は、エッチング犠牲層12の犠牲効果による何らかの利点を期待できる様々な工法に採用可能である。
Method for Producing Printed Wiring Board A printed wiring board can be preferably produced using the copper foil of the present invention or the copper foil with carrier as described above. Preferred examples of the method for producing a printed wiring board include an MSAP (Modified Semi-Additive Process) method and a coreless build-up method (ETS method), but are not limited to these methods, and the copper foil or carrier of the present invention. The attached copper foil can be used in various methods that can expect some advantage due to the sacrificial effect of the etching sacrificial layer 12.
 一例として、本発明の銅箔を採用したコアレスビルドアップ法(ETS工法)によるプリント配線板の製造方法を以下に説明する。この方法においては、まず、少なくとも第二銅層13、エッチング犠牲層12及び第一銅層11を備えた銅箔10を用いて支持体を得る。次いで、図6に模式的に示されるように、第二銅層13上に、銅製の第一配線層26と絶縁層28とを少なくとも含むビルドアップ配線層を形成してビルドアップ配線層付積層体を得る。なお、図6では説明の簡略化のため第一配線層26のみが描かれているが、後述する図8に示されるように、第n配線層40(nは2以上の整数)まで形成された多層のビルドアップ配線層を採用可能であることはいうまでもない。その後、第一銅層11、エッチング犠牲層12及び第二銅層13をエッチング液により除去して第一配線層26を露出させ、それによりビルドアップ配線層を含むプリント配線板を得る。 As an example, a method for manufacturing a printed wiring board by a coreless buildup method (ETS method) employing the copper foil of the present invention will be described below. In this method, first, a support is obtained using a copper foil 10 provided with at least a second copper layer 13, an etching sacrificial layer 12, and a first copper layer 11. Next, as schematically shown in FIG. 6, a buildup wiring layer including at least a copper first wiring layer 26 and an insulating layer 28 is formed on the second copper layer 13 to form a laminate with a buildup wiring layer. Get the body. In FIG. 6, only the first wiring layer 26 is drawn for the sake of simplicity of explanation, but as shown in FIG. 8 described later, the layers are formed up to the n-th wiring layer 40 (n is an integer of 2 or more). Needless to say, a multilayer build-up wiring layer can be used. Thereafter, the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 are removed with an etching solution to expose the first wiring layer 26, thereby obtaining a printed wiring board including a build-up wiring layer.
 以下、図1に加え、図7及び8に示される工程図をも適宜参照しながら製造方法を説明する。なお、図7及び8に示される態様は説明の簡略化のためにコアレス支持体18の片面にキャリア付銅箔14を設けてビルドアップ配線層42を形成するように描かれているが、コアレス支持体18の両面にキャリア付銅箔14を設けて当該両面に対してビルドアップ配線層42を形成するのが望ましい。 Hereinafter, the manufacturing method will be described with reference to the process diagrams shown in FIGS. 7 and 8 in addition to FIG. 7 and 8 are drawn so as to form the build-up wiring layer 42 by providing the copper foil 14 with a carrier on one side of the coreless support 18 for the sake of simplicity of explanation. It is desirable to provide the copper foil 14 with a carrier on both surfaces of the support 18 and form the build-up wiring layer 42 on both surfaces.
(1)銅箔を用いた支持体の用意
 銅箔10又はそれを含むキャリア付銅箔14を支持体として用意する。所望により、ビルドアップ配線層付積層体の形成に先立ち、銅箔10(第一銅層11側)又はキャリア付銅箔14(キャリア15側)をコアレス支持体18の片面又は両面に積層して積層体を形成してもよい。すなわち、この段階で、上述した銅張積層板を形成してもよい。この積層は、通常のプリント配線板製造プロセスにおいて銅箔とプリプレグ等との積層に採用される公知の条件及び手法に従って行えばよい。コアレス支持体18は、典型的には樹脂、好ましくは絶縁樹脂を含んでなる。コアレス支持体18はプリプレグ及び/又は樹脂シートであるのが好ましく、より好ましくはプリプレグである。すなわち、コアレス支持体18は上述した銅張積層板における樹脂層に相当するものであり、それ故、銅張積層板ないし樹脂層に関して上述した好ましい態様はそのままコアレス支持体18に当てはまる。
(1) Preparation of support using copper foil The copper foil 10 or the copper foil 14 with a carrier including the same is prepared as a support. If desired, prior to the formation of the laminate with the buildup wiring layer, the copper foil 10 (first copper layer 11 side) or the copper foil with carrier 14 (carrier 15 side) is laminated on one or both surfaces of the coreless support 18. A laminate may be formed. That is, at this stage, the above-described copper-clad laminate may be formed. This lamination may be performed in accordance with known conditions and techniques adopted for lamination of copper foil and prepreg in a normal printed wiring board manufacturing process. The coreless support 18 typically comprises a resin, preferably an insulating resin. The coreless support 18 is preferably a prepreg and / or a resin sheet, more preferably a prepreg. That is, the coreless support 18 corresponds to the resin layer in the above-described copper-clad laminate, and therefore the preferred embodiment described above with respect to the copper-clad laminate or resin layer applies to the coreless support 18 as it is.
(2)ビルドアップ配線層付積層体の形成
 第二銅層13上に、銅製の第一配線層26と絶縁層28とを少なくとも含むビルドアップ配線層42を形成してビルドアップ配線層付積層体を得る。絶縁層28は上述したような絶縁樹脂で構成すればよい。ビルドアップ配線層42の形成は、公知のプリント配線板の製造方法に従って行えばよく、特に限定されない。本発明の好ましい態様によれば、以下に述べるように、(i)フォトレジストパターンを形成、(ii)電気銅めっき、及び(iii)フォトレジストパターンの剥離を行って第一配線層26を形成した後、(iv)ビルドアップ配線層42が形成される。
(2) Formation of Stack with Build-up Wiring Layer On the second copper layer 13, a build-up wiring layer 42 including at least the first wiring layer 26 made of copper and the insulating layer 28 is formed to laminate with the build-up wiring layer. Get the body. The insulating layer 28 may be made of the insulating resin as described above. The build-up wiring layer 42 may be formed according to a known method for manufacturing a printed wiring board, and is not particularly limited. According to a preferred embodiment of the present invention, as described below, the first wiring layer 26 is formed by performing (i) forming a photoresist pattern, (ii) performing electrolytic copper plating, and (iii) stripping the photoresist pattern. After that, (iv) the build-up wiring layer 42 is formed.
(i)フォトレジストパターンを形成
 まず、第二銅層13の表面にフォトレジストパターン20を形成する。フォトレジストパターン20の形成は、ネガレジスト及びポジレジストのいずれの方式で行ってもよく、フォトレジストはフィルムタイプ及び液状タイプのいずれであってもよい。また、現像液としては炭酸ナトリウム、水酸化ナトリウム、アミン系水溶液等の現像液であってよく、プリント配線板の製造に一般的に用いられる各種手法及び条件に従い行えばよく特に限定されない。
(I) Formation of photoresist pattern First, a photoresist pattern 20 is formed on the surface of the second copper layer 13. The formation of the photoresist pattern 20 may be performed by either a negative resist or a positive resist, and the photoresist may be either a film type or a liquid type. Further, the developing solution may be a developing solution such as sodium carbonate, sodium hydroxide, an amine-based aqueous solution, etc., and may be carried out in accordance with various methods and conditions generally used in the production of printed wiring boards, and is not particularly limited.
(ii)電気銅めっき
 次に、フォトレジストパターン20が形成された第二銅層13に電気銅めっき22を施す。電気銅めっき22の形成は、例えば硫酸銅めっき液やピロリン酸銅めっき液等のプリント配線板の製造に一般的に用いられる各種パターンめっき手法及び条件に従い行えばよく特に限定されない。
(Ii) Electro Copper Plating Next, the electro copper plating 22 is applied to the second copper layer 13 on which the photoresist pattern 20 is formed. The formation of the electrolytic copper plating 22 is not particularly limited as long as it is performed in accordance with various pattern plating methods and conditions generally used in the production of printed wiring boards such as a copper sulfate plating solution and a copper pyrophosphate plating solution.
(iii)フォトレジストパターンの剥離
 フォトレジストパターン20を剥離して配線パターン24を形成する。フォトレジストパターン20の剥離は、水酸化ナトリウム水溶液や、アミン系溶液ないしその水溶液等が採用され、プリント配線板の製造に一般的に用いられる各種剥離手法及び条件に従い行えばよく特に限定されない。こうして、第二銅層13の表面には第一配線層26からなる配線部(ライン)が間隙部(スペース)を隔てて配列された配線パターン24が直接形成されることになる。例えば、回路の微細化のためには、ライン/スペース(L/S)が13μm以下/13μm以下(例えば12μm/12μm、10μm/10μm、5μm/5μm、2μm/2μm)といった程度にまで高度に微細化された配線パターンを形成することが好ましい。
(Iii) Stripping of photoresist pattern The photoresist pattern 20 is stripped to form a wiring pattern 24. Stripping of the photoresist pattern 20 is not particularly limited as long as an aqueous sodium hydroxide solution, an amine-based solution or an aqueous solution thereof is employed, and may be performed in accordance with various stripping methods and conditions generally used in the manufacture of printed wiring boards. Thus, a wiring pattern 24 in which wiring portions (lines) made of the first wiring layer 26 are arranged with a gap (space) therebetween is directly formed on the surface of the second copper layer 13. For example, for circuit miniaturization, the line / space (L / S) is highly fine, such as 13 μm or less / 13 μm or less (for example, 12 μm / 12 μm, 10 μm / 10 μm, 5 μm / 5 μm, 2 μm / 2 μm). It is preferable to form a simplified wiring pattern.
(iv)ビルドアップ配線層の形成
 第二銅層13上にビルドアップ配線層42を形成してビルドアップ配線層付積層体を作製する。例えば、第二銅層13上に既に形成されている第一配線層26に加え、絶縁層28及び第二配線層38が順に形成されてビルドアップ配線層42とされうる。例えば、図8に示されるように、ビルドアップ配線層42を形成すべく絶縁層28及びキャリア付銅箔30(キャリア32、剥離層34及び銅箔36を備える)を積層し、キャリア32を剥離し、かつ、炭酸ガスレーザー等により銅箔36及びその直下の絶縁層28をレーザー加工してもよい。続いて、化学銅めっき、フォトレジスト加工、電解銅めっき、フォトレジスト剥離及びフラッシュエッチング等によりパターニングを行って第二配線層38を形成し、このパターニングを必要に応じて繰り返して第n配線層40(nは2以上の整数)まで形成してもよい。
(Iv) Formation of Build-up Wiring Layer Build-up wiring layer 42 is formed on second copper layer 13 to produce a laminate with build-up wiring layer. For example, in addition to the first wiring layer 26 already formed on the second copper layer 13, the insulating layer 28 and the second wiring layer 38 can be formed in order to form the build-up wiring layer 42. For example, as shown in FIG. 8, an insulating layer 28 and a copper foil 30 with a carrier (including a carrier 32, a release layer 34, and a copper foil 36) are laminated to form a buildup wiring layer 42, and the carrier 32 is peeled off. In addition, the copper foil 36 and the insulating layer 28 immediately below it may be laser processed by a carbon dioxide laser or the like. Subsequently, patterning is performed by chemical copper plating, photoresist processing, electrolytic copper plating, photoresist stripping, flash etching, or the like to form the second wiring layer 38, and this patterning is repeated as necessary to repeat the nth wiring layer 40. You may form to (n is an integer greater than or equal to 2).
 第二配線層38以降のビルドアップ層の形成方法についての工法は上記手法に限定されず、サブトラクティブ法、MSAP(モディファイド・セミ・アディティブ・プロセス)法、SAP(セミアディティブ)法、フルアディティブ法等が使用可能である。例えば、樹脂層及び銅箔に代表される金属箔を同時にプレス加工で張り合わせる場合は、ビアホール形成及びパネルめっき等の層間導通手段の形成と組み合わせて、当該パネルめっき層及び金属箔をエッチング加工して、配線パターンを形成することができる。また、第二銅層13の表面に樹脂層のみをプレス又はラミネート加工により張り合わせる場合は、その表面にセミアディティブ法で配線パターンを形成することもできる。 The method for forming the build-up layer after the second wiring layer 38 is not limited to the above method, but is a subtractive method, an MSAP (Modified Semi-Additive Process) method, an SAP (Semi-Additive) method, or a full additive method. Etc. can be used. For example, when a metal foil typified by a resin layer and a copper foil is bonded together by pressing, the panel plating layer and the metal foil are etched in combination with the formation of interlayer conduction means such as via hole formation and panel plating. Thus, a wiring pattern can be formed. When only the resin layer is bonded to the surface of the second copper layer 13 by pressing or laminating, a wiring pattern can be formed on the surface by a semi-additive method.
 上記工程を必要に応じて繰り返して、ビルドアップ配線層付積層体を得る。この工程では樹脂層と配線パターンを含む配線層とを交互に積層配置したビルドアップ配線層を形成して、第n配線層40(nは2以上の整数)まで形成されたビルドアップ配線層付積層体を得るのが好ましい。この工程の繰り返しは所望の層数のビルドアップ配線層が形成されるまで行えばよい。この段階で、必要に応じて、外層面にソルダーレジストや、ピラー等の実装用のバンプ等を形成してもよい。また、ビルドアップ配線層の最外層面は後の外層加工工程で外層配線パターンを形成してもよい。 The above process is repeated as necessary to obtain a laminate with a build-up wiring layer. In this process, a build-up wiring layer in which a resin layer and a wiring layer including a wiring pattern are alternately stacked is formed, and the n-th wiring layer 40 (n is an integer of 2 or more) is formed. It is preferable to obtain a laminate. This process may be repeated until a desired number of build-up wiring layers are formed. At this stage, if necessary, solder resist, bumps for mounting such as pillars, and the like may be formed on the outer layer surface. Further, an outer layer wiring pattern may be formed on the outermost layer surface of the build-up wiring layer in a later outer layer processing step.
(3)ビルドアップ配線層を含むプリント配線板の形成
(i)ビルドアップ配線層付積層体の分離
 ビルドアップ配線層付積層体を形成した後は、ビルドアップ配線層付積層体を剥離層16等で分離することができる。キャリア付銅箔が、キャリア15、剥離層16、第一銅層11、エッチング犠牲層12、及び第二銅層13を順に備える場合、本発明の方法は、後述のエッチング液による除去に先立ち、剥離層16でビルドアップ配線層付積層体を分離して第一銅層11を露出させるのが好ましい。分離の方法は、物理的な引き剥がしが好ましく、この引き剥がし方法については、機械若しくは冶具、手作業又はこれらの組合せによる方法が採用され得る。
(3) Formation of printed wiring board including build-up wiring layer (i) Separation of laminate with build-up wiring layer After forming the laminate with build-up wiring layer, the laminate with build-up wiring layer is separated from the release layer 16. Etc. can be separated. When the carrier-attached copper foil comprises the carrier 15, the release layer 16, the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 in this order, the method of the present invention is prior to removal with an etching solution described later, It is preferable to separate the laminated body with the buildup wiring layer by the release layer 16 to expose the first copper layer 11. As the separation method, physical peeling is preferable, and for this peeling method, a machine or jig, manual work, or a combination thereof may be employed.
 一方、キャリア付銅箔が、キャリア15、第一銅層11、エッチング犠牲層12、及び第二銅層13を順に備えてなる場合(すなわち剥離層16を単独の層として有しない場合)、本発明の方法は、後述のエッチング液による除去に先立ち、キャリア15と第一銅層11との間又は第一銅層11内部でビルドアップ配線層付積層体を分離して、第一銅層11を露出させるのが好ましい。 On the other hand, when the carrier-attached copper foil comprises the carrier 15, the first copper layer 11, the etching sacrificial layer 12, and the second copper layer 13 in this order (that is, when the peeling layer 16 is not provided as a single layer), The method of the invention separates the laminate with a build-up wiring layer between the carrier 15 and the first copper layer 11 or inside the first copper layer 11 prior to the removal with an etching solution described later, and the first copper layer 11 Is preferably exposed.
(ii)エッチング犠牲層及び銅層のエッチング
 本発明の方法においては、第一銅層11、エッチング犠牲層12及び第二銅層13をエッチング液により除去して第一配線層26を露出させ、それによりビルドアップ配線層42を含むプリント配線板46を得る。プリント配線板46は好ましくは多層プリント配線板である。いずれにしても、エッチング犠牲層12の存在により、追加のエッチング工程を別途要することなく、Cuエッチングにより面内で均一に各層のエッチングによる除去を効率的に行えるとともに、局所的な回路凹みの発生を抑制することができる。したがって、本発明の方法によれば、第二銅層13、エッチング犠牲層12及び第一銅層11のエッチング液による除去を1工程で行うことができる。この際に用いるエッチング液及びエッチング工法は、上述したとおりである。
(Ii) Etching of etching sacrificial layer and copper layer In the method of the present invention, the first copper layer 11, the etching sacrificial layer 12 and the second copper layer 13 are removed with an etching solution to expose the first wiring layer 26; Thereby, a printed wiring board 46 including the build-up wiring layer 42 is obtained. The printed wiring board 46 is preferably a multilayer printed wiring board. In any case, due to the presence of the etching sacrificial layer 12, it is possible to efficiently remove each layer uniformly by etching in the surface by Cu etching without the need for an additional etching step, and local circuit dents are generated. Can be suppressed. Therefore, according to the method of the present invention, the removal of the second copper layer 13, the etching sacrificial layer 12, and the first copper layer 11 with the etching solution can be performed in one step. The etching solution and etching method used at this time are as described above.
(iii)外層加工
 図8に示されるようなプリント配線板46は様々な工法により外層を加工することが可能である。例えば、プリント配線板46の第一配線層26にさらにビルドアップ配線層としての絶縁層と配線層を任意の層数として積層してもよく、或いは第一配線層26の表面にソルダ―レジスト層を形成し、Ni-Auめっき、Ni-Pd-Auめっき、水溶性プレフラックス処理等の外層パッドとしての表面処理を施してもよい。さらには外層パッドに柱状のピラー等を設けてもよい。この際、本発明におけるエッチング犠牲層を用いて作成された第一配線層26は、面内で回路厚さの均一性を保持できるとともに、第一配線層26の表面は、局所的な回路凹みの発生が少ないものとなる。このため、回路厚さの極端に薄い部位や回路凹み等に起因する表面処理工程における局所的な処理不良やソルダ―レジスト残渣不良、更には実装パッドの凹凸による実装不良等の不具合発生率の少ない、実装信頼性に優れたプリント配線板を得ることができる。
(Iii) Outer layer processing The printed wiring board 46 as shown in FIG. 8 can be processed into an outer layer by various methods. For example, an insulating layer and a wiring layer as build-up wiring layers may be further laminated on the first wiring layer 26 of the printed wiring board 46 as an arbitrary number of layers, or a solder resist layer is formed on the surface of the first wiring layer 26. And surface treatment as an outer layer pad such as Ni—Au plating, Ni—Pd—Au plating, or water-soluble preflux treatment may be performed. Furthermore, a columnar pillar or the like may be provided on the outer layer pad. At this time, the first wiring layer 26 formed using the etching sacrificial layer in the present invention can maintain the uniformity of the circuit thickness in the plane, and the surface of the first wiring layer 26 has a local circuit depression. Is less likely to occur. For this reason, there is a low incidence of defects such as local processing failures and solder-resist residue failures in the surface treatment process due to extremely thin parts of the circuit thickness, circuit recesses, etc., and mounting failures due to mounting pad irregularities. A printed wiring board having excellent mounting reliability can be obtained.
 上述したプリント配線板の製造方法は、コアレスビルドアップ法(ETS工法)によるものであるが、MSAP法によるプリント配線板の製造方法については、図4及び5に基づいて説明した従来のMSAP工法において、極薄銅箔110の代わりに本発明の銅箔10を用いることにより、プリント配線板を好ましく製造することができる。 The printed wiring board manufacturing method described above is based on the coreless buildup method (ETS method), but the printed wiring board manufacturing method based on the MSAP method is based on the conventional MSAP method described with reference to FIGS. By using the copper foil 10 of the present invention instead of the ultrathin copper foil 110, a printed wiring board can be preferably manufactured.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 例1~12
 本発明のプリント配線板製造用銅箔の作製及び各種評価を以下のようにして行った。
Examples 1-12
Preparation and various evaluations of the copper foil for manufacturing a printed wiring board of the present invention were performed as follows.
(1)キャリアの準備
 回転陰極として表面を#2000のバフで研磨したチタン製の回転電極を用意した。また、陽極にはDSA(寸法安定性陽極)を用意した。回転陰極及び陽極を、銅濃度80g/L、硫酸濃度260g/L、ビス(3-スルホプロピル)ジスルフィド濃度30mg/L、ジアリルジメチルアンモニウムクロライド重合体濃度50mg/L、塩素濃度40mg/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度55A/dmで電解し、厚さ18μmの電解銅箔をキャリアとして得た。
(1) Preparation of carrier A rotating electrode made of titanium whose surface was polished with a buff of # 2000 was prepared as a rotating cathode. Further, a DSA (dimensional stability anode) was prepared for the anode. Rotating cathode and anode are copper sulfate having a copper concentration of 80 g / L, a sulfuric acid concentration of 260 g / L, a bis (3-sulfopropyl) disulfide concentration of 30 mg / L, a diallyldimethylammonium chloride polymer concentration of 50 mg / L, and a chlorine concentration of 40 mg / L. It was immersed in a solution and electrolyzed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil having a thickness of 18 μm as a carrier.
(2)剥離層の形成
 酸洗処理されたキャリアの電極面側を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリア用銅箔の電極面の表面にCBTA層を有機剥離層として形成した。
(2) Formation of Release Layer The electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier. Thus, a CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier copper foil.
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dm2の条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of Auxiliary Metal Layer The carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm 2. Under the conditions, nickel having a thickness equivalent to 0.001 μm was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
(4)第一銅層(極薄銅箔)の形成
 例1~9及び12については、補助金属層が形成されたキャリアを、銅濃度60g/L、硫酸濃度200g/Lの硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5~30A/dmで電解し、厚さ0.3μmの第一銅層(極薄銅箔)を補助金属層上に形成した。一方、例10及び11については、第一銅層の形成を行わなかった。
(4) Formation of the first copper layer (ultra-thin copper foil) In Examples 1 to 9 and 12, the carrier on which the auxiliary metal layer was formed was changed to a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L. Immersion was performed and electrolysis was performed at a solution temperature of 50 ° C. and a current density of 5 to 30 A / dm 2 to form a first copper layer (ultra-thin copper foil) having a thickness of 0.3 μm on the auxiliary metal layer. On the other hand, in Examples 10 and 11, the first copper layer was not formed.
(5)エッチング犠牲層の形成
 第一銅層(極薄銅箔)が形成されたキャリア(例1~9及び12)又は補助金属層が形成されたキャリア(例11)を、表1に示されるめっき浴に浸漬して、表1に示されるめっき条件で電解し、表2に示される組成及び厚さのエッチング犠牲層を第一銅層上又は補助金属層上に形成した。一方、例10については、エッチング犠牲層の形成を行わなかった。
(5) Formation of etching sacrificial layer Table 1 shows carriers (Examples 1 to 9 and 12) on which the first copper layer (ultra-thin copper foil) is formed or carriers (Example 11) on which the auxiliary metal layer is formed. The film was immersed in a plating bath and electrolyzed under the plating conditions shown in Table 1, and an etching sacrificial layer having the composition and thickness shown in Table 2 was formed on the first copper layer or the auxiliary metal layer. On the other hand, in Example 10, the etching sacrificial layer was not formed.
(6)第二銅層の形成
 エッチング犠牲層が形成されたキャリア(例1~9、11及び12)又は補助金属層が形成されたキャリア(例10)を、銅濃度60g/L、硫酸濃度145g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度30A/dmで電解し、表2に示される厚さの第二銅層をエッチング犠牲層上又は補助金属層上に形成した。
(6) Formation of a second copper layer A carrier having an etching sacrificial layer (Examples 1 to 9, 11 and 12) or a carrier having an auxiliary metal layer formed (Example 10), having a copper concentration of 60 g / L and a sulfuric acid concentration It is immersed in a 145 g / L copper sulfate solution, electrolyzed at a solution temperature of 45 ° C. and a current density of 30 A / dm 2 , and a second copper layer having a thickness shown in Table 2 is formed on the etching sacrificial layer or the auxiliary metal layer. Formed.
(7)粗化処理
 こうして形成されたキャリア付銅箔の表面に粗化処理を行った。この粗化処理は、銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とから構成される。焼けめっき工程では、銅濃度10g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温25℃、電流密度15A/dmで粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温40℃及び電流密度15A/dmの平滑めっき条件で電着を行った。
(7) Roughening process The surface of the copper foil with a carrier formed in this way was roughened. This roughening treatment includes a baking plating process in which fine copper grains are deposited on the copper foil, and a covering plating process for preventing the fine copper grains from falling off. In the baking plating step, a roughening treatment was performed at an acid density of 25 A / dm 2 using an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 120 g / L. In the subsequent plating process, electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 120 g / L under smooth plating conditions of a liquid temperature of 40 ° C. and a current density of 15 A / dm 2 .
(8)防錆処理
 得られたキャリア付銅箔の表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸3g/L水溶液を用い、pH10、電流密度5A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(8) Rust prevention treatment The surface of the obtained copper foil with carrier was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment. First, a roughening treatment layer using an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2. And the surface of the carrier was subjected to a zinc-nickel alloy plating treatment. Next, a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 3 g / L aqueous solution of chromic acid under the conditions of pH 10 and a current density of 5 A / dm 2 .
(9)シランカップリング剤処理
 3-グリシドキシプロピルトリメトキシシラン2g/L含む水溶液をキャリア付銅箔の銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。
(9) Silane coupling agent treatment Silane coupling is performed by adsorbing an aqueous solution containing 2 g / L of 3-glycidoxypropyltrimethoxysilane on the copper foil side surface of the copper foil with a carrier and evaporating water with an electric heater. Agent treatment was performed. At this time, the silane coupling agent treatment was not performed on the carrier side.
(10)評価
 こうして得られたキャリア付銅箔及びその構成層について、各種評価を以下のとおり行った。
(10) Evaluation Various evaluation was performed as follows about the copper foil with a carrier obtained in this way, and its structural layer.
 評価1:エッチングレート比r
 エッチング犠牲層のエッチングレート比rを測定するために、例1~9、11及び12については、上記(5)で得られた最表面がエッチング犠牲層であるキャリア(すなわちエッチング犠牲層までが形成され、第二銅層の形成及びその後の処理が行われていない中間製品)を用意した。また、例10については、上記(6)で得られた最表面が第二銅層であるキャリア付銅箔(すなわち第二銅層までが形成され、その後の処理が行われていない中間製品)を用意した。一方、水に市販の95wt%濃硫酸と30wt%過酸化水素水を溶解させて、硫酸濃度5.9wt%、過酸化水素濃度2.1wt%のエッチング液を作製した。各キャリア付銅箔サンプルをキャリア側がエッチングされないようにマスキングし、エッチング液に25℃で一定時間浸漬して溶解させ、溶解前後のめっき皮膜の厚み変化を蛍光X線膜厚計(フィッシャー・インストルメンツ社製、Fischerscope X-Ray XDAL-FD)で測定した。得られた厚み変化を溶解時間で除することにより、対象となる各めっき皮膜のエッチングレートを求めた。こうして求めた例10のエッチングレートがCuのエッチングレートであり、例1~9、11及び12のエッチングレートが各エッチング犠牲層のエッチングレートである。そして、エッチング犠牲層のエッチングレートをCuのエッチングレートで除することにより、エッチングレート比rを算出した。結果は、表2に示されるとおりであった。
Evaluation 1 : Etching rate ratio r
In order to measure the etching rate ratio r of the etching sacrificial layer, in Examples 1 to 9, 11 and 12, the carrier whose outermost surface obtained in (5) is an etching sacrificial layer (that is, the etching sacrificial layer is formed). An intermediate product) in which the formation of the second copper layer and the subsequent treatment were not performed was prepared. Moreover, about Example 10, the copper foil with a carrier whose outermost surface obtained by said (6) is a 2nd copper layer (namely, intermediate product by which the 2nd copper layer is formed and the subsequent process is not performed) Prepared. On the other hand, commercially available 95 wt% concentrated sulfuric acid and 30 wt% hydrogen peroxide water were dissolved in water to produce an etching solution having a sulfuric acid concentration of 5.9 wt% and a hydrogen peroxide concentration of 2.1 wt%. Each copper foil sample with a carrier is masked so that the carrier side is not etched, and immersed in an etching solution at 25 ° C. for a certain period of time to dissolve, and the thickness change of the plating film before and after the dissolution is measured by a fluorescent X-ray film thickness meter (Fischer Instruments). (Fischerscope X-Ray XDAL-FD) manufactured by the same company. The etching rate of each target plating film was determined by dividing the obtained thickness change by the dissolution time. The etching rate of Example 10 thus obtained is the etching rate of Cu, and the etching rates of Examples 1 to 9, 11 and 12 are the etching rates of the respective etching sacrificial layers. Then, the etching rate ratio r was calculated by dividing the etching rate of the etching sacrificial layer by the etching rate of Cu. The results were as shown in Table 2.
 評価2:単位面積当たりのピンホール数
 第一銅層の単位面積当たりのピンホール数を測定するために、上記(4)で得られた最表面が第一銅層(極薄銅箔)であるキャリア付極薄銅箔(すなわち厚み0.3μmの第一銅層までが形成され、エッチング犠牲層の形成及びその後の処理が行われていない中間製品)を用意した。このキャリア付極薄銅箔を絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)に第一銅層(極薄銅箔)側が接するように積層し、圧力4.0MPa、温度190℃で90分間熱圧着した。その後、キャリアを剥離して積層板を得た。この積層板を、暗室中でバックライトを当てながら、光学顕微鏡で観察して、ピンホールの数を数えた。こうして1mmあたりのピンホール数を測定したところ、例1~9、11及び12のいずれにおいても、第一銅層の単位面積当たりのピンホール数は2個/mm以下であった。
Evaluation 2 : Number of pinholes per unit area In order to measure the number of pinholes per unit area of the first copper layer, the outermost surface obtained in (4) above is the first copper layer (ultra-thin copper foil) An ultra-thin copper foil with a carrier (that is, an intermediate product in which a copper layer having a thickness of 0.3 μm was formed and an etching sacrificial layer and subsequent processing were not performed) was prepared. This ultrathin copper foil with a carrier is laminated so that the first copper layer (ultrathin copper foil) side is in contact with an insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm), and pressure 4. Thermocompression bonding was performed at 0 MPa and a temperature of 190 ° C. for 90 minutes. Thereafter, the carrier was peeled off to obtain a laminate. This laminated plate was observed with an optical microscope while applying a backlight in a dark room, and the number of pinholes was counted. Thus, when the number of pinholes per 1 mm 2 was measured, in all of Examples 1 to 9, 11 and 12, the number of pinholes per unit area of the first copper layer was 2 / mm 2 or less.
 評価3:欠損
 上記(9)で得られたキャリア付銅箔を、絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)に対して第二銅層側が接するように積層し、圧力4.0MPa、温度190℃で90分間熱圧着した。こうして得られた銅張積層板のキャリアを剥離し、10cm×10cmの大きさに切断し、評価1で作製したエッチング液にエッチング犠牲層が完全に消失するまで浸漬させた後、目視で欠損の有無を確認し、以下の基準に従い格付け評価した。なお、ここでいう欠損とは下地の基材が目視できる状態を指す。結果は、表2に示されるとおりであった。
・評価A:第二銅層に欠損が無いもの
・評価B:第二銅層に1箇所以上3箇所以下の欠損が生じているもの
・評価C:第二銅層に4箇所以上の欠損が生じているもの
Evaluation 3 : Defects The copper foil with a carrier obtained in (9) above was in contact with the insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm) on the second copper layer side. The laminate was laminated and thermocompression bonded at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes. The carrier of the copper-clad laminate thus obtained was peeled off, cut into a size of 10 cm × 10 cm, and immersed in the etching solution prepared in Evaluation 1 until the etching sacrificial layer completely disappeared. The presence or absence was confirmed, and rating was evaluated according to the following criteria. In addition, the defect | deletion here refers to the state which can see the base material of a foundation | substrate. The results were as shown in Table 2.
-Evaluation A: No defect in the cupric layer-Evaluation B: One or more defects in the second copper layer are generated-Evaluation C: Four or more defects in the cupric layer What is happening
 評価4:レーザー加工性
 評価3で作製した銅張積層板に対し、キャリアを剥離した後、レーザー加工機(三菱電機製、ML605GTWIII-H)により、エネルギー密度6.5MW/cm、レーザー光径75.6μmの条件で20箇所レーザー加工を行った。こうして形成した開口部を光学顕微鏡で観察し、以下の基準に従い格付け評価した。なお、開口径は上端において測定した。結果は、表2に示されるとおりであった。
・評価A:未開口のものがなく、かつ、20箇所の開口径の最小値が40μm以上であるもの
・評価B:未開口のものはないが、20箇所の開口径の最小値が40μm未満のもの
・評価C:1つでも未開口のものがあるもの
Evaluation 4 : Laser workability After the carrier was peeled from the copper clad laminate produced in Evaluation 3, the energy density was 6.5 MW / cm 2 and the laser beam diameter was measured with a laser processing machine (Mitsubishi Electric, ML605GTWIII-H). Laser processing was performed at 20 points under the condition of 75.6 μm. The openings thus formed were observed with an optical microscope and rated according to the following criteria. The opening diameter was measured at the upper end. The results were as shown in Table 2.
・ Evaluation A: No opening, and the minimum value of 20 opening diameters is 40 μm or more ・ Evaluation B: No opening, but the minimum value of 20 opening diameters is less than 40 μm Items / Evaluation C: One with unopened items
 評価5:回路凹み
 上記(9)で得られたキャリア付銅箔を、第一の絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)に対してキャリア側が接するように積層し、圧力4.0MPa,温度190℃で90分間熱圧着した。こうして得られた銅張積層板に対し、銅箔表面を評価1で用意したエッチング液で洗浄した後、銅箔側に厚さ19μmのドライフィルムをラミネートし、ライン/スペース(L/S)=10/10μmのマスクを用いて露光し、現像を行った。現像後の銅張積層板に対しめっき高さが17μmとなるようにパターンめっきを行った後、ドライフィルムを剥離し、L/S=10/10の5本の直線回路を形成した。次に、積層板の5本の直線回路が形成された表面に第二の絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)を積層し、圧力4.0MPa,温度190℃で90分間熱圧着した。その後、剥離層を境として、キャリア及びそれが接着された第一の絶縁樹脂基材を剥離した。残った第二の絶縁樹脂基材のうち銅箔が露出している側に対し、評価1で作製したのと同じエッチング液を用い、銅箔が消失するまでエッチングを行った。この状態で断面を光学顕微鏡を用いて2,000倍で観察し、5本の回路について第二の絶縁樹脂基材の上端から回路の上端までの距離を回路凹みとして測定し、以下の基準に従い格付け評価した。結果は、表2に示されるとおりであった。
・評価A:5本の中での最大値が2.0μm未満のもの
・評価B:5本の中での最大値が2.0μm以上2.5μm未満のもの
・評価C:5本の中での最大値が2.5μm以上(実際には3.0μm以上)のもの
Evaluation 5 : Circuit recess The carrier-side copper foil obtained in the above (9) was brought into contact with the first insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm). And thermocompression bonded at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes. The copper-clad laminate thus obtained was washed with the etching solution prepared in Evaluation 1, and then a 19 μm thick dry film was laminated on the copper foil side. Line / space (L / S) = It exposed and developed using the 10/10 micrometer mask. The developed copper-clad laminate was subjected to pattern plating so that the plating height was 17 μm, and then the dry film was peeled off to form five linear circuits of L / S = 10/10. Next, a second insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm) was laminated on the surface of the laminated plate on which the five linear circuits were formed, and the pressure was 4.0 MPa, Thermocompression bonding was performed at a temperature of 190 ° C. for 90 minutes. Thereafter, the carrier and the first insulating resin substrate to which it was adhered were peeled off with the release layer as a boundary. Etching was performed on the side of the remaining second insulating resin base material where the copper foil was exposed, using the same etching solution prepared in Evaluation 1 until the copper foil disappeared. In this state, the cross section was observed at 2,000 times using an optical microscope, and the distance from the upper end of the second insulating resin substrate to the upper end of the circuit was measured as a circuit recess for five circuits, and the following criteria were used. Rating rating. The results were as shown in Table 2.
・ Evaluation A: The maximum value among 5 pieces is less than 2.0 μm ・ Evaluation B: The maximum value among 5 pieces is less than 2.0 μm and less than 2.5 μm ・ Evaluation C: Among 5 pieces With a maximum value of 2.5 μm or more (actually 3.0 μm or more)
 

Figure JPOXMLDOC01-appb-T000001
 

 
 

Figure JPOXMLDOC01-appb-T000001
 

 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 

Claims (10)

  1.  第一銅層、エッチング犠牲層、及び第二銅層をこの順に備え、Cuのエッチングレートに対する、前記エッチング犠牲層のエッチングレートの比rが1.0よりも高い、プリント配線板製造用銅箔。 A copper foil for producing a printed wiring board, comprising a first copper layer, an etching sacrificial layer, and a second copper layer in this order, wherein a ratio r of an etching rate of the etching sacrificial layer to an etching rate of Cu is higher than 1.0 .
  2.  前記比rが1.2以上である、請求項1に記載の銅箔。 The copper foil according to claim 1, wherein the ratio r is 1.2 or more.
  3.  第一銅層の厚さをdとし、エッチング犠牲層の厚さをdとした場合、d/d≧rを満たす、請求項1又は2に記載の銅箔。 The thickness of the first copper layer and d 1, if the thickness of the etching sacrificial layer was d 2, satisfying the d 2 / d 1 ≧ r, copper foil according to claim 1 or 2.
  4.  前記エッチング犠牲層が、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Fe金属、Zn金属、Co金属、Mo金属及びこれらの酸化物からなる群から選択される少なくとも1種で構成される、請求項1~3のいずれか一項に記載の銅箔。 The etching sacrificial layer is made of Cu—Zn alloy, Cu—Sn alloy, Cu—Mn alloy, Cu—Al alloy, Cu—Mg alloy, Fe metal, Zn metal, Co metal, Mo metal and oxides thereof. The copper foil according to any one of claims 1 to 3, comprising at least one selected from the group consisting of:
  5.  前記エッチング犠牲層が、Znを40重量%以上含むCu-Zn合金で構成される、請求項1~4のいずれか一項に記載の銅箔。 The copper foil according to any one of claims 1 to 4, wherein the etching sacrificial layer is made of a Cu-Zn alloy containing Zn by 40 wt% or more.
  6.  前記第一銅層の単位面積当たりのピンホール数が2個/mm以下である、請求項1~5のいずれか一項に記載の銅箔。 The copper foil according to any one of claims 1 to 5, wherein the number of pinholes per unit area of the first copper layer is 2 / mm 2 or less.
  7.  前記第一銅層の厚さd、前記エッチング犠牲層の厚さd及び前記第二銅層の厚さdの合計厚さd+d+dが3.0μm未満である、請求項1~6のいずれか一項に記載の銅箔。 The total thickness d 1 + d 2 + d 3 of the thickness d 1 of the first copper layer, the thickness d 2 of the etching sacrificial layer, and the thickness d 3 of the second copper layer is less than 3.0 μm, Item 7. The copper foil according to any one of Items 1 to 6.
  8.  キャリア、剥離層、及び請求項1~7のいずれか一項に記載の銅箔をこの順に備えた、キャリア付銅箔。 A carrier-attached copper foil comprising the carrier, the release layer, and the copper foil according to any one of claims 1 to 7 in this order.
  9.  請求項1~7のいずれか一項に記載の銅箔を備えた、銅張積層板。 A copper-clad laminate comprising the copper foil according to any one of claims 1 to 7.
  10.  請求項1~7のいずれか一項に記載の銅箔又は請求項8に記載のキャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法。
     

     
    A method for producing a printed wiring board, comprising producing a printed wiring board using the copper foil according to any one of claims 1 to 7 or the copper foil with a carrier according to claim 8.


PCT/JP2017/005579 2016-02-18 2017-02-15 Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate WO2017141985A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187020097A KR20180113996A (en) 2016-02-18 2017-02-15 Copper foil for manufacturing a printed wiring board, copper foil having a carrier, and copper clad laminate, and a manufacturing method of a printed wiring board using the same
MYPI2018702817A MY188258A (en) 2016-02-18 2017-02-15 Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
JP2018500170A JP6836580B2 (en) 2016-02-18 2017-02-15 Copper foil for manufacturing printed wiring boards, copper foil with carriers and copper-clad laminates, and methods for manufacturing printed wiring boards using them.
CN201780012182.6A CN108702847B (en) 2016-02-18 2017-02-15 Copper foil for manufacturing printed wiring board, copper foil with carrier, copper-clad laminate, and method for manufacturing printed wiring board using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028693 2016-02-18
JP2016028693 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017141985A1 true WO2017141985A1 (en) 2017-08-24

Family

ID=59625072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005579 WO2017141985A1 (en) 2016-02-18 2017-02-15 Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate

Country Status (6)

Country Link
JP (1) JP6836580B2 (en)
KR (1) KR20180113996A (en)
CN (1) CN108702847B (en)
MY (1) MY188258A (en)
TW (1) TWI626151B (en)
WO (1) WO2017141985A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195748A1 (en) * 2019-03-27 2020-10-01 三井金属鉱業株式会社 Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
KR20210002454A (en) 2018-04-24 2021-01-08 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Etching solution for copper foil and manufacturing method of printed wiring board using the same, and etching solution for electrolytic copper layer and manufacturing method of copper filler using the same
US11576267B2 (en) * 2017-10-26 2023-02-07 Mitsui Mining & Smelting Co., Ltd. Ultra-thin copper foil, ultra-thin copper foil with carrier, and method for manufacturing printed wiring board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102163044B1 (en) * 2018-07-30 2020-10-08 삼성전기주식회사 Printed circuit board
CN109219257A (en) * 2018-11-23 2019-01-15 开平依利安达电子有限公司 A kind of copper-clad plate and its production technology of application reversion copper foil material
TWI706704B (en) * 2019-06-19 2020-10-01 特豪科技股份有限公司 Circuit board manufacturing method
CN114394838B (en) * 2022-02-09 2023-02-14 江苏耀鸿电子有限公司 High-breakdown-strength high-frequency copper-clad substrate and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380412A (en) * 1986-09-24 1988-04-11 古河電気工業株式会社 Cu based substrate for electric circuit board and manufacture thereof
US20140138142A1 (en) * 2012-05-24 2014-05-22 Unimicron Technology Corp. Interposed substrate and manufacturing method thereof
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board
JP2015214750A (en) * 2014-04-24 2015-12-03 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic apparatus and manufacturing method of printed wiring board

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168725B1 (en) * 1997-12-22 2001-01-02 Visteon Global Technologies, Inc. Etching of Al-Cu layers to form electronic circuits using base solutions including nitrites, borates or bromates
KR100989007B1 (en) * 2002-04-11 2010-10-20 엔엑스피 비 브이 Semiconductor device and method of manufacturing same
JP4713131B2 (en) * 2004-11-19 2011-06-29 株式会社マルチ Printed wiring board and method for manufacturing the printed wiring board
KR100756751B1 (en) * 2006-02-21 2007-09-07 엘에스전선 주식회사 Copper foil for super fine pitch printed circuit board
JP2007335698A (en) * 2006-06-16 2007-12-27 Fujitsu Ltd Manufacturing method of wiring board
TWI374504B (en) * 2008-09-18 2012-10-11 Chimei Innolux Corp System for displaying images and fabricating method thereof
SG181906A1 (en) * 2010-01-15 2012-07-30 Jx Nippon Mining & Metals Corp Electronic circuit, method for forming same, and copper clad laminate for forming electronic circuit
KR101860861B1 (en) * 2011-06-13 2018-05-25 삼성디스플레이 주식회사 Manufacturing method for wire, TFT and flat display device
US9338898B2 (en) * 2012-03-09 2016-05-10 Mitsui Mining & Smelting Co., Ltd. Method of producing a printed wiring board
CN108277513A (en) * 2013-06-13 2018-07-13 Jx日矿日石金属株式会社 The copper foil of appendix body, the manufacturing method of copper-cover laminated plate, printed circuit board, e-machine and printed circuit board
CN103706797B (en) * 2013-12-25 2016-08-24 西安理工大学 The preparation method of broad-width multi-layer Cu-CuMo70-Cu composite
TWI616122B (en) * 2014-05-28 2018-02-21 Jx Nippon Mining & Metals Corp Surface-treated copper foil, copper foil with carrier, laminated body, printed wiring board, electronic device, method for producing surface-treated copper foil, and method for producing printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380412A (en) * 1986-09-24 1988-04-11 古河電気工業株式会社 Cu based substrate for electric circuit board and manufacture thereof
US20140138142A1 (en) * 2012-05-24 2014-05-22 Unimicron Technology Corp. Interposed substrate and manufacturing method thereof
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015214750A (en) * 2014-04-24 2015-12-03 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic apparatus and manufacturing method of printed wiring board
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576267B2 (en) * 2017-10-26 2023-02-07 Mitsui Mining & Smelting Co., Ltd. Ultra-thin copper foil, ultra-thin copper foil with carrier, and method for manufacturing printed wiring board
KR20210002454A (en) 2018-04-24 2021-01-08 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Etching solution for copper foil and manufacturing method of printed wiring board using the same, and etching solution for electrolytic copper layer and manufacturing method of copper filler using the same
WO2020195748A1 (en) * 2019-03-27 2020-10-01 三井金属鉱業株式会社 Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
KR20210143727A (en) 2019-03-27 2021-11-29 미쓰이금속광업주식회사 Metal foil for printed wiring board, metal foil provided with carrier, and metal clad laminated board, and manufacturing method of a printed wiring board using them
JP7449921B2 (en) 2019-03-27 2024-03-14 三井金属鉱業株式会社 Metal foil for printed wiring boards, metal foil with carrier, metal-clad laminate, and method for manufacturing printed wiring boards using the same

Also Published As

Publication number Publication date
JP6836580B2 (en) 2021-03-03
JPWO2017141985A1 (en) 2018-12-06
KR20180113996A (en) 2018-10-17
CN108702847B (en) 2021-03-09
TW201733793A (en) 2017-10-01
CN108702847A (en) 2018-10-23
MY188258A (en) 2021-11-24
TWI626151B (en) 2018-06-11

Similar Documents

Publication Publication Date Title
WO2017141985A1 (en) Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
TWI539875B (en) An electronic circuit and an electrolytic copper foil or rolled copper foil using a method of forming such electronic circuits
WO2015030256A1 (en) Copper foil provided with carrier, copper-clad laminated board, printed wiring board, electronic device, and method for manufacturing printed wiring board
WO2019188712A1 (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
JP6836579B2 (en) Manufacturing method of printed wiring board
CN108029202B (en) Method for manufacturing printed circuit board
TWI487437B (en) Electronic circuit and method for forming the same, and copper composite sheet for forming electronic circuit
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5386652B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5449596B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP6271134B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5481586B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP2011210993A (en) Copper foil for printed wiring board and layered body which have superior etching property
JP6254357B2 (en) Copper foil with carrier
JP2011207092A (en) Laminate of copper foil or copper layer and insulating substrate for printed wiring board, having excellent etching property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753241

Country of ref document: EP

Kind code of ref document: A1