【0001】
【発明の属する技術分野】
本発明は、圧延銅箔又は電解銅箔の表面に、さらに銅又はニッケル等の金属厚めっきを施す連続厚めっき方法及び装置に関する。
【0002】
【従来の技術】
近年、電子部品及び配線基板等の製造に、銅箔が多く使用されるようになった。
一般に、電解銅箔は、回転する金属製陰極ドラムと、その陰極ドラムのほぼ下方半分の位置に配置した該陰極ドラムの周囲を囲む不溶性金属アノード(陽極)を使用し、前記陰極ドラムとアノードとの間に銅電解液を流動させかつこれらの間に電位を与えて陰極ドラム上に銅を電着させ、所定厚みになったところで、該陰極ドラムから電着した銅を剥がして連続的に銅箔が製造されている。
また、圧延銅箔は、溶解鋳造したインゴットを、多数回の圧延と焼鈍を繰返して製造するものである。
上記のように、電解銅箔及び圧延銅箔は連続的に製造されコイルに巻かれているが、このようにして得た銅箔は、その後いくつかの化学的又は電気化学的な表面処理を施してプリント配線板等に使用される。
【0003】
一般に、銅箔の電気化学的な表面処理は、図1のような装置を使用して連続的な処理が行なわれる。図1は銅箔の連続表面処理装置の側面概略図を示す。
図1に示すように、コイルに巻かれた銅箔4は巻戻しされ、電解槽1の内外に設置した複数のガイドロール2を介して、対向するアノード板3の前に連続的に銅箔4を通過させるとともに、表面処理が行なわれる。表面処理した銅箔4は、再びコイルに巻き取られる。
電解槽には処理用の電解液、例えば粗化処理、防錆処理用のめっき液が備えられている。電解液は電解槽への補充又は建浴した電解液が循環できる構造となっている。アノード板と陰極となる銅箔間には、表面処理用の電流が流される。
アノード板としては、通常Pb板、貴金属酸化物被覆Pt板等の不溶性アノードが使用されるが、それ自体が溶解し、銅箔に電着する溶性アノードとしても良い。これは電気化学的処理の条件に応じて適宜変更できる。
【0004】
以上については、一般的な銅箔の製造方法と銅箔の表面処理(トリート処理)を説明したが、最近では、製造された電解銅箔又は圧延銅箔の上に、さらに連続的に金属の厚めっきを行うことが要請されている。例えば、キャリヤ付銅箔の製造が、その例である。図2に、銅のキャリヤ付5μmの銅めっきした例を示す。一般に、トリートラインは銅箔の表面処理において不可欠の処理工程なので、その設備は十分に備わっている。しかし、本来このトリートラインで表面処理を行うものは、銅箔の上にめっき又は処理する量が少なく、それに適応した設備構成になっている。
したがって、この既存のトリートラインを使用して、電解による連続的な金属厚めっきを行う場合、金属イオンの供給量が不足し、十分なめっきが得られない。
このため、金属イオンの供給量を増加させるために、ポンプの増強が必要であり、設備上の変更が必要となった。これは、設備変更に伴う生産性の低下及び設備増強に伴うコスト増となる問題が新たに生じた。
気体を使用する従来技術としては、金属塩を含有する溶液より電解により金属を陰極に析出するに際して、陰極面に適当な気体を流通させることによって、そこに発生する水素を除去しながら金属を析出させることが開示されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開昭53−30404号公報
【0006】
【発明が解決しょうとする課題】
本発明は上記のような問題点に鑑みてなされたものであり、その目的とするところは、既存のトリートラインをそのまま使用することができ、かつ若干の装置の付加により、電解による連続的な金属厚めっきを可能とし、生産性を向上させることができる銅箔の連続電解厚めっき方法及び装置を提供することにある。
【0007】
【課題を解決するための手段】
以上から、本発明は
1.既存のトリートラインを使用し、同ラインの電解槽に設置したアノード板の前に連続的に銅箔を通過させて厚めっきを行う際に、通過する銅箔とアノード板の間に気体を強制注入して電解液の流速を高め、めっきを行うことを特徴とする銅箔の連続電解厚めっき方法
2.1.0μm以上のCuめっきを行うことを特徴とする上記1記載の銅箔の連続電解厚めっき方法
3.極間距離:40〜60mm、液流量:0.5〜2.0L/min、電解槽間の1ライン長:2〜7m、電極面積:10〜500dm2である既存トリートラインであることを特徴とする上記1又は2記載の銅箔の連続電解厚めっき方法
4.厚さ25μm以上の銅キャリヤに厚めっきすることを特徴とする上記1〜3のそれぞれに記載の銅箔の連続電解厚めっき方法
5.アノード板の間に強制注入する気体が、酸素、空気又は不活性ガスであることを特徴とする上記1〜4のそれぞれに記載の銅箔の連続電解厚めっき方法
を提供する。
【0008】
また、本発明はさらに
6.既存のトリートライン、同ラインに設置された電解槽、電解槽に設けたアノード板を備え、該アノードの前に連続的に銅箔を通過させてめっきを行う銅箔の連続めっき装置において、通過する銅箔とアノード板の間に気体噴射管を設置し、該気体噴射管から気体を強制注入して電解液の流速を高め、厚めっきすることを特徴とする銅箔の連続電解厚めっき装置
7.極間距離:40〜60mm、液流量:0.5〜2.0L/min、電解槽間の1ライン長:2〜7m、電極面積:10〜500dm2である既存トリートラインであることを特徴とする上記6記載の銅箔の連続電解厚めっき装置
を提供する。
【0009】
【発明の実施の形態】
既存トリートラインの仕様は、極間距離:40〜60mm、液流量:0.5〜2.0L/min、電解槽間の1ライン長:2〜7m、電極面積:10〜500dm2であるが、本発明はこのようなトリートラインに適用できる。
また、トリートラインとしては、これ以外の仕様も考えられるが、本発明は特別なトリートラインの仕様に限定されるものではないので、すべてのトリートラインに適用できる。
【0010】
図3に、本発明の気体強制注入装置の代表的な例を示す。電解槽に設置したアノード板3の前に連続的に銅箔4を通過させて表面処理を行う際に、通過する銅箔4とアノード板3との間に気体噴射装置7を配置する。この気体噴射装置7は、通常塩化ビニル等の絶縁体を使用することができる。
図3は、気体噴射装置7から強制的に噴射される気体が気泡8となって、対向するアノード板3と連続的に移動する銅箔4との間に流れることを説明する概念図を示すが、このようにこのような気体の流れは、電解液を強制的に流動させるものであり、電着が促進する。
銅箔4を電解槽の中で、繰返し通過させる場合には、アノード板3の数に相当する数だけ、気体噴射装置7を配置することができる。
【0011】
この気体噴射装置7の幅は、通常銅箔4の両エッジ部5と又はアノード板3の両エッジ部6に亘る幅とするが、銅箔4とアノード板3の幅よりも小さくても、それなりの気体強制注入効果を発揮させることができる。
これは表面処理の条件により変るので、処理条件に応じて幅を適宜変更することができる。
このように、気体噴射装置7の長さは、アノード板の長さにほぼ近似する長さとするのが望ましいが、それ以上の長さがあっても良い。また短くてもそれなりの長さ方向における気体強制注入効果を発揮するので、表面処理の条件に応じて適宜設計する。
【0012】
本発明の銅箔の連続電解厚めっき方法は、特に5.0μm以上のCuめっきに有効である。しかし、これ以外の金属の電解厚めっきにも適用できる。
また、厚さ25μm以上の銅キャリヤに厚めっきすることが可能でありかつ有効であるが、それ以外の銅箔へのめっきにも適用できることは言うまでもない。アノード板の間に強制注入する気体としては、酸素、空気又は不活性ガスを仕様することができる。めっきする材料に応じて適宜選択することができる。
【0013】
金属めっきの例を示すと、次のようなものがある。但し、以下のめっきに限定されるものではない。
(銅めっき処理)
Cu濃度:20〜100g/L
電解液温度:20〜60°C、
電流密度:5〜100A/dm2、 めっき時間:0.5〜60秒
(ニッケルめっき処理)
Ni濃度:1〜30g/L
電解液温度:25〜60°C、
電流密度:0.5〜5A/dm2、 めっき時間:0.5〜4秒
(コバルトめっき処理)
Co濃度:1〜30g/L
電解液温度:25〜60°C、
電流密度:0.5〜5A/dm2、 めっき時間:0.5〜4秒
(錫めっき処理)
Sn濃度:10〜150g/L 硫酸:40〜150g/L
電解液温度:25〜40°C、
電流密度:1.0〜5A/dm2、 めっき時間:0.5〜4秒
(インジウムめっき処理)
In濃度:10〜50g/L 硫酸:10〜50g/L
電解液温度:20〜60°C、
電流密度:1.0〜20A/dm2、 めっき時間:0.5〜4秒
【0014】
【実施例】
次に、実施例に基づいて説明する。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思想に含まれる変形、他の実施例又は態様は、全て本発明に含まれる。
なお、本発明との対比のために、比較例を掲載した。
【0015】
(実施例1)
既存のトリートラインに、25μm厚の銅箔を連続的に通過させると共に、電解槽の中に、気体噴射管を図3のようにアノードの下部に設置し、この気体噴射管から空気を16m3/hrで、銅箔とアノード間に強制的に流通させるとともに、電気めっきを実施した。
銅電気めっきの条件は、次の通りである。
銅濃度:50g/L、 硫酸濃度:40g/L、
電流密度:80A/dm2、 電解液温度:38°C、
めっき時間:17秒
なお、電解液供給ポンプによる電解液の流速は1.3L/minとした。
気体噴射管から強制供給される空気により気泡が勢い良く上昇し、それに伴って電解液の流動が増大した。
めっき後に被膜を観察したところ、ピンホールの無い5μm厚の正常銅めっきが形成された。
【0016】
(実施例2)
既存のトリートラインに、20μm厚の銅箔を連続的に通過させると共に、電解槽の中に、気体噴射管を図3のようにアノードの下部に設置し、この気体噴射管から空気を16m3/hrで、銅箔とアノード間に強制的に流通させるとともに、電気めっきを実施した。
銅電気めっきの条件は、次の通りである。
銅濃度:50g/L、 硫酸濃度:40g/L、
電流密度:37A/dm2、 電解液温度:35°C、
めっき時間:20秒
なお、電解液供給ポンプによる電解液の流速は1.3L/minとした。
気体噴射管から強制供給される空気により気泡が勢い良く上昇し、それに伴って電解液の流動が増大した。
めっき後に被膜を観察したところ、ピンホールの無い3μm厚の正常銅めっきが形成された。
【0017】
(比較例1)
既存のトリートラインに、20μm厚の銅箔を連続的に通過させるとともに、電気めっきを実施した(気体噴射管からの気体の強制供給は無い)。
銅電気めっきの条件は、次の通りである。
銅濃度:50g/L、 硫酸濃度:40g/L、
電流密度:37A/dm2、 電解液温度:35°C、
めっき時間:20秒
なお、電解液供給ポンプによる電解液の流速は1.3L/minとした。以上によって、得られた銅めっきはヤケめっきであった。
【0018】
【発明の効果】
以上の実施例と比較例から明らかなように、既存のトリートラインを使用し、同ラインの電解槽に設置したアノード板の前に連続的に銅箔を通過させて厚めっきを行う際に、通過する銅箔とアノード板の間に気体を強制注入して電解液の流速を高め、めっきを行うことによって、ピンホールの無い銅箔の連続電解厚めっきが得られるという優れた効果を有し、若干の装置の付加により、電解による連続的な金属厚めっきの生産性を向上させることができる著しい特徴を有する。
【図面の簡単な説明】
【図1】銅箔の通常の連続的電気化学的表面処理(トリート処理)の側面の概略説明図である。
【図2】キャリヤ付銅箔の断面説明図を示す。
【図3】通過する銅箔とアノード板との間に気体噴射装置を配置した本発明の一例を示す説明図である。
【符号の説明】
1:電解槽
2:ガイドロール
3:アノード板
4:銅箔
5:キャリヤ銅箔
6:Cuめっき
7:気体噴射装置
8:気泡[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous thick plating method and apparatus for further applying a thick metal plating such as copper or nickel to the surface of a rolled copper foil or an electrolytic copper foil.
[0002]
[Prior art]
2. Description of the Related Art In recent years, copper foil has been widely used for manufacturing electronic components and wiring boards.
In general, the electrolytic copper foil uses a rotating metal cathode drum and an insoluble metal anode (anode) that surrounds the periphery of the cathode drum, which is disposed substantially at a lower half of the cathode drum. The copper electrolytic solution is allowed to flow between them, and a potential is applied between them to cause electrodeposition of copper on the cathode drum. When a predetermined thickness is reached, the electrodeposited copper is peeled off from the cathode drum to continuously form copper. Foil is being manufactured.
The rolled copper foil is produced by repeatedly rolling and annealing an ingot that has been melt-cast.
As described above, the electrolytic copper foil and the rolled copper foil are continuously manufactured and wound on a coil, and the copper foil thus obtained is subjected to some chemical or electrochemical surface treatment. It is used for printed wiring boards.
[0003]
Generally, the electrochemical surface treatment of copper foil is performed continuously using an apparatus as shown in FIG. FIG. 1 shows a schematic side view of a continuous surface treatment apparatus for copper foil.
As shown in FIG. 1, a copper foil 4 wound around a coil is unwound, and continuously passed through a plurality of guide rolls 2 installed inside and outside an electrolytic cell 1 in front of an opposed anode plate 3. 4 and a surface treatment is performed. The surface-treated copper foil 4 is wound again into a coil.
The electrolytic cell is provided with an electrolytic solution for treatment, for example, a plating solution for roughening treatment and rust prevention treatment. The electrolyte has a structure in which the replenished or bathed electrolyte can be circulated. A current for surface treatment flows between the anode plate and the copper foil serving as the cathode.
As the anode plate, an insoluble anode such as a Pb plate or a noble metal oxide-coated Pt plate is usually used, but a soluble anode which itself dissolves and is electrodeposited on a copper foil may be used. This can be changed appropriately according to the conditions of the electrochemical treatment.
[0004]
In the above, a general method for producing a copper foil and a surface treatment (treating treatment) of the copper foil have been described. However, recently, a metal foil has been further continuously formed on the produced electrolytic copper foil or rolled copper foil. It is required to perform thick plating. For example, the manufacture of copper foil with a carrier is an example. FIG. 2 shows an example of copper plating of 5 μm with a copper carrier. Generally, the treatment line is an indispensable processing step in the surface treatment of the copper foil, so that the facilities are sufficiently provided. However, what originally performs surface treatment on this treat line has a small amount of plating or treatment on a copper foil, and has a facility configuration adapted to it.
Therefore, when performing continuous metal thick plating by electrolysis using this existing treat line, the supply amount of metal ions is insufficient and sufficient plating cannot be obtained.
For this reason, in order to increase the supply amount of metal ions, the pump needs to be strengthened, and the equipment needs to be changed. This causes a new problem that productivity is reduced due to equipment change and cost is increased due to equipment enhancement.
As a conventional technique using a gas, when depositing a metal on a cathode by electrolysis from a solution containing a metal salt, a metal is deposited while removing hydrogen generated there by passing an appropriate gas through the cathode surface. It has been disclosed that the application is performed (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-53-30404
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and the object thereof is to use an existing treat line as it is, and by adding a few devices, a continuous treatment by electrolysis can be performed. It is an object of the present invention to provide a method and apparatus for continuous electrolytic thick plating of copper foil, which enables thick plating of metal and improves productivity.
[0007]
[Means for Solving the Problems]
From the above, the present invention provides: When using the existing treat line and passing thick copper by continuously passing copper foil before the anode plate installed in the electrolytic cell of the same line, gas is forcibly injected between the passing copper foil and anode plate. 2. A continuous electrolytic thickness plating method for a copper foil, wherein the plating is performed by increasing the flow rate of the electrolytic solution. 2. Plating method It is an existing treat line with a distance between electrodes: 40 to 60 mm, a liquid flow rate: 0.5 to 2.0 L / min, a line length between electrolytic cells: 2 to 7 m, and an electrode area: 10 to 500 dm 2. 3. The method for continuous electrolytic thick plating of copper foil according to 1 or 2 above. 4. The method for continuous electrolytic thick plating of copper foil as described in any one of the above items 1 to 3, wherein a copper carrier having a thickness of 25 μm or more is thickly plated. The method for continuous electrolytic thick plating of a copper foil according to any one of the above items 1 to 4, wherein the gas forcibly injected between the anode plates is oxygen, air or an inert gas.
[0008]
In addition, the present invention further provides 6. An existing treat line, an electrolytic cell installed in the same line, an anode plate provided in the electrolytic cell, and a copper foil continuous plating apparatus that continuously passes copper foil before the anode to perform plating. 6. A continuous electrolytic thick plating apparatus for copper foil characterized in that a gas injection tube is installed between the copper foil to be formed and the anode plate, gas is forcibly injected from the gas injection tube to increase the flow rate of the electrolytic solution, and thick plating is performed. It is an existing treat line with a distance between electrodes: 40 to 60 mm, a liquid flow rate: 0.5 to 2.0 L / min, a line length between electrolytic cells: 2 to 7 m, and an electrode area: 10 to 500 dm 2. 6. A continuous electrolytic thick plating apparatus for copper foil according to the above item 6.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The specifications of the existing treat line are as follows: interelectrode distance: 40 to 60 mm, liquid flow rate: 0.5 to 2.0 L / min, length of one line between electrolytic cells: 2 to 7 m, and electrode area: 10 to 500 dm 2. The present invention can be applied to such a treat line.
Other treat line specifications are conceivable, but the present invention is not limited to special treat line specifications and can be applied to all treat lines.
[0010]
FIG. 3 shows a typical example of the gas forced injection device of the present invention. When the surface treatment is performed by continuously passing the copper foil 4 before the anode plate 3 installed in the electrolytic cell, the gas injection device 7 is arranged between the copper foil 4 and the anode plate 3 passing therethrough. The gas injection device 7 can normally use an insulator such as vinyl chloride.
FIG. 3 is a conceptual diagram illustrating that the gas forcedly injected from the gas injection device 7 becomes bubbles 8 and flows between the opposed anode plate 3 and the continuously moving copper foil 4. However, such a gas flow forcibly causes the electrolyte to flow, and promotes electrodeposition.
When copper foil 4 is repeatedly passed through the electrolytic cell, gas injection devices 7 can be arranged by the number corresponding to the number of anode plates 3.
[0011]
Although the width of the gas injection device 7 is usually the width extending over both edges 5 of the copper foil 4 or both edges 6 of the anode plate 3, even if the width is smaller than the width of the copper foil 4 and the anode plate 3, It is possible to exert a certain gas forced injection effect.
Since this varies depending on the conditions of the surface treatment, the width can be appropriately changed according to the treatment conditions.
As described above, it is desirable that the length of the gas injection device 7 be approximately the length of the anode plate, but may be longer. In addition, even if it is short, it exerts the effect of forcibly injecting gas in the longitudinal direction, so it is appropriately designed according to the conditions of surface treatment.
[0012]
The continuous electrolytic thick plating method for copper foil of the present invention is particularly effective for Cu plating of 5.0 μm or more. However, it is also applicable to electrolytic thick plating of other metals.
Further, it is possible and effective to perform thick plating on a copper carrier having a thickness of 25 μm or more, but it is needless to say that the present invention can be applied to plating on other copper foils. As the gas forcibly injected between the anode plates, oxygen, air, or an inert gas can be used. It can be appropriately selected according to the material to be plated.
[0013]
The following are examples of metal plating. However, it is not limited to the following plating.
(Copper plating treatment)
Cu concentration: 20 to 100 g / L
Electrolyte temperature: 20-60 ° C,
Current density: 5 to 100 A / dm 2 , Plating time: 0.5 to 60 seconds (nickel plating)
Ni concentration: 1 to 30 g / L
Electrolyte temperature: 25-60 ° C,
Current density: 0.5-5 A / dm 2 , Plating time: 0.5-4 seconds (cobalt plating treatment)
Co concentration: 1 to 30 g / L
Electrolyte temperature: 25-60 ° C,
Current density: 0.5-5 A / dm 2 , Plating time: 0.5-4 seconds (tin plating)
Sn concentration: 10 to 150 g / L Sulfuric acid: 40 to 150 g / L
Electrolyte temperature: 25-40 ° C,
Current density: 1.0 to 5 A / dm 2 , Plating time: 0.5 to 4 seconds (indium plating treatment)
In concentration: 10 to 50 g / L Sulfuric acid: 10 to 50 g / L
Electrolyte temperature: 20-60 ° C,
Current density: 1.0 to 20 A / dm 2 , Plating time: 0.5 to 4 seconds
【Example】
Next, a description will be given based on examples. Note that the present embodiment shows a preferred example, and the present invention is not limited to these embodiments. Therefore, all modifications, other embodiments or aspects included in the technical concept of the present invention are included in the present invention.
For comparison with the present invention, comparative examples are described.
[0015]
(Example 1)
A 25 μm-thick copper foil is continuously passed through the existing treat line, and a gas injection tube is installed below the anode as shown in FIG. 3 in the electrolytic cell, and air is supplied from the gas injection tube to 16 m 3. / Hr, forcibly flowing between the copper foil and the anode and performing electroplating.
The conditions for copper electroplating are as follows.
Copper concentration: 50 g / L, sulfuric acid concentration: 40 g / L,
Current density: 80 A / dm 2 , electrolyte temperature: 38 ° C.
Plating time: 17 seconds The flow rate of the electrolytic solution by the electrolytic solution supply pump was 1.3 L / min.
Bubbles rose vigorously by the air forcedly supplied from the gas injection pipe, and the flow of the electrolyte solution increased accordingly.
Observation of the coating after plating revealed that normal copper plating having a thickness of 5 μm without pinholes was formed.
[0016]
(Example 2)
A 20 μm-thick copper foil is continuously passed through the existing treat line, and a gas injection tube is placed below the anode as shown in FIG. 3 in the electrolytic cell, and air is supplied from the gas injection tube to 16 m 3. / Hr, forcibly flowing between the copper foil and the anode and performing electroplating.
The conditions for copper electroplating are as follows.
Copper concentration: 50 g / L, sulfuric acid concentration: 40 g / L,
Current density: 37 A / dm 2 , electrolyte temperature: 35 ° C.
Plating time: 20 seconds The flow rate of the electrolytic solution by the electrolytic solution supply pump was 1.3 L / min.
Bubbles rose vigorously by the air forcedly supplied from the gas injection pipe, and the flow of the electrolyte solution increased accordingly.
When the coating was observed after plating, normal copper plating having a thickness of 3 μm without pinholes was formed.
[0017]
(Comparative Example 1)
A 20 μm thick copper foil was continuously passed through the existing treat line and electroplating was performed (there was no forced supply of gas from the gas injection tube).
The conditions for copper electroplating are as follows.
Copper concentration: 50 g / L, sulfuric acid concentration: 40 g / L,
Current density: 37 A / dm 2 , electrolyte temperature: 35 ° C.
Plating time: 20 seconds The flow rate of the electrolytic solution by the electrolytic solution supply pump was 1.3 L / min. Thus, the obtained copper plating was burnt plating.
[0018]
【The invention's effect】
As is clear from the above Examples and Comparative Examples, when using an existing treat line, when performing thick plating by continuously passing copper foil before an anode plate installed in an electrolytic cell of the same line, By forcibly injecting a gas between the passing copper foil and the anode plate to increase the flow rate of the electrolytic solution and performing plating, there is an excellent effect that a continuous electrolytic thick plating of a copper foil without pinholes is obtained, With the addition of the apparatus described above, there is a remarkable feature that the productivity of continuous thick metal plating by electrolysis can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic illustration of a side view of a normal continuous electrochemical surface treatment (treating) of a copper foil.
FIG. 2 shows a cross-sectional explanatory view of a copper foil with a carrier.
FIG. 3 is an explanatory view showing an example of the present invention in which a gas injection device is arranged between a copper foil passing through and an anode plate.
[Explanation of symbols]
1: Electrolytic tank 2: Guide roll 3: Anode plate 4: Copper foil 5: Carrier copper foil 6: Cu plating 7: Gas injection device 8: Bubbles