JP4833556B2 - Surface treated copper foil - Google Patents

Surface treated copper foil Download PDF

Info

Publication number
JP4833556B2
JP4833556B2 JP2005012440A JP2005012440A JP4833556B2 JP 4833556 B2 JP4833556 B2 JP 4833556B2 JP 2005012440 A JP2005012440 A JP 2005012440A JP 2005012440 A JP2005012440 A JP 2005012440A JP 4833556 B2 JP4833556 B2 JP 4833556B2
Authority
JP
Japan
Prior art keywords
copper foil
treated copper
protrusions
treated
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005012440A
Other languages
Japanese (ja)
Other versions
JP2005248323A (en
Inventor
裕二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005012440A priority Critical patent/JP4833556B2/en
Publication of JP2005248323A publication Critical patent/JP2005248323A/en
Application granted granted Critical
Publication of JP4833556B2 publication Critical patent/JP4833556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、エポキシ樹脂・ポリイミド樹脂及び熱可塑性液晶ポリマーを主体としたフィルム(以下液晶ポリマーフィルムと言うこともある)との密着性を改良した表面処理銅箔に関するものであり、更に、該表面処理銅箔と前記フィルムとを積層しフレキシブル基板・高密度実装用多層基板・高周波回路用基板用の表面処理銅箔並びに該表面処理銅箔を用いて形成した回路基板に関するものである。   The present invention relates to a surface-treated copper foil having improved adhesion to a film mainly composed of an epoxy resin / polyimide resin and a thermoplastic liquid crystal polymer (hereinafter sometimes referred to as a liquid crystal polymer film). The present invention relates to a surface-treated copper foil for a flexible substrate, a multilayer substrate for high-density mounting, and a high-frequency circuit substrate obtained by laminating a treated copper foil and the film, and a circuit board formed using the surface-treated copper foil.

電子機器の小型化、軽量化に伴い、最近の各種電子部品は高度に集積化されている。
これらに使用されるフレキシブル基板・高密度実装用多層基板・高周波回路基板等(以下これらを総称してプリント配線板と言うこともある)を製作する基板用複合材は、導体(銅箔)とそれを支持する絶縁基板から構成されており、絶縁基板は、導体間の絶縁を確保し、部品を支持する強度をもたせるなどの役割を果たしている。
また、回路基板を伝わる信号の速度が速くなるに従い、回路基板を構成する絶縁材料の特性インピーダンスや信号伝搬速度などが重要となり、絶縁材料の誘電率、誘電体損失などが関係するのでその特性の向上が要求される。
As electronic devices become smaller and lighter, various recent electronic components are highly integrated.
Substrate composites for manufacturing flexible boards, high-density mounting multilayer boards, high-frequency circuit boards, etc. (hereinafter sometimes collectively referred to as printed wiring boards) used in these are conductors (copper foil) and The insulating substrate is configured to support the insulating substrate, and the insulating substrate plays a role of ensuring insulation between the conductors and providing strength for supporting the components.
In addition, as the speed of the signal transmitted through the circuit board increases, the characteristic impedance and signal propagation speed of the insulating material constituting the circuit board become important, and the dielectric constant and dielectric loss of the insulating material are related. Improvement is required.

これらの条件を満足させる絶縁材料として提供されている基板用の材料としてはフェノール樹脂材が多く、めっきスルーホールには、エポキシ樹脂材が多い。また、近年では信号の高速伝搬のためには、誘電率が小さく、誘電体損失も小さい絶縁材料が要求され、それに対する材料も開発されている。
また、耐熱性を必要とする基板として、耐熱性エポキシ樹脂、ポリイミドなどの絶縁基板が使われている。この他、寸法安定性のよい材料、反り、ねじれの少ない材料、熱収縮の少ない材料などが開発されている。
As a material for a substrate provided as an insulating material that satisfies these conditions, there are many phenol resin materials, and many epoxy resin materials are used in plated through holes. In recent years, an insulating material having a low dielectric constant and low dielectric loss is required for high-speed signal propagation, and a material for the same has been developed.
In addition, as a substrate requiring heat resistance, an insulating substrate such as a heat resistant epoxy resin or polyimide is used. In addition, materials with good dimensional stability, materials with less warping and twisting, materials with less heat shrinkage, and the like have been developed.

更に、フレキシブルな基板用複合材で耐熱性を必要とする場合に、或いは半田付けを必要とする場合などには、ポリイミドフィルムが用いられる。一方、カーボンインクなどの印刷で、半田を使わない用途ではポリエステルフィルムが用いられている。近年、フレキシブル基板等も複雑になり、多くの場合、ポリイミドフィルムが使われるようになってきている。   Furthermore, a polyimide film is used when heat resistance is required for a flexible composite material for a substrate or when soldering is required. On the other hand, a polyester film is used in applications that do not use solder in printing carbon ink or the like. In recent years, flexible substrates and the like have become complicated, and in many cases, polyimide films have been used.

しかし、ポリイミドは吸水により誘電特性が大きく変化し、吸水環境下では高周波特性が大きく低下するという問題がある。また、高度な耐熱性を有する反面、熱溶融性がないので、導体である銅箔との複合には、銅箔上に前駆体であるポリアミック酸をキャスティングした後イミド化したり、ポリイミドフィルム上に接着層を設けた後銅箔とラミネートするなどの方法をとる必要があり工程が複雑になる問題がある。
そこで、ポリイミドに比べ、吸湿性が著しく低いために誘電特性の変化が少なく、半田付けに耐えられる耐熱性を有する熱可塑性材料として、液晶ポリマーが注目されている。しかし、この液晶ポリマーからなるフィルムは、銅箔との接着性が低く、銅箔とのピール強度がポリイミドに比較すると弱くなる傾向にある。
However, polyimide has a problem that the dielectric characteristics are greatly changed by water absorption, and the high-frequency characteristics are greatly deteriorated in a water absorption environment. In addition, while having high heat resistance, there is no heat melting property, so the composite with the copper foil as the conductor is imidized after casting the polyamic acid as the precursor on the copper foil, or on the polyimide film It is necessary to take a method such as laminating with a copper foil after providing an adhesive layer, and there is a problem that the process becomes complicated.
Therefore, liquid crystal polymers have attracted attention as thermoplastic materials having heat resistance that can withstand soldering because they have significantly lower hygroscopicity than polyimide and have little change in dielectric properties. However, the film made of this liquid crystal polymer has low adhesion to the copper foil, and the peel strength with the copper foil tends to be weaker than that of polyimide.

これらの絶縁基板に張り合わせて導電層として使用される銅箔は主に電解銅箔である。電解銅箔は、通常、図1に示すような電解製箔装置により製箔され、図2に示す表面処理装置により密着性向上のための粗化処理や防錆処理等が施される。   The copper foil used as a conductive layer by being bonded to these insulating substrates is mainly an electrolytic copper foil. The electrolytic copper foil is usually made by an electrolytic foil making apparatus as shown in FIG. 1, and subjected to a roughening treatment or an antirust treatment for improving adhesion by a surface treatment apparatus shown in FIG.

図1に示す電解製箔装置は、回転するドラム状のカソード2(表面はSUS又はチタン製)と該カソードに対して同心円状に配置されたアノード1(鉛又は貴金属酸化物被覆チタン電極)からなり、電解液3を流通させつつ両極間に電流を流して、該カソード表面に所定の厚さに銅を析出させ、その後該カソード表面から銅を箔状に剥ぎ取る。この段階の銅箔4が未処理銅箔である。また該未処理銅箔の電解液と接していた面がマット面、回転するドラム状のカソード2と接していた面が光沢面(シャイニー面)である。   1 includes a rotating drum-shaped cathode 2 (the surface is made of SUS or titanium) and an anode 1 (lead or noble metal oxide-coated titanium electrode) arranged concentrically with the cathode. Then, an electric current is passed between both electrodes while the electrolytic solution 3 is circulated to deposit copper to a predetermined thickness on the cathode surface, and then the copper is peeled off from the cathode surface in a foil shape. The copper foil 4 at this stage is an untreated copper foil. The surface of the untreated copper foil in contact with the electrolyte is a matte surface, and the surface in contact with the rotating drum-shaped cathode 2 is a glossy surface (shiny surface).

製箔された未処理銅箔4は、絶縁基板と積層し銅張積層板を製造するのに必要とされる接着強度(ピール強度)を高めるために、図2に示すような表面処理装置により未処理銅箔4に、電気化学的或いは化学的な表面処理を連続的に行う。図2は電気化学的に表面処理を連続的に行う装置を示すもので、未処理銅箔4を電解液5が充填された電解層、電解液6が充填された電解層を連続的に通過させ、電極7をアノードとし、銅箔自体をカソードとして表面処理を施し、絶縁(樹脂)基板と接着させるときの密着性を高めるために、粒状の銅を未処理銅箔4の表面に析出させる。この工程が粗化処理工程であり、粗化処理は、通常、未処理銅箔4のマット面またはシャイニー面に施される。これらの表面処理を施した後の銅箔が表面処理銅箔8であり、絶縁基板と積層して回路基板とする。   In order to increase the adhesive strength (peel strength) required for producing a copper-clad laminate by laminating an untreated copper foil 4 made of a foil, a surface treatment apparatus as shown in FIG. 2 is used. The untreated copper foil 4 is continuously subjected to electrochemical or chemical surface treatment. FIG. 2 shows an apparatus for continuously performing electrochemical surface treatment. An untreated copper foil 4 is continuously passed through an electrolytic layer filled with an electrolytic solution 5 and an electrolytic layer filled with an electrolytic solution 6. Then, surface treatment is performed using the electrode 7 as an anode and the copper foil itself as a cathode, and granular copper is deposited on the surface of the untreated copper foil 4 in order to improve adhesion when adhered to an insulating (resin) substrate. . This step is a roughening treatment step, and the roughening treatment is usually applied to the mat surface or shiny surface of the untreated copper foil 4. The copper foil after the surface treatment is the surface-treated copper foil 8 and is laminated with an insulating substrate to obtain a circuit board.

しかし、エポキシ樹脂・ポリイミド・液晶ポリマーのうち、特に液晶ポリマーは銅箔との接着強度(ピール強度)が出難い樹脂として知られている。一般的に、これらの樹脂等と銅箔のピール強度は銅箔表面粗さRz(ここで表面粗さRzは、JISB 0601−1994「表面粗さの定義と表示」の「5.1 十点平均粗さ」の定義に規定されたRzを言う。)に大きく影響される。銅箔の表面粗さを考える場合は、未処理銅箔の表面粗さRzと、銅箔表面を粗化処理した表面粗化銅箔のRzが挙げられる。従来より、平滑な未処理銅箔において、特にピール強度が出難い樹脂に対するピール強度を高める場合には、粗化処理時に流す電流を大きくし、粗化処理時の粒状銅の付着量を多くし表面粗さRzを増やして対処する方法が行なわれてきている。確かにこの方法は、ピール強度を上げるための目的には適しているが、高周波特性においては、表皮効果の関係上表面粗さRzが大きく、或いは粗化粒子の量が多くなることは好ましくない。   However, among epoxy resins, polyimides, and liquid crystal polymers, particularly liquid crystal polymers are known as resins that are difficult to produce adhesive strength (peel strength) with copper foil. Generally, the peel strength of these resins and the copper foil is the copper foil surface roughness Rz (here, the surface roughness Rz is defined as "5.1 Ten Points" in JISB 0601-1994 "Definition and Display of Surface Roughness"). Rz defined in the definition of “average roughness”). When considering the surface roughness of the copper foil, the surface roughness Rz of the untreated copper foil and the Rz of the surface-roughened copper foil obtained by roughening the copper foil surface can be mentioned. Conventionally, in a smooth untreated copper foil, especially when increasing the peel strength for a resin that is difficult to peel, the current flowing during the roughening treatment is increased, and the amount of granular copper deposited during the roughening treatment is increased. A method of dealing with the problem by increasing the surface roughness Rz has been performed. Certainly, this method is suitable for the purpose of increasing the peel strength, but in the high frequency characteristics, it is not preferable that the surface roughness Rz is large or the amount of roughening particles is large due to the skin effect. .

また、液晶ポリマー樹脂の種類によっては、表面処理銅箔の表面の粗さRz値をあげてもピール強度に相関が得られないフィルムの種類がある。このようなフィルムについては、粗化粒子において形成される突起物の形状が深く関係があることが分かってきている。
また、プリント配線板における回路パターンも高密度化が要求され、配線は微細な線幅と配線ピッチから成る回路パターンで形成されるいわゆるファインパターンのプリント配線板が要求されるようになってきている。最近では、配線ピッチが50μm〜100μm程度で線幅が30μm前後の高密度極細配線からなるプリント配線板が要求されている。ピール強度を上げるための粗化粒子における表面粗さRzを大きくしたり、付着量を多くすることは、これらのファインパターン化の場合にも不適である。未処理銅箔の表面を粗くし、粗化粒子付着量を減らすことでピール強度を上げることも可能であるが、高周波特性・ファインパターンを作製する上では不適当である。
Further, depending on the type of the liquid crystal polymer resin, there is a type of film in which no correlation is obtained in the peel strength even if the surface roughness Rz value of the surface-treated copper foil is increased. For such films, it has been found that the shape of the protrusions formed in the roughened particles is closely related.
Also, the circuit pattern on the printed wiring board is required to have a high density, and so-called fine pattern printed wiring boards formed with a circuit pattern having a fine line width and wiring pitch are required. . Recently, there has been a demand for a printed wiring board made of high-density ultrafine wiring having a wiring pitch of about 50 μm to 100 μm and a line width of about 30 μm. Increasing the surface roughness Rz in the roughened particles for increasing the peel strength and increasing the amount of adhesion are also unsuitable for these fine patterns. Although it is possible to increase the peel strength by roughening the surface of the untreated copper foil and reducing the amount of roughened particles attached, it is inappropriate for producing high-frequency characteristics / fine patterns.

現在、液晶ポリマーとの接着性を改良した銅箔として、特定の元素を含み、特定厚さの表面酸化層や防錆層を設けた銅合金箔が提案されている(例えば、特許文献1参照)。しかし、液晶ポリマーをフィルム化すると、棒状分子が面方向に配向するために、厚み方向の強度が極端に低下するので、この様な粗化を行わない銅箔では、液晶ポリマーフィルムが銅箔界面との極近傍で容易に破壊してしまうために、結果として十分なピール強度が得られない。   At present, as a copper foil having improved adhesion to a liquid crystal polymer, a copper alloy foil containing a specific element and provided with a surface oxide layer and a rust prevention layer having a specific thickness has been proposed (for example, see Patent Document 1). ). However, when the liquid crystal polymer is made into a film, the rod-shaped molecules are oriented in the plane direction, so the strength in the thickness direction is extremely reduced. Therefore, in the copper foil that does not perform such roughening, the liquid crystal polymer film is not bonded to the copper foil interface. As a result, sufficient peel strength cannot be obtained.

また、液晶ポリマーの接着性を改善するために、プラズマ処理(例えば、特許文献2参照)、UV処理(例えば、特許文献3参照)などの表面処理を施す方法も提案されているが、これらの方法を用いても、表面粗さの低い銅箔には十分な接着性が得られていない。
そこで、高周波特性が良いこと、ファインパターンが作製できること、ピール強度を上げることを可能にする銅箔の開発が要求されている。
特開2003−064431号公報 特開2001−049002号公報 特開2000−233448号公報
Further, in order to improve the adhesion of the liquid crystal polymer, methods for performing surface treatment such as plasma treatment (for example, see Patent Document 2), UV treatment (for example, see Patent Document 3) have been proposed. Even if this method is used, sufficient adhesiveness is not obtained for a copper foil having a low surface roughness.
Therefore, development of a copper foil that has good high frequency characteristics, can produce a fine pattern, and can increase peel strength is required.
JP 2003-064431 A JP 2001-049002 A JP 2000-233448 A

本発明は、このような従来技術の問題点を解消すべくなされたものであり、一般的に使用されているエポキシ樹脂・ポリイミドフィルム及び吸湿性が著しく低いために誘電特性の変化が少なく、半田付けに耐えられる耐熱性を有しながら、加熱により銅箔とラミネートが可能であるが、ピール強度が得られにくい液晶ポリマー樹脂に対し、ピール強度が大きく、ファインパターン化を可能とした表面処理銅箔であり該表面処理銅箔を使用して、高周波特性が良好な回路基板を提供することにある。   The present invention has been made to solve such problems of the prior art, and since the epoxy resin / polyimide film generally used and the hygroscopic property are remarkably low, the change in dielectric characteristics is small, and the solder Surface-treated copper that has high heat resistance and can be laminated with copper foil by heating, but has high peel strength and fine patterning, compared to liquid crystal polymer resin, which is difficult to obtain peel strength. An object of the present invention is to provide a circuit board having good high-frequency characteristics by using the surface-treated copper foil.

本発明は、少なくとも銅箔の片面に粗化粒子を付着して粗化面とした銅箔であって、その表面粗さがRz:1.5〜4.0μmであり、明度値:30以下である表面処理銅箔である。   The present invention is a copper foil having a roughened surface by attaching roughened particles to at least one surface of a copper foil, the surface roughness of which is Rz: 1.5 to 4.0 μm, and the brightness value is 30 or less. This is a surface-treated copper foil.

また、本発明において、前記の表面処理銅箔が、少なくとも未処理銅箔の片面に粗化を形成させる表面処理において、付着させる銅または銅合金の量は、2.5mg/dm以上400mg/dm以下である表面処理銅箔である。 In the present invention, in the surface treatment in which the surface-treated copper foil forms roughening on at least one surface of the untreated copper foil, the amount of copper or copper alloy to be adhered is 2.5 mg / dm 2 or more and 400 mg / dm 2 or more. It is a surface-treated copper foil which is dm 2 or less.

また、本発明の表面処理銅箔は、少なくとも銅箔の片面に粗化粒子を付着して粗化面とした銅箔であって、その表面粗さがRz:1.5〜4.0μmであり、明度値:30以下であり、前記粗化粒子から形成された突起物が、その高さが1〜5μmであり、該突起物が100μm×100μmの面積に200〜25000個分布している表面処理銅箔である。   The surface-treated copper foil of the present invention is a copper foil having a roughened surface by attaching roughened particles to at least one surface of the copper foil, and the surface roughness is Rz: 1.5 to 4.0 μm. Yes, lightness value: 30 or less, the protrusions formed from the roughened particles have a height of 1 to 5 μm, and 200 to 25000 protrusions are distributed in an area of 100 μm × 100 μm. It is a surface-treated copper foil.

更に、本発明表面処理銅箔は、少なくとも銅箔の片面に粗化粒子を付着して粗化面とした銅箔であってその表面粗さがRz:1.5〜4.0μmであり、明度値:30以下であり、前記粗化粒子から形成された突起物は、その高さが1〜5μmであり、その密度が、観察断面25μmの範囲に6〜35個の個数で分布している表面処理銅箔である。   Furthermore, the surface-treated copper foil of the present invention is a copper foil having a roughened surface by attaching roughened particles to at least one surface of the copper foil, and the surface roughness is Rz: 1.5 to 4.0 μm, Lightness value: 30 or less, the protrusions formed from the roughened particles have a height of 1 to 5 μm, and the density is distributed in the number of 6 to 35 in the range of the observation cross section of 25 μm. It is a surface-treated copper foil.

更に、本発明の前記表面処理銅箔は、少なくとも未処理銅箔の片面に粗化粒子を付着して粗化面とした銅箔であって、前記粗化面は、その表面粗さRzが1.5〜4.0μmで表面の明度値が25以下であり、前記粗化粒子から形成される突起物は、前記未処理銅箔表面からの高さが1μm〜5μmの突起物であり、その密度が、25μmの範囲に6〜35個の個数で、該突起物間の深さが0.3μm以上の溝を存在させて略均等に分布しているものである表面処理銅箔である。   Furthermore, the surface-treated copper foil of the present invention is a copper foil having a roughened surface by attaching roughened particles to at least one surface of an untreated copper foil, and the roughened surface has a surface roughness Rz. The surface brightness value at 1.5 to 4.0 μm is 25 or less, and the protrusion formed from the roughened particles is a protrusion having a height from the untreated copper foil surface of 1 μm to 5 μm, A surface-treated copper foil having a density of 6 to 35 in the range of 25 μm and a groove having a depth of 0.3 μm or more between the protrusions and being distributed substantially evenly. .

更に、前記表面処理銅箔の突起物において、各突起物の最大幅は、0.01μm以上であり、25μm範囲に存在する突起物の個数で25μmを割った長さの2倍以下であることが好ましい。
更に、本発明は、前記表面処理銅箔の粗化処理前の銅箔が電解銅箔である表面処理銅箔である。
更に、本発明は、未処理銅箔の電解銅箔が粒状の結晶からなることを特徴とする表面処理銅箔である。
更に、本発明は、前記表面処理銅箔に使用する未処理銅箔の少なくとも表面処理を行う面の粗さRzが、2.0μm以下である表面処理銅箔である。
更に、本発明は、前記未処理銅箔の粗化処理を施す方の表面が、表面粗さRzが2.0μm以下のマット面である表面処理銅箔である。
Furthermore, in the protrusions of the surface-treated copper foil, the maximum width of each protrusion is 0.01 μm or more, and is not more than twice the length obtained by dividing 25 μm by the number of protrusions existing in the 25 μm range. Is preferred.
Furthermore, this invention is the surface treatment copper foil whose copper foil before the roughening process of the said surface treatment copper foil is an electrolytic copper foil.
Furthermore, this invention is a surface-treated copper foil characterized by the electrolytic copper foil of an untreated copper foil consisting of a granular crystal.
Furthermore, this invention is a surface-treated copper foil whose roughness Rz of the surface which performs at least surface treatment of the untreated copper foil used for the said surface-treated copper foil is 2.0 micrometers or less.
Furthermore, the present invention is the surface-treated copper foil in which the surface on which the untreated copper foil is roughened is a matte surface having a surface roughness Rz of 2.0 μm or less.

更に、本発明は、前記表面処理銅箔の突起物が、Cuからなる粒子若しくはCuとMoの合金またはCuとNi、Co、Fe、Cr、V、Wの郡から選ばれる少なくとも1種の元素からなる合金粒子によって形成されていることを特徴とする表面処理銅箔である。
更に、本発明は、前記表面処理銅箔の少なくとも粗化粒子で形成した突起物の面に、NiまたはNi合金からなる皮膜を形成したことを特徴とする表面処理銅箔である。
更に、本発明は、前記表面処理銅箔は、少なくとも粗化粒子で形成した突起物の面に亜鉛層若しくは亜鉛合金層および/またはCr金属層またはクロメート層からなる防錆層を設けたことを特徴とする表面処理銅箔である。
更に、本発明は、前記表面処理銅箔は、少なくとも粗化粒子で形成された突起物の面および/または防錆層の上にシランカップリング層を形成した表面処理銅箔である。
更に、本発明は、回路基板を、前記表面処理銅箔を用いて作成したことを特徴とする回路基板である。
Further, in the present invention, the protrusion of the surface-treated copper foil is at least one element selected from the group consisting of particles made of Cu, an alloy of Cu and Mo, or a group of Cu and Ni, Co, Fe, Cr, V, and W. A surface-treated copper foil characterized by being formed of alloy particles made of
Furthermore, the present invention is a surface-treated copper foil characterized in that a film made of Ni or a Ni alloy is formed on the surface of a projection formed of at least roughened particles of the surface-treated copper foil.
Furthermore, in the present invention, the surface-treated copper foil is provided with a rust-preventing layer comprising a zinc layer or a zinc alloy layer and / or a Cr metal layer or a chromate layer at least on the surface of a projection formed of roughened particles. It is the surface-treated copper foil characterized.
Furthermore, the present invention is the surface-treated copper foil in which the surface-treated copper foil has a silane coupling layer formed on at least the surface of the projection formed of roughened particles and / or a rust preventive layer.
Furthermore, this invention is a circuit board characterized by producing the circuit board using the said surface-treated copper foil.

本発明は、粗化粒子で形成される特定の形状と分布を示す突起物を銅箔表面に形成させた表面処理銅箔であり、該表面処理銅箔は絶縁基板であるエポキシ樹脂・ポリイミドフィルム・吸湿性が著しく低いために誘電特性の変化が少なく、半田付けに耐えられる耐熱性を有する液晶ポリマーに対してピール強度が大きく、ファインパターン化が可能な表面処理銅箔と該表面処理銅箔を用いた、特にファインパターンで高周波特性に優れた回路基板
を提供するものである。
The present invention is a surface-treated copper foil in which protrusions having a specific shape and distribution formed with roughened particles are formed on the surface of the copper foil, and the surface-treated copper foil is an insulating substrate, an epoxy resin / polyimide film・ Surface-treated copper foil capable of forming a fine pattern and having a high peel strength with respect to a liquid crystal polymer having heat resistance that can withstand soldering due to extremely low hygroscopicity, and the surface-treated copper foil In particular, a circuit board having a fine pattern and excellent high-frequency characteristics is provided.

本発明では、表面処理前の銅箔(未処理銅箔)は、電解もしくは圧延によって製造された銅箔である。その銅箔の厚さは1μm〜200μmであり、少なくとも片面の表面粗さが、Rz:0.01μm〜2μmの銅もしくは銅合金箔であることが好ましい。銅箔の厚みについては、厚さが1μm以下の銅箔に対し、その表面上に粗化処理を行なうことは、非常に難しく、また、高周波プリント配線板用に使用する銅箔としては、200μm以上の箔は現実的でないと考えられるためである。   In the present invention, the copper foil before surface treatment (untreated copper foil) is a copper foil produced by electrolysis or rolling. The thickness of the copper foil is 1 μm to 200 μm, and at least one surface is preferably a copper or copper alloy foil having a surface roughness of Rz: 0.01 μm to 2 μm. Regarding the thickness of the copper foil, it is very difficult to roughen the surface of the copper foil having a thickness of 1 μm or less, and the copper foil used for the high-frequency printed wiring board is 200 μm. This is because the above foil is considered unrealistic.

未処理銅箔の表面粗さについては、Rz:0.01μm以下の箔は、現実的に製造も困難であり、もし製造できても製造コストがかかることから現実的に不適であり、また、Rz:2.0μm以上の未処理銅箔を使用してもよいが、高周波特性及びファインパターン化を考えると未処理銅箔の表面粗さが2μm以下であると更に好ましい。
本発明においては、上記した未処理銅箔について表面処理を行う。未処理銅箔の表面を表面粗化処理は、未処理銅箔の表面に粗化粒子を付着させ、その表面粗さがRz:1.5〜4.0μmの粗化面とする。
As for the surface roughness of the untreated copper foil, a foil with Rz: 0.01 μm or less is practically difficult to manufacture, and even if it can be manufactured, it is actually unsuitable because it requires manufacturing cost, Although an untreated copper foil of Rz: 2.0 μm or more may be used, it is more preferable that the surface roughness of the untreated copper foil is 2 μm or less in view of high frequency characteristics and fine patterning.
In the present invention, the above-described untreated copper foil is subjected to surface treatment. The surface roughening treatment of the surface of the untreated copper foil is performed by attaching roughened particles to the surface of the untreated copper foil, and the surface roughness is a roughened surface of Rz: 1.5 to 4.0 μm.

未処理銅箔の表面を粗化処理し、表面粗化粒子を付着させて突起物を形成した粗化面の表面粗さはRzが1.5〜4.0μmである。Rz:1.5μm未満では、ピール強度が低いためその目的を果たす表面処理銅箔としては満足でなく、また、Rz:4.0μmより大きいと、高周波特性が低下するうえにファインパターン化に不向きとなるためである。
また、本発明の未処理銅箔上に行なう表面処理において付着させる銅もしくは銅合金量
は、2mg/dm〜400mg/dmが好ましい。付着量が2mg/dm未満ではピール強度が低いためその目的を果たす表面処理銅箔としては満足でなく、また400mg/dmより大きいと、高周波特性が低下するうえにファインパターン化に不向きとなるためである。
The surface roughness of the roughened surface obtained by roughening the surface of the untreated copper foil and attaching the surface roughened particles to form protrusions is Rz of 1.5 to 4.0 μm. If Rz: less than 1.5 μm, the peel strength is low, so it is not satisfactory as a surface-treated copper foil that fulfills its purpose, and if Rz: greater than 4.0 μm, high-frequency characteristics are deteriorated and unsuitable for fine patterning. It is because it becomes.
Further, copper or copper alloy amount is deposited in the surface treatment performed on the untreated copper foil of the present invention, 2mg / dm 2 ~400mg / dm 2 is preferred. Is less than the amount of deposition is 2 mg / dm 2 rather than satisfactory as a surface-treated copper foil to fulfill its purpose because peel strength is low, also larger than 400 mg / dm 2, and unsuitable for fine patterning in terms of high frequency characteristics are degraded It is to become.

また、本発明においては表面粗化処理を行った粗化処理銅箔は、明度値が30以下である必要がある。本発明における明度とは、通常、表面の粗さを見る指標として使用されている明度であり、測定方法としては、測定サンプル表面に光をあて光の反射量を測定し明度値として表す方法である。この方法で表面処理銅箔の処理面の明度を測定すると、表面粗さのRzが大きいかまたは粗化粒子間の溝の深さが深い時は、光の反射量が少なくなるため明度値が低くなり、平滑な場合では光の反射量が大きくなり明度が高くなる傾向がある。絶縁基板(液晶ポリマーフィルム)とのピール強度を向上させるためには明度を30以下とすると良い。また、明度31以上では、粗化面を大きなRzとしても凹凸がなだらかな凹凸となるため表面処理銅箔と絶縁基板(液晶ポリマーフィルム)との食いつきが悪く、ピール強度が向上しないためである。   In the present invention, the roughened copper foil subjected to the surface roughening treatment needs to have a brightness value of 30 or less. The lightness in the present invention is usually the lightness used as an index for viewing the roughness of the surface, and the measuring method is a method of measuring the amount of reflected light by applying light to the surface of the measurement sample and expressing it as a lightness value. is there. When the brightness of the treated surface of the surface-treated copper foil is measured by this method, when the surface roughness Rz is large or the depth of the groove between the roughened particles is deep, the lightness value is reduced because the amount of reflected light is reduced. When it is low and smooth, the amount of reflected light tends to increase and the brightness tends to increase. In order to improve the peel strength with the insulating substrate (liquid crystal polymer film), the brightness is preferably 30 or less. On the other hand, when the brightness is 31 or more, even if the roughened surface has a large Rz, the unevenness becomes gentle, so that the bite between the surface-treated copper foil and the insulating substrate (liquid crystal polymer film) is poor and the peel strength is not improved.

なお、明度の測定は、被測定銅箔に
Ni: 0.01〜0.5mg/dm2
Zn: 0.01〜0.5mg/dm2
Cr: 0.01〜0.3mg/dm2
の範囲内の防錆処理を施した後、明度計(スガ試験機株式会社製、機種名:SMカラーコンピューター、型番SM−4)を使用して明度を測定した。
The brightness is measured on the copper foil to be measured.
Ni: 0.01 to 0.5 mg / dm 2
Zn: 0.01 to 0.5 mg / dm 2
Cr: 0.01 to 0.3 mg / dm 2
Then, the brightness was measured using a brightness meter (model name: SM color computer, model number SM-4, manufactured by Suga Test Instruments Co., Ltd.).

以上のような表面粗さ(Rz)および明度値を兼ね備えた本発明の表面処理銅箔は、液晶ポリマーフィルムと積層・複合化されて、接着性に難点のある液晶ポリマーフィルムの欠点を補い、後記する実施例・比較例から明らかなように、優れたピール強度およびファインパターン特性を有する銅張積層板を提供することができる。   The surface-treated copper foil of the present invention having both surface roughness (Rz) and brightness value as described above is laminated and combined with a liquid crystal polymer film to compensate for the drawbacks of the liquid crystal polymer film having a difficulty in adhesion, As will be apparent from Examples and Comparative Examples described later, a copper clad laminate having excellent peel strength and fine pattern characteristics can be provided.

本発明においては、上記したように、未処理銅箔の表面を粗化処理したものであるが、さらに優れたピール強度およびファインパターン特性を得るために、下記する粗化粒子から形成される突起物を略均等に存在(分布)することが好ましい。突起物の高さは、1.0μm乃至5.0μmのものがよい。該未処理銅箔表面に形成される突起物の高さが、1.0μm以下では、高さが低いためピール強度を上げる効果が得られず、5.0μm以上では突起物の分布が均一にならず、表面処理箔の表面粗さRzが範囲毎にバラツキが大きくなるため、安定性のあるピール強度が保てず、また高周波特性が低下するうえに、ファインパターン化に不向きとなるためである。尚、ここでいう高さとは、未処理銅箔の表面と突起物の頂点との距離をいう。   In the present invention, as described above, the surface of the untreated copper foil is roughened, but in order to obtain further excellent peel strength and fine pattern characteristics, the protrusions formed from the roughened particles described below It is preferable that the objects exist (distribute) substantially evenly. The height of the protrusion is preferably 1.0 μm to 5.0 μm. If the height of the protrusions formed on the surface of the untreated copper foil is 1.0 μm or less, the height is low, so the effect of increasing the peel strength cannot be obtained. If the height is 5.0 μm or more, the distribution of the protrusions is uniform. In addition, since the surface roughness Rz of the surface-treated foil varies widely from range to range, a stable peel strength cannot be maintained, high-frequency characteristics are deteriorated, and it is not suitable for fine patterning. is there. Here, the height refers to the distance between the surface of the untreated copper foil and the top of the protrusion.

また、突起物の個数は、数が少なければ、ピール強度が出せず、また個数が多いと銅箔表面と突起物との密着性が弱く数が多くてもその効果は逆に減少する。本発明においては、上記したように、未処理銅箔の表面を粗化処理し、その表面における均一なピール強度を得るために粗化粒子から形成される突起物は、100μm×100μmの面内に200〜25000個存在することが望ましい。突起物の個数が200個より少ないと突起物間の隙間が広くなりファインパターンをきることができず、25000個以上であると突起物と突起物との間隔が狭まりピール強度が低下してしまうことから好ましくない。
また、本発明において、突起物の個数は、観察断面25μm内に6個〜35個存在することが好適であり、特に10個〜20個が最適である。
If the number of protrusions is small, peel strength cannot be obtained. If the number is large, the adhesion between the copper foil surface and the protrusions is weak and the effect is reduced even if the number is large. In the present invention, as described above, the surface of the untreated copper foil is roughened, and the protrusions formed from the roughened particles in order to obtain a uniform peel strength on the surface have an in-plane of 100 μm × 100 μm. It is desirable that 200 to 25,000 are present in each. If the number of protrusions is less than 200, the gap between the protrusions is widened and a fine pattern cannot be formed, and if it is 25000 or more, the distance between the protrusions and the protrusions is narrowed and the peel strength is reduced. That is not preferable.
In the present invention, the number of protrusions is preferably 6 to 35 in an observation cross section of 25 μm, and particularly 10 to 20 is optimal.

ここで、本発明でいう観察断面内に存在する突起物の概念について説明する。1つの突起物と該突起物と隣接する突起物の間に形成される溝部の底と突起物の頂点との距離(以下、溝深さということがある。)が0.3μm未満の場合、このような突起物は隣接する突起物と合わせて1つの突起物として把握し、また、溝深さが0.3μm以上の場合、このような突起物は隣接する突起物も独立した突起物として2つの突起物として把握する。この溝深さは、前記した突起物の高さが未処理銅箔の表面と突起物の頂点との距離をいうのに対し、表面粗化処理を行った後の溝部の底と突起物の頂点との距離をいう点で異なる。   Here, the concept of protrusions existing in the observation cross section referred to in the present invention will be described. When the distance between the bottom of the groove formed between one protrusion and the protrusion adjacent to the protrusion and the apex of the protrusion (hereinafter sometimes referred to as groove depth) is less than 0.3 μm, Such a protrusion is grasped as one protrusion together with the adjacent protrusion, and when the groove depth is 0.3 μm or more, such a protrusion is also considered as an independent protrusion. Grasp as two protrusions. This groove depth refers to the distance between the surface of the untreated copper foil and the top of the protrusion, while the height of the protrusion described above is the distance between the bottom of the groove and the protrusion after the surface roughening treatment. It differs in the point of the distance from the vertex.

突起物の数を数える方法としては、表面処理銅箔を樹脂に埋め、研磨を行った後断面SEM観察を行い観察写真にて、25μmの長さで上記定義する突起物の数が何個あるかを数える方法が挙げられる。本発明は、この方法を用いて測定した数を実施例の表に記載した。また、断面観察の概略図を図3、図4、図5に記載した。
さらに、高さが、1.0μm〜5.0μmである突起物の個数が、25μm内に6個〜35個存在し、該突起物間に深さが0.3μm以上の溝を存在させて略均等に分布させることは、突起物が25μm以内で部分的に集中することを避けることができ、銅箔の幅方向・長手方向でピール強度の安定化が図れる。
As a method of counting the number of protrusions, a method of counting the number of protrusions as defined above with a length of 25 μm by observing a cross-sectional SEM after embedding a surface-treated copper foil in a resin, polishing, and performing observation Is mentioned. The present invention lists the numbers measured using this method in the table of examples. Moreover, the schematic of cross-sectional observation was described in FIG.3, FIG.4, FIG.5.
Further, the number of protrusions having a height of 1.0 μm to 5.0 μm is 6 to 35 within 25 μm, and a groove having a depth of 0.3 μm or more is present between the protrusions. Distributing substantially evenly prevents the protrusions from being partially concentrated within 25 μm, and can stabilize the peel strength in the width direction and the longitudinal direction of the copper foil.

本発明で記載している「略均等に分布している」とは、「突起物の頂点と銅箔表面の間の高さが1.0μm〜5.0μmである突起物の個数をn(個)とし、突起物を断面観察したときの観察幅を25(μm)とした時に、25/n(μm)の幅の領域に、少なくとも該突起物の1つの一部分がその領域に存在している」ことをいう。   In the present invention, “substantially evenly distributed” means “the number of protrusions whose height between the top of the protrusion and the copper foil surface is 1.0 μm to 5.0 μm is n ( When the observation width when the cross section of the protrusion is observed is 25 (μm), at least a part of the protrusion is present in the area of 25 / n (μm). I mean. "

また、ピール強度の安定化を図るためには、形成する突起物の幅に均一性があることが望ましく、各突起物の最大幅が、0.01μm以上であり、25μmの範囲内に存在する突起物の個数で25μmを割った長さの2倍以下の幅であることが好ましい。尚、ここでいう最大幅とは、前記した断面のSEM観察において、突起物の高さ方向と垂直な方向の距離の最大値をいう。
また突起物間の溝深さにおいては、突起物間の平均溝深さが、0.5μm以上であると更に好ましい。
In addition, in order to stabilize the peel strength, it is desirable that the width of the projections to be formed is uniform, and the maximum width of each projection is 0.01 μm or more and exists within a range of 25 μm. The width is preferably not more than twice the length obtained by dividing 25 μm by the number of protrusions. In addition, the maximum width here means the maximum value of the distance in the direction perpendicular to the height direction of the protrusion in the SEM observation of the cross section.
Further, regarding the groove depth between the protrusions, the average groove depth between the protrusions is more preferably 0.5 μm or more.

突起物間の平均溝深さは、溝の深さが0.3μm以上の突起物n個に対して、各突起物の両サイドの溝深さを測定し、その時の値を A1(μm) B1(μm)・・・・・・・An(μm) Bn(μm)とした時、次式により求めた値である。
((A1+B1)+・・・・・・+(An+Bn))/2/nで求める。
For the average groove depth between protrusions, the groove depth on both sides of each protrusion is measured for n protrusions with a groove depth of 0.3 μm or more, and the value at that time is A1 (μm) B1 (μm)... An (μm) When Bn (μm), it is a value obtained by the following equation.
((A1 + B1) +... + (An + Bn)) / 2 / n.

図3は本発明の実施形態に適合した表面処理銅箔の観察断面の図であり、突起の数は25μm以内に6個以上存在し、その高さは1〜5μmの範囲に入っており、溝深さは0.3μm以上であり、突起物の最大幅は0.01μm以上、25μmの範囲内に存在する突起物の個数で25μmを割った長さの2倍以下の幅となっている。
図4は、突起の最大幅が0.01μm以上、25μmの範囲内に存在する突起物の個数で25μmを割った長さの2倍以下の幅以上の幅の突起物が一部存在する断面を示し、図5は、突起物が均等に分布していない断面を示している。
FIG. 3 is a view of an observation cross section of a surface-treated copper foil adapted to an embodiment of the present invention, the number of protrusions is 6 or more within 25 μm, and the height is in the range of 1 to 5 μm. The depth of the groove is 0.3 μm or more, and the maximum width of the protrusion is 0.01 μm or more, and the width is less than twice the length obtained by dividing 25 μm by the number of protrusions existing in the range of 25 μm. .
FIG. 4 is a cross-section in which some protrusions having a width not less than twice the length obtained by dividing 25 μm by the number of protrusions having a maximum width of 0.01 μm or more and 25 μm. FIG. 5 shows a cross section in which the protrusions are not evenly distributed.

このように、図3に示す断面形状の表面処理銅箔は液晶ポリマーフィルムとの密着性が良く、ファインパターンの回路構成が可能である。図4に示す断面形状の表面処理銅箔は幅の広い突起物が一部に存在し、部分的に液晶ポリマーフィルムとの密着性がよくない部分が存在するためハイパターン回路では支障が出ることもあるが、他の一般的な用途には支障とならない程度である。図5に示すように、突起物が均等に分布されていない場合には液晶ポリマーフィルムとの密着性に支障が生じ、ファインパターンの回路構成ができない恐れが生じる。   As described above, the surface-treated copper foil having the cross-sectional shape shown in FIG. 3 has good adhesion to the liquid crystal polymer film, and a fine pattern circuit configuration is possible. The surface-treated copper foil having a cross-sectional shape shown in FIG. 4 has a wide protrusion in part, and a portion having poor adhesion to the liquid crystal polymer film is present in part, which causes trouble in a high pattern circuit. However, it does not interfere with other general purposes. As shown in FIG. 5, when the protrusions are not evenly distributed, the adhesion with the liquid crystal polymer film is hindered, and there is a possibility that the circuit configuration of the fine pattern cannot be made.

本発明の表面処理箔の突起物を形成する粗化粒子は、Cu又はCuとMoの合金粒子、あるいはCuとNi、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含んでいるものである。
Cu粒子又はCuとMoの合金粒子で所望の突起物は得られるが、Cu粒子又はCuとMoの合金粒子にNi、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含んでいる2種類以上の合金粗化粒子で形成された突起物は更に均一性のある突起物を形成できるためより効果的である。これらの突起物を形成する粗化粒子は、化学結合を樹脂と行うため、ピール強度を増大させると考えられる。樹脂種にもよるが、ピール強度を化学結合で増大させる粒子としてCu−Mo合金、Cu−Ni合金、Cu−Co合金、Cu−Fe合金、Cu−Cr合金、Cu−Mo−Ni合金、Cu−Mo−Cr合金、Cu−Mo−Co合金、Cu−Mo−Fe合金などが挙げることができる。
The roughening particles forming the protrusions of the surface-treated foil of the present invention are at least one element selected from the group consisting of Cu, Cu and Mo alloy particles, or Cu and Ni, Co, Fe, Cr, V and W. Is included.
The desired projections can be obtained with Cu particles or alloy particles of Cu and Mo, but at least one element selected from the group of Ni, Co, Fe, Cr, V and W can be used as the Cu particles or alloy particles of Cu and Mo. Protrusions formed of two or more kinds of alloyed coarse particles containing, are more effective because they can form more uniform protrusions. It is considered that the roughened particles forming these protrusions increase the peel strength because chemical bonding is performed with the resin. Depending on the resin type, Cu-Mo alloy, Cu-Ni alloy, Cu-Co alloy, Cu-Fe alloy, Cu-Cr alloy, Cu-Mo-Ni alloy, Cu as particles that increase the peel strength by chemical bonding -Mo-Cr alloy, Cu-Mo-Co alloy, Cu-Mo-Fe alloy, etc. can be mentioned.

前記突起物を形成する合金粒子に含まれるMo、Ni、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素は、Cuの存在量に対し0.01ppm〜20%を占めることが好ましい。存在量が20%を越える合金組成では、後工程で回路パターンをエッチングする際に、溶解しにくくなるためであり、更に、均一な突起物を得るために、各種電解液により、電流密度、液温、処理時間を最適にすることが望ましい。   At least one element selected from the group consisting of Mo, Ni, Co, Fe, Cr, V and W contained in the alloy particles forming the protrusions occupies 0.01 ppm to 20% with respect to the amount of Cu present. It is preferable. This is because an alloy composition with an abundance exceeding 20% is difficult to dissolve when a circuit pattern is etched in a subsequent process. Furthermore, in order to obtain uniform protrusions, the current density, liquid It is desirable to optimize the temperature and processing time.

また、突起物を設けた表面に、粉落ち性・耐塩酸性・耐熱性・導電性を向上させることを目的にNi、Ni合金、Zn、Zn合金、Agの群から選ばれる少なくとも1種の金属メッキ層を設けると良い。更に、突起物を設けていない方の表面にも耐塩酸性・耐熱性・導電性を向上させることを目的にNi、Ni合金、Zn、Zn合金、Agの少なくとも1種の金属メッキ層を付着させると良い。これらの目的を果たすためには、付着金属量として0.05mg/dm以上、10mg/dm以下であることが望ましい。
特に液晶ポリマー樹脂等におけるNi金属またはNi合金は、ピール強度を高める効果がある。
In addition, at least one metal selected from the group consisting of Ni, Ni alloy, Zn, Zn alloy, and Ag is provided on the surface provided with the protrusions for the purpose of improving powder fall resistance, hydrochloric acid resistance, heat resistance, and conductivity. A plating layer may be provided. Furthermore, at least one metal plating layer of Ni, Ni alloy, Zn, Zn alloy, or Ag is attached to the surface on which the protrusion is not provided for the purpose of improving hydrochloric acid resistance, heat resistance, and conductivity. And good. In order to achieve these purposes, the amount of deposited metal is preferably 0.05 mg / dm 2 or more and 10 mg / dm 2 or less.
In particular, Ni metal or Ni alloy in liquid crystal polymer resin or the like has an effect of increasing peel strength.

上記構成からなる粗化面の箔上にCrおよび/またはクロメート被膜を形成させ防錆処理を行ない、又は、必要に応じシランカップリング処理または防錆処理+シランカップリングを施す。   A Cr and / or chromate film is formed on the roughened surface foil having the above-described structure, and a rust prevention treatment is performed, or a silane coupling treatment or a rust prevention treatment + silane coupling is performed as necessary.

絶縁基板としては、エポキシ樹脂・ポリイミドフィルム・液晶ポリマーを50%以上含む組成物からなるフィルムなどが用いられる。液晶ポリマーの組成物には、線膨張係数制御、接着性改善、物性改善等の目的で、無機フィラーやポリエーテルサルホン、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、熱可塑ポリイミド等の熱可塑性樹脂を混合することもできる。しかし、液晶ポリマーの含有量が50%を下回ると、低吸水性、耐熱性、誘電特性などの面で液晶ポリマーの特性が失われてしまい好ましくない。   As the insulating substrate, a film made of a composition containing 50% or more of an epoxy resin, a polyimide film, or a liquid crystal polymer is used. The liquid crystal polymer composition has a thermal expansion such as inorganic filler, polyethersulfone, polyamideimide, polyetherimide, polyetheretherketone, thermoplastic polyimide, etc. for the purpose of controlling linear expansion coefficient, improving adhesion, improving physical properties, etc. A plastic resin can also be mixed. However, when the content of the liquid crystal polymer is less than 50%, the properties of the liquid crystal polymer are lost in terms of low water absorption, heat resistance, dielectric properties and the like, which is not preferable.

ここで用いられる液晶ポリマーを50%以上含む組成物(以下単に液晶ポリマーという)は、加熱溶融状態で液晶性を示す熱可塑性液晶ポリマーを指し、溶液中で液晶性を示すが、加熱溶融をおこさない芳香族ポリアミドのようなライオトロピック型の液晶ポリマーは用いない。この様な液晶ポリマーの代表例としては、モノマーとして芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール等を単独、もしくは共重合した全芳香族ポリエステルが挙げられる。   A composition containing 50% or more of the liquid crystal polymer used here (hereinafter simply referred to as a liquid crystal polymer) refers to a thermoplastic liquid crystal polymer that exhibits liquid crystallinity in a heated and melted state, exhibits liquid crystallinity in a solution, but undergoes heat melting. Lyotropic liquid crystal polymers such as non-aromatic polyamides are not used. A typical example of such a liquid crystal polymer is a wholly aromatic polyester obtained by homopolymerizing or copolymerizing aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol or the like as a monomer.

この絶縁基板としての液晶ポリマーフィルムと表面粗化銅箔を貼り合わせる方法としては、熱プレス方式、連続ロールラミネート方式、連続ベルトプレス方式などが用いられ、接着剤等を介さずに熱圧着する。   As a method for laminating the liquid crystal polymer film as the insulating substrate and the surface-roughened copper foil, a hot press method, a continuous roll laminating method, a continuous belt press method, or the like is used, and thermocompression bonding is performed without using an adhesive or the like.

以下に、本発明を実施形態に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。
本実施例においては、銅箔、粗化処理用めっき液、絶縁基板用フィルムとして、以下に記載したものを用いた。
Hereinafter, the present invention will be described in more detail based on embodiments, but the present invention is not limited thereto.
In the present Example, what was described below was used as copper foil, the plating solution for roughening processes, and the film for insulating substrates.

(イ)銅箔:
(i)原箔1
厚さ:12μmで、マット面粗度:Rz=1.26μm、光沢面粗度:Rz=1.82μmの未処理電解銅箔、及び未処理圧延銅箔を用意した。
(ii)原箔2
厚さ:12μmで、マット面粗度:Rz=1.52μm、光沢面粗度:Rz=1.46μmの未処理電解銅箔を用意した。
(iii)原箔3
厚さ:12μmで、マット面粗度:Rz=1.86μm、光沢面粗度:Rz=1.2μmの未処理電解銅箔を用意した。
(I) Copper foil:
(i) Raw foil 1
An untreated electrolytic copper foil and an untreated rolled copper foil having a thickness of 12 μm, a mat surface roughness of Rz = 1.26 μm, and a glossy surface roughness of Rz = 1.82 μm were prepared.
(ii) Raw foil 2
An untreated electrolytic copper foil having a thickness of 12 μm, a mat surface roughness of Rz = 1.52 μm, and a glossy surface roughness of Rz = 1.46 μm was prepared.
(iii) Raw foil 3
An untreated electrolytic copper foil having a thickness of 12 μm, a mat surface roughness: Rz = 1.86 μm, and a gloss surface roughness: Rz = 1.2 μm was prepared.

(ロ)表面粗化処理用めっき液およびめっき条件:
(i)電気めっきA
めっき浴1
硫酸銅(Cu金属として) 5〜10g/dm
硫 酸 30〜120g/dm
モリブデン酸アンモニウム(Mo金属として) 0.1〜5.0g/dm
電流密度 10〜60A/dm
通電時間 1秒〜2分
浴 温 20〜60℃
めっき浴2
硫酸銅(Cu金属として) 20〜70g/dm
硫 酸 30〜120g/dm
電流密度 5〜60A/dm
通電時間 1秒〜2分
浴温 20℃〜65℃
(B) Surface roughening plating solution and plating conditions:
(i) Electroplating A
Plating bath 1
Copper sulfate (as Cu metal) 5-10 g / dm 3
Sulfuric acid 30-120 g / dm 3
Ammonium molybdate (as Mo metal) 0.1-5.0 g / dm 3
Current density 10-60A / dm 2
Energizing time 1 second-2 minutes Bath temperature 20-60 ° C
Plating bath 2
Copper sulfate (as Cu metal) 20-70 g / dm 3
Sulfuric acid 30-120 g / dm 3
Current density 5-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 65 ° C

(ii)電気めっきB
めっき浴1
硫酸銅(Cu金属として) 1〜50g/dm
硫酸ニッケル(Ni金属として) 2〜25g/dm
メタパナジン酸アンモニウム(V金属として) 0.1〜15g/dm
pH 1.0〜4.5
電流密度 1〜60A/dm
通電時間 1秒〜2分
浴 温 20℃〜60℃
めっき浴2
硫酸銅(Cu金属として) 10〜70g/dm
硫 酸 30〜120g/dm
電流密度 5〜60A/dm
通電時間 1秒〜2分
浴 温 20℃〜65℃
(ii) Electroplating B
Plating bath 1
Copper sulfate (as Cu metal) 1-50 g / dm 3
Nickel sulfate (as Ni metal) 2-25g / dm 3
Ammonium metapanadate (as V metal) 0.1-15 g / dm 3
pH 1.0-4.5
Current density 1-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 60 ° C
Plating bath 2
Copper sulfate (as Cu metal) 10-70 g / dm 3
Sulfuric acid 30-120 g / dm 3
Current density 5-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 65 ° C

(iii)電気めっきC
めっき浴1
硫酸銅(Cu金属として) 1〜50g/dm
硫酸コバルト(Co金属として) 1〜50g/dm
モリブデン酸アンモニウム(Mo金属として) 0.1〜10g/dm
pH 0.5〜4.0
電流密度 1〜60A/dm
通電時間 1秒〜2分
浴 温 20℃〜60℃
めっき浴2
硫酸銅(Cu金属として) 10〜70g/dm
硫 酸 30〜120g/dm
電流密度 5〜60A/dm
通電時間 1秒〜2分
浴 温 20℃〜65℃
(iii) Electroplating C
Plating bath 1
Copper sulfate (as Cu metal) 1-50 g / dm 3
Cobalt sulfate (as Co metal) 1-50 g / dm 3
Ammonium molybdate (as Mo metal) 0.1-10 g / dm 3
pH 0.5-4.0
Current density 1-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 60 ° C
Plating bath 2
Copper sulfate (as Cu metal) 10-70 g / dm 3
Sulfuric acid 30-120 g / dm 3
Current density 5-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 65 ° C

(iv)電気めっきA’ B’(比較例)
めっき浴3
硫酸銅(Cu金属として) 20〜70g/dm
硫 酸 30〜120g/dm
電流密度 3A/dm
通電時間 2分以上(表面粗さにおいて時間を変更)
浴 温 15℃
(iv) Electroplating A'B '(comparative example)
Plating bath 3
Copper sulfate (as Cu metal) 20-70 g / dm 3
Sulfuric acid 30-120 g / dm 3
Current density 3A / dm 2
Energizing time 2 minutes or more (change time in surface roughness)
Bath temperature 15 ℃

(ハ)絶縁基板用フィルム:
(i)液晶ポリマーフィルム(絶縁基板)1(以下「フィルム1」とする)
ジャパンゴアテックス(株)製のI型液晶ポリマーフィルム、BIAC BA050F−NTを用いた。
(ii)液晶ポリマーフィルム(絶縁基板)2(以下「フィルム2」とする)
ジャパンゴアテックス(株)製のII型液晶ポリマーフィルム、BIAC BC050F−NTを用いた。
(C) Film for insulating substrate:
(i) Liquid crystal polymer film (insulating substrate) 1 (hereinafter referred to as “Film 1”)
BIAC BA050F-NT, an I-type liquid crystal polymer film manufactured by Japan Gore-Tex Co., Ltd., was used.
(ii) Liquid crystal polymer film (insulating substrate) 2 (hereinafter referred to as “film 2”)
A type II liquid crystal polymer film, BIAC BC050F-NT, manufactured by Japan Gore-Tex Co., Ltd. was used.

銅箔として上記の原箔1〜原箔3を用いて、図2に示す表面処理装置において、上記の電気めっき液A〜Cに示すめっき液組成・浴温度・電流条件範囲のいずれかのものを用いて、めっき浴1→めっき浴2の順番で少なくとも1回のめっきを行った。更に、これらの粗化処理面に、Niめっき(0.3mg/dm)、亜鉛めっき(0.1mg/dm)を施し、その上にクロメート処理を施した。なお、電気めっき液A’,B’の場合には、めっき浴2の代わりにめっき浴3の液組成および条件を用い、比較例の箔を作製した。
このようにして得られた表面粗化処理した銅箔の表面の粗さ等の測定結果を、表面処理の選択条件とともに表1に示す。
In the surface treatment apparatus shown in FIG. 2 using the above-mentioned original foil 1 to original foil 3 as the copper foil, any one of the plating solution composition, bath temperature, and current condition ranges shown in the above electroplating solutions A to C The plating was performed at least once in the order of plating bath 1 → plating bath 2. Furthermore, Ni plating (0.3 mg / dm 2 ) and zinc plating (0.1 mg / dm 2 ) were applied to these roughened surfaces, and chromate treatment was performed thereon. In the case of the electroplating solutions A ′ and B ′, a comparative example foil was prepared using the solution composition and conditions of the plating bath 3 instead of the plating bath 2.
Table 1 shows the measurement results such as the surface roughness of the surface-roughened copper foil thus obtained, together with the surface treatment selection conditions.

次に、このようにして得た表面処理銅箔に、以下のようにして液晶ポリマーフィルム(絶縁基板)のラミネートを行なった。
即ち、上記のようにして得た表面処理銅箔と前記フィルム1又はフィルム2のいずれかとを積層し、多段式真空プレス機(北川製作所製ホットアンドコールドプレスVH3−1377)を用いて、前記フィルム1の場合には335℃で4MPaの条件で、前記フィルム2の場合には310℃で4MPaの条件で、5分間保持した後冷却してラミネート処理を行い基板用複合材とした。室温からの昇温は、7℃/分の速度で行った。
Next, the surface-treated copper foil thus obtained was laminated with a liquid crystal polymer film (insulating substrate) as follows.
That is, the surface-treated copper foil obtained as described above and either the film 1 or the film 2 are laminated, and the film is obtained using a multistage vacuum press (Hot and Cold Press VH3-1377 manufactured by Kitagawa Seisakusho). In the case of 1, the film was held at 335 ° C. and 4 MPa, and in the case of the film 2 was held at 310 ° C. and 4 MPa for 5 minutes, then cooled and laminated to obtain a composite material for a substrate. The temperature was raised from room temperature at a rate of 7 ° C./min.

また、以下のように、液晶ポリマーフィルムの代わりに、ポリイミドフィルムまたはエポキシ樹脂シートを用いて、表面処理銅箔のラミネートを行い、基板用複合材を得た。
即ち、上記のようにして作成した表面処理銅箔を、縦250mm、横250mmに切断した後、極薄銅箔表面(粗化面の側の面)上に厚さ50μmのポリイミドシート(宇部興産製UPILEX−VT)を置き、全体を2枚の平滑なステンレス鋼板で挟み、20torrの真空プレスにより、温度330℃、圧力2kg/cmで10分間熱圧着し、その後、温度330℃、50kg/cmで5分間熱圧着して作成した。
Further, as described below, a surface-treated copper foil was laminated using a polyimide film or an epoxy resin sheet instead of the liquid crystal polymer film to obtain a composite material for a substrate.
That is, the surface-treated copper foil prepared as described above was cut into a length of 250 mm and a width of 250 mm, and then a polyimide sheet (Ube Industries) having a thickness of 50 μm on the surface of the ultrathin copper foil (the surface on the roughened surface side). (UPILEX-VT) was placed, the whole was sandwiched between two smooth stainless steel plates, and thermocompression bonded at a temperature of 330 ° C. and a pressure of 2 kg / cm 2 for 10 minutes by a vacuum press of 20 torr. It was created by thermocompression bonding at cm 2 for 5 minutes.

エポキシ樹脂シートの場合は、上記のようにして作成した表面処理銅箔を、縦250mm、横250mmに切断したのち、その粗化面の側の面を、熱圧着後に厚さ1mmとなる枚数のガラス繊維エポキシプレプリグシート(FR−4)の上におき、全体を2枚の平滑なステンレス鋼板で挟み、温度170℃、圧力50kg/cmで60分間熱圧着し、キャリア箔付きのFR−4キャリアピール用片面銅張積層板を作成した。 In the case of an epoxy resin sheet, the surface-treated copper foil prepared as described above is cut into a length of 250 mm and a width of 250 mm, and then the surface on the roughened surface side is a sheet having a thickness of 1 mm after thermocompression bonding. It is placed on a glass fiber epoxy prepreg sheet (FR-4), sandwiched between two smooth stainless steel plates, thermocompression bonded at a temperature of 170 ° C. and a pressure of 50 kg / cm 2 for 60 minutes, and FR- with a carrier foil. A single-sided copper-clad laminate for 4-carrier peel was prepared.

この様にして得られた、表面処理箔を用いた液晶ポリマーフィルム、ポリイミドフィルムまたはエポキシ樹脂シートとの基板複合材(銅張積層板)の、ピール強度を測定した。ピール強度の測定は、JIS C6471に準じ、180度方向に引き剥がして行った。   The peel strength of the substrate composite material (copper-clad laminate) with the liquid crystal polymer film, polyimide film or epoxy resin sheet using the surface-treated foil thus obtained was measured. The peel strength was measured according to JIS C6471 by peeling in the 180 degree direction.

また、作成した基板複合材のファインパターン特性を以下の方法によって評価した。
即ち、作成した銅箔をFR4樹脂に貼り付け、図6に断面概略図を示すように銅箔にライン幅:L、スペース幅:Sにてレジストした銅箔を、塩化鉄浴にてエッチングし、ライン幅Lのトップの幅がレジスト幅と同じになるエッチング時間を決定し、各ライン幅L及び各スペース幅S(基板1枚に形成するラインを10本とする)でレジストした基板を各n=10作成し、塩化鉄浴で上記決定した時間、エッチングを行い、各基板において、ライン間にブリッジが発生していないこと、または根残りがないこと、またはラインのトップの幅がレジストと同じになっていることを観察し、n=10作成した各基板にそれらが観察されなかったものの中で最小のLとSの値を求めた。
以上の各実施例、各比較例の条件で行なったピール強度およびファインパターン特性評価の結果を表1に示す。
Further, the fine pattern characteristics of the prepared substrate composite were evaluated by the following methods.
That is, the prepared copper foil was attached to FR4 resin, and the copper foil resisted with line width: L and space width: S on the copper foil was etched with an iron chloride bath as shown in the schematic sectional view of FIG. The etching time when the top width of the line width L is the same as the resist width is determined, and each of the substrates resisted with each line width L and each space width S (10 lines formed on one substrate) is registered. n = 10 and etching is performed in the iron chloride bath for the above-determined time, and in each substrate, there is no bridge between the lines, or there is no root residue, or the top width of the line is equal to the resist. Observing that they were the same, the minimum L and S values were obtained among those substrates in which n = 10 were not observed.
Table 1 shows the results of peel strength and fine pattern characteristics evaluation performed under the conditions of the above Examples and Comparative Examples.

Figure 0004833556
Figure 0004833556

Figure 0004833556
Figure 0004833556

表1から明らかなように、実施例における表面処理銅箔と比較例における表面処理銅箔とは、その表面粗さが同等でも粗化粒子から形成される突起物の数及びそれに依存する明度によってピール強度が明らかに相違し、実施例の表面処理銅箔の方が向上していることがわかる。比較例7では、粗さが大きい分ピール強度は上がっているが、ファインパターンが切れない欠陥がでてきている。   As is clear from Table 1, the surface-treated copper foil in the examples and the surface-treated copper foil in the comparative example have a peel strength depending on the number of protrusions formed from the roughened particles and the lightness depending on the number even though the surface roughness is equal. Is clearly different, and it can be seen that the surface-treated copper foil of the example is improved. In Comparative Example 7, the peel strength increases as the roughness increases, but there is a defect that the fine pattern is not cut.

本発明は、粗化粒子で形成されるある特定の形状を示す突起物を銅箔表面に形成させた表面処理銅箔であり、該表面処理銅箔に絶縁基板としてエポキシ樹脂・ポリイミドフィルム・液晶ポリマーを用いることで良好なピール強度を有し、耐熱性に優れ、ファインな配線パターンを作成することができ、かつ高周波特性に優れた基板用複合材及びこれを用いた回路基板を提供することができ、種々の電子回路部品産業の分野での利用が可能である。   The present invention is a surface-treated copper foil in which protrusions having a specific shape formed of roughened particles are formed on the surface of the copper foil, and an epoxy resin, polyimide film, liquid crystal as an insulating substrate on the surface-treated copper foil To provide a composite material for a substrate having good peel strength by using a polymer, excellent in heat resistance, capable of producing a fine wiring pattern, and excellent in high-frequency characteristics, and a circuit board using the same. And can be used in various fields of the electronic circuit component industry.

電解製箔装置の構造を示す断面図である。It is sectional drawing which shows the structure of an electrolytic foil manufacturing apparatus. 表面処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of a surface treatment apparatus. 本発明の表面処理銅箔の一実施形態の断面観察概略図である。It is a section observation schematic diagram of one embodiment of the surface treatment copper foil of the present invention. 本発明の表面処理銅箔の他の実施形態の断面観察概略図である。It is the cross-sectional observation schematic of other embodiment of the surface treatment copper foil of this invention. 表面処理箔において、突起物が均等に分布していない状態を示す断面観察概略図である。In surface treatment foil, it is a section observation schematic diagram showing the state where a projection is not distributed uniformly. エッチング後の断面を示す説明図である。It is explanatory drawing which shows the cross section after an etching.

符号の説明Explanation of symbols

1 電解製箔装置のアノード
2 電解製箔装置のカソード
3 電解製箔装置の電解液
4 未処理銅箔
5 表面処理装置の電解液
6 表面処理装置の電解液
7 表面処理装置のアノード
8 電解銅箔(表面処理銅箔)
1 Electrolytic Foil Device Anode 2 Electrolytic Foil Device Cathode 3 Electrolytic Foil Device Electrolyte 4 Untreated Copper Foil
5 Electrolytic solution 6 of surface treatment device Electrolyte solution 7 of surface treatment device Anode 8 of surface treatment device Electrolytic copper foil (surface treatment copper foil)

Claims (9)

表面処理銅箔の粗化処理前の銅箔が粒状の結晶からなる電解銅箔であり、少なくとも銅箔の片面に粗化粒子を付着して粗化面とした銅箔であって、その表面粗さRz:1.5〜4.0μmであり、明度値:30以下である粗化処理面であり、少なくとも未処理銅箔の片面に粗化を形成させる表面処理において付着させる銅または銅合金の量が2.5mg/dm以上400mg/dm以下であり、前記粗化粒子から形成された突起物がその高さが1〜5μmであり、該突起物が100μm×100μmの面積に200〜25000個分布しており、更に、該突起物が観察断面25μmの範囲に6〜35個の個数で略均等に分布しており、かつ、各突起物の最大幅が、0.01μm以上で、25μm範囲に存在する突起物の個数で25μmを割った長さの2倍以下であることを特徴とする表面処理銅箔。 The copper foil before the roughening treatment of the surface-treated copper foil is an electrolytic copper foil made of granular crystals, and is a copper foil having a roughened surface by attaching roughened particles to at least one surface of the copper foil, and its surface Roughness Rz: 1.5 to 4.0 μm, lightness value: 30 or less, roughened surface, copper or copper alloy to be adhered in a surface treatment for forming a roughened surface on at least one surface of the untreated copper foil the amount is at 2.5 mg / dm 2 or more 400 mg / dm 2 or less of, the projections formed from roughening particles whose height is 1 to 5 [mu] m, the protrusion was within an area of 100 [mu] m × 100 [mu] m 200 Are distributed in a range of the observation cross section of 25 μm, and the number of the protrusions is approximately evenly distributed in the number of 6 to 35 , and the maximum width of each protrusion is 0.01 μm or more. Divide 25μm by the number of protrusions in the 25μm range Surface treated copper foil, characterized in that it is 2 times or less the length of the. 前記突起物間の平均溝深さが0.5μm以上であることを特徴とする請求項1に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1, wherein an average groove depth between the protrusions is 0.5 μm or more. 前記表面処理銅箔に使用する未処理銅箔の少なくとも表面処理を行う面の粗さRzが2.0μm以下であることを特徴とする請求項1または2に記載の表面処理銅箔。 3. The surface-treated copper foil according to claim 1, wherein the surface-treated copper foil used for the surface-treated copper foil has a surface roughness Rz of 2.0 μm or less. 前記未処理銅箔の粗化処理を施す方の表面が、表面粗さRzが2.0μm以下のマット面であることを特徴とする請求項3に記載の表面処理銅箔 The surface-treated copper foil according to claim 3 , wherein the surface of the untreated copper foil subjected to the roughening treatment is a matte surface having a surface roughness Rz of 2.0 µm or less. 前記表面処理銅箔の突起物は、Cuからなる粒子若しくはCuとMoの合金またはCuとNi、Co、Fe、Cr、V、Wの郡から選ばれる少なくとも1種の元素からなる合金粒子によって形成されていることを特徴とする請求項1乃至4のいずれかに記載の表面処理銅箔。 The protrusions of the surface-treated copper foil are formed of particles made of Cu or an alloy of Cu and Mo or alloy particles made of Cu and at least one element selected from the group of Ni, Co, Fe, Cr, V, and W. The surface-treated copper foil according to any one of claims 1 to 4 , wherein the surface-treated copper foil is formed. 前記表面処理銅箔の少なくとも粗化粒子で形成した突起物の面に、NiまたはNi合金からなる皮膜を形成したことを特徴とする請求項1乃至5のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 5 , wherein a film made of Ni or a Ni alloy is formed on a surface of a projection formed of at least roughened particles of the surface-treated copper foil. 前記表面処理銅箔の少なくとも粗化粒子で形成した突起物の面に、亜鉛層若しくは亜鉛合金層および/またはCr金属層またはクロメート層からなる防錆層を設けたことを特徴とする請求項1乃至6のいずれかに記載の表面処理銅箔。 Claim 1, wherein said the surface of the projections formed at least roughening particles of surface treated copper foil, provided with a rust-preventive layer composed of a zinc layer or zinc alloy layer and / or Cr metal layer or chromate layer The surface-treated copper foil in any one of thru | or 6 . 前記表面処理銅箔は、少なくとも粗化粒子で形成された突起物の面および/または防錆層の上にシランカップリング層を形成したことを特徴とする請求項1乃至7のいずれかに記載の表面処理銅箔。 8. The surface-treated copper foil according to claim 1 , wherein a silane coupling layer is formed on at least the surface of the projection formed of roughened particles and / or the rust preventive layer. Surface treated copper foil. 回路基板を、請求項1乃至8のいずれかに記載の表面処理銅箔を用いて作成したことを特徴とする回路基板。
A circuit board produced by using the surface-treated copper foil according to any one of claims 1 to 8 .
JP2005012440A 2004-02-06 2005-01-20 Surface treated copper foil Active JP4833556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012440A JP4833556B2 (en) 2004-02-06 2005-01-20 Surface treated copper foil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004031164 2004-02-06
JP2004031164 2004-02-06
JP2005012440A JP4833556B2 (en) 2004-02-06 2005-01-20 Surface treated copper foil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009241107A Division JP5367529B2 (en) 2004-02-06 2009-10-20 Surface-treated copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005248323A JP2005248323A (en) 2005-09-15
JP4833556B2 true JP4833556B2 (en) 2011-12-07

Family

ID=35029080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012440A Active JP4833556B2 (en) 2004-02-06 2005-01-20 Surface treated copper foil

Country Status (1)

Country Link
JP (1) JP4833556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673646B1 (en) 2016-08-19 2017-06-06 Chang Chun Petrochemical Co., Ltd. Surface-treated electrolytic copper foil and method for wireless charging of flexible printed circuit board

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200535259A (en) * 2004-02-06 2005-11-01 Furukawa Circuit Foil Treated copper foil and circuit board
JP2006103189A (en) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk Surface-treated copper foil and circuit board
JP4833692B2 (en) * 2006-03-06 2011-12-07 古河電気工業株式会社 Copper foil, method for producing copper foil, and laminated circuit board using the copper foil
JP2007281361A (en) * 2006-04-11 2007-10-25 Asahi Kasei Corp Polyimide printed circuit board and polyimide printed wiring board
JP4890546B2 (en) * 2006-06-12 2012-03-07 Jx日鉱日石金属株式会社 Rolled copper or copper alloy foil having a roughened surface and a roughening method for rolled copper or copper alloy foil
TWI402009B (en) * 2007-12-10 2013-07-11 Furukawa Electric Co Ltd Surface treatment of copper foil and circuit substrate
KR100974373B1 (en) * 2008-02-28 2010-08-05 엘에스엠트론 주식회사 Surface treatment method of copper foil for printed circuit, copper foil and electroplater thereof
JP5186266B2 (en) * 2008-03-31 2013-04-17 新日鉄住金化学株式会社 Multilayer wiring circuit board and manufacturing method thereof
JP2010180454A (en) * 2009-02-05 2010-08-19 Hitachi Cable Ltd Surface-treated copper foil, method for manufacturing the same and copper-clad laminate
TWI501865B (en) 2009-07-24 2015-10-01 Mitsubishi Gas Chemical Co Resin composite electrolyzed copper foil, copper clad laminate and print wiring board
JP2011162860A (en) * 2010-02-12 2011-08-25 Furukawa Electric Co Ltd:The Surface-roughened copper foil, method of producing the same and copper-clad laminate plate
JP5563849B2 (en) * 2010-03-02 2014-07-30 福田金属箔粉工業株式会社 Treated copper foil
JP2011216598A (en) * 2010-03-31 2011-10-27 Kuraray Co Ltd High-frequency circuit board
JP5885054B2 (en) * 2010-04-06 2016-03-15 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
KR101740092B1 (en) * 2010-09-27 2017-05-25 제이엑스금속주식회사 Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
JP5406905B2 (en) * 2011-11-16 2014-02-05 ナン ヤ プラスティクス コーポレーション A method for producing a copper foil for a printed circuit board comprising a fine granular surface that has high peel strength and is environmentally friendly.
KR20140085336A (en) * 2012-12-27 2014-07-07 스미또모 가가꾸 가부시끼가이샤 Copper clad laminate
JP6261037B2 (en) * 2014-02-06 2018-01-17 古河電気工業株式会社 Copper foil for high frequency circuit, copper clad laminate and printed wiring board
WO2017026490A1 (en) * 2015-08-12 2017-02-16 古河電気工業株式会社 Copper foil for high-frequency circuit, copper-clad laminate sheet, and printed-wiring board
JPWO2017051897A1 (en) * 2015-09-24 2018-08-30 Jx金属株式会社 Metal foil, metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device and method for manufacturing printed wiring board
KR20170037750A (en) * 2015-09-25 2017-04-05 일진머티리얼즈 주식회사 Surface-treated Copper Foil and Method of manufacturing of the same
KR20170038969A (en) * 2015-09-30 2017-04-10 일진머티리얼즈 주식회사 Surface-treated Copper Foil for PCB having fine-circuit pattern and Method of manufacturing of the same
TWI619852B (en) * 2017-02-24 2018-04-01 南亞塑膠工業股份有限公司 Manufacturing methods of electrolytic copper foil having football-shaped copper particles and circuit board assembly
TWI619851B (en) * 2017-02-24 2018-04-01 南亞塑膠工業股份有限公司 Manufacturing methods of electrolytic copper foil having needle-shaped copper particles and circuit board assembly
JP7055049B2 (en) * 2017-03-31 2022-04-15 Jx金属株式会社 Surface-treated copper foil and laminated boards using it, copper foil with carriers, printed wiring boards, electronic devices, and methods for manufacturing printed wiring boards.
DE112020002796T5 (en) 2019-06-12 2022-03-03 Toyo Kohan Co., Ltd. ROUNDED PLATED SHEET METAL
CN112839426B (en) * 2019-11-25 2024-06-18 蓝胜堃 Structure for reducing signal loss of circuit board conductor
JP7421208B2 (en) * 2019-12-24 2024-01-24 日本電解株式会社 Surface treated copper foil and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673646B1 (en) 2016-08-19 2017-06-06 Chang Chun Petrochemical Co., Ltd. Surface-treated electrolytic copper foil and method for wireless charging of flexible printed circuit board

Also Published As

Publication number Publication date
JP2005248323A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4833556B2 (en) Surface treated copper foil
JP5367529B2 (en) Surface-treated copper foil and method for producing the same
JP2006103189A (en) Surface-treated copper foil and circuit board
WO2013108414A1 (en) Laminate and copper-clad laminate using same
TWI422484B (en) Printed wiring board with copper foil
WO2013108415A1 (en) Surface-treated copper foil for copper-clad laminate and copper-clad laminate using same
JP6722452B2 (en) Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board
JPWO2009081889A1 (en) Copper foil for printed wiring boards
JP4609850B2 (en) Multilayer circuit board
JP4615226B2 (en) Composite material for substrate and circuit board using the same
JP4974186B2 (en) Circuit board
US7976956B2 (en) Laminated circuit board
JP4429539B2 (en) Electrolytic copper foil for fine pattern
US7215235B2 (en) Conductive substrate with resistance layer, resistance board, and resistance circuit board
EP1424407A1 (en) Plating bath for forming thin resistance layer, method of formation of resistance layer, conductive base with resistance layer, and circuit board material with resistance layer
JP2010239095A (en) Copper foil for printed wiring board
JP4391437B2 (en) Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil
JP2006005149A (en) Conductive substrate and circuit board material with resistive layer
JP5373453B2 (en) Copper foil for printed wiring boards
JP2005240132A (en) Electrolytic copper foil, and electrolytic polishing method for shiny face of electrolytic copper foil
US20070048507A1 (en) Laminated circuit board
JP2011009453A (en) Copper foil for printed wiring board
WO2022209990A1 (en) Roughened copper foil, copper-clad laminate and printed wiring board
JP2010047842A (en) Electrolytic copper foil and method for electropolishing glossy surface of electrolytic copper foil
KR20230095677A (en) Surface-treated copper foil with heat resistance, copper clad laminate comprising the same, and printed wiring board comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080918

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R151 Written notification of patent or utility model registration

Ref document number: 4833556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350