JP5885054B2 - A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate. - Google Patents

A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate. Download PDF

Info

Publication number
JP5885054B2
JP5885054B2 JP2010087794A JP2010087794A JP5885054B2 JP 5885054 B2 JP5885054 B2 JP 5885054B2 JP 2010087794 A JP2010087794 A JP 2010087794A JP 2010087794 A JP2010087794 A JP 2010087794A JP 5885054 B2 JP5885054 B2 JP 5885054B2
Authority
JP
Japan
Prior art keywords
copper foil
layer
clad laminate
treated
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010087794A
Other languages
Japanese (ja)
Other versions
JP2011219789A (en
Inventor
真鍋 久徳
久徳 真鍋
岡本 健
健 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44746686&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5885054(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2010087794A priority Critical patent/JP5885054B2/en
Priority to CN201110072633.XA priority patent/CN102215632B/en
Publication of JP2011219789A publication Critical patent/JP2011219789A/en
Application granted granted Critical
Publication of JP5885054B2 publication Critical patent/JP5885054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、銅張積層板用処理銅箔及び該処理銅箔を絶縁性樹脂基材に接着してなる銅張積層板並びに該銅張積層板を用いたプリント配線板に関し、当該銅張積層板は電子機器に使用されるプリント配線板材料として好適なものである。   The present invention relates to a treated copper foil for a copper-clad laminate, a copper-clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper-clad laminate, and the copper-clad laminate The board is suitable as a printed wiring board material used in electronic equipment.

周知のとおり、プリント配線板に使用される圧延銅箔や電解銅箔には、当該銅箔の用途に応じて粗化処理層、耐熱処理層、防錆処理層等々の各種処理層が設けられている(以下、処理層が設けられている銅箔を「処理銅箔」といい、処理層が設けられていない銅箔を「未処理銅箔」という)。
そして、処理銅箔を絶縁性樹脂基材に接着してなる銅張積層板の代表的な用途であるプリント配線板に使用される処理銅箔には、絶縁性樹脂基材に強固に接着して容易に引き剥がれない特性が必要とされており、この引きはがし強さ特性を付与するために最も有効な手段は、未処理銅箔の絶縁性樹脂基材に接着される面に粗化処理層を設ける手段とされている。
As is well known, rolled copper foil and electrolytic copper foil used for printed wiring boards are provided with various treatment layers such as a roughening treatment layer, a heat treatment treatment layer, and a rust prevention treatment layer according to the use of the copper foil. (Hereinafter, a copper foil provided with a treatment layer is referred to as “treated copper foil”, and a copper foil provided with no treatment layer is referred to as “untreated copper foil”).
And the treated copper foil used for the printed wiring board which is a typical use of the copper clad laminate formed by bonding the treated copper foil to the insulating resin substrate is firmly bonded to the insulating resin substrate. Therefore, the most effective means for imparting the peel strength property is roughening the surface of the untreated copper foil to be bonded to the insulating resin substrate. It is a means for providing a layer.

通常、前記粗化処理層は、圧延未処理銅箔又は電解未処理銅箔の絶縁性樹脂基材に接着される面に電気めっき法によって銅又は銅合金の微細粒子(以下「粗化粒子」という)を析出・付着させて粗化粒子の集合体層を形成させる処理(以下「粗化処理」という)を施すことによって設けられていて、該集合体層による機械的投錨効果によって引きはがし強さ特性が得られており、粗化粒子の量(以下「粗化処理量」という)を多くすればするほど該銅箔の表面粗度が高くなって機械的投錨効果も増大し、引きはがし強さが向上する。    Usually, the roughened layer is made of copper or copper alloy fine particles (hereinafter referred to as “roughened particles”) by electroplating on the surface of the rolled untreated copper foil or electrolytic untreated copper foil bonded to the insulating resin substrate. ) Is deposited and adhered to form a coarse particle aggregate layer (hereinafter referred to as “roughening treatment”), and is strongly peeled by the mechanical anchoring effect of the aggregate layer. As the amount of roughened particles (hereinafter referred to as “roughening amount”) is increased, the surface roughness of the copper foil is increased and the mechanical anchoring effect is increased. Strength is improved.

ところが、プリント配線板を製造する際に銅の回路を形成するため処理銅箔をエッチングする工程があり、処理銅箔の粗化処理量が多い場合には、エッチング残渣(粗化粒子の溶け残り)の発生やエッチングファクターが低下する等の不具合が生ずるので、引きはがし強さ特性を向上させるために無闇に粗化処理量を多くして表面粗度を高くすることは出来ず、特に、電子機器の軽薄、短小化に伴いファインピッチ化が進んでいることから、エッチング残渣の発生を可及的に抑制する必要があり、このためには粗化処理量を少なくして当該箔面の表面粗度を低くする事が有効な手段とされている。  However, when manufacturing a printed wiring board, there is a step of etching the treated copper foil to form a copper circuit, and when there is a large amount of roughening treatment of the treated copper foil, etching residue (undissolved residue of roughened particles) ) And the etching factor is reduced, so the surface roughness cannot be increased by increasing the amount of roughening treatment in order to improve the peel strength characteristics. Since fine pitches are progressing as equipment becomes lighter and shorter, it is necessary to suppress the generation of etching residues as much as possible. For this purpose, the surface of the foil surface is reduced by reducing the amount of roughening treatment. Lowering the roughness is an effective means.

すなわち、プリント配線板に使用される粗化処理層が設けられている処理銅箔には、引きはがし強さ特性の面からは粗化処理量を多くして表面粗度を高くする必要があり、エッチング特性の面からは、粗化処理量を少なくして表面粗度を低くする必要があるため、当該両特性を満たすことが困難という難題が内在しているのである。   In other words, it is necessary to increase the surface roughness by increasing the amount of roughening treatment in terms of the peel strength for the treated copper foil provided with the roughened layer used for the printed wiring board. From the standpoint of etching characteristics, it is necessary to reduce the surface roughness by reducing the amount of roughening treatment, so that the difficulty of satisfying both characteristics is inherent.

しかし、プリント配線板製造工程には、エッチング液を用いるエッチング工程を始め、硫酸、塩酸、苛性ソーダを用いる洗浄工程、錫めっき工程、無電解ニッケルめっき工程、無電解金めっき工程等の各種活性処理液を用いる工程が多く存在し、処理銅箔の引きはがし強さが弱い場合には、当該処理銅箔と絶縁性樹脂基材との接着界面から活性処理液がしみ込んで引きはがし強さの低下(劣化)が生じやすく、引きはがし強さが低下すると製造されたプリント配線板、特に、ファインピッチプリント配線板では熱的衝撃や機械的衝撃により回路の剥離・脱落が発生し易くなるので、活性処理液浸漬後にも引きはがし強さが低下せず、しみ込み量の少ない処理銅箔が求められている。    However, the printed wiring board manufacturing process includes an etching process using an etching solution, a cleaning process using sulfuric acid, hydrochloric acid, and caustic soda, a tin plating process, an electroless nickel plating process, and an electroless gold plating process. When the peel strength of the treated copper foil is weak, the active treatment liquid is soaked from the adhesive interface between the treated copper foil and the insulating resin substrate and the peel strength is reduced ( Degradation) is likely to occur, and if the peel strength is reduced, the printed wiring board produced, especially the fine pitch printed wiring board, is susceptible to circuit peeling and dropping due to thermal and mechanical shocks. There is a need for a treated copper foil that does not decrease the peel strength even after immersion in the liquid and has a small amount of penetration.

さらに、電子機器に使用されるプリント配線板は近年多用化される傾向にあり、このためプリント配線板は様々な環境で使用されたり長期に渡り使用される場合が多くなってきている。このため処理銅箔には銅張積層板成型後に吸湿処理後の引きはがし強さ試験や加熱処理後の引きはがし強さ試験等の所謂過酷な条件での加速試験が行われ、これら過酷試験後にも引きはがし強さが低下しない処理銅箔が求められている。   Furthermore, printed wiring boards used in electronic devices tend to be widely used in recent years. For this reason, printed wiring boards are often used in various environments or used for a long time. For this reason, the treated copper foil is subjected to an acceleration test under so-called severe conditions such as a peel strength test after moisture absorption treatment and a peel strength test after heat treatment after molding the copper clad laminate, and after these severe tests There is also a need for a treated copper foil that does not reduce the peel strength.

当業者間では、プリント配線板に内在する前記難題を克服して前記要求に応えるべく研究・開発が進められており、例えば、後出特許文献1には、プリント配線板に形成した配線回路ボトム部に良好な直線性が得られ、絶縁性樹脂基材との密着性(接着性)はもとより、耐薬品性や耐吸湿性も良好な処理銅箔として、「絶縁樹脂基材と張り合わせる接着表面は、表面粗さRzjisが2.5μm以下で、かつ、2次元表面積が6550μm2の領域をレーザー法で測定したときの3次元表面積(A)μm2と当該2次元表面積との比[(A)/(6550μm2)]の値である表面積比(B)が1.2〜2.5であることを特徴とする処理銅箔」が開示されていると共に、当該接着面には「10cm×10cmの2次元領域の評価において、亜鉛−ニッケル層が含む亜鉛とニッケルの合計量(C) mg/m2が40mg/m2以上である」亜鉛−ニッケル層が設けられていることが開示されている。 Among those skilled in the art, research and development are underway to meet the above requirements by overcoming the above-mentioned difficulties inherent in printed wiring boards. For example, in Patent Document 1 described later, a wiring circuit bottom formed on a printed wiring board As a treated copper foil with good linearity and good adhesion resistance (adhesiveness) to the insulating resin base material, as well as chemical resistance and moisture absorption resistance, surface, the following surface roughness Rzjis is 2.5 [mu] m, and the ratio of the 3-dimensional surface area (a) [mu] m 2 and the two-dimensional surface area when the two-dimensional surface area measured by a laser method an area of 6550μm 2 [(a ) / (6550 μm 2 )] is disclosed, and a treated copper foil characterized by a surface area ratio (B) of 1.2 to 2.5 ”is disclosed. in the evaluation areas, zinc - the total amount of zinc and nickel containing nickel layer (C) mg / m 2 It is 40 mg / m 2 or more "Zinc - discloses that nickel layer is provided.

特開2008-285751号公報JP 2008-285751 特公平3-35394号公報Japanese Patent Publication No.3-35394 特開昭56-118390号公報JP 56-118390 A

本発明者も、プリント配線板に内在する前記難題を克服して前記要求に応え、引きはがし強さ特性とエッチング特性の両特性を満たしており、活性処理液浸漬後にも引きはがし強さが低下せず、かつ、活性処理液浸漬後のしみ込み量が少なく、かつ、過酷な条件での加速試験にも十分な引きはがし強さが維持できる処理銅箔を提供するべく研究・開発を進めているが、その途上において、前出特許文献1に開示されている表面処理銅箔について検討したところ、当該処理銅箔は、絶縁性樹脂基材(FR-4基材)で引きはがし強さに優れ、活性処理液での処理(希塩酸処理)後の劣化率が小さく、エッチング性も優れているが、次の点では、前記要求に充分応えるものとは言い難いものであった。   The present inventor also overcomes the above-mentioned difficulties inherent in the printed wiring board, meets the above requirements, satisfies both the peeling strength characteristics and the etching characteristics, and the peeling strength decreases even after immersion in the active treatment solution. R & D is underway to provide a treated copper foil that has low penetration after immersion in the active treatment solution and can maintain sufficient peel strength even in accelerated tests under severe conditions However, on the way, when the surface-treated copper foil disclosed in the above-mentioned Patent Document 1 was examined, the treated copper foil was peeled off with an insulating resin base material (FR-4 base material). It is excellent and has a small deterioration rate after treatment with an active treatment solution (diluted hydrochloric acid treatment) and excellent etching properties. However, in the following points, it cannot be said that the above requirements are sufficiently met.

すなわち、本発明者の行った追試実験結果によれば、表面積比が1.2〜1.8では十分な引きはがし強さ特性が得られない、吸湿処理後の引きはがし強さの劣化率が大きい傾向が認められた。   That is, according to the results of a follow-up experiment conducted by the present inventors, sufficient peel strength characteristics cannot be obtained when the surface area ratio is 1.2 to 1.8, and the deterioration rate of the peel strength after moisture absorption treatment tends to be large. It was.

また、前述したとおり、プリント配線板用銅箔として求められる重要な特性に加熱処理後の引きはがし強さがある。特に近年は絶縁性樹脂基材は多くの種類が使用されており多様化している。特に二層フレキシブル基板では粗化処理層表面に設ける金属種により本特性は大きく変わる傾向がある。加熱処理後の引きはがし強さは長期に渡り電子機器を使用する場合を想定しており、加熱処理を行うことで加速試験を行うものである。   Further, as described above, an important characteristic required as a copper foil for a printed wiring board is the peel strength after heat treatment. Particularly in recent years, many types of insulating resin base materials have been used and are diversified. In particular, in a two-layer flexible substrate, this property tends to vary greatly depending on the metal species provided on the surface of the roughened layer. The peeling strength after the heat treatment assumes that the electronic device is used for a long period of time, and an acceleration test is performed by performing the heat treatment.

加熱処理条件としては、例えば前述した二層フレキシブル基板では150℃-168時間などの条件が採用される場合が多い。これについても前記表面積比1.2〜2.5の処理銅箔を使用し、亜鉛−ニッケル層を設け、本願発明者が追試実験を行ったところ、前記技術の処理銅箔では加熱処理後の引きはがし強さの劣化率が大きく改善の余地が有ることが判明した。 As the heat treatment conditions, for example, conditions such as 150 ° C.-168 hours are often employed in the above-described two-layer flexible substrate. Also for this, the treated copper foil having the surface area ratio of 1.2 to 2.5 was used, a zinc-nickel layer was provided, and the inventor of the present application conducted a follow-up experiment. With the treated copper foil of the above technique, the peel strength after the heat treatment It has been found that there is room for improvement with a large deterioration rate.

そこで、本願発明者は、絶縁性樹脂基材と強固な引きはがし強さが得られ、吸湿処理後の引きはがし強さの劣化率が小さく、活性処理液浸漬後の引きはがし強さの劣化率が小さく、活性処理液浸漬後のしみ込み量が少なく、エッチング性が良好である処理銅箔を得ることを技術的課題として、その具現化をはかるべく、試作・実験を繰り返した結果、未処理銅箔の表面に処理層を形成してなる処理銅箔面を絶縁性樹脂基材に接着させる銅張積層板用処理銅箔であって、未処理銅箔の表面に粗化処理層、クロメート層及びシランカップリング剤層が順次処理層として形成されており、前記処理銅箔の処理面の十点平均粗さRzが1.0μm〜2.7μmであり、かつ、触針式表面粗さ計によって測定されたJISB0601-1994に規定される局部山頂の平均間隔Sが0.0230mm以下(但し0は含まない)であって算術平均粗さRaが0.18μm〜0.36μmであり、かつ、前記Raと前記Sとが下記式(1)の関係を有する銅張積層板用処理銅箔にすることにより満足できるという刮目すべき知見を得、前記技術的課題を達成したものである。
式(1)
50.0<{(S×1000)/Ra} ≦100.0(式(1)中、S×1000の単位はμmである。)
Therefore, the inventor of the present application can obtain a strong peeling strength with the insulating resin base material, a degradation rate of the peeling strength after moisture absorption treatment is small, and a degradation rate of the peeling strength after immersion in the active treatment liquid. As a technical issue, we have obtained a processed copper foil that has a small amount of penetration after immersion in the active treatment solution and has good etching properties. A treated copper foil for copper-clad laminate in which a treated copper foil surface formed by forming a treated layer on the surface of the copper foil is bonded to an insulating resin substrate, and the roughened layer and chromate are formed on the surface of the untreated copper foil. Layer and a silane coupling agent layer are sequentially formed as a treatment layer, and the ten-point average roughness Rz of the treated surface of the treated copper foil is 1.0 μm to 2.7 μm, and by a stylus type surface roughness meter Measured average distance S between local peaks specified in JISB0601-1994 is 0.0230mm or less (However, 0 is not included) The arithmetic average roughness Ra is 0.18 μm to 0.36 μm, and the treated copper foil for a copper clad laminate in which Ra and S have the relationship of the following formula (1) The above-mentioned technical problem has been achieved by obtaining the remarkable knowledge that the above-mentioned can be satisfied.
Formula (1)
50.0 <{(S × 1000) / Ra} ≦ 100.0 (In the formula (1), the unit of S × 1000 is μm)

前記技術的課題は、次の通りの本発明によって解決できる。 即ち、本発明に係る処理銅箔は、未処理銅箔の表面に処理層を形成してなる処理銅箔面を絶縁性樹脂基材に接着させる銅張積層板用処理銅箔であって、未処理銅箔の表面に粗化処理層、クロメート層及びシランカップリング剤層が順次処理層として形成されており、前記処理銅箔の処理面の十点平均粗さRzが1.0μm〜2.7μmであり、かつ、触針式表面粗さ計によって測定されたJISB0601-1994に規定される局部山頂の平均間隔Sが0.0230mm以下(但し0は含まない)であって算術平均粗さRaが0.18μm〜0.36μmであり、かつ、前記Raと前記Sとが下記式(1)の関係を有する銅張積層板用処理銅箔である(請求項1)。
式(1)
50.0<{(S×1000)/Ra} ≦100.0(式(1)中、S×1000の単位はμmである。)(請求項1)。
The technical problem can be solved by the present invention as follows. That is, the treated copper foil according to the present invention is a treated copper foil for a copper clad laminate in which a treated copper foil surface formed by forming a treated layer on the surface of an untreated copper foil is bonded to an insulating resin substrate, A roughened layer, a chromate layer and a silane coupling agent layer are sequentially formed on the surface of the untreated copper foil as a treated layer, and the ten-point average roughness Rz of the treated surface of the treated copper foil is 1.0 μm to 2.7 μm. In addition, the average distance S between local peaks defined by JISB0601-1994 measured by a stylus type surface roughness meter is 0.0230 mm or less (excluding 0), and the arithmetic average roughness Ra is 0.18. The copper foil is a copper clad laminate treated copper foil having a relationship of μm to 0.36 μm and Ra and S having the relationship of the following formula (1).
Formula (1)
50.0 <{(S × 1000) / Ra} ≦ 100.0 (in the formula (1), the unit of S × 1000 is μm) (Claim 1).

また、本発明に係る処理銅箔は、前記粗化処理層とクロメート層との間にモリブデンを含有するニッケル及び/又はコバルト層が処理層として形成されており、当該モリブデンを含有するニッケル及び/又はコバルト層の析出付着量が20mg/m2〜300mg/m2であり、かつ、モリブデンの含有率が10wt%以上であって残部がニッケル及び/又はコバルトである事を特徴とする請求項1記載の銅張積層板用処理銅箔である(請求項2)。
また、本発明は、請求項1又は2記載の銅張積層板用処理銅箔を絶縁性樹脂基材に加熱圧着させた銅張積層板である(請求項3)。
また、本発明は、請求項3記載の銅張積層板を用いて得られるプリント配線板である(請求項4)。
In the treated copper foil according to the present invention, a nickel and / or cobalt layer containing molybdenum is formed as a treated layer between the roughened layer and the chromate layer, and the nickel and / or the molybdenum containing the molybdenum and / or or precipitation deposition amount of the cobalt layer is 20mg / m 2 ~300mg / m 2 , and claim 1, wherein the remainder content of molybdenum is not more than 10 wt% is a nickel and / or cobalt It is the processing copper foil for copper clad laminated boards of description .
Moreover, this invention is the copper clad laminated board which heat-pressed the process copper foil for copper clad laminated boards of Claim 1 or 2 to the insulating resin base material (Claim 3).
Moreover, this invention is a printed wiring board obtained using the copper clad laminated board of Claim 3. (Claim 4).

本発明によれば、未処理銅箔の表面に粗化処理層、クロメート層及びシランカップリング剤層が順次処理層として形成されており、処理銅箔の処理面の十点平均粗さRzが1.0μm〜2.7μmであり、かつ、触針式表面粗さ計によって測定されたJISB0601-1994に規定される局部山頂の平均間隔Sが0.0230mm以下(但し0は含まない)にすることにより、絶縁性樹脂基材と強固な引きはがし強さが得られ、吸湿処理後の引きはがし強さの劣化率が小さくなり、活性処理液浸漬後の引きはがし強さの劣化率が小さくなり、活性処理液浸漬後のしみ込み量が少なくなり、エッチング性が良好な処理銅箔を得ることが可能となる。
また、絶縁性樹脂基材に接着される処理銅箔面の算術平均粗さRaが0.18μm〜0.36μmであり、かつ、当該算術平均粗さRaと前記局部山頂の平均間隔Sが下記式(1)の関係を満たすことにより絶縁性樹脂基材と更に強固な引きはがし強さが得られ、更に吸湿処理後の引きはがし強さの劣化率が小さくなり、更に活性処理液浸漬後の引きはがし強さの劣化率が小さくなり、更に活性処理液浸漬後のしみ込み量が少なくなり、更にエッチング性が良好な処理銅箔を得ることが可能となる。
式(1)
50.0<{(S×1000)/Ra} ≦100.0(式(1)中、S×1000の単位はμmである。)
また、前記粗化処理層とクロメート層との間にモリブデンを含有するニッケル及び/又はコバルト層が処理層として形成されていることで加熱処理後の引きはがし強さの劣化率が小さくなる。
従って、本発明の産業上の利用可能性は非常に高いといえる。
According to the present invention, a roughened layer, a chromate layer, and a silane coupling agent layer are sequentially formed on the surface of the untreated copper foil as a treated layer, and the ten-point average roughness Rz of the treated surface of the treated copper foil is By making the average interval S of the local peaks defined in JISB0601-1994 measured by a stylus type surface roughness meter to be 0.0230mm or less (excluding 0), it is 1.0μm to 2.7μm . Strong peel strength with insulating resin base material is obtained, degradation rate of peel strength after moisture absorption treatment is reduced, degradation rate of peel strength after immersion in active treatment solution is reduced, active treatment The amount of penetration after immersion in the liquid is reduced, and a treated copper foil having good etching properties can be obtained.
In addition, the arithmetic average roughness Ra of the treated copper foil surface bonded to the insulating resin base material is 0.18 μm to 0.36 μm, and the arithmetic average roughness Ra and the average interval S between the local peaks are represented by the following formula ( By satisfying the relationship of 1), a stronger peeling strength can be obtained from the insulating resin substrate, and the deterioration rate of the peeling strength after moisture absorption treatment is reduced, and further the peeling after immersion in the active treatment solution is reduced. It is possible to obtain a treated copper foil having a lower strength deterioration rate, a smaller amount of penetration after immersion in the active treatment solution, and a better etching property.
Formula (1)
50.0 < {(S × 1000) / Ra} ≦ 100.0 (In the formula (1), the unit of S × 1000 is μm.)
Further, since a nickel and / or cobalt layer containing molybdenum is formed as a treatment layer between the roughening treatment layer and the chromate layer, the deterioration rate of the peel strength after the heat treatment is reduced.
Therefore, it can be said that the industrial applicability of the present invention is very high.

以下、本発明の実施の形態を説明する。
本発明に係る未処理銅箔としては、電解液に浸した陽極と陰極との間に電流を流すことによって陰極側に析出させて形成される電解銅箔や、インゴット状の銅を圧延してなる圧延銅箔などを使用すればよい。また、圧延銅箔は表裏がないので区別して使用する必要は無いが、電解銅箔の場合も特に区別する必要は無く、析出面、光沢面のいずれの面を使用しても良い。
Embodiments of the present invention will be described below.
As an untreated copper foil according to the present invention, an electrolytic copper foil formed by depositing on the cathode side by flowing a current between an anode immersed in an electrolytic solution and a cathode, or ingot-shaped copper is rolled. What is necessary is just to use the rolled copper foil etc. which become. In addition, the rolled copper foil does not need to be distinguished from each other because it has no front and back, but it is not necessary to distinguish between the electrolytic copper foil, and any of a precipitation surface and a glossy surface may be used.

なお、未処理銅箔の厚さは、6μm〜300μmが好ましく、より好ましくは、9μm〜150μmである。また、未処理銅箔表面の十点平均粗さRzは、粗化処理層の形成に伴う粗度の上昇を考慮して0.1μm〜2.0μmが好ましく、より好ましくは0.5μm〜1.8μmである。   In addition, the thickness of the untreated copper foil is preferably 6 μm to 300 μm, and more preferably 9 μm to 150 μm. Further, the ten-point average roughness Rz of the untreated copper foil surface is preferably 0.1 μm to 2.0 μm, more preferably 0.5 μm to 1.8 μm in consideration of the increase in roughness accompanying the formation of the roughened layer. .

先ず、粗化処理層及び粗化処理層を形成する粗化粒子について詳述する。
本発明の粗化処理層とは電気めっき法によって得られる結晶粒径2.0μm以下の粗化粒子の集合体層のことである。粗化処理層の十点平均粗さRz(以下、Rzという)は、1.0μm〜2.7μmが好ましく、より好ましくは1.2μm〜2.5μmである。本発明に使用しているRzはJISB0601-1994に準拠した十点平均粗さのことである。
Rzが1.0μm未満の場合は、粗化処理層の凹凸が小さいため効果的な機械的投錨効果が得られず、強固な引きはがし強さが得られない、吸湿処理後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後のしみ込み量が多くなる。Rzが2.7μmを越える場合、粗化処理層の凹凸が大きいため処理銅箔エッチング後の回路間に粗化粒子の溶け残りが発生し、短絡異常が発生する場合がある。
First, the roughening treatment layer and the roughening particles forming the roughening treatment layer will be described in detail.
The roughening treatment layer of the present invention is an aggregate layer of roughening particles having a crystal grain size of 2.0 μm or less obtained by electroplating. The ten-point average roughness Rz (hereinafter referred to as Rz) of the roughened layer is preferably 1.0 μm to 2.7 μm, more preferably 1.2 μm to 2.5 μm. Rz used in the present invention is a ten-point average roughness according to JISB0601-1994.
When Rz is less than 1.0 μm, the roughened layer has small unevenness, so an effective mechanical anchoring effect cannot be obtained, a strong peeling strength cannot be obtained, and a peeling strength after moisture absorption treatment cannot be obtained. The deterioration rate increases, the deterioration rate of the peel strength after immersion in the active treatment solution increases, and the amount of penetration after immersion in the active treatment solution increases. When Rz exceeds 2.7 μm, the roughened layer has large irregularities, so that undissolved coarse particles may occur between the circuits after etching the treated copper foil, and short circuit abnormality may occur.

これまで銅箔表面の粗度を表すパラメータにはRzが多くの頻度で用いられてきた。一方、粗化処理層を形成する粗化粒子の形状や間隔によっては、Rzが同じ場合でも引きはがし強さが異なる場合が多く発生している。そこで本発明者は局部山頂の平均間隔Sに着目をした。   Until now, Rz has been frequently used as a parameter representing the roughness of the copper foil surface. On the other hand, depending on the shape and interval of the roughened particles forming the roughened layer, there are many cases where the peel strength differs even when Rz is the same. Therefore, the present inventor paid attention to the average interval S between the local peaks.

本発明に使用している局部山頂の平均間隔S(以下、Sという)もRzと同じくJISB0601-1994に準拠したものである。Sは粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、隣り合う局部山頂間に対応する平均線の長さを求め、この多数の局部山頂間の平均値を(mm)で表したパラメータである。Sが小さいほどの局部山頂の間隔が狭く、密であることを示し、一方、Sが大きいほど局部山頂の間隔が広く、疎であることを示している。   The average interval S (hereinafter referred to as S) of the local summit used in the present invention is also compliant with JISB0601-1994, as is the case with Rz. S is extracted from the roughness curve by the reference length in the direction of the average line, the length of the average line corresponding to the adjacent local peaks is obtained, and the average value between these local peaks is expressed in (mm). Parameter. The smaller the S is, the narrower and denser the local peaks are, while the larger S is the wider and sparsely spaced local peaks.

Sは0.0230mm以下(但し0は含まない)が好ましく、より好ましくは0.022mm以下である。Sが0.0230mmを越える場合、局部山頂の間隔が広くなり効率的な機械的投錨効果が得られにくくなり、強固な引きはがし強さが得られない、吸湿処理後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後のしみ込み量が多くなる。 S is preferably 0.0230 mm or less (excluding 0), more preferably 0.022 mm or less. If S exceeds 0.0230mm, the distance between the tops of the local peaks will be wide, making it difficult to obtain an efficient mechanical anchoring effect, and it will not be possible to obtain a strong peel strength. Deterioration rate of the peel strength after moisture absorption treatment Increases, the rate of degradation of the peel strength after immersion in the active treatment solution increases, and the amount of penetration after immersion in the active treatment solution increases.

Sが小さいほど好ましい理由は、局部山頂の間隔が密であるため、単位面積あたりの局部山頂が多く、このため、絶縁性樹脂基材との接着表面積が増え、効率的な機械的投錨効果が得られる。この結果、引きはがし強さが向上する、吸湿処理後の引きはがし強さの劣化率が小さくなる、活性処理液浸漬後の劣化率が小さくなる、活性液浸漬後のしみ込み量が少なくなる。
次に粗化処理層の算術平均粗さRa(以下、Raという)は、0.18μm〜0.36μmが好ましく、より好ましくは0.20μm〜0.35μmである。本発明に使用しているRaもJISB0601-1994に準拠したものである。Raが0.18μm未満の場合、粗化処理層の凹凸が小さいため効果的な機械的投錨効果が得られず、強固な引きはがし強さが得られない、吸湿処理後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後のしみ込み量が多くなる。Raが0.36μmを越える場合、粗化処理層の凹凸が大きいため処理銅箔エッチング後の回路間に粗化粒子の溶け残りが発生し、短絡異常が発生する場合がある。
The reason why S is smaller is preferable because the distance between the local peaks is close, so there are many local peaks per unit area.Therefore, the surface area of adhesion with the insulating resin substrate is increased, and an efficient mechanical anchoring effect is obtained. can get. As a result, the peel strength improves, the deterioration rate of the peel strength after moisture absorption treatment decreases, the deterioration rate after immersion in the active treatment solution decreases, and the amount of penetration after the active solution immersion decreases.
Next, the arithmetic average roughness Ra (hereinafter referred to as Ra) of the roughened layer is preferably 0.18 μm to 0.36 μm, more preferably 0.20 μm to 0.35 μm. Ra used in the present invention is also compliant with JISB0601-1994. When Ra is less than 0.18μm, the roughened layer has small unevenness, so an effective mechanical anchoring effect cannot be obtained, and strong peeling strength cannot be obtained. Degradation of peeling strength after moisture absorption treatment The rate increases, the deterioration rate of the peel strength after immersion in the active treatment solution increases, and the amount of penetration after immersion in the active treatment solution increases. When Ra exceeds 0.36 μm, the unevenness of the roughening treatment layer is large, so that roughening particles remain undissolved between the circuits after the etching of the treated copper foil, and a short circuit abnormality may occur.

また、RaとSが下記式(1)の関係を有することも重要である。
45.0≦{(S×1000)/Ra} ≦100.0 (1)
(式中、S×1000の単位はμmである。)
更に好ましくは
50.0≦{(S×1000)/Ra} ≦95.0 (2)
(式中、S×1000の単位はμmである。)
である。
It is also important that Ra and S have the relationship of the following formula (1).
45.0 ≦ {(S × 1000) / Ra} ≦ 100.0 (1)
(In the formula, the unit of S × 1000 is μm.)
More preferably
50.0 ≦ {(S × 1000) / Ra} ≦ 95.0 (2)
(In the formula, the unit of S × 1000 is μm.)
It is.

RaとSが式(1)の関係を有する場合は、更に強固な引きはがし強さが得られ、更に吸湿処理後の引きはがし強さの劣化率が小さくなる、更に活性処理液浸漬後の引きはがし強さの劣化率が小さくなる、更に活性処理液浸漬後のしみ込み量が少なくなる、更にエッチング性が良好である。一方、式(1)が45.0未満の場合は処理銅箔エッチング後の回路間に粗化粒子の溶け残りが発生し、短絡異常が発生する場合がある。式(1)が100.0を越える場合は効率的な機械的投錨効果が得られにくくなり、強固な引きはがし強さが得られない、吸湿処理後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後のしみ込み量が多くなる。   When Ra and S have the relationship of formula (1), a stronger peel strength can be obtained, the degradation rate of the peel strength after moisture absorption treatment is reduced, and the peel after immersion in the active treatment solution is further reduced. The deterioration rate of peeling strength is reduced, the amount of penetration after immersion in the active treatment solution is reduced, and the etching property is further improved. On the other hand, when the formula (1) is less than 45.0, undissolved coarse particles may occur between the circuits after etching the treated copper foil, and a short circuit abnormality may occur. When the formula (1) exceeds 100.0, it is difficult to obtain an effective mechanical anchoring effect, a strong peeling strength cannot be obtained, and a deterioration rate of the peeling strength after moisture absorption treatment is increased. The deterioration rate of the peel strength after immersion in the treatment liquid increases, and the amount of penetration after immersion in the active treatment liquid increases.

次に、未処理銅箔表面に設ける粗化処理層を形成する粗化粒子を析出させる処理方法を説明する。
本発明の粗化処理層は二段の粗化処理により形成されるものである。一段目は銅イオンを含んだ電解液中で限界電流密度以上の電流を流すことで微細な樹枝状の銅粉を未処理銅箔に付着させる工程である。二段目は一段目で得られた微細な樹枝状の銅粉が脱落しないようにカバーめっきを行う工程であり、銅イオンを含んだ電解液中で限界電流密度未満の電流を流すことにより形成される。本発明はこの二段の電気めっきで得られた粗化粒子の集合体層を粗化処理層と称す。
Next, a treatment method for precipitating roughening particles that form a roughening treatment layer provided on the surface of the untreated copper foil will be described.
The roughening treatment layer of the present invention is formed by two-stage roughening treatment. The first step is a step of attaching a fine dendritic copper powder to the untreated copper foil by passing a current of a limiting current density or higher in an electrolytic solution containing copper ions. The second stage is a process of cover plating so that the fine dendritic copper powder obtained in the first stage does not fall off, and it is formed by flowing a current less than the limit current density in an electrolytic solution containing copper ions. Is done. In the present invention, an aggregate layer of roughened particles obtained by this two-stage electroplating is referred to as a roughened layer.

(一段目粗化処理層)
一段目の電気めっきを行う電解液組成、液温、添加剤、電解条件、電極としては、例えば以下に示すものが挙げられる。
硫酸銅五水和物:12g/L〜70g/L(更に好ましくは30g/L〜60g/L)
硫酸:30g/L〜200g/L(更に好ましくは50g/L〜150g/L)
添加剤:塩素イオン、チタンイオン、タングステンイオン
液温:25℃〜50℃(更に好ましくは30℃〜45℃)
電流密度:5A/dm2〜100A/dm2(更に好ましくは10A/dm2〜80A/dm2)
電気量:65〜140C/dm 2
電極:白金属酸化物被覆チタン板等の不溶性電極

(First-stage roughening layer)
Electrolyte composition for electrical plating of the first stage, liquid temperature, additives, electrolysis conditions, as the electrode, Ru include those shown below, for example.
Copper sulfate pentahydrate: 12 g / L to 70 g / L (more preferably 30 g / L to 60 g / L)
Sulfuric acid: 30 g / L to 200 g / L (more preferably 50 g / L to 150 g / L)
Additive: Chlorine ion, Titanium ion, Tungsten ion Liquid temperature: 25C-50C (more preferably 30C-45C)
Current density: 5 A / dm 2 to 100 A / dm 2 (more preferably 10 A / dm 2 to 80 A / dm 2 )
Electricity: 65 ~ 140C / dm 2
Electrode: Insoluble electrode such as white metal oxide coated titanium plate

(二段目粗化処理層)
次に一段目で得られた微細な樹枝状の銅粉をカバーするめっきとして行う二段目の電気めっきについて詳述する。二段目の電気めっきを行う電解液組成、液温、電解条件、電極としては、例えば以下に示すものが挙げられるが特にこれに限定されるものではない。
硫酸銅五水和物:150g/L〜300g/L(更に好ましくは170g/L〜280g/L)
硫酸:50g/L〜200g/L(更に好ましくは60g/L〜170g/L)
液温:25℃〜50℃(更に好ましくは30℃〜45℃)
電流密度:2A/dm2〜60A/dm2(更に好ましくは5A/dm2〜50A/dm2)
電極:白金属酸化物被覆チタン板等の不溶性電極
必要に応じて周知の技術であるゼラチンなどを添加しても良い。
(Second-stage roughening layer)
Next, the second-stage electroplating performed as plating for covering the fine dendritic copper powder obtained in the first stage will be described in detail. Examples of the electrolyte composition, liquid temperature, electrolysis conditions, and electrodes for performing the second-stage electroplating include, but are not limited to, the following.
Copper sulfate pentahydrate: 150 g / L to 300 g / L (more preferably 170 g / L to 280 g / L)
Sulfuric acid: 50 g / L to 200 g / L (more preferably 60 g / L to 170 g / L)
Liquid temperature: 25 ° C to 50 ° C (more preferably 30 ° C to 45 ° C)
Current density: 2 A / dm 2 to 60 A / dm 2 (more preferably 5 A / dm 2 to 50 A / dm 2 )
Electrode: Insoluble electrode such as a white metal oxide-coated titanium plate If necessary, gelatin or the like which is a well-known technique may be added.

本発明に係る処理銅箔の粗化処理層及び粗化処理層を形成する粗化粒子の形状を表す重要なパラメータである、十点平均粗さRz、局部山頂の平均間隔S及び算術平均粗さRaは前記二段階の電気めっきにより粗化処理層が形成された時点で決定する。この後に行う本発明のモリブデンを含有するニッケル及び/又はコバルト層や周知の技術であるクロメート層、シランカップリング剤層を粗化処理層表面に設けても前記パラメータが変化することはない。   The roughening layer of the treated copper foil according to the present invention and the important parameters representing the shape of the roughening particles forming the roughening layer, the ten-point average roughness Rz, the average interval S of the local peaks, and the arithmetic average roughness The thickness Ra is determined when the roughening layer is formed by the two-stage electroplating. Even if a nickel and / or cobalt layer containing molybdenum according to the present invention and a chromate layer and a silane coupling agent layer, which are well-known techniques, are provided on the surface of the roughened layer, the above parameters do not change.

また、必要に応じて前記粗化処理層表面に特公平3−35394に記載されているジエチレントリアミン五酢酸を使用した電解液から得られた銅の微細粗化粒子層を施しても良い。
本処理を設けることで引きはがし強さを更に向上させることができる。
次に前記粗化処理層表面に設けるモリブデンを含有するニッケル及び/又はコバルト層について詳述する。
Moreover, you may give the fine roughening particle layer of the copper obtained from the electrolyte solution which uses the diethylenetriamine pentaacetic acid described in Japanese Patent Publication No. 3-35394 to the said roughening process layer surface as needed.
By providing this processing, the peel strength can be further improved.
Next, the nickel and / or cobalt layer containing molybdenum provided on the surface of the roughened layer will be described in detail.

粗化処理層を備えた処理銅箔表面にモリブデンを含有するニッケル及び/又はコバルト層を設けることにより加熱処理後の引きはがし強さの劣化率が小さくなる。また、近年使用頻度の高い二層フレキシブルプリント配線基板では接着剤を介さずポリイミドと銅の直接反応となるためポリイミドと相性の良いコバルトやニッケルを処理銅箔接着面側に設けることは有効である。   By providing a nickel and / or cobalt layer containing molybdenum on the surface of the treated copper foil provided with the roughened layer, the degradation rate of the peel strength after the heat treatment is reduced. In recent years, two-layer flexible printed circuit boards that are frequently used have a direct reaction between polyimide and copper without using an adhesive. Therefore, it is effective to provide cobalt and nickel that are compatible with polyimide on the treated copper foil bonding surface. .

モリブデンを含有するニッケル及び/又はコバルト層の析出付着量は20mg/m2〜300mg/m2が好ましく、更に好ましくは30mg/m2〜290mg/m2である。モリブデンを含有するニッケル及び/又はコバルト層の析出付着量が20mg/m2未満の場合、加熱処理後の引きはがし強さの劣化が大きくなる。一方、300mg/m2をこえる場合は、ニッケルを使用した場合であるが、モリブデンの含有率や絶縁性樹脂基材の種類にもよるがエッチング後絶縁性樹脂基材にニッケルが残渣し耐マイグレーション性が低下する場合が有るため好ましくない。また、これ以上付着させても特性の向上が認められないため不経済である。 Precipitation deposition of nickel and / or cobalt layer containing molybdenum is preferably 20mg / m 2 ~300mg / m 2 , more preferably from 30mg / m 2 ~290mg / m 2 . When the deposition amount of the nickel and / or cobalt layer containing molybdenum is less than 20 mg / m 2 , the deterioration of the peel strength after the heat treatment becomes large. On the other hand, if it exceeds 300 mg / m 2 , nickel is used. However, depending on the molybdenum content and the type of insulating resin substrate, nickel remains on the insulating resin substrate after etching and migration resistance This is not preferable because the property may be lowered. In addition, it is uneconomical because no improvement in properties is observed even if it is further adhered.

また、モリブデンを含有するニッケル及び/又はコバルト層の各元素の含有率も重要である。モリブデンの含有率は10wt%以上が好ましい。より好ましくは13wt%以上である。含有率の単位として使用している「wt%」であるが、モリブデンを含有するニッケル及び/又はコバルト層に使用した各元素の質量の和を100wt%とし、不可避不純物は考慮していないことを明記しておく。モリブデンの含有率が10wt%未満の場合、加熱処理後の引きはがし強さの劣化率が大きくなる。   The content of each element in the nickel and / or cobalt layer containing molybdenum is also important. The molybdenum content is preferably 10 wt% or more. More preferably, it is 13 wt% or more. “Wt%” is used as the unit of content, but the sum of the mass of each element used in the nickel and / or cobalt layer containing molybdenum is 100 wt%, and unavoidable impurities are not considered. Please specify. When the molybdenum content is less than 10 wt%, the rate of degradation of the peel strength after heat treatment increases.

一方、ニッケル及び/又はコバルトの含有率は90wt%以下が好ましい。より好ましくは87wt%以下である。ニッケルの含有率が90wt%を越える場合、絶縁性樹脂基材の種類にもよるがエッチング後の絶縁性樹脂基材にニッケルが残渣し耐マイグレーション性が低下する場合があるため好ましくない。また、加熱処理後の引きはがし強さの劣化率が大きくなる。コバルトが含有率が90wt%を越える場合、加熱処理後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後のしみ込み量が多くなる。ニッケル及び/又はコバルトの含有率が90wt%を越える場合は、両者の含有率にもよるが活性処理液浸漬後の引きはがし強さの劣化率が大きくなる、活性処理液浸漬後のしみ込み量が多くなる場合がある。また、加熱処理後の引きはがし強さの劣化率が大きくなる。   On the other hand, the content of nickel and / or cobalt is preferably 90 wt% or less. More preferably, it is 87 wt% or less. When the nickel content exceeds 90 wt%, although depending on the type of the insulating resin base material, nickel may remain on the insulating resin base material after etching and migration resistance may be deteriorated. Further, the deterioration rate of the peel strength after the heat treatment is increased. When the content of cobalt exceeds 90 wt%, the deterioration rate of the peel strength after heat treatment increases, the deterioration rate of the peel strength after immersion in the active treatment solution increases, and the stain after immersion in the active treatment solution Increasing amount. When the content of nickel and / or cobalt exceeds 90 wt%, the deterioration rate of the peel strength after immersion in the active treatment solution will increase, depending on the content of both. May increase. Further, the deterioration rate of the peel strength after the heat treatment is increased.

次にモリブデンを含有するニッケル及び/又はコバルト層を析出させる処理方法を説明する。
本発明のモリブデンを含有するニッケル及び/又はコバルト層は電気めっき法により形成される。モリブデンを含有するニッケル及び/又はコバルト層を電気めっきで形成する電解液組成、液温、pH、電解条件、電極としては、例えば以下に示すものが挙げられるが特にこれに限定されるものではない。
Next, a treatment method for depositing a nickel and / or cobalt layer containing molybdenum will be described.
The nickel and / or cobalt layer containing molybdenum of the present invention is formed by electroplating. Examples of the electrolyte composition, solution temperature, pH, electrolysis conditions, and electrodes for forming a nickel and / or cobalt layer containing molybdenum by electroplating include, but are not limited to, the following. .

(モリブデンを含有するニッケル層)
モリブデン酸二ナトリウム二水和物:1g/L〜80g/L(更に好ましくは5g/L〜70g/L)
硫酸ニッケル六水和物:10g/L〜100g/L(更に好ましくは20g/L〜70g/L)
クエン酸三ナトリウム二水和物:5g/L〜100g/L(更に好ましくは20g/L〜70g/L)
pH:10.0〜12.0(更に好ましくは10.5〜11.5)
電解液温度:20℃〜50℃(更に好ましくは25℃〜40℃)
電流密度:0.1A/dm2〜10.0A/dm2(更に好ましくは0.5A/dm2〜5.0A/dm2)
電極:白金
pHはアンモニアで調整すればよい。
(Nickel layer containing molybdenum)
Disodium molybdate dihydrate: 1 g / L to 80 g / L (more preferably 5 g / L to 70 g / L)
Nickel sulfate hexahydrate: 10 g / L to 100 g / L (more preferably 20 g / L to 70 g / L)
Trisodium citrate dihydrate: 5 g / L to 100 g / L (more preferably 20 g / L to 70 g / L)
pH: 10.0-12.0 (more preferably 10.5-11.5)
Electrolyte temperature: 20 ° C to 50 ° C (more preferably 25 ° C to 40 ° C)
Current density: 0.1 A / dm 2 to 10.0 A / dm 2 (more preferably 0.5 A / dm 2 to 5.0 A / dm 2 )
Electrode: Platinum
The pH may be adjusted with ammonia.

(モリブデンを含有するコバルト層)
モリブデン酸二ナトリウム二水和物:1g/L〜80g/L(更に好ましくは5g/L〜50g/L)
硫酸コバルト七水和物:10g/L〜100g/L(更に好ましくは20g/L〜70g/L)
クエン酸三ナトリウム二水和物:5g/L〜100g/L(更に好ましくは20g/L〜70g/L)
pH:4.0〜10.0(更に好ましくは5.0〜7.0)
電解液温度:20℃〜50℃(更に好ましくは25℃〜40℃)
電流密度:0.1A/dm2〜10.0A/dm2(更に好ましくは0.5A/dm2〜5.0A/dm2)
電極:白金
pHは硫酸で調整すればよい。
(Cobalt layer containing molybdenum)
Disodium molybdate dihydrate: 1 g / L to 80 g / L (more preferably 5 g / L to 50 g / L)
Cobalt sulfate heptahydrate: 10 g / L to 100 g / L (more preferably 20 g / L to 70 g / L)
Trisodium citrate dihydrate: 5 g / L to 100 g / L (more preferably 20 g / L to 70 g / L)
pH: 4.0 to 10.0 (more preferably 5.0 to 7.0)
Electrolyte temperature: 20 ° C to 50 ° C (more preferably 25 ° C to 40 ° C)
Current density: 0.1 A / dm 2 to 10.0 A / dm 2 (more preferably 0.5 A / dm 2 to 5.0 A / dm 2 )
Electrode: Platinum
The pH may be adjusted with sulfuric acid.

(モリブデンを含有するニッケル及びコバルト層)
モリブデン酸二ナトリウム二水和物:1g/L〜80g/L(更に好ましくは5g/L〜70g/L)
硫酸ニッケル六水和物:10g/L〜100g/L(更に好ましくは20g/L〜70g/L)
硫酸コバルト七水和物:10g/L〜100g/L(更に好ましくは20g/L〜70g/L)
クエン酸三ナトリウム二水和物:5g/L〜100g/L(更に好ましくは20g/L〜70g/L)
pH: 4.0〜10.0 (更に好ましくは5.0〜7.0)
電解液温度:20℃〜50℃(更に好ましくは25℃〜40℃)
電流密度:0.1A/dm2〜10.0A/dm2(更に好ましくは0.5A/dm2〜5.0A/dm2)
電極:白金
pHは硫酸で調整すればよい。
(Nickel and cobalt layers containing molybdenum)
Disodium molybdate dihydrate: 1 g / L to 80 g / L (more preferably 5 g / L to 70 g / L)
Nickel sulfate hexahydrate: 10 g / L to 100 g / L (more preferably 20 g / L to 70 g / L)
Cobalt sulfate heptahydrate: 10 g / L to 100 g / L (more preferably 20 g / L to 70 g / L)
Trisodium citrate dihydrate: 5 g / L to 100 g / L (more preferably 20 g / L to 70 g / L)
pH: 4.0 to 10.0 (more preferably 5.0 to 7.0)
Electrolyte temperature: 20 ° C to 50 ° C (more preferably 25 ° C to 40 ° C)
Current density: 0.1 A / dm 2 to 10.0 A / dm 2 (more preferably 0.5 A / dm 2 to 5.0 A / dm 2 )
Electrode: Platinum
The pH may be adjusted with sulfuric acid.

次に、モリブデンを含有するニッケル及び/又はコバルト層表面に周知の処理方法に基づき、クロメート層を設ける。クロメート層を設けることで引きはがし強さが向上する、耐酸化性が向上する等の特性が付与される。このクロメート層を形成させる浴は公知のものでよく、例えばクロム酸、重クロム酸ナトリウム、重クロム酸カリウムなどの六価クロムを有するものであればよい。また、特開昭56-118390号にある亜鉛を含有するクロメート層を使用してもよい。
なお、クロメート層形成後のクロムの析出形態はCr(OH)3とCr2O3が混在した状態であり、人体に悪影響を及ぼす六価クロムは含有されておらず三価クロムの形態で析出している。また、クロム酸液はアルカリ性、酸性のどちらでも構わない
Next, a chromate layer is provided on the surface of the nickel and / or cobalt layer containing molybdenum based on a known processing method. By providing the chromate layer, properties such as improved peel strength and improved oxidation resistance are imparted. The bath for forming the chromate layer may be a known bath, and may be any bath having hexavalent chromium such as chromic acid, sodium dichromate or potassium dichromate. Further, a chromate layer containing zinc described in JP-A-56-118390 may be used.
Note that the chromium precipitation after the formation of the chromate layer is a mixture of Cr (OH) 3 and Cr 2 O 3, which does not contain hexavalent chromium that adversely affects the human body and precipitates in the form of trivalent chromium. doing. The chromic acid solution may be alkaline or acidic.

次に、クロメート層表面に周知の処理方法に基づきシランカップリング剤層を設ける。シランカップリング剤層を設けることで処理銅箔接着面と絶縁性樹脂基材とのぬれ性が向上し引きはがし強さが向上する、吸湿処理後の引きはがし強さの劣化率が小さくなる等の特性が付与される。シランカップリング剤の種類はエポキシ基、アミノ基、メルカプト基、ウレイド基、ビニル基等多種あるが絶縁性樹脂基材の種類により異なった特性を示すため相性を考慮して設ける必要がある。   Next, a silane coupling agent layer is provided on the surface of the chromate layer based on a known treatment method. By providing a silane coupling agent layer, the wettability between the treated copper foil adhesive surface and the insulating resin base material is improved and the peel strength is improved, and the deterioration rate of the peel strength after moisture absorption treatment is reduced. The characteristics are given. There are various types of silane coupling agents such as epoxy groups, amino groups, mercapto groups, ureido groups, vinyl groups, etc., but they must be provided in consideration of compatibility because they exhibit different characteristics depending on the type of insulating resin substrate.

なお、前記処理銅箔を絶縁性樹脂基材に加熱圧着する等の方法により、プリント配線基板として使用できる銅張積層板を成型することができる。絶縁性樹脂基材としては、ポリイミド、フェノール、エポキシ、ポリエステル、液晶ポリマーなどを使用すればよい。
本実施の形態においては、未処理銅箔の一方面のみに各処理層を設けたが、未処理銅箔の両面に各処理層を設けてもよい。
In addition, the copper clad laminated board which can be used as a printed wiring board can be shape | molded by methods, such as heat-pressing the said process copper foil to an insulating resin base material. As the insulating resin base material, polyimide, phenol, epoxy, polyester, liquid crystal polymer, or the like may be used.
In the present embodiment, each treatment layer is provided only on one side of the untreated copper foil, but each treatment layer may be provided on both sides of the untreated copper foil.

実施例1
未処理電解銅箔を以下の電解液組成、添加剤、電極、液温、電解条件で作製した。
(未処理電解銅箔の製造方法)
硫酸:100g/L、硫酸銅五水和物:280g/Lの硫酸−硫酸銅水溶液を調整し、添加剤としてポリエチレングリコール:20mg/L(平均分子量:20000、三洋化成製)、ポリエチレンイミン:20mg/L(商品名:エポミン、品番:PP-061、平均分子量:1200、日本触媒製)、3−メルカプト−1−プロパンスルフォン酸ナトリウム:6μmol/L、塩素イオン:20mg/Lを添加した。この添加剤を含む電解液を白金属酸化物にて被覆したチタンからなる不溶性陽極と陰極であるチタン製陰極ドラムの間に充填し、電流密度50A/dm2、液温:50℃で電流を流し厚さ12μmの未処理電解銅箔を得た。この未処理電解銅箔の析出面の十点平均粗さRzは0.93μmであった。
次に作製した未処理電解銅箔の析出面に、以下の電解液組成、液温、添加剤、電極、電解条件で一段目粗化処理層を設けた。
Example 1
An untreated electrolytic copper foil was prepared with the following electrolytic solution composition, additive, electrode, liquid temperature, and electrolysis conditions.
(Method for producing untreated electrolytic copper foil)
Sulfuric acid: 100 g / L, copper sulfate pentahydrate: 280 g / L of sulfuric acid-copper sulfate aqueous solution is prepared, and polyethylene glycol: 20 mg / L (average molecular weight: 20000, manufactured by Sanyo Chemical) as an additive, polyethyleneimine: 20 mg / L (trade name: Epomin, product number: PP-061, average molecular weight: 1200, manufactured by Nippon Shokubai Co., Ltd.), sodium 3-mercapto-1-propanesulfonate: 6 μmol / L, chloride ion: 20 mg / L. An electrolyte containing this additive is filled between an insoluble anode made of titanium coated with a white metal oxide and a cathode cathode made of titanium, which is a cathode, and the current density is 50 A / dm 2 and the temperature is 50 ° C. An untreated electrolytic copper foil having a flow thickness of 12 μm was obtained. The ten-point average roughness Rz of the deposited surface of this untreated electrolytic copper foil was 0.93 μm.
Next, a first-stage roughening treatment layer was provided on the deposited surface of the produced untreated electrolytic copper foil under the following electrolytic solution composition, solution temperature, additive, electrode, and electrolysis conditions.

(一段目粗化処理層)
硫酸:80g/L、硫酸銅五水和物:45g/Lの硫酸−硫酸銅水溶液を調整し、液温:35℃に調整した。添加剤としてチタンイオン:600mg/L、タングステンイオン:25mg/L、塩素イオン:5mg/Lを添加した。この添加剤を含む電解液を白金属酸化物にて被覆したチタンからなる不溶性陽極と陰極である未処理電解銅箔の間に充填し、電流密度10A/dm2、電気量65C/ dm2の電解条件で一段目粗化処理層を設けた。
(First-stage roughening layer)
A sulfuric acid-copper sulfate aqueous solution of sulfuric acid: 80 g / L and copper sulfate pentahydrate: 45 g / L was prepared, and the liquid temperature was adjusted to 35 ° C. Titanium ions: 600 mg / L, tungsten ions: 25 mg / L, chlorine ions: 5 mg / L were added as additives. An electrolyte containing this additive is filled between an insoluble anode made of titanium coated with a white metal oxide and an untreated electrolytic copper foil as a cathode, and has a current density of 10 A / dm 2 and an electric quantity of 65 C / dm 2 . A first-stage roughening treatment layer was provided under electrolytic conditions.

次に一段目粗化処理層を設けた処理銅箔表面に以下の電解液組成、液温、電極、電解条件で二段目粗化処理層を設けた。
(二段目粗化処理層)
硫酸:120g/L、硫酸銅五水和物:250g/Lの硫酸−硫酸銅水溶液を調整し、液温を45℃に調整した。この電解液を白金属酸化物にて被覆したチタンからなる不溶性陽極と陰極である一段目処理層を設けた処理銅箔の間に充填し、電流密度10A/dm2、電気量300C/ dm2の電解条件で二段目粗化処理層を設けた。
Next, a second-stage roughening treatment layer was provided on the surface of the treated copper foil provided with the first-stage roughening treatment layer with the following electrolytic solution composition, liquid temperature, electrode, and electrolysis conditions.
(Second-stage roughening layer)
A sulfuric acid-copper sulfate aqueous solution of sulfuric acid: 120 g / L, copper sulfate pentahydrate: 250 g / L was prepared, and the liquid temperature was adjusted to 45 ° C. The electrolytic solution is filled between an insoluble anode made of titanium coated with a white metal oxide and a treated copper foil provided with a first-stage treatment layer as a cathode, and has a current density of 10 A / dm 2 and an electric quantity of 300 C / dm 2. A second-stage roughening treatment layer was provided under the electrolysis conditions.

次に粗化処理層を設けた処理銅箔表面に以下の電解液組成、液温、pH、電極、電解条件でクロメート層を設けた。
(クロメート層)
ニクロム酸ナトリウム二水和物:40g/L、液温35℃のクロメート水溶液を調整し、水酸化ナトリウム用いてpH12.0に調整した。このクロメート水溶液を陽極として使用する白金と陰極である前記処理銅箔の間に充填し、電流密度2.0A/dm2、電気量10C/ dm2の電解条件でクロメート層を設けた
Next, a chromate layer was provided on the surface of the treated copper foil provided with the roughening treatment layer under the following electrolyte solution composition, solution temperature, pH, electrode, and electrolysis conditions.
(Chromate layer)
Sodium dichromate dihydrate: 40 g / L, a chromate aqueous solution with a liquid temperature of 35 ° C. was prepared, and adjusted to pH 12.0 using sodium hydroxide. The chromate aqueous solution was filled between platinum used as an anode and the treated copper foil as a cathode, and a chromate layer was provided under electrolytic conditions of a current density of 2.0 A / dm 2 and an electric quantity of 10 C / dm 2 .

次にクロメート層を設けた処理銅箔面に以下の液組成、液温、浸漬時間でシランカップリング剤層を設けた。
(シランカップリング剤層)
シランカップリング剤処理液として、γ−アミノプロピルトリエトキシシラン5mL/Lを含有する水溶液を調整した。そして、前記各処理を設けた処理銅箔を液温30℃のシランカップリング剤処理液に10秒間浸漬してシランカップリング剤処理を施した。
そして、前記シランカップリング剤層の形成が完了した後、常温(25℃)にて自然乾燥させて本発明の処理銅箔を得た。
Next, a silane coupling agent layer was provided on the treated copper foil surface provided with the chromate layer with the following liquid composition, liquid temperature, and immersion time.
(Silane coupling agent layer)
An aqueous solution containing 5 mL / L of γ-aminopropyltriethoxysilane was prepared as a silane coupling agent treatment solution. Then, the treated copper foil provided with each treatment was immersed in a silane coupling agent treatment solution at a liquid temperature of 30 ° C. for 10 seconds to give a silane coupling agent treatment.
And after formation of the said silane coupling agent layer was completed, it was naturally dried at normal temperature (25 degreeC), and the process copper foil of this invention was obtained.

実施例2〜6及び比較例1〜6
(未処理電解銅箔)
実施例1で使用した未処理電解銅箔と同じものを使用した。
(一段目粗化処理層)
表1に示すとおりに、一段目粗化処理層を形成する電解液に添加する各添加剤濃度を変更し、電流密度及び電気量を変更したほかは、前記実施例1と同じ条件、同じ方法で一段目粗化処理層を得た。
(二段目粗化処理層)
実施例1と同じ電解液組成、液温、電極、電解条件で二段目粗化処理層を設けた。
(クロメート層)
実施例1と同じ電解液組成、液温、pH、電極、電解条件でクロメート層を設けた。
(シランカップリング剤層)
実施例1と同じ液組成、液温、浸漬時間でシランカップリング剤層を設けた。
Examples 2-6 and Comparative Examples 1-6
(Untreated electrolytic copper foil)
The same untreated electrolytic copper foil used in Example 1 was used.
(First-stage roughening layer)
As shown in Table 1, the same conditions and the same method as in Example 1 except that the concentration of each additive added to the electrolytic solution forming the first-stage roughening treatment layer was changed and the current density and quantity of electricity were changed. Thus, a first-stage roughened layer was obtained.
(Second-stage roughening layer)
A second-stage roughening treatment layer was provided under the same electrolytic solution composition, liquid temperature, electrode, and electrolysis conditions as in Example 1.
(Chromate layer)
A chromate layer was provided with the same electrolytic solution composition, liquid temperature, pH, electrode, and electrolysis conditions as in Example 1.
(Silane coupling agent layer)
A silane coupling agent layer was provided with the same liquid composition, liquid temperature, and immersion time as in Example 1.

次に、前記実施例1〜6 及び比較例1〜6 にて得られた処理銅箔に対して次の測定を行った。
(十点平均粗さ粗度Rz)
前記各処理層が設けられた面について、JISB0651-2001に規定される触針式表面粗さ計に適合するサーフコーダSE1700α(株式会社小坂研究所製)にて、触針として触針先端の半径2μmのものを使用し、粗さ曲線用カットオフ値0.8mm、測定距離4.0mmとしてJISB0601-1994に定義される十点平均粗さRzを測定した。測定した結果を表2に示す。なお、前記未処理電解銅箔析出面の十点平均粗さRzも本方法で測定した。
Next, the following measurements were performed on the treated copper foils obtained in Examples 1 to 6 and Comparative Examples 1 to 6.
(10-point average roughness roughness Rz)
For the surface provided with each treatment layer, the radius of the tip of the stylus as a stylus on the surf coder SE1700α (manufactured by Kosaka Laboratories) that conforms to the stylus type surface roughness meter specified in JISB0651-2001 A 10 μm average roughness Rz defined in JISB0601-1994 was measured with a roughness curve cut-off value of 0.8 mm and a measurement distance of 4.0 mm. Table 2 shows the measurement results. The ten-point average roughness Rz of the untreated electrolytic copper foil deposition surface was also measured by this method.

(局部山頂の平均間隔S)
前記各処理層が設けられた面について、JISB0651-2001に規定される触針式表面粗さ計に適合するサーフコーダSE1700α(株式会社小坂研究所製)にて、触針として触針先端の半径2μmのものを使用し、粗さ曲線用カットオフ値0.8mm、測定距離4.0mmとしてJISB0601-1994に定義される局部山頂の平均間隔Sを測定した。測定した結果を表2に示す。
(Average distance S between local peaks)
For the surface provided with each treatment layer, the radius of the tip of the stylus as a stylus on the surf coder SE1700α (manufactured by Kosaka Laboratories) that conforms to the stylus type surface roughness meter specified in JISB0651-2001 An average distance S between local peaks defined in JISB0601-1994 was measured with a roughness curve cut-off value of 0.8 mm and a measurement distance of 4.0 mm. Table 2 shows the measurement results.

(算術平均粗さ粗度Ra)
前記各処理層が設けられた面について、JISB0651-2001に規定される触針式表面粗さ計に適合するサーフコーダSE1700α(株式会社小坂研究所製)にて、触針として触針先端の半径2μmのものを使用し、粗さ曲線用カットオフ値0.8mm、測定距離4.0mmとしてJISB0601-1994に定義される算術平均粗さRaを測定した。測定した結果を表2に示す。
式(1) { (S×1000)/Ra}
前記方法で測定したRa及びSを使用し、請求項1に記載している式(1){(S×1000)/Ra}に測定値を代入し算出した。算出した結果を表2に示す。
(Arithmetic mean roughness roughness Ra)
For the surface provided with each treatment layer, the radius of the tip of the stylus as a stylus on the surf coder SE1700α (manufactured by Kosaka Laboratories) that conforms to the stylus type surface roughness meter specified in JISB0651-2001 An arithmetic average roughness Ra defined in JISB0601-1994 was measured using a roughness curve cut-off value of 0.8 mm and a measurement distance of 4.0 mm. Table 2 shows the measurement results.
Formula (1) {(S × 1000) / Ra}
Using Ra and S measured by the above method, calculation was performed by substituting measurement values into the formula (1) {(S × 1000) / Ra} described in claim 1. The calculated results are shown in Table 2.


次に実施例1〜6及び比較例1〜6の処理銅箔を使用して銅張積層板を作製した。
(FR-4基材を使用したリジッド銅張積層板の作製(以下銅張積層板Aという))
実施例1〜6及び比較例1〜6の処理銅箔の各種処理層が設けられた面を被接着面としてFR-4基材(京セラケミカル製、品名:TLP-551、厚さ:0.18mm)を3枚重ね、圧力:40kgf/cm、温度:170℃、時間:60分間の条件でプレス機で加熱加圧成型を行い、銅張積層板Aを得た。
Next, the copper clad laminated board was produced using the process copper foil of Examples 1-6 and Comparative Examples 1-6.
(Preparation of rigid copper clad laminate using FR-4 substrate (hereinafter referred to as copper clad laminate A))
FR-4 substrate (manufactured by Kyocera Chemical, product name: TLP-551, thickness: 0.18 mm) with the surface provided with various treated layers of the treated copper foils of Examples 1 to 6 and Comparative Examples 1 to 6 as the adherend surface 3), pressure and pressure were set to 40 kgf / cm 2 , temperature was set to 170 ° C., and time was set to 60 minutes by heating and pressing with a press machine to obtain a copper-clad laminate A.

次に銅張積層板Aについて次の測定を行った。
(引きはがし強さ)
エッチングマシーンを使用し、エッチングにより1mm幅の銅の回路サンプルを作製した。JIS C 6481に準拠し、万能試験機を用いて、引きはがし強さを測定した。測定結果を表3に示す。
Next, the following measurement was performed on the copper-clad laminate A.
(Stripping strength)
An etching machine was used to produce a 1 mm wide copper circuit sample by etching. In accordance with JIS C 6481, the peel strength was measured using a universal testing machine. Table 3 shows the measurement results.

(吸湿処理後の引きはがし強さの劣化率)
1mm幅の銅の回路サンプルを、120分間イオン交換水の中で煮沸した。次いで水洗を行い、乾燥した後、引きはがし強さを測定した。劣化率は下記式(3)に測定値を代入し算出した。算出した結果を表3に示す。
式(3):吸湿処理後の引きはがし強さの劣化率(%)={(吸湿処理前の引きはがし強さの値−吸湿処理後の引きはがし強さの値)/吸湿処理前の引きはがし強さの値}×100
(Degradation rate of peel strength after moisture absorption treatment)
A 1 mm wide copper circuit sample was boiled in ion exchange water for 120 minutes. Subsequently, it was washed with water and dried, and then peel strength was measured. The deterioration rate was calculated by substituting the measured value into the following formula (3). The calculated results are shown in Table 3.
Formula (3): Degradation rate of peel strength after moisture absorption treatment (%) = {(value of peel strength before moisture absorption treatment−value of peel strength after moisture treatment) / peel before moisture absorption treatment Peel strength} × 100

(活性処理液浸漬後の引きはがし強さ)
1mm幅の銅の回路サンプルを、18wt%塩酸水溶液に液温:25±2℃の条件で60分間浸漬処理を行った。次いで水洗し、乾燥した後、引きはがし強さを測定した。劣化率は下記式(4)に測定値を代入して算出した。算出した結果を表3に示す。
式(4):活性処理液浸漬後の引きはがし強さの劣化率(%)={(塩酸水溶液浸漬前の引きはがし強さの値−塩酸水溶液浸漬後の引きはがし強さの値)/塩酸水溶液浸漬前の引きはがし強さの値}×100
(Stripping strength after immersion in active treatment solution)
A 1 mm wide copper circuit sample was immersed in an 18 wt% aqueous hydrochloric acid solution at a liquid temperature of 25 ± 2 ° C. for 60 minutes. Then, after washing with water and drying, the peel strength was measured. The deterioration rate was calculated by substituting the measured value into the following formula (4). The calculated results are shown in Table 3.
Formula (4): Degradation rate of peel strength after immersion in active treatment solution (%) = {(value of peel strength before immersion in hydrochloric acid aqueous solution−value of peel strength after immersion in hydrochloric acid aqueous solution) / hydrochloric acid Value of peel strength before immersion in aqueous solution} × 100

(活性処理液浸漬後のしみ込み量)
1mm幅の銅の回路サンプルを、5wt%硫酸水溶液に液温:65±3℃の条件で30分間浸漬処理を行った。次いで水洗し、乾燥した後、銅の回路を銅張積層板Aから剥離した。剥離処理銅箔面を光学顕微鏡で観察し硫酸水溶液のしみ込み量(μm)を読みとった。硫酸水溶液がしみ込んだ部分は色調差が生じるためしみ込み量は読みとれる。読みとった結果を表3に示す。
(Penetration amount after immersion in active treatment solution)
A 1 mm wide copper circuit sample was immersed in a 5 wt% aqueous sulfuric acid solution at a liquid temperature of 65 ± 3 ° C. for 30 minutes. Next, after washing with water and drying, the copper circuit was peeled off from the copper-clad laminate A. The peel-treated copper foil surface was observed with an optical microscope, and the amount of penetration of the sulfuric acid aqueous solution (μm) was read. Since the color difference occurs in the portion where the sulfuric acid aqueous solution has permeated, the amount of permeation can be read. The results read are shown in Table 3.

(エッチング性:回路間における銅の溶け残りの有無)
銅張積層板Aの銅箔面側にポジティブ型液状レジストを塗布し、70℃に設定した大気オーブンで7分間乾燥した。次いで、ライン/スペース=30μm/30μmのマスクフィルムを用いて露光し、次いで現像を行い、露光された部分のエッチングレジストを除去した。次いで、塩化第二銅:3.2mol/L、塩酸:0.4mol/Lの組成のエッチング液を使用しスプレー圧:0.15mol/L、液温:50℃の条件でエッチングを行いエッチングレジストのない処理銅箔部分をエッチングした。その後、回路上のエッチングレジストを水酸化ナトリウムで除去した後、大気オーブンで100℃で10分間乾燥を行い、ライン/スペース=30μm/30μmの銅の回路を得た。このサンプルを島津製作所製EPMA-1610で銅の面分析を行い、回路間における銅の溶け残りの有無を調査した。調査した結果を表3に示す。
(Etching property: Presence or absence of unmelted copper between circuits)
A positive type liquid resist was applied to the copper foil surface side of the copper clad laminate A and dried in an atmospheric oven set at 70 ° C. for 7 minutes. Next, exposure was performed using a mask film of line / space = 30 μm / 30 μm, followed by development, and the etching resist in the exposed portion was removed. Next, etching is performed without etching resist using etching solution with composition of cupric chloride: 3.2 mol / L, hydrochloric acid: 0.4 mol / L, spray pressure: 0.15 mol / L, and liquid temperature: 50 ° C. The copper foil part was etched. Thereafter, the etching resist on the circuit was removed with sodium hydroxide, followed by drying at 100 ° C. for 10 minutes in an atmospheric oven to obtain a copper circuit of line / space = 30 μm / 30 μm. This sample was subjected to surface analysis of copper with EPMA-1610 manufactured by Shimadzu Corporation to investigate the presence or absence of unmelted copper between circuits. The survey results are shown in Table 3.

表2、表3に示す諸結果によれば、実施例1〜6はRz及びS及びRa及び式(1){(S×1000/Ra)}が本発明の要件を満たしていることから、強固な引きはがし強さが得られ、吸湿処理後の引きはがし強さの劣化率が小さく、活性処理液浸漬後の引きはがし強さの劣化率が小さく、活性処理液浸漬後のしみ込みが無く、エッチング性が良好である。   According to the results shown in Table 2 and Table 3, since Examples 1 to 6 satisfy Rz, S and Ra and Formula (1) {(S × 1000 / Ra)} satisfy the requirements of the present invention, A strong peel strength is obtained, the degradation rate of the peel strength after moisture absorption treatment is small, the degradation rate of the peel strength after immersion in the active treatment solution is small, and there is no penetration after immersion in the active treatment solution Etching is good.

一方、比較例1〜6 はRz及びS及びRa及び式(1){(S×1000/Ra)}が一つ又は二つ又は三つ本発明の要件を満たしていない。比較例1〜3と6は引きはがし強さが弱く、吸湿処理後の引きはがし強さの劣化率が大きく、活性処理液浸漬後の引きはがし強さの劣化率が大きく、活性処理液のしみ込みが発生している。また、比較例4、5は処理銅箔エッチング後の回路間において銅の溶け残りがある。   On the other hand, in Comparative Examples 1 to 6, Rz, S, Ra, and formula (1) {(S × 1000 / Ra)} do not satisfy one, two, or three requirements of the present invention. Comparative Examples 1 to 3 and 6 have low peel strength, a large deterioration rate of the peel strength after moisture absorption treatment, a large deterioration rate of the peel strength after immersion in the active treatment solution, and a stain of the active treatment solution Has occurred. Further, in Comparative Examples 4 and 5, there is unmelted copper between the circuits after the treated copper foil etching.

実施例7
(未処理電解銅箔)
実施例1で使用した未処理電解銅箔と同じものを使用した。
(一段目粗化処理層)
実施例3と同じ電解液組成、添加剤、液温、電極、電解条件で一段目粗化処理層を設けた。
(二段目粗化処理層)
実施例1と同じ電解液組成、液温、電極、電解条件で二段目粗化処理層を設けた。
次に以下に示す電解液組成、液温、pH、電極、電解条件でモリブデンを含有するニッケル層を前記二段目粗化処理層表面に施した。
(モリブデンを含有するニッケル層)
硫酸ニッケル六水和物:45g/L、モリブデン(VI)酸二ナトリウム二水和物:15g/L、クエン酸三ナトリウム二水和物:50g/L、液温:35℃のニッケル−モリブデン水溶液を調整し、アンモニア水でpHを10.5に調整した。このニッケル−モリブデン水溶液を陽極として使用する白金と陰極である粗化処理層を設けた処理銅箔の間に充填し、電流密度1.0A/dm2、電気量2.0C/ dm2の電解条件でモリブデンを含有するニッケル層を設けた。
(クロメート層)
実施例1と同じ電解液組成、液温、pH、電解条件でクロメート層を設けた。
(シランカップリング剤層)
実施例1と同じ液組成、液温、浸漬時間でシランカップリング剤層を設けた。
Example 7
(Untreated electrolytic copper foil)
The same untreated electrolytic copper foil used in Example 1 was used.
(First-stage roughening layer)
A first-stage roughening treatment layer was provided with the same electrolyte solution composition, additive, solution temperature, electrode, and electrolysis conditions as in Example 3.
(Second-stage roughening layer)
A second-stage roughening treatment layer was provided under the same electrolytic solution composition, liquid temperature, electrode, and electrolysis conditions as in Example 1.
Next, a nickel layer containing molybdenum was applied to the surface of the second-stage roughening treatment layer according to the following electrolytic solution composition, solution temperature, pH, electrode, and electrolysis conditions.
(Nickel layer containing molybdenum)
Nickel sulfate hexahydrate: 45 g / L, disodium molybdenum (VI) dihydrate: 15 g / L, trisodium citrate dihydrate: 50 g / L, liquid temperature: 35 ° C. nickel-molybdenum aqueous solution The pH was adjusted to 10.5 with aqueous ammonia. This nickel-molybdenum aqueous solution is filled between platinum used as an anode and a treated copper foil provided with a roughening layer as a cathode, and is subjected to electrolytic conditions of a current density of 1.0 A / dm 2 and an electric charge of 2.0 C / dm 2. A nickel layer containing molybdenum was provided.
(Chromate layer)
A chromate layer was provided with the same electrolyte solution composition, solution temperature, pH, and electrolysis conditions as in Example 1.
(Silane coupling agent layer)
A silane coupling agent layer was provided with the same liquid composition, liquid temperature, and immersion time as in Example 1.

実施例8〜13及び比較例7〜9
(未処理電解銅箔)
実施例1で使用した未処理電解銅箔と同じものを使用した。
(一段目粗化処理層)
実施例7(実施例3)と同じ電解液組成、添加剤、液温、電極、電解条件で一段目粗化処理層を得た。
(二段目粗化処理層)
実施例1と同じ電解液組成、液温、電極、電解条件で二段目粗化処理層を設けた。
(モリブデンを含有するニッケル及び/又はコバルト層)
表4に示す電解液組成、液温、pH、電解条件でモリブデンを含有するニッケル及び/又はコバルト層を形成した。
Examples 8-13 and Comparative Examples 7-9
(Untreated electrolytic copper foil)
The same untreated electrolytic copper foil used in Example 1 was used.
(First-stage roughening layer)
A first-stage roughened layer was obtained with the same electrolyte solution composition, additive, solution temperature, electrode and electrolysis conditions as in Example 7 (Example 3).
(Second-stage roughening layer)
A second-stage roughening treatment layer was provided under the same electrolytic solution composition, liquid temperature, electrode, and electrolysis conditions as in Example 1.
(Nickel and / or cobalt layer containing molybdenum)
A nickel and / or cobalt layer containing molybdenum was formed under the electrolytic solution composition, liquid temperature, pH, and electrolysis conditions shown in Table 4.

なお、比較例9は以下に示す電解液組成、液温、pH、電極、電解条件で亜鉛−ニッケル層を設けた。
(亜鉛−ニッケル層)
ピロリン酸ニッケル:8g/L、ピロリン亜鉛:20g/L、ピロリン酸カリウム:80g/L、液温:40℃の亜鉛−ニッケル水溶液を調整し、pHを9.5に調整した。この亜鉛−ニッケル水溶液を陽極として使用する白金と陰極である粗化処理層を設けた処理銅箔の間に充填し、電流密度0.5A/dm2、電気量2C/ dm2の電解条件で亜鉛−ニッケル層を設けた。
In Comparative Example 9, a zinc-nickel layer was provided with the following electrolyte solution composition, solution temperature, pH, electrode, and electrolysis conditions.
(Zinc-nickel layer)
Nickel pyrophosphate: 8 g / L, zinc pyrophosphate: 20 g / L, potassium pyrophosphate: 80 g / L, liquid temperature: 40 ° C. A zinc-nickel aqueous solution was adjusted to adjust the pH to 9.5. This zinc-nickel aqueous solution is filled between platinum used as an anode and a treated copper foil provided with a roughening treatment layer as a cathode, and zinc is electrolyzed under a current density of 0.5 A / dm 2 and an electric quantity of 2 C / dm 2. -A nickel layer was provided.

(クロメート層)
実施例1と同じ電解液組成、液温、pH、電解条件でクロメート層を設けた。
(シランカップリング剤層)
実施例1と同じ液組成、液温、浸漬時間でシランカップリング剤層を設けた。
(Chromate layer)
A chromate layer was provided with the same electrolyte solution composition, solution temperature, pH, and electrolysis conditions as in Example 1.
(Silane coupling agent layer)
A silane coupling agent layer was provided with the same liquid composition, liquid temperature, and immersion time as in Example 1.

次に、前記実施例7〜13 及び比較例7〜9にて得られた処理銅箔に対して次の測定を行った。
(モリブデンを含有するニッケル及び/又はコバルト層の析出付着量)
理学電機株式会社製のRIX2000を用い、モリブデンを含有するニッケル及び/又はコバルト層の各元素の析出付着量を測定し、各元素の和を析出付着量とした。なお、比較例9もRIX2000を用い亜鉛とニッケルの析出付着量を測定し、その和を析出付着量とした。測定した結果を表5に示す。
(モリブデンを含有するニッケル及び/又はコバルト層の各元素の含有率)
モリブデンを含有するニッケル及び/又はコバルト層の析出付着量から得られた各元素の析出付着量を用い、各元素の含有率(wt%)を下記式(5)に代入して算出した。なお、比較例9の亜鉛―ニッケル層も式(5)の分母を(亜鉛―ニッケル層の析出付着量)に置き換え、分子を亜鉛の析出付着量又はニッケルの析出付着量に置き換え各元素の含有率を算出した。算出した結果を表5に示す。
式(5):各元素の含有率(wt%)={(各元素の析出付着量)/(モリブデンを含有するコバルト又はニッケル層の析出付着量)}×100
Next, the following measurements were performed on the treated copper foils obtained in Examples 7 to 13 and Comparative Examples 7 to 9.
(Deposition deposition amount of nickel and / or cobalt layer containing molybdenum)
Using RIX2000 made by Rigaku Denki Co., Ltd., the deposition amount of each element of the nickel and / or cobalt layer containing molybdenum was measured, and the sum of each element was taken as the deposition amount. In Comparative Example 9 as well, RIX2000 was used to measure the deposition amount of zinc and nickel, and the sum was taken as the deposition amount. Table 5 shows the measurement results.
(Content of each element of nickel and / or cobalt layer containing molybdenum)
Using the deposition deposition amount of each element obtained from the deposition deposition amount of the nickel and / or cobalt layer containing molybdenum, the content (wt%) of each element was substituted into the following formula (5). In addition, the zinc-nickel layer of Comparative Example 9 is also replaced with the denominator of the formula (5) by (precipitated deposit amount of zinc-nickel layer), and the molecule is replaced by the deposited deposit amount of zinc or the deposited deposit amount of nickel. The rate was calculated. The calculated results are shown in Table 5.
Formula (5): Content of each element (wt%) = {(precipitation amount of each element) / (precipitation amount of cobalt or nickel layer containing molybdenum)} × 100

次に実施例7〜13及び比較例7〜9の処理銅箔を使用して銅張積層板を作製した。
(ポリアミック酸を使用した2層フレキシブル銅張積層板(以下銅張積層板Bという))
実施例7〜13及び比較例7〜9の処理銅箔の各種処理層が設けられた面をピロメリット酸型のポリイミド前駆体をクリアランス350μmで塗布を行った。
このポリイミド前駆体はセパラブルフラスコ中にN,N−ジメチルアセトアミドを425g採取し、無水ピロメリット酸0.18モル、4,4’−ジアミノジフェニルエーテル0.18モルを撹拌しながら溶解させ4時間の撹拌により重合反応を行なうことで得られた。次いでポリイミド前駆体塗布後の処理銅箔をイナート乾燥機で130℃−12分、160℃−2分、220℃―2分、250℃―2分の加熱条件で溶剤を揮発させた後、イナート乾燥機により、360℃−2分間の加熱硬化処理を行い銅張積層板Bを得た。
Next, the copper clad laminated board was produced using the process copper foil of Examples 7-13 and Comparative Examples 7-9.
(2-layer flexible copper clad laminate using polyamic acid (hereinafter referred to as copper clad laminate B))
The surface provided with various treatment layers of the treated copper foils of Examples 7 to 13 and Comparative Examples 7 to 9 was coated with a pyromellitic acid type polyimide precursor with a clearance of 350 μm.
425g of N, N-dimethylacetamide was sampled in a separable flask, 0.18mol of pyromellitic anhydride, 0.18mol of 4,4'-diaminodiphenyl ether was dissolved with stirring, and this polyimide precursor was polymerized by stirring for 4 hours. It was obtained by performing. Next, the treated copper foil after application of the polyimide precursor was volatilized with an inert dryer at 130 ° C-12 minutes, 160 ° C-2 minutes, 220 ° C-2 minutes, 250 ° C-2 minutes, and then inerted. A copper clad laminate B was obtained by performing a heat curing treatment at 360 ° C. for 2 minutes with a dryer.

次に銅張積層板Bについて次の測定を行った。
(引きはがし強さ)
エッチングマシーンを使用し、エッチングにより1mm幅の銅の回路サンプ
ルを作製した。JIS C 5016に準拠し、万能試験機を用いて、90°での引きはがし強さを測定した。測定結果を表6に示す。
(加熱処理後の引きはがし強さの劣化率)
1mm幅の銅の回路サンプルを、大気オーブンを使用し、温度:150℃、時間:168時間の条件で加熱処理を行い、引きはがし強さを測定した。劣化率は下記式(6)に値を代入して算出した。算出した結果を表6に示す。
式(6):加熱処理後の引きはがし強さの劣化率(%)={(加熱処理前の引きはがし強さの値−加熱処理後の引きはがし強さの値)/加熱処理前の引きはがし強さの値}×100
Next, the following measurement was performed on the copper-clad laminate B.
(Stripping strength)
An etching machine was used to produce a 1 mm wide copper circuit sample by etching. In accordance with JIS C 5016, the peel strength at 90 ° was measured using a universal testing machine. Table 6 shows the measurement results.
(Degradation rate of peel strength after heat treatment)
A 1 mm wide copper circuit sample was subjected to a heat treatment using an atmospheric oven under conditions of temperature: 150 ° C. and time: 168 hours, and the peel strength was measured. The deterioration rate was calculated by substituting a value into the following formula (6). The calculated results are shown in Table 6.
Equation (6): Degradation rate of peel strength after heat treatment (%) = {(Peel strength value before heat treatment−Peel strength value after heat treatment) / Peel before heat treatment Peel strength} × 100

表5、表6の示す諸結果によると、モリブデンを含有するニッケル及び/又はコバルト層を設けた実施例7〜13は、強固な引きはがし強さが得られ、加熱処理後の引きはがし強さの劣化率が小さい。
一方、比較例7の様にモリブデンを含有するコバルト層の析出付着量が少ない場合、比較例8の様にモリブデンを含有するニッケルのモリブデン含有率が10wt%未満である場合、比較例9の様に亜鉛−ニッケル層である場合は、強固な引きはがし強さは得られているが加熱処理後の引きはがし強さの劣化率が大きい。
According to the results shown in Table 5 and Table 6, Examples 7 to 13 provided with a nickel and / or cobalt layer containing molybdenum provided a strong peel strength, and the peel strength after heat treatment was obtained. The deterioration rate is small.
On the other hand, when the deposition amount of the cobalt layer containing molybdenum is small as in Comparative Example 7, when the molybdenum content of nickel containing molybdenum is less than 10 wt% as in Comparative Example 8, as in Comparative Example 9 In the case of a zinc-nickel layer, strong peeling strength is obtained, but the deterioration rate of the peeling strength after heat treatment is large.

Claims (4)

未処理銅箔の表面に処理層を形成してなる処理銅箔面を絶縁性樹脂基材に接着させる銅張積層板用処理銅箔であって、未処理銅箔の表面に粗化処理層、クロメート層及びシランカップリング剤層が順次処理層として形成されており、前記処理銅箔の処理面の十点平均粗さRzが1.0μm〜2.7μmであり、かつ、触針式表面粗さ計によって測定されたJISB0601-1994に規定される局部山頂の平均間隔Sが0.0230mm以下(但し0は含まない)であって算術平均粗さRaが0.18μm〜0.36μmであり、かつ、前記Raと前記Sとが下記式(1)の関係を有する銅張積層板用処理銅箔。
式(1)
50.0<{(S×1000)/Ra}≦100.0(式(1)中、S×1000の単位はμmである。)
A treated copper foil for a copper clad laminate in which a treated copper foil surface formed by forming a treated layer on the surface of an untreated copper foil is bonded to an insulating resin substrate, and a roughened treated layer on the surface of the untreated copper foil The chromate layer and the silane coupling agent layer are sequentially formed as a treatment layer, the ten-point average roughness Rz of the treated surface of the treated copper foil is 1.0 μm to 2.7 μm, and the stylus surface roughness The average distance S between local peaks defined by JISB0601-1994 measured by a meter is 0.0230 mm or less (excluding 0), the arithmetic average roughness Ra is 0.18 μm to 0.36 μm, and the Ra A copper foil for copper-clad laminate, wherein S and S have the relationship of the following formula (1).
Formula (1)
50.0 <{(S × 1000) / Ra} ≦ 100.0 (in the formula (1), the unit of S × 1000 is μm)
前記粗化処理層とクロメート層との間にモリブデンを含有するニッケル及び/又はコバルト層が処理層として形成されており、当該モリブデンを含有するニッケル及び/又はコバルト層の析出付着量が20mg/m2〜300mg/m2であり、かつ、モリブデンの含有率が10wt%以上であって残部がニッケル及び/又はコバルトである請求項1記載の銅張積層板用処理銅箔。 A nickel and / or cobalt layer containing molybdenum is formed as a treatment layer between the roughening layer and the chromate layer, and the deposition amount of the nickel and / or cobalt layer containing molybdenum is 20 mg / m. 2 is a to 300 mg / m 2, and nickel remainder content of molybdenum is not more than 10 wt% and / or cobalt der Ru請 Motomeko 1 copper clad laminate for treated copper foil according. 請求項1又は2記載の銅張積層板用処理銅箔絶縁性樹脂基材に加熱圧着させた銅張積層板。 Claim 1 or 2 copper clad laminate of the copper-clad laminate for treated copper foil was heat-pressed in the insulating resin base material according. 請求項記載の銅張積層板を用いて得られるプリント配線板。
Help printed wiring board obtained using the copper-clad laminate of claim 3 wherein.
JP2010087794A 2010-04-06 2010-04-06 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate. Active JP5885054B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010087794A JP5885054B2 (en) 2010-04-06 2010-04-06 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
CN201110072633.XA CN102215632B (en) 2010-04-06 2011-03-17 Copper foil for processing copper clad laminate, copper clad laminate and printed wiring board equipped with copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087794A JP5885054B2 (en) 2010-04-06 2010-04-06 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.

Publications (2)

Publication Number Publication Date
JP2011219789A JP2011219789A (en) 2011-11-04
JP5885054B2 true JP5885054B2 (en) 2016-03-15

Family

ID=44746686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087794A Active JP5885054B2 (en) 2010-04-06 2010-04-06 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.

Country Status (2)

Country Link
JP (1) JP5885054B2 (en)
CN (1) CN102215632B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858849B2 (en) * 2012-03-30 2016-02-10 Jx日鉱日石金属株式会社 Metal foil
TWI509111B (en) * 2012-11-26 2015-11-21 Jx Nippon Mining & Metals Corp Surface treatment of electrolytic copper foil, laminated board, and printed wiring board, electronic equipment
CN109951964A (en) * 2013-07-23 2019-06-28 Jx日矿日石金属株式会社 Surface treatment copper foil, Copper foil with carrier, substrate and resin base material
JP6364162B2 (en) * 2013-07-25 2018-07-25 Jx金属株式会社 Method for manufacturing printed wiring board
JP5885790B2 (en) * 2013-08-20 2016-03-15 Jx金属株式会社 Surface treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic device, method for manufacturing electronic device, and method for manufacturing printed wiring board
CN107113971B (en) * 2015-08-12 2019-04-26 古河电气工业株式会社 High-frequency circuit copper foil, copper clad laminate, printed circuit board
JP6687409B2 (en) * 2016-02-09 2020-04-22 福田金属箔粉工業株式会社 High chroma treated copper foil, copper clad laminate using the treated copper foil, and method for producing the treated copper foil
JP2018009242A (en) * 2016-06-21 2018-01-18 Jx金属株式会社 Copper foil with release layer, laminate, production method of printed wiring board, and production method of electronic apparatus
JP7409760B2 (en) * 2016-12-05 2024-01-09 Jx金属株式会社 Method for manufacturing surface-treated copper foil, copper foil with carrier, laminate, printed wiring board, and manufacturing method for electronic equipment
CN107623990A (en) * 2017-07-26 2018-01-23 珠海亚泰电子科技有限公司 Thicken copper base and preparation technology
JP6413039B1 (en) * 2018-03-29 2018-10-24 Jx金属株式会社 Surface treated copper foil and copper clad laminate
CN113981494B (en) * 2021-12-10 2023-05-30 安徽华创新材料股份有限公司 Surface treatment process for reducing heat loss rate of electrolytic copper foil in peel strength
WO2023182174A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
WO2023182179A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, copper foil having carrier, copper-clad laminate, and printed wiring board
WO2023182176A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
WO2023182175A1 (en) * 2022-03-24 2023-09-28 三井金属鉱業株式会社 Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925297A (en) * 1982-08-03 1984-02-09 日本電解株式会社 Copper foil for printed circuit
JPH0819550B2 (en) * 1990-06-05 1996-02-28 福田金属箔粉工業株式会社 Surface treatment method for copper foil for printed circuits
JPH04274389A (en) * 1991-03-01 1992-09-30 Furukawa Saakitsuto Foil Kk Copper foil for printed circuit board
JPH08281866A (en) * 1995-04-18 1996-10-29 Mitsui Toatsu Chem Inc Production of flexible metal foil laminated sheet
JP3881419B2 (en) * 1997-03-27 2007-02-14 日鉱金属株式会社 Copper or copper alloy material with excellent resin adhesion
JP2003311880A (en) * 2002-04-23 2003-11-06 Matsushita Electric Works Ltd Metal foil-clad laminated sheet for high frequency, printed wiring board, and multilayered printed wiring board
JP5116943B2 (en) * 2003-02-04 2013-01-09 古河電気工業株式会社 Copper foil for high frequency circuit and manufacturing method thereof
JP2004263300A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
EP1531656A3 (en) * 2003-11-11 2007-10-03 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP4833556B2 (en) * 2004-02-06 2011-12-07 古河電気工業株式会社 Surface treated copper foil
TW200535259A (en) * 2004-02-06 2005-11-01 Furukawa Circuit Foil Treated copper foil and circuit board
JP2006103189A (en) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk Surface-treated copper foil and circuit board
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
JP5435505B2 (en) * 2009-02-13 2014-03-05 古河電気工業株式会社 Metal foil for replica and manufacturing method thereof, insulating substrate, wiring substrate

Also Published As

Publication number Publication date
CN102215632A (en) 2011-10-12
CN102215632B (en) 2015-03-25
JP2011219789A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5634103B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP5885054B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
KR100941219B1 (en) Electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
CN108603303B (en) Surface-treated copper foil and copper-clad laminate produced using same
CN102713020B (en) Surface-treated copper foil, method for producing same, and copper clad laminated board
US20180279482A1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
TWI434965B (en) A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
CN103392028B (en) Copper foil with carrier
EP3046400A2 (en) Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
TW200535259A (en) Treated copper foil and circuit board
TW201428139A (en) Surface-treated electrolytic copper foil, laminate, and printed circuit board
EP3026144A1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
JP5281732B2 (en) Surface processing method of aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having a surface processed by the method
JP5441945B2 (en) An extremely thin copper foil using a very low profile copper foil as a carrier and a method for producing the same.
JP2017508890A (en) Copper foil, electrical parts including the same, and battery
JP2010180454A (en) Surface-treated copper foil, method for manufacturing the same and copper-clad laminate
JP2001181886A (en) Electrolytic copper foil
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
WO1996025838A1 (en) Copper foil and high-density multi-layered printed circuit board using the copper foil for inner layer circuit
JP2011174132A (en) Copper foil for printed circuit board
JP4941204B2 (en) Copper foil for printed wiring board and surface treatment method thereof
JP5985812B2 (en) Copper foil for printed circuit
CN102548202B (en) Roughly-processed copper foil and manufacture method thereof
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JP6845382B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160128

R150 Certificate of patent or registration of utility model

Ref document number: 5885054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250