JP6364162B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP6364162B2
JP6364162B2 JP2013167038A JP2013167038A JP6364162B2 JP 6364162 B2 JP6364162 B2 JP 6364162B2 JP 2013167038 A JP2013167038 A JP 2013167038A JP 2013167038 A JP2013167038 A JP 2013167038A JP 6364162 B2 JP6364162 B2 JP 6364162B2
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
mark
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013167038A
Other languages
Japanese (ja)
Other versions
JP2015025106A (en
Inventor
新井 英太
英太 新井
敦史 三木
敦史 三木
晃正 森山
晃正 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013167038A priority Critical patent/JP6364162B2/en
Publication of JP2015025106A publication Critical patent/JP2015025106A/en
Application granted granted Critical
Publication of JP6364162B2 publication Critical patent/JP6364162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、基材、金属箔または金属板、及び積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法に関する。  The present invention relates to a substrate, a metal foil or a metal plate, and a laminate, a printed wiring board, an electronic device, and a method for manufacturing a printed wiring board.

スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。  In a small electronic device such as a smartphone or a tablet PC, a flexible printed wiring board (hereinafter referred to as FPC) is adopted because of easy wiring and light weight. In recent years, with the enhancement of functions of these electronic devices, the signal transmission speed has been increased, and impedance matching has become an important factor in FPC. As a measure for impedance matching with respect to an increase in signal capacity, a resin insulation layer (for example, polyimide) serving as a base of an FPC has been increased in thickness. On the other hand, processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer The visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.

また、銅箔と樹脂絶縁層との積層板である銅張積層板は、表面に粗化めっきが施された圧延銅箔を使用しても製造できる。この圧延銅箔は、通常タフピッチ銅(酸素含有量100〜500重量ppm)又は無酸素銅(酸素含有量10重量ppm以下)を素材として使用し、これらのインゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。  Moreover, the copper clad laminated board which is a laminated board of copper foil and a resin insulating layer can also be manufactured even if it uses the rolled copper foil by which roughening plating was given to the surface. This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen-free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.

このような技術として、例えば、特許文献1には、ポリイミドフィルムと低粗度銅箔とが積層されてなり、銅箔エッチング後のフィルムの波長600nmでの光透過率が40%以上、曇価(HAZE)が30%以下であって、接着強度が500N/m以上である銅張積層板に係る発明が開示されている。
また、特許文献2には、電解銅箔による導体層を積層された絶縁層を有し、当該導体層をエッチングして回路形成した際のエッチング領域における絶縁層の光透過性が50%以上であるチップオンフレキ(COF)用フレキシブルプリント配線板において、前記電解銅箔は、絶縁層に接着される接着面にニッケル−亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)は0.05〜1.5μmであるとともに入射角60°における鏡面光沢度が250以上であることを特徴とするCOF用フレキシブルプリント配線板に係る発明が開示されている。
また、特許文献3には、印刷回路用銅箔の処理方法において、銅箔の表面に銅−コバルト−ニッケル合金めっきによる粗化処理後、コバルト−ニッケル合金めっき層を形成し、更に亜鉛−ニッケル合金めっき層を形成することを特徴とする印刷回路用銅箔の処理方法に係る発明が開示されている。
As such a technique, for example, in Patent Document 1, a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value. An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
Further, Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more. In a flexible printed wiring board for chip-on-flex (COF), the electrolytic copper foil has a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 μm, and the specular gloss at an incident angle of 60 ° is 250 or more, and an invention relating to a flexible printed wiring board for COF is disclosed.
Moreover, in patent document 3, in the processing method of the copper foil for printed circuits, after the roughening process by copper-cobalt-nickel alloy plating on the surface of copper foil, a cobalt-nickel alloy plating layer is formed, and also zinc-nickel An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.

特開2004−98659号公報  JP 2004-98659 A WO2003/096776  WO2003 / 096776 特許第2849059号公報  Japanese Patent No. 2849059

特許文献1において、黒化処理又はめっき処理後の有機処理剤により接着性が改良処理されて得られる低粗度銅箔は、銅張積層板に屈曲性が要求される用途では、疲労によって断線することがあり、樹脂透視性に劣る場合がある。
また、特許文献2では、粗化処理がなされておらず、COF用フレキシブルプリント配線板以外の用途においては銅箔と樹脂との密着強度が低く不十分である。
さらに、特許文献3に記載の処理方法では、銅箔へのCu−Co−Niによる微細処理は可能であったが、当該銅箔を樹脂と接着させてエッチングで除去した後の樹脂について、優れた透明性を実現できていない。
本発明は、透明性に優れた基材、基材と良好に接着し、金属箔または金属板をエッチングで除去した後の基材の透明性に優れた金属箔または金属板、及び、それを用いた積層板、プリント配線板、電子機器を提供する。また、本発明は、透明性に優れた基材を用いて精度良く効率的な作製が可能なプリント配線板の製造方法を提供する。
In Patent Document 1, a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency.
Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF.
Furthermore, in the processing method described in Patent Document 3, Cu-Co-Ni fine processing on the copper foil was possible, but the resin after bonding the copper foil with the resin and removing it by etching was excellent. Transparency is not realized.
The present invention provides a base material excellent in transparency, a metal foil or metal plate excellent in transparency of the base material after being well bonded to the base material and removing the metal foil or metal plate by etching, and Provided laminates, printed wiring boards and electronic devices used. Moreover, this invention provides the manufacturing method of the printed wiring board which can produce efficiently with sufficient precision using the base material excellent in transparency.

本発明者らは鋭意研究を重ねた結果、少なくとも一方の表面の一部または全体の十点平均粗さRzを、基材表面に入射する光の波長λに対して所定倍以下に制御することで、基材の透明性が改善することを見出した。  As a result of extensive research, the present inventors have controlled the ten-point average roughness Rz of a part or the whole of at least one surface to a predetermined multiple or less with respect to the wavelength λ of light incident on the substrate surface. Thus, it has been found that the transparency of the substrate is improved.

以上の知見を基礎として完成された本発明は一側面において、基材表面に入射する光の波長をλとしたとき、少なくとも一方の表面の一部または全体の十点平均粗さRzが2.1×λ以下である基材である。  In one aspect of the present invention completed based on the above knowledge, when the wavelength of light incident on the substrate surface is λ, the ten-point average roughness Rz of at least a part of or the entire surface is 2. The base material is 1 × λ or less.

本発明は別の一側面において、基材表面に入射する光の波長をλとしたとき、少なくとも一方の表面の一部または全体の局部山頂平均間隔Sが4.1×λ以下である基材である。  In another aspect of the present invention, a base material having a local peak sum average distance S of 4.1 × λ or less at least part of one surface or the whole when the wavelength of light incident on the base material surface is λ. It is.

本発明は更に別の一側面において、銅箔を基材表面に積層し、続いてエッチングにより前記銅箔を除去した後の前記基材表面について、前記基材表面に入射する光の波長をλとしたとき、少なくとも一方の表面の一部または全体の十点平均粗さRzが2.1×λ以下となる銅箔である。  In yet another aspect of the present invention, the wavelength of light incident on the substrate surface is set to λ with respect to the substrate surface after the copper foil is laminated on the substrate surface and subsequently removed by etching. Is a copper foil having a 10-point average roughness Rz of 2.1 × λ or less on a part or the whole of at least one surface.

本発明は更に別の一側面において、銅箔を基材表面に積層し、続いてエッチングにより前記銅箔を除去した後の前記基材表面について、前記基材表面に入射する光の波長をλとしたとき、少なくとも一方の表面の一部または全体の局部山頂平均間隔Sが4.1×λ以下となる銅箔である。  In yet another aspect of the present invention, the wavelength of light incident on the substrate surface is set to λ with respect to the substrate surface after the copper foil is laminated on the substrate surface and subsequently removed by etching. In this case, the copper foil is such that at least one part of the surface or the entire local summit average interval S is 4.1 × λ or less.

本発明は更に別の一側面において、本発明の銅箔と基材とを積層して構成した積層板である。  In still another aspect of the present invention, the present invention provides a laminated plate configured by laminating the copper foil of the present invention and a base material.

本発明は更に別の一側面において、本発明の基材を用いたプリント配線板である。  In still another aspect, the present invention is a printed wiring board using the substrate of the present invention.

本発明は更に別の一側面において、本発明の積層板を用いたプリント配線板である。  In yet another aspect, the present invention is a printed wiring board using the laminate of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を用いた電子機器である。  In still another aspect, the present invention is an electronic device using the printed wiring board of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。  In yet another aspect, the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。  In yet another aspect, the present invention includes a step of connecting at least one printed wiring board of the present invention and another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. This is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected.

本発明は更に別の一側面において、本発明のプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板を製造する方法である。  In still another aspect, the present invention is a method for manufacturing a printed wiring board, comprising at least a step of connecting the printed wiring board of the present invention and a component.

本発明は更に別の一側面において、
第1のプリント配線板と第2のプリント配線板とを接合してプリント配線板が2つ以上接続したプリント配線板を製造する方法であって、
前記第1及び第2のプリント配線板は基材と配線とを有し、
前記第1のプリント配線板はマークを有し、
前記第1のプリント配線板の前記基材の表面の一部または全体の十点平均粗さRzが2.1×(マークの検出に用いられる光の波長λ)以下であり、
前記第1のプリント配線板の前記マークに、前記第1のプリント配線板の基材越しに光を照射する工程、
前記照射した光の透過光又は反射光を検出する工程、
前記透過光又は反射光を検出した位置に基づいて、前記マークの位置を検出する工程、及び、
前記検出したマークの位置に基づいて前記第1のプリント配線板及び/又は前記第2のプリント配線板の位置決めをする工程、
を含むプリント配線板の製造方法である。
In another aspect of the present invention,
A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by joining a first printed wiring board and a second printed wiring board,
The first and second printed wiring boards have a base material and wiring,
The first printed wiring board has a mark,
The ten-point average roughness Rz of a part or the entire surface of the substrate of the first printed wiring board is 2.1 × (wavelength λ of light used for mark detection) or less,
Irradiating the mark on the first printed wiring board with light through the substrate of the first printed wiring board;
Detecting the transmitted light or reflected light of the irradiated light;
Detecting a position of the mark based on a position where the transmitted light or reflected light is detected; and
Positioning the first printed wiring board and / or the second printed wiring board based on the position of the detected mark;
Is a method of manufacturing a printed wiring board including

本発明は更に別の一側面において、
第1のプリント配線板と第2のプリント配線板とを接合してプリント配線板が2つ以上接続したプリント配線板を製造する方法であって、
前記第1及び第2のプリント配線板は基材と配線とを有し、
前記第1のプリント配線板はマークを有し、
前記第1のプリント配線板の前記基材の表面の一部または全体の局部山頂平均間隔Sが4.1×(マークの検出に用いられる光の波長λ)以下であり、
前記第1のプリント配線板の前記マークに、前記第1のプリント配線板の基材越しに光を照射する工程、
前記照射した光の透過光又は反射光を検出する工程、
前記透過光又は反射光を検出した位置に基づいて、前記マークの位置を検出する工程、及び、
前記検出したマークの位置に基づいて前記第1のプリント配線板及び/又は前記第2のプリント配線板の位置決めをする工程、
を含むプリント配線板の製造方法である。
In another aspect of the present invention,
A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by joining a first printed wiring board and a second printed wiring board,
The first and second printed wiring boards have a base material and wiring,
The first printed wiring board has a mark,
A partial or total local summit average interval S of the surface of the substrate of the first printed wiring board is 4.1 × (wavelength λ of light used for mark detection) or less,
Irradiating the mark on the first printed wiring board with light through the substrate of the first printed wiring board;
Detecting the transmitted light or reflected light of the irradiated light;
Detecting a position of the mark based on a position where the transmitted light or reflected light is detected; and
Positioning the first printed wiring board and / or the second printed wiring board based on the position of the detected mark;
Is a method of manufacturing a printed wiring board including

本発明によれば、透明性に優れた基材、基材と良好に接着し、金属箔または金属板をエッチングで除去した後の基材の透明性に優れた金属箔または金属板、及び、それを用いた積層板、プリント配線板、電子機器を提供することができる。また、本発明によれば、透明性に優れた基材を用いて精度良く効率的な作製が可能なプリント配線板の製造方法を提供することができる。  According to the present invention, a base material excellent in transparency, a metal foil or metal plate excellent in transparency of the base material after being well bonded to the base material and removing the metal foil or metal plate by etching, and A laminated board, a printed wiring board, and an electronic device using the same can be provided. Moreover, according to this invention, the manufacturing method of the printed wiring board which can be efficiently produced with sufficient precision using the base material excellent in transparency can be provided.

〔基材〕
本発明で使用可能な基材は、プリント配線板等に適用可能な特性を有するものが好ましく、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム等を使用する事ができる。
〔Base material〕
The base material that can be used in the present invention preferably has characteristics applicable to printed wiring boards and the like, for example, paper base phenolic resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin for rigid PWB. Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin, glass cloth base material epoxy resin, etc. are used, polyester film, polyimide film, liquid crystal polymer (LCP) film etc. for FPC Can be used.

本発明の基材の厚みは、特に制限されないが、例えば、1〜10000μm、5〜5000μm、10〜1000μmv、或いは、15〜500μmとすることができる。  Although the thickness in particular of the base material of this invention is not restrict | limited, For example, it can be set as 1-10000 micrometers, 5-5000 micrometers, 10-1000 micrometers, or 15-500 micrometers.

本発明の基材は、基材表面に入射する光の波長をλとしたとき、少なくとも一方の表面の一部または全体の十点平均粗さRzが2.1×λ以下である。このような構成によれば、基材表面での光の乱反射(拡散反射)を抑えることができるため、マークの検出に利用される、反射光または透過光の強さが弱くなりにくくなるため有効である。
また、本発明の基材は、少なくとも一方の表面の一部または全体の十点平均粗さRzが1.6×λ以下であるのが好ましく、1.1×λ以下であるのがより好ましく、0.8×λ以下であるのが更により好ましい。
なお、入射する光が短波長の光で無い場合には、光の強度が最も高い波長を上記λとする。
また、Rzの下限は特に規定する必要はないが、典型的には例えば、0.0001×λ以上、あるいは0.0005×λ以上、あるいは0.001×λ以上、あるいは0.002×λ以上である。
In the substrate of the present invention, when the wavelength of light incident on the substrate surface is λ, the ten-point average roughness Rz of at least a part of or the entire surface is 2.1 × λ or less. According to such a configuration, since irregular reflection (diffuse reflection) of light on the substrate surface can be suppressed, the intensity of reflected light or transmitted light used for mark detection is less likely to become weak, which is effective. It is.
Further, the base material of the present invention preferably has a ten-point average roughness Rz of at least one of the surfaces or the entire surface of 1.6 × λ or less, more preferably 1.1 × λ or less. More preferably, it is 0.8 × λ or less.
When the incident light is not short-wavelength light, the wavelength having the highest light intensity is defined as λ.
The lower limit of Rz need not be specified, but typically, for example, 0.0001 × λ or more, or 0.0005 × λ or more, or 0.001 × λ or more, or 0.002 × λ or more. It is.

本発明の基材は、基材表面に入射する光の波長をλとしたとき、少なくとも一方の表面の一部または全体の局部山頂平均間隔Sが4.1×λ以下である。ここで、SはJIS B0601−1994で規定される局部山頂の平均間隔Sを指す。このような構成によれば、基材表面での光の乱反射(拡散反射)を抑えることができるため、マークの検出に利用される、反射光または透過光の強さが弱くなりにくくなるため有効である。
また、本発明の基材は、少なくとも一方の表面の一部または全体の局部山頂平均間隔Sが3.6×λ以下であるのが好ましく、3.1×λ以下であるのがより好ましく、2.6×λ以下であるのが更により好ましい、2.1×λ以下であるのが更により好ましい、1.6×λ以下であるのが更により好ましい。
なお、入射する光が単波長の光で無い場合には、光の強度が最も高い波長を上記λとする。
また、Sの下限は特に規定する必要はないが、典型的には例えば、0.00001×λ以上、あるいは0.00005×λ以上、あるいは0.0001×λ以上、あるいは0.0002×λ以上、あるいは0.001×λ以上である。
In the base material of the present invention, when the wavelength of light incident on the surface of the base material is λ, a local peak sum average interval S of at least one of the surfaces or the entire surface is 4.1 × λ or less. Here, S indicates an average interval S between local peaks defined in JIS B0601-1994. According to such a configuration, since irregular reflection (diffuse reflection) of light on the substrate surface can be suppressed, the intensity of reflected light or transmitted light used for mark detection is less likely to become weak, which is effective. It is.
Further, in the base material of the present invention, a local peak sum average distance S of at least one of the surfaces or the whole is preferably 3.6 × λ or less, more preferably 3.1 × λ or less, It is still more preferably 2.6 × λ or less, even more preferably 2.1 × λ or less, even more preferably 1.6 × λ or less.
When the incident light is not single wavelength light, the wavelength having the highest light intensity is defined as λ.
The lower limit of S need not be specified, but typically, for example, 0.00001 × λ or more, or 0.00005 × λ or more, or 0.0001 × λ or more, or 0.0002 × λ or more. Or 0.001 × λ or more.

〔基材の製造方法〕
本発明の基材は、以下の4通りの方法により製造することができる。
(1)基材表面に対し、エッチング液を用いてエッチングする
(2)基材表面に対し、レーザー照射による加工処理を行う。
(3)基材表面に対し、砥石またはバフ(砥粒4500番〜6000番、1000〜2000rpm、1〜120秒)で機械研磨する。
(4)基材に所定の表面形態を有する金属箔または金属板を、当該表面側から張り合わせた後、当該金属箔または金属板をエッチング等により除去することで、金属箔または金属板の表面形態を基材表面に転写する。
なお、エッチングをしない場合であっても、所望の表面のRzとSの値を満たす場合には、上記(1)〜(4)を行わずに、そのまま基材を用いてもよい。
[Production method of substrate]
The substrate of the present invention can be produced by the following four methods.
(1) Etching is performed on the substrate surface using an etching solution. (2) The substrate surface is processed by laser irradiation.
(3) The substrate surface is mechanically polished with a grindstone or buff (abrasive grains 4500 to 6000, 1000 to 2000 rpm, 1 to 120 seconds).
(4) After the metal foil or metal plate having a predetermined surface form is bonded to the base material from the surface side, the metal foil or metal plate is removed by etching or the like, whereby the surface form of the metal foil or metal plate Is transferred to the substrate surface.
Even if the etching is not performed, the substrate may be used as it is without performing the above (1) to (4) if the desired values of Rz and S of the surface are satisfied.

上記(1)の製造方法において用いるエッチング条件を以下に示す。
基材が樹脂である場合には以下順にエッチングを行う。
(エッチング処理条件A)
・エッチング処理液:30〜50g/L KMnOまたはNaMnO、20g/L NaOH、残部水
・処理温度:室温
・浸漬時間:15〜25分
・攪拌子回転数:200〜400rpm
(エッチング処理条件B)
・エッチング処理液:70〜110g/L KMnOまたはNaMnO、3〜10g/L HCl、残部水
・処理温度:47〜52℃
・浸漬時間:15〜35分
・攪拌子回転数:200〜400rpm
(中和処理条件)
・中和処理液:L−アスコルビン酸 60〜100g/L
・処理温度:室温
・浸漬時間:3〜5分
・攪拌なし
The etching conditions used in the manufacturing method (1) are shown below.
When the substrate is a resin, etching is performed in the following order.
(Etching condition A)
Etching solution: 30-50 g / L KMnO 4 or NaMnO 4 , 20 g / L NaOH, remaining water Treatment temperature: room temperature Soaking time: 15-25 minutes Stirrer rotation speed: 200-400 rpm
(Etching condition B)
Etching solution: 70 to 110 g / L KMnO 4 or NaMnO 4 , 3 to 10 g / L HCl, remaining water Treatment temperature: 47 to 52 ° C.
・ Immersion time: 15 to 35 minutes ・ Stirrer rotation speed: 200 to 400 rpm
(Neutralization conditions)
-Neutralization treatment solution: L-ascorbic acid 60-100 g / L
・ Processing temperature: Room temperature ・ Immersion time: 3-5 minutes ・ No stirring

基材が無機物である場合には以下の条件でエッチングを行う。
(エッチング処理条件1)
・エッチング処理液:フッ化水素アンモニウム 1〜3mass%、残部水
・処理温度:30〜50℃
・浸漬時間:10〜30分
・攪拌子回転数:200〜400rpm
When the substrate is inorganic, etching is performed under the following conditions.
(Etching condition 1)
Etching treatment liquid: ammonium hydrogen fluoride 1-3 mass%, remaining water Treatment temperature: 30-50 ° C
・ Immersion time: 10 to 30 minutes ・ Stirrer rotation speed: 200 to 400 rpm

(エッチング処理条件2)
・エッチング処理液:フッ化水素酸及び/又はフッ化水素アンモニウム並びにリン酸及び/又はリン酸アンモニウム塩を含有し、かつ、フッ化水素アンモニウム及び/又はリン酸アンモニウム塩を含有するエッチング液であって、フッ化水素酸及び/又はフッ化水素アンモニウムが0.05〜5重量%、リン酸及び/又はリン酸アンモニウム塩が0.3〜50重量%、残部水である。
・処理温度:30〜50℃
・浸漬時間:10〜30分
・攪拌子回転数:200〜400rpm
(Etching condition 2)
Etching treatment liquid: An etching liquid containing hydrofluoric acid and / or ammonium hydrogen fluoride and phosphoric acid and / or ammonium phosphate salt and containing ammonium hydrogen fluoride and / or ammonium phosphate salt. Thus, hydrofluoric acid and / or ammonium hydrogen fluoride is 0.05 to 5% by weight, phosphoric acid and / or ammonium phosphate is 0.3 to 50% by weight, and the balance is water.
-Processing temperature: 30-50 ° C
・ Immersion time: 10 to 30 minutes ・ Stirrer rotation speed: 200 to 400 rpm

(エッチング処理条件3)
エッチング処理条件2のエッチング液にハロゲン化アルミニウムを含む液でエッチングする。その他の条件はエッチング処理条件2と同じである。
(Etching condition 3)
Etching is performed with a solution containing aluminum halide in the etching solution under the etching treatment condition 2. The other conditions are the same as the etching process condition 2.

上記(2)及び(3)の製造方法において、レーザー照射又は砥石による機械研磨は、一般的なレーザー照射装置、機械研磨装置を用いて行うことができる。  In the production methods (2) and (3) above, laser irradiation or mechanical polishing with a grindstone can be performed using a general laser irradiation apparatus or mechanical polishing apparatus.

上記(4)の製造方法において、基材に張り合わせる金属箔または金属板としては、特に限定されないが、例えば、ニッケル箔、アルミ箔、合金箔等、ニッケル板、アルミ板、合金板等を使用でき、典型的には銅箔を用いることができる。ここでは、銅箔について具体的に説明する。  In the production method of (4) above, the metal foil or metal plate to be bonded to the substrate is not particularly limited. For example, nickel foil, aluminum foil, alloy foil, nickel plate, aluminum plate, alloy plate, etc. are used. Typically, a copper foil can be used. Here, the copper foil will be specifically described.

本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。本発明に用いることのできる銅箔の厚さについても特に制限はなく、実用に適した厚さに適宜調節すればよい。例えば、2〜300μm程度とすることができる。但し、本発明の銅箔を回路材料としても使用する場合には銅箔厚みは5〜105μm、好ましくは12〜70μmであり、典型的には18〜35μm程度である。  The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. There is no restriction | limiting in particular also about the thickness of the copper foil which can be used for this invention, What is necessary is just to adjust to the thickness suitable for practical use suitably. For example, it can be about 2 to 300 μm. However, when the copper foil of the present invention is also used as a circuit material, the copper foil thickness is 5 to 105 μm, preferably 12 to 70 μm, and typically about 18 to 35 μm.

通常、銅箔の、基材と接着する面、即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施される。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくする。本発明においては、この粗化処理は銅−コバルト−ニッケル合金めっきや銅−ニッケル−りん合金めっき等により行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後の仕上げ処理として電着物の脱落を防止するために通常の銅めっき等が行なわれることもある。圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある。  Usually, the surface of the copper foil that adheres to the base material, that is, the roughened surface, has a fist-like electric surface on the surface of the copper foil after degreasing in order to improve the peel strength of the copper foil after lamination. A roughening process is carried out to wear. Although the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment. In the present invention, this roughening treatment can be performed by copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or the like. Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off. The content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil.

なお、圧延銅箔にはAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、V等の元素を一種以上含む銅合金箔も含まれる。上記元素の濃度が高くなる(例えば合計で10質量%以上)と、導電率が低下する場合がある。圧延銅箔の導電率は、好ましくは50%IACS以上、より好ましくは60%IACS以上、更に好ましくは80%IACS以上である。  The rolled copper foil includes a copper alloy foil containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, and V. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease. The conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.

粗化処理としての銅−コバルト−ニッケル合金めっきは、電解めっきにより、付着量が15〜40mg/dmの銅−100〜3000μg/dmのコバルト−100〜1500μg/dmのニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dmを超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dmを超えると、エッチング残が多くなることがある。好ましいCo付着量は1000〜2500μg/dmであり、好ましいニッケル付着量は500〜1200μg/dmである。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。Copper as roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, coating weight is to be the 15~40mg / dm 2 of copper -100~3000μg / dm 2 of cobalt -100~1500μg / dm 2 of nickel It can be carried out so as to form a ternary alloy layer. When the adhesion amount of Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. If the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. When the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, if the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.

このような3元系銅−コバルト−ニッケル合金めっきを形成するための一般的浴及びめっき条件の一例は次の通りである:
めっき浴組成:Cu10〜20g/L、Co1〜10g/L、Ni1〜10g/L
pH:1〜4
温度:30〜50℃
電流密度D:20〜30A/dm
めっき時間:1〜5秒
An example of a general bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1-4
Temperature: 30-50 ° C
Current density D k : 20 to 30 A / dm 2
Plating time: 1-5 seconds

粗化処理後、粗化面上に付着量が200〜3000μg/dmのコバルト−100〜700μg/dmのニッケルのコバルト−ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト−ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。コバルト付着量が3000μg/dmを超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じる場合があり、また、耐酸性及び耐薬品性の悪化することがある。好ましいコバルト付着量は500〜2500μg/dmである。一方、ニッケル付着量が100μg/dm未満では耐熱剥離強度が低下し耐酸化性及び耐薬品性が悪化することがある。ニッケルが1300μg/dmを超えると、アルカリエッチング性が悪くなる。好ましいニッケル付着量は200〜1200μg/dmである。After the roughening treatment, a cobalt-nickel alloy plating layer of nickel having an adhesion amount of 200 to 3000 μg / dm 2 and cobalt-100 to 700 μg / dm 2 can be formed on the roughened surface. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially reduced. If the amount of cobalt adhesion is less than 200 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable. If the amount of cobalt deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate. A preferable cobalt adhesion amount is 500-2500 microgram / dm < 2 >. On the other hand, if the nickel adhesion amount is less than 100 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. When nickel exceeds 1300 microgram / dm < 2 >, alkali etching property will worsen. A preferable nickel adhesion amount is 200 to 1200 μg / dm 2 .

また、コバルト−ニッケル合金めっきの条件の一例は次の通りである:
めっき浴組成:Co1〜20g/L、Ni1〜20g/L
pH:1.5〜3.5
温度:30〜80℃
電流密度D:1.0〜20.0A/dm
めっき時間:0.5〜4秒
An example of the conditions for cobalt-nickel alloy plating is as follows:
Plating bath composition: Co 1-20 g / L, Ni 1-20 g / L
pH: 1.5-3.5
Temperature: 30-80 ° C
Current density D k : 1.0 to 20.0 A / dm 2
Plating time: 0.5-4 seconds

本発明に従えば、コバルト−ニッケル合金めっき上に更に付着量の30〜250μg/dmの亜鉛めっき層が形成される。亜鉛付着量が30μg/dm未満では耐熱劣化率改善効果が無くなることがある。他方、亜鉛付着量が250μg/dmを超えると耐塩酸劣化率が極端に悪くなることがある。好ましくは、亜鉛付着量は30〜240μg/dmであり、より好ましくは80〜220μg/dmである。According to the present invention, a zinc plating layer having an adhesion amount of 30 to 250 μg / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 μg / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 μg / dm 2 , the hydrochloric acid resistance deterioration rate may be extremely deteriorated. Preferably, the zinc adhesion amount is 30 to 240 μg / dm 2 , more preferably 80 to 220 μg / dm 2 .

上記亜鉛めっきの条件の一例は次の通りである:
めっき浴組成:Zn100〜300g/L
pH:3〜4
温度:50〜60℃
電流密度D:0.1〜0.5A/dm
めっき時間:1〜3秒
An example of the galvanizing conditions is as follows:
Plating bath composition: Zn 100 to 300 g / L
pH: 3-4
Temperature: 50-60 ° C
Current density D k : 0.1 to 0.5 A / dm 2
Plating time: 1-3 seconds

なお、亜鉛めっき層の代わりに亜鉛−ニッケル合金めっき等の亜鉛合金めっき層を形成してもよく、さらに最表面にはクロメート処理やシランカップリング剤の塗布等によって防錆層を形成してもよい。  A zinc alloy plating layer such as zinc-nickel alloy plating may be formed instead of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.

〔表面粗さRz〕
本発明の銅箔は、銅箔表面に粗化処理により粗化粒子が形成され、且つ、粗化処理表面のTDの平均粗さRzが0.30〜0.80μmに制御されていてもよい。このような構成により、ピール強度が高くなって基材と良好に接着し、且つ、銅箔をエッチングで除去した後の基材の曇りの度合い(ヘイズ値)が小さくなり、透明性が高くなる。この結果、当該基材を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等が容易となる。TDの平均粗さRzが0.30μm未満であると、銅箔表面の粗化処理が不十分であり、基材と十分に接着できない。一方、TDの平均粗さRzが0.80μm超であると、銅箔をエッチングで除去した後の基材表面の凹凸が大きくなり、その結果基材のヘイズ値が大きくなる。粗化処理表面のTDの平均粗さRzは、0.30〜0.70μmが好ましく、0.35〜0.60μmがより好ましく、0.35〜0.55μmが更により好ましく、0.35〜0.50μmが更により好ましい。
[Surface roughness Rz]
In the copper foil of the present invention, roughened particles are formed on the surface of the copper foil by the roughening treatment, and the average roughness Rz of the TD on the roughened treatment surface may be controlled to 0.30 to 0.80 μm. . With such a configuration, the peel strength is increased and the substrate is satisfactorily adhered to the substrate, and the degree of haze (haze value) of the substrate after the copper foil is removed by etching is reduced and the transparency is increased. . As a result, alignment and the like when mounting an IC chip through a positioning pattern that is visible through the substrate are facilitated. When the average roughness Rz of TD is less than 0.30 μm, the surface of the copper foil is not sufficiently roughened and cannot be sufficiently adhered to the substrate. On the other hand, when the average roughness Rz of TD is more than 0.80 μm, the unevenness on the surface of the base material after the copper foil is removed by etching increases, and as a result, the haze value of the base material increases. The average roughness Rz of the TD on the roughened surface is preferably 0.30 to 0.70 μm, more preferably 0.35 to 0.60 μm, still more preferably 0.35 to 0.55 μm, and 0.35 to Even more preferred is 0.50 μm.

〔光沢度〕
銅箔の粗化面の圧延方向(MD)の入射角60度での光沢度は、上述の基材のヘイズ値に大いに影響を及ぼす。すなわち、粗化面の光沢度が大きい銅箔ほど、上述の基材のヘイズ値が小さくなる。このため、本発明の銅箔は、粗化面の光沢度が80〜350%であり、90〜300%であるのが好ましく、90〜250%であるのがより好ましく、100〜250%であるのがより好ましい。
[Glossiness]
The glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the roughened surface of the copper foil greatly affects the haze value of the substrate. That is, the haze value of the above-mentioned substrate becomes smaller as the copper foil has a higher glossiness on the roughened surface. For this reason, the copper foil of the present invention has a glossiness of the roughened surface of 80 to 350%, preferably 90 to 300%, more preferably 90 to 250%, and 100 to 250%. More preferably.

ここで、本発明の視認性の効果をさらに向上させるために、表面処理前の銅箔の処理側の表面のTDの粗さ(Rz)及び光沢度を制御しておくことも重要である。具体的には、表面処理前の銅箔のTDの表面粗さ(Rz)が0.30〜0.80μm、好ましくは0.30〜0.50μmであり、圧延方向(MD)の入射角60度での光沢度が350〜800%、好ましくは500〜800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮すれば、表面処理を行った後の、銅箔の圧延方向(MD)の入射角60度での光沢度が90〜350%となる。このような銅箔としては、圧延油の油膜当量を調整して圧延を行う(高光沢圧延)、或いは、ケミカルエッチングのような化学研磨やリン酸溶液中の電解研磨により作製することができる。このように、処理前の銅箔のTDの表面粗さ(Rz)と光沢度とを上記範囲にすることで、処理後の銅箔の表面粗さ(Rz)及び表面積を制御しやすくすることができる。  Here, in order to further improve the visibility effect of the present invention, it is also important to control the TD roughness (Rz) and the glossiness of the surface of the copper foil before the surface treatment on the treatment side. Specifically, the surface roughness (Rz) of TD of the copper foil before the surface treatment is 0.30 to 0.80 μm, preferably 0.30 to 0.50 μm, and the incident angle 60 in the rolling direction (MD). After the surface treatment, if the glossiness at 350 degrees is 350 to 800%, preferably 500 to 800%, the current density is higher than the conventional roughening treatment and the roughening treatment time is shortened. The glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the copper foil is 90 to 350%. Such a copper foil can be produced by adjusting the oil film equivalent of rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution. Thus, it is easy to control the surface roughness (Rz) and the surface area of the copper foil after the treatment by setting the TD surface roughness (Rz) and the glossiness of the copper foil before the treatment within the above range. Can do.

また、粗化処理前の銅箔は、MDの60度光沢度が500〜800%であるのが好ましく、501〜800%であるのがより好ましく、510〜750%であるのが更により好ましい。粗化処理前の銅箔のMDの60度光沢度が500%未満であると500%以上の場合よりもヘイズ値が高くなるおそれがあり、800%を超えると、製造することが難しくなるという問題が生じるおそれがある。  Further, the copper foil before the roughening treatment preferably has an MD 60 degree gloss of 500 to 800%, more preferably 501 to 800%, and even more preferably 510 to 750%. . If the 60-degree glossiness of MD of the copper foil before the roughening treatment is less than 500%, the haze value may be higher than the case of 500% or more, and if it exceeds 800%, it is difficult to produce. Problems may arise.

なお、高光沢圧延は以下の式で規定される油膜当量を13000〜24000以下とすることで行うことが出来る。
油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm])}
圧延油粘度[cSt]は40℃での動粘度である。
油膜当量を13000〜24000とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
化学研磨は硫酸−過酸化水素−水系またはアンモニア−過酸化水素−水系等のエッチング液で、通常よりも濃度を低くして、長時間かけて行う。
High gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13,000 to 24000 or less.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to set the oil film equivalent to 13,000 to 24,000, a known method such as using a low-viscosity rolling oil or slowing the sheet passing speed may be used.
Chemical polishing is performed over a long period of time using an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a concentration lower than usual.

粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80〜1.40であるのが好ましい。粗化処理表面のMDの60度光沢度とTDの60度光沢度との比Cが0.80未満であると、0.80以上である場合よりもヘイズ値が高くなるおそれがある。また、当該比Cが1.40超であると、1.40以下である場合よりもヘイズ値が高くなるおそれがある。当該比Cは、0.90〜1.35であるのがより好ましく、1.00〜1.30であるのが更により好ましい。  The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of the 60 degree gloss of MD and 60 degree gloss of TD on the roughened surface is 0.80 to 1. 40 is preferred. If the ratio C between the 60 ° glossiness of MD and the 60 ° glossiness of TD on the roughened surface is less than 0.80, the haze value may be higher than when the ratio C is 0.80 or more. Further, if the ratio C is greater than 1.40, the haze value may be higher than when the ratio C is 1.40 or less. The ratio C is more preferably 0.90 to 1.35, and even more preferably 1.00 to 1.30.

〔ヘイズ値〕
本発明の銅箔は、上述のように粗化処理表面の平均粗さRz及び光沢度が制御されているため、基材に貼り合わせた後、銅箔を除去した部分の基材のヘイズ値が小さくなる。ここで、ヘイズ値(%)は、(拡散透過率)/(全光線透過率)×100で算出される値である。具体的には、本発明の銅箔は、粗化処理表面側から厚さ50μmの基材の両面に貼り合わせた後、エッチングで当該銅箔を除去したとき、基材のヘイズ値が20〜70%であるのが好ましく、30〜55%であるのがより好ましい。
[Haze value]
Since the copper foil of the present invention has the average roughness Rz and glossiness of the roughened surface as described above, the haze value of the base material where the copper foil is removed after being bonded to the base material. Becomes smaller. Here, the haze value (%) is a value calculated by (diffuse transmittance) / (total light transmittance) × 100. Specifically, the copper foil of the present invention has a haze value of 20 to 20 when the copper foil is removed by etching after being bonded to both surfaces of a 50 μm thick substrate from the surface of the roughening treatment. It is preferably 70%, more preferably 30 to 55%.

〔粒子の表面積〕
粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bは、上述の基材のヘイズ値に大いに影響を及ぼす。すなわち、表面粗さRzが同じであれば、比A/Bが小さい銅箔ほど、上述の基材のヘイズ値が小さくなる。このため、本発明の銅箔は、当該比A/Bが1.90〜2.40であり、2.00〜2.20であるのが好ましい。
[Particle surface area]
The ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side greatly affects the haze value of the substrate. That is, if the surface roughness Rz is the same, the haze value of the above-mentioned base material becomes smaller as the copper foil having a smaller ratio A / B. For this reason, as for the copper foil of this invention, the said ratio A / B is 1.90-2.40, and it is preferable that it is 2.00-2.20.

粒子形成時の電流密度とメッキ時間とを制御することで、粒子の形態や形成密度が決まり、上記表面粗さRz、光沢度及び粒子の面積比A/Bを制御することができる。  By controlling the current density and the plating time during particle formation, the particle morphology and formation density are determined, and the surface roughness Rz, glossiness, and particle area ratio A / B can be controlled.

本発明の銅箔は、上述のように、粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90〜2.40に制御されており、表面の凹凸が大きい。また、粗化処理表面のTDの平均粗さRzが0.30〜0.80μmに制御されているため表面に極端に粗い部分が無い。一方、粗化処理表面の光沢度が80〜350%と高い。これらを考慮すると、本発明の銅箔は、粗化処理表面における粗化粒子の粒径が小さく制御されていることがわかる。この粗化粒子の粒径は、銅箔をエッチング除去した後の基材透明性に影響を及ぼすが、本発明の銅箔は、このように基材に接着している側の表面平均粗さRz、光沢度、及び、粗化粒子の表面積と粗化粒子を銅箔表面側から平面視したときに得られる面積との比を本発明の範囲に制御することは、粗化粒子の粒径を適切な範囲で小さくすることを意味しており、このため銅箔をエッチング除去した後の基材透明性が良好となると共に、ピール強度も良好となる。  As described above, the copper foil of the present invention has a ratio A / B of 1.90 to 2 between the surface area A of the roughened particles and the area B obtained when the roughened particles are planarly viewed from the copper foil surface side. .40, and surface irregularities are large. Further, since the average TD roughness Rz of the roughened surface is controlled to 0.30 to 0.80 μm, there is no extremely rough portion on the surface. On the other hand, the glossiness of the roughened surface is as high as 80 to 350%. Considering these, it can be seen that in the copper foil of the present invention, the particle size of the roughened particles on the roughened surface is controlled to be small. The particle diameter of the roughened particles affects the transparency of the base material after the copper foil is etched away. However, the copper foil of the present invention has a surface average roughness on the side adhered to the base material in this way. Rz, glossiness, and the ratio of the surface area of the roughened particles to the area obtained when the roughened particles are viewed in plan from the copper foil surface side are controlled within the range of the present invention. Is reduced within an appropriate range. For this reason, the transparency of the base material after the copper foil is removed by etching is improved, and the peel strength is also improved.

なお、プリント配線板または銅張積層板においては、樹脂を溶かして除去することで、銅回路または銅箔表面について、前述の表面粗さ(Rz)、粒子の面積比(A/B)、光沢度を測定することができる。  In the printed wiring board or copper-clad laminate, the surface roughness (Rz), particle area ratio (A / B), and gloss of the copper circuit or copper foil surface can be obtained by dissolving and removing the resin. The degree can be measured.

上記(4)の方法では、上述のような銅箔を、処理面側から基材に張り合わせた後、当該銅箔をエッチング等により除去することで、銅箔の表面形態を基材表面に転写して、上記表面形態の基材を作製することができる。  In the method (4), after the copper foil as described above is bonded to the base material from the treated surface side, the copper foil is removed by etching or the like, thereby transferring the surface form of the copper foil to the base material surface. And the base material of the said surface form can be produced.

〔積層体〕
なお、本発明の銅箔を、粗化処理面側から基材に貼り合わせて積層体を製造することができる。貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。
[Laminate]
In addition, the copper foil of this invention can be bonded together to a base material from the roughening process surface side, and a laminated body can be manufactured. In the case of the rigid PWB, a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing. In the case of FPC, it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc. A laminated board can be manufactured by performing.

本発明の積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。  The laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, the double-sided PWB, and the multilayer PWB (3 It is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.

〔プリント配線板の製造方法〕
本発明のプリント配線板の製造方法について説明する。まず、銅箔と基材との積層板を準備する。本発明の銅箔と基材との積層板の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の基材の少なくとも一方の表面に銅配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層板が挙げられる。すなわち、この場合であれば、積層板は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層板となる。積層板は、当該銅配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層板を構成する基材越しにCCDカメラ等の撮影手段で撮影可能な位置であれば特に限定されない。ここで、マークとは積層板やプリント配線板等の位置を検出し、または、位置決めをし、または、位置合わせをするために用いられる印(しるし)のことをいう。
[Method of manufacturing printed wiring board]
A method for producing a printed wiring board of the present invention will be described. First, a laminate of copper foil and substrate is prepared. As a specific example of the laminated board of the copper foil and the base material of the present invention, the main body substrate and the attached circuit board and at least one surface of the base material such as polyimide used for electrically connecting them are provided. In an electronic device composed of a flexible printed circuit board on which copper wiring is formed, a laminated board manufactured by accurately positioning the flexible printed circuit board and crimping the flexible printed circuit board to the wiring ends of the main circuit board and the attached circuit board is mentioned. It is done. That is, in this case, the laminated board is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. Laminated board. The laminated board has a mark formed of a part of the copper wiring and a separate material. The position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the base material constituting the laminated plate. Here, the mark refers to a mark used to detect, position, or align the position of a laminated board, printed wiring board, or the like.

このように準備された積層板において、上述のマークを樹脂越しに撮影手段で撮影すると、前記マークの位置を良好に検出することができる。そして、このようにして前記マークの位置を検出して、前記検出されたマークの位置に基づき銅箔と基材との積層板の位置決めを良好に行うことができる。また、積層板としてプリント配線板を用いた場合も同様に、このような位置決め方法によって撮影手段がマークの位置を良好に検出し、プリント配線板の位置決めをより正確に行うことが出来る。  In the laminated plate thus prepared, when the above-described mark is photographed by the photographing means through the resin, the position of the mark can be detected satisfactorily. And the position of the said mark can be detected in this way, and the positioning of the laminated board of copper foil and a base material can be favorably performed based on the detected position of the mark. Similarly, when a printed wiring board is used as the laminated board, the photographing means can detect the position of the mark well by such a positioning method, and the printed wiring board can be positioned more accurately.

そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、一つのプリント配線板ともう一つのプリント配線板を接続する方法としては半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法を用いることができる。なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。また、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造することができ、また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続することができ、このようなプリント配線板を用いて電子機器を製造することもできる。  Therefore, when one printed wiring board and another printed wiring board are connected, it is considered that the connection failure is reduced and the yield is improved. In addition, as a method of connecting one printed wiring board and another printed wiring board, connection via soldering or anisotropic conductive film (ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted. Also, it is possible to manufacture a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention. One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board.

なお、本発明において、「銅回路」には銅配線も含まれることとする。さらに、本発明のプリント配線板を、部品と接続してプリント配線板を製造してもよい。また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続し、さらに、本発明のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続することで、プリント配線板が2つ以上接続したプリント配線板を製造してもよい。ここで、「部品」としては、コネクタやLCD(Liquid Cristal Display)、LCDに用いられるガラス基板などの電子部品、IC(Integrated Circuit)、LSI(Large scale integrated circuit)、VLSI(Very Large scale integrated circuit)、ULSI(Ultra−Large Scale Integration)などの半導体集積回路を含む電子部品(例えばICチップ、LSIチップ、VLSIチップ、ULSIチップ)、電子回路をシールドするための部品およびプリント配線板にカバーなどを固定するために必要な部品等が挙げられる。  In the present invention, “copper circuit” includes copper wiring. Furthermore, the printed wiring board of the present invention may be connected to a component to produce a printed wiring board. Further, at least one printed wiring board of the present invention is connected to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. A printed wiring board in which two or more printed wiring boards are connected may be manufactured by connecting two or more printed wiring boards and components. Here, as “components”, connectors, LCDs (Liquid Crystal Display), electronic components such as glass substrates used in LCDs, ICs (Integrated Circuits), LSIs (Large scale integrated circuits), VLSIs (Very Large scales) ), Electronic components including semiconductor integrated circuits such as ULSI (Ultra-Large Scale Integration) (for example, IC chips, LSI chips, VLSI chips, ULSI chips), components for shielding electronic circuits, and covers on printed wiring boards Examples include parts necessary for fixing.

なお、本発明の実施の形態に係る位置決め方法は積層板(銅箔と基材との積層板やプリント配線板を含む)を移動させる工程を含んでいてもよい。移動工程においては例えばベルトコンベヤーやチェーンコンベヤーなどのコンベヤーにより移動させてもよく、アーム機構を備えた移動装置により移動させてもよく、気体を用いて積層板を浮遊させることで移動させる移動装置や移動手段により移動させてもよく、略円筒形などの物を回転させて積層板を移動させる移動装置や移動手段(コロやベアリングなどを含む)、油圧を動力源とした移動装置や移動手段、空気圧を動力源とした移動装置や移動手段、モーターを動力源とした移動装置や移動手段、ガントリ移動型リニアガイドステージ、ガントリ移動型エアガイドステージ、スタック型リニアガイドステージ、リニアモーター駆動ステージなどのステージを有する移動装置や移動手段などにより移動させてもよい。また、公知の移動手段による移動工程を行ってもよい。上記、積層板を移動させる工程において、積層板を移動させて位置合わせをすることができる。そして、位置合わせをすることで、一つのプリント配線板ともう一つのプリント配線板や部品を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。
なお、本発明の実施の形態に係る位置決め方法は表面実装機やチップマウンターに用いてもよい。
また、本発明において位置決めされる銅箔と基材との積層板が、基材及び前記基材の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
The positioning method according to the embodiment of the present invention may include a step of moving a laminated board (including a laminated board of copper foil and a substrate and a printed wiring board). In the moving process, for example, it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device provided with an arm mechanism, or may be moved by floating a laminated plate using gas. It may be moved by a moving means, a moving device or moving means (including a roller or a bearing) that moves a laminated plate by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means. In the step of moving the laminated plate, the laminated plate can be moved for alignment. Then, it is considered that by performing alignment, connection failure is reduced and yield is improved when one printed wiring board is connected to another printed wiring board or components.
The positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
Moreover, the printed wiring board which has the circuit provided on the base material and the said base material may be sufficient as the laminated board of the copper foil and base material positioned in this invention. In that case, the mark may be the circuit.

本発明において「位置決め」とは「マークや物の位置を検出すること」を含む。また、本発明において、「位置合わせ」とは、「マークや物の位置を検出した後に、前記検出した位置に基づいて、当該マークや物を所定の位置に移動すること」を含む。
また、本発明では、上述の基材の表面状態に基づく検査光源の波長の決定方法、当該決定方法を行うための決定装置、当該決定定プログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体を提供することができる。さらに、本発明では、上述の検査光源の波長に基づく基材の表面状態の決定方法、当該決定方法を行うための決定装置、当該決定プログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体を提供することができる。
In the present invention, “positioning” includes “detecting the position of a mark or an object”. In the present invention, “alignment” includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
Further, in the present invention, there is provided a method for determining the wavelength of the inspection light source based on the surface state of the substrate, a determination device for performing the determination method, the determination determination program, and a computer-readable recording medium on which the determination determination program is recorded. Can be provided. Furthermore, the present invention provides a method for determining the surface state of a substrate based on the wavelength of the above-described inspection light source, a determination device for performing the determination method, the determination program, and a computer-readable recording medium on which the determination program is recorded. can do.

また、本発明のプリント配線板の製造方法は、別の一側面において、第1のプリント配線板と第2のプリント配線板とを接合してプリント配線板が2つ以上接続したプリント配線板を製造する方法であって、前記第1及び第2のプリント配線板は基材と配線とを有し、前記第1のプリント配線板はマークを有し、前記第1のプリント配線板の前記基材の表面の一部または全体の十点平均粗さRzが2.1×(マークの検出に用いられる光の波長λ)以下であり、前記第1のプリント配線板の前記マークに、前記第1のプリント配線板の基材越しに光を照射する工程、前記照射した光の透過光又は反射光を検出する工程、前記透過光又は反射光を検出した位置に基づいて、前記マークの位置を検出する工程、及び、前記検出したマークの位置に基づいて前記第1のプリント配線板及び/又は前記第2のプリント配線板の位置決めをする工程を含むプリント配線板の製造方法である。このような構成によれば、視認性が良好な基材を用いることで、精度良く配線板の位置決め、位置合わせ等を行うことができ、良好な効率的でプリント配線板を製造することができる。
また、前記マークの位置を検出する工程と、前記プリント配線板の位置決めをする工程との間に、前記検出した透過光又は反射光に基づいて、前記第1のプリント配線板のマークの有無を判定する工程を備えてもよい。
According to another aspect of the printed wiring board manufacturing method of the present invention, there is provided a printed wiring board in which two or more printed wiring boards are connected by joining the first printed wiring board and the second printed wiring board. In the manufacturing method, the first and second printed wiring boards have a base material and wiring, the first printed wiring board has a mark, and the base of the first printed wiring board The ten-point average roughness Rz of a part or the entire surface of the material is 2.1 × (wavelength λ of light used for mark detection) or less, and the mark of the first printed wiring board has the first The step of irradiating light through the substrate of the printed wiring board 1, the step of detecting transmitted light or reflected light of the irradiated light, and the position of the mark based on the position where the transmitted light or reflected light is detected The detection step and the position of the detected mark. Then, it is a manufacturing method of a printed wiring board including the process of positioning the said 1st printed wiring board and / or the said 2nd printed wiring board. According to such a configuration, by using a base material having good visibility, it is possible to accurately position and align the wiring board, and to manufacture a printed wiring board with good efficiency. .
Further, between the step of detecting the position of the mark and the step of positioning the printed wiring board, the presence or absence of the mark on the first printed wiring board is determined based on the detected transmitted light or reflected light. A step of determining may be provided.

また、本発明のプリント配線板の製造方法は、別の一側面において、第1のプリント配線板と第2のプリント配線板とを接合してプリント配線板が2つ以上接続したプリント配線板を製造する方法であって、前記第1及び第2のプリント配線板は基材と配線とを有し、前記第1のプリント配線板はマークを有し、前記第1のプリント配線板の前記基材の表面の一部または全体の局部山頂平均間隔Sが4.1×(マークの検出に用いられる光の波長λ)以下であり、前記第1のプリント配線板の前記マークに、前記第1のプリント配線板の基材越しに光を照射する工程、前記照射した光の透過光又は反射光を検出する工程、前記透過光又は反射光を検出した位置に基づいて、前記マークの位置を検出する工程、及び、前記検出したマークの位置に基づいて前記第1のプリント配線板及び/又は前記第2のプリント配線板の位置決めをする工程を含むプリント配線板の製造方法である。このような構成によれば、視認性が良好な基材を用いることで、精度良く配線板の位置決め、位置合わせ等を行うことができ、良好な効率的でプリント配線板を製造することができる。
また、前記マークの位置を検出する工程と、前記プリント配線板の位置決めをする工程との間に、前記検出した透過光又は反射光に基づいて、前記第1のプリント配線板のマークの有無を判定する工程を備えてもよい。
According to another aspect of the printed wiring board manufacturing method of the present invention, there is provided a printed wiring board in which two or more printed wiring boards are connected by joining the first printed wiring board and the second printed wiring board. In the manufacturing method, the first and second printed wiring boards have a base material and wiring, the first printed wiring board has a mark, and the base of the first printed wiring board A local peak sum average interval S of a part of or the entire surface of the material is 4.1 × (wavelength λ of light used for mark detection) or less, and the first printed wiring board has the first mark on the mark. The step of irradiating light through the substrate of the printed wiring board, the step of detecting transmitted light or reflected light of the irradiated light, and detecting the position of the mark based on the position where the transmitted light or reflected light is detected And at the position of the detected mark A printed wiring board manufacturing method including a step of positioning the first printed wiring board and / or the second printed wiring board based on the first printed wiring board. According to such a configuration, by using a base material having good visibility, it is possible to accurately position and align the wiring board, and to manufacture a printed wiring board with good efficiency. .
Further, between the step of detecting the position of the mark and the step of positioning the printed wiring board, the presence or absence of the mark on the first printed wiring board is determined based on the detected transmitted light or reflected light. A step of determining may be provided.

(製箔工程)
下記に示すような電解液及び電解条件でステンレス鋼製の円柱型カソード上に電析させ、所定厚みの銅箔を得た。例1〜16において、厚さ35μmの電解銅箔(但し、例11はアルミニウム箔)とした。
(Foil making process)
Electrodeposition was carried out on a stainless steel cylindrical cathode under the electrolytic solution and electrolysis conditions shown below to obtain a copper foil having a predetermined thickness. In Examples 1-16, it was set as the electrolytic copper foil (however, Example 11 is aluminum foil) with a thickness of 35 micrometers.

(製箔工程の電解液組成)
Cu(Cu2+として):100g/L
SO:100g/L
添加剤として、Cl(塩化物イオンとして)、膠、及びチオ尿素を表1に記載の各添加量で加えた。
(Electrolytic solution composition in the foil making process)
Cu (as Cu 2+ ): 100 g / L
H 2 SO 4 : 100 g / L
As additives, Cl (as chloride ions), glue, and thiourea were added at each addition amount listed in Table 1.

(製箔工程の電解条件)
液温:57℃
電流密度:40〜80A/dm
電解液流速:4.0m/秒
(Electrolytic conditions for the foil making process)
Liquid temperature: 57 ° C
Current density: 40-80 A / dm 2
Electrolyte flow rate: 4.0 m / sec

例11においては、銅箔以外の金属箔として圧延によって得られた厚さ20μmのアルミニウム箔を用いた。接着剤との貼り合わせる面のRzは小坂研究所製サーフコーダーSE−3Cにより測定して、表面処理前において1.0μmであった。  In Example 11, an aluminum foil having a thickness of 20 μm obtained by rolling was used as a metal foil other than copper foil. Rz of the surface to be bonded to the adhesive was measured with a surf coder SE-3C manufactured by Kosaka Laboratory, and was 1.0 μm before the surface treatment.

(粗化処理)
例6〜8及び11においては、製箔工程で得られた銅箔のマット面及びアルミニウム箔の表面に、以下に示す2段階の粗化処理を施した。
(Roughening treatment)
In Examples 6 to 8 and 11, the matte surface of the copper foil and the surface of the aluminum foil obtained in the foil-making process were subjected to the two-stage roughening treatment shown below.

(1段階目の粗化処理)
1段階目の粗化処理の目的は、金属箔最表面への銅イオン拡散の限界電流密度を超える電流密度でCu微粒子を電着することによって金属箔表面に粗化粒子の核を生成させることである。
(電解液組成)
Cu(Cu2+として):10〜30g/L
SO:50〜150g/L
As:1〜2000mg/L
W:1〜100mg/L
(粗化処理条件)
液温:20〜50℃
電流密度:20〜100A/dm
通電時間:1〜10秒
(Roughening process at the first stage)
The purpose of the first stage roughening treatment is to generate nuclei of roughened particles on the surface of the metal foil by electrodepositing Cu fine particles at a current density exceeding the limit current density of copper ion diffusion on the outermost surface of the metal foil. It is.
(Electrolytic solution composition)
Cu (as Cu 2+ ): 10-30 g / L
H 2 SO 4: 50~150g / L
As: 1-2000 mg / L
W: 1 to 100 mg / L
(Roughening conditions)
Liquid temperature: 20-50 degreeC
Current density: 20 to 100 A / dm 2
Energizing time: 1-10 seconds

(2段階目の粗化処理)
2段階目の粗化処理の目的は、1段階目の粗化処理で生成した粗化粒子の核の上に平滑なめっきを施すことによって粗化粒子核を成長させ、所定の大きさの粗化粒子とすることである。
(電解液組成)
Cu(Cu2+として):20〜60g/L
SO:50〜150g/L(粗化処理条件)
液温:30〜60℃
電流密度:1〜50A/dm
通電時間:1〜10秒
(Roughening process in the second stage)
The purpose of the second stage roughening treatment is to grow the roughened particle nuclei by applying smooth plating on the nuclei of the coarsened particles generated in the first stage roughening treatment, and to obtain a roughened particle having a predetermined size. To make particles.
(Electrolytic solution composition)
Cu (as Cu 2+ ): 20-60 g / L
H 2 SO 4: 50~150g / L ( roughening treatment conditions)
Liquid temperature: 30-60 degreeC
Current density: 1 to 50 A / dm 2
Energizing time: 1-10 seconds

(表面処理工程)
例1〜8及び10〜11においては、製箔工程で得られた銅箔のマット面(粗面、析出面)又はアルミニウム箔(例11)の片面上に、以下に示す表面被覆処理(a)、(b)、(c)、(d)、(e)のうち何れか1つ又は複数を選択し処理した。各例で適用した表面処理の組み合わせを表1に示す。各表面被覆処理層の被覆量は表面被覆層を希硝酸により溶解した後、溶解液中の被覆処理層成分元素の濃度をICP‐AES法によって測定して算出した。
(Surface treatment process)
In Examples 1-8 and 10-11, the surface coating treatment (a) shown below on one side of the matte surface (rough surface, precipitation surface) or aluminum foil (Example 11) of the copper foil obtained in the foil-making process ), (B), (c), (d), and (e) were selected and processed. Table 1 shows the combinations of surface treatments applied in each example. The coating amount of each surface coating treatment layer was calculated by dissolving the surface coating layer with dilute nitric acid and then measuring the concentration of the coating treatment layer component element in the solution by the ICP-AES method.

(a)Cu‐Zn合金めっき処理
(電解液組成、pH)
NaCN:10〜30g/L
NaOH:40〜100g/L
Cu(CN):60〜120g/L
Zn(CN):1〜10g/L
pH:10〜13
(電解条件)
液温:50〜80℃
電流密度:10A/dm
めっき時間:4秒
被覆量:5.0mg/dm
(A) Cu-Zn alloy plating treatment (electrolyte composition, pH)
NaCN: 10-30 g / L
NaOH: 40-100 g / L
Cu (CN) 2 : 60 to 120 g / L
Zn (CN) 2 : 1 to 10 g / L
pH: 10-13
(Electrolytic conditions)
Liquid temperature: 50-80 degreeC
Current density: 10 A / dm 2
Plating time: 4 seconds Coating amount: 5.0 mg / dm 2

(b)Ni−Zn合金めっき処理
(電解液組成、pH)
Zn(Zn2+として):12〜25g/L
Ni(Ni2+として):1〜8g/L
pH:2.0〜4.0
(電解条件)
液温:25〜50℃
電流密度:10A/dm
めっき時間:2秒
被覆量:1.5mg/dm
(B) Ni—Zn alloy plating treatment (electrolyte composition, pH)
Zn (as Zn2 + ): 12-25 g / L
Ni (as Ni 2+ ): 1-8 g / L
pH: 2.0-4.0
(Electrolytic conditions)
Liquid temperature: 25-50 degreeC
Current density: 10 A / dm 2
Plating time: 2 seconds Coating amount: 1.5 mg / dm 2

(c)Cu−Ni合金めっき処理
(電解液組成、pH)
Cu(Cu2+として):0.01〜5.0g/L
Ni(Ni2+として):5〜25g/L
pH:2.0〜4.0
(電解条件)
液温:25〜50℃
電流密度:5A/dm
めっき時間:2秒
被覆量:1.0mg/dm
(C) Cu—Ni alloy plating treatment (electrolyte composition, pH)
Cu (as Cu 2+ ): 0.01 to 5.0 g / L
Ni (as Ni 2+ ): 5 to 25 g / L
pH: 2.0-4.0
(Electrolysis conditions)
Liquid temperature: 25-50 degreeC
Current density: 5 A / dm 2
Plating time: 2 seconds Coating amount: 1.0 mg / dm 2

(d)Co−Ni合金めっき処理
(電解液組成、pH)
Co(Co2+として):0.1〜6.0g/L
Ni(Ni2+として):5〜20g/L
pH:2.0〜4.0
(電解条件)
液温:25〜50℃
電流密度:5A/dm
めっき時間:3秒
被覆量:3.0mg/dm
(D) Co-Ni alloy plating treatment (electrolyte composition, pH)
Co (as Co 2+ ): 0.1-6.0 g / L
Ni (as Ni 2+ ): 5 to 20 g / L
pH: 2.0-4.0
(Electrolytic conditions)
Liquid temperature: 25-50 degreeC
Current density: 5 A / dm 2
Plating time: 3 seconds Coating amount: 3.0 mg / dm 2

(e)電解クロメート処理
(電解液組成、pH)
Cr:2.0〜6.0g/L
Zn(Zn2+として):0〜0.5g/L
NaSO:5〜15g/L
pH:3.5〜5.0
(電解条件)
液温:20〜60℃
電流密度:2.0A/dm
めっき時間:2秒
被覆量:0.15mg/dm
(E) Electrolytic chromate treatment (electrolyte composition, pH)
K 2 Cr 2 O 7: 2.0~6.0g / L
Zn (as Zn 2+ ): 0 to 0.5 g / L
Na 2 SO 4 : 5 to 15 g / L
pH: 3.5-5.0
(Electrolytic conditions)
Liquid temperature: 20-60 degreeC
Current density: 2.0 A / dm 2
Plating time: 2 seconds Coating amount: 0.15 mg / dm 2

例17として、JIS H3100 C1020に規格されている無酸素銅にAgを30質量ppm添加した圧延銅箔を用いた。当該圧延銅箔は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を、油膜当量14000の値で行う、いわゆる「高光沢圧延」で行い、さらに電解研磨を行った。「電解研磨」はリン酸67%+硫酸10%+水23%の条件で、電圧10V/cm、40秒間(10秒間の電解研磨を行うと、研磨量は1〜2μmとなる。)で行った。銅箔厚みは12μmであり、TD方向の粗さは0.25μm、光沢度はMD方向で792%、TD方向で771%、MD/TDが1.03であった。As Example 17, a rolled copper foil obtained by adding 30 mass ppm of Ag to oxygen-free copper standardized in JIS H3100 C1020 was used. The rolled copper foil was subjected to final cold rolling (cold rolling after the final recrystallization annealing) at a value of an oil film equivalent of 14,000, so-called “high gloss rolling”, and further subjected to electrolytic polishing. “Electropolishing” is a condition of 67% phosphoric acid + 10% sulfuric acid + 23% water and a voltage of 10 V / cm 2 for 40 seconds (the amount of polishing becomes 1 to 2 μm after 10 seconds of electropolishing). went. The copper foil thickness was 12 μm, the roughness in the TD direction was 0.25 μm, the glossiness was 792% in the MD direction, 771% in the TD direction, and MD / TD was 1.03.

(基材サンプルの作製)
(例1〜17)
次に、基材として厚さ50μmのカネカ製ポリイミドを準備し、上記金属箔を処理面側から両面に積層した後、以下の条件にてエッチング処理を行い、当該金属箔を除去した。
・エッチング条件
装置:スプレー式小型エッチング装置
スプレー圧:0.2MPa
エッチング液:塩化第二鉄水溶液(比重40ボーメ)
液温度:50℃
(Preparation of substrate sample)
(Examples 1-17)
Next, Kaneka polyimide having a thickness of 50 μm was prepared as a base material, and the metal foil was laminated on both sides from the treatment surface side, and then an etching treatment was performed under the following conditions to remove the metal foil.
・ Etching condition equipment: Spray type small etching equipment Spray pressure: 0.2MPa
Etching solution: Ferric chloride aqueous solution (specific gravity 40 Baume)
Liquid temperature: 50 ° C

(例18)
また、例18として、基材として厚さ50μmのカネカ製ポリイミドを準備し、以下の条件にてエッチングによる基材の両面の表面加工処理を行った。
・エッチング条件
以下、エッチング処理条件A→エッチング処理条件B→中和処理条件の順にエッチングを行った。
(エッチング処理条件A)
・エッチング処理液:40g/L NaMnO、20g/L NaOH、残部水
・処理温度:室温
・浸漬時間:25分
・攪拌子回転数:300rpm
(エッチング処理条件B)
・エッチング処理液:70g/L KMnO、8g/L HCl、残部水
・処理温度:50℃
・浸漬時間:15分
・攪拌子回転数:300rpm
(中和処理条件)
・中和処理液:L−アスコルビン酸 80g/L
・処理温度:室温
・浸漬時間:3分
・攪拌なし
(Example 18)
Moreover, as Example 18, Kaneka polyimide having a thickness of 50 μm was prepared as a base material, and surface processing on both surfaces of the base material was performed by etching under the following conditions.
Etching conditions Etching was performed in the order of etching processing conditions A → etching processing conditions B → neutralization processing conditions.
(Etching condition A)
Etching solution: 40 g / L NaMnO 4 , 20 g / L NaOH, balance water Processing temperature: room temperature Dipping time: 25 minutes Stirrer rotation speed: 300 rpm
(Etching condition B)
Etching solution: 70 g / L KMnO 4 , 8 g / L HCl, remaining water Treatment temperature: 50 ° C.
・ Immersion time: 15 minutes ・ Agitator rotation speed: 300 rpm
(Neutralization conditions)
・ Neutralization treatment liquid: L-ascorbic acid 80 g / L
・ Processing temperature: Room temperature ・ Immersion time: 3 minutes ・ No stirring

(例19)
また、例19として、基材として厚さ100μmのガラス基板を準備し、以下の条件にてエッチングによる基材の両面の表面加工処理を行った。
・エッチング条件
・エッチング処理液:フッ化水素アンモニウム 2mass%、残部水
・処理温度:40℃
・浸漬時間:20分
・攪拌子回転数:300rpm
(Example 19)
Further, as Example 19, a glass substrate having a thickness of 100 μm was prepared as a base material, and surface processing on both surfaces of the base material was performed by etching under the following conditions.
・ Etching conditions ・ Etching treatment liquid: ammonium hydrogen fluoride 2 mass%, remaining water ・ Processing temperature: 40 ° C.
・ Immersion time: 20 minutes ・ Stirrer rotation speed: 300 rpm

(例20)
また、例20として、基材として厚さ50μmのカネカ製ポリイミドを準備し、エキシマレーザーで2μm間隔で15ns照射して、基材の両面の表面加工処理を行った。
(Example 20)
In addition, as Example 20, a Kaneka polyimide having a thickness of 50 μm was prepared as a base material, and the surface processing of both surfaces of the base material was performed by irradiating with an excimer laser at an interval of 2 μm for 15 ns.

(例21)
また、例21として、基材として厚さ100μmガラス基板を準備し、6000番の砥粒を用いたバフで研磨(1500rpm、2秒、水シャワーでバフを冷却する)することで、基材の両面の表面加工処理を行った。
(Example 21)
Also, as Example 21, a glass substrate having a thickness of 100 μm was prepared as a base material and polished with a buff using No. 6000 abrasive grains (cooling the buff with a water shower at 1500 rpm for 2 seconds). The surface processing of both sides was performed.

(例22)
樹脂基板の片面のみ処理した以外は例1と同じで行った。
(Example 22)
The process was the same as Example 1 except that only one side of the resin substrate was treated.

上述のようにして作製した実施例及び比較例の金属箔、及び、表面加工を行った基材について、各種評価を下記の通り行った。
(1)表面粗さ(Rz)の測定;
金属箔及び基材サンプルについて、株式会社小阪研究所製接触粗さ計Surfcorder SE−3Cを使用してJIS B0601−1994に準拠して十点平均粗さを粗化面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で圧延方向と垂直に(TDに、電解銅箔の場合は通箔方向に垂直に)測定位置を変えて10回行い、10回の測定での値を求めた。
なお、表面処理前の金属箔についても、同様にして表面粗さ(Rz)を求めておいた。
Various evaluation was performed as follows about the metal foil of the Example and comparative example which were produced as mentioned above, and the base material which surface-treated.
(1) Measurement of surface roughness (Rz);
About a metal foil and a base material sample, the ten-point average roughness was measured about the roughening surface based on JISB0601-1994 using the Kosaka Laboratory Co., Ltd. contact-corrosion meter Surfcorder SE-3C. Measurement standard length 0.8mm, evaluation length 4mm, cut-off value 0.25mm, feed rate 0.1mm / sec. Perpendicular to rolling direction (in TD, in case of electrolytic copper foil, in foil passing direction) The measurement position was changed 10 times (perpendicularly), and the values for 10 measurements were obtained.
In addition, surface roughness (Rz) was calculated | required similarly about the metal foil before surface treatment.

(2)表面の局部山頂平均間隔S、Smの測定;
金属箔及び基材サンプルについて、株式会社キーエンス製VK−8510を用いて局部山頂平均間隔Sと平均間隔Smを測定した。測定方法は線粗さ−JIS94モードを使用した。
(2) Measurement of local peak top average distances S and Sm on the surface;
About metal foil and a base-material sample, local peak sum average space | interval S and average space | interval Sm were measured using Keyence Corporation VK-8510. The measurement method used was a line roughness-JIS94 mode.

(3)ピール強度(密着強度);
基材サンプルについて、PC−TM−650に準拠し、引張り試験機オートグラフ100で常態ピール強度を測定し、上記常態ピール強度が0.7N/mm以上を積層基板用途に使用できるものとした。
(3) Peel strength (adhesion strength);
About the base material sample, based on PC-TM-650, the normal peel strength was measured with the tensile tester Autograph 100, and the normal peel strength of 0.7 N / mm or more could be used for laminated substrate applications.

(4)光透過率;
得られた基材について、日本分光株式会社製分光光度計V−660を用いて、スリット10mmで、光透過率を測定した。用いた光の波長は、λ1(0.940μm、赤外発光LED相当)、λ2(0.694μm、ルビーレーザー相当)、λ3(0.532μm、Nd:YAGレーザー相当)、λ4(0.351μm、エキシマレーザー相当)、λ5(0.157μm、エキシマレーザー相当)、λ6(0.555μm、蛍光灯相当)とした。
(4) Light transmittance;
About the obtained base material, the light transmittance was measured by slit 10mm using the spectrophotometer V-660 by JASCO Corporation. The wavelengths of light used were λ1 (0.940 μm, equivalent to an infrared light emitting LED), λ2 (0.694 μm, equivalent to a ruby laser), λ3 (0.532 μm, equivalent to a Nd: YAG laser), λ4 (0.351 μm, Excimer laser equivalent), λ5 (0.157 μm, equivalent to excimer laser), λ6 (0.555 μm, equivalent to fluorescent lamp).

(5)歩留まり
得られた基材の表面に、無電解銅メッキにより20μm×20μm角のマークを設けた。そして基材越しにCCDカメラ(光源:蛍光灯)またはレーザー検出器(光源:レーザー、発光ダイオード)で当該マークを検出することを試みた。10回中10回検出できた場合には「◎◎」、10回中9回検出できた場合には「◎」、7〜8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした
上記各試験の条件及び評価を表1〜3に示す。
(5) Yield A mark of 20 μm × 20 μm square was provided on the surface of the obtained base material by electroless copper plating. And it tried to detect the said mark with a CCD camera (light source: fluorescent lamp) or a laser detector (light source: laser, light emitting diode) through a base material. When 10 times out of 10 were detected, “◎◎”, when 9 times out of 10 were detected, “◎”, when 7-8 times were detected, “◯”, 6 times detected. Tables 1 to 3 show the conditions and evaluation of each test described above, where “△” is 5 or less and “X” is detected.

Figure 0006364162
Figure 0006364162

Figure 0006364162
Figure 0006364162

Figure 0006364162
Figure 0006364162

Claims (10)

第1のプリント配線板と第2のプリント配線板とを接合してプリント配線板が2つ以上接続したプリント配線板を製造する方法であって、
前記第1及び第2のプリント配線板は基材と配線とを有し、
前記第1のプリント配線板はマークを有し、
前記第1のプリント配線板の前記基材の表面の十点平均粗さRzが2.1×(マークの検出に用いられる光の波長λ)以下であり、
前記第1のプリント配線板の前記マークに、前記第1のプリント配線板の基材越しに光を照射する工程、
前記照射した光の透過光又は反射光を検出する工程、
前記透過光又は反射光を検出した位置に基づいて、前記マークの位置を検出する工程、及び、
前記検出したマークの位置に基づいて前記第1のプリント配線板及び/又は前記第2のプリント配線板の位置決めをする工程、
を含むプリント配線板の製造方法。
A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by joining a first printed wiring board and a second printed wiring board,
The first and second printed wiring boards have a base material and wiring,
The first printed wiring board has a mark,
The ten-point average roughness Rz of the surface of the substrate of the first printed wiring board is 2.1 × (wavelength λ of light used for mark detection) or less,
Irradiating the mark on the first printed wiring board with light through the substrate of the first printed wiring board;
Detecting the transmitted light or reflected light of the irradiated light;
Detecting a position of the mark based on a position where the transmitted light or reflected light is detected; and
Positioning the first printed wiring board and / or the second printed wiring board based on the position of the detected mark;
A method of manufacturing a printed wiring board including:
前記マークの位置を検出する工程と、前記プリント配線板の位置決めをする工程との間に、前記検出した透過光又は反射光に基づいて、前記第1のプリント配線板のマークの有無を判定する工程を備える請求項に記載のプリント配線板の製造方法。 Between the step of detecting the position of the mark and the step of positioning the printed wiring board, the presence or absence of the mark on the first printed wiring board is determined based on the detected transmitted light or reflected light. method for manufacturing a printed wiring board according to claim 1 comprising the step. 前記第1のプリント配線板の前記基材の表面の十点平均粗さRzが1.1×(マークの検出に用いられる光の波長λ)以下である請求項又はに記載のプリント配線板の製造方法。 Printed circuit according to claim 1 or 2 or less (the wavelength λ of the light used for detection of the mark) ten-point average roughness Rz of 1.1 × the surface of the substrate of the first printed circuit board A manufacturing method of a board. 前記第1のプリント配線板の前記基材の表面の局部山頂平均間隔Sが4.1×(マークの検出に用いられる光の波長λ)以下である請求項1〜3のいずれか一項に記載のプリント配線板の製造方法。 To any one of claims 1 to 3 or less (the wavelength λ of the light used for detection of the mark) the first local peaks mean spacing S of the surface of the substrate of the printed wiring board is 4.1 × The manufacturing method of the printed wiring board of description. 前記第1のプリント配線板の前記基材の表面の局部山頂平均間隔Sが2.1×(マークの検出に用いられる光の波長λ)以下である請求項に記載のプリント配線板の製造方法。 The printed wiring board production according to claim 4 , wherein an average interval S of local peaks on the surface of the substrate of the first printed wiring board is 2.1 x (wavelength λ of light used for mark detection) or less. Method. 第1のプリント配線板と第2のプリント配線板とを接合してプリント配線板が2つ以上接続したプリント配線板を製造する方法であって、
前記第1及び第2のプリント配線板は基材と配線とを有し、
前記第1のプリント配線板はマークを有し、
前記第1のプリント配線板の前記基材の表面の局部山頂平均間隔Sが4.1×(マークの検出に用いられる光の波長λ)以下であり、
前記第1のプリント配線板の前記マークに、前記第1のプリント配線板の基材越しに光を照射する工程、
前記照射した光の透過光又は反射光を検出する工程、
前記透過光又は反射光を検出した位置に基づいて、前記マークの位置を検出する工程、及び、
前記検出したマークの位置に基づいて前記第1のプリント配線板及び/又は前記第2のプリント配線板の位置決めをする工程、
を含むプリント配線板の製造方法。
A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by joining a first printed wiring board and a second printed wiring board,
The first and second printed wiring boards have a base material and wiring,
The first printed wiring board has a mark,
The local peak sum average distance S of the surface of the base material of the first printed wiring board is 4.1 × (wavelength λ of light used for mark detection) or less,
Irradiating the mark on the first printed wiring board with light through the substrate of the first printed wiring board;
Detecting the transmitted light or reflected light of the irradiated light;
Detecting a position of the mark based on a position where the transmitted light or reflected light is detected; and
Positioning the first printed wiring board and / or the second printed wiring board based on the position of the detected mark;
A method of manufacturing a printed wiring board including:
前記マークの位置を検出する工程と、前記プリント配線板の位置決めをする工程との間に、前記検出した透過光又は反射光に基づいて、前記第1のプリント配線板のマークの有無を判定する工程を備える請求項に記載のプリント配線板の製造方法。 Between the step of detecting the position of the mark and the step of positioning the printed wiring board, the presence or absence of the mark on the first printed wiring board is determined based on the detected transmitted light or reflected light. The manufacturing method of the printed wiring board of Claim 6 provided with a process. 前記第1のプリント配線板の前記基材の表面の局部山頂平均間隔Sが2.1×(マークの検出に用いられる光の波長λ)以下である請求項又はに記載のプリント配線板の製造方法。 Printed wiring board according to claim 6 or 7 or less (the wavelength λ of the light used for detection of the mark) local peaks mean spacing S is 2.1 × the surface of the substrate of the first printed circuit board Manufacturing method. 基材と配線とを有するプリント配線板上のマークの位置を検出する方法であって、A method for detecting the position of a mark on a printed wiring board having a substrate and wiring,
前記プリント配線板の基材越しに、前記プリント配線板の前記基材の表面の十点平均粗さRz/2.1以上の波長λを有する光を照射し、Irradiating light having a wavelength λ of 10-point average roughness Rz / 2.1 or more of the surface of the substrate of the printed wiring board through the substrate of the printed wiring board;
前記照射した光の透過光又は反射光を検出し、Detecting transmitted light or reflected light of the irradiated light,
前記透過光又は反射光を検出した位置に基づいて、前記プリント配線板上のマークの位置を検出する方法。A method of detecting a position of a mark on the printed wiring board based on a position where the transmitted light or reflected light is detected.
基材と配線とを有するプリント配線板上のマークの位置を検出する方法であって、A method for detecting the position of a mark on a printed wiring board having a substrate and wiring,
前記プリント配線板の基材越しに、前記プリント配線板の前記基材の表面の局部山頂平均間隔S/4.1以上の波長λを有する光を照射し、Irradiating light having a wavelength λ of a local peak sum average distance S / 4.1 or more of the surface of the substrate of the printed wiring board through the substrate of the printed wiring board;
前記照射した光の透過光又は反射光を検出し、Detecting transmitted light or reflected light of the irradiated light,
前記透過光又は反射光を検出した位置に基づいて、前記プリント配線板上のマークの位置を検出する方法。A method of detecting a position of a mark on the printed wiring board based on a position where the transmitted light or reflected light is detected.
JP2013167038A 2013-07-25 2013-07-25 Method for manufacturing printed wiring board Expired - Fee Related JP6364162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167038A JP6364162B2 (en) 2013-07-25 2013-07-25 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167038A JP6364162B2 (en) 2013-07-25 2013-07-25 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2015025106A JP2015025106A (en) 2015-02-05
JP6364162B2 true JP6364162B2 (en) 2018-07-25

Family

ID=52490029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167038A Expired - Fee Related JP6364162B2 (en) 2013-07-25 2013-07-25 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP6364162B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA215653S (en) 2022-05-27 2024-03-06 Faac Spa Wireless remote control

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999796A (en) * 1982-11-30 1984-06-08 松下電工株式会社 Method of detecting guide mark of multilayer printed circuitboard
JPS618607A (en) * 1984-06-25 1986-01-16 Matsushita Electric Works Ltd Detecting method of reference position of multilayered printed wiring board
JPH115954A (en) * 1997-06-17 1999-01-12 Ube Ind Ltd Tape with adhesive, metal-clad laminate, and circuit board
JP4130003B2 (en) * 1998-03-13 2008-08-06 宇部興産株式会社 Method for producing aromatic polyimide film
JP2000097674A (en) * 1998-09-22 2000-04-07 Sanee Giken Kk Method for detecting and aligning positioning mark
JP3328630B2 (en) * 2000-03-06 2002-09-30 イビデン株式会社 Printed wiring board and method of manufacturing printed wiring board
JP4014920B2 (en) * 2002-04-24 2007-11-28 株式会社目白プレシジョン Projection exposure equipment
JP2004098659A (en) * 2002-07-19 2004-04-02 Ube Ind Ltd Copper-clad laminate and its manufacturing process
JP4348474B2 (en) * 2003-06-23 2009-10-21 株式会社オーク製作所 Substrate direction detection method and drawing system
JP2006126695A (en) * 2004-11-01 2006-05-18 Toppan Printing Co Ltd Method for forming pattern
JP2006179666A (en) * 2004-12-22 2006-07-06 Nippon Steel Chem Co Ltd Laminated body, cof film carrier tape formed by using the laminated body and cof chip mounting method using the cof film carrier tape
JP4643281B2 (en) * 2005-01-26 2011-03-02 株式会社フジクラ Multilayer flexible printed wiring board and manufacturing method thereof
JP2007048999A (en) * 2005-08-11 2007-02-22 Fujikura Ltd Rigid flex multilayer substrate or multilayer flexible wiring board and manufacturing method thereof
WO2009054456A1 (en) * 2007-10-23 2009-04-30 Ube Industries, Ltd. Method for manufacturing printed wiring board
JP5187321B2 (en) * 2010-01-08 2013-04-24 イビデン株式会社 Method for manufacturing printed wiring board
JP5634103B2 (en) * 2010-04-06 2014-12-03 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP5885054B2 (en) * 2010-04-06 2016-03-15 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP2012209284A (en) * 2011-03-29 2012-10-25 Ngk Spark Plug Co Ltd Method of manufacturing wiring substrate

Also Published As

Publication number Publication date
JP2015025106A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
TWI460068B (en) Surface-treated copper foil for copper-clad laminates and copper-clad laminate using the same
JP5417538B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
TWI569957B (en) Surface-treated copper foil for copper-clad laminates and copper-clad laminate using the same
JP5362924B1 (en) Surface-treated copper foil and laminate using the same
JP2014111814A (en) Surface-treated copper foil, and laminate, printed wiring board, and copper-clad laminate made therefrom
JP2014111817A (en) Surface-treated copper foil and laminate made therefrom
JP5362923B1 (en) Surface-treated copper foil and laminate using the same
TWI503062B (en) Surface treatment of copper foil and the use of its laminated board, printed wiring board, electronic equipment and manufacturing
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP2014065965A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP6364162B2 (en) Method for manufacturing printed wiring board
JP6081883B2 (en) Copper foil, laminated board using the same, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP5922169B2 (en) Manufacturing method of electronic equipment
JP2014148747A (en) Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees