JP4130003B2 - Method for producing aromatic polyimide film - Google Patents

Method for producing aromatic polyimide film Download PDF

Info

Publication number
JP4130003B2
JP4130003B2 JP06237698A JP6237698A JP4130003B2 JP 4130003 B2 JP4130003 B2 JP 4130003B2 JP 06237698 A JP06237698 A JP 06237698A JP 6237698 A JP6237698 A JP 6237698A JP 4130003 B2 JP4130003 B2 JP 4130003B2
Authority
JP
Japan
Prior art keywords
film
layer
polyamic acid
polyimide film
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06237698A
Other languages
Japanese (ja)
Other versions
JPH11254467A (en
Inventor
浩 井上
卓二 高橋
誠一郎 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP06237698A priority Critical patent/JP4130003B2/en
Publication of JPH11254467A publication Critical patent/JPH11254467A/en
Application granted granted Critical
Publication of JP4130003B2 publication Critical patent/JP4130003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an arom. polyimide film with good optical transmission and good positioning. SOLUTION: Release properties to a metal substrate during forming by a cast film process is provided on the surface of a thin layer by a method wherein a substd. or unsubstd. nitrogen-contg. heterocyclic compd. such as imidazoles, benzimidazoles, isoquinolines or substd. pyridines is incorporated in a polyamic acid soln. in an org. polar solvent and a thin layer (at most 50% of the thickness of the whole film) is formed on one face of a substrate layer (at least 50% of the thickness of the whole film) by means of a co-extrusion cast film process.

Description

【0001】
【発明の属する技術分野】
この発明は、例えば主要単位としてビフェニルテトラカルボン酸二無水物および/またはピロメリット酸二無水物またはその誘導体とパラフェニレンジアミンおよび/またはジアミノジフェニルエ−テルとを有しており、寸法安定性が良好でかつ波長500nmおよび波長600nmで低吸光係数を示す芳香族ポリイミドフィルムの製造方法に関する。
【0002】
さらに詳しくは、この発明はフレキシブルプリント回路板(以下、単にFPCということもある)やTAB(テ−プ・オ−トメイテッド・ボンディング)テ−プ等の電気・電子部品実装用の用途に好適に用いられ、回路形成や実装時に回路パタ−ンの位置ずれが小さく、位置合わせや検査が容易で、寸法安定性が良好な芳香族ポリイミドフィルムの製造方法に関する。
【0003】
【従来の技術】
従来、高耐熱性の電子部品として芳香族ポリイミドフィルムの片面あるいは両面に接着剤を設けた接着剤付きシ−トを使用して銅箔等の導電体層を設けたものが一般的である。しかし、例えば、T−BGA(テ−プ・ボ−ル・グリッド・アレイ)を基板に実装する時に、基板の回路パタ−ンとT−BGAのボ−ルバンプの位置を正確に合わせる必要があり、ポリイミドテ−プを透して基板の回路パタ−ンを見ながら位置合わせ接合が行われているが、現在使用されている寸法安定性の良好なポリイミドフィルム(例えば、宇部興産製のユ−ピレックス−S)は光透過性が悪いので位置合わせに時間がかかり、生産性が低下する。また、フレキシブルプリント回路板の回路のない裏面から欠陥を検査する場合、光透過性が悪いと検査に特別の装置が必要になる。
【0004】
この用途に使用される芳香族ポリイミドフィルムは、耐熱性、耐寒性、電気絶縁性、機械的強度等が要求されることから、ビフェニルテトラカルボン酸成分とフェニレンジアミン成分とからなるポリイミドフィルムが使用され、例えば特公昭60−42817号公報に記載されている。
しかし、このポリイミドフィルムが使用される前記分野では、高生産性の要求が益々厳しくなり、また実装密度を上げる目的でポリイミドフィルムの両面に回路を形成することが必要になってきている。この場合には、裏面と表面との回路を精度高く位置合わせすることが必須になり、芳香族ポリイミドフィルムの光透過性が良いことが求められ、従来の芳香族ポリイミドフィルムでは生産性を高くすることが困難である。
【0005】
このため、ポリイミドフィルムについて種々の改良がなされた。例えば、特開昭61−264027号公報にはビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンとから得られるポリイミドフィルムを低張力下に再熱処理して寸法安定なポリイミドフィルムを製造する方法が記載されている。また、特公平−6213号公報には線膨張係数比(送り方向/直行方法)および送り方向の線膨張係数が特定範囲内にあり寸法安定性に優れたポリイミドフィルムが記載されている。さらに、特公昭62−60416号公報、特公昭63−5421号公報、特公昭63−5422号公報には、流延法での製膜時の芳香族ポリアミック酸フィルムの剥離性を改良する方法が記載され、特開平4−198229号公報や特開平4−339835号公報には置換もしくは非置換の含窒素複素環化合物からなるイミド化触媒を添加する製造方法が記載されている。
【0006】
しかし、これらの公知技術では、線膨張や寸法安定性などの熱特性や生産性の点では改良されるものの、光透過性の良好な芳香族ポリイミドフィルムを得ることが出来なかったのである。
従って、従来の技術では、寸法安定性および光透過性を併せて満足する芳香族ポリイミドフィルムを得ることはできなかったのである。
また、従来の技術では、位置合わせや欠陥検査を容易に行うことができなかった。
【0007】
【発明が解決しようとする課題】
この発明の目的は、FPCやTABテ−プ等の電気・電子部品実装用の基板用途に好適に用いることができ、回路形成やICなどの電気・電子実装時や基板への実装時に位置合わせや検査が容易で、寸法安定性が良好な芳香族ポリイミドフィルムの製造方法を提供することにある。
【0008】
【課題を解決するための手段】
この発明者らは、前記の課題を達成するために検討した結果、寸法安定性が良好で光透過性の良い芳香族ポリイミドフィルムを工業的に製造することが可能であることを見いだし、これを使用することにより位置合わせや欠陥検査の容易な芳香族ポリイミドフィルムの製造方法を見いだし、この発明の完成に至ったのである。
すなわち、この発明は、製膜時の高温でのキュアによって寸法安定性が良好なポリイミドフィルムを与えるポリアミック酸の有機極性溶媒溶液に置換もしくは非置換の含窒素複素環化合物を含有させて、共押出し−流延製膜法により基体層(フィルム全体の厚みの50%以上)の片面に薄層(フィルム全体の厚みの50%以下)を形成することによって、該薄層表面に流延製膜法による成形時に金属支持体との剥離性を与えた、光透過性の良好な芳香族ポリイミドフィルムの製造方法に関するものである。
【0009】
この発明においては、芳香族ポリイミドフィルムは寸法安定性が良好であることが必要である。寸法安定性が良好な芳香族ポリイミドフィルムは、好適には以下の2つのいずれかによって得られる。
(1) 芳香族ポリイミドフィルムを構成するポリマ−成分が、テトラカルボン酸成分として3,3’,4,4’−ビフェニルテトラカルボン酸、その酸二無水物又はその酸エステルを15モル%以上およびピロメリット酸二無水物を0−85モル%含有し、芳香族ジアミン成分としてフェニレンジアミンを15モル%以上およびジアミノジフェニルエ−テルを0〜85モル%含有するポリアミック酸と有機極性溶媒とイミド化触媒、好適には置換もしくは非置換の含窒素複素環化合物とからなるポリアミック酸溶液を使用し、共押出し−流延製膜法によって、剥離剤を含む薄層用ポリアミック酸溶液と剥離剤を含まない基体層用ポリアミック酸溶液とから、基体層(フィルム全体の厚みの50%以上)の片面に薄層(フィルム全体の厚みの50%以下)を形成し、該薄層に流延製膜法による成形時に金属支持体との剥離性を与え、基体層に薄層よりも良好な透明性を与える着色度の改良された芳香族ポリイミドフィルムを得る方法によって膜形成・イミド化する方法が好適に挙げられる。
【0010】
(2) 芳香族ポリイミドフィルムを構成するポリマ−成分が、テトラカルボン酸成分として3,3’,4,4’−ビフェニルテトラカルボン酸、その酸二無水物又はその酸エステルまたはピロメリット酸二無水物を主要成分とし、芳香族ジアミン成分としてフェニレンジアミンまたはジアミノジフェニルエ−テルをポリマ−の主要成分とし、イミド化触媒、好適には置換もしくは非置換の含窒素複素環化合物とを含むポリアミック酸溶液を使用し、共押し出−流延製膜法によって、剥離剤を含む薄層用ポリアミック酸溶液と剥離剤を含まない基体層用ポリアミック酸溶液とから、基体層(フィルム全体の厚みの50%以上)の片面に薄層(フィルム全体の厚みの50%以下)を有する自己支持性のフィルムを得、2方向に延伸した後、加熱して延伸された自己支持性ポリイミド前駆体フィルムをイミド化するポリイミドフィルムが好適に使用される。
【0011】
上記のテトラカルボン酸成分およびジアミン成分の他に、その他の芳香族テトラカルボン酸成分および/または芳香族ジアミン成分を発明の効果を損なわない範囲で1種あるいは多種含ませてもよい。
併用可能な芳香族テトラカルボン酸成分としては、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エ−テル二無水物、ビス(2,3−ジカルボキシフェニル)エ−テル二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)1,1,1,3,3,3−ヘキサフルオロプロパン二無水物等が挙げられる。
【0012】
併用可能な芳香族ジアミン成分としては、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス〔4−(4−アミノフェノキシ)フェニル〕エ−テルなどが挙げられる。
【0013】
この発明において、芳香族ポリイミドフィルムは、厚みが10〜200μm、好ましくは25〜150μm、特に好ましくは50〜125μmであって、吸光係数が波長500nmで15.0×10-3/μm以下、特に14.0×10-3/μm以下、その中でも特に5.0×10-3/μm〜14.0×10-3/μmであって、波長600nmで5.0×10-3/μm以下、特に4.5×10-3/μm以下、その中でも特に2.0×10-3/μm〜4.5×10-3/μであることが好ましい。この吸光係数は、下記式:
吸光係数=吸光度/フィルム厚み(μm)
より求められる。
この発明における芳香族ポリイミドフィルムとしては、さらに好ましくは下記の条件:
(1) 線膨張係数(50〜200℃)が0.5×10-5〜2.5×10-5cm/cm/℃以下であり、
(2) 吸水率が2.5%以下であり、
を満足することが好ましい。
【0014】
また、(1) 線膨張係数(50〜200℃)および(2) 吸水率が前記範囲内であると、種々の環境下(高温、エッチィング工程等)においた場合に寸法変化が少なく、特にFPC、TABなどの用途として好適である。
【0015】
この発明の芳香族ポリイミドフィルムの製造方法は、例えば以下のようにして行うことができる。好適には先ず前記テトラカルボン酸二無水物、好適にはビフェニルテトラカルボン酸類とフェニレンジアミン、好適にはパラフェニレンジアミンとをN,N−ジメチルアセトアミドやN−メチル−2−ピロリドンなどのポリイミドの製造に通常使用される有機極性溶媒中で、好ましくは10〜80℃で1〜30時間重合して、ポリマ−の対数粘度(測定温度:30℃、濃度:0.5g/100ml溶媒、溶媒:N,N−ジメチルアセトアミド)が0.1〜5 、ポリマ−濃度が15〜25重量%であり、回転粘度(30℃)が500〜4500ポイズであるポリアミック酸溶液を得る。
【0016】
この発明においては、上記のようにして得られたポリアミック酸溶液に、イミド化触媒を、好適にはポリアミック酸のアミック酸単位に対して0.005−0.8倍当量、特に0.02−0.8倍当量程度の量含有させる。置換もしくは非置換の含窒素複素環化合物としては、イミダゾ−ル、ベンズイミダゾ−ル、それらの置換誘導体、例えばN−メチルイミダゾ−ル、1,2−ジメチルイミダゾ−ル、N−ベンジル−2−メチルイミダゾ−ル、2−メチルイミダゾ−ル、2−エチル−4−メチルイミダゾ−ル、5−メチルベンズイミダゾ−ルのような低級アルキル基が一もしくは二個付加したイミダゾ−ルもしくはベンズイミダゾ−ルや、イソキノリン、3,5−ジメチルピリジン、3,4−ジメチルピリジン、2,5−ジメチルピリジン、2,4−ジメチルピリジン、4−n−プロピルピリジンなどの置換ピリジンを挙げることができる。また、これらのイミド化触媒は、二種以上組み合わせて使用してもよい。
このようにして得られたポリアミック酸溶液を、基体層A用のポリアミック酸溶液組成物として使用することができる。
【0017】
上記のポリアミック酸溶液の一部をとり、リン化合物を、好ましくはこのポリアミック酸100重量部に対して0.01−5重量部、特に0.05−3重量部、その中でも特に0.1−1重量部の割合で有機リン化合物、好適には(ポリ)リン酸エステル、リン酸エステルのアミン塩あるいは無機リン化合物を添加し、さらに好適には無機フィラ−を、特にポリアミック酸100重量部に対して0.1−3重量部のコロイダルシリカ、窒化珪素、タルク、酸化チタン、燐酸カルシウム(好適には平均粒径0.005−5μm、特に0.005−2μm)を添加して薄層B用のポリアミック酸溶液組成物を得る。
【0018】
得られた基体層A用と薄層B用のポリアミック酸溶液を用いて、多層押出ポリイミドフィルムを得る共押出し−流延製膜法、例えば、この出願人がすでに特許出願している特開平3−180343号公報に記載されている方法を応用することによって芳香族ポリイミドフィルムを好適に製造することができる。
すなわち、基材層A用ポリアミック酸溶液と、薄層B用ポリアミック酸溶液とを、2層以上の押出し成形用ダイスを有する押出成形機へ同時に供給して、前記ダイスの吐出口から両溶液を少なくとも2層の薄膜状体として、薄層B用のポリアミック酸溶液が平滑な支持体(金属製支持体)と接するように支持体上に連続的に押出し、そして、前記支持体上の多層の薄膜状体を乾燥し溶媒をかなり蒸発して除去して自己支持性の多層フィルム(溶媒を一部含有している)を形成し、次いで、支持体上から該多層フィルムを剥離し、次いで、該多層フィルムを高温(200−500℃)で充分に加熱処理することによって溶媒を実質的に除去すると共にポリイミド前駆体であるポリアミック酸をイミド化して、連続的に製造することができる。
この発明においては、イミド化触媒を含有させているので、熱処理の速度を大きくすることができる。
【0019】
この発明における芳香族ポリイミドフィルムは、基体層Aと薄層Bとからなる2層構造のフィルムであってもよく、また、基材層Aとその両面の薄層BおよびB’とからなる3層構造のフィルムであってもよい。2層、3層構造のフィルムの薄層Bの厚みは、フィルムの厚みの50%以下、特に0.1〜10μm、好ましくは0.1〜8μm、さらに好ましくは0.3〜6μmである。厚みが薄いと剥離性が悪くなり、厚くなると光透過性が悪くなる。
なお、基体層Aと薄層Bのポリアミック酸溶液(特にポリアミック酸)の組成は同じであることが芳香族フィルムのカ−ル等の点で好ましいが、必ずしも同じである必要はない。例えば、B層とB’層とでフィラ−の種類や量を変えてもよいし、B’層にはリン系化合物を添加しなくてもよい。
【0020】
この発明における芳香族ポリイミドフィルムにおいて、好適にはテトラカルボン酸二無水物として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と芳香族ジアミンとしてパラフェニレンジアミンとを重合する方法によって容易に得ることができるが、ポリアミック酸としては、前記フィルムの物性値を満足する範囲内であれば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとともに他の成分を重合してもよく、また、結合の種類はランダム重合、ブロック重合のいずれであってもよい。また、最終的に得られるポリイミドフィルム中の各成分の合計量が前記の範囲内であれば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を含むポリアミック酸とパラフェニレンジアミンを含むポリアミック酸に他の成分からなるポリアミック酸成分を混合して使用してもよい。いずれの場合も前記と同様にして目的とする芳香族ポリイミドフィルムを得ることができる。
【0021】
この発明における芳香族ポリイミドフィルムは、そのままあるいはその表面をコロナ放電処理、火炎処理、紫外線照射処理、低温あるいは常圧プラズマ放電処理、表面処理剤塗布処理のいずれか1つの表面処理を施すことができる。
【0022】
上記芳香族ポリイミドフィルム、好適にはフィルムの表面処理面に金属層を積層する方法としては、蒸着法、スパッタ法、メッキ法で導電体層を直接積層してもよく、あるいは接着剤を介して金属層を積層してもよい。
直接金属層層を積層する方法は、それ自体公知の方法で行うことができる。
接着剤を介して金属層を積層する場合の接着剤は、熱硬化性でも熱可塑性でもよく、例えばエポキシ樹脂、NBR−フェノ−ル系樹脂、フェノ−ル−ブチラ−ル系樹脂、エポキシ−NBR系樹脂、エポキシ−フェノ−ル系樹脂、エポキシ−ナイロン系樹脂、エポキシ−ポリエステル系樹脂、エポキシ−アクリル系樹脂、アクリル系樹脂、ポリアミド−エポキシ−フェノ−ル系樹脂、ポリイミド系樹脂、ポリイミドシロキサン−エポキシ樹脂などの熱硬化性接着剤、またはポリアミド系樹脂、ポリエステル系樹脂、ポリイミド系接着剤、ポリイミドシロキサン系接着剤などの熱可塑性接着剤が挙げられる。特に、ポリイミド接着剤、ポリイミドシロキサン−エポキシ接着剤、エポキシ樹脂接着剤が好適に使用される。
【0023】
上記の金属は、例えばアルミニウム、銅、銅合金などが挙げられ、銅箔が一般的に使用される。銅箔としては、電解銅箔、圧延銅箔が挙げられ、その引張強度が17kg/mm2 以上であるものが好ましい。また、その厚みは8〜50μmであることが好ましい。
特に、厚み3〜30μmのポリイミド系接着剤と表面粗度の少ない厚み8〜40μmの圧延または電解銅箔を組み合わせて使用することが好ましい。
【0024】
この発明の芳香族ポリイミドフィルムの少なくとも片面に接着剤を介してまたは蒸着法、スパッタ法やメッキ法によって直接金属層を積層し、次いでエッチィング処理して回路を形成して得られる。
金属層に回路を形成する方法としては、前記の芳香族ポリイミドフィルムに直接あるいは接着剤を介して金属層を積層して金属張基板を製造した後、その金属表面に例えばエッチィングレジストを回路パタ−ン状(配線パタ−ン状)に印刷して、配線パタ−ンが形成される部分の金属表面を保護するエッチィングレジストの配線パタ−ンを形成した後、それ自体公知の方法でエッチィング液を使用して配線が形成されない部分の金属をエッチィングにより除去し、エッチィングレジストを除去する方法が挙げられる。
【0025】
このようにして形成した回路板の回路パタ−ン(配線パタ−ン)上面に、通常は絶縁性のコ−ト材を塗布し、加熱乾燥してコ−ト層を形成する。コ−ト層の形成は、コ−ト材(液状物)を回転塗布機械、ディスペンサ−または印刷機などを使用する塗布法で均一な厚さに塗布し、加熱乾燥する。コ−ト材は一般的に無機フィラ−が多量に添加されており、不透明であり、塗布面から下の回路を明瞭に見ることは困難である。
【0026】
さらに、この発明の応用例であるT−BGAは、例えば以下のようにして得られる。スリットした芳香族ポリイミドフィルムのテ−プの上に接着剤テ−プをラミネ−トし、接着剤付きポリイミドテ−プを得る。得られたテ−プにスプロケット穴やデバイスホ−ルを打ち抜き、その上に金属箔を張り合わせる。金属箔を張り合わせたテ−プを加熱し、接着剤を硬化させる。次いで、上で述べたように回路パタ−ンを形成し、その上にパタ−ンの一部を残してコ−ト材をスクリ−ン印刷する。次いで、パタ−ン上の銅箔が露出している部分にハンダのボ−ルを形成してT−BGAを作製する。
そしてこの基板(T−BGA)にICをボンディングし、ICの部分を封止材で保護する。次いでこのICをボンディングしたT−BGAをプリント基板の所定の位置にボ−ルを形成した面を下にして、プリント基板のパタ−ン位置を上から確認しながら位置を合わせ、リフロ−炉で加熱し実装する。
【0027】
【実施例】
以下にこの発明の実施例を示す。
以下の各例において、ポリイミドフィルムの物性測定は以下の方法によって行った。
【0028】
吸光度:下式に従い算出した。
吸光度=−log(光透過率)
光透過率:大塚電子製の瞬間マルチ測光システム MCPD−1000にて測定
線膨張係数(50〜200℃)測定:300℃で30分加熱して応力緩和したサンプルをTMA装置(引張りモ−ド、2g荷重、試料長10mm、20℃/分)で測定
吸水率:ASTM D570−63に従って測定(23℃×24時間)
絶縁破壊電圧:ASTM D149−64に従って測定(25℃)
体積抵抗率:ASTM D257−61に従って測定(25℃)
【0029】
透過性の評価は、フィルム自体の透過率を測定すると共に、TABテ−プとT−BGAを試作し、評価した。TABテ−プは、回路面の反対側から光を当て、回路パタ−ンが充分見分けられるものを良、見分けが困難なものを不良とした。
また、T−BGAは、ボ−ル面を下にして、基板の回路パタ−ンが見分けられるものを良とし、見分けが困難なものを不良と判断した。
【0030】
参考例1
内容積100リットルの重合槽に、N,N−ジメチルアセトアミド54.6kgを加え、次いで3,3’,4,4’−ビフェニルテトラカルボン酸二無水物8.826kgとパラフェニレンジアミン3.243kgとを加え、30℃で10時間重合反応させてポリマ−の対数粘度(測定温度:30℃、濃度:0.5g/100ml溶媒、溶媒:N,N−ジメチルアセトアミド)が1.60、ポリマ−濃度が18重量%であるポリアミック酸(イミド化率:5%以下)溶液を得た。
このポリアミック酸溶液に1,2−ジメチルイミダゾ−ル0.29kg(ポリアミック酸単位に対して0.05倍当量)を添加し、混合した。
【0031】
参考例2
参考例1で製造したポリアミック酸溶液に、ポリアミック酸100重量部に対して0.1重量部の割合でモノステアリルリン酸エステルトリエタノ−ルアミン塩および0.5重量部の割合(固形分基準)で平均粒径0.08μmのコロイダルシリカを添加して均一に混合してポリアミック酸溶液組成物を得た。
【0032】
参考例3
N,N−ジメチルアセトアミド53.6kg、パラフェニレンジアミン2.27kg、4,4’−ジアミノジフェニルエ−テル1.802kg、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物4.413kgとピロメリット酸二無水物3.272kg加えた他は参考例1と同様に重合し、ポリアミック酸の溶液(回転粘度:1400ポイズ、18重量%)を得た。
このポリアミック酸溶液に1,2−ジメチルイミダゾ−ル0.29kg(ポリアミック酸単位に対して0.05倍当量)を添加し、混合した。
【0033】
参考例4
参考例3で製造したポリアミック酸溶液に、ポリアミック酸100重量部に対して0.1重量部の割合でモノステアリルリン酸エステルトリエタノ−ルアミン塩および0.5重量部の割合(固形分基準)で平均粒径0.08μmのコロイダルシリカを添加して均一に混合してポリアミック酸溶液組成物を得た。
【0034】
実施例1
参考例1で製造したポリアミック酸溶液と参考例2で製造したポリアミック酸溶液を使用して、2層押出ダイスから、参考例2のポリアミック酸溶液層が支持体面と接するように、平滑な金属支持体面の上に押出し、140℃の熱風で連続的に乾燥し、自己支持性フィルムを形成し、その自己支持性フィルムを支持体から剥離した。フィルムは問題なく剥離した。次いで、加熱炉で、200℃から480℃まで徐々に昇温して、溶媒を除去すると共にポリマ−をイミド化した。得られたフィルムの厚みは75μmで、参考例2のポリアミック酸に対応するポリイミドの層が5μmである。このフィルムの物性を表1に示す。
【0035】
TABテ−プを以下のように作製した。
35mm幅にスリットした芳香族ポリイミドフィルムのテ−プの上に幅29.6mmで厚み10μmの接着剤を両面からPET(ポリエチレンテレフタレ−ト)のテ−プで挟んだテ−プの一方のPETを剥がし、35mm幅のポリイミドテ−プの中央に接着剤をポリイミド面と合わせるようにラミネ−トし、接着剤付きポリイミドテ−プを得る。
得られたテ−プにスプロケット穴やデバイスホ−ルを打ち抜き、PETを剥がし接着剤の上に約31mm幅の35μm厚みの電解銅箔を張り合わせる。銅箔を張り合わせたテ−プを加熱し、接着剤を硬化させた。
次いで、回路パタ−ンを形成し、その上にコ−ト材をスクリ−ン印刷した。このTABテ−プの回路面と反対側から検査した。
T−BGAを以下のように作製した。
35mm幅にスリットした芳香族ポリイミドフィルムのテ−プの上に幅29.6mmで厚み10μmの接着剤を両側をPET(ポリエチレンテレフタレ−ト)で挟んだテ−プの片側のPETを剥がし、35mm幅のポリイミドテ−プの中央に接着剤をポリイミド面と合わせるようにラミネ−トし、接着剤付きポリイミドテ−プを得た。
得られたテ−プにスプロケット穴やデバイスホ−ルを打ち抜き、カバ−のPETを剥がし、接着剤の上に約31mm幅の35μm厚みの電解銅箔を張り合わせる。銅箔を張り合わせたテ−プを加熱し、接着剤を硬化させた。
次いで、回路パタ−ンを形成し、その上にコ−ト材をスクリ−ン印刷する。次いで、パタ−ン上の銅箔が露出している部分にハンダのボ−ルを形成してT−BGAを作製し、検査した。この基板にICをボンディングし、ICの部分を封止材で保護し、次いで、このICをボンディングしたT−BGAをプリント基板の所定の位置にボ−ルを形成した面を下にして、プリント基板のパタ−ン位置を上から確認しながら位置合わせを行う。この際位置合わせは良好であった。
【0036】
実施例2
ポリアミック酸溶液の供給量を変えた他は実施例1と同様にして、参考例1のポリアミック酸に対応するポリイミドの層の厚みを73μm、参考例2のポリアミック酸に対応するポリイミドの層の厚みを2μmにした以外は実施例1と同様にして75μmのポリイミドフィルムを得た。
このフィルムの物性を表1に示す。
このフィルムを使用し、実施例1と同様にして接着剤付きテ−プ、金属張積層板および回路板を得た。評価結果を表1に示す。
【0037】
実施例3
ポリアミック酸溶液の供給量を変えた他は実施例1と同様にして、参考例1のポリアミック酸に対応するポリイミドの層の厚みを48μm、参考例2のポリアミック酸に対応するポリイミドの層の厚みを2μmにした以外は実施例1と同様にして50μmのポリイミドフィルムを得た。
このフィルムの物性を表1に示す。
このフィルムを使用し、実施例1と同様にして接着剤付きテ−プ、金属張積層板および回路板を得た。評価結果を表1に示す。
【0038】
実施例4
ポリアミック酸溶液の種類および供給量を変えた他は実施例1と同様にして、参考例3のポリアミック酸に対応するポリイミドの層の厚みを48μm、参考例4のポリアミック酸に対応するポリイミドの層の厚みを2μmにした以外は実施例1と同様にして50μmのポリイミドフィルムを得た。
このフィルムの物性を表1に示す。
このフィルムを使用し、実施例1と同様にして接着剤付きテ−プ、金属張積層板および回路板を得た。評価結果を表1に示す。
【0039】
比較例1
参考例2で製造したポリアミック酸溶液を使用して、1層押出ダイスから、平滑な金属支持体面の上に押出した以外は実施例1と同様にして75μmのポリイミドフィルムを得た。
このフィルムの物性を表1に示す。
このフィルムを使用し、実施例1と同様にして接着剤付きテ−プ、金属張積層板および回路板を得た。評価結果を表1に示す。
【0040】
比較例2
参考例4で製造したポリアミック酸溶液を使用して、1層押出ダイスから、平滑な金属支持体面の上に押出した以外は実施例1と同様にして50μmのポリイミドフィルムを得た。
このフィルムの物性を表1に示す。
このフィルムを使用し、実施例1と同様にして接着剤付きテ−プ、金属張積層板および回路板を得た。評価結果を表1に示す。
【0041】
比較例3
市販の芳香族ポリイミドフィルム(宇部興産製、ユ−ピレックス−S、50μm)の物性を表1に示す。
このフィルムを使用し、実施例1と同様にして接着剤付きテ−プ、金属張積層板および回路板を得た。評価結果を表1に示す。
【0042】
比較例4
市販の芳香族ポリイミドフィルム(東レ・デュポン社製、カプトン200H、50μm)の物性を表1に示す。
このフィルムを使用し、実施例1と同様にして接着剤付きテ−プ、金属張積層板および回路板を得た。評価結果を表1に示す。
【0043】
【表1】

Figure 0004130003
【0044】
【発明の効果】
この発明は以上説明したように構成されているので、以下に記載のような効果を奏する。
この発明の芳香族ポリイミドフィルムは、光透過性が良いので、この芳香族ポリイミドフィルムを使用した接着剤付きテ−プ、金属張積層板および回路板の位置合わせや欠陥検査が容易になり、生産性向上、不良率低減に有益である。[0001]
BACKGROUND OF THE INVENTION
This invention has, for example, biphenyltetracarboxylic dianhydride and / or pyromellitic dianhydride or a derivative thereof as a main unit and paraphenylenediamine and / or diaminodiphenyl ether, and has dimensional stability. The present invention relates to a method for producing an aromatic polyimide film which is good and has a low extinction coefficient at a wavelength of 500 nm and a wavelength of 600 nm.
[0002]
More specifically, the present invention is suitable for use in mounting electrical / electronic components such as flexible printed circuit boards (hereinafter sometimes simply referred to as FPC) and TAB (tape-automated bonding) tapes. The present invention relates to a method for producing an aromatic polyimide film that is used and has a small positional deviation of a circuit pattern during circuit formation and mounting, is easy to align and inspect, and has good dimensional stability.
[0003]
[Prior art]
Conventionally, as a heat-resistant electronic component, a sheet with an adhesive provided with an adhesive on one or both surfaces of an aromatic polyimide film is generally used and a conductor layer such as a copper foil is provided. However, for example, when a T-BGA (Tape Ball Grid Array) is mounted on a substrate, it is necessary to accurately align the circuit pattern of the substrate and the ball bumps of the T-BGA. Alignment bonding is performed while seeing the circuit pattern of the substrate through the polyimide tape, but a polyimide film having a good dimensional stability (for example, Ube Industries Since Pyrex-S) is poor in light transmission, it takes time to align and productivity is lowered. Also, when inspecting a defect from the back side of the flexible printed circuit board without a circuit, a special device is required for the inspection if the light transmittance is poor.
[0004]
The aromatic polyimide film used in this application is required to have heat resistance, cold resistance, electrical insulation, mechanical strength, etc., so a polyimide film comprising a biphenyltetracarboxylic acid component and a phenylenediamine component is used. For example, it is described in Japanese Patent Publication No. 60-42817.
However, in the field where the polyimide film is used, the demand for high productivity becomes more severe, and it is necessary to form circuits on both sides of the polyimide film for the purpose of increasing the mounting density. In this case, it is essential to align the circuit between the back surface and the front surface with high accuracy, and it is required that the light transmittance of the aromatic polyimide film is good. With the conventional aromatic polyimide film, the productivity is increased. Is difficult.
[0005]
For this reason, various improvements have been made on the polyimide film. For example, JP-A-61-264027 describes a method for producing a dimensionally stable polyimide film by re-treating a polyimide film obtained from biphenyltetracarboxylic dianhydride and p-phenylenediamine under low tension. Has been. Japanese Patent Publication No. 6213 discloses a polyimide film having a linear expansion coefficient ratio (feed direction / straight method) and a linear expansion coefficient in the feed direction within a specific range and excellent in dimensional stability. Furthermore, Japanese Patent Publication No. 62-60416, Japanese Patent Publication No. 63-5421, Japanese Patent Publication No. 63-5422 discloses a method for improving the peelability of an aromatic polyamic acid film during film formation by the casting method. JP-A-4-198229 and JP-A-4-339835 describe a production method in which an imidation catalyst comprising a substituted or unsubstituted nitrogen-containing heterocyclic compound is added.
[0006]
However, although these known techniques are improved in terms of thermal characteristics such as linear expansion and dimensional stability and productivity, it has not been possible to obtain an aromatic polyimide film having good light transmittance.
Therefore, according to the prior art, it has not been possible to obtain an aromatic polyimide film that satisfies both dimensional stability and light transmittance.
In addition, the conventional technique cannot easily perform alignment and defect inspection.
[0007]
[Problems to be solved by the invention]
The object of the present invention can be suitably used for mounting substrates for electric / electronic components such as FPC and TAB tape, and aligning when forming circuits, mounting IC / electrical components, etc. Another object of the present invention is to provide a method for producing an aromatic polyimide film that can be easily inspected and has good dimensional stability.
[0008]
[Means for Solving the Problems]
As a result of investigations to achieve the above-mentioned problems, the inventors have found that it is possible to industrially produce an aromatic polyimide film having good dimensional stability and good light transmittance. As a result, the inventors have found a method for producing an aromatic polyimide film that can be easily aligned and inspected for defects, and have completed the present invention.
That is, the present invention includes a substituted or unsubstituted nitrogen-containing heterocyclic compound in an organic polar solvent solution of polyamic acid that gives a polyimide film with good dimensional stability by curing at a high temperature during film formation, and coextruded. -A casting film forming method on the surface of the thin layer by forming a thin layer (50% or less of the total film thickness) on one side of the substrate layer (50% or more of the total film thickness) by the casting film forming method. The present invention relates to a method for producing an aromatic polyimide film having good light transmissivity, which is provided with a peelability from a metal support at the time of molding.
[0009]
In the present invention, the aromatic polyimide film needs to have good dimensional stability. An aromatic polyimide film having good dimensional stability is preferably obtained by one of the following two methods.
(1) The polymer component constituting the aromatic polyimide film contains 15 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic acid, its acid dianhydride or its acid ester as a tetracarboxylic acid component, and Polyamic acid containing 0-85 mol% of pyromellitic dianhydride, 15 mol% or more of phenylenediamine as an aromatic diamine component and 0-85 mol% of diaminodiphenyl ether, imidization with organic polar solvent A polyamic acid solution comprising a catalyst, preferably a substituted or unsubstituted nitrogen-containing heterocyclic compound, is used, and a co-extrusion-casting film forming method includes a polyamic acid solution for a thin layer containing a release agent and a release agent. A thin layer (at least 50% of the total film thickness) on one side of the substrate layer (at least 50% of the total film thickness) Aromatic polyimide film with improved coloration that gives the thin layer a peelability from the metal support during molding by the casting film forming method and gives the base layer better transparency than the thin layer A method of forming a film and imidizing is preferably exemplified by a method for obtaining the above.
[0010]
(2) The polymer component constituting the aromatic polyimide film is 3,3 ′, 4,4′-biphenyltetracarboxylic acid, its acid dianhydride or its acid ester, or pyromellitic dianhydride as the tetracarboxylic acid component A polyamic acid solution comprising a main component as a main component, phenylenediamine or diaminodiphenyl ether as a main component of an aromatic diamine component, and an imidization catalyst, preferably a substituted or unsubstituted nitrogen-containing heterocyclic compound Using a coextrusion-casting film forming method, from a polyamic acid solution for a thin layer containing a release agent and a polyamic acid solution for a base layer containing no release agent, a base layer (50% of the total film thickness) A self-supporting film having a thin layer (50% or less of the total film thickness) on one side is obtained, stretched in two directions, and then heated and stretched. Polyimide film imidizing a self-supporting polyimide precursor films are preferably used.
[0011]
In addition to the above tetracarboxylic acid component and diamine component, one or more other aromatic tetracarboxylic acid components and / or aromatic diamine components may be included as long as the effects of the invention are not impaired.
Examples of aromatic tetracarboxylic acid components that can be used in combination include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 2, 2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether Anhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) 1,1,1,3,3,3- Examples include hexafluoropropane dianhydride.
[0012]
Examples of aromatic diamine components that can be used in combination include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylethane, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, and bis [4- ( 4-aminophenoxy) phenyl] methane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (aminophenoxy) phenyl] -1,1,1,3 Examples include 3,3-hexafluoropropane and bis [4- (4-aminophenoxy) phenyl] ether.
[0013]
In this invention, the aromatic polyimide film has a thickness of 10 to 200 μm, preferably 25 to 150 μm, particularly preferably 50 to 125 μm, and an extinction coefficient of 15.0 × 10 at a wavelength of 500 nm. -3 / Μm or less, especially 14.0 × 10 -3 / Μm or less, especially 5.0 × 10 -3 / Μm to 14.0 × 10 -3 / Μm and 5.0 × 10 at a wavelength of 600 nm -3 / Μm or less, especially 4.5 × 10 -3 / Μm or less, especially 2.0 × 10 -3 / Μm to 4.5 × 10 -3 / Μ is preferable. This extinction coefficient is given by the following formula:
Absorption coefficient = absorbance / film thickness (μm)
More demanded.
The aromatic polyimide film in the present invention is more preferably the following conditions:
(1) Linear expansion coefficient (50-200 ° C) is 0.5 x 10 -Five ~ 2.5 × 10 -Five cm / cm / ° C. or less,
(2) Water absorption is 2.5% or less,
Is preferably satisfied.
[0014]
In addition, when (1) linear expansion coefficient (50 to 200 ° C.) and (2) water absorption rate are within the above ranges, there is little dimensional change when placed in various environments (high temperature, etching process, etc.). It is suitable for applications such as FPC and TAB.
[0015]
The manufacturing method of the aromatic polyimide film of this invention can be performed as follows, for example. Preferably, first, the tetracarboxylic dianhydride, preferably biphenyltetracarboxylic acid and phenylenediamine, preferably paraphenylenediamine, is used to produce a polyimide such as N, N-dimethylacetamide or N-methyl-2-pyrrolidone. In an organic polar solvent usually used for polymerization, it is preferably polymerized at 10 to 80 ° C. for 1 to 30 hours to obtain a logarithmic viscosity of the polymer (measurement temperature: 30 ° C., concentration: 0.5 g / 100 ml solvent, solvent: N , N-dimethylacetamide) is 0.1-5, the polymer concentration is 15-25% by weight, and the polyamic acid solution has a rotational viscosity (30 ° C.) of 500-4500 poise.
[0016]
In this invention, the imidization catalyst is preferably added to the polyamic acid solution obtained as described above in an amount of 0.005-0.8 times equivalent, particularly 0.02-, with respect to the amic acid unit of the polyamic acid. The amount is about 0.8 times equivalent. Examples of the substituted or unsubstituted nitrogen-containing heterocyclic compound include imidazole, benzimidazole, substituted derivatives thereof such as N-methylimidazole, 1,2-dimethylimidazole, N-benzyl-2-ol. Imidazole or benzimidazole to which one or two lower alkyl groups are added such as methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, etc. And substituted pyridines such as isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, and 4-n-propylpyridine. Moreover, you may use these imidation catalysts in combination of 2 or more types.
The polyamic acid solution thus obtained can be used as a polyamic acid solution composition for the base layer A.
[0017]
Taking a part of the above polyamic acid solution, the phosphorus compound is preferably 0.01-5 parts by weight, particularly 0.05-3 parts by weight, especially 0.1-0.1 parts by weight based on 100 parts by weight of the polyamic acid. An organic phosphorus compound, preferably (poly) phosphate ester, an amine salt of a phosphate ester or an inorganic phosphorus compound is added in a proportion of 1 part by weight, more preferably an inorganic filler, particularly 100 parts by weight of polyamic acid. On the other hand, 0.1-3 parts by weight of colloidal silica, silicon nitride, talc, titanium oxide, calcium phosphate (preferably an average particle size of 0.005-5 μm, especially 0.005-2 μm) is added to form a thin layer B A polyamic acid solution composition is obtained.
[0018]
Using the obtained polyamic acid solution for the base layer A and the thin layer B, a coextrusion-casting film forming method for obtaining a multilayer extruded polyimide film, for example, Japanese Patent Application Laid-open No. Hei 3 An aromatic polyimide film can be suitably produced by applying the method described in JP-A-180343.
That is, the polyamic acid solution for the base layer A and the polyamic acid solution for the thin layer B are simultaneously supplied to an extrusion molding machine having two or more extrusion dies, and both solutions are discharged from the discharge port of the die. As a thin film body of at least two layers, the polyamic acid solution for the thin layer B is continuously extruded onto a support so as to be in contact with a smooth support (metal support), and a multilayer film on the support is formed. The thin film is dried and the solvent is removed by considerable evaporation to form a self-supporting multilayer film (containing part of the solvent), and then the multilayer film is peeled off from the support, The multilayer film can be continuously produced by sufficiently heat-treating the multilayer film at a high temperature (200 to 500 ° C.) to substantially remove the solvent and imidize the polyamic acid which is a polyimide precursor.
In this invention, since the imidization catalyst is contained, the heat treatment speed can be increased.
[0019]
The aromatic polyimide film in this invention may be a film having a two-layer structure composed of a base layer A and a thin layer B, and is composed of a base material layer A and thin layers B and B ′ on both sides thereof. A film having a layer structure may be used. The thickness of the thin layer B of the film having a two-layer or three-layer structure is 50% or less, particularly 0.1 to 10 μm, preferably 0.1 to 8 μm, and more preferably 0.3 to 6 μm. If the thickness is thin, the peelability is deteriorated, and if it is thick, the light transmittance is deteriorated.
It is preferable that the composition of the polyamic acid solution (particularly polyamic acid) of the base layer A and the thin layer B is the same in terms of the curl of the aromatic film, but it is not necessarily the same. For example, the type and amount of filler may be changed between the B layer and the B ′ layer, and the phosphorus compound may not be added to the B ′ layer.
[0020]
In the aromatic polyimide film of the present invention, preferably, by a method of polymerizing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as tetracarboxylic dianhydride and paraphenylenediamine as aromatic diamine. The polyamic acid can be easily obtained, as long as it satisfies the physical properties of the film, and other than 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine. These components may be polymerized, and the type of bond may be random polymerization or block polymerization. Moreover, if the total amount of each component in the polyimide film finally obtained is in the said range, polyamic acid containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine will be used. You may mix and use the polyamic acid component which consists of another component in the polyamic acid to contain. In either case, the target aromatic polyimide film can be obtained in the same manner as described above.
[0021]
The aromatic polyimide film in the present invention can be subjected to any one of the surface treatments as it is or on the surface thereof, such as corona discharge treatment, flame treatment, ultraviolet irradiation treatment, low temperature or atmospheric pressure plasma discharge treatment, and surface treatment agent coating treatment. .
[0022]
As a method for laminating a metal layer on the surface-treated surface of the aromatic polyimide film, preferably the film, a conductor layer may be directly laminated by vapor deposition, sputtering, or plating, or via an adhesive. A metal layer may be laminated.
The method of directly laminating the metal layer can be performed by a method known per se.
The adhesive in the case of laminating a metal layer via an adhesive may be thermosetting or thermoplastic, for example, epoxy resin, NBR-phenolic resin, phenol-butyral resin, epoxy-NBR. Resin, epoxy-phenol resin, epoxy-nylon resin, epoxy-polyester resin, epoxy-acrylic resin, acrylic resin, polyamide-epoxy-phenol resin, polyimide resin, polyimidesiloxane Thermosetting adhesives such as epoxy resins, or thermoplastic adhesives such as polyamide resins, polyester resins, polyimide adhesives, polyimide siloxane adhesives, and the like can be given. In particular, a polyimide adhesive, a polyimide siloxane-epoxy adhesive, and an epoxy resin adhesive are preferably used.
[0023]
Examples of the metal include aluminum, copper, and a copper alloy, and a copper foil is generally used. Examples of the copper foil include electrolytic copper foil and rolled copper foil, and its tensile strength is 17 kg / mm. 2 The above is preferable. Moreover, it is preferable that the thickness is 8-50 micrometers.
In particular, it is preferable to use a combination of a polyimide adhesive having a thickness of 3 to 30 μm and a rolled or electrolytic copper foil having a thickness of 8 to 40 μm with a small surface roughness.
[0024]
The aromatic polyimide film of the present invention is obtained by laminating a metal layer directly on at least one surface of the aromatic polyimide film via an adhesive or by vapor deposition, sputtering, or plating, and then etching to form a circuit.
As a method for forming a circuit on a metal layer, a metal-clad substrate is manufactured by laminating a metal layer directly or via an adhesive on the aromatic polyimide film, and then an etching resist is formed on the metal surface with a circuit pattern, for example. -Printed in a pattern (wiring pattern) to form a wiring pattern of an etching resist that protects the metal surface of the portion where the wiring pattern is to be formed, and then etched by a method known per se There is a method in which a portion of the metal where wiring is not formed is removed by etching using an etching solution, and the etching resist is removed.
[0025]
In general, an insulating coating material is applied to the upper surface of the circuit pattern (wiring pattern) of the circuit board formed as described above, followed by heating and drying to form a coating layer. The coating layer is formed by applying a coating material (liquid material) to a uniform thickness by a coating method using a rotary coating machine, a dispenser, a printing machine or the like, and then drying by heating. The coating material generally contains a large amount of inorganic filler, is opaque, and it is difficult to clearly see the circuit below from the coated surface.
[0026]
Furthermore, T-BGA, which is an application example of the present invention, is obtained as follows, for example. An adhesive tape is laminated on the slit of the slit aromatic polyimide film to obtain a polyimide tape with an adhesive. Sprocket holes and device holes are punched into the obtained tape, and a metal foil is laminated thereon. The tape bonded with the metal foil is heated to cure the adhesive. Next, a circuit pattern is formed as described above, and the coating material is screen printed, leaving a portion of the pattern thereon. Next, a solder ball is formed in the exposed portion of the copper foil on the pattern to produce a T-BGA.
Then, an IC is bonded to this substrate (T-BGA), and the IC portion is protected with a sealing material. Next, the T-BGA bonded with the IC is aligned with the surface of the printed circuit board where the ball is formed at the predetermined position, and the pattern position of the printed circuit board is confirmed from above. Heat and mount.
[0027]
【Example】
Examples of the present invention will be described below.
In each of the following examples, the physical properties of the polyimide film were measured by the following method.
[0028]
Absorbance: Calculated according to the following formula.
Absorbance = −log (light transmittance)
Light transmittance: Measured with MCPD-1000, an instantaneous multi-photometry system manufactured by Otsuka Electronics
Linear expansion coefficient (50 to 200 ° C.) measurement: A sample subjected to stress relaxation by heating at 300 ° C. for 30 minutes is measured with a TMA apparatus (tensile mode, 2 g load, sample length 10 mm, 20 ° C./min).
Water absorption: measured according to ASTM D570-63 (23 ° C. × 24 hours)
Dielectric breakdown voltage: Measured according to ASTM D149-64 (25 ° C.)
Volume resistivity: measured according to ASTM D257-61 (25 ° C.)
[0029]
For the evaluation of permeability, the transmittance of the film itself was measured, and a TAB tape and T-BGA were made on a trial basis and evaluated. For the TAB tape, light was applied from the opposite side of the circuit surface, and a circuit pattern that was sufficiently distinguished was judged good and a thing that was difficult to distinguish was judged bad.
In addition, T-BGA was determined to be good if the circuit pattern of the substrate was recognizable with the ball surface facing down, and bad if it was difficult to distinguish.
[0030]
Reference example 1
To a polymerization tank having an internal volume of 100 liters, 54.6 kg of N, N-dimethylacetamide was added, and then 8.826 kg of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 3.243 kg of paraphenylenediamine. The polymer was subjected to a polymerization reaction at 30 ° C. for 10 hours, and the logarithmic viscosity of the polymer (measurement temperature: 30 ° C., concentration: 0.5 g / 100 ml solvent, solvent: N, N-dimethylacetamide) was 1.60, polymer concentration A polyamic acid (imidation rate: 5% or less) solution having a weight of 18% by weight was obtained.
To this polyamic acid solution, 0.29 kg of 1,2-dimethylimidazole (0.05 equivalent to the polyamic acid unit) was added and mixed.
[0031]
Reference example 2
In the polyamic acid solution produced in Reference Example 1, the proportion of monostearyl phosphate triethanolamine salt and 0.5 parts by weight (based on solid content) in a proportion of 0.1 parts by weight with respect to 100 parts by weight of polyamic acid Then, colloidal silica having an average particle size of 0.08 μm was added and mixed uniformly to obtain a polyamic acid solution composition.
[0032]
Reference example 3
N, N-dimethylacetamide 53.6 kg, paraphenylenediamine 2.27 kg, 4,4′-diaminodiphenyl ether 1.802 kg, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride Polymerization was conducted in the same manner as in Reference Example 1 except that 413 kg and pyromellitic dianhydride 3.272 kg were added to obtain a polyamic acid solution (rotational viscosity: 1400 poise, 18 wt%).
To this polyamic acid solution, 0.29 kg of 1,2-dimethylimidazole (0.05 equivalent to the polyamic acid unit) was added and mixed.
[0033]
Reference example 4
In the polyamic acid solution produced in Reference Example 3, the proportion of monostearyl phosphate triethanolamine salt and 0.5 parts by weight (based on solid content) in a proportion of 0.1 parts by weight with respect to 100 parts by weight of polyamic acid Then, colloidal silica having an average particle size of 0.08 μm was added and mixed uniformly to obtain a polyamic acid solution composition.
[0034]
Example 1
Using the polyamic acid solution produced in Reference Example 1 and the polyamic acid solution produced in Reference Example 2, from a two-layer extrusion die, smooth metal support so that the polyamic acid solution layer of Reference Example 2 is in contact with the support surface It was extruded onto the body surface and continuously dried with hot air at 140 ° C. to form a self-supporting film, and the self-supporting film was peeled from the support. The film peeled without problems. Next, the temperature was gradually raised from 200 ° C. to 480 ° C. in a heating furnace to remove the solvent and imidize the polymer. The thickness of the obtained film is 75 μm, and the polyimide layer corresponding to the polyamic acid of Reference Example 2 is 5 μm. The physical properties of this film are shown in Table 1.
[0035]
A TAB tape was prepared as follows.
One of the tapes which sandwiched adhesive tape of PET (polyethylene terephthalate) from both sides on the tape of the aromatic polyimide film slit to 35mm width and the width of 29.6mm and the thickness of 10μm. The PET is peeled off, and an adhesive is laminated in the center of a polyimide tape having a width of 35 mm so as to match the polyimide surface to obtain a polyimide tape with an adhesive.
Sprocket holes and device holes are punched into the tape obtained, PET is peeled off, and an electrolytic copper foil having a thickness of about 31 mm and a thickness of 35 μm is laminated on the adhesive. The tape bonded with the copper foil was heated to cure the adhesive.
Next, a circuit pattern was formed, and a coating material was screen-printed thereon. The TAB tape was inspected from the side opposite to the circuit surface.
T-BGA was produced as follows.
On the tape of the aromatic polyimide film slit to 35 mm width, peel off the PET on one side of the tape with 29.6 mm wide and 10 μm thick adhesive sandwiched between both sides with PET (polyethylene terephthalate), An adhesive was laminated at the center of the polyimide tape having a width of 35 mm so as to match the polyimide surface to obtain a polyimide tape with an adhesive.
Sprocket holes and device holes are punched into the tape obtained, the PET covered is peeled off, and an electrolytic copper foil having a thickness of about 31 mm and a thickness of 35 μm is laminated on the adhesive. The tape bonded with the copper foil was heated to cure the adhesive.
Next, a circuit pattern is formed, and a coating material is screen-printed thereon. Next, a solder ball was formed on the exposed portion of the copper foil on the pattern to produce a T-BGA and inspected. An IC is bonded to this substrate, the IC portion is protected with a sealing material, and then the T-BGA to which this IC is bonded is printed with a surface on which a ball is formed at a predetermined position of the printed circuit board. Alignment is performed while checking the pattern position of the substrate from above. At this time, the alignment was good.
[0036]
Example 2
The thickness of the polyimide layer corresponding to the polyamic acid of Reference Example 2 is 73 μm, and the thickness of the polyimide layer corresponding to the polyamic acid of Reference Example 2 is the same as Example 1 except that the supply amount of the polyamic acid solution is changed. A polyimide film having a thickness of 75 μm was obtained in the same manner as in Example 1 except that the thickness was changed to 2 μm.
The physical properties of this film are shown in Table 1.
Using this film, a tape with adhesive, a metal-clad laminate, and a circuit board were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0037]
Example 3
The thickness of the polyimide layer corresponding to the polyamic acid of Reference Example 2 was 48 μm, and the thickness of the polyimide layer corresponding to the polyamic acid of Reference Example 2 was the same as Example 1 except that the supply amount of the polyamic acid solution was changed. A 50 μm polyimide film was obtained in the same manner as in Example 1 except that the thickness was changed to 2 μm.
The physical properties of this film are shown in Table 1.
Using this film, a tape with adhesive, a metal-clad laminate, and a circuit board were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0038]
Example 4
The thickness of the polyimide layer corresponding to the polyamic acid of Reference Example 3 is 48 μm, and the polyimide layer corresponding to the polyamic acid of Reference Example 4 is the same as Example 1 except that the type and supply amount of the polyamic acid solution are changed. A 50 μm polyimide film was obtained in the same manner as in Example 1 except that the thickness of the film was changed to 2 μm.
The physical properties of this film are shown in Table 1.
Using this film, a tape with adhesive, a metal-clad laminate, and a circuit board were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0039]
Comparative Example 1
A 75 μm polyimide film was obtained in the same manner as in Example 1 except that the polyamic acid solution produced in Reference Example 2 was used and extruded from a single-layer extrusion die onto a smooth metal support surface.
The physical properties of this film are shown in Table 1.
Using this film, a tape with adhesive, a metal-clad laminate, and a circuit board were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0040]
Comparative Example 2
A 50 μm polyimide film was obtained in the same manner as in Example 1 except that the polyamic acid solution produced in Reference Example 4 was used and extruded from a single-layer extrusion die onto a smooth metal support surface.
The physical properties of this film are shown in Table 1.
Using this film, a tape with adhesive, a metal-clad laminate, and a circuit board were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0041]
Comparative Example 3
Table 1 shows the physical properties of a commercially available aromatic polyimide film (Ube Industries, Upilex-S, 50 μm).
Using this film, a tape with adhesive, a metal-clad laminate, and a circuit board were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0042]
Comparative Example 4
Table 1 shows the physical properties of a commercially available aromatic polyimide film (manufactured by Toray DuPont, Kapton 200H, 50 μm).
Using this film, a tape with adhesive, a metal-clad laminate, and a circuit board were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0043]
[Table 1]
Figure 0004130003
[0044]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
Since the aromatic polyimide film of the present invention has good light transmission, alignment and defect inspection of tapes with adhesives, metal-clad laminates and circuit boards using this aromatic polyimide film are easy and can be produced. This is useful for improving performance and reducing the defective rate.

Claims (3)

最終的に得られるポリイミドの成分割合換算で、テトラカルボン酸成分としてビフェニルテトラカルボン酸、その酸二無水物又はその酸エステルを15モル%以上およびピロメリット酸、その酸二無水物又はその酸エステルを0〜85モル%含有し、芳香族ジアミン成分としてフェニレンジアミンを15モル%以上およびジアミノジフェニルエ−テルを0〜85モル%含有する製膜時の高温でのキュアによって寸法安定性が良好なポリイミドフィルムを与えるポリアミック酸の有機極性溶媒溶液を使用し、
ポリアミック酸の有機極性溶媒溶液に置換もしくは非置換の含窒素複素環化合物を含有させかつリン酸エステルのアミン塩をポリアミック酸100重量部に対して0.01〜5重量部と、ポリアミック酸100重量部に対して0.1〜3重量部のコロイダルシリカを含有させた薄層用ポリアミック酸溶液組成物と、
ポリアミック酸の有機極性溶媒溶液に置換もしくは非置換の含窒素複素環化合物を含有させかつリン酸エステルのアミン塩を含有しない基体層用ポリアミック酸溶液組成物とを用いて、
2層或いは3層の押出し成形用ダイスを有する押出成形機へ同時に供給して、前記ダイスの吐出口から両溶液を多層の薄膜状体として、薄層用ポリアミック酸溶液が金属製支持体と接するように平滑な金属製支持体上に連続的に押出し、
前記金属製支持体上の薄膜状体を乾燥し溶媒を蒸発させて除去して溶媒の一部を含有している自己支持性の2層或いは3層のフィルムを形成し、
次いで金属製支持体上から自己支持性の2層或いは3層のフィルムを剥離し、次いで、自己支持性の2層或いは3層のフィルムを200〜500℃の温度で充分に加熱処理することによって溶媒を実質的に除去すると共にポリイミド前駆体であるポリアミック酸をイミド化して連続して製造することができる共押出し−流延製膜法により基体層がフィルム全体の厚みの50%以上であり、薄層がフィルム全体の厚みの50%以下である基体層の片面に薄層を形成することによって、フィルム厚みが10〜200μmであり、
該薄層表面に共押出し−流延製膜法による成形時に金属支持体との剥離性を与えた、吸光係数が波長500nmで5.0×10 −3 /μm〜15×10 −3 /μm、波長600nmで2.0×10 −3 /μm〜5×10 −3 /μmの光透過性の良好な芳香族ポリイミドフィルムの製造方法。
In terms of the component ratio of the finally obtained polyimide, biphenyltetracarboxylic acid, its acid dianhydride or its acid ester is 15 mol% or more as a tetracarboxylic acid component, and pyromellitic acid, its acid dianhydride or its acid ester the containing 0 to 85 mol%, the aromatic diamine component as phenylenediamine 15 mol% or more and diaminodiphenyl d - a good dimensional stability by curing at a high temperature during film containing ether 0-85 mole% Use an organic polar solvent solution of polyamic acid to give a polyimide film ,
A substituted or unsubstituted nitrogen-containing heterocyclic compound is contained in an organic polar solvent solution of polyamic acid, and an amine salt of phosphoric acid ester is 0.01 to 5 parts by weight with respect to 100 parts by weight of polyamic acid, and 100 weights of polyamic acid. A thin polyamic acid solution composition containing 0.1 to 3 parts by weight of colloidal silica with respect to parts;
Using a polyamic acid solution composition for a substrate layer containing a substituted or unsubstituted nitrogen-containing heterocyclic compound in an organic polar solvent solution of polyamic acid and not containing an amine salt of a phosphate ester,
Simultaneously supplying to an extruder having a two-layer or three-layer extrusion die, both solutions are made into a multi-layered thin film from the discharge port of the die, and the polyamic acid solution for the thin layer is in contact with the metal support Continuously extruded onto a smooth metal support,
Forming a self-supporting two-layer or three-layer film containing a part of the solvent by drying the thin film on the metal support and evaporating and removing the solvent;
Next, the self-supporting two-layer or three-layer film is peeled off from the metal support, and then the self-supporting two-layer or three-layer film is sufficiently heated at a temperature of 200 to 500 ° C. The substrate layer is 50% or more of the total film thickness by a coextrusion-casting film forming method that can be continuously produced by imidizing the polyamic acid that is a polyimide precursor while substantially removing the solvent , By forming a thin layer on one side of the base layer where the thin layer is 50% or less of the thickness of the entire film , the film thickness is 10 to 200 μm,
Coextruded thin layer surface - gave a peeling of the metal support during molding by casting film forming method, absorption coefficient at a wavelength of 500nm 5.0 × 10 -3 / μm~15 × 10 -3 / μm the method of good aromatic polyimide film of 2.0 × 10 -3 / μm~5 × 10 -3 / μm of the light transmission in the wavelength 600 nm.
芳香族ポリイミドフィルムが、0.1KV/μm以上の絶縁破壊電圧、1×1015Ω・cm以上の体積抵抗率(25℃)を有する請求項1記載の芳香族ポリイミドフィルムの製造方法。The method for producing an aromatic polyimide film according to claim 1, wherein the aromatic polyimide film has a dielectric breakdown voltage of 0.1 KV / μm or more and a volume resistivity (25 ° C.) of 1 × 10 15 Ω · cm or more. 置換もしくは非置換の含窒素複素環化合物がイミダゾ−ル、ベンズイミダゾ−ル、イソキノリンまたは置換ピリジンである請求項1記載の芳香族ポリイミドフィルムの製造方法。  The method for producing an aromatic polyimide film according to claim 1, wherein the substituted or unsubstituted nitrogen-containing heterocyclic compound is imidazole, benzimidazole, isoquinoline or substituted pyridine.
JP06237698A 1998-03-13 1998-03-13 Method for producing aromatic polyimide film Expired - Fee Related JP4130003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06237698A JP4130003B2 (en) 1998-03-13 1998-03-13 Method for producing aromatic polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06237698A JP4130003B2 (en) 1998-03-13 1998-03-13 Method for producing aromatic polyimide film

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004192865A Division JP2004345356A (en) 2004-06-30 2004-06-30 Metal clad laminated board and circuit board
JP2004262752A Division JP2005051262A (en) 2004-09-09 2004-09-09 Metal film clad laminated plate

Publications (2)

Publication Number Publication Date
JPH11254467A JPH11254467A (en) 1999-09-21
JP4130003B2 true JP4130003B2 (en) 2008-08-06

Family

ID=13198346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06237698A Expired - Fee Related JP4130003B2 (en) 1998-03-13 1998-03-13 Method for producing aromatic polyimide film

Country Status (1)

Country Link
JP (1) JP4130003B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186855B2 (en) * 2007-09-25 2013-04-24 宇部興産株式会社 Binder resin
JP2009167235A (en) * 2008-01-11 2009-07-30 Ube Ind Ltd Process for production of polyimide film
JP5147422B2 (en) * 2008-01-17 2013-02-20 日東電工株式会社 Seamless belt and manufacturing method thereof
JP5277680B2 (en) * 2008-03-25 2013-08-28 宇部興産株式会社 Method for producing polyimide film
JP5891626B2 (en) * 2011-03-17 2016-03-23 宇部興産株式会社 Binder resin composition for electrode, electrode mixture paste, and electrode
JP2013076103A (en) * 2013-02-01 2013-04-25 Ube Industries Ltd Method for manufacturing polyimide film
JP6364162B2 (en) * 2013-07-25 2018-07-25 Jx金属株式会社 Method for manufacturing printed wiring board
JP6461470B2 (en) * 2013-11-27 2019-01-30 宇部興産株式会社 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
WO2017057247A1 (en) * 2015-10-01 2017-04-06 コニカミノルタ株式会社 Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display
JP6638744B2 (en) * 2018-01-23 2020-01-29 宇部興産株式会社 Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244507A (en) * 1984-05-18 1985-12-04 Ube Ind Ltd Preparation of aromatic polyimide film
JPH07102649B2 (en) * 1990-05-30 1995-11-08 宇部興産株式会社 Manufacturing method of metal foil laminated film
JP2973516B2 (en) * 1990-11-27 1999-11-08 宇部興産株式会社 Manufacturing method of aromatic polyimide film

Also Published As

Publication number Publication date
JPH11254467A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
US7998553B2 (en) Copper-clad laminate
KR100462489B1 (en) Aromatic polyimide film and its composite sheet
JP5168141B2 (en) Metallizing polyimide film and metal laminated polyimide film
US8624125B2 (en) Metal foil laminated polyimide resin substrate
KR101110007B1 (en) Adhesion-enhanced polyimide film, process for its production, and laminated body
US20090136725A1 (en) Process for producing copper wiring polyimide film, and copper wiring polyimide film
JP5573006B2 (en) Production method of polyimide film
US20100230142A1 (en) Method for manufacturing printed wiring board
KR100818483B1 (en) Surface treatment of polyimide film and polyimide film having a thin metal layer
JP2002179821A (en) Polyimide film with controlled coefficient of linear expansion and laminate
JP2001072781A (en) Polyimide film and substrate for electric and electronic apparatus using same
JP4130003B2 (en) Method for producing aromatic polyimide film
JPH115954A (en) Tape with adhesive, metal-clad laminate, and circuit board
JP4473486B2 (en) Laminated body and multilayer wiring board using the same
WO2011129232A1 (en) Heat dissipation substrate for led
JP3355986B2 (en) Aromatic polyimide film and laminate
JP2009141337A (en) Metal laminate
JP2006130925A (en) Metal clad laminated board and circuit board
JP2008135759A (en) Base substrate for printed wiring board and multilayer printed wiring board that use polyimide benzoxazole film as insulating layer
JPH114055A (en) Flexible circuit board
JP2000244083A (en) Flexible circuit board
JP2005051262A (en) Metal film clad laminated plate
JP2007266615A (en) Polyimide film for insulating inside of semiconductor package and laminated substrate
JP2007106839A (en) Polyimide film and base board for printed circuit board
JP2004345356A (en) Metal clad laminated board and circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050809

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees