WO2017057247A1 - Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display - Google Patents

Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display Download PDF

Info

Publication number
WO2017057247A1
WO2017057247A1 PCT/JP2016/078221 JP2016078221W WO2017057247A1 WO 2017057247 A1 WO2017057247 A1 WO 2017057247A1 JP 2016078221 W JP2016078221 W JP 2016078221W WO 2017057247 A1 WO2017057247 A1 WO 2017057247A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
polyimide
film
fluorene
amino
Prior art date
Application number
PCT/JP2016/078221
Other languages
French (fr)
Japanese (ja)
Inventor
康敏 伊藤
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017543243A priority Critical patent/JPWO2017057247A1/en
Publication of WO2017057247A1 publication Critical patent/WO2017057247A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • C08K5/03Halogenated hydrocarbons aromatic, e.g. C6H5-CH2-Cl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a polyimide film, a flexible printed circuit board, a substrate for LED illumination, and a front panel for flexible display.
  • the present invention relates to a polyimide film in which dimensional variation due to temperature and humidity environment variation is suppressed, a flexible printed circuit board including the polyimide film, an LED illumination substrate, and a flexible display front plate.
  • polyimide is excellent in heat resistance, but has a brown or yellow color due to high aromatic ring density, and has low transmittance in the visible light region, so it has been difficult to use it in fields where transparency is required. It was.
  • Highly transparent polyimide film is used for substrates and front plates of multilayer (composite) electronic devices such as flexible printed circuit boards (FPCs) and organic electroluminescent elements (also referred to as organic EL elements).
  • FPCs flexible printed circuit boards
  • organic electroluminescent elements also referred to as organic EL elements.
  • warpage occurs when an electronic device using the polyimide film is used outdoors or used as an in-vehicle application with a large temperature and humidity fluctuation. There was a problem that.
  • the present invention has been made in view of the above-described problems and situations, and a solution to the problem is a polyimide film in which dimensional fluctuation due to temperature and humidity environment fluctuation is suppressed, a flexible printed board including the polyimide film, a substrate for LED illumination, and It is to provide a front panel for a flexible display.
  • a polyimide film containing a polyimide having a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride has an aromatic ring in the molecule and It has been found that by containing a hydrogen bonding compound having a hydrogen bond donor site, dimensional variation due to temperature and humidity environment variations can be suppressed, leading to the present invention. That is, the subject concerning this invention is solved by the following means.
  • a polyimide film comprising a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule.
  • a flexible printed circuit board comprising the polyimide film according to item 1 or 2.
  • An LED illumination substrate comprising the polyimide film according to item 1 or 2.
  • a front plate for a flexible display comprising the polyimide film according to item 1 or 2.
  • variation was suppressed a flexible printed circuit board provided with the said polyimide film, a board
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. That is, in the above-described conventional polyimide film, it is assumed that the ether bond in the polyimide main chain structure has a low internal rotation barrier and easily undergoes a conformational change, and thus is easily affected by temperature and humidity fluctuations.
  • the ether bond in the polyimide main chain structure is a hydrogen bond acceptor site
  • a hydrogen bond compound having an aromatic ring and a hydrogen bond donor site in the molecule by adding a hydrogen bond compound having an aromatic ring and a hydrogen bond donor site in the molecule to the film, A hydrogen bond is formed with the hydrogen bond donor site of the compound, and an aromatic ring of the hydrogen bond compound is present in the vicinity of the ether bond.
  • the internal rotation barrier of the ether bond is increased and the change in conformation is prevented, whereby the rigid structural unit is obtained, and the dimensional variation of the polyimide film due to the temperature and humidity environment variation is suppressed.
  • the aromatic ring of the hydrogen bonding compound acts as a steric hindrance, and rotation suppression is likely to occur.
  • the polyimide film of the present invention is a polyimide film containing a polyimide having a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride, and contains a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule. It is characterized by that.
  • This feature is a technical feature common to or corresponding to each of claims 1 to 5.
  • the value obtained by dividing the number of aromatic rings by the number of hydrogen bond donor sites is preferably in the range of 1 to 5.
  • substrate for LED illumination, and the front plate for flexible displays are equipped with the said polyimide film. Thereby, generation
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the polyimide film of the present invention contains a polyimide having a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride, and further contains a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule. It is characterized by.
  • the content of the hydrogen bonding compound is preferably 30% by mass or less, more preferably 1 to 30% by mass, further preferably 2 to 20% by mass, and 3 to 15% by mass. It is particularly preferred. If the content of the hydrogen bonding compound is less than 1% by mass, the effect of suppressing the occurrence of dimensional variation due to temperature and humidity environment fluctuations of the present invention is insufficient, and if it exceeds 30% by mass, the compatibility with polyimide decreases. , The effect of reducing transparency and suppressing dimensional variation is insufficient.
  • a detection method of content of the hydrogen bonding compound contained in a polyimide film methods, such as a swelling reprecipitation method and an ultrasonic extraction method, are mentioned, for example.
  • a swelling reprecipitation method first, the polyimide film is swollen with a swelling solvent such as dimethylacetamide, ⁇ -butyrolactone, or N-methyl-2-pyrrolidone.
  • a polar solvent such as alcohols such as methanol, acetone or acetonitrile, and the supernatant is recovered.
  • the content of the hydrogen bonding compound can be determined by using a known quantitative analysis method such as HPLC or GC / MS measurement on the collected supernatant.
  • a known quantitative analysis method such as HPLC or GC / MS measurement on the collected supernatant.
  • ultrasonic treatment is performed in a state where the polyimide film is immersed in an alcohol such as methanol, or a polar solvent such as acetone or acetonitrile, and the supernatant is recovered.
  • an ultrasonic wave is applied at an output of 100 W for about 30 minutes using an ultrasonic cleaner CPX series manufactured by Yamato Scientific.
  • the content of the hydrogen bonding compound can be determined by using a known quantitative analysis method such as HPLC or GC / MS measurement on the collected supernatant.
  • polyimide Any polyimide may be used in the present invention as long as it has a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride.
  • the following polyimides 1 to 4 can be used.
  • the polyimide film of this invention may contain the component which is not imidized, ie, a polyamic acid.
  • polyimide 1 The polyimide film of the present invention contains a polyimide or polyamic acid formed from diamine or a derivative thereof and 4,4′-oxydiphthalic anhydride.
  • polyimide or polyamic acid that can be used in the present invention
  • a polyimide having a repeating unit represented by the following general formula (1.1) hereinafter referred to as polyimide (A)
  • polyamic acid having a repeating unit represented by (2) hereinafter referred to as polyamic acid (A ′)
  • a ′ polyamic acid
  • R represents a residue of 4,4′-oxydiphthalic anhydride.
  • is a group composed of a divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof, and —O—, At least selected from the group consisting of —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, —C 2 H 4 O— and —S—. You may have one group.
  • examples of the divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms having or not having the above-described bonding group represented by ⁇ include, for example, the following structures: Examples include groups represented by the formula.
  • n represents the number of repeating units, preferably 1 to 5, and more preferably 1 to 3.
  • X is an alkanediyl group having 1 to 3 carbon atoms, that is, a methylene group, an ethylene group, a trimethylene group, or a propane-1,2-diyl group, and a methylene group is preferable.
  • Examples of the divalent alicyclic hydrocarbon group having 2 to 39 carbon atoms with or without the above-described bonding group represented by ⁇ include groups represented by the following structural formula.
  • Examples of the divalent aromatic hydrocarbon group having 2 to 39 carbon atoms with or without the above-described bonding group represented by ⁇ include groups represented by the following structural formulas.
  • Examples of the group composed of a combination of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group represented by ⁇ include groups represented by the following structural formula.
  • the group represented by ⁇ is preferably a divalent aromatic hydrocarbon group having 2 to 39 carbon atoms having a linking group, or a combination of the aromatic hydrocarbon group and an aliphatic hydrocarbon group.
  • a group represented by the following structural formula is preferred.
  • the polyamic acid (A ′) corresponds to a structure in which a part of the imide bond of the polyimide (A) is dissociated, and the detailed description of the polyamic acid (A ′) can be considered corresponding to the polyimide (A). Therefore, the polyimide (A) will be typically described in detail below.
  • the repeating unit represented by the general formula (1.1) is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 80 to 100 mol%, particularly with respect to all repeating units. 90 to 100 mol% is preferred.
  • the number of repeating units of the general formula (1.1) in one molecule of polyimide (A) is 10 to 2000, preferably 20 to 200. In this range, the glass transition temperature is 230 to 350 ° C. It is preferable that the temperature is 250 to 330 ° C.
  • Polyimide (A) is obtained by reacting 4,4′-oxydiphthalic anhydride with diamine or a derivative thereof to prepare polyamic acid (A ′) and imidizing the polyamic acid (A ′). It is done.
  • the fluorene skeleton is preferably contained in an amount of 50 mol% or less, more preferably 20 to 50 mol% in order to exhibit the effect of reducing the coloration of the film. More preferably, it is contained in an amount of ⁇ 50 mol%.
  • the polyimide according to the present invention has a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride, and is prepared by using other acid anhydrides in addition to 4,4′-oxydiphthalic anhydride. It may be a thing. In that case, the other acid anhydride may have a fluorene skeleton.
  • examples of acid anhydrides having no fluorene skeleton include carboxylic acid anhydrides, and may be aromatic, aliphatic or alicyclic tetracarboxylic acids or derivatives thereof.
  • Preferable examples include aliphatic or alicyclic tetracarboxylic acid esters, aliphatic or alicyclic tetracarboxylic dianhydrides, and the like.
  • aromatic, aliphatic or alicyclic tetracarboxylic acids or derivatives thereof alicyclic tetracarboxylic dianhydrides are preferred.
  • the derivative of an aliphatic or alicyclic tetracarboxylic acid is a compound that can be changed to an aliphatic or alicyclic tetracarboxylic acid.
  • the anhydride instead, a compound having two carboxy groups, a compound in which one or both of these two carboxy groups are esterified, or one or both of these two carboxy groups are chlorinated Acid chloride or the like is preferably used.
  • Examples of the aliphatic tetracarboxylic acid include 1,2,3,4-butanetetracarboxylic acid.
  • Examples of the alicyclic tetracarboxylic acid include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,4,5-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid.
  • Bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, etc. Can be mentioned.
  • Examples of the aliphatic tetracarboxylic acid esters include monoalkyl esters, dialkyl esters, trialkyl esters, and tetraalkyl esters of the above aliphatic tetracarboxylic acids.
  • Examples of the alicyclic tetracarboxylic acid esters include monoalkyl esters, dialkyl esters, trialkyl esters, and tetraalkyl esters of the above alicyclic tetracarboxylic acids.
  • the alkyl group site is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride.
  • Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, , 4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2]
  • Examples include octane-2,3,5,6-tetracarboxylic dianhydride and 2,3,5-tricarboxycyclopentylacetic acid dianhydride.
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride is particularly preferred.
  • a polyimide having an aliphatic diamine as a constituent component forms a strong salt between the polyamic acid, which is an intermediate product, and the diamine. Therefore, in order to increase the molecular weight, a solvent having a relatively high salt solubility (for example, cresol).
  • a solvent having a relatively high salt solubility for example, cresol.
  • N, N-dimethylacetamide, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc. are preferably used.
  • aromatic tetracarboxylic acid examples include 4,4′-biphthalic anhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, and 2,3,3 ′, 4′-biphenyltetracarboxylic acid.
  • 1,2,3,4-cyclopentanetetracarboxylic dianhydride 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, Tricyclo [6.4.0.02,7] dodecane-1,8: 2,7-tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene- 1,2-dicarboxylic acid anhydride and the like can be used.
  • tetracarboxylic acids or derivatives thereof may be further used in combination as long as the solvent solubility of the polyimide, the flexibility of the film, the thermocompression bonding property, and the transparency are not impaired.
  • Examples of such other tetracarboxylic acids or derivatives thereof include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2, 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 , 3,3,3-hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-dicarboxy) Phenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, bis (2,3-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 2,2
  • examples of the acid anhydride having a fluorene skeleton include 9,9-bis (3,4-dicarboxyphenyl) fluorenic acid dianhydride and 9,9-bis.
  • [4- (3,4-dicarboxyphenoxy) phenyl] fluorenic dianhydride 9,9-bis [4- (3,4-dicarboxyphenoxy) -3-phenylphenyl] fluorenic dianhydride
  • 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-phenylphenyl Fluoronic acid dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -2-phenylphenyl] fluoric acid dianhydride 9,9-bis [4- (3,4-dicarbo
  • aromatic bis (ether anhydride) compounds 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorenic dianhydride, 9,9-bis [4- (3 , 4-dicarboxyphenoxy) -3-phenylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-phenylphenyl] fluorenic dianhydride, 9-bis [4- (3,4-dicarboxyphenoxy) -3-methylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-methylphenyl] And fluoric acid dianhydride.
  • 9,9-bis (3,4-dicarboxyphenyl) fluoric acid dianhydride or 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluoric acid dianhydride should be used. Is preferable from the viewpoints of heat resistance and transparency.
  • aromatic diamine or isocyanate is preferable, and aromatic diamine is preferable.
  • the polyamic acid or polyimide used in the present invention is formed from diamine or a derivative thereof and 4,4′-oxydiphthalic anhydride, and when the polyamic acid or polyimide has a fluorene skeleton, the diamine is a fluorene skeleton. It is preferable that the other acid anhydride described above has a fluorene skeleton.
  • the diamine having a fluorene skeleton or a derivative thereof is preferably an aromatic diamine having a fluorene skeleton or an isocyanate.
  • the diamine or derivative thereof having no fluorene skeleton may be an aromatic diamine, an aliphatic diamine, or a mixture thereof, and the whitening of the film is an aromatic diamine. From the viewpoint that can be suppressed.
  • aromatic diamine refers to a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or any other part of its structure.
  • a substituent for example, a halogen atom, a sulfonyl group, a carbonyl group, an oxygen atom, etc. may be contained.
  • aliphatic diamine refers to a diamine in which an amino group is directly bonded to an aliphatic hydrocarbon group or an alicyclic hydrocarbon group, and an aromatic hydrocarbon group or other substituent (for example, a halogen atom, a sulfonyl group, a carbonyl group, an oxygen atom, etc.) may be included.
  • aromatic diamine examples include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, benzidine, o-tolidine, m-tolidine, bis (trifluoromethyl) benzidine, Octafluorobenzidine, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diaminobiphenyl, 3, , 3'-difluoro-4,4'-diaminobiphenyl, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diamino Diphenylmethane,
  • aliphatic diamine examples include ethylene diamine, hexamethylene diamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane (cis form and a mixture of trans isomers), 1,4-bis (aminomethyl) cyclohexane (a mixture of cis isomers and trans isomers), isophorone diamine, norbornane diamine, siloxane diamine, 4,4'-diaminodicyclohexyl methane, 3,3'- Dimethyl-4,4'-diaminodicyclohexylmethane, 3,3'-diethyl-4,4'-diaminodicyclohexylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodicyclohexylmethane, 2
  • examples of other diamine derivatives include diaminodisilanes, such as trimethylsilylated aromatic or aliphatic diamines obtained by reacting the above aromatic or aliphatic diamines with chlorotrimethylsilane.
  • the above diamines and derivatives thereof may be used in any mixture, but the amount of diamine in them is preferably 50 to 100 mol%, more preferably 80 to 100 mol%.
  • the diamine having a fluorene skeleton or a derivative thereof is preferably an aromatic diamine, such as 9,9-bis [4- (4-aminophenoxy) phenyl].
  • 9,9-bis (4-aminophenyl) fluorene 9,9-bis (4-amino3-methylphenyl) fluorene is used as a diamine or a derivative thereof.
  • 9,9-bis (3-fluoro-4-aminophenyl) fluorene is preferable from the viewpoint of improving non-coloring property, whitening and bending resistance.
  • Polyamic acid can be obtained by polymerizing 4,4′-oxydiphthalic anhydride and at least one of the diamines in a suitable solvent.
  • the polyamic acid ester is diesterified by ring-opening 4,4'-oxydiphthalic anhydride with an alcohol such as methanol, ethanol, isopropanol, or n-propanol, and the obtained diester is dissolved in a suitable solvent. It can obtain by making it react with the said diamine compound. Furthermore, the polyamic acid ester can also be obtained by esterification by reacting the carboxylic acid group of the polyamic acid obtained as described above with an alcohol as described above.
  • the reaction between 4,4′-oxydiphthalic anhydride and the diamine compound can be performed under conditions known in the art. There are no particular restrictions on the order or method of addition of 4,4'-oxydiphthalic anhydride and diamine compound. For example, 4,4′-oxydiphthalic anhydride and a diamine compound are sequentially added to a solvent and stirred at an appropriate temperature to obtain a polyamic acid.
  • the amount of the diamine compound is usually 0.8 mol or more, preferably 1 mol or more, per 1 mol of 4,4′-oxydiphthalic anhydride. On the other hand, it is 1.2 mol or less normally, Preferably it is 1.1 mol or less.
  • the yield of the polyamic acid obtained can be improved by making the quantity of a diamine compound into such a range.
  • the concentration of 4,4′-oxydiphthalic anhydride and diamine compound in the solvent is appropriately set according to the reaction conditions and the viscosity of the polyamic acid solution.
  • the total mass of 4,4′-oxydiphthalic anhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, based on the total amount of the solution.
  • the amount is usually 70% by mass or less, preferably 30% by mass or less.
  • the reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 100 ° C. or lower, preferably 80 ° C. or lower.
  • the reaction time is not particularly limited but is usually 1 hour or longer, preferably 2 hours or longer, and is usually 100 hours or shorter, preferably 24 hours or shorter.
  • Examples of the polymerization solvent used in this reaction include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene and mesitylene; carbon tetrachloride, dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene.
  • hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene and mesitylene
  • carbon tetrachloride dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene.
  • halogenated hydrocarbon solvents such as fluorobenzene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene, alkylene glycol monoalkyl ether and alkylene glycol dialkyl ether; ketone solvents such as acetone and methyl ethyl ketone; Amido solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide and N-methyl-2-pyrrolidone; Aprotic polar solvents such as xoxide and ⁇ -butyrolactone; heterocyclic solvents such as pyridine, picoline, lutidine, quinoline, isoquinoline, sulfolane, 1,3-dioxolane, tetrahydrofuran and dioxane; phenolic solvents such as phenol and cresol; Other solvents such as alky
  • an acid anhydride group or an amino group can be arbitrarily selected by using either one of 4,4′-oxydiphthalic anhydride and a diamine compound in excess during the polymerization reaction.
  • the acid anhydride terminal may be left without performing the subsequent treatment, or may be hydrolyzed to obtain a dicarboxylic acid. Moreover, it is good also as ester using C4 or less alcohol. Furthermore, you may seal a terminal
  • the amine compound and / or isocyanate compound used here is not particularly limited as long as it is a monofunctional primary amine compound and / or isocyanate compound.
  • aniline methylaniline, dimethylaniline, trimethylaniline, ethylaniline, diethylaniline, triethylaniline, aminophenol, methoxyaniline, aminobenzoic acid, biphenylamine, naphthylamine, cyclohexylamine, phenyl isocyanate, xylylene isocyanate, cyclohexyl isocyanate , Methylphenyl isocyanate, trifluoromethylphenyl isocyanate, and the like.
  • the terminal group is an amine terminal, it is possible to prevent the amino group from remaining at the terminal by sealing the terminal amino group with a monofunctional acid anhydride.
  • a monofunctional acid anhydride if it is a monofunctional acid anhydride which becomes dicarboxylic acid or tricarboxylic acid when hydrolyzed, it can be used without particular limitation.
  • maleic anhydride methylmaleic anhydride, dimethylmaleic anhydride, succinic anhydride, norbornene dicarboxylic acid anhydride, 4- (phenylethynyl) phthalic anhydride, 4-ethynylphthalic anhydride, phthalate Acid anhydride, methylphthalic anhydride, dimethylphthalic anhydride, trimellitic anhydride, naphthalenedicarboxylic anhydride, 7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.1] Heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.2] oct-5-ene-2,3-dicarboxylic anhydride, 4-oxatricyclo [5.2 .2.0 2,6] undecane-3,5-dione, octahydro-1,3-dioxo-isobenzofuran-5-car
  • the polyimide is a method in which the polyamic acid solution is heated to imidize the polyamic acid (thermal imidization method), or a polycyclic acid (imidation catalyst) is added to the polyamic acid solution to imidize the polyamic acid. It can be obtained by a method (chemical imidization method).
  • the polyamic acid in the polymerization solvent is heated for 1 to 200 hours in a temperature range of, for example, 80 to 300 ° C. to advance imidization.
  • the temperature range is preferably 150 to 200 ° C., and by setting the temperature range to 150 ° C. or higher, imidization can be reliably progressed and completed. It is possible to prevent an increase in resin concentration due to oxidation of unreacted raw materials and volatilization of the solvent solvent.
  • an azeotropic solvent can be added to the polymerization solvent in order to efficiently remove water generated by the imidization reaction.
  • an azeotropic solvent for example, aromatic hydrocarbons such as toluene, xylene, and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and dimethylcyclohexane can be used.
  • the amount added is about 1 to 30% by mass, preferably 5 to 20% by mass, based on the total amount of organic solvent.
  • a known ring closure catalyst is added to the polyamic acid in the polymerization solvent to advance imidization.
  • pyridine may generally be used.
  • substituted or unsubstituted nitrogen-containing heterocyclic compounds eg, picoline, quinoline, imidazole, etc.
  • N-oxides of nitrogen-containing heterocyclic compounds Compounds, substituted or unsubstituted amino acid compounds, aromatic hydrocarbon compounds having a hydroxy group, or aromatic heterocyclic compounds, particularly 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole Lower alkyl imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, imidazole derivatives such as N-benzyl-2-methylimidazole, isoquinoline, 3,5-dimethylpyridine, 3, 4-
  • the addition amount of the ring closure catalyst is preferably about 0.01 to 2 times equivalent, particularly about 0.02 to 1 time equivalent to the amic acid unit of the polyamic acid.
  • a dehydrating agent may be added to the polyamic acid solution.
  • a dehydrating agent include aliphatic acid anhydrides such as acetic anhydride, phthalates, and the like. Examples thereof include aromatic acid anhydrides such as acid anhydrides, and these can be used alone or in combination.
  • it is preferable to use a dehydrating agent because the reaction can proceed at a low temperature.
  • it is possible to imidize polyamic acid only by adding a dehydrating agent to the polyamic acid solution it is preferable to imidize by heating or addition of a ring-closing catalyst as described above because the reaction rate is slow. .
  • the polyimide is subjected to a heat treatment (thermal imidization method) on a film in which a polyamic acid solution is cast, or a polyamic acid solution mixed with a ring closure catalyst is cast on a support. Then, it can be obtained in a film state by imidization (chemical imidization method).
  • the ring-closing catalyst include aliphatic tertiary amines such as trimethylamine and triethylenediamine, and heterocyclic tertiary amines such as isoquinoline, pyridine and picoline, and are selected from heterocyclic tertiary amines. It is preferred to use at least one amine.
  • the content of the cyclization catalyst relative to the polyamic acid is preferably in the range where the content of the cyclization catalyst (mole) / polyamic acid content (mole) is 0.5 to 8.0.
  • the polyamic acid or polyimide constituted as described above preferably has a weight average molecular weight of 30,000 to 1,000,000 from the viewpoint of forming a film.
  • the weight average molecular weight refers to a value in terms of polyethylene glycol by size exclusion chromatography (SEC).
  • the ring-closed polyimide may be reprecipitated using a poor solvent or the like, purified to a solid, dissolved in a solvent, cast and dried, and then formed into a film.
  • the polymerization solvent and the solvent to be cast can be made different types, and the performance of the polyimide film can be further extracted by selecting the optimum solvent for each.
  • polyamic acid in order to increase the molecular weight of polyamic acid, it is polymerized and cyclized with dimethylacetamide, solidified with methanol, dried, then made into a solution containing an additive with dichloromethane, then cast and dried.
  • dimethylacetamide solidified with methanol
  • dichloromethane a solution containing an additive with dichloromethane
  • dichloromethane when used as a solvent, it can be used in combination with other solvents.
  • a co-solvent such as tetrahydrofuran (THF), dioxolane, cyclohexanone, cyclopentanone, ⁇ -butyrolactone, ethanol, methanol, butanol, or isopropyl alcohol can be used as appropriate.
  • the polyamic acid may be imidized at the time of casting, and the imidization rate at the time of casting is preferably 10 to 100%.
  • the imidization rate can be determined by measuring the residual amount of carboxy group from the 1 H-NMR spectrum.
  • Polyimide 2 that can be preferably used for the polyimide film of the present invention is (A) 4,4′-oxydiphthalic dianhydride (2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride. And (B) one or more diamines and / or diisocyanates represented by the following general formulas (2.1) to (2.3).
  • X represents an amino group or an isocyanate group.
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • at least one of R 1 to R 4 is not a hydrogen atom.
  • at least one of R 1 to R 4 is not a hydrogen atom.
  • at least one of R 1 to R 4 is not a hydrogen atom.
  • at least one of R 5 to R 8 is not a hydrogen atom.
  • Polyimide 2 is superior in heat resistance, transparency and heat yellowing resistance as compared with conventional polyimide, and also has an advantage of excellent storage stability and mechanical strength.
  • the end group of polyimide 2 is preferably not an amine end.
  • an amine terminal By not using an amine terminal, it is possible to avoid the point that when the terminal group of the polyimide 2 is an amino group, it easily interacts with the imide carbonyl group to form a charge transfer complex.
  • the amino group is susceptible to oxidation, and it is possible to avoid the point of forming a chromophore by oxidation with time and lowering transparency and heat yellowing.
  • the terminal group of the polyimide 2 can be made not to be an amine terminal by a method similar to the above method.
  • R 5 to R 8 are preferably each independently an alkyl group having 1 to 4 carbon atoms, and more preferably an alkyl group having 2 to 3 carbon atoms. .
  • the concentration of the imide group in the main chain of polyimide 2 can be increased, and by introducing a bulky substituent at the ortho position of the amino group, intermolecular mutual By weakening the action, formation of the charge transfer complex can be inhibited, and both transparency and solvent solubility can be achieved.
  • any acid dianhydride conventionally used in the production of polyimide can be used without any particular limitation.
  • a general aromatic acid dianhydride pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • the silicon-containing acid dianhydrides include 4,4 ′-(dimethylsilylene) bis (phthalic acid) 1, 2: 1 ′, 2′-dianhydride, and 4,4 ′-(methylethylsilylene).
  • fluorine-containing acid dianhydrides examples include 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride and 3,4'-(2,2-hexafluoroisopropylidene) diphthalic dianhydride. 3,3 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, 4,4'-[2,2-hexafluoroisopropylidenebis [(1,4-phenylene) oxy]] diphthalate An acid dianhydride etc. can be mentioned.
  • fluorene cardoic acid dianhydride examples include 5,5 ′-[9H-fluorene-9,9-diylbis (4,1-phenyleneoxy)] bis (isobenzofuran-1,3-dione), 5,5 Examples include '-[9H-fluorene-9,9-diylbis (1,1'-biphenyl-5,2-diyloxy)] bis (isobenzofuran-1,3-dione).
  • ester acid dianhydrides include ethylene glycol bis (trimellitic anhydride), 1,4-phenylene bis (trimellitate anhydride), 1,3-phenylene bis (trimellitate anhydride), 1,2-phenylene bis (trimellitate) Anhydride), bis (1,3-dihydro-1,3-dioxoisobenzofuran-5-carboxylic acid) -2-acetoxypropane-1,3-diyl, 5,5 '-[ethylenebis (oxy)] Bis (isobenzofuran-1,3-dione), bis (1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylic acid) oxybis (methyleneoxymethylene), 4,4 ′-[isopropylidenebis ( 4,1-phenyleneoxycarbonyl)] bisphthalic dianhydride and the like.
  • Aliphatic acid dianhydrides include 1,1'-bicyclohexane-3,3 ', 4,4'-tetracarboxylic dianhydride, 1,1'-bicyclohexane-2,3,3', 4'-tetracarboxylic dianhydride, 1,1'-bicyclohexane-2,3,2'3'-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride 1,2,3,4-tetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5 (tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2- c] furan-1,3-dione, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4 Cyclopentanete
  • Aliphatic ester acid dianhydrides include bis (1,3-dioxo-1,3,3a, 4,5,6,7,7a-octahydroisobenzofuran-5-carboxylic acid) biphenyl-4,4 '-Diyl, bis (1,3-dioxo-1,3,3a, 4,5,6,7,7a-octahydroisobenzofuran-5-carboxylic acid) 1,4-phenylene, bis (1,3- And dioxo-1,3,3a, 4,5,6,7,7a-octahydroisobenzofuran-5-carboxylic acid) -2-methyl-1,4-phenylene.
  • the second acid dianhydride as the component (C) may be used alone, or a mixture of two or more acid dianhydrides may be used, and the second acid dianhydride may be used.
  • the second diamine and / or diisocyanate as the component (D) those usually used for the production of polyimide can be used.
  • Examples of the component (D) include those represented by the following general formulas (2.4) to (2.21) other than the same component as the component (B).
  • X each independently represents —NH 2 , —NCO, —CH 2 NH 2 or —CH 2 NCO.
  • R 1 to R 8 each independently represent H, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a carboxy group, a trifluoromethyl group, or an aryl group.
  • R 9 to R 12 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group.
  • Y is independently
  • R 21 and R 22 are each independently H, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a carboxy group, or Represents a trifluoromethyl group.
  • the quantity is 2 mol or less with respect to 1 mol of (B) components.
  • Polyimide 2 is obtained by copolymerizing the component (A) and the component (B).
  • the (A) component and the (B) component are copolymerized to obtain a polyimide copolymer unit having a weight average molecular weight of about 700 to 80000, and the obtained polyimide copolymer unit is subjected to (C ) Second acid dianhydride as component and / or (D) second diamine and / or diisocyanate as component may be copolymerized.
  • the weight average molecular weight is preferably 20,000 to 200,000, more preferably 35,000 to 150,000.
  • the handleability is excellent.
  • the polyimide 2 is produced by a thermal imidization method in which the ring is thermally closed in a temperature range of 150 to 200 ° C. for 1 to 200 hours, and a chemical imide using a ring closing catalyst such as triethylamine, pyridine, picoline or quinoline. Any method such as chemical method may be used.
  • Polyimide 3 fluorinated polyimide
  • the polyimide used for the polyimide film of the present invention is preferably polyimide 3: fluorinated polyimide.
  • a fluorine-type polyimide refers to the polyimide which has a fluorine atom in a polyimide structure, and specifically has a fluorine-containing group in the diamine which is a polyimide raw material.
  • ⁇ in the formula is represented by the following general formula (3.1) or (3.2) 2 And those represented by a valent organic group.
  • R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, an alkyl group or an alkoxy group having 1 to 5 carbon atoms, or a fluorine-substituted hydrocarbon. Represents a group.
  • at least one of R 1 to R 4 represents a fluorine atom or a fluorine-substituted hydrocarbon group.
  • at least one of R 1 to R 8 represents a fluorine atom or a fluorine-substituted hydrocarbon group.
  • preferred specific examples of R 1 to R 8 include —H, —CH 3 , —OCH 3 , —F, —CF 3 and the like, and at least one substituent is —F or CF 3. It is preferable that
  • Preferred examples of the specific diamine residue that gives ⁇ in the above general formula (1.1) include the following.
  • the fluorine-based polyimide 3 can be obtained by imidizing polyamic acid.
  • the polyamic acid resin solution is preferably obtained by reacting a raw material diamine and 4,4′-oxydiphthalic anhydride in an organic solvent using substantially equimolar amounts. More specifically, the polyamic acid resin solution is prepared by dissolving diamine in an organic polar solvent such as N, N-dimethylacetamide under a nitrogen stream, and then adding 4,4′-oxydiphthalic anhydride to room temperature. For about 5 hours. From the viewpoint of uniform film thickness during coating and the mechanical strength of the resulting polyimide film, the polyamic acid obtained preferably has a weight average molecular weight of 10,000 to 300,000.
  • Polyimide 4 The polyimide used in the polyimide film of the present invention is also preferably polyimide 4 described below.
  • Polyimide 4 is obtained by polymerizing 4,4′-oxydiphthalic anhydride with a diamine component containing nitrogen-free aromatic diamine compound: 51 to 99 mol% and nitrogen-containing aromatic diamine compound: 1 to 49 mol%. It is the polyimide obtained by.
  • the nitrogen-free aromatic diamine compound refers to a diamine compound having an aromatic ring containing no nitrogen atom in the molecule and no aromatic ring containing a nitrogen atom.
  • the nitrogen-containing aromatic diamine compound refers to a diamine compound having an aromatic ring containing a nitrogen atom in the molecule.
  • the amount of the nitrogen-containing aromatic diamine compound is in the range of 1 to 49 mol%, thereby realizing both high elasticity and flexibility in the obtained polyimide and the polyimide film using the same, and realizing high mechanical strength. Can be preferred.
  • the amount of the nitrogen-containing aromatic diamine compound in the diamine component suppresses the undissolved residue of the nitrogen-containing aromatic diamine compound having low solubility during polymerization, and the resulting polyimide and the polyimide film using the polyimide have high elasticity and flexibility. From the viewpoint of realizing high mechanical strength, it is preferably 1 to 49 mol%, more preferably 1 to 30 mol%, still more preferably 1 to 20 mol%. % Or more and less than 20 mol% is particularly preferable.
  • nitrogen-containing aromatic diamine compounds include diaminophenylbenzimidazoles such as 5,4'-diamino-2-phenylbenzimidazole (DAPBI) and 2,5-diaminopyridine (DAPY). Although diaminopyridines etc. are mentioned, it is not limited to them, Each can be used individually or in combination of 2 or more types.
  • this nitrogen-containing aromatic diamine compound By introducing this nitrogen-containing aromatic diamine compound, its rigid molecular structure contributes to increasing the strength of the polyimide, and the imidization rate of the polyimide is improved by the nitrogen-containing aromatic ring acting as a catalyst during imidization of the polyamic acid. As a result of the improvement, it is considered that the mechanical strength of the polyimide is improved.
  • the amount of the nitrogen-free aromatic diamine compound in the diamine component is preferably 51 mol% or more and less than 99 mol%, more preferably 70 to 99 mol%, more preferably 80 to More preferably, it is 99 mol%, and it is especially preferable that it is more than 80 mol% and 99 mol% or less.
  • nitrogen-free aromatic diamine compound examples include, for example, 4,4′-diaminodiphenyl ether (ODA), p-phenylenediamine (PDA), aliphatic diamine, alicyclic diamine, and the like. It can be used alone or in combination of two or more.
  • ODA 4,4′-diaminodiphenyl ether
  • PDA p-phenylenediamine
  • aliphatic diamine alicyclic diamine, and the like. It can be used alone or in combination of two or more.
  • the acid component used for the polyimide 4 is 4,4'-oxydiphthalic anhydride, but other acid components may be used in combination.
  • the other acid component include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4 ′.
  • PMDA pyromellitic dianhydride
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • alicyclic tetracarboxylic dianhydride and the like.
  • the polyimide 4 can be mentioned as one of preferable embodiments that further contains a solvent.
  • the solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, dimethyl sulfoxide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide and dimethyl.
  • NMP N-methyl-2-pyrrolidone
  • N-dimethylacetamide dimethyl sulfoxide
  • N, N-diethylacetamide N, N-dimethylformamide, N, N-diethylformamide and dimethyl.
  • sulfone and these are preferably used alone or in combination.
  • reaction solution may be heated to 50 ° C. or lower in order to increase the solubility.
  • the nitrogen-containing aromatic diamine compound is an aromatic diamine compound having an imidazole ring or a pyridine ring, and is composed of 5,4′-diamino-2-phenylbenzimidazole (DAPBI) and 2,5-diaminopyridine (DAPY). At least one selected from the group, wherein the nitrogen-free aromatic diamine compound is selected from the group consisting of p-phenylenediamine, 4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl ether It is preferable that
  • Polyimide 4 is produced by using a non-nitrogen-containing aromatic diamine compound: 51 to 99 mol% and a nitrogen-containing aromatic diamine compound: 1 to 49 mol%, a diamine component, and an acid component 4,4′- There is no particular limitation other than polymerizing oxydiphthalic anhydride.
  • a solvent is further used when the polyimide 4 is produced.
  • an acid component (4,4′-oxydiphthalic anhydride) and a diamine component (aromatic diamine component) are added in a solvent (the acid component and the diamine component can be used in amounts that are approximately equimolar). Can be obtained by mixing these to form a mixture and polymerizing the mixture. If necessary, the mixture can further contain additives described later.
  • the conditions for polymerizing the mixture are not particularly limited.
  • a mixture obtained by adding a diamine component containing a nitrogen-free aromatic diamine compound and a nitrogen-containing aromatic diamine compound and 4,4′-oxydiphthalic anhydride to the above-described solvent is mixed at room temperature to 50 ° C.
  • the polyamic acid (copolymerized polyamic acid) is preferably prepared at a ratio (concentration) of 10 to 30% by mass in the solvent.
  • the polyamic acid produced as described above is not particularly limited with respect to its molecular structure.
  • a random copolymer, an alternating copolymer, and a block copolymer are mentioned.
  • the polyimide 4 can further contain an additive.
  • the additive include a dehydrating agent and a ring-closing catalyst used for imidizing polyamic acid into a polyimide.
  • the polyimide film of the present invention contains a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule.
  • the hydrogen bonding compound means a compound having a hydrogen bonding donor site in the molecule (meeting the requirements defined in the following (I)) and capable of forming a hydrogen bond with other compounds.
  • the hydrogen bond donor site refers to a site that forms a hydrogen bond by supplying a hydrogen atom.
  • the hydrogen bonding compound preferably satisfies the requirements specified in the following (II) and (III).
  • examples of the functional group acting as a hydrogen bonding donor site include Jeffrey, George A. et al. It is described in Table 2 on page 15 of “Introduction to Hydrogen Bonding” published by Oxford UP.
  • the total number of functional groups described in the table in the hydrogen bonding compound is used as the number of hydrogen bonding donor sites.
  • part is mentioned, for example.
  • the hydrogen bonding compound used in the present invention has a hydrogen bond donor site in the molecule, thereby forming a strong hydrogen bond with an ether bond in the polyimide main chain structure which is a hydrogen bond acceptor site. Can be suppressed.
  • the hydrogen bond acceptor site refers to a site that accepts a hydrogen atom to form a hydrogen bond.
  • the value obtained by dividing the molecular weight of the hydrogen bonding compound according to the present invention by the molecular weight of the hydrogen bonding donor site is preferably within the range of 5 to 65.
  • the value is 5 or more, hydrogen bonding to an ether bond is likely to occur, and the effect of the present invention is easily manifested.
  • the value is 65 or less, association between hydrogen bonding compounds hardly occurs and the effect of the present invention is easily manifested. Become.
  • the number of aromatic rings in the hydrogen bonding compound according to the present invention is preferably 1-8.
  • the number of aromatic rings is 1 or more, the effect of the present invention is obtained, and when it is 8 or less, hydrogen bonding to an ether bond is likely to occur, and the effect of the present invention is easily exhibited.
  • the aromatic ring is a ring in which the number of ⁇ electrons satisfies 4n + 2 (n is a natural number), and may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the aromatic ring include a benzene ring, naphthalene ring, anthracene ring, azulene ring, phenanthrene ring, triphenylene ring, pyrene ring, chrysene ring, naphthacene ring, perylene ring, pentacene ring, hexacene ring, coronene ring, trinaphthylene ring, furan Ring, thiophene ring, pyrrole ring, imidazole ring, pyrazole ring, 1,2,4-triazole ring, 1,2,3-triazole ring, oxazole ring, thiazole ring, isoxazole ring, isothiazo
  • the number of aromatic rings is counted as one condensed ring when the aromatic rings are condensed, and when each aromatic ring is linked via a linking group, each aromatic ring is counted as Count as one.
  • Count an aromatic ring having 10 carbon atoms derived from naphthalene is counted as one aromatic ring.
  • the value obtained by dividing the number of aromatic rings by the number of hydrogen bonding donor sites is preferably within the range of 1 to 5 from the viewpoint of manifesting the effects of the present invention.
  • the hydrogen bonding compound used in the present invention is preferably a compound represented by the following general formulas (A) to (H). Each structure will be described in detail below.
  • the hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (A).
  • Ra represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group, or an aryl group.
  • X 1 , X 2 , X 3 and X 4 each independently represent a single bond or a divalent linking group.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Ra in the general formula (A) represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group or an aryl group, and is preferably an alkyl group or an aryl group.
  • Ra is an alkyl group, it preferably has 1 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • Ra is an alkenyl group, it preferably has 2 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • Ra is an alkynyl group
  • it preferably has 2 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • Ra is an aryl group
  • it preferably has 6 to 24 carbon atoms, and more preferably 6 to 18 carbon atoms.
  • Ra is a heterocyclic group, it preferably has 5 to 23 carbon atoms, and more preferably 5 to 17 carbon atoms.
  • X 1 , X 2 , X 3 and X 4 in the general formula (A) each independently represent a single bond or a divalent linking group, more preferably each independently a single bond, and all are single bonds. It is particularly preferred.
  • Examples of the divalent linking group that may be independently represented by X 1 , X 2 , X 3 and X 4 in the general formula (A) include, for example, a divalent group represented by the following general formula (P) Linking group, alkylene group (preferably having 1 to 30 carbon atoms, more preferably 1 to 3 carbon atoms, particularly preferably 2 carbon atoms), arylene group (preferably having 6 to 30 carbon atoms, more preferably 6 to 6 carbon atoms). 10).
  • a divalent linking group represented by the following general formula (P) is preferable, and a carbonyl group is more preferable.
  • the * side is a linking site with a nitrogen atom substituted on the 1,3,5-triazine ring in the compound represented by general formula (A).
  • Rb and Rc each independently represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group or an aryl group.
  • X 5 and X 6 each independently represent a single bond or a divalent linking group.
  • R 5 and R 6 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Rb and Rc in the general formula (B) each independently represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group or an aryl group, and a preferred range thereof is the same as the preferred range of Ra in the general formula (A). It is.
  • X 5 and X 6 in the general formula (B) each independently represent a single bond or a divalent linking group, and preferred ranges thereof are those of X 1 , X 2 , X 3 and X 4 in the general formula (A). This is the same as the preferred range.
  • R 5 and R 6 in the general formula (B) each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group, and a preferred range is R 1 in the general formula (A). , R 2 , R 3 and R 4 are the same as the preferred ranges.
  • Specific examples of the compound represented by the general formula (A) or (B) include compounds described in paragraph numbers 0055 to 0057 of JP2012-82235A.
  • the method for producing the compound represented by the general formula (A) or (B) is not particularly limited, and can be produced by a known method.
  • Examples of the production method preferably used in the present invention include, for example, US Pat. No. 3,478,026 and Chem. Eur. J. et al. As described in 2005, 11, 6616-6628, a method of forming a triazine ring by heating dicyanodiamide and a nitrile compound in an alcohol in the presence of an inorganic base such as potassium hydroxide.
  • Ra 11 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Rb 11 , Rc 11 , Rd 11 and Re 11 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Q 1 represents an oxygen atom, a sulfur atom or NRf
  • Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Ra 11 to form a ring.
  • X 11 , X 12 and X 13 each independently represent a single bond or a divalent linking group.
  • X 14 represents a linking group selected from divalent bridging group group represented by the general formula (P).
  • the hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (D).
  • Ra 21 and Rg 21 each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group.
  • Rd 21 and Re 21 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Q 11 represents an oxygen atom, a sulfur atom or NRf
  • Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Ra 21 to form a ring. good.
  • Q 12 represents an oxygen atom, a sulfur atom or NRh
  • Rh represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may be linked to Rg 21 to form a ring.
  • X 23 represents a single bond or a divalent linking group.
  • X 24 represents a linking group selected from the divalent linking group group represented by the general formula (P).
  • Specific examples of the compound represented by the general formula (C) or (D) include compounds described in paragraph numbers 0068 to 0071 of JP2012-82235A.
  • Y 1 represents a methine group or a nitrogen atom.
  • Ra 31 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Rb 31 , Rc 31 , Rd 31 and Re 31 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Q 21 represents a single bond, an oxygen atom, a sulfur atom or NRf
  • Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and is linked to Ra 31 to form a ring. You may do it.
  • X 31, X 32 and X 33 represents a single bond or a divalent linking group independently.
  • X 34 represents a linking group selected from the group consisting of divalent linking groups represented by the general formula (P).
  • the hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (F).
  • Y 11 represents a methine group or a nitrogen atom.
  • Ra 41 and Rg 41 each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Rd 41 and Re 41 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • Q 31 represents an oxygen atom, a sulfur atom or NRf
  • Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Ra 41 to form a ring.
  • Q 32 represents an oxygen atom, a sulfur atom or NRh, and Rh represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Rg 41 to form a ring. good.
  • X 43 represents a single bond or a divalent linking group.
  • X 44 represents a linking group selected from the group consisting of divalent linking groups represented by the general formula (P).
  • Specific examples of the compound represented by the general formula (E) or (F) include compounds described in paragraph numbers 0083 to 0091 of JP2012-82235A.
  • the hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (G).
  • L 1 represents a divalent linking group containing a single bond or a hetero atom.
  • R 81 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryl group having 7 to 20 carbon atoms. Represents an alkyl group.
  • Specific examples of the compound represented by the general formula (G) include the compounds described in paragraph numbers 0109 to 0111 of JP2012-82235A.
  • the hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (H).
  • L 3 represents a divalent linking group containing a single bond or a hetero atom.
  • R 85 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms.
  • R 83 and R 84 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
  • X 53 and X 54 each independently represent a linking group selected from the group consisting of a divalent linking group represented by the above general formula (P).
  • Specific examples of the compound represented by the general formula (H) include, for example, compounds described in paragraph No. 0113 of JP2012-82235A.
  • the compounds represented by the above general formulas (A) to (H) preferably have a molecular weight of 100 to 1000, more preferably 150 to 700, and 150 to 450. Is most preferred.
  • the effect of the present invention can be obtained even if the hydrogen bonding compound is added at any timing before the polyimide is formed into a film.
  • the hydrogen bonding compound is hydrogen bonded to the imidized polyimide solution. It is preferable to add a functional compound.
  • hydrogen bonding compound according to the present invention is not limited to the compounds represented by the general formulas (A) to (H).
  • the polyimide film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated silica to improve handling properties. It is preferable to contain a matting agent such as inorganic fine particles such as calcium acid, aluminum silicate, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Of these, silicon dioxide is preferable because it can reduce the haze of the film.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • These fine particles preferably form secondary particles having a particle size of 0.1 to 5 ⁇ m and are contained in the polyimide.
  • a preferable average particle size is 0.1 to 2 ⁇ m, and more preferably 0.2 to 0.00. 6 ⁇ m.
  • irregularities having a height of about 0.1 to 1.0 ⁇ m are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
  • the primary average particle diameter of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle diameter, and measuring the average. Let the value be the primary average particle size.
  • the additive contained in the polyimide film of the present invention is not limited to the fine particles.
  • the polyimide film of the present invention is cast into a polyamic acid solution containing no ring-closing catalyst, formed into a film, heated and dried on a support, then peeled off from the support, and further subjected to a drying heat treatment at a high temperature. It can manufacture using the thermal imidation method which imidizes by this. In the case of this method, the reaction rate of imidization can be improved by adding a dehydrating agent to the polyamic acid solution, but it is preferable not to include a dehydrating agent. By not including a dehydrating agent, it is possible to suppress a decrease in durability of the polyimide film due to the residual dehydrating agent.
  • the polyimide film of the present invention is cast into a film by casting a solution of a polyamic acid containing a ring closure catalyst and a dehydrating agent, and after partially imidizing on the support to form a film,
  • the film can be peeled off from the support, heat-dried / imidized, and manufactured using a chemical imidization method in which heat treatment is performed.
  • the ring-closing catalyst the above-mentioned tertiary amine or the like can be used. In the case of this method, since the imidization can proceed at a low temperature by adding a dehydrating agent to the polyamic acid solution, it is possible to suppress a decrease in durability of the polyimide film.
  • heat treatment can be performed by using, for example, an infrared heater.
  • an infrared heater for example, a heater main body formed so that a filament is surrounded by an inner tube is covered with an outer tube, and a cooling fluid can be circulated between the heater main body and the outer tube.
  • the filament is energized and heated to 700 to 1200 ° C., and emits infrared light having a peak at a wavelength of about 3 ⁇ m.
  • the inner tube and the outer tube are made of quartz glass, borosilicate crown glass, or the like, and function as a filter that passes infrared light having a wavelength of 3.5 ⁇ m or less and absorbs infrared light having a wavelength exceeding 3.5 ⁇ m.
  • Such infrared heaters irradiate the film with infrared light having a wavelength of 3.5 ⁇ m or less through an inner tube or an outer tube when infrared light having a peak near 3 ⁇ m is emitted from the filament.
  • the mixed solvent in the film can be efficiently evaporated and the polyamic acid in the film can be imidized.
  • the inner tube and the outer tube absorb infrared rays having a wavelength exceeding 3.5 ⁇ m, but are cooled by the cooling fluid flowing through the flow path, so that the temperature can be maintained below the ignition point of the mixed solvent evaporating from the film. Is possible.
  • any of the above ring closure methods may be adopted, but the chemical imidization method requires equipment for containing a ring closure catalyst and a dehydrating agent in the polyamic acid solution. It can be said that it is a more preferable method in that a film having supportability can be obtained in a short time.
  • the above-described polyamic acid or polyimide is dissolved in a solvent to prepare a dope (dope preparation step), and the dope is cast on a support to form a cast film.
  • each step will be specifically described.
  • Dope preparation step The method for producing a polyimide film of the present invention is prepared by dissolving at least polyimide and a hydrogen bonding compound in a low boiling point solvent to prepare a dope, and using the dope, a solution casting film forming method is used. It is preferable to form a film.
  • a low boiling point solvent having a boiling point of 80 ° C. or lower is preferably used as the main solvent.
  • “used as a main solvent” means that if it is a mixed solvent, 55% by mass or more is used with respect to the total amount of the solvent, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably. Is 90% by mass or more. Of course, if it is used alone, it becomes 100% by mass.
  • the low boiling point solvent only needs to dissolve polyimide, a hydrogen bonding compound and other additives at the same time.
  • chlorinated solvent dichloromethane
  • non-chlorinated solvent methyl acetate, ethyl acetate, acetic acid Amyl, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2- Propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n
  • the low boiling point solvent having a boiling point of 80 ° C. or less among the above solvents, dichloromethane (40 ° C.), ethyl acetate (77 ° C.), methyl ethyl ketone (79 ° C.), tetrahydrofuran (66 ° C.), acetone (56.5 ° C.) And at least one selected from 1,3-dioxolane (75 ° C.) as a main solvent (the parentheses each represent a boiling point).
  • a solvent contained in the case of a mixed solvent as long as it can dissolve the polyimide and the hydrogen bonding compound according to the present invention, it can be used within a range not impairing the effects of the present invention.
  • other solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphospho Luamide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ -butyrolactone, dioxolane, cyclopentanone, epsilon Caprolactam, Chloroform or the like can be used, and may be
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene may be used to the extent that the polyimide and the hydrogen bonding compound according to the present invention do not precipitate. good.
  • an alcohol solvent can be used. It is preferable that the alcohol solvent is selected from methanol, ethanol and butanol from the viewpoint of improving peelability and enabling high-speed casting. Of these, methanol or ethanol is preferably used. When the ratio of the alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
  • the prepared dope is guided to a filter by a liquid feed pump or the like and filtered.
  • the main solvent of the dope is dichloromethane
  • the gel-like foreign matter in the dope can be removed by filtering the dope at a temperature of boiling point at 1 atm of the dichloromethane + 5 ° C. or more.
  • a preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably 45 to 55 ° C.
  • the main dope may contain about 10 to 50% by mass of the recycled material.
  • Return material means a part that is reused as a raw material for some reason, for example, a product obtained by finely pulverizing a polyimide film, which is generated when a polyimide film is formed and both sides of the film are cut off. Also, a polyimide film raw material or the like that exceeds the specified value of the film due to scratches or the like is used.
  • a raw material for the resin used for preparing the dope a material obtained by pelletizing polyimide and other compounds in advance can be preferably used.
  • Casting film forming step An endless support, such as a stainless steel belt or a rotating metal, that feeds the prepared dope to a die through a liquid feed pump (for example, a pressurized metering gear pump) A dope is cast from a die at a casting position on a metal support such as a drum.
  • a liquid feed pump for example, a pressurized metering gear pump
  • the metal support in casting (cast) is preferably a mirror-finished surface, and the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal support such as a stainless steel belt or a stainless steel belt. Is preferably used.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m.
  • the support may not be made of metal, for example, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, nylon 6 film, nylon 6,6 film, polypropylene film.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • nylon 6 film nylon 6,6 film
  • polypropylene film polypropylene film.
  • a belt made of polytetrafluoroethylene or the like can be
  • the running speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 80 to 150 m / min. As the traveling speed of the metal support increases, entrained gas is more likely to be generated, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
  • the traveling speed of the metal support is the moving speed of the outer surface of the metal support.
  • the surface temperature of the metal support is not particularly limited, but is usually 0 ° C. or higher, preferably 20 to 60 ° C., more preferably 20 to 25 ° C.
  • the die has a shape that becomes gradually narrower toward the discharge port in the vertical cross section with respect to the width direction.
  • the die usually has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces.
  • a die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
  • ⁇ It is preferable to use a pressure die that can adjust the slit shape of the die base and easily make the film thickness uniform.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
  • Discharge rate of the dope from the die is preferably 200 ⁇ 720g / m 2, more preferably 400 ⁇ 650g / m 2.
  • the dope discharge amount from the die is maintained at a substantially constant value within the above range.
  • the ejection amount is 200 g / m 2 or more, since the casting film is hardly affected by disturbance such as vibration and wind, it is possible to sufficiently prevent uneven thickness.
  • the discharge amount is 720 g / m 2 or less, the shrinkage does not occur excessively and the film thickness unevenness due to the contraction does not occur, and thus the film thickness unevenness can be sufficiently prevented.
  • solvent evaporation step is a pre-drying step which is performed on the metal support and the cast film is heated on the metal support to evaporate the solvent.
  • a method of blowing heated air from the casting membrane side and the back side of the metal support by a dryer a method of transferring heat from the back side of the metal support by a heating liquid, a method of transferring heat from the front and back by radiant heat Etc.
  • a method of appropriately selecting and combining them is also preferable.
  • the surface temperature of the metal support may be the same as a whole or may vary depending on the position.
  • the temperature of the heating air is preferably 10 to 80 ° C.
  • a higher temperature is preferable because the drying speed of the cast film can be increased.
  • the temperature is too high, the cast film may foam or the planarity may deteriorate. Therefore, it is preferably performed at 10 to 30 ° C.
  • the solvent evaporation step it is preferable to dry the cast film until the residual solvent amount is 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
  • M is the mass at a predetermined point of the casting membrane (film)
  • N is the mass when M is dried at 200 ° C. for 3 hours.
  • M when calculating the amount of residual solvent achieved in the solvent evaporation step is the mass of the cast film immediately before the peeling step.
  • the peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Is most preferred.
  • the peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount.
  • the film is sequentially sent to the first drying step and the stretching step after the peeling step.
  • the first drying step is a drying step in which the film is heated to further evaporate the solvent.
  • the drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner.
  • the drying temperature is preferably in the range of 30 to 200 ° C., taking into account the amount of residual solvent and the stretching ratio during transportation.
  • the stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
  • the residual solvent amount at the start of stretching is preferably in the range of 2 to 50% by mass. If the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small and is preferable from the viewpoint of flatness, and if it is within 10% by mass, the surface unevenness is reduced, and the flatness is improved.
  • the film may be stretched in the longitudinal direction and / or the width direction, preferably in the width direction so that the film thickness after stretching is in a desired range.
  • the film is preferably stretched in a temperature range of (TgL ⁇ 200) to (TgH + 50) ° C., where TgL is the lowest Tg of the glass transition point (Tg) and TgH is the highest Tg. If it extends in the said temperature range, since a extending
  • the stretching temperature is more preferably in the range of (TgL ⁇ 150) to (TgH + 40) ° C.
  • the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller.
  • the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625.
  • a method of drying while drying (referred to as a tenter method), among which a tenter method using a clip is preferably used.
  • the film stretched in the longitudinal direction or the unstretched film is preferably introduced into the tenter in a state where both ends in the width direction are held by the clip, and stretched in the width direction while running with the tenter clip.
  • stretching in the width direction stretching in the width direction of the film at a stretching speed of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
  • the stretching speed is 50% / min or more, the planarity is improved and the film can be processed at high speed, which is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. Can be processed without any problem.
  • a more preferable stretching speed is in the range of 100 to 500% / min.
  • the stretching speed is defined by the following formula.
  • Stretching speed (% / min) [(d 1 / d 2 ) ⁇ 1] ⁇ 100 (%) / t (In the above formula, d 1 is the width dimension in the stretching direction of the resin film after stretching, d 2 is the width dimension in the stretching direction of the resin film before stretching, and t is the time (min) required for stretching. .)
  • the stretching step usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order.
  • the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
  • Second drying step Next, the stretched film is heated and dried.
  • a means for preventing the mixing of used hot air by installing a nozzle that can exhaust used hot air (air containing solvent or wet air) is also preferably used.
  • the hot air temperature is more preferably in the range of 40 to 350 ° C.
  • the drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.
  • the heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, etc. can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner.
  • the drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the residual solvent amount, the stretching ratio during conveyance, and the like.
  • the second drying step it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
  • Winding step is a step of winding the obtained film and cooling it to room temperature.
  • the winding machine may be a commonly used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
  • the thickness of the film is not particularly limited and is, for example, preferably 1 to 200 ⁇ m, particularly 1 to 50 ⁇ m.
  • both ends of the film sandwiched between tenter clips when stretched and conveyed may be slit.
  • the slit film end is preferably cut into a width of 1 to 30 mm, dissolved in a solvent, and reused as a recycled material.
  • the ratio of the portion of the formed film that is reused as a recycled material is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass.
  • the input amount varies slightly depending on the amount of return material generated during the film forming process or finally, but the mixing ratio of the returned material to the total solid content in the dope is usually about 10 to 50% by mass, preferably It is about 15 to 40% by mass.
  • the mixing ratio of the recycled materials is preferably as constant as possible for production stability.
  • Each step from the solvent evaporation step to the winding step described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
  • Heating step After the winding step, the film dried in the second drying step is further heat-treated to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve mechanical properties. A heating step is performed. Moreover, even when the dope is prepared using polyimide (imidation rate 100%) or when the imidation rate of the film becomes 100% by performing the second drying step, the residual stress of the film A heating process is performed for the purpose of relaxing the above. In addition, the said 2nd drying process may serve as a heating process.
  • the heating means is performed using a known means such as hot air, an electric heater, or a microwave.
  • a known means such as hot air, an electric heater, or a microwave.
  • the electric heater the above-described infrared heater can be used.
  • the final treatment conditions are suitably in the temperature range of 200 to 450 ° C. and in the range of 30 seconds to 1 hour. Thereby, the dimensional stability of a polyimide film can be improved.
  • the heating step if the film is heated rapidly, defects such as an increase in surface defects occur, and therefore it is preferable to select the heating method as appropriate.
  • the heating step is preferably performed in a low oxygen atmosphere.
  • the heating temperature in the second drying step and the heating step exceeds 450 ° C.
  • the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load.
  • the following is preferable.
  • the polyimide film of the present invention is preferably long, and specifically has a length of about 100 to 10,000 m. Preferably, it is wound up in a roll shape.
  • the width of the polyimide film of the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the film thickness is preferably in the range of 1 to 200 ⁇ m from the viewpoint of strength and transparency as a flexible printed board. When the film thickness is 1 ⁇ m or more, a certain level of film strength can be developed. If the film thickness is 200 ⁇ m or less, the film substrate is flexible. In particular, the thickness is preferably 1 to 50 ⁇ m.
  • the polyimide film of the present invention is a sample having a thickness of 50 ⁇ m.
  • the haze is preferably less than 2%, more preferably less than 0.5%, and less than 0.3%. More preferably.
  • Haze is measured using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K-7136, one sample that has been conditioned for 24 hours in an air-conditioned room at 23 ° C. and 55% RH.
  • NDH2000 type manufactured by Nippon Denshoku Industries Co., Ltd.
  • JIS K-7136 JIS K-7136
  • the flexible printed circuit board of the present invention can be obtained by using the polyimide film of the present invention as a base film and pressing a metal foil on the base film via an adhesive.
  • the adhesive used here include acrylic, polyimide, and epoxy adhesives.
  • the metal foil that is thermocompression bonded to the polyimide film via an adhesive is preferably a copper foil from the viewpoint of cost reduction, but other metal foils such as aluminum, gold, silver, nickel, and tin may be used.
  • the substrate for LED illumination of the present invention is not particularly limited as long as it uses the polyimide film of the present invention, and examples thereof include a double-sided substrate and a composite substrate with an aluminum plate. In the case where heat dissipation is required as the brightness of the LED increases, it is possible to improve the heat dissipation by combining with an aluminum plate.
  • the front plate for a flexible display of the present invention is not particularly limited as long as it uses the polyimide film of the present invention.
  • a flexible display on which the front plate for flexible display of the present invention is mounted for example, an organic EL element in which an organic functional layer such as a light emitting layer is laminated on a substrate, a gas barrier film, a film color filter, one side or both sides
  • a polarizing plate including a polarizing plate protective film, a film-type touch sensor, and the like are laminated in this order.
  • the front panel for a flexible display of the present invention is laminated on a film type touch sensor of a flexible display configured as described above, for example.
  • the polyimide film of this invention may be used for the board
  • the water produced during the reaction was removed from the reaction system as an azeotrope with toluene and pyridine. After completion of the reaction, the reaction solution was cooled to room temperature to obtain a 20% by mass polyimide solution.
  • the structure of the obtained polyimide is as shown in the following formula. Isopropanol was added to the polyimide solution, and the mixture was cooled after stirring to obtain a polyimide solid. This solid was washed and dried to obtain polyimide A.
  • R 1 to R 3 represent a methyl group or an ethyl group, one of R 1 to R 3 represents a methyl group, and two represents an ethyl group.
  • a main dope having the following composition was prepared. First, dichloromethane (boiling point 40 ° C.) was added to the pressure dissolution tank. The prepared polyimide A and the remaining components were charged into a pressure dissolution tank containing a solvent while stirring. While this was heated and stirred, it was completely dissolved, and this was dissolved in Azumi Filter Paper No. The main dope was prepared by filtration using 244.
  • the dope was cast uniformly on a stainless steel belt support at a temperature of 30 ° C. and a width of 1500 mm.
  • the temperature of the stainless steel belt was controlled at 30 ° C.
  • the stretched film was dried at a drying temperature at which the residual solvent amount was less than 0.1% by mass with a transport tension of 100 N / m and a drying time of 15 minutes, to obtain a film having a dry film thickness of 55 ⁇ m.
  • the obtained film was wound up to obtain a polyimide film 101.
  • a polyimide film 108 was produced in the same manner as in the production of the polyimide film 101 except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 8 represented by the following formula.
  • R in one of the three CH 2 OR groups represents a hydrogen atom, and R in the other one represents an acetyl group. All five other Rs represent benzozoyl groups.
  • a polyimide film 109 was produced in the same manner as in the production of the polyimide film 101 except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 9 (Pine Crystal KE-604, manufactured by Arakawa Chemical Industries, Ltd.).
  • R in one of the three CH 2 OR groups represents a hydrogen atom.
  • the other seven Rs all represent a benzoyl group.
  • ⁇ Preparation of polyimide B> In the same apparatus as that used for the preparation of polyimide A, 46.80 g (0.15 mol) of ODPA and 38.16 g (0.15 of 4,4′-diamino-3,3 ′, 5,5′-tetramethyldiphenylmethane) were used. Mol), 147.67 g of GBL, 2.39 g of pyridine, and 50 g of toluene, and the inside of the reaction system was purged with nitrogen. ODPA was dissolved by stirring for 30 minutes at 80 ° C. under a nitrogen stream, and then heated to 180 ° C. and stirred for 7 hours.
  • the water produced during the reaction was removed from the reaction system as an azeotrope with toluene and pyridine. After completion of the reaction, when cooled to 120 ° C., 100 g of GBL was added to obtain a polyimide solution having a concentration of 25% by mass.
  • the structure of the obtained polyimide is as shown in the following formula. Isopropanol was added to the polyimide solution, and the mixture was cooled after stirring to obtain a polyimide solid. This solid was washed and dried to obtain polyimide B.
  • polyimide film 112 ⁇ Preparation of polyimide film 112 >> In the production of the polyimide film 106, a polyimide film 112 was produced in the same manner except that the polyimide A was changed to the polyimide C. Polyimide C uses 0.18 mol of 2,2-bis [4- (4-aminophenoxy) phenyl] propane instead of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A. Can be prepared.
  • DETDA diethyltoluenediamine
  • polyimide film 113 ⁇ Preparation of polyimide film 113 >> In the production of the polyimide film 106, a polyimide film 113 was produced in the same manner except that the polyimide A was changed to the polyimide D.
  • Polyimide D is prepared by using 0.18 mol of 4,4′-bis (4-aminophenoxy) biphenyl instead of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A. be able to.
  • DETDA diethyltoluenediamine
  • ⁇ Preparation of polyimide film 114 >> In the production of the polyimide film 106, a polyimide film 114 was produced in the same manner except that the polyimide A was changed to the polyimide E.
  • Polyimide E was prepared by using 0.18 mol ⁇ , ⁇ ′-bis (4-aminophenyl) -1,4-diisopropylbenzene instead of 0.18 mol diethyltoluenediamine (DETDA) in the preparation of polyimide A. Can be prepared.
  • DETDA diethyltoluenediamine
  • polyimide film 115 In the production of the polyimide film 106, a polyimide film 115 was produced in the same manner except that the polyimide A was changed to the polyimide F.
  • Polyimide F should be prepared by using 0.18 mol of 2,2'-bis (trifluoromethyl) benzidine instead of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A. Can do.
  • polyimide film 116 a polyimide film 116 was produced in the same manner except that the polyimide A was changed to the polyimide G.
  • Polyimide G can be prepared by using 0.18 mol of 4,4′-diaminodicyclohexylmethane in place of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A.
  • DETDA diethyltoluenediamine
  • ⁇ Preparation of polyimide film 119 In the production of the polyimide film 101, a polyimide film 119 was produced in the same manner except that 10 parts by mass of the hydrogen bonding compound 1 was changed to 10 parts by mass of water.
  • ⁇ Preparation of polyimide film 120 In the production of the polyimide film 101, a polyimide film 120 was produced in the same manner except that 10 parts by mass of the hydrogen bonding compound 1 was changed to 10 parts by mass of benzene.
  • a reflective electrode made of chromium thereon a metal electrode using ITO (tin-doped indium oxide) as a metal electrode (anode) on the reflective electrode, and an organic light emitting layer
  • ITO in-doped indium oxide
  • an organic light emitting layer As a hole transport layer, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is formed with a thickness of 80 nm on the anode by a sputtering method, and then a shadow mask is formed on the hole transport layer.
  • RGB light emitting layers R, G, and B were formed with a layer thickness of 100 nm.
  • red light emitting layer R tris (8-hydroxyquinolinate) aluminum (Alq 3 ) and a light emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] ( DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm.
  • DCM light emitting compound
  • Alq 3 as a host
  • a light emitting compound coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin
  • the blue light-emitting layer B was formed with a thickness of 100 nm by co-evaporating BAlq and a light-emitting compound Perylene as a host (mass ratio 90:10).
  • calcium is deposited to a thickness of 4 nm by vacuum deposition as a first cathode having a low work function so that electrons can be efficiently injected onto the organic light emitting layer, and a second cathode is formed on the first cathode.
  • aluminum was formed to a thickness of 2 nm.
  • the aluminum used as the second cathode has a role of preventing the calcium as the first cathode from causing chemical alteration when a transparent conductive film is formed thereon by a sputtering method.
  • a transparent conductive film having a thickness of 80 nm was formed on the cathode by sputtering to form a transparent electrode.
  • ITO was used as the transparent conductive film.
  • 200 nm of silicon nitride was deposited on the transparent electrode by a CVD method to form an organic EL element unit as an insulating layer.
  • thermosetting liquid adhesive epoxy resin
  • the organic EL element unit formed from the transparent substrate to the insulating layer and the sealing unit were laminated under a reduced pressure of 0.1 MPa at 90 ° C., and the pressure was applied and held for 5 minutes. Subsequently, the laminate was returned to the atmospheric pressure environment, and further heated at 90 ° C. for 30 minutes to cure the adhesive, thereby producing an organic EL display device.
  • the produced organic EL display device was held at 80 ° C / 45% RH for 10 minutes using a heat shock tester (Hitachi Appliances Co., Ltd., EC-35EXH) and then changed to 25 ° C / 80% RH. This was held for 10 minutes, and the operation of changing the temperature again to 80 ° C. and 45% RH was taken as one cycle, and a durability test was repeated for 150 cycles.
  • the organic EL display device after the endurance test was placed on a flat glass, its warpage was measured using a ruler, and evaluated according to the following criteria. ⁇ : Warpage of 2 mm or less occurred ⁇ : Warpage of 5 to 10 mm occurred ⁇ : Warpage of 10 mm or more occurred
  • the polyimide film of the comparative example does not contain a hydrogen bonding compound, and the warp of the organic EL display device is not suppressed. For this reason, the polyimide film of the comparative example is considered to have undergone dimensional variations in a high temperature and high humidity environment.
  • Example 2 Using the polyimide films 101 to 120 produced in Example 1, a flexible printed board was produced as follows.
  • a 20 mass% chromium-nickel alloy layer having an average thickness of 230 mm as a metal thin film is formed by a direct current sputtering method using a sputtering facility composed of an unwinder, a sputtering device, a winder, and the like. Formed. Further, similarly, a copper thin film having an average thickness of 1000 mm was formed on the metal thin film.
  • the copper plating bath used was a copper sulfate plating bath with a copper concentration of 23 g / L, and the bath temperature during plating was 27 ° C.
  • the plating tank is a multi-structure tank in which a plurality of plating tanks are connected, and is transported so that a polyimide film having a metal layer on one side is continuously immersed in each tank by an unwinder and a winder. Then, electroplating was performed.
  • the conveying speed was 75 m / h, and the copper plating was performed by adjusting the average cathode current density of the plating tank to 1.0 to 2.5 A / dm 2 .
  • a COF (Chipon film) having a wiring interval of 30 ⁇ m and a total wiring width of 15000 ⁇ m was prepared by a subtractive method.
  • An IC chip was mounted on this, and the electrodes on the surface of the IC chip and the lead portions of the wiring were subjected to wire bonding at 400 ° C. for 0.5 seconds using a wire bonding apparatus.
  • the proportion of the bonding failure between the lead and the polyimide film generated in the inner lead portion was 0.0001%. In this way, a flexible printed circuit board was produced.
  • the flexible printed circuit board produced above was placed in a constant temperature and humidity chamber (PL-4 manufactured by ESPEC) set at 60 ° C.
  • a MIT tester performs a bending test under conditions of a load of 500 g, a refraction angle of 135 °, a refraction cycle of 175 cpm, and a refractive part locality radius of 0.38 mm, and the energized state is cut off due to circuit breakage. The number of times until was measured.
  • the flexible printed circuit board using the polyimide film of the present invention was confirmed to be an excellent flexible printed circuit board with no occurrence of interruption of the energized state even after the number of foldings of 5000 times or more and small curling after the bending test. .
  • the flexible printed circuit board using the polyimide film as a comparative example was curled during the bending test, and the energized state was also interrupted in the middle.
  • Example 3 With reference to the LED illumination production method described in Japanese Patent Application Laid-Open No. 2014-22508, LED illumination was produced using each flexible printed circuit board produced in Example 2.
  • Each of the LED illuminations produced above was allowed to emit light at room temperature (about 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the luminance of the front emission immediately after the start of emission (cd / m 2 ) was determined as the spectral radiance.
  • the luminance of the front emission immediately after the start of emission was determined as the spectral radiance.
  • all of the LED lights mounted with the polyimide film of the present invention had a front luminance of 1000 (cd / m 2 ) or more.
  • the polyimide film having the structure of the present invention has high transparency, and the LED lighting device on which the polyimide film is mounted has excellent front luminance.
  • Example 4 An organic EL display device was produced using the polyimide film produced in Example 1 and evaluated.
  • a polyimide film with a hard coat layer was produced by providing the following hard coat layer on one side of the polyimide films 101 to 120 produced in Example 1.
  • the following hard coat layer composition was filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to prepare a coating solution for forming a hard coat layer, which was applied onto a polyimide film by a die coater and dried at 70 ° C.
  • the coating is applied using an ultraviolet lamp under the conditions of an illuminance of 300 mW / cm 2 and an irradiation amount of 0.3 J / cm 2.
  • the layer was cured.
  • heat treatment was carried out at 130 ° C. for 5 minutes with a conveyance force of 300 N / m to form a hard coat layer having a dry layer thickness of 7 ⁇ m.
  • Radical polymerizable fluororesin (FA) Cefal coat CF-803 (hydroxy (hydroxyl group) value 60, number average molecular weight 15000; manufactured by Central Glass Co., Ltd.)
  • Radical polymerization initiator Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
  • Curing agent Sumidur N3200 (biuret type prepolymer of hexamethylene diisocyanate; manufactured by Sumika Bayer Urethane Co., Ltd.)
  • a radical polymerizable fluororesin was prepared as follows.
  • a glass reactor equipped with a mechanical stirrer, a thermometer, a condenser and a dry nitrogen gas inlet was added to cefal coat CF-803 (1554 parts by mass), xylene (233 parts by mass), and 2-isocyanatoethyl methacrylate (6 3 parts by mass) and heated to 80 ° C. in a dry nitrogen atmosphere. After reacting at 80 ° C. for 2 hours and confirming that the absorption of isocyanate disappeared by the infrared absorption spectrum of the sample, the reaction mixture was taken out and 50% by mass of radically polymerizable fluororesin (FA) via a urethane bond.
  • FA radically polymerizable fluororesin
  • a polarizer, a ⁇ / 4 retardation film, and a protective film (Konica Minolta Tack KC4UY (manufactured by Konica Minolta Co., Ltd.)) are bonded together in a roll-to-roll method, and a circularly polarizing plate is attached. Produced. In addition, it bonded together so that a protective film might be arrange
  • Step 1 The ⁇ / 4 retardation film and the stretched protective film were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, washed with water, dried, and bonded to the polarizer. The surface was saponified.
  • Step 2 The prepared polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was gently wiped, and this was placed on the ⁇ / 4 retardation film processed in Step 1.
  • Step 4 The ⁇ / 4 retardation film and polarizer laminated in Step 3 were bonded to the protective film at a pressure of 20 to 30 N / cm 2 and a conveying speed of about 2 m / min.
  • Step 5 A sample obtained by bonding the polarizer, the ⁇ / 4 retardation film, and the protective film prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes to prepare a circularly polarizing plate.
  • a hole transport layer having a thickness of 80 nm was formed on the anode by sputtering using poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS).
  • PEDOT poly(3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • a red light emitting layer R, a green light emitting layer G, and a blue light emitting layer B each having a thickness of 100 nm were formed on the hole transport layer using a shadow mask.
  • the red light emitting layer R includes tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host and 4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran (DCM) as a luminescent compound.
  • the green light-emitting layer G was formed by co-evaporation (mass ratio 99: 1) of Alq 3 as a host and coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin) as a light-emitting compound.
  • the blue light emitting layer B was formed by co-evaporation (mass ratio 90:10) of BAlq as a host and Perylene as a light emitting compound. In this way, an organic light emitting layer composed of a hole transport layer, a red light emitting layer R, a green light emitting layer G, and a blue light emitting layer B was formed.
  • a first cathode was formed on the organic light-emitting layer by depositing calcium with a thickness of 4 nm by vacuum deposition.
  • a second cathode was formed by depositing aluminum with a thickness of 2 nm on the first cathode.
  • the aluminum used for the second cathode has a role to prevent the calcium as the first cathode from being chemically altered when the transparent conductive film formed thereon is formed by sputtering.
  • ITO was formed to a thickness of 80 nm by sputtering to form a transparent electrode. Further, an insulating film was formed by depositing silicon nitride with a thickness of 200 nm on the transparent electrode by a CVD method. In this way, an organic EL element was produced.
  • thermosetting liquid adhesive epoxy resin
  • a thermosetting liquid adhesive epoxy resin
  • the organic EL element formed from the transparent substrate to the insulating film and the sealing unit were stacked and pressed under reduced pressure conditions of 0.1 MPa at 90 ° C. and held for 5 minutes. Subsequently, the laminate was heated at 90 ° C. for 30 minutes in an atmospheric pressure environment to cure the adhesive, and an organic EL display device was produced.
  • the light emitting area of the produced organic EL display device was 1296 mm ⁇ 784 mm. Further, the front luminance when a DC voltage of 6 V was applied to the organic EL display device was 1200 cd / m 2 .
  • the front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Co., Ltd. so that the front luminance is 2 degrees and the optical axis of the spectral radiance meter matches the normal from the light emitting surface.
  • the visible light wavelength range of 430 to 480 nm was measured, and the integrated intensity was taken.
  • the produced circularly polarizing plate is laminated on the produced organic EL display device, and the hard coat layer is the outermost polyimide film with a hard coat layer as a front plate. It laminated
  • the present invention is suitable for providing a polyimide film in which dimensional fluctuation due to temperature and humidity environment fluctuation is suppressed, a flexible printed circuit board including the polyimide film, a substrate for LED illumination, and a front panel for flexible display. .

Abstract

The objective of the present invention is to provide a polyimide film which is suppressed in dimensional change due to temperature/humidity changes in the environment. This polyimide film contains a polyimide having a diphenyl ether structure derived from 4, 4'-oxydiphthalic acid anhydride; and this polyimide film is characterized by containing a hydrogen bonding compound that has an aromatic ring and a hydrogen bonding donor site in each molecule.

Description

ポリイミドフィルム、フレキシブルプリント基板、LED照明用基板及びフレキシブルディスプレイ用前面板Polyimide film, flexible printed circuit board, LED lighting substrate, and front panel for flexible display
 本発明は、ポリイミドフィルム、フレキシブルプリント基板、LED照明用基板及びフレキシブルディスプレイ用前面板に関する。特に、温湿度環境変動による寸法変動が抑制されたポリイミドフィルム、当該ポリイミドフィルムを備えるフレキシブルプリント基板、LED照明用基板及びフレキシブルディスプレイ用前面板に関する。 The present invention relates to a polyimide film, a flexible printed circuit board, a substrate for LED illumination, and a front panel for flexible display. In particular, the present invention relates to a polyimide film in which dimensional variation due to temperature and humidity environment variation is suppressed, a flexible printed circuit board including the polyimide film, an LED illumination substrate, and a flexible display front plate.
 従来、ポリイミドは、耐熱性に優れるが、高い芳香環密度により茶色又は黄色に色を呈し、可視光線領域での透過率が低くなるため、透明性が要求される分野に用いることが困難であった。 Conventionally, polyimide is excellent in heat resistance, but has a brown or yellow color due to high aromatic ring density, and has low transmittance in the visible light region, so it has been difficult to use it in fields where transparency is required. It was.
 これに対し、ポリイミドフィルムを透明化させる技術として、ポリイミドの主鎖構造にπ共役系を切断する機能を有するエーテル結合を導入することにより、π電子系の非局在化に伴う着色を抑制する技術が知られている(例えば、特許文献1参照。)。 On the other hand, as a technology to make the polyimide film transparent, by introducing an ether bond having a function of cutting the π-conjugated system into the main chain structure of the polyimide, coloring caused by delocalization of the π-electron system is suppressed. A technique is known (for example, refer to Patent Document 1).
 高透明性のポリイミドフィルムは、フレキシブルプリント基板(FPC:Flexible Printed Circuits)や有機エレクトロルミネッセンス素子(有機EL素子ともいう。)等、積層型(複合型)の電子デバイスの基板や前面板等に用いられることが期待される。しかしながら、上記特許文献1に記載のポリイミドフィルムにあっては、当該ポリイミドフィルムを用いた電子デバイスを温湿度環境変動の大きい屋外で使用したり車載用途として使用したりする際に、反りが発生してしまうという問題があった。 Highly transparent polyimide film is used for substrates and front plates of multilayer (composite) electronic devices such as flexible printed circuit boards (FPCs) and organic electroluminescent elements (also referred to as organic EL elements). Expected to be. However, in the polyimide film described in Patent Document 1, warpage occurs when an electronic device using the polyimide film is used outdoors or used as an in-vehicle application with a large temperature and humidity fluctuation. There was a problem that.
特開2015-21022号公報Japanese Patent Laying-Open No. 2015-21022
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、温湿度環境変動による寸法変動が抑制されたポリイミドフィルム、当該ポリイミドフィルムを備えるフレキシブルプリント基板、LED照明用基板及びフレキシブルディスプレイ用前面板を提供することである。 The present invention has been made in view of the above-described problems and situations, and a solution to the problem is a polyimide film in which dimensional fluctuation due to temperature and humidity environment fluctuation is suppressed, a flexible printed board including the polyimide film, a substrate for LED illumination, and It is to provide a front panel for a flexible display.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、4,4′-オキシジフタル酸無水物由来のジフェニルエーテル構造を有するポリイミドを含有するポリイミドフィルムが、分子内に芳香環及び水素結合ドナー性部位を有する水素結合性化合物を含有することで、温湿度環境変動による寸法変動を抑制できることを見いだし、本発明に至った。
 すなわち、本発明に係る課題は、以下の手段により解決される。
As a result of investigating the cause of the above-mentioned problems in order to solve the above-mentioned problems according to the present invention, a polyimide film containing a polyimide having a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride has an aromatic ring in the molecule and It has been found that by containing a hydrogen bonding compound having a hydrogen bond donor site, dimensional variation due to temperature and humidity environment variations can be suppressed, leading to the present invention.
That is, the subject concerning this invention is solved by the following means.
 1.4,4′-オキシジフタル酸無水物由来のジフェニルエーテル構造を有するポリイミドを含有するポリイミドフィルムにおいて、
 分子内に芳香環及び水素結合ドナー性部位を有する水素結合性化合物を含有することを特徴とするポリイミドフィルム。
In a polyimide film containing a polyimide having a diphenyl ether structure derived from 1.4,4'-oxydiphthalic anhydride,
A polyimide film comprising a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule.
 2.前記芳香環の数を前記水素結合ドナー性部位の数で除した値が、1~5の範囲内であることを特徴とする第1項に記載のポリイミドフィルム。 2. 2. The polyimide film according to item 1, wherein the value obtained by dividing the number of aromatic rings by the number of hydrogen bond donor sites is in the range of 1 to 5.
 3.第1項又は第2項に記載のポリイミドフィルムを備えることを特徴とするフレキシブルプリント基板。 3. A flexible printed circuit board comprising the polyimide film according to item 1 or 2.
 4.第1項又は第2項に記載のポリイミドフィルムを備えることを特徴とするLED照明用基板。 4. An LED illumination substrate comprising the polyimide film according to item 1 or 2.
 5.第1項又は第2項に記載のポリイミドフィルムを備えることを特徴とするフレキシブルディスプレイ用前面板。 5. A front plate for a flexible display, comprising the polyimide film according to item 1 or 2.
 本発明によれば、温湿度環境変動による寸法変動が抑制されたポリイミドフィルム、当該ポリイミドフィルムを備えるフレキシブルプリント基板、LED照明用基板及びフレキシブルディスプレイ用前面板を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 すなわち、上記した従来のポリイミドフィルムにおいては、ポリイミド主鎖構造中のエーテル結合は内部回転障壁が低くコンホメーション変化しやすいため、温湿度環境変動の影響を受けやすいと推察する。
 そこで、ポリイミド主鎖構造中にあるエーテル結合は水素結合アクセプター性部位であるため、分子内に芳香環及び水素結合ドナー性部位を有する水素結合性化合物をフィルムに含有させることで、当該水素結合性化合物の水素結合ドナー性部位と水素結合を形成させるとともに、当該エーテル結合の近傍に水素結合性化合物の芳香環を存在させる。これにより、エーテル結合の内部回転障壁を高くし、コンホメーション変化を防ぐことで、剛直構造単位とし、温湿度環境変動によるポリイミドフィルムの寸法変動が抑制されたものと考えている。また、水素結合性化合物の芳香環が立体障害として働き、回転抑制が発現しやすいと推察している。
ADVANTAGE OF THE INVENTION According to this invention, the polyimide film by which the dimensional fluctuation | variation by temperature / humidity environmental fluctuation | variation was suppressed, a flexible printed circuit board provided with the said polyimide film, a board | substrate for LED lighting, and a front plate for flexible displays can be provided.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
That is, in the above-described conventional polyimide film, it is assumed that the ether bond in the polyimide main chain structure has a low internal rotation barrier and easily undergoes a conformational change, and thus is easily affected by temperature and humidity fluctuations.
Therefore, since the ether bond in the polyimide main chain structure is a hydrogen bond acceptor site, by adding a hydrogen bond compound having an aromatic ring and a hydrogen bond donor site in the molecule to the film, A hydrogen bond is formed with the hydrogen bond donor site of the compound, and an aromatic ring of the hydrogen bond compound is present in the vicinity of the ether bond. Thus, it is considered that the internal rotation barrier of the ether bond is increased and the change in conformation is prevented, whereby the rigid structural unit is obtained, and the dimensional variation of the polyimide film due to the temperature and humidity environment variation is suppressed. In addition, it is presumed that the aromatic ring of the hydrogen bonding compound acts as a steric hindrance, and rotation suppression is likely to occur.
 本発明のポリイミドフィルムは、4,4′-オキシジフタル酸無水物由来のジフェニルエーテル構造を有するポリイミドを含有するポリイミドフィルムにおいて、分子内に芳香環及び水素結合ドナー性部位を有する水素結合性化合物を含有することを特徴とする。この特徴は、請求項1から請求項5までの各請求項に共通する又は対応する技術的特徴である。
 本発明においては、本発明の効果発現の観点から、前記芳香環の数を前記水素結合ドナー性部位の数で除した値が、1~5の範囲内であることが好ましい。
 また、本発明のフレキシブルプリント基板、LED照明用基板及びフレキシブルディスプレイ用前面板は、上記ポリイミドフィルムを備える。これにより、屋外使用や車載用途の使用において、電子デバイスの反りの発生を抑制することができる。
The polyimide film of the present invention is a polyimide film containing a polyimide having a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride, and contains a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule. It is characterized by that. This feature is a technical feature common to or corresponding to each of claims 1 to 5.
In the present invention, from the viewpoint of manifesting the effects of the present invention, the value obtained by dividing the number of aromatic rings by the number of hydrogen bond donor sites is preferably in the range of 1 to 5.
Moreover, the flexible printed circuit board of this invention, the board | substrate for LED illumination, and the front plate for flexible displays are equipped with the said polyimide film. Thereby, generation | occurrence | production of the curvature of an electronic device can be suppressed in the use for outdoor use or vehicle-mounted use.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
《本発明のポリイミドフィルムの概要》
 本発明のポリイミドフィルムは、4,4′-オキシジフタル酸無水物由来のジフェニルエーテル構造を有するポリイミドを含有し、更に、分子内に芳香環及び水素結合ドナー性部位を有する水素結合性化合物を含有することを特徴とする。
<< Outline of Polyimide Film of the Present Invention >>
The polyimide film of the present invention contains a polyimide having a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride, and further contains a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule. It is characterized by.
 水素結合性化合物の好ましい含有量は、30質量%以下であることが好ましく、1~30質量%であることがより好ましく、2~20質量%であることが更に好ましく、3~15質量%であることが特に好ましい。水素結合性化合物の含有量が1質量%未満では、本発明の温湿度環境変動による寸法変動の発生を抑制する効果が不十分であり、30質量%を超えるとポリイミドとの相溶性が低下し、透明度の低下や寸法変動抑制の効果が不十分になる。 The content of the hydrogen bonding compound is preferably 30% by mass or less, more preferably 1 to 30% by mass, further preferably 2 to 20% by mass, and 3 to 15% by mass. It is particularly preferred. If the content of the hydrogen bonding compound is less than 1% by mass, the effect of suppressing the occurrence of dimensional variation due to temperature and humidity environment fluctuations of the present invention is insufficient, and if it exceeds 30% by mass, the compatibility with polyimide decreases. , The effect of reducing transparency and suppressing dimensional variation is insufficient.
 また、ポリイミドフィルムに含有される水素結合性化合物の含有量の検出方法としては、例えば、膨潤再沈殿法や超音波抽出法等の方法が挙げられる。
 膨潤再沈殿法においては、まず、ポリイミドフィルムを、例えば、ジメチルアセトアミド、γ-ブチロラクトン又はN-メチル-2-ピロリドン等の膨潤溶媒で膨潤させる。次に、膨潤させたポリイミドフィルムを、例えば、メタノール等のアルコール類、アセトン又はアセトニトリル等の極性溶媒に浸漬させて、その上澄み液を回収する。回収した上澄み液に対して、公知の定量分析法、例えば、HPLC又はGC/MS測定等を用いることで、水素結合性化合物の含有量を求めることができる。
 超音波抽出法においては、ポリイミドフィルムを、例えば、メタノール等のアルコール類、アセトン又はアセトニトリル等の極性溶媒に浸漬させた状態で、超音波処理を行い、その上澄み液を回収する。超音波処理としては、ヤマト科学社製 超音波洗浄器 CPXシリーズを用いて、出力100Wにて30分間程度超音波を与える。回収した上澄み液に対して、公知の定量分析法、例えば、HPLC又はGC/MS測定等を用いることで、水素結合性化合物の含有量を求めることができる。
Moreover, as a detection method of content of the hydrogen bonding compound contained in a polyimide film, methods, such as a swelling reprecipitation method and an ultrasonic extraction method, are mentioned, for example.
In the swelling reprecipitation method, first, the polyimide film is swollen with a swelling solvent such as dimethylacetamide, γ-butyrolactone, or N-methyl-2-pyrrolidone. Next, the swollen polyimide film is immersed in a polar solvent such as alcohols such as methanol, acetone or acetonitrile, and the supernatant is recovered. The content of the hydrogen bonding compound can be determined by using a known quantitative analysis method such as HPLC or GC / MS measurement on the collected supernatant.
In the ultrasonic extraction method, ultrasonic treatment is performed in a state where the polyimide film is immersed in an alcohol such as methanol, or a polar solvent such as acetone or acetonitrile, and the supernatant is recovered. As the ultrasonic treatment, an ultrasonic wave is applied at an output of 100 W for about 30 minutes using an ultrasonic cleaner CPX series manufactured by Yamato Scientific. The content of the hydrogen bonding compound can be determined by using a known quantitative analysis method such as HPLC or GC / MS measurement on the collected supernatant.
〔1〕ポリイミド
 本発明に用いられるポリイミドとしては、4,4′-オキシジフタル酸無水物由来のジフェニルエーテル構造を有するものであれば良く、例えば以下のポリイミド1~4を用いることができる。なお、本発明のポリイミドフィルムは、イミド化されていない成分、すなわちポリアミド酸を含有していても良い。
[1] Polyimide Any polyimide may be used in the present invention as long as it has a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride. For example, the following polyimides 1 to 4 can be used. In addition, the polyimide film of this invention may contain the component which is not imidized, ie, a polyamic acid.
〔1.1〕ポリイミド1
 本発明のポリイミドフィルムは、ジアミン又はその誘導体と、4,4′-オキシジフタル酸無水物とから形成されるポリイミド又はポリアミド酸を含有する。
[1.1] Polyimide 1
The polyimide film of the present invention contains a polyimide or polyamic acid formed from diamine or a derivative thereof and 4,4′-oxydiphthalic anhydride.
 本発明に用いることのできるポリイミド又はポリアミド酸としては、特に、下記一般式(1.1)で表される繰り返し単位を有するポリイミド(以下、ポリイミド(A)と称する。)又は下記一般式(1.2)で表される繰り返し単位を有するポリアミド酸(以下、ポリアミド酸(A′)と称する。)が好ましい。 As the polyimide or polyamic acid that can be used in the present invention, in particular, a polyimide having a repeating unit represented by the following general formula (1.1) (hereinafter referred to as polyimide (A)) or the following general formula (1) And polyamic acid having a repeating unit represented by (2) (hereinafter referred to as polyamic acid (A ′)) is preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1.1)及び(1.2)中、Rは、4,4′-オキシジフタル酸無水物の残基を表す。Φは、炭素数2~39の2価の脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、又はこれらの組み合わせからなる基であって、結合基として、-O-、-SO-、-CO-、-CH-、-C(CH-、-OSi(CH-、-CO-及び-S-からなる群から選ばれる少なくとも一つの基を有していても良い。 In the general formulas (1.1) and (1.2), R represents a residue of 4,4′-oxydiphthalic anhydride. Φ is a group composed of a divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof, and —O—, At least selected from the group consisting of —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, —C 2 H 4 O— and —S—. You may have one group.
 一般式(1.1)及び(1.2)中、Φで表される上記結合基を有する又は有さない炭素数2~39の2価の脂肪族炭化水素基としては、例えば、下記構造式で表される基が挙げられる。 In the general formulas (1.1) and (1.2), examples of the divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms having or not having the above-described bonding group represented by Φ include, for example, the following structures: Examples include groups represented by the formula.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記構造式において、nは、繰り返し単位の数を表し、1~5が好ましく、1~3がより好ましい。また、Xは、炭素数1~3のアルカンジイル基、つまり、メチレン基、エチレン基、トリメチレン基、プロパン-1,2-ジイル基であり、メチレン基が好ましい。 In the above structural formula, n represents the number of repeating units, preferably 1 to 5, and more preferably 1 to 3. X is an alkanediyl group having 1 to 3 carbon atoms, that is, a methylene group, an ethylene group, a trimethylene group, or a propane-1,2-diyl group, and a methylene group is preferable.
 Φで表される上記結合基を有する又は有さない炭素数2~39の2価の脂環式炭化水素基としては、例えば、下記構造式で表される基が挙げられる。 Examples of the divalent alicyclic hydrocarbon group having 2 to 39 carbon atoms with or without the above-described bonding group represented by Φ include groups represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 Φで表される上記結合基を有する又は有さない炭素数2~39の2価の芳香族炭化水素基としては、例えば、下記構造式で表される基が挙げられる。 Examples of the divalent aromatic hydrocarbon group having 2 to 39 carbon atoms with or without the above-described bonding group represented by Φ include groups represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 Φで表される脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基の組み合わせからなる基としては、例えば、下記構造式で示される基が挙げられる。 Examples of the group composed of a combination of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group represented by Φ include groups represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 Φで表される基としては、結合基を有する炭素数2~39の2価の芳香族炭化水素基、又は該芳香族炭化水素基と脂肪族炭化水素基の組み合わせであることが好ましく、特に、以下の構造式で表される基が好ましい。 The group represented by Φ is preferably a divalent aromatic hydrocarbon group having 2 to 39 carbon atoms having a linking group, or a combination of the aromatic hydrocarbon group and an aliphatic hydrocarbon group. A group represented by the following structural formula is preferred.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ポリアミド酸(A′)は、上記のとおり、ポリイミド(A)のイミド結合の一部が解離した構造に当たり、ポリアミド酸(A′)の詳細説明はポリイミド(A)に対応させて考えることができるため、以下、代表的にポリイミド(A)について詳細に説明する。 As described above, the polyamic acid (A ′) corresponds to a structure in which a part of the imide bond of the polyimide (A) is dissociated, and the detailed description of the polyamic acid (A ′) can be considered corresponding to the polyimide (A). Therefore, the polyimide (A) will be typically described in detail below.
 前記一般式(1.1)で表される繰り返し単位は、全ての繰り返し単位に対して好ましくは10~100モル%、より好ましくは50~100モル%、更に好ましくは80~100モル%、特に好ましくは90~100モル%である。また、ポリイミド(A)1分子中の一般式(1.1)の繰り返し単位の個数は、10~2000、好ましくは20~200であり、この範囲において、更にガラス転移温度が230~350℃であることが好ましく、250~330℃であることがより好ましい。 The repeating unit represented by the general formula (1.1) is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 80 to 100 mol%, particularly with respect to all repeating units. 90 to 100 mol% is preferred. The number of repeating units of the general formula (1.1) in one molecule of polyimide (A) is 10 to 2000, preferably 20 to 200. In this range, the glass transition temperature is 230 to 350 ° C. It is preferable that the temperature is 250 to 330 ° C.
 ポリイミド(A)は、4,4′-オキシジフタル酸無水物と、ジアミン又はその誘導体とを反応させてポリアミド酸(A′)を調製し、当該ポリアミド酸(A′)をイミド化させることにより得られる。 Polyimide (A) is obtained by reacting 4,4′-oxydiphthalic anhydride with diamine or a derivative thereof to prepare polyamic acid (A ′) and imidizing the polyamic acid (A ′). It is done.
 ポリイミド(A)がフルオレン骨格を有する場合、フルオレン骨格を50モル%以下含有することが好ましく、フィルムの着色を低減する効果を発現するために、20~50モル%含有することがより好ましく、30~50モル%含有することが更に好ましい。 When the polyimide (A) has a fluorene skeleton, the fluorene skeleton is preferably contained in an amount of 50 mol% or less, more preferably 20 to 50 mol% in order to exhibit the effect of reducing the coloration of the film. More preferably, it is contained in an amount of ˜50 mol%.
 本発明に係るポリイミドは、4,4′-オキシジフタル酸無水物由来のジフェニルエーテル構造を有するものであるが、4,4′-オキシジフタル酸無水物以外の他の酸無水物が併用されて調製されるものであっても良い。その場合、当該他の酸無水物がフルオレン骨格を有するものとしても良い。 The polyimide according to the present invention has a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride, and is prepared by using other acid anhydrides in addition to 4,4′-oxydiphthalic anhydride. It may be a thing. In that case, the other acid anhydride may have a fluorene skeleton.
 本発明に用いられる他の酸無水物のうち、フルオレン骨格を有しない酸無水物としてはカルボン酸無水物が挙げられ、芳香族、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体であることが好ましく、例えば、脂肪族若しくは脂環式テトラカルボン酸エステル類、脂肪族若しくは脂環式テトラカルボン酸二無水物等が挙げられる。なお、芳香族、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体のうち、脂環式テトラカルボン酸二無水物が好ましい。 Among other acid anhydrides used in the present invention, examples of acid anhydrides having no fluorene skeleton include carboxylic acid anhydrides, and may be aromatic, aliphatic or alicyclic tetracarboxylic acids or derivatives thereof. Preferable examples include aliphatic or alicyclic tetracarboxylic acid esters, aliphatic or alicyclic tetracarboxylic dianhydrides, and the like. Of aromatic, aliphatic or alicyclic tetracarboxylic acids or derivatives thereof, alicyclic tetracarboxylic dianhydrides are preferred.
 ここで、脂肪族若しくは脂環式テトラカルボン酸の誘導体とは、脂肪族若しくは脂環式テトラカルボン酸に変化し得る化合物であり、例えば、脂肪族テトラカルボン酸二無水物の場合、当該無水物に代えて二つのカルボキシ基を有する化合物、これら二つのカルボキシ基の中の片方又は両方がエステル化されたエステル化物である化合物、又はこれら二つのカルボキシ基の中の片方又は両方がクロル化された酸クロライド等が好適に用いられる。 Here, the derivative of an aliphatic or alicyclic tetracarboxylic acid is a compound that can be changed to an aliphatic or alicyclic tetracarboxylic acid. For example, in the case of an aliphatic tetracarboxylic dianhydride, the anhydride Instead, a compound having two carboxy groups, a compound in which one or both of these two carboxy groups are esterified, or one or both of these two carboxy groups are chlorinated Acid chloride or the like is preferably used.
 このようなアシル化合物を用いることにより、高い耐熱性と優れた光学特性とを有し、着色(黄変)の少ないフィルムを得ることができる。 By using such an acyl compound, it is possible to obtain a film having high heat resistance and excellent optical properties and less coloring (yellowing).
 脂肪族テトラカルボン酸としては、例えば、1,2,3,4-ブタンテトラカルボン酸等が挙げられる。
 脂環式テトラカルボン酸としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸、1,2,4,5-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸等が挙げられる。
Examples of the aliphatic tetracarboxylic acid include 1,2,3,4-butanetetracarboxylic acid.
Examples of the alicyclic tetracarboxylic acid include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,4,5-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid. Bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, etc. Can be mentioned.
 脂肪族テトラカルボン酸エステル類としては、例えば、上記脂肪族テトラカルボン酸のモノアルキルエステル、ジアルキルエステル、トリアルキルエステル、テトラアルキルエステルが挙げられる。
 脂環式テトラカルボン酸エステル類としては、例えば、上記脂環式テトラカルボン酸のモノアルキルエステル、ジアルキルエステル、トリアルキルエステル、テトラアルキルエステルが挙げられる。なお、アルキル基部位は、炭素数1~5のアルキル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましい。
Examples of the aliphatic tetracarboxylic acid esters include monoalkyl esters, dialkyl esters, trialkyl esters, and tetraalkyl esters of the above aliphatic tetracarboxylic acids.
Examples of the alicyclic tetracarboxylic acid esters include monoalkyl esters, dialkyl esters, trialkyl esters, and tetraalkyl esters of the above alicyclic tetracarboxylic acids. The alkyl group site is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
 脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4-ブタンテトラカルボン酸二無水物等が挙げられる。
 脂環式テトラカルボン酸二無水物としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物等が挙げられる。特に好ましくは、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物である。一般に、脂肪族ジアミンを構成成分とするポリイミドは、中間生成物であるポリアミド酸とジアミンが強固な塩を形成するため、高分子量化するためには塩の溶解性が比較的高い溶媒(例えばクレゾール、N,N-ジメチルアセトアミド、γ-ブチロラクトン、N-メチル-2-ピロリドン等)を用いることが好ましい。ところが、脂肪族ジアミンを構成成分とするポリイミドでも、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を構成成分としている場合には、ポリアミド酸とジアミンの塩は比較的弱い結合で結ばれているので、高分子量化が容易で、フレキシブルなフィルムが得られ易い。
Examples of the aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride.
Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, , 4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] Examples include octane-2,3,5,6-tetracarboxylic dianhydride and 2,3,5-tricarboxycyclopentylacetic acid dianhydride. Particularly preferred is 1,2,4,5-cyclohexanetetracarboxylic dianhydride. In general, a polyimide having an aliphatic diamine as a constituent component forms a strong salt between the polyamic acid, which is an intermediate product, and the diamine. Therefore, in order to increase the molecular weight, a solvent having a relatively high salt solubility (for example, cresol). N, N-dimethylacetamide, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.) are preferably used. However, even with polyimides containing aliphatic diamine as a constituent, when 1,2,4,5-cyclohexanetetracarboxylic dianhydride is used as a constituent, the salt of polyamic acid and diamine is bound by a relatively weak bond. Therefore, it is easy to obtain a high molecular weight and a flexible film can be easily obtained.
 芳香族テトラカルボン酸としては、例えば、4,4′-ビフタル酸無水物、4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、2,3,3′,4′-ビフェニルテトラカルボン酸二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、3,3′,4,4′-ジフェニルスルホンテトラカルボン酸二無水物、3,4′-オキシジフタル酸無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物(ピグメントレッド224)、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)-フェニル]フルオレン無水物等が挙げられる。
 他にも、例えば、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、トリシクロ[6.4.0.02,7]ドデカン-1,8:2,7-テトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等を用いることができる。
Examples of the aromatic tetracarboxylic acid include 4,4′-biphthalic anhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, and 2,3,3 ′, 4′-biphenyltetracarboxylic acid. Dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1 , 2-dicarboxylic anhydride, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 3,4'-oxydiphthalic anhydride, 3,4,9,10-perylenetetracarboxylic acid Anhydride (Pigment Red 224), 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane Anhydride, 9,9-bis (3,4-carboxyphenyl) fluorene, 9,9-bis [4- (3,4-dicarboxyphenoxy) - phenyl] fluorene anhydride and the like.
In addition, for example, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, Tricyclo [6.4.0.02,7] dodecane-1,8: 2,7-tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene- 1,2-dicarboxylic acid anhydride and the like can be used.
 また、ポリイミドの溶媒可溶性、フィルムのフレキシビリティ、熱圧着性、透明性を損なわない範囲で、他のテトラカルボン酸又はその誘導体(特に二無水物)を更に併用しても良い。 Further, other tetracarboxylic acids or derivatives thereof (particularly dianhydrides) may be further used in combination as long as the solvent solubility of the polyimide, the flexibility of the film, the thermocompression bonding property, and the transparency are not impaired.
 かかる他のテトラカルボン酸又はその誘導体としては、例えば、ピロメリット酸、3,3′,4,4′-ビフェニルテトラカルボン酸、2,3,3′,4′-ビフェニルテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、ビス(2,3-ジカルボキシフェニル)エーテル、3,3′,4,4′-ベンゾフェノンテトラカルボン酸、2,2′,3,3′-ベンゾフェノンテトラカルボン酸、4,4-(p-フェニレンジオキシ)ジフタル酸、4,4-(m-フェニレンジオキシ)ジフタル酸、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)メタン等の芳香族系テトラカルボン酸及びこれらの誘導体(特に二無水物);エチレンテトラカルボン酸等の炭素数1~3の脂肪族テトラカルボン酸及びこれらの誘導体(特に二無水物)等が挙げられる。 Examples of such other tetracarboxylic acids or derivatives thereof include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2, 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 , 3,3,3-hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-dicarboxy) Phenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, bis (2,3-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 2,2 ′ 3,3′-benzophenonetetracarboxylic acid, 4,4- (p-phenylenedioxy) diphthalic acid, 4,4- (m-phenylenedioxy) diphthalic acid, 1,1-bis (2,3-dicarboxyl) Aromatic tetracarboxylic acids such as phenyl) ethane, bis (2,3-dicarboxyphenyl) methane, bis (3,4-dicarboxyphenyl) methane and their derivatives (especially dianhydrides); ethylenetetracarboxylic acid Examples thereof include aliphatic tetracarboxylic acids having 1 to 3 carbon atoms and derivatives thereof (particularly dianhydrides).
 本発明に用いられる他の酸無水物のうち、フルオレン骨格を有する酸無水物としては、例えば、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-フェニルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-フェニルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-フェニルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-フェニルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-メチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-メチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-メチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-メチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-エチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-エチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-エチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-エチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-プロピルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-プロピルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-プロピルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-プロピルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-ブチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-ブチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-ブチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-ブチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-t-ブチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-t-ブチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-t-ブチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-t-ブチルフェニル〕フルオレン酸二無水物、等を挙げることができる。これらの芳香族ビス(エーテル酸無水物)化合物のうち、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-フェニルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-フェニルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-メチルフェニル〕フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-メチルフェニル〕フルオレン酸二無水物等を挙げることができる。 Among the other acid anhydrides used in the present invention, examples of the acid anhydride having a fluorene skeleton include 9,9-bis (3,4-dicarboxyphenyl) fluorenic acid dianhydride and 9,9-bis. [4- (3,4-dicarboxyphenoxy) phenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -3-phenylphenyl] fluorenic dianhydride, 9 , 9-bis [4- (2,3-dicarboxyphenoxy) -3-phenylphenyl] fluoric acid dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-phenylphenyl Fluoronic acid dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -2-phenylphenyl] fluoric acid dianhydride, 9,9-bis [4- (3,4-dicarbo. Ciphenoxy) -3-methylphenyl] fluorenic dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -3-methylphenyl] fluorenic dianhydride, 9,9-bis [ 4- (3,4-Dicarboxyphenoxy) -2-methylphenyl] fluorenic dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -2-methylphenyl] fluorenic dianhydride 9,9-bis [4- (3,4-dicarboxyphenoxy) -3-ethylphenyl] fluorenic dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -3 -Ethylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-ethylphenyl] fluorenic dianhydride, 9,9-bis [4- (2, 3-di Ruboxyphenoxy) -2-ethylphenyl] fluoric acid dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -3-propylphenyl] fluoric acid dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -3-propylphenyl] fluoric dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-propylphenyl] fluorenic acid Anhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -2-propylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy)- 3-butylphenyl] fluorenic dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -3-butylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-butylphenyl] fluorenic dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -2-butylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -3-tert-butylphenyl] fluorenic dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -3 -T-butylphenyl] fluoric acid dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-t-butylphenyl] fluoric acid dianhydride, 9,9-bis [4 -(2,3-dicarboxyphenoxy) -2-t-butylphenyl] fluorenic dianhydride, and the like. Of these aromatic bis (ether anhydride) compounds, 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorenic dianhydride, 9,9-bis [4- (3 , 4-dicarboxyphenoxy) -3-phenylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-phenylphenyl] fluorenic dianhydride, 9-bis [4- (3,4-dicarboxyphenoxy) -3-methylphenyl] fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-methylphenyl] And fluoric acid dianhydride.
 中でも、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、又は9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物を用いることが、耐熱性、透明性の観点で好ましい。 Among them, 9,9-bis (3,4-dicarboxyphenyl) fluoric acid dianhydride or 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluoric acid dianhydride should be used. Is preferable from the viewpoints of heat resistance and transparency.
 ジアミン又はその誘導体としては、例えば、芳香族ジアミン又はイソシアン酸エステル等が好ましく、芳香族ジアミンが好ましい。 As the diamine or derivative thereof, for example, aromatic diamine or isocyanate is preferable, and aromatic diamine is preferable.
 前述のとおり、本発明に用いられるポリアミド酸又はポリイミドは、ジアミン又はその誘導体と、4,4′-オキシジフタル酸無水物から形成され、当該ポリアミド酸又はポリイミドがフルオレン骨格を有する場合、ジアミンがフルオレン骨格を有するか、又は上記した他の酸無水物がフルオレン骨格を有することが好ましい。フルオレン骨格を有するジアミン又はその誘導体としては、フルオレン骨格を有する芳香族ジアミン又はイソシアン酸エステルであることが好ましい。 As described above, the polyamic acid or polyimide used in the present invention is formed from diamine or a derivative thereof and 4,4′-oxydiphthalic anhydride, and when the polyamic acid or polyimide has a fluorene skeleton, the diamine is a fluorene skeleton. It is preferable that the other acid anhydride described above has a fluorene skeleton. The diamine having a fluorene skeleton or a derivative thereof is preferably an aromatic diamine having a fluorene skeleton or an isocyanate.
 本発明に用いられるジアミン又はその誘導体のうち、フルオレン骨格を有しないジアミン又はその誘導体としては、芳香族ジアミン、脂肪族ジアミン又はこれらの混合物のいずれでも良く、芳香族ジアミンであることがフィルムの白化を抑制できる観点から、好ましい。 Of the diamines or derivatives thereof used in the present invention, the diamine or derivative thereof having no fluorene skeleton may be an aromatic diamine, an aliphatic diamine, or a mixture thereof, and the whitening of the film is an aromatic diamine. From the viewpoint that can be suppressed.
 なお、本発明において「芳香族ジアミン」とは、アミノ基が芳香族環に直接結合しているジアミンを表し、その構造の一部に脂肪族炭化水素基、脂環式炭化水素基、その他の置換基(例えば、ハロゲン原子、スルホニル基、カルボニル基、酸素原子等。)を含んでいても良い。「脂肪族ジアミン」とは、アミノ基が脂肪族炭化水素基又は脂環式炭化水素基に直接結合しているジアミンを表し、その構造の一部に芳香族炭化水素基、その他の置換基(例えば、ハロゲン原子、スルホニル基、カルボニル基、酸素原子等。)を含んでいても良い。 In the present invention, the term “aromatic diamine” refers to a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or any other part of its structure. A substituent (for example, a halogen atom, a sulfonyl group, a carbonyl group, an oxygen atom, etc.) may be contained. The term “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic hydrocarbon group or an alicyclic hydrocarbon group, and an aromatic hydrocarbon group or other substituent ( For example, a halogen atom, a sulfonyl group, a carbonyl group, an oxygen atom, etc.) may be included.
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、ベンジジン、o-トリジン、m-トリジン、ビス(トリフルオロメチル)ベンジジン、オクタフルオロベンジジン、3,3′-ジヒドロキシ-4,4′-ジアミノビフェニル、3,3′-ジメトキシ-4,4′-ジアミノビフェニル、3,3′-ジクロロ-4,4′-ジアミノビフェニル、3,3′-ジフルオロ-4,4′-ジアミノビフェニル、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4′-ジアミノジフェニルエーテル、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホン、3,4′-ジアミノジフェニルスルホン、4,4′-ジアミノベンゾフェノン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4′-ビス(4-アミノフェノキシ)ビフェニル、4,4′-ビス(2-メチル-4-アミノフェノキシ)ビフェニル、4,4′-ビス(2,6-ジメチル-4-アミノフェノキシ)ビフェニル、4,4′-ビス(3-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)スルホン、ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)エーテル、ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)エーテル、ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(2-メチル-4-アミノフェノキシ)ベンゼン、1,4-ビス(2,6-ジメチル-4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(2-メチル-4-アミノフェノキシ)ベンゼン、1,3-ビス(2,6-ジメチル-4-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(2-メチル-4-アミノフェニル)プロパン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、2,2-ビス(3-エチル-4-アミノフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノフェニル)プロパン、2,2-ビス(2,6-ジメチル-4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(2-メチル-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(2,6-ジメチル-4-アミノフェニル)ヘキサフルオロプロパン、α,α′-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン(ビスアニリンP)、α,α′-ビス(2-メチル-4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(2,6-ジメチル-4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(4-アミノフェニル)-1,3-ジイソプロピルベンゼン(ビスアニリンM)、α,α′-ビス(2-メチル-4-アミノフェニル)-1,3-ジイソプロピルベンゼン、α,α′-ビス(2,6-ジメチル-4-アミノフェニル)-1,3-ジイソプロピルベンゼン、α,α′-ビス(3-アミノフェニル)-1,3-ジイソプロピルベンゼン、1,1-ビス(4-アミノフェニル)シクロペンタン、1,1-ビス(2-メチル-4-アミノフェニル)シクロペンタン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)シクロペンタン、1,1-ビス(4-アミノフェニル)シクロヘキサン、1,1-ビス(2-メチル-4-アミノフェニル)シクロヘキサン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)シクロヘキサン、1,1-ビス(4-アミノフェニル)4-メチル-シクロヘキサン、1,1-ビス(4-アミノフェニル)ノルボルナン、1,1-ビス(2-メチル-4-アミノフェニル)ノルボルナン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)ノルボルナン、1,1-ビス(4-アミノフェニル)アダマンタン、1,1-ビス(2-メチル-4-アミノフェニル)アダマンタン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)アダマンタン、1,4-フェニレンジアミン、3,3′-ジアミノベンゾフェノン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、3-アミノベンジルアミン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、ビス(2-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、4,4′-ジアミノ-3,3′-ジメチルジフェニルメタン、3,3′-ジアミノジフェニルメタン、4,4′-エチレンジアニリン、4,4′-メチレンビス(2,6-ジエチルアニリン)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、5,5′-(ヘキサフルオロイソプロピリデン)ジ-o-トルイジン、2,2′-ビス(トリフルオロメチル)ベンジジン、4,4′-ジアミノオクタフルオロビフェニル、レソルシノールビス(3-アミノフェニル)エーテル、レソルシノールビス(4-アミノフェニル)エーテル、ビス(3-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン(商品名:SEIKACURE-S、セイカ(株)製)、4,4′-チオジアニリン、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルエーテル、3,4′-ジアミノジフェニルメタン、2,7-ジアミノフルオレン、2,5-ジメチル-1,4-フェニレンジアミン、4,4′-メチレンビス(2-エチル-6-メチルアニリン)、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノビフェニル、4,4′-ジアミノ-3,3′,5,5′-テトライソプロピルジフェニルメタン、3,3-ジアミノジフェニルスルホン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、1,4-ビス(2-アミノ-イソプロピル)ベンゼン、1,3-ビス(2-アミノ-イソプロピル)ベンゼン等が挙げられる。 Examples of the aromatic diamine include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, benzidine, o-tolidine, m-tolidine, bis (trifluoromethyl) benzidine, Octafluorobenzidine, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diaminobiphenyl, 3, , 3'-difluoro-4,4'-diaminobiphenyl, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diamino Diphenylmethane, 4,4'-diaminodiphenylsulfone, 3,4'-dia Nodiphenylsulfone, 4,4'-diaminobenzophenone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (2-methyl-4-aminophenoxy) phenyl) Propane, 2,2-bis (4- (2,6-dimethyl-4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2- Bis (4- (2-methyl-4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (2,6-dimethyl-4-aminophenoxy) phenyl) hexafluoropropane, 4,4 ′ -Bis (4-aminophenoxy) biphenyl, 4,4'-bis (2-methyl-4-aminophenoxy) biphenyl, 4,4'-bis (2,6 Dimethyl-4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (2-methyl-4-aminophenoxy) ) Phenyl) sulfone, bis (4- (2,6-dimethyl-4-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) ether, bis (4- (2-methyl-4-) Aminophenoxy) phenyl) ether, bis (4- (2,6-dimethyl-4-aminophenoxy) phenyl) ether, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (2-methyl-) 4-aminophenoxy) benzene, 1,4-bis (2,6-dimethyl-4-aminophenoxy) benzene, 1,3-bis (4-a Minophenoxy) benzene, 1,3-bis (2-methyl-4-aminophenoxy) benzene, 1,3-bis (2,6-dimethyl-4-aminophenoxy) benzene, 2,2-bis (4-amino) Phenyl) propane, 2,2-bis (2-methyl-4-aminophenyl) propane, 2,2-bis (3-methyl-4-aminophenyl) propane, 2,2-bis (3-ethyl-4-) Aminophenyl) propane, 2,2-bis (3,5-dimethyl-4-aminophenyl) propane, 2,2-bis (2,6-dimethyl-4-aminophenyl) propane, 2,2-bis (4 -Aminophenyl) hexafluoropropane, 2,2-bis (2-methyl-4-aminophenyl) hexafluoropropane, 2,2-bis (2,6-dimethyl-4-aminophenyl) he Safluoropropane, α, α'-bis (4-aminophenyl) -1,4-diisopropylbenzene (bisaniline P), α, α'-bis (2-methyl-4-aminophenyl) -1,4-diisopropyl Benzene, α, α'-bis (2,6-dimethyl-4-aminophenyl) -1,4-diisopropylbenzene, α, α'-bis (3-aminophenyl) -1,4-diisopropylbenzene, α, α'-bis (4-aminophenyl) -1,3-diisopropylbenzene (bisaniline M), α, α'-bis (2-methyl-4-aminophenyl) -1,3-diisopropylbenzene, α, α ' -Bis (2,6-dimethyl-4-aminophenyl) -1,3-diisopropylbenzene, α, α'-bis (3-aminophenyl) -1,3-diisopropylbenzene, 1,1-bis (4-aminophenyl) cyclopentane, 1,1-bis (2-methyl-4-aminophenyl) cyclopentane, 1,1-bis (2,6-dimethyl-4-aminophenyl) cyclo Pentane, 1,1-bis (4-aminophenyl) cyclohexane, 1,1-bis (2-methyl-4-aminophenyl) cyclohexane, 1,1-bis (2,6-dimethyl-4-aminophenyl) cyclohexane 1,1-bis (4-aminophenyl) 4-methyl-cyclohexane, 1,1-bis (4-aminophenyl) norbornane, 1,1-bis (2-methyl-4-aminophenyl) norbornane, 1, 1-bis (2,6-dimethyl-4-aminophenyl) norbornane, 1,1-bis (4-aminophenyl) adamantane, 1,1-bis (2-methyl) -4-aminophenyl) adamantane, 1,1-bis (2,6-dimethyl-4-aminophenyl) adamantane, 1,4-phenylenediamine, 3,3'-diaminobenzophenone, 2,2-bis (3- Aminophenyl) hexafluoropropane, 3-aminobenzylamine, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone, 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene, bis ( 2-aminophenyl) sulfide, bis (4-aminophenyl) sulfide, 1,3-bis (3-aminopropyl) tetrame Rudisiloxane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-ethylenedianiline, 4,4'-methylenebis (2,6-diethylaniline), 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis (3-amino-4-hydroxyphenyl) hexa Fluoropropane, 5,5 '-(hexafluoroisopropylidene) di-o-toluidine, 2,2'-bis (trifluoromethyl) benzidine, 4,4'-diaminooctafluorobiphenyl, resorcinol bis (3-amino Phenyl) ether, resorcinol bis (4-aminophenyl) ether, bis (3-amino) Enyl) sulfone, bis (4-aminophenyl) sulfone (trade name: SEIKACURE-S, manufactured by Seika Co., Ltd.), 4,4′-thiodianiline, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 2,7-diaminofluorene, 2,5-dimethyl-1,4-phenylenediamine, 4,4'-methylenebis (2-ethyl-6-methylaniline), 2,3,5 , 6-tetramethyl-1,4-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'- Diamino-3,3 ', 5,5'-tetraisopropyldiphenylmethane, 3,3-diaminodiphenylsulfone, 1- ( 4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-indene-5-amine, 1,4-bis (2-amino-isopropyl) benzene, 1,3-bis (2- Amino-isopropyl) benzene and the like.
 脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3-ビス(アミノメチル)シクロヘキサン(cis体及びtrans体の混合物)、1,4-ビス(アミノメチル)シクロヘキサン(cis体及びtrans体の混合物)、イソフォロンジアミン、ノルボルナンジアミン、シロキサンジアミン、4,4′-ジアミノジシクロヘキシルメタン、3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタン、3,3′-ジエチル-4,4′-ジアミノジシクロヘキシルメタン、3,3′,5,5′-テトラメチル-4,4′-ジアミノジシクロヘキシルメタン、2,3-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,2-ビス(4,4′-ジアミノシクロヘキシル)プロパン、2,2-ビス(4,4′-ジアミノメチルシクロヘキシル)プロパン、ビス(アミノメチル)ノルボルナン(異性体混合物)、ビシクロ[2.2.1]ヘプタンジメタンアミン(異性体混合物)、4,4′-メチレンビス(2-メチルシクロヘキシルアミン)(異性体混合物)、4,4′-メチレンビス(シクロヘキシルアミン)(異性体混合物)等が挙げられる。 Examples of the aliphatic diamine include ethylene diamine, hexamethylene diamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane (cis form and a mixture of trans isomers), 1,4-bis (aminomethyl) cyclohexane (a mixture of cis isomers and trans isomers), isophorone diamine, norbornane diamine, siloxane diamine, 4,4'-diaminodicyclohexyl methane, 3,3'- Dimethyl-4,4'-diaminodicyclohexylmethane, 3,3'-diethyl-4,4'-diaminodicyclohexylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodicyclohexylmethane, 2 , 3 Bis (aminomethyl) -bicyclo [2.2.1] heptane, 2,5-bis (aminomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) -bicyclo [2. 2.1] Heptane, 2,2-bis (4,4'-diaminocyclohexyl) propane, 2,2-bis (4,4'-diaminomethylcyclohexyl) propane, bis (aminomethyl) norbornane (isomer mixture) , Bicyclo [2.2.1] heptanedimethanamine (isomer mixture), 4,4'-methylenebis (2-methylcyclohexylamine) (isomer mixture), 4,4'-methylenebis (cyclohexylamine) (isomer) Body mixture) and the like.
 ジアミン誘導体であるイソシアン酸エステルとしては、例えば、上記芳香族又は脂肪族ジアミンとホスゲンを反応させて得られるジイソシアネートが挙げられる。 Examples of isocyanate esters that are diamine derivatives include diisocyanates obtained by reacting the above aromatic or aliphatic diamines with phosgene.
 また、他のジアミン誘導体としては、ジアミノジシラン類も挙げられ、例えば上記芳香族又は脂肪族ジアミンとクロロトリメチルシランを反応させて得られるトリメチルシリル化した芳香族又は脂肪族ジアミンが挙げられる。 In addition, examples of other diamine derivatives include diaminodisilanes, such as trimethylsilylated aromatic or aliphatic diamines obtained by reacting the above aromatic or aliphatic diamines with chlorotrimethylsilane.
 以上のジアミン及びその誘導体は任意に混合して用いても良いが、それらの中におけるジアミンの量が50~100モル%となることが好ましく、80~100モル%となることがより好ましい。 The above diamines and derivatives thereof may be used in any mixture, but the amount of diamine in them is preferably 50 to 100 mol%, more preferably 80 to 100 mol%.
 本発明に用いられるジアミン又はその誘導体のうち、フルオレン骨格を有するジアミン又はその誘導体としては、芳香族ジアミンであることが好ましく、例えば、9,9-ビス〔4-(4-アミノフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-エチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-i-プロピルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-t-ブチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-トリフルオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミ
ノ-2-i-プロピルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン等が挙げられる。
Of the diamines or derivatives thereof used in the present invention, the diamine having a fluorene skeleton or a derivative thereof is preferably an aromatic diamine, such as 9,9-bis [4- (4-aminophenoxy) phenyl]. Fluorene, 9,9-bis [4- (4-aminophenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3-aminophenoxy) -3-phenylphenyl] fluorene, 9,9- Bis [4- (2-aminophenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-3-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [ 4- (4-Amino-2-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-3-ethyl) Enoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-3) -I-propylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-3-t-butylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3-phenylphenyl] fluorene, 9, 9-bis [4- (4-amino-3-trifluoromethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoro) Methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3-amino-2-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3-amino- 4-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3-amino-5-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3- Amino-6-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3-amino-2-trifluoromethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4 -(3-Amino-4-trifluoromethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3-amino-5-trifluoro Methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (3-amino-6-trifluoromethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (2- Amino-3-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (2-amino-4-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- ( 2-amino-5-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (2-amino-6-methylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4 -(2-Amino-3-trifluoromethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (2-amino-4-trifluoro) Tylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (2-amino-5-trifluoromethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (2- Amino-6-trifluoromethylphenoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) phenyl] fluorene, 9,9-bis [4- (4- Amino-2-ethylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-2-) i-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) phenyl] fluorene, 9,9-bis 4- (4-amino-2-trifluoromethylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-3-methylphenoxy) phenyl] fluorene, 9,9-bis [4- (4 -Amino-3-ethylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-3-n-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-3) -I-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-3-t-butylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-3-tri Fluoromethylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-3-methylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino- 4-methylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-5-methylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-6-methylphenoxy) phenyl Fluorene, 9,9-bis [4- (2-amino-3-ethylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-4-ethylphenoxy) phenyl] fluorene, 9,9 -Bis [4- (2-amino-5-ethylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-6-ethylphenoxy) phenyl] fluorene, 9,9-bis [4- ( 2-amino-3-n-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-4-n-propylphenoxy) phenyl] fluorene, 9 9-bis [4- (2-amino-5-n-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-6-n-propylphenoxy) phenyl] fluorene, 9,9- Bis [4- (2-amino-3-i-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-4-i-propylphenoxy) phenyl] fluorene, 9,9-bis [ 4- (2-amino-5-i-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-6-i-propylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-Amino-3-t-butylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-4-t-butylphenoxy) phenyl] fluorene, 9,9-bis [4 (2-Amino-5-t-butylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-6-t-butylphenoxy) phenyl] fluorene, 9,9-bis [4- (2 -Amino-3-trifluoromethylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-4-trifluoromethylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino) -5-trifluoromethylphenoxy) phenyl] fluorene, 9,9-bis [4- (2-amino-6-trifluoromethylphenoxy) phenyl] fluorene, 9,9-bis [4- (4-amino-2 -Methylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3-methylphenyl] fluore 9,9-bis [4- (4-amino-2-n-propylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (4-amino-2) -Trifluoromethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) -3-ethylphenyl] fluorene, 9,9-bis [4- (4 -Amino-2-ethylphenoxy) -3-ethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propylphenoxy) -3-ethylphenyl] fluorene, 9,9-bis 4- (4-amino-2-i-propylphenoxy) -3-ethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3-ethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3-ethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) -3-n -Propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-n) -Propylphenoxy) -3-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propylphenoxy) -3-n-propylphenyl] fluorene, 9, -Bis [4- (4-amino-2-t-butylphenoxy) -3-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3- n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) -3-i-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2- Ethylphenoxy) -3-i-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propylphenoxy) -3-i-propylphenyl] fluorene, 9,9-bis [4 -(4-Amino-2-i-propylphenoxy) -3-i-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3-i-propylphenol Nyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3-i-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methyl) Phenoxy) -3-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3-t-butylphenyl] fluorene, 9,9-bis [4- (4 -Amino-2-n-propylphenoxy) -3-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propylphenoxy) -3-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) 3-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) -3-trifluoromethylphenyl] fluorene, 9,9-bis [4- (4-amino- 2-ethylphenoxy) -3-trifluoromethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propylphenoxy) -3-trifluoromethylphenyl] fluorene, 9,9-bis [4- (4-Amino-2-i-propylphenoxy) -3-trifluoromethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3-trifluoro Methylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3-trifluoromethylphenyl] fluorene, , 9-bis [4- (4-amino-2-methylphenoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3,5- Dimethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propylphenoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis [4- (4-amino-2- i-propylphenoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis [4- (4-Amino-2-trifluoromethylphenoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) -3,5-diethylphen Nyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3,5-diethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propyl) Phenoxy) -3,5-diethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propylphenoxy) -3,5-diethylphenyl] fluorene, 9,9-bis [4- (4-Amino-2-t-butylphenoxy) -3,5-diethylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3,5-diethylphenyl] Fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) -3,5-di-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylpheno) Iii) -3,5-di-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propylphenoxy) -3,5-di-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propylphenoxy) -3,5-di-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t -Butylphenoxy) -3,5-di-n-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3,5-di-n-propylphenyl] Fluorene, 9,9-bis [4- (4-amino-2-methylphenoxy) -3,5-di-i-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethyl) Phenoxy) -3,5-di-ip Pyrenyl] fluorene, 9,9-bis [4- (4-amino-2-n-propylphenoxy) -3,5-di-i-propylphenyl] fluorene, 9,9-bis [4- (4-amino -2-i-propylphenoxy) -3,5-di-i-propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3,5-di-i -Propylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3,5-di-i-propylphenyl] fluorene, 9,9-bis [4- (4 -Amino-2-methylphenoxy) -3,5-di-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3,5-di-t-butyl Phenyl] fluorene, 9, 9-bis [4- (4-amino-2-n-propylphenoxy) -3,5-di-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propyl) Phenoxy) -3,5-di-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3,5-di-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-trifluoromethylphenoxy) -3,5-di-t-butylphenyl] fluorene, 9,9-bis [4- (4-amino-2-methyl) Phenoxy) -3,5-di (trifluoromethyl) phenyl] fluorene, 9,9-bis [4- (4-amino-2-ethylphenoxy) -3,5-di (trifluoromethyl) phenyl] fluorene, 9,9-bis [4- (4 Amino-2-n-propylphenoxy) -3,5-di (trifluoromethyl) phenyl] fluorene, 9,9-bis [4- (4-amino-2-i-propylphenoxy) -3,5-di (Trifluoromethyl) phenyl] fluorene, 9,9-bis [4- (4-amino-2-t-butylphenoxy) -3,5-di (trifluoromethyl) phenyl] fluorene, 9,9-bis [ 4- (4-Amino-2-trifluoromethylphenoxy) -3,5-di (trifluoromethyl) phenyl] fluorene, 9,9-bis [4- (2-amino-3-methylphenoxy) -3- Methylphenyl] fluorene, 9,9-bis [4- (2-amino-4-methylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-amino-5-methylphenyl) Noxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-amino-6-methylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-amino-3) -Trifluoromethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-amino-4-trifluoromethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-amino-5-trifluoromethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-amino-6-trifluoromethylphenoxy) -3-methylphenyl] fluorene, 9, 9-bis [4- (3-amino-2-methylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-4-methylpheno) Xyl) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-5-methylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-6) -Methylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-2-ethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino -4-ethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-5-ethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3 -Amino-6-ethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-2-n-propylphenoxy) -3-methylphenyl] fluorene, 9, -Bis [4- (3-amino-4-n-propylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-5-n-propylphenoxy) -3-methylphenyl Fluorene, 9,9-bis [4- (3-amino-6-n-propylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-2-i-propylphenoxy) ) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-4-i-propylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-) 5-i-propylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-6-i-propylphenoxy) -3-methylphenyl] fluorene, 9,9-bis 4- (3-amino-2-t-butylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-4-t-butylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-5-t-butylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-6-t-butylphenoxy) -3 -Methylphenyl] fluorene, 9,9-bis [4- (3-amino-2-trifluoromethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-4-tri Fluoromethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-amino-5-trifluoromethylphenoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (3-Amino-6-trifluoromethylphenoxy) -3-methylphenyl] fluorene and the like.
 本発明に用いられるポリアミド酸又はポリイミドがフルオレン骨格を有する場合、ジアミン又はその誘導体として、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ3-メチルフェニル)フルオレン又は9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレンのいずれかであることが、非着色性、白化及び折り曲げ耐性を向上する観点から、好ましい。 When the polyamic acid or polyimide used in the present invention has a fluorene skeleton, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino3-methylphenyl) fluorene is used as a diamine or a derivative thereof. Alternatively, 9,9-bis (3-fluoro-4-aminophenyl) fluorene is preferable from the viewpoint of improving non-coloring property, whitening and bending resistance.
 ポリアミド酸は、適当な溶媒中で、4,4′-オキシジフタル酸無水物と、前記ジアミン類の少なくとも1種類を重合反応させることにより得られる。 Polyamic acid can be obtained by polymerizing 4,4′-oxydiphthalic anhydride and at least one of the diamines in a suitable solvent.
 また、ポリアミド酸エステルは、4,4′-オキシジフタル酸無水物を、メタノール、エタノール、イソプロパノール、n-プロパノール等のアルコールを用いて開環することによりジエステル化し、得られたジエステルを適当な溶媒中で前記ジアミン化合物と反応させることにより得ることができる。更に、ポリアミド酸エステルは、上記のように得られたポリアミド酸のカルボン酸基を、上記のようなアルコールと反応させることによりエステル化することによっても得ることができる。 The polyamic acid ester is diesterified by ring-opening 4,4'-oxydiphthalic anhydride with an alcohol such as methanol, ethanol, isopropanol, or n-propanol, and the obtained diester is dissolved in a suitable solvent. It can obtain by making it react with the said diamine compound. Furthermore, the polyamic acid ester can also be obtained by esterification by reacting the carboxylic acid group of the polyamic acid obtained as described above with an alcohol as described above.
 4,4′-オキシジフタル酸無水物と、前記ジアミン化合物との反応は、従来知られている条件で行うことができる。4,4′-オキシジフタル酸無水物とジアミン化合物の添加順序や添加方法には特に限定はない。例えば、溶媒に4,4′-オキシジフタル酸無水物とジアミン化合物とを順に投入し、適切な温度で撹拌することにより、ポリアミド酸を得ることができる。 The reaction between 4,4′-oxydiphthalic anhydride and the diamine compound can be performed under conditions known in the art. There are no particular restrictions on the order or method of addition of 4,4'-oxydiphthalic anhydride and diamine compound. For example, 4,4′-oxydiphthalic anhydride and a diamine compound are sequentially added to a solvent and stirred at an appropriate temperature to obtain a polyamic acid.
 ジアミン化合物の量は、4,4′-オキシジフタル酸無水物1モルに対して、通常0.8モル以上、好ましくは1モル以上である。一方、通常1.2モル以下、好ましくは1.1モル以下である。ジアミン化合物の量をこのような範囲とすることにより、得られるポリアミド酸の収率が向上し得る。 The amount of the diamine compound is usually 0.8 mol or more, preferably 1 mol or more, per 1 mol of 4,4′-oxydiphthalic anhydride. On the other hand, it is 1.2 mol or less normally, Preferably it is 1.1 mol or less. The yield of the polyamic acid obtained can be improved by making the quantity of a diamine compound into such a range.
 溶媒中の4,4′-オキシジフタル酸無水物及びジアミン化合物の濃度は、反応条件やポリアミド酸溶液の粘度に応じて適宜設定する。例えば、4,4′-オキシジフタル酸無水物とジアミン化合物との合計の質量は、特段の制限はないが、全溶液量に対し、通常1質量%以上、好ましくは5質量%以上であり、一方、通常70質量%以下、好ましくは30質量%以下である。反応基質の量をこのような範囲とすることにより、低コストで収率良くポリアミド酸を得ることができる。 The concentration of 4,4′-oxydiphthalic anhydride and diamine compound in the solvent is appropriately set according to the reaction conditions and the viscosity of the polyamic acid solution. For example, the total mass of 4,4′-oxydiphthalic anhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, based on the total amount of the solution. The amount is usually 70% by mass or less, preferably 30% by mass or less. By setting the amount of the reaction substrate in such a range, the polyamic acid can be obtained at a low cost and in a high yield.
 反応温度は、特段の制限はないが、通常0℃以上、好ましくは20℃以上であり、一方、通常100℃以下、好ましくは80℃以下である。反応時間は、特段の制限はないが、通常1時間以上、好ましくは2時間以上であり、一方、通常100時間以下、好ましくは24時間以下である。このような条件で反応を行うことにより、低コストで収率良くポリアミド酸を得ることができる。 The reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 100 ° C. or lower, preferably 80 ° C. or lower. The reaction time is not particularly limited but is usually 1 hour or longer, preferably 2 hours or longer, and is usually 100 hours or shorter, preferably 24 hours or shorter. By performing the reaction under such conditions, the polyamic acid can be obtained at a low cost and in a high yield.
 この反応で用いられる重合溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン及びメシチレン等の炭化水素系溶媒;四塩化炭素、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン及びフルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メトキシベンゼン、アルキレングリコールモノアルキルエーテル及びアルキレングリコールジアルキルエーテル等のエーテル系溶媒;アセトン及びメチルエチルケトン等のケトン系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド及びN-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド及びγ-ブチロラクトン等の非プロトン系極性溶媒;ピリジン、ピコリン、ルチジン、キノリン、イソキノリン、スルホラン、1,3-ジオキソラン、テトラヒドロフラン及びジオキサン等の複素環系溶媒;フェノール及びクレゾール等のフェノール系溶媒;アルキルカルビトールアセテート及び安息香酸エステル等のその他の溶媒等が挙げられるが、特に限定されるものではない。重合溶媒としては、1種のみを用いることもできるし、2種類以上の溶媒を混合して用いることもできる。 Examples of the polymerization solvent used in this reaction include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene and mesitylene; carbon tetrachloride, dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene. And halogenated hydrocarbon solvents such as fluorobenzene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene, alkylene glycol monoalkyl ether and alkylene glycol dialkyl ether; ketone solvents such as acetone and methyl ethyl ketone; Amido solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide and N-methyl-2-pyrrolidone; Aprotic polar solvents such as xoxide and γ-butyrolactone; heterocyclic solvents such as pyridine, picoline, lutidine, quinoline, isoquinoline, sulfolane, 1,3-dioxolane, tetrahydrofuran and dioxane; phenolic solvents such as phenol and cresol; Other solvents such as alkyl carbitol acetate and benzoic acid ester are listed, but are not particularly limited. As a polymerization solvent, only 1 type can also be used and 2 or more types of solvents can also be mixed and used.
 ポリアミド酸の末端基は、重合反応時の4,4′-オキシジフタル酸無水物とジアミン化合物のいずれか一方を過剰に用いることによって、酸無水物基とアミノ基を任意に選ぶことができる。 As the terminal group of the polyamic acid, an acid anhydride group or an amino group can be arbitrarily selected by using either one of 4,4′-oxydiphthalic anhydride and a diamine compound in excess during the polymerization reaction.
 末端基を酸無水物末端とした場合には、その後の処理を行わず酸無水物末端のままでも良く、加水分解させてジカルボン酸としても良い。また、炭素数が4以下のアルコールを用いてエステルとしても良い。更に、単官能のアミン化合物及び/又はイソシアネート化合物を用いて末端を封止しても良い。ここで用いるアミン化合物及び/又はイソシアネート化合物としては、単官能の第一級アミン化合物及び/又はイソシアネート化合物であれば、特に制限はなく用いることができる。例えば、アニリン、メチルアニリン、ジメチルアニリン、トリメチルアニリン、エチルアニリン、ジエチルアニリン、トリエチルアニリン、アミノフェノール、メトキシアニリン、アミノ安息香酸、ビフェニルアミン、ナフチルアミン、シクロヘキシルアミン、フェニルイソシアナート、キシリレンイソシアネート、シクロヘキシルイソシアネート、メチルフェニルイソシアネート、トリフルオロメチルフェニルイソシアネート等を挙げることができる。 In the case where the terminal group is an acid anhydride terminal, the acid anhydride terminal may be left without performing the subsequent treatment, or may be hydrolyzed to obtain a dicarboxylic acid. Moreover, it is good also as ester using C4 or less alcohol. Furthermore, you may seal a terminal | end using a monofunctional amine compound and / or an isocyanate compound. The amine compound and / or isocyanate compound used here is not particularly limited as long as it is a monofunctional primary amine compound and / or isocyanate compound. For example, aniline, methylaniline, dimethylaniline, trimethylaniline, ethylaniline, diethylaniline, triethylaniline, aminophenol, methoxyaniline, aminobenzoic acid, biphenylamine, naphthylamine, cyclohexylamine, phenyl isocyanate, xylylene isocyanate, cyclohexyl isocyanate , Methylphenyl isocyanate, trifluoromethylphenyl isocyanate, and the like.
 また、末端基をアミン末端とした場合には、単官能の酸無水物によって、末端アミノ基を封止することで、アミノ基が末端に残ることを回避できる。ここで用いる酸無水物としては、加水分解した際にジカルボン酸又はトリカルボン酸となる単官能の酸無水物であれば、特に制限なく用いることができる。例えば、マレイン酸無水物、メチルマレイン酸無水物、ジメチルマレイン酸無水物、コハク酸無水物、ノルボルネンジカルボン酸無水物、4-(フェニルエチニル)フタル酸無水物、4-エチニルフタル酸無水物、フタル酸無水物、メチルフタル酸無水物、ジメチルフタル酸無水物、トリメリット酸無水物、ナフタレンジカルボン酸無水物、7-オキサビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクタ-5-エン-2,3-ジカルボン酸無水物、4-オキサトリシクロ[5.2.2.02,6]ウンデカン-3,5-ジオン、オクタヒドロ-1,3-ジオキソイソベンゾフラン-5-カルボン酸、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ジメチルシクロヘキサンジカルボン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物等を挙げることができる。 Further, when the terminal group is an amine terminal, it is possible to prevent the amino group from remaining at the terminal by sealing the terminal amino group with a monofunctional acid anhydride. As an acid anhydride used here, if it is a monofunctional acid anhydride which becomes dicarboxylic acid or tricarboxylic acid when hydrolyzed, it can be used without particular limitation. For example, maleic anhydride, methylmaleic anhydride, dimethylmaleic anhydride, succinic anhydride, norbornene dicarboxylic acid anhydride, 4- (phenylethynyl) phthalic anhydride, 4-ethynylphthalic anhydride, phthalate Acid anhydride, methylphthalic anhydride, dimethylphthalic anhydride, trimellitic anhydride, naphthalenedicarboxylic anhydride, 7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.1] Heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.2] oct-5-ene-2,3-dicarboxylic anhydride, 4-oxatricyclo [5.2 .2.0 2,6] undecane-3,5-dione, octahydro-1,3-dioxo-isobenzofuran-5-carboxylic acid, hexahydrophthalic anhydride Methylhexahydrophthalic anhydride, dimethylcyclohexanedicarboxylic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, methyl-4-cyclohexene-1,2-dicarboxylic anhydride, etc. .
 ここで、ポリイミドは、ポリアミド酸溶液を加熱してポリアミド酸をイミド化させる方法(熱イミド化法)、又は、ポリアミド酸溶液に閉環触媒(イミド化触媒)を添加してポリアミド酸をイミド化させる方法(化学イミド化法)により得ることができる。 Here, the polyimide is a method in which the polyamic acid solution is heated to imidize the polyamic acid (thermal imidization method), or a polycyclic acid (imidation catalyst) is added to the polyamic acid solution to imidize the polyamic acid. It can be obtained by a method (chemical imidization method).
 熱イミド化法においては、上記重合溶媒中のポリアミド酸を、例えば80~300℃の温度範囲で1~200時間加熱処理してイミド化を進行させる。また、上記温度範囲を150~200℃とすることが好ましく、150℃以上とすることにより、イミド化を確実に進行させて完了させることができ、一方、200℃以下とすることにより、溶媒や未反応原材料の酸化、溶剤溶媒の揮発による樹脂濃度の上昇を防止することができる。 In the thermal imidization method, the polyamic acid in the polymerization solvent is heated for 1 to 200 hours in a temperature range of, for example, 80 to 300 ° C. to advance imidization. Further, the temperature range is preferably 150 to 200 ° C., and by setting the temperature range to 150 ° C. or higher, imidization can be reliably progressed and completed. It is possible to prevent an increase in resin concentration due to oxidation of unreacted raw materials and volatilization of the solvent solvent.
 更に、熱イミド化法においては、イミド化反応により生成する水を効率良く除去するために、上記重合溶媒に共沸溶媒を加えることができる。共沸溶媒としては、例えば、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素や、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の脂環族炭化水素等を用いることができる。共沸溶媒を使用する場合は、その添加量は、全有機溶媒量中の1~30質量%程度、好ましくは5~20質量%である。 Furthermore, in the thermal imidization method, an azeotropic solvent can be added to the polymerization solvent in order to efficiently remove water generated by the imidization reaction. As an azeotropic solvent, for example, aromatic hydrocarbons such as toluene, xylene, and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and dimethylcyclohexane can be used. When an azeotropic solvent is used, the amount added is about 1 to 30% by mass, preferably 5 to 20% by mass, based on the total amount of organic solvent.
 一方、化学イミド化法においては、上記重合溶媒中のポリアミド酸に対し、公知の閉環触媒を添加してイミド化を進行させる。閉環触媒としては、通常、ピリジンを用いれば良いが、これ以外にも例えば、置換若しくは非置換の含窒素複素環化合物(例えば、ピコリン、キノリン、イミダゾール等)、含窒素複素環化合物のN-オキシド化合物、置換若しくは非置換のアミノ酸化合物、ヒドロキシ基を有する芳香族炭化水素化合物又は芳香族複素環状化合物が挙げられ、特に1,2-ジメチルイミダゾール、N-メチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、5-メチルベンズイミダゾール等の低級アルキルイミダゾール、N-ベンジル-2-メチルイミダゾール等のイミダゾール誘導体、イソキノリン、3,5-ジメチルピリジン、3,4-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、4-n-プロピルピリジン等の置換ピリジン、p-トルエンスルホン酸等を好適に使用することができる。閉環触媒の添加量は、ポリアミド酸のアミド酸単位に対して0.01~2倍当量、特に0.02~1倍当量程度であることが好ましい。閉環触媒を使用することによって、得られるポリイミドの物性、特に伸びや破断抵抗が向上する場合がある。 On the other hand, in the chemical imidization method, a known ring closure catalyst is added to the polyamic acid in the polymerization solvent to advance imidization. As the ring-closing catalyst, pyridine may generally be used. In addition to this, for example, substituted or unsubstituted nitrogen-containing heterocyclic compounds (eg, picoline, quinoline, imidazole, etc.), N-oxides of nitrogen-containing heterocyclic compounds Compounds, substituted or unsubstituted amino acid compounds, aromatic hydrocarbon compounds having a hydroxy group, or aromatic heterocyclic compounds, particularly 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole Lower alkyl imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, imidazole derivatives such as N-benzyl-2-methylimidazole, isoquinoline, 3,5-dimethylpyridine, 3, 4-dimethylpyridine, 2,5-dimethylpi Jin, 2,4-dimethyl pyridine, substituted pyridine, such as 4-n-propyl pyridine, can be suitably used p- toluenesulfonic acid and the like. The addition amount of the ring closure catalyst is preferably about 0.01 to 2 times equivalent, particularly about 0.02 to 1 time equivalent to the amic acid unit of the polyamic acid. By using a ring-closing catalyst, the properties of the resulting polyimide, particularly elongation and breaking resistance, may be improved.
 また、上記熱イミド化法又は化学イミド化法においては、ポリアミド酸溶液中に脱水剤を添加しても良く、そのような脱水剤としては、例えば、無水酢酸等の脂肪族酸無水物、フタル酸無水物等の芳香族酸無水物等が挙げられ、これらを単独又は混合して使用することができる。また、脱水剤を用いると、低温で反応を進めることができ好ましい。なお、ポリアミド酸溶液に対し脱水剤を添加するのみでもポリアミド酸をイミド化させることが可能ではあるが、反応速度が遅いため、上記したように加熱又は閉環触媒の添加によりイミド化させることが好ましい。 In the thermal imidization method or chemical imidization method, a dehydrating agent may be added to the polyamic acid solution. Examples of such a dehydrating agent include aliphatic acid anhydrides such as acetic anhydride, phthalates, and the like. Examples thereof include aromatic acid anhydrides such as acid anhydrides, and these can be used alone or in combination. In addition, it is preferable to use a dehydrating agent because the reaction can proceed at a low temperature. Although it is possible to imidize polyamic acid only by adding a dehydrating agent to the polyamic acid solution, it is preferable to imidize by heating or addition of a ring-closing catalyst as described above because the reaction rate is slow. .
 また、ポリイミドは、後述するように、ポリアミド酸溶液を流延したフィルムに対して加熱処理を行う(熱イミド化法)か、又は、閉環触媒を混合したポリアミド酸溶液を支持体上に流延してイミド化させる(化学イミド化法)ことにより、フィルムの状態で得ることもできる。閉環触媒の具体例としては、トリメチルアミン、トリエチレンジアミン等の脂肪族第3級アミン及びイソキノリン、ピリジン、ピコリン等の複素環式第3級アミン等が挙げられるが、複素環式第3級アミンから選ばれる少なくとも1種のアミンを使用することが好ましい。ポリアミド酸に対する閉環触媒の含有量は、閉環触媒の含有量(モル)/ポリアミド酸の含有量(モル)が、0.5~8.0となる範囲が好ましい。 In addition, as described later, the polyimide is subjected to a heat treatment (thermal imidization method) on a film in which a polyamic acid solution is cast, or a polyamic acid solution mixed with a ring closure catalyst is cast on a support. Then, it can be obtained in a film state by imidization (chemical imidization method). Specific examples of the ring-closing catalyst include aliphatic tertiary amines such as trimethylamine and triethylenediamine, and heterocyclic tertiary amines such as isoquinoline, pyridine and picoline, and are selected from heterocyclic tertiary amines. It is preferred to use at least one amine. The content of the cyclization catalyst relative to the polyamic acid is preferably in the range where the content of the cyclization catalyst (mole) / polyamic acid content (mole) is 0.5 to 8.0.
 上記のようにして構成されるポリアミド酸又はポリイミドは、フィルムを形成する観点から、重量平均分子量30000~1000000のものを用いることが好ましい。本発明において、重量平均分子量は、サイズ排除クロマトグラフィー(SEC)によるポリエチレングリコール換算の値のことをいう。 The polyamic acid or polyimide constituted as described above preferably has a weight average molecular weight of 30,000 to 1,000,000 from the viewpoint of forming a film. In the present invention, the weight average molecular weight refers to a value in terms of polyethylene glycol by size exclusion chromatography (SEC).
 また、閉環したポリイミドを、貧溶媒などを用いて再沈殿、精製して固体にしてから溶媒に溶解し流延乾燥して製膜を行っても良い。 Alternatively, the ring-closed polyimide may be reprecipitated using a poor solvent or the like, purified to a solid, dissolved in a solvent, cast and dried, and then formed into a film.
 この方法によれば、重合溶剤と流延する溶剤とを異なる種類とすることが可能となり、それぞれに最適な溶剤を選択することで、ポリイミドフィルムの性能をより引き出すことが可能になる。 According to this method, the polymerization solvent and the solvent to be cast can be made different types, and the performance of the polyimide film can be further extracted by selecting the optimum solvent for each.
 例えば、ポリアミド酸を高分子量化させるためにジメチルアセドアミドを用いて重合、閉環し、メタノールを用いて固体化、乾燥したのちにジクロロメタンで添加剤を入れた溶液化してから流延、乾燥することで、高分子量化と低温乾燥が可能となる。 For example, in order to increase the molecular weight of polyamic acid, it is polymerized and cyclized with dimethylacetamide, solidified with methanol, dried, then made into a solution containing an additive with dichloromethane, then cast and dried. Thus, high molecular weight and low temperature drying are possible.
 また、溶剤としてジクロロメタンを使う場合、他の溶剤と組み合わせて使用することができる。テトラヒドロフラン(THF)、ジオキソラン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、エタノール、メタノール、ブタノール、イロプロパノールなど、適宜補助溶剤を使用することもできる。 Also, when dichloromethane is used as a solvent, it can be used in combination with other solvents. A co-solvent such as tetrahydrofuran (THF), dioxolane, cyclohexanone, cyclopentanone, γ-butyrolactone, ethanol, methanol, butanol, or isopropyl alcohol can be used as appropriate.
 また、ポリアミド酸は、流延時においてイミド化されていても良く、流延時のイミド化率としては10~100%であることが好ましい。ここで、イミド化率としては、H-NMRスペクトルからカルボキシ基残量を測定し、イミド化率を求めることができる。 The polyamic acid may be imidized at the time of casting, and the imidization rate at the time of casting is preferably 10 to 100%. Here, as the imidization rate, the imidization rate can be determined by measuring the residual amount of carboxy group from the 1 H-NMR spectrum.
〔1.2〕ポリイミド2
 本発明のポリイミドフィルムに好ましく用いることのできるポリイミド2は、(A)4,4′-オキシジフタル酸二無水物(2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物を併用しても良い。)と、(B)下記一般式(2.1)~(2.3)で表される1種以上のジアミン及び/又はジイソシアネートと、を共重合してなる。
[1.2] Polyimide 2
Polyimide 2 that can be preferably used for the polyimide film of the present invention is (A) 4,4′-oxydiphthalic dianhydride (2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride. And (B) one or more diamines and / or diisocyanates represented by the following general formulas (2.1) to (2.3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(2.1)~(2.3)中、Xは、アミノ基又はイソシアネート基を表す。R~Rは、それぞれ独立して水素原子、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数1~4のアルコキシ基を表す。また、一般式(2.1)において、R~Rのうち少なくとも一つは水素原子ではない。また、一般式(2.2)において、R~Rのうち少なくとも一つは水素原子ではない。また、一般式(2.3)において、R~Rのうち少なくとも一つは水素原子ではない。 In the general formulas (2.1) to (2.3), X represents an amino group or an isocyanate group. R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. In the general formula (2.1), at least one of R 1 to R 4 is not a hydrogen atom. In the general formula (2.2), at least one of R 1 to R 4 is not a hydrogen atom. In the general formula (2.3), at least one of R 5 to R 8 is not a hydrogen atom.
 ポリイミド2は、従来のポリイミドと比較して耐熱性、透明性及び耐熱黄変性に優れ、また、貯蔵安定性、機械的強度にも優れるという利点も有している。 Polyimide 2 is superior in heat resistance, transparency and heat yellowing resistance as compared with conventional polyimide, and also has an advantage of excellent storage stability and mechanical strength.
 ポリイミド2の末端基は、アミン末端でないことが好ましい。アミン末端としないことにより、ポリイミド2の末端基がアミノ基である場合にイミドカルボニル基と相互作用して電荷移動錯体を形成しやすくなる、という点を回避できる。また、アミノ基は酸化を受けやすく、経時的な酸化によって発色団を形成し透明性や耐熱黄変性を低下させる、という点を回避することもできる。具体的には、上記方法と同様の方法で、上記ポリイミド2の末端基をアミン末端でない状態にすることができる。 The end group of polyimide 2 is preferably not an amine end. By not using an amine terminal, it is possible to avoid the point that when the terminal group of the polyimide 2 is an amino group, it easily interacts with the imide carbonyl group to form a charge transfer complex. In addition, the amino group is susceptible to oxidation, and it is possible to avoid the point of forming a chromophore by oxidation with time and lowering transparency and heat yellowing. Specifically, the terminal group of the polyimide 2 can be made not to be an amine terminal by a method similar to the above method.
 (B)成分としては、一般式(2.1)又は(2.2)中のR~Rのうち2個がエチル基であり、残り2個がメチル基と水素原子であるジエチルトルエンジアミン(DETDA)が好ましい。また、一般式(2.3)中のR~Rが、それぞれ独立して炭素数1~4のアルキル基であることが好ましく、炭素数2~3のアルキル基であることがより好ましい。 As the component (B), diethyltoluene in which two of R 1 to R 4 in the general formula (2.1) or (2.2) are an ethyl group, and the remaining two are a methyl group and a hydrogen atom Diamine (DETDA) is preferred. In the general formula (2.3), R 5 to R 8 are preferably each independently an alkyl group having 1 to 4 carbon atoms, and more preferably an alkyl group having 2 to 3 carbon atoms. .
 これらの単環又は二環の原材料を用いることにより、ポリイミド2の主鎖中のイミド基濃度を上げることができ、かつ、アミノ基のオルト位に嵩高い置換基を導入することによって分子間相互作用を弱めることで電荷移動錯体の形成を阻害し、透明性と溶媒可溶性を両立させることができる。 By using these monocyclic or bicyclic raw materials, the concentration of the imide group in the main chain of polyimide 2 can be increased, and by introducing a bulky substituent at the ortho position of the amino group, intermolecular mutual By weakening the action, formation of the charge transfer complex can be inhibited, and both transparency and solvent solubility can be achieved.
 ポリイミド2を共重合するに当たっては、上記(A)成分と上記(B)成分に加えて、(C)第2の酸二無水物、及び/又は(D)第2のジアミン及び/又はジイソシアネート、を共重合してなるものであっても良い。 In copolymerizing the polyimide 2, in addition to the component (A) and the component (B), (C) a second acid dianhydride, and / or (D) a second diamine and / or diisocyanate, May be obtained by copolymerization.
 (C)成分としての第2の酸二無水物としては、従来ポリイミドの製造に用いられてきた酸二無水物であれば特に制限なく用いることができる。例えば、一般芳香族系酸二無水物として、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、2,3,3′,4′-ビフェニルテトラカルボン酸二無水物、2,3,2′,3′-ビフェニルテトラカルボン酸二無水物、3,3′,4,4′-ジフェニルメタンテトラカルボン酸二無水物、2,3,3′,4′-ジフェニルメタンテトラカルボン酸二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、2,3,3′,4′-ベンゾフェノンテトラカルボン酸二無水物、2,3,2′,3′-ベンゾフェノンテトラカルボン酸二無水物、3,4′-オキシジフタル酸二無水物、4,4′-オキシジフタル酸二無水物、3,3′-オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3′,4′-テトラカルボン酸二無水物、ジフェニルスルホン-2,3,3′,4′-テトラカルボン酸二無水物、ジフェニルスルホン-2,3,2′,3′-テトラカルボン酸二無水物、4,4′-[イソプロピリデンビス[(1,4-フェニレン)オキシ]]ジフタル酸二無水物、5,5′-イソプロピリデンビス(フタル酸無水物)、3,5′-イソプロピリデンビス(フタル酸無水物)、3,3′-イソプロピリデンビス(フタル酸無水物)、4,4′-(1,4-フェニレンビスオキシ)ビスフタル酸二無水物、4,4′-(1,3-フェニレンビスオキシ)ビスフタル酸二無水物、5,5′-[オキシビス(4,1-フェニレンオキシ)]ビスフタル酸二無水物、5,5′-[スルホニルビス(4,1-フェニレンオキシ)]ビスフタル酸二無水物等を挙げることができる。また、含ケイ素系酸二無水物としては、4,4′-(ジメチルシリレン)ビス(フタル酸)1,2:1′,2′-二無水物、4,4′-(メチルエチルシリレン)ビス(フタル酸)1,2:1′,2′-二無水物、4,4′-[フェニル(メチル)シリレン]ビスフタル酸1,2:1′,2′-二無水物、4,4′-ジフェニルシリレンビスフタル酸1,2:1′,2′-二無水物等を挙げることができる。含フッ素系酸二無水物としては、4,4′-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,4′-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3′-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、4,4′-[2,2-ヘキサフルオロイソプロピリデンビス[(1,4-フェニレン)オキシ]]ジフタル酸二無水物等を挙げることができる。フルオレンカルド構造系酸二無水物としては、5,5′-[9H-フルオレン-9,9-ジイルビス(4,1-フェニレンオキシ)]ビス(イソベンゾフラン-1,3-ジオン)、5,5′-[9H-フルオレン-9,9-ジイルビス(1,1′-ビフェニル-5,2-ジイルオキシ)]ビス(イソベンゾフラン-1,3-ジオン)等を挙げることができる。エステル系酸二無水物としては、エチレングリコール-ビス(トリメリテート無水物)、1,4-フェニレンビス(トリメリテート無水物)1,3-フェニレンビス(トリメリテート無水物)、1,2-フェニレンビス(トリメリテート無水物)、ビス(1,3-ジヒドロ-1,3-ジオキソイソベンゾフラン-5-カルボン酸)-2-アセトキシプロパン-1,3-ジイル、5,5′-[エチレンビス(オキシ)]ビス(イソベンゾフラン-1,3-ジオン)、ビス(1,3-ジヒドロ-1,3-ジオキソ-5-イソベンゾフランカルボン酸)オキシビス(メチレンオキシメチレン)、4,4′-[イソプロピリデンビス(4,1-フェニレンオキシカルボニル)]ビスフタル酸二無水物等を挙げることができる。 As the second acid dianhydride as the component (C), any acid dianhydride conventionally used in the production of polyimide can be used without any particular limitation. For example, as a general aromatic acid dianhydride, pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride Anhydride, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 2,3,2', 3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylmethane Tetracarboxylic dianhydride, 2,3,3 ', 4'-diphenylmethanetetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 2,3,3 ', 4'-benzophenone tetracarboxylic dianhydride, 2,3,2 ', 3'-benzophenone tetracarboxylic dianhydride, 3,4'-oxydiphthalic dianhydride, 4,4'-oxydiphthalic dianhydride 3,3'- Xydiphthalic dianhydride, diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride, diphenylsulfone-2,3,3', 4'-tetracarboxylic dianhydride, diphenylsulfone-2 , 3,2 ', 3'-tetracarboxylic dianhydride, 4,4'-[isopropylidenebis [(1,4-phenylene) oxy]] diphthalic dianhydride, 5,5'-isopropylidenebis (Phthalic anhydride), 3,5'-isopropylidenebis (phthalic anhydride), 3,3'-isopropylidenebis (phthalic anhydride), 4,4 '-(1,4-phenylenebisoxy) ) Bisphthalic dianhydride, 4,4 '-(1,3-phenylenebisoxy) bisphthalic dianhydride, 5,5'-[oxybis (4,1-phenyleneoxy)] bisphthalic dianhydride, 5 , '- [sulfonylbis (4,1-phenylene-oxy)] can be exemplified Bisufutaru acid dianhydride and the like. The silicon-containing acid dianhydrides include 4,4 ′-(dimethylsilylene) bis (phthalic acid) 1, 2: 1 ′, 2′-dianhydride, and 4,4 ′-(methylethylsilylene). Bis (phthalic acid) 1,2: 1 ', 2'-dianhydride, 4,4'-[phenyl (methyl) silylene] bisphthalic acid 1,2: 1 ', 2'-dianhydride, 4,4 Examples include '-diphenylsilylene bisphthalic acid 1,2: 1', 2'-dianhydride. Examples of fluorine-containing acid dianhydrides include 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride and 3,4'-(2,2-hexafluoroisopropylidene) diphthalic dianhydride. 3,3 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, 4,4'-[2,2-hexafluoroisopropylidenebis [(1,4-phenylene) oxy]] diphthalate An acid dianhydride etc. can be mentioned. Examples of the fluorene cardoic acid dianhydride include 5,5 ′-[9H-fluorene-9,9-diylbis (4,1-phenyleneoxy)] bis (isobenzofuran-1,3-dione), 5,5 Examples include '-[9H-fluorene-9,9-diylbis (1,1'-biphenyl-5,2-diyloxy)] bis (isobenzofuran-1,3-dione). Examples of ester acid dianhydrides include ethylene glycol bis (trimellitic anhydride), 1,4-phenylene bis (trimellitate anhydride), 1,3-phenylene bis (trimellitate anhydride), 1,2-phenylene bis (trimellitate) Anhydride), bis (1,3-dihydro-1,3-dioxoisobenzofuran-5-carboxylic acid) -2-acetoxypropane-1,3-diyl, 5,5 '-[ethylenebis (oxy)] Bis (isobenzofuran-1,3-dione), bis (1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylic acid) oxybis (methyleneoxymethylene), 4,4 ′-[isopropylidenebis ( 4,1-phenyleneoxycarbonyl)] bisphthalic dianhydride and the like.
 脂肪族系酸二無水物としては、1,1′-ビシクロヘキサン-3,3′,4,4′-テトラカルボン酸二無水物、1,1′-ビシクロヘキサン-2,3,3′,4′-テトラカルボン酸二無水物、1,1′-ビシクロヘキサン-2,3,2′3′-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、1,2,3,4-テトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸-2,3:5,6-二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸-2,3:5,6-二無水物、ヘキサデカヒドロ-3a,11a-(2,5-ジオキソテトラヒドロフラン-3,4-ジイル)フェナントロ[9,10-c]フラン-1,3-ジオン等を挙げることができる。 Aliphatic acid dianhydrides include 1,1'-bicyclohexane-3,3 ', 4,4'-tetracarboxylic dianhydride, 1,1'-bicyclohexane-2,3,3', 4'-tetracarboxylic dianhydride, 1,1'-bicyclohexane-2,3,2'3'-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride 1,2,3,4-tetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5 (tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2- c] furan-1,3-dione, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4 Cyclopentanetetracarboxylic dianhydride, 5- (2,5-dioxo Trahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride Bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid-2,3: 5,6-dianhydride, bicyclo [2.2.1] heptane-2,3,5 , 6-tetracarboxylic acid-2,3: 5,6-dianhydride, hexadecahydro-3a, 11a- (2,5-dioxotetrahydrofuran-3,4-diyl) phenanthro [9,10-c] And furan-1,3-dione.
 脂肪族エステル系酸二無水物としては、ビス(1,3-ジオキソ-1,3,3a,4,5,6,7,7a-オクタヒドロイソベンゾフラン-5-カルボン酸)ビフェニル-4,4′-ジイル、ビス(1,3-ジオキソ-1,3,3a,4,5,6,7,7a-オクタヒドロイソベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3,3a,4,5,6,7,7a-オクタヒドロイソベンゾフラン-5-カルボン酸)-2-メチル-1,4-フェニレン等を挙げることができる。この中で、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸-2,3:5,6-二無水物、4,4′-オキシジフタル酸二無水物、4,4′-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、が耐熱性、溶媒可溶性及び入手容易性の観点から好ましい。
 なお、(C)成分としての第2の酸二無水物は、1種で用いても良いが、2種以上の酸二無水物を混合して用いても良く、当該第2の酸二無水物の量としては、(A)成分1モルに対して2モル以下が好ましい。
Aliphatic ester acid dianhydrides include bis (1,3-dioxo-1,3,3a, 4,5,6,7,7a-octahydroisobenzofuran-5-carboxylic acid) biphenyl-4,4 '-Diyl, bis (1,3-dioxo-1,3,3a, 4,5,6,7,7a-octahydroisobenzofuran-5-carboxylic acid) 1,4-phenylene, bis (1,3- And dioxo-1,3,3a, 4,5,6,7,7a-octahydroisobenzofuran-5-carboxylic acid) -2-methyl-1,4-phenylene. Among them, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] octane-2,3,5,6 -Tetracarboxylic acid-2,3: 5,6-dianhydride, 4,4'-oxydiphthalic dianhydride, 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, 3, , 3 ′, 4,4′-biphenyltetracarboxylic dianhydride is preferred from the viewpoints of heat resistance, solvent solubility and availability.
The second acid dianhydride as the component (C) may be used alone, or a mixture of two or more acid dianhydrides may be used, and the second acid dianhydride may be used. As a quantity of a thing, 2 mol or less is preferable with respect to 1 mol of (A) component.
 この場合、(D)成分としての第2のジアミン及び/又はジイソシアネートは、通常、ポリイミドの製造に用いられるものを用いることができる。 In this case, as the second diamine and / or diisocyanate as the component (D), those usually used for the production of polyimide can be used.
 (D)成分としては、上記(B)成分と同一のもの以外に、例えば、下記一般式(2.4)~(2.21)で表されるものが挙げられる。 Examples of the component (D) include those represented by the following general formulas (2.4) to (2.21) other than the same component as the component (B).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(2.4)~(2.21)中、Xは、それぞれ独立して-NH、-NCO、-CHNH又は-CHNCOを表す。R~Rは、それぞれ独立して、H、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、ヒドロキシ基、カルボキシ基、トリフルオロメチル基又はアリール基を表す。R~R12は、それぞれ独立して炭素原子数1~4のアルキル基又はアリール基を表す。Yは、それぞれ独立して、 In the general formulas (2.4) to (2.21), X each independently represents —NH 2 , —NCO, —CH 2 NH 2 or —CH 2 NCO. R 1 to R 8 each independently represent H, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a carboxy group, a trifluoromethyl group, or an aryl group. R 9 to R 12 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group. Y is independently
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
を表す。R21及びR22は、それぞれ独立してH、炭素原子数1~4のアルキル基、炭素原子数2~4のアルケニル基、炭素原子数1~4のアルコキシ基、ヒドロキシ基、カルボキシ基、又はトリフルオロメチル基を表す。 Represents. R 21 and R 22 are each independently H, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a carboxy group, or Represents a trifluoromethyl group.
 なお、(D)成分である第2のジアミン及び/又はジイソシアネートとして、上記(B)成分と異なるものを用いる場合は、その量は、(B)成分1モルに対して2モル以下が好ましい。 In addition, when using what is different from the said (B) component as 2nd diamine and / or diisocyanate which are (D) components, the quantity is 2 mol or less with respect to 1 mol of (B) components.
 ポリイミド2は、(A)成分と(B)成分とを共重合させて得られる。また、(A)成分と(B)成分とを共重合させて、まず、重量平均分子量が700~80000程度のポリイミド共重合体ユニットとし、得られたポリイミド共重合体ユニットに対して、(C)成分としての第2の酸二無水物、及び/又は(D)成分としての第2のジアミン及び/又はジイソシアネート、を共重合させても良い。 Polyimide 2 is obtained by copolymerizing the component (A) and the component (B). In addition, the (A) component and the (B) component are copolymerized to obtain a polyimide copolymer unit having a weight average molecular weight of about 700 to 80000, and the obtained polyimide copolymer unit is subjected to (C ) Second acid dianhydride as component and / or (D) second diamine and / or diisocyanate as component may be copolymerized.
 ポリイミド2においては、重量平均分子量20000~200000が好ましく、35000~150000がより好ましい。ポリイミド2の重量平均分子量が上記範囲内であると、取扱い性に優れる。 In the polyimide 2, the weight average molecular weight is preferably 20,000 to 200,000, more preferably 35,000 to 150,000. When the weight average molecular weight of the polyimide 2 is within the above range, the handleability is excellent.
 ポリイミド2の製造方法としては、150~200℃の温度範囲で1~200時間の範囲で熱的に閉環させる熱イミド化法、及び、トリエチルアミン、ピリジン、ピコリン又はキノリン等の閉環触媒を用いる化学イミド化法等のいずれの方法を用いても良い。 The polyimide 2 is produced by a thermal imidization method in which the ring is thermally closed in a temperature range of 150 to 200 ° C. for 1 to 200 hours, and a chemical imide using a ring closing catalyst such as triethylamine, pyridine, picoline or quinoline. Any method such as chemical method may be used.
〔1.3〕ポリイミド3:フッ素系ポリイミド
 本発明のポリイミドフィルムに用いられるポリイミドとしては、ポリイミド3:フッ素系ポリイミドであることも好ましい。ここで、フッ素系ポリイミドとは、ポリイミド構造中にフッ素原子を有するポリイミドを指し、具体的には、ポリイミド原料であるジアミンにおいてフッ素含有基を有する。このようなフッ素系ポリイミドとしては、例えば、上記一般式(1.1)で表されるもののうち、式中のΦが下記一般式(3.1)又は(3.2)で表される2価の有機基で表されるものが挙げられる。
[1.3] Polyimide 3: fluorinated polyimide The polyimide used for the polyimide film of the present invention is preferably polyimide 3: fluorinated polyimide. Here, a fluorine-type polyimide refers to the polyimide which has a fluorine atom in a polyimide structure, and specifically has a fluorine-containing group in the diamine which is a polyimide raw material. As such a fluorine-based polyimide, for example, among those represented by the general formula (1.1), Φ in the formula is represented by the following general formula (3.1) or (3.2) 2 And those represented by a valent organic group.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(3.1)及び(3.2)中、R~Rは、互いに独立に、水素原子、フッ素原子、炭素数1~5までのアルキル基若しくはアルコキシ基、又はフッ素置換炭化水素基を表す。また、一般式(3.1)において、R~Rのうちの少なくとも一つはフッ素原子又はフッ素置換炭化水素基を表す。また、一般式(3.2)において、R~Rのうちの少なくとも一つはフッ素原子又はフッ素置換炭化水素基を表す。このうち、R~Rの好適な具体的としては、-H、-CH、-OCH、-F、-CF等が挙げられ、少なくとも一つの置換基は、-F又はCFであることが好ましい。 In the general formulas (3.1) and (3.2), R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, an alkyl group or an alkoxy group having 1 to 5 carbon atoms, or a fluorine-substituted hydrocarbon. Represents a group. In the general formula (3.1), at least one of R 1 to R 4 represents a fluorine atom or a fluorine-substituted hydrocarbon group. In the general formula (3.2), at least one of R 1 to R 8 represents a fluorine atom or a fluorine-substituted hydrocarbon group. Among these, preferred specific examples of R 1 to R 8 include —H, —CH 3 , —OCH 3 , —F, —CF 3 and the like, and at least one substituent is —F or CF 3. It is preferable that
 上記一般式(1.1)におけるΦを与える具体的なジアミン残基として好ましいものとしては、以下のものが挙げられる。 Preferred examples of the specific diamine residue that gives Φ in the above general formula (1.1) include the following.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記フッ素系のポリイミド3は、ポリアミド酸をイミド化して得ることができる。ここで、ポリアミド酸の樹脂溶液は、原料であるジアミンと4,4′-オキシジフタル酸無水物とを実質的に等モル使用し、有機溶媒中で反応させることによって得ること好ましい。より具体的には、ポリアミド酸の樹脂溶液は、窒素気流下でN,N-ジメチルアセトアミド等の有機極性溶媒にジアミンを溶解させた後、4,4′-オキシジフタル酸無水物を加えて、室温で5時間程度反応させることにより得ることができる。塗工時の膜厚均一化と得られるポリイミドフィルムの機械強度の観点から、得られたポリアミド酸の重量平均分子量は、10000~300000であることが好ましい。 The fluorine-based polyimide 3 can be obtained by imidizing polyamic acid. Here, the polyamic acid resin solution is preferably obtained by reacting a raw material diamine and 4,4′-oxydiphthalic anhydride in an organic solvent using substantially equimolar amounts. More specifically, the polyamic acid resin solution is prepared by dissolving diamine in an organic polar solvent such as N, N-dimethylacetamide under a nitrogen stream, and then adding 4,4′-oxydiphthalic anhydride to room temperature. For about 5 hours. From the viewpoint of uniform film thickness during coating and the mechanical strength of the resulting polyimide film, the polyamic acid obtained preferably has a weight average molecular weight of 10,000 to 300,000.
〔1.4〕ポリイミド4
 本発明のポリイミドフィルムに用いられるポリイミドとしては、以下に説明するポリイミド4であることも好ましい。
[1.4] Polyimide 4
The polyimide used in the polyimide film of the present invention is also preferably polyimide 4 described below.
 ポリイミド4は、窒素非含有芳香族ジアミン化合物:51~99モル%、及び窒素含有芳香族ジアミン化合物:1~49モル%を含むジアミン成分と、4,4′-オキシジフタル酸無水物を重合させることによって得られるポリイミドである。ここで、窒素非含有芳香族ジアミン化合物とは、分子内に、窒素原子を含まない芳香環を有し、窒素原子を含む芳香環を有しないジアミン化合物をいう。また、窒素含有芳香族ジアミン化合物とは、窒素原子を含む芳香環を分子内に有するジアミン化合物をいう。 Polyimide 4 is obtained by polymerizing 4,4′-oxydiphthalic anhydride with a diamine component containing nitrogen-free aromatic diamine compound: 51 to 99 mol% and nitrogen-containing aromatic diamine compound: 1 to 49 mol%. It is the polyimide obtained by. Here, the nitrogen-free aromatic diamine compound refers to a diamine compound having an aromatic ring containing no nitrogen atom in the molecule and no aromatic ring containing a nitrogen atom. The nitrogen-containing aromatic diamine compound refers to a diamine compound having an aromatic ring containing a nitrogen atom in the molecule.
 ジアミン成分として、窒素含有芳香族ジアミン化合物の量が1~49モル%の範囲であることによって、得られるポリイミド及びそれを用いたポリイミドフィルムにおいて高弾性と柔軟性を両立させ高い機械強度を実現することができ、好ましい。 As the diamine component, the amount of the nitrogen-containing aromatic diamine compound is in the range of 1 to 49 mol%, thereby realizing both high elasticity and flexibility in the obtained polyimide and the polyimide film using the same, and realizing high mechanical strength. Can be preferred.
 ジアミン成分中における窒素含有芳香族ジアミン化合物の量は、重合時において溶解性の低い窒素含有芳香族ジアミン化合物の溶け残りを抑制し、得られるポリイミド及びそれを用いたポリイミドフィルムの高弾性と柔軟性とを両立させ高い機械強度を実現する観点から、1~49モル%であることが好ましく、1~30モル%であることがより好ましく、1~20モル%であることが更に好ましく、1モル%以上20モル%未満であることが特に好ましい。 The amount of the nitrogen-containing aromatic diamine compound in the diamine component suppresses the undissolved residue of the nitrogen-containing aromatic diamine compound having low solubility during polymerization, and the resulting polyimide and the polyimide film using the polyimide have high elasticity and flexibility. From the viewpoint of realizing high mechanical strength, it is preferably 1 to 49 mol%, more preferably 1 to 30 mol%, still more preferably 1 to 20 mol%. % Or more and less than 20 mol% is particularly preferable.
 窒素含有芳香族ジアミン化合物としては、例えば、5,4′-ジアミノ-2-フェニルベンゾイミダゾール(DAPBI)を例とするジアミノフェニルベンゾイミダゾール類や、2,5-ジアミノピリジン(DAPY)を例とするジアミノピリジン類などが挙げられるが、それらに限定されるものではなく、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Examples of nitrogen-containing aromatic diamine compounds include diaminophenylbenzimidazoles such as 5,4'-diamino-2-phenylbenzimidazole (DAPBI) and 2,5-diaminopyridine (DAPY). Although diaminopyridines etc. are mentioned, it is not limited to them, Each can be used individually or in combination of 2 or more types.
 この窒素含有芳香族ジアミン化合物の導入によって、その剛直な分子構造がポリイミドの高強度化に寄与するとともに、ポリアミド酸のイミド化時に窒素含有芳香環が触媒として作用することでポリイミドのイミド化率を向上させる結果、ポリイミドの機械強度が向上するものと考えられる。 By introducing this nitrogen-containing aromatic diamine compound, its rigid molecular structure contributes to increasing the strength of the polyimide, and the imidization rate of the polyimide is improved by the nitrogen-containing aromatic ring acting as a catalyst during imidization of the polyamic acid. As a result of the improvement, it is considered that the mechanical strength of the polyimide is improved.
 ジアミン成分中における窒素非含有芳香族ジアミン化合物の量は、上記と同様の理由から、51モル%以上99モル%未満であることが好ましく、70~99モル%であることがより好ましく、80~99モル%であることが更に好ましく、80モル%超99モル%以下であることが特に好ましい。 The amount of the nitrogen-free aromatic diamine compound in the diamine component is preferably 51 mol% or more and less than 99 mol%, more preferably 70 to 99 mol%, more preferably 80 to More preferably, it is 99 mol%, and it is especially preferable that it is more than 80 mol% and 99 mol% or less.
 窒素非含有芳香族ジアミン化合物としては、例えば、4,4′-ジアミノジフェニルエーテル(ODA)、p-フェニレンジアミン(PDA)、脂肪族ジアミン、脂環式ジアミンなどが例として挙げられるが、それらに限定されるものではなく、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Examples of the nitrogen-free aromatic diamine compound include, for example, 4,4′-diaminodiphenyl ether (ODA), p-phenylenediamine (PDA), aliphatic diamine, alicyclic diamine, and the like. It can be used alone or in combination of two or more.
 ポリイミド4に使用される酸成分としては、4,4′-オキシジフタル酸無水物であるが、他の酸成分を併用するものとしても良い。当該他の酸成分としては、例えば、ピロメリット酸二無水物(PMDA)、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、脂環式テトラカルボン酸二無水物などが例として挙げられるが、それらに限定されるものではない。 The acid component used for the polyimide 4 is 4,4'-oxydiphthalic anhydride, but other acid components may be used in combination. Examples of the other acid component include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4 ′. Examples include, but are not limited to, benzophenone tetracarboxylic dianhydride (BTDA), alicyclic tetracarboxylic dianhydride, and the like.
 ポリイミド4は、更に溶媒を含有することが好ましい態様の一つとして挙げられる。当該溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド及びジメチルスルホンなどが挙げられ、これらを単独又は混合して使用するのが好ましい。 The polyimide 4 can be mentioned as one of preferable embodiments that further contains a solvent. Examples of the solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, dimethyl sulfoxide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide and dimethyl. Examples thereof include sulfone, and these are preferably used alone or in combination.
 なお、窒素含有芳香族ジアミン化合物が上記溶媒への溶解性が低い場合は、溶解性を高めるために反応液を50℃以下に加熱しても良い。 In addition, when the nitrogen-containing aromatic diamine compound has low solubility in the above solvent, the reaction solution may be heated to 50 ° C. or lower in order to increase the solubility.
 また、窒素含有芳香族ジアミン化合物が、イミダゾール環又はピリジン環を有する芳香族ジアミン化合物で、5,4′-ジアミノ-2-フェニルベンゾイミダゾール(DAPBI)及び2,5-ジアミノピリジン(DAPY)からなる群から選択される少なくとも一つであり、窒素非含有芳香族ジアミン化合物が、p-フェニレンジアミン、4,4′-ジアミノジフェニルエーテル及び3,4′-ジアミノジフェニルエーテルからなる群から選択される少なくとも一つであることが好ましい。 The nitrogen-containing aromatic diamine compound is an aromatic diamine compound having an imidazole ring or a pyridine ring, and is composed of 5,4′-diamino-2-phenylbenzimidazole (DAPBI) and 2,5-diaminopyridine (DAPY). At least one selected from the group, wherein the nitrogen-free aromatic diamine compound is selected from the group consisting of p-phenylenediamine, 4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl ether It is preferable that
 ポリイミド4は、その製造について、窒素非含有芳香族ジアミン化合物:51~99モル%、及び窒素含有芳香族ジアミン化合物:1~49モル%を含むジアミン成分と、酸成分としての4,4′-オキシジフタル酸無水物を重合させること以外は特に制限されない。 Polyimide 4 is produced by using a non-nitrogen-containing aromatic diamine compound: 51 to 99 mol% and a nitrogen-containing aromatic diamine compound: 1 to 49 mol%, a diamine component, and an acid component 4,4′- There is no particular limitation other than polymerizing oxydiphthalic anhydride.
 ポリイミド4を製造する際更に溶媒を用いるのが好ましい態様の一つとして挙げられる。例えば、溶媒中で酸成分(4,4′-オキシジフタル酸無水物)とジアミン成分(芳香族ジアミン成分)とを添加し(酸成分とジアミン成分とはほぼ等モルとなる量で使用することができる。)、これらを混合して混合物とし、混合物を重合することで得られる。混合物には必要に応じて後述する添加剤を更に含有することができる。 One preferred embodiment is that a solvent is further used when the polyimide 4 is produced. For example, an acid component (4,4′-oxydiphthalic anhydride) and a diamine component (aromatic diamine component) are added in a solvent (the acid component and the diamine component can be used in amounts that are approximately equimolar). Can be obtained by mixing these to form a mixture and polymerizing the mixture. If necessary, the mixture can further contain additives described later.
 混合物を重合させる条件は特に制限されない。例えば、上記した溶媒に、窒素非含有芳香族ジアミン化合物及び窒素含有芳香族ジアミン化合物を含むジアミン成分と4,4′-オキシジフタル酸無水物を添加して得られた混合物を、常温~50℃の条件下において、大気圧中で撹拌し反応させて、ポリアミド酸の溶液を製造する方法が挙げられる。 The conditions for polymerizing the mixture are not particularly limited. For example, a mixture obtained by adding a diamine component containing a nitrogen-free aromatic diamine compound and a nitrogen-containing aromatic diamine compound and 4,4′-oxydiphthalic anhydride to the above-described solvent is mixed at room temperature to 50 ° C. There is a method of producing a polyamic acid solution by stirring and reacting under atmospheric pressure under conditions.
 上記製造方法においては、ポリアミド酸(共重合ポリアミド酸)が溶媒中に10~30質量%の割合(濃度)で調製されるように行うことが好ましい。 In the above production method, the polyamic acid (copolymerized polyamic acid) is preferably prepared at a ratio (concentration) of 10 to 30% by mass in the solvent.
 上記のように製造されるポリアミド酸は、その分子構造について特に制限されない。例えば、ランダム共重合体、交互共重合体、ブロック共重合体が挙げられる。 The polyamic acid produced as described above is not particularly limited with respect to its molecular structure. For example, a random copolymer, an alternating copolymer, and a block copolymer are mentioned.
 ポリイミド4には更に添加剤を含有させることができる。添加剤としては、ポリアミド酸をイミド化させてポリイミドにするために使用される脱水剤及び閉環触媒等が挙げられる。 The polyimide 4 can further contain an additive. Examples of the additive include a dehydrating agent and a ring-closing catalyst used for imidizing polyamic acid into a polyimide.
〔2〕水素結合性化合物
 本発明のポリイミドフィルムは、分子内に芳香環及び水素結合ドナー性部位を有する水素結合性化合物を含有する。
 本発明において、水素結合性化合物とは、分子内に水素結合ドナー性部位を有し(下記(I)で規定する要件を満たす。)、他の化合物と水素結合を形成し得る化合物をいう。また、水素結合ドナー性部位とは、水素原子を供給して水素結合を形成する部位をいう。
 また、水素結合性化合物は、下記(II)及び(III)で規定する要件を満たすことが好ましい。
[2] Hydrogen bonding compound The polyimide film of the present invention contains a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule.
In the present invention, the hydrogen bonding compound means a compound having a hydrogen bonding donor site in the molecule (meeting the requirements defined in the following (I)) and capable of forming a hydrogen bond with other compounds. Further, the hydrogen bond donor site refers to a site that forms a hydrogen bond by supplying a hydrogen atom.
Further, the hydrogen bonding compound preferably satisfies the requirements specified in the following (II) and (III).
 (I)分子内に水素結合ドナー性部位を有する。
 (II)分子量を水素結合ドナー性部位の分子量で除した値が、5~65の範囲内である。
 (III)芳香環の総数が、1~8である。
(I) It has a hydrogen bond donor site in the molecule.
(II) The value obtained by dividing the molecular weight by the molecular weight of the hydrogen bond donor site is in the range of 5 to 65.
(III) The total number of aromatic rings is 1-8.
 まず、(I)の要件について説明する。
 本発明に用いられる水素結合性化合物において、水素結合ドナー性部位として働く官能基としては、例えば、Jeffrey, George A.著、Oxford UP刊のIntroduction to Hydrogen Bondingの15ページのTable 2に記載されている。本発明では、水素結合性化合物中における当該表に記載の官能基の数の合計を、水素結合ドナー性部位の数として用いる。
 本発明に用いられる水素結合性化合物としては、例えば、水素結合ドナー性部位としてヒドロキシ基等を有する化合物が挙げられる。
First, the requirement (I) will be described.
In the hydrogen bonding compound used in the present invention, examples of the functional group acting as a hydrogen bonding donor site include Jeffrey, George A. et al. It is described in Table 2 on page 15 of “Introduction to Hydrogen Bonding” published by Oxford UP. In the present invention, the total number of functional groups described in the table in the hydrogen bonding compound is used as the number of hydrogen bonding donor sites.
As a hydrogen bondable compound used for this invention, the compound which has a hydroxyl group etc. as a hydrogen bond donor site | part is mentioned, for example.
 本発明に用いられる水素結合性化合物は、分子内に水素結合ドナー性部位を有することにより、水素結合アクセプター性部位であるポリイミド主鎖構造中のエーテル結合と強い水素結合を形成し、当該エーテル結合のコンホメーションを抑制することができる。ここで、水素結合アクセプター性部位とは、水素原子を受容して水素結合を形成する部位をいう。 The hydrogen bonding compound used in the present invention has a hydrogen bond donor site in the molecule, thereby forming a strong hydrogen bond with an ether bond in the polyimide main chain structure which is a hydrogen bond acceptor site. Can be suppressed. Here, the hydrogen bond acceptor site refers to a site that accepts a hydrogen atom to form a hydrogen bond.
 次に(II)の要件について説明する。
 本発明に係る水素結合性化合物の、分子量を水素結合ドナー性部位の分子量で除した値は5~65の範囲内であることが好ましい。当該値が5以上であるとエーテル結合への水素結合が起こりやすく本発明の効果が発現しやすくなり、65以下であると水素結合性化合物同士の会合が起きにくく本発明の効果が発現しやすくなる。
Next, the requirement (II) will be described.
The value obtained by dividing the molecular weight of the hydrogen bonding compound according to the present invention by the molecular weight of the hydrogen bonding donor site is preferably within the range of 5 to 65. When the value is 5 or more, hydrogen bonding to an ether bond is likely to occur, and the effect of the present invention is easily manifested. When the value is 65 or less, association between hydrogen bonding compounds hardly occurs and the effect of the present invention is easily manifested. Become.
 次に(III)の要件について説明する。
 本発明に係る水素結合性化合物中の芳香環の数は、1~8であることが好ましい。芳香環の数が、1以上であることで本発明の効果が得られ、8以下であることでエーテル結合への水素結合が起こりやすく本発明の効果が発現しやすい。
Next, the requirement (III) will be described.
The number of aromatic rings in the hydrogen bonding compound according to the present invention is preferably 1-8. When the number of aromatic rings is 1 or more, the effect of the present invention is obtained, and when it is 8 or less, hydrogen bonding to an ether bond is likely to occur, and the effect of the present invention is easily exhibited.
 ここで、芳香環とは、π電子の数が4n+2(nは自然数)を満たす環であり、芳香族炭化水素環でも芳香族複素環でも良い。芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、アズレン環、フェナントレン環、トリフェニレン環、ピレン環、クリセン環、ナフタセン環、ペリレン環、ペンタセン環、ヘキサセン環、コロネン環、トリナフチレン環、フラン環、チオフェン環、ピロール環、イミダゾール環、ピラゾール環、1,2,4-トリアゾール環、1,2,3-トリアゾール環、オキサゾール環、チアゾール環、イソオキサゾール環、イソチアゾール環、フラザン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、キノリン環、イソインドール環、インドール環、イソキノリン環、フタラジン環、プリン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、カルバゾール環、フェナントリジン環、アクリジン環、ペリミジン環、フェナントロリン環、フェナジン環等が挙げられる。
 また、芳香環の数は、芳香環が縮合している場合にはその縮合環を一つとして数え、芳香環同士が連結基を介して連結している場合にはそれらの各芳香環をそれぞれ一つとして数える。例えば、ナフタレン由来の炭素数10の芳香環は、芳香環が一つと数える。
Here, the aromatic ring is a ring in which the number of π electrons satisfies 4n + 2 (n is a natural number), and may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Examples of the aromatic ring include a benzene ring, naphthalene ring, anthracene ring, azulene ring, phenanthrene ring, triphenylene ring, pyrene ring, chrysene ring, naphthacene ring, perylene ring, pentacene ring, hexacene ring, coronene ring, trinaphthylene ring, furan Ring, thiophene ring, pyrrole ring, imidazole ring, pyrazole ring, 1,2,4-triazole ring, 1,2,3-triazole ring, oxazole ring, thiazole ring, isoxazole ring, isothiazole ring, furazane ring, pyridine Ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, quinoline ring, isoindole ring, indole ring, isoquinoline ring, phthalazine ring, purine ring, naphthyridine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, carbazole Ring Nantorijin ring, acridine ring, perimidine ring, phenanthroline ring, phenazine ring, and the like.
The number of aromatic rings is counted as one condensed ring when the aromatic rings are condensed, and when each aromatic ring is linked via a linking group, each aromatic ring is counted as Count as one. For example, an aromatic ring having 10 carbon atoms derived from naphthalene is counted as one aromatic ring.
 本発明に係る水素結合性化合物としては、本発明の効果発現の観点から、芳香環の数を水素結合ドナー性部位の数で除した値が、1~5の範囲内であることが好ましい。 As the hydrogen bonding compound according to the present invention, the value obtained by dividing the number of aromatic rings by the number of hydrogen bonding donor sites is preferably within the range of 1 to 5 from the viewpoint of manifesting the effects of the present invention.
 次いで、本発明に用いられる水素結合性化合物の具体的な構造について説明する。
 本発明に用いられる水素結合性化合物は、以下に示す一般式(A)~(H)で表される化合物が好ましい。以下に各々の構造について詳しく説明する。
Next, a specific structure of the hydrogen bonding compound used in the present invention will be described.
The hydrogen bonding compound used in the present invention is preferably a compound represented by the following general formulas (A) to (H). Each structure will be described in detail below.
〔2.1〕一般式(A)で表される水素結合性化合物
 本発明に係る水素結合性化合物は、下記一般式(A)で表される化合物であることが好ましい。
[2.1] Hydrogen Bonding Compound Represented by General Formula (A) The hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(A)中、Raは、アルキル基、アルケニル基、アルキニル基、複素環基又はアリール基を表す。X、X、X及びXは、それぞれ独立に単結合又は2価の連結基を表す。R、R、R及びRは、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。 In general formula (A), Ra represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group, or an aryl group. X 1 , X 2 , X 3 and X 4 each independently represent a single bond or a divalent linking group. R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
 一般式(A)中のRaは、アルキル基、アルケニル基、アルキニル基、複素環基又はアリール基を表し、アルキル基又はアリール基であることが好ましい。Raがアルキル基である場合、炭素数1~20であることが好ましく、炭素数3~15であることがより好ましく、炭素数6~12であることが特に好ましい。Raがアルケニル基である場合、炭素数2~20であることが好ましく、炭素数3~15であることがより好ましく、炭素数6~12であることが特に好ましい。Raがアルキニル基である場合、炭素数2~20であることが好ましく、炭素数3~15であることがより好ましく、炭素数6~12であることが特に好ましい。Raがアリール基である場合、炭素数6~24であることが好ましく、炭素数6~18であることがより好ましい。Raが複素環基である場合、炭素数5~23であることが好ましく、炭素数5~17であることがより好ましい。 Ra in the general formula (A) represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group or an aryl group, and is preferably an alkyl group or an aryl group. When Ra is an alkyl group, it preferably has 1 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms. When Ra is an alkenyl group, it preferably has 2 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms. When Ra is an alkynyl group, it preferably has 2 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms. When Ra is an aryl group, it preferably has 6 to 24 carbon atoms, and more preferably 6 to 18 carbon atoms. When Ra is a heterocyclic group, it preferably has 5 to 23 carbon atoms, and more preferably 5 to 17 carbon atoms.
 一般式(A)中のX、X、X及びXは、それぞれ独立に単結合又は2価の連結基を表し、それぞれ独立に単結合であることがより好ましく、全て単結合であることが特に好ましい。 X 1 , X 2 , X 3 and X 4 in the general formula (A) each independently represent a single bond or a divalent linking group, more preferably each independently a single bond, and all are single bonds. It is particularly preferred.
 一般式(A)中のX、X、X及びXがそれぞれ独立に表していても良い2価の連結基としては、例えば、下記一般式(P)で表される2価の連結基、アルキレン基(好ましくは炭素数1~30、より好ましくは炭素数1~3、特に好ましくは炭素数2)、アリーレン基(好ましくは炭素数6~30、より好ましくは、炭素数6~10)等を挙げることができる。その中でも下記一般式(P)で表される2価の連結基であることが好ましく、カルボニル基であることがより好ましい。 Examples of the divalent linking group that may be independently represented by X 1 , X 2 , X 3 and X 4 in the general formula (A) include, for example, a divalent group represented by the following general formula (P) Linking group, alkylene group (preferably having 1 to 30 carbon atoms, more preferably 1 to 3 carbon atoms, particularly preferably 2 carbon atoms), arylene group (preferably having 6 to 30 carbon atoms, more preferably 6 to 6 carbon atoms). 10). Among them, a divalent linking group represented by the following general formula (P) is preferable, and a carbonyl group is more preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(P)中、*側が一般式(A)で表される化合物中の1,3,5-トリアジン環に置換している窒素原子との連結部位である。 In general formula (P), the * side is a linking site with a nitrogen atom substituted on the 1,3,5-triazine ring in the compound represented by general formula (A).
〔2.2〕一般式(B)で表される水素結合性化合物
 また、本発明に係る水素結合性化合物は、下記一般式(B)で表される化合物であることが好ましい。
[2.2] Hydrogen Bonding Compound Represented by General Formula (B) The hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (B).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(B)中、Rb及びRcは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、複素環基又はアリール基を表す。X及びXは、それぞれ独立に単結合又は2価の連結基を表す。R及びRは、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。 In general formula (B), Rb and Rc each independently represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group or an aryl group. X 5 and X 6 each independently represent a single bond or a divalent linking group. R 5 and R 6 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group.
 一般式(B)中のRb及びRcは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、複素環基又はアリール基を表し、その好ましい範囲は上記一般式(A)におけるRaの好ましい範囲と同様である。 Rb and Rc in the general formula (B) each independently represents an alkyl group, an alkenyl group, an alkynyl group, a heterocyclic group or an aryl group, and a preferred range thereof is the same as the preferred range of Ra in the general formula (A). It is.
 一般式(B)中のX及びXは、それぞれ独立に単結合又は2価の連結基を表し、好ましい範囲は上記一般式(A)におけるX、X、X及びXの好ましい範囲と同様である。 X 5 and X 6 in the general formula (B) each independently represent a single bond or a divalent linking group, and preferred ranges thereof are those of X 1 , X 2 , X 3 and X 4 in the general formula (A). This is the same as the preferred range.
 一般式(B)中のR及びRは、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表し、好ましい範囲は上記一般式(A)におけるR、R、R及びRの好ましい範囲と同様である。 R 5 and R 6 in the general formula (B) each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group, and a preferred range is R 1 in the general formula (A). , R 2 , R 3 and R 4 are the same as the preferred ranges.
 上記一般式(A)又は(B)で表される化合物の具体例としては、例えば、特開2012-82235号公報の段落番号0055~0057に記載の化合物を挙げることができる。 Specific examples of the compound represented by the general formula (A) or (B) include compounds described in paragraph numbers 0055 to 0057 of JP2012-82235A.
 また、一般式(A)又は(B)で表される化合物の製造方法は、特に限定はなく、公知の方法により製造することができる。本発明において好ましく用いられる製造方法としては、例えば、米国特許第3478026号明細書やChem.Eur.J.2005,11,6616-6628に記載されているようにジシアノジアミドとニトリル化合物とを水酸化カリウム等の無機塩基存在下にてアルコール中で加熱することでトリアジン環を形成する方法が挙げられる。また、例えば、Tetrahedron 2000,56,9705-9711に記載されているように塩化シアヌルを原料としてグリニャール化合物とアミン化合物を段階的に置換反応させていく方法が挙げられる。更に、例えば、有機合成化学協会誌 1967,第25巻第11号,1048-1051に記載されているようにイミドイルグアニジンとカルボン酸クロリド又はエステルの反応によりモノアミノ-ジ置換-s-トリアジン類を合成する方法を用いることもできる。 Further, the method for producing the compound represented by the general formula (A) or (B) is not particularly limited, and can be produced by a known method. Examples of the production method preferably used in the present invention include, for example, US Pat. No. 3,478,026 and Chem. Eur. J. et al. As described in 2005, 11, 6616-6628, a method of forming a triazine ring by heating dicyanodiamide and a nitrile compound in an alcohol in the presence of an inorganic base such as potassium hydroxide. Also, for example, as described in Tetrahedron 2000, 56, 9705-9711, there is a method in which a Grignard compound and an amine compound are subjected to a stepwise substitution reaction using cyanuric chloride as a raw material. Furthermore, monoamino-disubstituted-s-triazines can be obtained by reaction of imidoylguanidine with carboxylic acid chloride or ester as described in, for example, Journal of Synthetic Organic Chemistry, Vol. 1967, Vol. 25, No. 11, 1048-1051. A synthesis method can also be used.
〔2.3〕一般式(C)又は(D)で表される水素結合性化合物
 また、本発明に係る水素結合性化合物は、下記一般式(C)で表される化合物であることが好ましい。
[2.3] Hydrogen Bonding Compound Represented by General Formula (C) or (D) The hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (C). .
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(C)中、Ra11は、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Rb11、Rc11、Rd11及びRe11は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Qは、酸素原子、硫黄原子又はNRfを表し、Rfは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表し、Ra11と連結して環を形成しても良い。X11、X12及びX13は、それぞれ独立に単結合又は2価の連結基を表す。X14は、前記一般式(P)で表される2価の連結基群から選択される連結基を表す。 In the general formula (C), Ra 11 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. Rb 11 , Rc 11 , Rd 11 and Re 11 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. Q 1 represents an oxygen atom, a sulfur atom or NRf, and Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Ra 11 to form a ring. good. X 11 , X 12 and X 13 each independently represent a single bond or a divalent linking group. X 14 represents a linking group selected from divalent bridging group group represented by the general formula (P).
 また、本発明に係る水素結合性化合物は、下記一般式(D)で表される化合物であることが好ましい。 In addition, the hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (D).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(D)中、Ra21及びRg21は、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Rd21及びRe21は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Q11は、酸素原子、硫黄原子又はNRfを表し、Rfは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表し、Ra21と連結して環を形成しても良い。Q12は、酸素原子、硫黄原子又はNRhを表し、Rhは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表し、Rg21と連結して環を形成しても良い。X23は、単結合又は2価の連結基を表す。X24は、上記一般式(P)で表される2価の連結基群から選択される連結基を表す。 In the general formula (D), Ra 21 and Rg 21 each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group. Rd 21 and Re 21 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. Q 11 represents an oxygen atom, a sulfur atom or NRf, and Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Ra 21 to form a ring. good. Q 12 represents an oxygen atom, a sulfur atom or NRh, and Rh represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may be linked to Rg 21 to form a ring. good. X 23 represents a single bond or a divalent linking group. X 24 represents a linking group selected from the divalent linking group group represented by the general formula (P).
 一般式(C)又は(D)で表される化合物の具体例としては、例えば、特開2012-82235号公報の段落番号0068~0071に記載の化合物を挙げることができる。 Specific examples of the compound represented by the general formula (C) or (D) include compounds described in paragraph numbers 0068 to 0071 of JP2012-82235A.
〔2.4〕一般式(E)又は(F)で表される水素結合性化合物
 また、本発明に係る水素結合性化合物は、下記一般式(E)で表される化合物であることが好ましい。
[2.4] Hydrogen Bonding Compound Represented by General Formula (E) or (F) The hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (E). .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(E)中、Yは、メチン基又は窒素原子を表す。Ra31は、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Rb31、Rc31、Rd31及びRe31は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Q21は、単結合、酸素原子、硫黄原子又はNRfを表し、Rfは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表し、Ra31と連結して環を形成しても良い。X31、X32及びX33は、それぞれ独立に単結合又は2価の連結基を表す。X34は、上記一般式(P)で表される2価の連結基からなる群から選択される連結基を表す。 In the general formula (E), Y 1 represents a methine group or a nitrogen atom. Ra 31 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. Rb 31 , Rc 31 , Rd 31 and Re 31 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. Q 21 represents a single bond, an oxygen atom, a sulfur atom or NRf, Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and is linked to Ra 31 to form a ring. You may do it. X 31, X 32 and X 33 represents a single bond or a divalent linking group independently. X 34 represents a linking group selected from the group consisting of divalent linking groups represented by the general formula (P).
 また、本発明に係る水素結合性化合物は、下記一般式(F)で表される化合物であることが好ましい。 In addition, the hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (F).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(F)中、Y11は、メチン基又は窒素原子を表す。Ra41及びRg41は、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Rd41及びRe41は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。Q31は、酸素原子、硫黄原子又はNRfを表し、Rfは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表し、Ra41と連結して環を形成しても良い。Q32は、酸素原子、硫黄原子又はNRhを表し、Rhは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表し、Rg41と連結して環を形成しても良い。X43は、単結合又は2価の連結基を表す。X44は、上記一般式(P)で表される2価の連結基からなる群から選択される連結基を表す。 In the general formula (F), Y 11 represents a methine group or a nitrogen atom. Ra 41 and Rg 41 each independently represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. Rd 41 and Re 41 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. Q 31 represents an oxygen atom, a sulfur atom or NRf, and Rf represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Ra 41 to form a ring. good. Q 32 represents an oxygen atom, a sulfur atom or NRh, and Rh represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, and may combine with Rg 41 to form a ring. good. X 43 represents a single bond or a divalent linking group. X 44 represents a linking group selected from the group consisting of divalent linking groups represented by the general formula (P).
 一般式(E)又は(F)で表される化合物の具体例としては、例えば、特開2012-82235号公報の段落番号0083~0091に記載の化合物を挙げることができる。 Specific examples of the compound represented by the general formula (E) or (F) include compounds described in paragraph numbers 0083 to 0091 of JP2012-82235A.
〔2.5〕一般式(G)で表される水素結合性化合物
 また、本発明に係る水素結合性化合物は、下記一般式(G)で表される化合物であることが好ましい。
[2.5] Hydrogen Bonding Compound Represented by General Formula (G) The hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (G).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(G)中、Lは、単結合又はヘテロ原子を含む2価の連結基を表す。R81は、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基又は炭素数7~20のアリールアルキル基を表す。 In General Formula (G), L 1 represents a divalent linking group containing a single bond or a hetero atom. R 81 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryl group having 7 to 20 carbon atoms. Represents an alkyl group.
 一般式(G)で表される化合物の具体例としては、例えば、特開2012-82235号公報の段落番号0109~0111に記載の化合物を挙げることができる。 Specific examples of the compound represented by the general formula (G) include the compounds described in paragraph numbers 0109 to 0111 of JP2012-82235A.
〔2.6〕一般式(H)で表される水素結合性化合物
 また、本発明に係る水素結合性化合物は、下記一般式(H)で表される化合物であることが好ましい。
[2.6] Hydrogen Bonding Compound Represented by General Formula (H) The hydrogen bonding compound according to the present invention is preferably a compound represented by the following general formula (H).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(H)中、Lは、単結合又はヘテロ原子を含む2価の連結基を表す。R85は、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基又は炭素数7~20のアリールアルキル基を表す。R83及びR84は、それぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。X53及びX54は、それぞれ独立に、上記一般式(P)で表される2価の連結基からなる群から選択される連結基を表す。 In the general formula (H), L 3 represents a divalent linking group containing a single bond or a hetero atom. R 85 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms. To express. R 83 and R 84 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group. X 53 and X 54 each independently represent a linking group selected from the group consisting of a divalent linking group represented by the above general formula (P).
 一般式(H)で表される化合物の具体例としては、例えば、特開2012-82235号公報の段落番号0113に記載の化合物を挙げることができる。 Specific examples of the compound represented by the general formula (H) include, for example, compounds described in paragraph No. 0113 of JP2012-82235A.
〔2.7〕その他
 上記一般式(A)~(H)で表される化合物は、分子量が100~1000であることが好ましく、150~700であることがより好ましく、150~450であることが最も好ましい。
[2.7] Others The compounds represented by the above general formulas (A) to (H) preferably have a molecular weight of 100 to 1000, more preferably 150 to 700, and 150 to 450. Is most preferred.
 水素結合性化合物は、上記ポリイミドをフィルム状に成型する前であればいずれのタイミングで添加されても本発明の効果が得られるが、操作性の観点から、イミド化済のポリイミド溶液に水素結合性化合物を添加するのが好ましい。 The effect of the present invention can be obtained even if the hydrogen bonding compound is added at any timing before the polyimide is formed into a film. From the viewpoint of operability, the hydrogen bonding compound is hydrogen bonded to the imidized polyimide solution. It is preferable to add a functional compound.
 なお、本発明に係る水素結合性化合物は、一般式(A)~(H)で表される化合物に限定されるものではない。 It should be noted that the hydrogen bonding compound according to the present invention is not limited to the compounds represented by the general formulas (A) to (H).
〔3〕その他の添加剤
 本発明のポリイミドフィルムには、取扱い性を向上させるため、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるため、好ましい。
[3] Other Additives The polyimide film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated silica to improve handling properties. It is preferable to contain a matting agent such as inorganic fine particles such as calcium acid, aluminum silicate, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Of these, silicon dioxide is preferable because it can reduce the haze of the film.
 微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmであり、特に好ましくは、5~12nmである。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
 これらの微粒子は0.1~5μmの粒径の2次粒子を形成してポリイミドに含まれることが好ましく、好ましい平均粒径は0.1~2μmであり、更に好ましくは0.2~0.6μmである。これにより、フィルム表面に高さ0.1~1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることができる。 These fine particles preferably form secondary particles having a particle size of 0.1 to 5 μm and are contained in the polyimide. A preferable average particle size is 0.1 to 2 μm, and more preferably 0.2 to 0.00. 6 μm. As a result, irregularities having a height of about 0.1 to 1.0 μm are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
 本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万~200万倍)で粒子の観察を行い、粒子100個を観察し、粒子径を測定しその平均値をもって、1次平均粒子径とする。 The primary average particle diameter of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle diameter, and measuring the average. Let the value be the primary average particle size.
 なお、本発明のポリイミドフィルムに含有される添加剤は、上記微粒子に限られるものではない。 The additive contained in the polyimide film of the present invention is not limited to the fine particles.
〔4〕フィルムのイミド化処理
 ポリアミド酸を用いて流延膜を形成した場合、得られたフィルムに対してイミド化処理を施すことでポリイミドフィルムを製造することができる。
[4] Imidization treatment of film When a cast film is formed using polyamic acid, a polyimide film can be produced by applying an imidization treatment to the obtained film.
 本発明のポリイミドフィルムは、閉環触媒を含有しないポリアミド酸の溶液を流延してフィルムに成形し、支持体上で加熱乾燥した後、支持体よりフィルムを剥離し、更に高温下で乾燥熱処理することによりイミド化する熱イミド化法を用いて、製造することができる。なお、この方法の場合には、ポリアミド酸溶液に脱水剤を含有させることでイミド化の反応速度を向上させることができるが、脱水剤を含有させないことが好ましい。脱水剤を含有させないことで、残留脱水剤によるポリイミドフィルムの耐久性の低下を抑制することができる。
 また、本発明のポリイミドフィルムは、閉環触媒及び脱水剤を含有させたポリアミド酸の溶液を流延してフィルム状に成形し、支持体上でイミド化を一部進行させてフィルムとした後、支持体よりフィルムを剥離し、加熱乾燥/イミド化し、熱処理を行う化学イミド化法を用いて、製造することもできる。閉環触媒としては、上記した第3級アミン等を用いることができる。なお、この方法の場合、ポリアミド酸溶液に脱水剤を含有させることでイミド化を低温で進行させることができるためポリイミドフィルムの耐久性の低下を抑制することができる。
The polyimide film of the present invention is cast into a polyamic acid solution containing no ring-closing catalyst, formed into a film, heated and dried on a support, then peeled off from the support, and further subjected to a drying heat treatment at a high temperature. It can manufacture using the thermal imidation method which imidizes by this. In the case of this method, the reaction rate of imidization can be improved by adding a dehydrating agent to the polyamic acid solution, but it is preferable not to include a dehydrating agent. By not including a dehydrating agent, it is possible to suppress a decrease in durability of the polyimide film due to the residual dehydrating agent.
In addition, the polyimide film of the present invention is cast into a film by casting a solution of a polyamic acid containing a ring closure catalyst and a dehydrating agent, and after partially imidizing on the support to form a film, The film can be peeled off from the support, heat-dried / imidized, and manufactured using a chemical imidization method in which heat treatment is performed. As the ring-closing catalyst, the above-mentioned tertiary amine or the like can be used. In the case of this method, since the imidization can proceed at a low temperature by adding a dehydrating agent to the polyamic acid solution, it is possible to suppress a decrease in durability of the polyimide film.
 熱イミド化法においては、例えば赤外線ヒーターを用いることにより熱処理を行うことができる。
 赤外線ヒーターとしては、例えば、フィラメントを内管が囲むように形成されたヒーター本体が外管によって覆われ、ヒーター本体と外管との間に冷却流体が流通可能に構成されたものが用いられる。フィラメントは、700~1200℃に通電加熱され、波長が3μm付近にピークを持つ赤外線を放射する。内管及び外管は、石英ガラスやホウケイ酸クラウンガラス等で作製されており、3.5μm以下の波長の赤外線を通過し、3.5μmを超える波長の赤外線を吸収するフィルターとして機能する。このような赤外線ヒーターは、フィラメントから波長が3μm付近にピークを持つ赤外線が放射されると、そのうち3.5μm以下の波長の赤外線を内管や外管を通過してフィルムに照射する。この波長の赤外線が照射されることにより、フィルム内の混合溶媒を効率的に蒸発させることができるとともに、フィルム内のポリアミド酸をイミド化することができる。なお、内管や外管は、3.5μmを超える波長の赤外線を吸収するが、流路を流れる冷却流体によって冷却されるため、フィルムから蒸発する混合溶媒の着火点未満の温度に維持することが可能である。
In the thermal imidization method, heat treatment can be performed by using, for example, an infrared heater.
As the infrared heater, for example, a heater main body formed so that a filament is surrounded by an inner tube is covered with an outer tube, and a cooling fluid can be circulated between the heater main body and the outer tube. The filament is energized and heated to 700 to 1200 ° C., and emits infrared light having a peak at a wavelength of about 3 μm. The inner tube and the outer tube are made of quartz glass, borosilicate crown glass, or the like, and function as a filter that passes infrared light having a wavelength of 3.5 μm or less and absorbs infrared light having a wavelength exceeding 3.5 μm. Such infrared heaters irradiate the film with infrared light having a wavelength of 3.5 μm or less through an inner tube or an outer tube when infrared light having a peak near 3 μm is emitted from the filament. By irradiating with infrared rays having this wavelength, the mixed solvent in the film can be efficiently evaporated and the polyamic acid in the film can be imidized. The inner tube and the outer tube absorb infrared rays having a wavelength exceeding 3.5 μm, but are cooled by the cooling fluid flowing through the flow path, so that the temperature can be maintained below the ignition point of the mixed solvent evaporating from the film. Is possible.
 本発明のポリイミドフィルムの製造方法では、上記のいずれの閉環方法を採用しても良いが、化学イミド化法はポリアミド酸の溶液に閉環触媒及び脱水剤を含有させる設備を必要とするものの、自己支持性を有するフィルムを短時間で得られる点で、より好ましい方法といえる。 In the method for producing a polyimide film of the present invention, any of the above ring closure methods may be adopted, but the chemical imidization method requires equipment for containing a ring closure catalyst and a dehydrating agent in the polyamic acid solution. It can be said that it is a more preferable method in that a film having supportability can be obtained in a short time.
〔5〕ポリイミドフィルムの製造方法
 上記ポリイミドフィルムの製造方法の具体例について以下説明する。
[5] Manufacturing method of polyimide film A specific example of the manufacturing method of the polyimide film will be described below.
 ポリイミドフィルムの製造方法としては、上述のポリアミド酸又はポリイミドを、溶媒に溶解してドープを調製する工程(ドープ調製工程)、前記ドープを支持体上に流延して流延膜を形成する工程(流延工程)、支持体上で流延膜から溶媒を蒸発させる工程(溶媒蒸発工程)、流延膜を支持体から剥離する工程(剥離工程)、得られたフィルムを乾燥させる工程(第1乾燥工程)、フィルムを延伸する工程(延伸工程)、延伸後のフィルムを更に乾燥させる工程(第2乾燥工程)、得られたポリイミドフィルムを巻き取る工程(巻取り工程)、更に必要であればフィルムを加熱処理してイミド化させる工程(加熱工程)等を有することが好ましい。
 以下、各工程について具体的に説明する。
As a method for producing a polyimide film, the above-described polyamic acid or polyimide is dissolved in a solvent to prepare a dope (dope preparation step), and the dope is cast on a support to form a cast film. (Casting step), a step of evaporating the solvent from the cast film on the support (solvent evaporation step), a step of peeling the cast film from the support (peeling step), and a step of drying the obtained film (first step) 1 drying step), a step of stretching the film (stretching step), a step of further drying the stretched film (second drying step), a step of winding up the obtained polyimide film (winding step), and if necessary For example, it is preferable to have a step (heating step) of heating the film to imidize it.
Hereinafter, each step will be specifically described.
〔5.1〕ドープ調製工程
 本発明のポリイミドフィルムの製造方法は、少なくともポリイミドと水素結合性化合物を低沸点溶媒に溶解してドープを調製し、当該ドープを用いて溶液流延製膜方法によって製膜することが好ましい。
[5.1] Dope preparation step The method for producing a polyimide film of the present invention is prepared by dissolving at least polyimide and a hydrogen bonding compound in a low boiling point solvent to prepare a dope, and using the dope, a solution casting film forming method is used. It is preferable to form a film.
 低沸点溶媒は、沸点80℃以下の低沸点溶媒を主溶媒として用いることが好ましい。ここで「主溶媒として用いる」とは、混合溶媒であれば、溶媒全体量に対して55質量%以上を用いることをいい、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上用いることである。もちろん単独使用であれば100質量%となる。 As the low boiling point solvent, a low boiling point solvent having a boiling point of 80 ° C. or lower is preferably used as the main solvent. Here, “used as a main solvent” means that if it is a mixed solvent, 55% by mass or more is used with respect to the total amount of the solvent, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably. Is 90% by mass or more. Of course, if it is used alone, it becomes 100% by mass.
 低沸点溶媒は、ポリイミド、水素結合性化合物及びその他の添加剤を同時に溶解するものであれば良く、例えば、塩素系溶媒としては、ジクロロメタン、非塩素系溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等を挙げることができる。 The low boiling point solvent only needs to dissolve polyimide, a hydrogen bonding compound and other additives at the same time. For example, as the chlorinated solvent, dichloromethane, as the non-chlorinated solvent, methyl acetate, ethyl acetate, acetic acid Amyl, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2- Propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n Propanol, iso- propanol, n- butanol, sec- butanol, tert- butanol and the like.
 中でも沸点80℃以下の低沸点溶媒としては、上記溶媒の中で、ジクロロメタン(40℃)、酢酸エチル(77℃)、メチルエチルケトン(79℃)、テトラヒドロフラン(66℃)、アセトン(56.5℃)、及び1,3-ジオキソラン(75℃)の中から選択される少なくとも1種を主溶媒として含有することが好ましい(括弧内はそれぞれ沸点を表す。)。 Among them, as the low boiling point solvent having a boiling point of 80 ° C. or less, among the above solvents, dichloromethane (40 ° C.), ethyl acetate (77 ° C.), methyl ethyl ketone (79 ° C.), tetrahydrofuran (66 ° C.), acetone (56.5 ° C.) And at least one selected from 1,3-dioxolane (75 ° C.) as a main solvent (the parentheses each represent a boiling point).
 また、混合溶媒の場合に含有される溶媒としては、本発明に係るポリイミド及び水素結合性化合物を溶解し得るものであれば、本発明の効果を阻害しない範囲で用いることができ、上記したもの以外の溶媒として、例えばN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロペンタノン、イプシロンカプロラクタム、クロロホルム等が使用可能であり、2種以上を併用しても良い。また、これらの溶媒と併せて、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶媒を、本発明に係るポリイミド及び水素結合性化合物が析出しない程度に使用しても良い。 Moreover, as a solvent contained in the case of a mixed solvent, as long as it can dissolve the polyimide and the hydrogen bonding compound according to the present invention, it can be used within a range not impairing the effects of the present invention. Examples of other solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphospho Luamide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, γ-butyrolactone, dioxolane, cyclopentanone, epsilon Caprolactam, Chloroform or the like can be used, and may be used in combination of two or more. In addition to these solvents, a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene may be used to the extent that the polyimide and the hydrogen bonding compound according to the present invention do not precipitate. good.
 また、アルコール系溶媒を用いることもできる。当該アルコール系溶媒が、メタノール、エタノール及びブタノールから選択されることが、剥離性を改善し、高速度流延を可能にする観点から好ましい。中でもメタノール又はエタノールを用いることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になる。 Also, an alcohol solvent can be used. It is preferable that the alcohol solvent is selected from methanol, ethanol and butanol from the viewpoint of improving peelability and enabling high-speed casting. Of these, methanol or ethanol is preferably used. When the ratio of the alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
 ポリイミド、水素結合性化合物、その他の添加剤の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、セルロースアシレートフィルムの製造に係る特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の冷却溶解法で行う方法、特開平11-21379号公報に記載の高圧で行う方法等、種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For dissolving polyimide, hydrogen bonding compounds, and other additives, a method performed at normal pressure, a method performed below the boiling point of the main solvent, a method performed under pressure above the boiling point of the main solvent, and the production of a cellulose acylate film Japanese Patent Application Laid-Open No. 9-95544, Japanese Patent Application Laid-Open No. 9-95557, or Japanese Patent Application Laid-Open No. 9-95538, a method of performing a high temperature described in Japanese Patent Application Laid-Open No. 11-21379, etc. Various dissolution methods can be used, and a method of pressurizing at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
 調製したドープは、送液ポンプ等により濾過器に導いて濾過する。例えば、ドープの主たる溶剤がジクロロメタンの場合、当該ジクロロメタンの1気圧における沸点+5℃以上の温度で当該ドープを濾過することにより、ドープ中のゲル状異物を取り除くことができる。好ましい温度範囲は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。 The prepared dope is guided to a filter by a liquid feed pump or the like and filtered. For example, when the main solvent of the dope is dichloromethane, the gel-like foreign matter in the dope can be removed by filtering the dope at a temperature of boiling point at 1 atm of the dichloromethane + 5 ° C. or more. A preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably 45 to 55 ° C.
 また、多くの場合、主ドープには返材が10~50質量%程度含まれることがある。
 返材とは、何らかの理由で原料として再利用される部分のことをいい、例えばポリイミドフィルムを細かく粉砕した物で、ポリイミドフィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでフィルムの規定値を越えたポリイミドフィルム原反等が使用される。
In many cases, the main dope may contain about 10 to 50% by mass of the recycled material.
Return material means a part that is reused as a raw material for some reason, for example, a product obtained by finely pulverizing a polyimide film, which is generated when a polyimide film is formed and both sides of the film are cut off. Also, a polyimide film raw material or the like that exceeds the specified value of the film due to scratches or the like is used.
 また、ドープ調製に用いられる樹脂の原料としては、あらかじめポリイミド及びその他の化合物などをペレット化したものも、好ましく用いることができる。 Further, as a raw material for the resin used for preparing the dope, a material obtained by pelletizing polyimide and other compounds in advance can be preferably used.
〔5.2〕流延膜形成工程
 調製したドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通してダイスに送液し、無限に移送する無端の支持体、例えば、ステンレスベルト又は回転する金属ドラム等の金属支持体上の流延位置に、ダイスからドープを流延する。
[5.2] Casting film forming step An endless support, such as a stainless steel belt or a rotating metal, that feeds the prepared dope to a die through a liquid feed pump (for example, a pressurized metering gear pump) A dope is cast from a die at a casting position on a metal support such as a drum.
 流延(キャスト)における金属支持体は、表面を鏡面仕上げしたものが好ましく、支持体としては、ステンレススティールベルト又は鋳物で表面をめっき仕上げしたドラム、又はステンレスベルト若しくはステンレス鋼ベルト等の金属支持体が好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、更に好ましくは2~2.8mの範囲とすることができる。なお、支持体は、金属製でなくとも良く、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ナイロン6フィルム、ナイロン6,6フィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレン等のベルト等を用いることができる。 The metal support in casting (cast) is preferably a mirror-finished surface, and the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal support such as a stainless steel belt or a stainless steel belt. Is preferably used. The cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m. The support may not be made of metal, for example, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, nylon 6 film, nylon 6,6 film, polypropylene film. A belt made of polytetrafluoroethylene or the like can be used.
 金属支持体の走行速度は特に制限されないが、通常は5m/分以上であり、好ましくは10~180m/分、特に好ましくは80~150m/分である。金属支持体の走行速度は、高速であるほど、同伴ガスが発生しやすくなり、外乱による膜厚ムラの発生が顕著になる。
 金属支持体の走行速度は、金属支持体外表面の移動速度である。
The running speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 80 to 150 m / min. As the traveling speed of the metal support increases, entrained gas is more likely to be generated, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
The traveling speed of the metal support is the moving speed of the outer surface of the metal support.
 金属支持体の表面温度は特に制限されないが、通常は0℃以上、好ましくは20~60℃であり、より好ましくは20~25℃である。 The surface temperature of the metal support is not particularly limited, but is usually 0 ° C. or higher, preferably 20 to 60 ° C., more preferably 20 to 25 ° C.
 ダイスは、幅方向に対する垂直断面において、吐出口に向かうに従い次第に細くなる形状を有している。ダイスは通常、具体的には、下部の走行方向で下流側と上流側とにテーパー面を有し、当該テーパー面の間に吐出口がスリット形状で形成されている。ダイスは金属からなるものが好ましく使用され、具体例として、例えば、ステンレス、チタン等が挙げられる。本発明において、厚さが異なるフィルムを製造するとき、スリット間隙の異なるダイスに変更する必要はない。 The die has a shape that becomes gradually narrower toward the discharge port in the vertical cross section with respect to the width direction. In general, the die usually has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces. A die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイを用いることが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。厚さが異なるフィルムを連続的に製造する場合であっても、ダイスの吐出量は略一定の値に維持されるので、加圧ダイを用いる場合、押し出し圧力、せん断速度等の条件もまた略一定の値に維持される。また、製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層しても良い。 ¡It is preferable to use a pressure die that can adjust the slit shape of the die base and easily make the film thickness uniform. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
 ダイスからのドープの吐出量は好ましくは200~720g/mであり、より好ましくは400~650g/mである。本発明において、厚さが異なるフィルムを連続的に製造する場合であっても、ダイスからのドープ吐出量は上記範囲内で略一定の値に維持されることが好ましい。当該吐出量が200g/m以上であると、流延膜が振動及び風等の外乱の影響を受けにくくなるので、膜厚ムラを十分に防止することができる。当該吐出量が720g/m以下であると、収縮が過度に起きにくく、収縮による膜厚ムラが発生しないので、膜厚ムラを十分に防止できる。 Discharge rate of the dope from the die is preferably 200 ~ 720g / m 2, more preferably 400 ~ 650g / m 2. In the present invention, even when films having different thicknesses are continuously produced, it is preferable that the dope discharge amount from the die is maintained at a substantially constant value within the above range. When the ejection amount is 200 g / m 2 or more, since the casting film is hardly affected by disturbance such as vibration and wind, it is possible to sufficiently prevent uneven thickness. When the discharge amount is 720 g / m 2 or less, the shrinkage does not occur excessively and the film thickness unevenness due to the contraction does not occur, and thus the film thickness unevenness can be sufficiently prevented.
〔5.3〕溶媒蒸発工程
 溶媒蒸発工程は、金属支持体上で行われ、流延膜を金属支持体上で加熱し、溶媒を蒸発させる予備乾燥工程である。
[5.3] Solvent evaporation step The solvent evaporation step is a pre-drying step which is performed on the metal support and the cast film is heated on the metal support to evaporate the solvent.
 溶媒を蒸発させるには、例えば、乾燥機により流延膜側及び金属支持体裏側から加熱風を吹き付ける方法、金属支持体の裏面から加熱液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等を挙げることができる。それらを適宜選択して組み合わせる方法も好ましい。金属支持体の表面温度は全体が同じであっても良いし、位置によって異なっていても良い。加熱風の温度は10~80℃が好ましい。 In order to evaporate the solvent, for example, a method of blowing heated air from the casting membrane side and the back side of the metal support by a dryer, a method of transferring heat from the back side of the metal support by a heating liquid, a method of transferring heat from the front and back by radiant heat Etc. A method of appropriately selecting and combining them is also preferable. The surface temperature of the metal support may be the same as a whole or may vary depending on the position. The temperature of the heating air is preferably 10 to 80 ° C.
 金属支持体を加熱する方法においては、温度が高い方が流延膜の乾燥速度を速くできるため好ましいが、余り高すぎると流延膜が発泡したり、平面性が劣化したりする場合があるため10~30℃で行うことが好ましい。 In the method of heating the metal support, a higher temperature is preferable because the drying speed of the cast film can be increased. However, if the temperature is too high, the cast film may foam or the planarity may deteriorate. Therefore, it is preferably performed at 10 to 30 ° C.
 溶媒蒸発工程においては、流延膜の剥離性及び剥離後の搬送性の観点から、残留溶媒量が10~150質量%になるまで、流延膜を乾燥することが好ましい。 In the solvent evaporation step, it is preferable to dry the cast film until the residual solvent amount is 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
 本発明において、残留溶媒量は下記の式で表すことができる。
  残留溶媒量(質量%)={(M-N)/N}×100
 ここで、Mは流延膜(フィルム)の所定の時点での質量、NはMのものを200℃で3時間乾燥させた時の質量である。特に、溶媒蒸発工程において達成された残留溶媒量を算出するときのMは剥離工程直前の流延膜の質量である。
In the present invention, the residual solvent amount can be expressed by the following formula.
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass at a predetermined point of the casting membrane (film), and N is the mass when M is dried at 200 ° C. for 3 hours. In particular, M when calculating the amount of residual solvent achieved in the solvent evaporation step is the mass of the cast film immediately before the peeling step.
〔5.4〕剥離工程
 金属支持体上で溶媒が蒸発した流延膜を、剥離位置で剥離する。
[5.4] Stripping process The cast film from which the solvent has evaporated on the metal support is stripped at the stripping position.
 金属支持体と流延膜とを剥離する際の剥離張力は、通常、60~400N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。 The peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~60℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~40℃の範囲内とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably in the range of −50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Is most preferred.
 剥離されたフィルムは、延伸工程に直接送られても良いし、所望の残留溶媒量を達成するように第1乾燥工程に送られた後に延伸工程に送られても良い。本発明においては、延伸工程での安定搬送の観点から、剥離工程後、フィルムは、第1乾燥工程及び延伸工程に順次送られることが好ましい。 The peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount. In the present invention, from the viewpoint of stable conveyance in the stretching step, it is preferable that the film is sequentially sent to the first drying step and the stretching step after the peeling step.
〔5.5〕第1乾燥工程
 第1乾燥工程は、フィルムを加熱し、溶媒を更に蒸発させる乾燥工程である。乾燥手段は特に制限されず、例えば、熱風、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は、残留溶媒量及び搬送における伸縮率等を考慮して、30~200℃の範囲が好ましい。
[5.5] First drying step The first drying step is a drying step in which the film is heated to further evaporate the solvent. The drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner. The drying temperature is preferably in the range of 30 to 200 ° C., taking into account the amount of residual solvent and the stretching ratio during transportation.
〔5.6〕延伸工程
 金属支持体から剥離されたフィルムを延伸することで、フィルムの膜厚や平坦性、配向性等を制御することができる。
[5.6] Stretching Step By stretching the film peeled from the metal support, the film thickness, flatness, orientation, etc. of the film can be controlled.
 本発明のポリイミドフィルムの製造方法においては、長手方向及び/又は幅手方向に延伸することが好ましい。 In the method for producing a polyimide film of the present invention, it is preferable to stretch in the longitudinal direction and / or the width direction.
 延伸操作は多段階に分割して実施しても良い。また、二軸延伸を行う場合には同時二軸延伸を行っても良いし、段階的に実施しても良い。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 The stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps. In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
 すなわち、例えば、次のような延伸ステップも可能である:
 ・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。
Thus, for example, the following stretching steps are possible:
-Stretch in the longitudinal direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the longitudinal direction-Stretch in the width direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the longitudinal direction Includes stretching in one direction and contracting the other while relaxing the tension.
 延伸開始時の残留溶媒量は2~50質量%の範囲内であることが好ましい。
 当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、10質量%以内であれば、表面の凹凸が減り、平面性が向上し好ましい。
The residual solvent amount at the start of stretching is preferably in the range of 2 to 50% by mass.
If the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small and is preferable from the viewpoint of flatness, and if it is within 10% by mass, the surface unevenness is reduced, and the flatness is improved.
 本発明のポリイミドフィルムの製造方法においては、延伸後の膜厚が所望の範囲になるように長手方向及び/又は幅手方向に、好ましくは幅手方向に延伸しても良い。フィルムのガラス転移点(Tg)のうち最も低いTgをTgL、最も高いTgをTgHとしたときに、(TgL-200)~(TgH+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れたポリイミドフィルムが得られる。延伸温度は、(TgL-150)~(TgH+40)℃の範囲で行うことがより好ましい。 In the method for producing a polyimide film of the present invention, the film may be stretched in the longitudinal direction and / or the width direction, preferably in the width direction so that the film thickness after stretching is in a desired range. The film is preferably stretched in a temperature range of (TgL−200) to (TgH + 50) ° C., where TgL is the lowest Tg of the glass transition point (Tg) and TgH is the highest Tg. If it extends in the said temperature range, since a extending | stretching stress can be reduced, a haze will become low. Moreover, generation | occurrence | production of a fracture | rupture is suppressed and the polyimide film excellent in planarity and the coloring property of the film itself is obtained. The stretching temperature is more preferably in the range of (TgL−150) to (TgH + 40) ° C.
 本発明に係るポリイミドフィルムの製造方法では、支持体から剥離された自己支持性を有するフィルムを、延伸ローラーで走行速度を規制することにより長手方向に延伸することができる。 In the method for producing a polyimide film according to the present invention, the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller.
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全処理又は一部の処理を幅方向にクリップ又はピンでフィルムの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる。)、中でも、クリップを用いるテンター方式が好ましく用いられる。 In order to stretch the film in the width direction, for example, the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625. A method of drying while drying (referred to as a tenter method), among which a tenter method using a clip is preferably used.
 長手方向に延伸されたフィルム又は未延伸のフィルムは、クリップに幅方向両端部を把持された状態にてテンターへ導入され、テンタークリップとともに走行しながら、幅方向へ延伸されることが好ましい。 The film stretched in the longitudinal direction or the unstretched film is preferably introduced into the tenter in a state where both ends in the width direction are held by the clip, and stretched in the width direction while running with the tenter clip.
 幅手方向への延伸に際し、フィルム幅手方向に50~1000%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。 When stretching in the width direction, stretching in the width direction of the film at a stretching speed of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
 延伸速度は50%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、1000%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。
 より好ましい延伸速度は、100~500%/minの範囲内である。延伸速度は下記式によって定義される。
If the stretching speed is 50% / min or more, the planarity is improved and the film can be processed at high speed, which is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. Can be processed without any problem.
A more preferable stretching speed is in the range of 100 to 500% / min. The stretching speed is defined by the following formula.
  延伸速度(%/min)=[(d/d)-1]×100(%)/t
(上記式において、dは延伸後の樹脂フィルムの延伸方向の幅寸法であり、dは延伸前の樹脂フィルムの延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
Stretching speed (% / min) = [(d 1 / d 2 ) −1] × 100 (%) / t
(In the above formula, d 1 is the width dimension in the stretching direction of the resin film after stretching, d 2 is the width dimension in the stretching direction of the resin film before stretching, and t is the time (min) required for stretching. .)
 延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸倍率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。 In the stretching step, usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order. In the holding step, the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step. In the relaxation stage, the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching. The relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
〔5.7〕第2乾燥工程
 次いで、延伸後のフィルムを加熱して乾燥させる。熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40~350℃の範囲がより好ましい。また、乾燥時間は5秒~30分程度が好ましく、10秒~15分がより好ましい。
[5.7] Second drying step Next, the stretched film is heated and dried. When the film is heated with hot air or the like, a means for preventing the mixing of used hot air by installing a nozzle that can exhaust used hot air (air containing solvent or wet air) is also preferably used. The hot air temperature is more preferably in the range of 40 to 350 ° C. The drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.
 また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40~350℃の範囲がより好ましい。 Further, the heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, etc. can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner. The drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the residual solvent amount, the stretching ratio during conveyance, and the like.
 第2乾燥工程においては、残留溶媒量が0.5質量%以下になるまで、フィルムを乾燥することが好ましい。 In the second drying step, it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
〔5.8〕巻取り工程
 巻取り工程は、得られたフィルムを巻き取って室温まで冷却する工程である。巻取り機は、一般的に使用されているもので良く、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻取り方法で巻き取ることができる。
[5.8] Winding step The winding step is a step of winding the obtained film and cooling it to room temperature. The winding machine may be a commonly used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
 フィルムの厚さは特に制限されず、例えば、1~200μm、特に1~50μmであることが好ましい。 The thickness of the film is not particularly limited and is, for example, preferably 1 to 200 μm, particularly 1 to 50 μm.
 巻取り工程においては、延伸搬送したときにテンタークリップ等で挟み込んだフィルムの両端をスリット加工しても良い。スリットしたフィルム端部は、1~30mm幅に細かく断裁された後、溶剤に溶解させて返材として再利用することが好ましい。 In the winding process, both ends of the film sandwiched between tenter clips when stretched and conveyed may be slit. The slit film end is preferably cut into a width of 1 to 30 mm, dissolved in a solvent, and reused as a recycled material.
 成形されたフィルムのうち返材として再利用される部分の比は、10~90質量%が好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。 The ratio of the portion of the formed film that is reused as a recycled material is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass.
 製膜工程の途中又は最終的に発生する返材の量により投入量は若干変わるが、通常、ドープ中の全固形分に対する返材の混合率は10~50質量%程度であり、好ましくは、15~40質量%程度である。返材の混合率は、できるだけ一定量とすることが生産安定上好ましい。 The input amount varies slightly depending on the amount of return material generated during the film forming process or finally, but the mixing ratio of the returned material to the total solid content in the dope is usually about 10 to 50% by mass, preferably It is about 15 to 40% by mass. The mixing ratio of the recycled materials is preferably as constant as possible for production stability.
 上述した溶媒蒸発工程から巻取り工程までの各工程は、空気雰囲気下で行っても良いし、窒素ガス等の不活性ガス雰囲気下で行っても良い。また、各工程、特に乾燥工程や延伸工程は、雰囲気における溶媒の爆発限界濃度を考慮して行う。 Each step from the solvent evaporation step to the winding step described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
〔5.9〕加熱工程
 上記巻取り工程後に、ポリマー鎖分子内及びポリマー鎖分子間でのイミド化を進行させて機械的特性を向上させるべく、上記第2乾燥工程で乾燥したフィルムを更に熱処理する加熱工程を行う。
 また、ポリイミド(イミド化率100%)を用いてドープを調製した場合や、上記第2乾燥工程を行うことによりフィルムのイミド化率が100%となった場合であっても、フィルムの残留応力を緩和させる目的で、加熱工程を行う。
 なお、上記第2乾燥工程が、加熱工程を兼ねるものであっても良い。
[5.9] Heating step After the winding step, the film dried in the second drying step is further heat-treated to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve mechanical properties. A heating step is performed.
Moreover, even when the dope is prepared using polyimide (imidation rate 100%) or when the imidation rate of the film becomes 100% by performing the second drying step, the residual stress of the film A heating process is performed for the purpose of relaxing the above.
In addition, the said 2nd drying process may serve as a heating process.
 加熱手段は、例えば、熱風、電気ヒーター、マイクロ波等の公知の手段を用いて行われる。電気ヒーターとしては、上記した赤外線ヒーターを用いることができる。 The heating means is performed using a known means such as hot air, an electric heater, or a microwave. As the electric heater, the above-described infrared heater can be used.
 加熱処理条件は、最終的な処理条件が200~450℃の温度範囲内で、30秒~1時間の範囲で適宜行うのが好ましい。これにより、ポリイミドフィルムの寸法安定性を向上させることができる。加熱工程において、フィルムを急激に加熱すると表面欠点が増加する等の不具合が生じるため、加熱方法は適宜選択することが好ましい。また、加熱工程は、低酸素雰囲気下で行うことが好ましい。 As the heat treatment conditions, it is preferable that the final treatment conditions are suitably in the temperature range of 200 to 450 ° C. and in the range of 30 seconds to 1 hour. Thereby, the dimensional stability of a polyimide film can be improved. In the heating step, if the film is heated rapidly, defects such as an increase in surface defects occur, and therefore it is preferable to select the heating method as appropriate. The heating step is preferably performed in a low oxygen atmosphere.
 第二乾燥工程及び加熱工程における加熱温度は450℃を超えると、加熱に必要なエネルギーが非常に大きくなることから製造コストが高くなり、更に、環境負荷が増大するため、当該加熱温度は450℃以下にすることが好適である。 When the heating temperature in the second drying step and the heating step exceeds 450 ° C., the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load. The following is preferable.
 なお、巻取り工程後であって、加熱工程の前又は後に、ポリイミドフィルムの幅方向端部をスリットする工程や、ポリイミドフィルムが帯電していた場合にはこれを除電する工程等を更に行うものとしても良い。 In addition, after the winding process, before or after the heating process, a process of slitting the width direction end of the polyimide film, or a process of neutralizing the polyimide film if charged, etc. It is also good.
〔6〕ポリイミドフィルムの物性
〔6.1〕フィルム長、幅、膜厚
 本発明のポリイミドフィルムは、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、本発明のポリイミドフィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
[6] Physical Properties of Polyimide Film [6.1] Film Length, Width, Film Thickness The polyimide film of the present invention is preferably long, and specifically has a length of about 100 to 10,000 m. Preferably, it is wound up in a roll shape. The width of the polyimide film of the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
 フィルムの膜厚は、フレキシブルプリント基板としての強度と透明性の観点から、1~200μmの範囲内であることが好ましい。膜厚が1μm以上であれば、一定以上のフィルム強度を発現させることができる。膜厚が200μm以下であれば、フィルム基板としてフレキシブルである。特に、1~50μmであることが好ましい。 The film thickness is preferably in the range of 1 to 200 μm from the viewpoint of strength and transparency as a flexible printed board. When the film thickness is 1 μm or more, a certain level of film strength can be developed. If the film thickness is 200 μm or less, the film substrate is flexible. In particular, the thickness is preferably 1 to 50 μm.
〔6.2〕ヘイズ
 本発明のポリイミドフィルムは、厚さ50μmのサンプルを作製し、ヘイズが2%未満であることが好ましく、0.5%未満であることがより好ましく、0.3%未満であることが更に好ましい。ヘイズを1%未満とすることにより、光学用途のフィルムとして、種々なデバイスに適用の幅が広がるという利点がある。
[6.2] Haze The polyimide film of the present invention is a sample having a thickness of 50 μm. The haze is preferably less than 2%, more preferably less than 0.5%, and less than 0.3%. More preferably. By setting the haze to less than 1%, there is an advantage that the range of application to various devices is widened as a film for optical applications.
 ヘイズは、23℃・55%RHの空調室で24時間調湿した試料1枚をJIS K-7136に従って、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用して測定する。 Haze is measured using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K-7136, one sample that has been conditioned for 24 hours in an air-conditioned room at 23 ° C. and 55% RH.
《フレキシブルプリント基板》
 本発明のフレキシブルプリント基板は、本発明のポリイミドフィルムをベースフィルムとし、これに接着剤を介して金属箔を圧着することによって得られる。ここで用いられる接着剤としては、例えば、アクリル系、ポリイミド系及びエポキシ系接着剤等が挙げられる。
 また、接着剤を介してポリイミドフィルムと熱圧着される金属箔は、コスト低減の観点から銅箔であることが好ましいが、アルミニウム、金、銀、ニッケル、スズ等、他の金属箔でも良い。
《Flexible printed circuit board》
The flexible printed circuit board of the present invention can be obtained by using the polyimide film of the present invention as a base film and pressing a metal foil on the base film via an adhesive. Examples of the adhesive used here include acrylic, polyimide, and epoxy adhesives.
The metal foil that is thermocompression bonded to the polyimide film via an adhesive is preferably a copper foil from the viewpoint of cost reduction, but other metal foils such as aluminum, gold, silver, nickel, and tin may be used.
《LED照明用基板》
 本発明のLED照明用基板としては、本発明のポリイミドフィルムを用いてなるものであれば、特に制限されるものではなく、例えば、両面基板やアルミ板との複合基板が挙げられる。LEDの高輝度化に伴い、より放熱性が要求される場合には、アルミ板と複合化することにより放熱性を向上させることが可能である。
《LED lighting substrate》
The substrate for LED illumination of the present invention is not particularly limited as long as it uses the polyimide film of the present invention, and examples thereof include a double-sided substrate and a composite substrate with an aluminum plate. In the case where heat dissipation is required as the brightness of the LED increases, it is possible to improve the heat dissipation by combining with an aluminum plate.
《フレキシブルディスプレイ用前面板》
 本発明のフレキシブルディスプレイ用前面板は、本発明のポリイミドフィルムを用いてなるものであれば、特に制限されるものではない。本発明のフレキシブルディスプレイ用前面板が搭載されるフレキシブルディスプレイとしては、例えば、基板上に発光層等の有機機能層が積層されてなる有機EL素子、ガスバリアーフィルム、フィルムカラーフィルター、片面又は両面に偏光板保護フィルムを備える偏光板、フィルム型タッチセンサー等がこの順に積層されて構成される。本発明のフレキシブルディスプレイ用前面板は、例えば、上記のように構成されるフレキシブルディスプレイのフィルム型タッチセンサー上に積層される。
《Front plate for flexible display》
The front plate for a flexible display of the present invention is not particularly limited as long as it uses the polyimide film of the present invention. As a flexible display on which the front plate for flexible display of the present invention is mounted, for example, an organic EL element in which an organic functional layer such as a light emitting layer is laminated on a substrate, a gas barrier film, a film color filter, one side or both sides A polarizing plate including a polarizing plate protective film, a film-type touch sensor, and the like are laminated in this order. The front panel for a flexible display of the present invention is laminated on a film type touch sensor of a flexible display configured as described above, for example.
 なお、本発明のポリイミドフィルムは、上記フレキシブルディスプレイを構成する有機EL素子の基板に用いられても良いし、上記フレキシブルディスプレイを構成する偏光板の偏光板保護フィルムに用いられても良い。 In addition, the polyimide film of this invention may be used for the board | substrate of the organic EL element which comprises the said flexible display, and may be used for the polarizing plate protective film of the polarizing plate which comprises the said flexible display.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
[実施例1]
《ポリイミドフィルム101の作製》
〈ポリイミドAの調製〉
 ステンレススチール製錨型撹拌機、窒素導入管、ディーン・スターク装置を取り付けた500mLのセパラブル四つ口フラスコに4,4′-オキシジフタル酸無水物(ODPA)56.11g(0.18モル)、ジエチルトルエンジアミン(DETDA)32.09g(0.18モル)、γ-ブチロラクトン(GBL)326.87g、ピリジン2.85g、トルエン33gを仕込み、反応系内を窒素置換した。窒素気流下80℃にて30分間撹拌することによりODPAを溶解させ、その後180℃まで昇温して6時間加熱撹拌を行った。
[Example 1]
<< Preparation of polyimide film 101 >>
<Preparation of polyimide A>
In a 500 mL separable four-necked flask equipped with a stainless steel vertical agitator, nitrogen inlet tube, Dean-Stark apparatus, 56.11 g (0.18 mol) of 4,4′-oxydiphthalic anhydride (ODPA), diethyl Toluenediamine (DETDA) 32.09 g (0.18 mol), γ-butyrolactone (GBL) 326.87 g, pyridine 2.85 g, and toluene 33 g were charged, and the inside of the reaction system was purged with nitrogen. ODPA was dissolved by stirring at 80 ° C. for 30 minutes under a nitrogen stream, and then heated to 180 ° C. and stirred for 6 hours.
 反応中に生成する水はトルエン、ピリジンとの共沸混合物として反応系外へ除いた。反応終了後、室温まで冷却し、20質量%濃度のポリイミド溶液を得た。得られたポリイミドの構造は、下記の式のとおりである。このポリイミド溶液にイソプロパノールを投入し撹拌後に冷却してポリイミドの固体を得た。この固体を洗浄、乾燥してポリイミドAとした。 The water produced during the reaction was removed from the reaction system as an azeotrope with toluene and pyridine. After completion of the reaction, the reaction solution was cooled to room temperature to obtain a 20% by mass polyimide solution. The structure of the obtained polyimide is as shown in the following formula. Isopropanol was added to the polyimide solution, and the mixture was cooled after stirring to obtain a polyimide solid. This solid was washed and dried to obtain polyimide A.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式中、R~Rは、メチル基又はエチル基を表し、R~Rのうちの一つがメチル基、二つがエチル基を表す。 In the above formula, R 1 to R 3 represent a methyl group or an ethyl group, one of R 1 to R 3 represents a methyl group, and two represents an ethyl group.
〈ドープの調製〉
 下記組成の主ドープを調製した。まず、加圧溶解タンクにジクロロメタン(沸点40℃)を添加した。溶剤の入った加圧溶解タンクに、上記調製したポリイミドA及び残りの成分を撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。
<Preparation of dope>
A main dope having the following composition was prepared. First, dichloromethane (boiling point 40 ° C.) was added to the pressure dissolution tank. The prepared polyimide A and the remaining components were charged into a pressure dissolution tank containing a solvent while stirring. While this was heated and stirred, it was completely dissolved, and this was dissolved in Azumi Filter Paper No. The main dope was prepared by filtration using 244.
〈主ドープの組成〉
 ジクロロメタン                         350質量部
 ポリイミドA                          100質量部
 下記式で表される水素結合性化合物1                10質量部
 マット剤(アエロジル R812、日本アエロジル(株)製)    0.5質量部
<Composition of main dope>
Dichloromethane 350 parts by mass Polyimide A 100 parts by mass Hydrogen bonding compound 1 represented by the following formula 10 parts by mass Matting agent (Aerosil R812, manufactured by Nippon Aerosil Co., Ltd.) 0.5 parts by mass
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
〈流延工程〉
 次いで、無端ベルト流延装置を用い、ドープを温度30℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
<Casting process>
Next, using an endless belt casting apparatus, the dope was cast uniformly on a stainless steel belt support at a temperature of 30 ° C. and a width of 1500 mm. The temperature of the stainless steel belt was controlled at 30 ° C.
〈剥離工程〉
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力180N/mで、ステンレスベルト支持体上から剥離した。
<Peeling process>
On the stainless steel belt support, the solvent was evaporated until the residual solvent amount in the cast (cast) film was 75%, and then peeled off from the stainless steel belt support with a peeling tension of 180 N / m.
〈延伸工程〉
 剥離したポリイミドフィルムを、200℃の熱をかけながらクリップ式テンターを用いて幅方向に1.50倍延伸した。延伸開始時の残留溶媒量は20質量%であった。
<Extension process>
The peeled polyimide film was stretched 1.50 times in the width direction using a clip-type tenter while applying heat at 200 ° C. The residual solvent amount at the start of stretching was 20% by mass.
〈乾燥工程〉
 延伸したフィルムを、搬送張力100N/m、乾燥時間15分間として、残留溶媒量が0.1質量%未満となる乾燥温度で乾燥させ、乾燥膜厚55μmのフィルムを得た。得られたフィルムを巻き取って、ポリイミドフィルム101を得た。
<Drying process>
The stretched film was dried at a drying temperature at which the residual solvent amount was less than 0.1% by mass with a transport tension of 100 N / m and a drying time of 15 minutes, to obtain a film having a dry film thickness of 55 μm. The obtained film was wound up to obtain a polyimide film 101.
《ポリイミドフィルム102の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物2に変更した以外は同様にして、ポリイミドフィルム102を作製した。
<< Preparation of polyimide film 102 >>
In the production of the polyimide film 101, a polyimide film 102 was produced in the same manner except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 2 represented by the following formula.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
《ポリイミドフィルム103の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物3に変更した以外は同様にして、ポリイミドフィルム103を作製した。
<< Preparation of polyimide film 103 >>
In the production of the polyimide film 101, a polyimide film 103 was produced in the same manner except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 3 represented by the following formula.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
《ポリイミドフィルム104の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物4(Tinuvin 171)に変更した以外は同様にして、ポリイミドフィルム104を作製した。
<< Preparation of polyimide film 104 >>
In the production of the polyimide film 101, a polyimide film 104 was produced in the same manner except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 4 (Tinuvin 171) represented by the following formula.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
《ポリイミドフィルム105の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物5(Tinuvin 928)に変更した以外は同様にして、ポリイミドフィルム105を作製した。
<< Preparation of polyimide film 105 >>
In the production of the polyimide film 101, a polyimide film 105 was produced in the same manner except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 5 (Tinuvin 928) represented by the following formula.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
《ポリイミドフィルム106の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物6に変更した以外は同様にして、ポリイミドフィルム106を作製した。
<< Preparation of polyimide film 106 >>
In the production of the polyimide film 101, a polyimide film 106 was produced in the same manner except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 6 represented by the following formula.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
《ポリイミドフィルム107の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物7に変更した以外は同様にして、ポリイミドフィルム107を作製した。
<< Preparation of polyimide film 107 >>
In the production of the polyimide film 101, a polyimide film 107 was produced in the same manner except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 7 represented by the following formula.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
《ポリイミドフィルム108の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物8に変更した以外は同様にして、ポリイミドフィルム108を作製した。
<< Preparation of polyimide film 108 >>
A polyimide film 108 was produced in the same manner as in the production of the polyimide film 101 except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 8 represented by the following formula.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式中、3つのCHOR基のうちの1つにおけるRは水素原子を表し、他の1つにおけるRはアセチル基を表す。これら以外の5つのRはいずれもベンゾゾイル基を表す。 In the above formula, R in one of the three CH 2 OR groups represents a hydrogen atom, and R in the other one represents an acetyl group. All five other Rs represent benzozoyl groups.
《ポリイミドフィルム109の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を水素結合性化合物9(パインクリスタルKE-604、荒川化学工業(株)製)に変更した以外は同様にして、ポリイミドフィルム109を作製した。
<< Preparation of polyimide film 109 >>
A polyimide film 109 was produced in the same manner as in the production of the polyimide film 101 except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 9 (Pine Crystal KE-604, manufactured by Arakawa Chemical Industries, Ltd.).
《ポリイミドフィルム110の作製》
 上記ポリイミドフィルム101の作製において、水素結合性化合物1を下記式で表される水素結合性化合物10に変更した以外は同様にして、ポリイミドフィルム110を作製した。
<< Preparation of polyimide film 110 >>
In the production of the polyimide film 101, a polyimide film 110 was produced in the same manner except that the hydrogen bonding compound 1 was changed to the hydrogen bonding compound 10 represented by the following formula.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式中、3つのCHOR基のうちの1つにおけるRは水素原子を表す。これ以外の7つのRはいずれもベンゾイル基を表す。 In the above formula, R in one of the three CH 2 OR groups represents a hydrogen atom. The other seven Rs all represent a benzoyl group.
《ポリイミドフィルム111の作製》
 上記ポリイミドフィルム106の作製において、ポリイミドAをポリイミドBに変更した以外は同様にして、ポリイミドフィルム111を作製した。ポリイミドBの調製方法を以下に示す。
<< Preparation of polyimide film 111 >>
In the production of the polyimide film 106, a polyimide film 111 was produced in the same manner except that the polyimide A was changed to the polyimide B. The preparation method of polyimide B is shown below.
〈ポリイミドBの調製〉
 ポリイミドAの調製に用いたものと同様の装置にODPA46.80g(0.15モル)、4,4′-ジアミノ-3,3′,5,5′-テトラメチルジフェニルメタン38.16g(0.15モル)、GBL147.67g、ピリジン2.39g、トルエン50gを仕込み、反応系内を窒素置換した。窒素気流下80℃にて30分間撹拌することによりODPAを溶解させ、その後180℃まで昇温して7時間加熱撹拌を行った。
<Preparation of polyimide B>
In the same apparatus as that used for the preparation of polyimide A, 46.80 g (0.15 mol) of ODPA and 38.16 g (0.15 of 4,4′-diamino-3,3 ′, 5,5′-tetramethyldiphenylmethane) were used. Mol), 147.67 g of GBL, 2.39 g of pyridine, and 50 g of toluene, and the inside of the reaction system was purged with nitrogen. ODPA was dissolved by stirring for 30 minutes at 80 ° C. under a nitrogen stream, and then heated to 180 ° C. and stirred for 7 hours.
 反応中に生成する水はトルエン、ピリジンとの共沸混合物として反応系外へ除いた。反応終了後、120℃まで冷却したところでGBL100gを添加することにより、25質量%濃度のポリイミド溶液を得た。得られたポリイミドの構造は、下記の式のとおりである。このポリイミド溶液にイソプロパノールを投入し撹拌後に冷却してポリイミドの固体を得た。この固体を洗浄、乾燥してポリイミドBとした。 The water produced during the reaction was removed from the reaction system as an azeotrope with toluene and pyridine. After completion of the reaction, when cooled to 120 ° C., 100 g of GBL was added to obtain a polyimide solution having a concentration of 25% by mass. The structure of the obtained polyimide is as shown in the following formula. Isopropanol was added to the polyimide solution, and the mixture was cooled after stirring to obtain a polyimide solid. This solid was washed and dried to obtain polyimide B.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
《ポリイミドフィルム112の作製》
 上記ポリイミドフィルム106の作製において、ポリイミドAをポリイミドCに変更した以外は同様にして、ポリイミドフィルム112を作製した。
 ポリイミドCは、上記ポリイミドAの調製において、0.18モルのジエチルトルエンジアミン(DETDA)に代えて、0.18モルの2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを用いることで調製することができる。
<< Preparation of polyimide film 112 >>
In the production of the polyimide film 106, a polyimide film 112 was produced in the same manner except that the polyimide A was changed to the polyimide C.
Polyimide C uses 0.18 mol of 2,2-bis [4- (4-aminophenoxy) phenyl] propane instead of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A. Can be prepared.
《ポリイミドフィルム113の作製》
 上記ポリイミドフィルム106の作製において、ポリイミドAをポリイミドDに変更した以外は同様にして、ポリイミドフィルム113を作製した。
 ポリイミドDは、上記ポリイミドAの調製において、0.18モルのジエチルトルエンジアミン(DETDA)に代えて、0.18モルの4,4′-ビス(4-アミノフェノキシ)ビフェニルを用いることで調製することができる。
<< Preparation of polyimide film 113 >>
In the production of the polyimide film 106, a polyimide film 113 was produced in the same manner except that the polyimide A was changed to the polyimide D.
Polyimide D is prepared by using 0.18 mol of 4,4′-bis (4-aminophenoxy) biphenyl instead of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A. be able to.
《ポリイミドフィルム114の作製》
 上記ポリイミドフィルム106の作製において、ポリイミドAをポリイミドEに変更した以外は同様にして、ポリイミドフィルム114を作製した。
 ポリイミドEは、上記ポリイミドAの調製において、0.18モルのジエチルトルエンジアミン(DETDA)に代えて、0.18モルのα,α′-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼンを用いることで調製することができる。
<< Preparation of polyimide film 114 >>
In the production of the polyimide film 106, a polyimide film 114 was produced in the same manner except that the polyimide A was changed to the polyimide E.
Polyimide E was prepared by using 0.18 mol α, α′-bis (4-aminophenyl) -1,4-diisopropylbenzene instead of 0.18 mol diethyltoluenediamine (DETDA) in the preparation of polyimide A. Can be prepared.
《ポリイミドフィルム115の作製》
 上記ポリイミドフィルム106の作製において、ポリイミドAをポリイミドFに変更した以外は同様にして、ポリイミドフィルム115を作製した。
 ポリイミドFは、上記ポリイミドAの調製において、0.18モルのジエチルトルエンジアミン(DETDA)に代えて、0.18モルの2,2′-ビス(トリフルオロメチル)ベンジジンを用いることで調製することができる。
<< Preparation of polyimide film 115 >>
In the production of the polyimide film 106, a polyimide film 115 was produced in the same manner except that the polyimide A was changed to the polyimide F.
Polyimide F should be prepared by using 0.18 mol of 2,2'-bis (trifluoromethyl) benzidine instead of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A. Can do.
《ポリイミドフィルム116の作製》
 上記ポリイミドフィルム106の作製において、ポリイミドAをポリイミドGに変更した以外は同様にして、ポリイミドフィルム116を作製した。
 ポリイミドGは、上記ポリイミドAの調製において、0.18モルのジエチルトルエンジアミン(DETDA)に代えて、0.18モルの4,4′-ジアミノジシクロヘキシルメタンを用いることで調製することができる。
<< Preparation of polyimide film 116 >>
In the production of the polyimide film 106, a polyimide film 116 was produced in the same manner except that the polyimide A was changed to the polyimide G.
Polyimide G can be prepared by using 0.18 mol of 4,4′-diaminodicyclohexylmethane in place of 0.18 mol of diethyltoluenediamine (DETDA) in the preparation of polyimide A.
《ポリイミドフィルム117の作製》
 上記ポリイミドフィルム101の作製において、ドープの調製時に水素結合性化合物1を添加しなかった以外は同様にして、ポリイミドフィルム117を作製した。
<< Preparation of polyimide film 117 >>
In the production of the polyimide film 101, a polyimide film 117 was produced in the same manner except that the hydrogen bonding compound 1 was not added when the dope was prepared.
《ポリイミドフィルム118の作製》
 上記ポリイミドフィルム112の作製において、ドープの調製時に水素結合性化合物6を添加しなかった以外は同様にして、ポリイミドフィルム118を作製した。
<< Preparation of polyimide film 118 >>
In the production of the polyimide film 112, a polyimide film 118 was produced in the same manner except that the hydrogen bonding compound 6 was not added when the dope was prepared.
《ポリイミドフィルム119の作製》
 上記ポリイミドフィルム101の作製において、10質量部の水素結合性化合物1を10質量部の水に変更した以外は同様にして、ポリイミドフィルム119を作製した。
<< Preparation of polyimide film 119 >>
In the production of the polyimide film 101, a polyimide film 119 was produced in the same manner except that 10 parts by mass of the hydrogen bonding compound 1 was changed to 10 parts by mass of water.
《ポリイミドフィルム120の作製》
 上記ポリイミドフィルム101の作製において、10質量部の水素結合性化合物1を10質量部のベンゼンに変更した以外は同様にして、ポリイミドフィルム120を作製した。
<< Preparation of polyimide film 120 >>
In the production of the polyimide film 101, a polyimide film 120 was produced in the same manner except that 10 parts by mass of the hydrogen bonding compound 1 was changed to 10 parts by mass of benzene.
《ポリイミドフィルム101~120の評価》
 上記のようにして作製したポリイミドフィルム101~120を用いて有機ELデバイスを作製し、評価を行った。
<< Evaluation of polyimide films 101-120 >>
An organic EL device was produced using the polyimide films 101 to 120 produced as described above and evaluated.
 透明基板として上記ポリイミドフィルム101~120を用いて、その上にクロムからなる反射電極、反射電極上に金属電極(陽極)としてITO(スズドープ酸化インジウム)を用いて金属電極を形成し、有機発光層として、陽極上に正孔輸送層としてポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)をスパッタリング法で厚さ80nmで形成し、次いで正孔輸送層上にシャドーマスクを用いて、RGBそれぞれの発光層R、G、Bを100nmの層厚で形成した。赤色発光層Rとしては、ホストとしてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)と発光性化合物[4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran](DCM)とを共蒸着(質量比99:1)して100nmの厚さで形成した。緑色発光層Gとしては、ホストとしてAlqと、発光性化合物クマリン6(3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン)とを共蒸着(質量比99:1)して100nmの厚さで形成した。青色発光層Bとしては、ホストとしてBAlqと発光性化合物Peryleneとを共蒸着(質量比90:10)して厚さ100nmで形成した。 Using the polyimide films 101 to 120 as a transparent substrate, a reflective electrode made of chromium thereon, a metal electrode using ITO (tin-doped indium oxide) as a metal electrode (anode) on the reflective electrode, and an organic light emitting layer As a hole transport layer, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is formed with a thickness of 80 nm on the anode by a sputtering method, and then a shadow mask is formed on the hole transport layer. In this way, RGB light emitting layers R, G, and B were formed with a layer thickness of 100 nm. As the red light emitting layer R, tris (8-hydroxyquinolinate) aluminum (Alq 3 ) and a light emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] ( DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm. As the green light emitting layer G, Alq 3 as a host and a light emitting compound coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin) are co-evaporated (mass ratio 99: 1) to a thickness of 100 nm. Formed. The blue light-emitting layer B was formed with a thickness of 100 nm by co-evaporating BAlq and a light-emitting compound Perylene as a host (mass ratio 90:10).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 更に、有機発光層上に電子が効率的に注入できるような仕事関数の低い第1の陰極としてカルシウムを真空蒸着法により4nmの厚さで成膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで形成した。ここで、第2の陰極として用いたアルミニウムは、その上に透明導電膜をスパッタリング法により成膜する際に、第1の陰極であるカルシウムが化学的変質を起こすことを防ぐ役割がある。次に、陰極上にスパッタリング法によって透明導電膜を80nmの厚さで成膜し透明電極とした。ここで透明導電膜としてはITOを用いた。更に、透明電極上にCVD法によって窒化ケイ素を200nm成膜することで、絶縁層とし、有機EL素子ユニットを作製した。 Further, calcium is deposited to a thickness of 4 nm by vacuum deposition as a first cathode having a low work function so that electrons can be efficiently injected onto the organic light emitting layer, and a second cathode is formed on the first cathode. As a result, aluminum was formed to a thickness of 2 nm. Here, the aluminum used as the second cathode has a role of preventing the calcium as the first cathode from causing chemical alteration when a transparent conductive film is formed thereon by a sputtering method. Next, a transparent conductive film having a thickness of 80 nm was formed on the cathode by sputtering to form a transparent electrode. Here, ITO was used as the transparent conductive film. Furthermore, 200 nm of silicon nitride was deposited on the transparent electrode by a CVD method to form an organic EL element unit as an insulating layer.
 次に、ガスバリアーフィルムとして、厚さ20μmのガスバリアー層付きポリエチレンテレフタレートフィルムを使用し、このガスバリアーフィルムの片面に、熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで付与した封止ユニットを作製した。 Next, a polyethylene terephthalate film with a gas barrier layer having a thickness of 20 μm was used as the gas barrier film, and a thermosetting liquid adhesive (epoxy resin) was applied to a thickness of 25 μm on one side of the gas barrier film. A sealing unit was produced.
 次に、90℃で0.1MPaの減圧条件下で、透明基板~絶縁層まで形成した有機EL素子ユニットと封止ユニットとを積層して圧力をかけて5分間保持した。続いて、積層体を大気圧環境に戻し、更に90℃で30分間加熱して接着剤を硬化させて、有機EL表示デバイスを作製した。 Next, the organic EL element unit formed from the transparent substrate to the insulating layer and the sealing unit were laminated under a reduced pressure of 0.1 MPa at 90 ° C., and the pressure was applied and held for 5 minutes. Subsequently, the laminate was returned to the atmospheric pressure environment, and further heated at 90 ° C. for 30 minutes to cure the adhesive, thereby producing an organic EL display device.
 作製した有機EL表示デバイスに対し、ヒートショック試験機(日立アプライアンス(株)製、EC-35EXH)を用いて、80℃・45%RHで10分間保持した後、25℃・80%RHに変化させて10分間保持し、再び80℃・45%RHに変化させる操作を1サイクルとして、これを150サイクル繰り返す耐久試験を行った。当該耐久試験後の有機EL表示デバイスを平面ガラス上に置き、定規を用いてその反りを測定し、以下の基準に従って評価した。
  ◎:2mm以下の反りが発生している
  ○:5~10mmの反りが発生している
  ×:10mm以上の反りが発生している
The produced organic EL display device was held at 80 ° C / 45% RH for 10 minutes using a heat shock tester (Hitachi Appliances Co., Ltd., EC-35EXH) and then changed to 25 ° C / 80% RH. This was held for 10 minutes, and the operation of changing the temperature again to 80 ° C. and 45% RH was taken as one cycle, and a durability test was repeated for 150 cycles. The organic EL display device after the endurance test was placed on a flat glass, its warpage was measured using a ruler, and evaluated according to the following criteria.
◎: Warpage of 2 mm or less occurred ○: Warpage of 5 to 10 mm occurred ×: Warpage of 10 mm or more occurred
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表1に示されるように、本発明のポリイミドフィルムを用いて作製した有機EL表示デバイスは反りが抑制されていることから、本発明のポリイミドフィルムは温湿度環境変動による寸法変動が抑制されているものといえる。
 これに対し、比較例のポリイミドフィルムは、水素結合性化合物を含有しておらず、有機EL表示デバイスの反りが抑制されていない。このため、比較例のポリイミドフィルムは、高温高湿環境下で寸法変動が発生したものと考えられる。
As shown in Table 1, since the warpage of the organic EL display device produced using the polyimide film of the present invention is suppressed, the dimensional variation due to the temperature and humidity environment variation of the polyimide film of the present invention is suppressed. It can be said that.
On the other hand, the polyimide film of the comparative example does not contain a hydrogen bonding compound, and the warp of the organic EL display device is not suppressed. For this reason, the polyimide film of the comparative example is considered to have undergone dimensional variations in a high temperature and high humidity environment.
[実施例2]
 実施例1で作製したポリイミドフィルム101~120を用いて以下のようにしてフレキシブルプリント基板を作製した。
[Example 2]
Using the polyimide films 101 to 120 produced in Example 1, a flexible printed board was produced as follows.
 ポリイミドフィルムの片面に、巻き出し機、スパッタリング装置及び巻き取り機等から構成されるスパッタリング設備を用いて直流スパッタリング法により、平均厚さ230Åの20質量%Crのクロム-ニッケル合金層を金属薄膜として形成した。更に、同様にして、金属薄膜の上に平均厚さ1000Åの銅薄膜を形成した。 On one side of the polyimide film, a 20 mass% chromium-nickel alloy layer having an average thickness of 230 mm as a metal thin film is formed by a direct current sputtering method using a sputtering facility composed of an unwinder, a sputtering device, a winder, and the like. Formed. Further, similarly, a copper thin film having an average thickness of 1000 mm was formed on the metal thin film.
 次に、銅薄膜の上に電気銅めっき法により、厚さ9μmの銅層を設けて金属被覆ポリイミドフィルムを得た。用いた銅めっき浴は、銅濃度23g/Lの硫酸銅めっき浴であり、めっき時の浴温は27℃とした。また、めっき槽は、複数のめっき槽を連結させた複数構造槽とし、巻き出し機及び巻き取り機により片面に金属層が設けられたポリイミドフィルムが連続的に各槽に浸漬されるように搬送しながら電気めっきを行った。搬送速度は、75m/hとし、めっき槽の平均陰極電流密度を1.0~2.5A/dmに調整して銅めっきを施した。 Next, a 9 μm-thick copper layer was provided on the copper thin film by electrolytic copper plating to obtain a metal-coated polyimide film. The copper plating bath used was a copper sulfate plating bath with a copper concentration of 23 g / L, and the bath temperature during plating was 27 ° C. In addition, the plating tank is a multi-structure tank in which a plurality of plating tanks are connected, and is transported so that a polyimide film having a metal layer on one side is continuously immersed in each tank by an unwinder and a winder. Then, electroplating was performed. The conveying speed was 75 m / h, and the copper plating was performed by adjusting the average cathode current density of the plating tank to 1.0 to 2.5 A / dm 2 .
 次に、この金属被覆ポリイミドフィルムを用いて配線間隔30μm、全配線幅が15000μmのCOF(Chip on film)をサブトラクティブ法で作製した。これにICチップを搭載し、ICチップ表面の電極と配線のリード部とをワイヤボンディング装置を用いて400℃にて0.5秒間のボンディング処理条件でワイヤボンディングを施した。このときにインナーリード部に生じたリードとポリイミドフィルムとの接合不良の割合は0.0001%であった。このようにしてフレキシブルプリント基板を作製した。 Next, using this metal-coated polyimide film, a COF (Chipon film) having a wiring interval of 30 μm and a total wiring width of 15000 μm was prepared by a subtractive method. An IC chip was mounted on this, and the electrodes on the surface of the IC chip and the lead portions of the wiring were subjected to wire bonding at 400 ° C. for 0.5 seconds using a wire bonding apparatus. At this time, the proportion of the bonding failure between the lead and the polyimide film generated in the inner lead portion was 0.0001%. In this way, a flexible printed circuit board was produced.
 上記作製したフレキシブルプリント基板を、60℃に設定した恒温恒湿器(エスペック社製PL-4)内に設置した。 The flexible printed circuit board produced above was placed in a constant temperature and humidity chamber (PL-4 manufactured by ESPEC) set at 60 ° C.
 60℃に設定された恒温恒湿器内において、MIT試験機により荷重500g、屈折角135°、屈折サイクル175cpm、屈折部局率半径0.38mmの条件で折り曲げ試験を行い、回路破断による通電状態切れまでの回数を測定した。本発明のポリイミドフィルムを用いたフレキシブルプリント基板は、5000回以上の折り曲げ回数でも通電状態切れの発生がなく、かつ折り曲げ試験後のカール発生も小さく、優れたフレキシブルプリント基板であることが確認できた。 In a constant temperature and humidity chamber set at 60 ° C, a MIT tester performs a bending test under conditions of a load of 500 g, a refraction angle of 135 °, a refraction cycle of 175 cpm, and a refractive part locality radius of 0.38 mm, and the energized state is cut off due to circuit breakage. The number of times until was measured. The flexible printed circuit board using the polyimide film of the present invention was confirmed to be an excellent flexible printed circuit board with no occurrence of interruption of the energized state even after the number of foldings of 5000 times or more and small curling after the bending test. .
 なお、比較例であるポリイミドフィルムを用いたフレキシブルプリント基板は、折り曲げ試験中にカールが発生し、途中で通電状態切れも発生した。 In addition, the flexible printed circuit board using the polyimide film as a comparative example was curled during the bending test, and the energized state was also interrupted in the middle.
[実施例3]
 特開2014-22508号公報に記載のLED照明の作製方法を参考にして、実施例2で作製した各フレキシブルプリント基板を用いて、LED照明を作製した。
[Example 3]
With reference to the LED illumination production method described in Japanese Patent Application Laid-Open No. 2014-22508, LED illumination was produced using each flexible printed circuit board produced in Example 2.
 上記作製した各LED照明を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の正面発光の輝度(cd/m)を、分光放射輝度計C154S-2000(コニカミノルタ社製)を用いて測定したところ、本発明のポリイミドフィルムを実装したLED照明は、いずれも正面輝度が1000(cd/m)以上であった。 Each of the LED illuminations produced above was allowed to emit light at room temperature (about 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the luminance of the front emission immediately after the start of emission (cd / m 2 ) was determined as the spectral radiance. When measured using a total of C154S-2000 (manufactured by Konica Minolta Co., Ltd.), all of the LED lights mounted with the polyimide film of the present invention had a front luminance of 1000 (cd / m 2 ) or more.
 以上から、本発明の構成のポリイミドフィルムは透明度が高く、それを実装したLED照明装置は正面輝度に優れることが確認された。 From the above, it was confirmed that the polyimide film having the structure of the present invention has high transparency, and the LED lighting device on which the polyimide film is mounted has excellent front luminance.
[実施例4]
 実施例1で作製したポリイミドフィルムを用いて有機EL表示装置を作製し、評価した。
[Example 4]
An organic EL display device was produced using the polyimide film produced in Example 1 and evaluated.
(1)ハードコート層付きポリイミドフィルムの作製
 実施例1で作製したポリイミドフィルム101~120の片面上に、下記ハードコート層を設けてハードコート層付きポリイミドフィルムを作製した。
(1) Production of polyimide film with hard coat layer A polyimide film with a hard coat layer was produced by providing the following hard coat layer on one side of the polyimide films 101 to 120 produced in Example 1.
(ハードコート層の形成)
 下記ハードコート層組成物を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層形成用塗布液を調製し、ダイコーターによりポリイミドフィルム上に塗布し、70℃で乾燥した。次いで、処理空間内の酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用いて照度300mW/cm、照射量0.3J/cmの条件下で塗布層を硬化させた。更に、加熱処理ゾーンにおいて、130℃で5分間、搬送力300N/mで加熱処理し、ドライ層厚7μmのハードコート層を形成した。
(Formation of hard coat layer)
The following hard coat layer composition was filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a coating solution for forming a hard coat layer, which was applied onto a polyimide film by a die coater and dried at 70 ° C. Next, while purging with nitrogen so that the oxygen concentration in the treatment space is 1.0 volume% or less, the coating is applied using an ultraviolet lamp under the conditions of an illuminance of 300 mW / cm 2 and an irradiation amount of 0.3 J / cm 2. The layer was cured. Furthermore, in the heat treatment zone, heat treatment was carried out at 130 ° C. for 5 minutes with a conveyance force of 300 N / m to form a hard coat layer having a dry layer thickness of 7 μm.
(ハードコート層組成物)
 下記材料を撹拌、混合してハードコート層組成物とした。
 ペンタエリスリトールトリアクリレート        20.0質量部
 ペンタエリスリトールテトラアクリレート       50.0質量部
 ジペンタエリスリトールヘキサアクリレート      30.0質量部
 ジペンタエリスリトールペンタアクリレート      30.0質量部
 イルガキュア184(BASFジャパン(株)製)    5.0質量部
 フッ素-シロキサングラフトポリマーI(35質量%)  5.0質量部
 シーホスターKEP-50(粉体のシリカ粒子、平均粒径0.47~0.61μm、日本触媒(株)製)                   24.3質量部
 プロピレングリコールモノメチルエーテル         20質量部
 酢酸メチル                       40質量部
 メチルエチルケトン                   60質量部
(Hard coat layer composition)
The following materials were stirred and mixed to obtain a hard coat layer composition.
Pentaerythritol triacrylate 20.0 parts by mass Pentaerythritol tetraacrylate 50.0 parts by mass Dipentaerythritol hexaacrylate 30.0 parts by mass Dipentaerythritol pentaacrylate 30.0 parts by mass Irgacure 184 (manufactured by BASF Japan Ltd.) 0 part by mass Fluoro-siloxane graft polymer I (35% by mass) 5.0 parts by mass Seahoster KEP-50 (powder silica particles, average particle size 0.47 to 0.61 μm, manufactured by Nippon Shokubai Co., Ltd.) 3 parts by mass Propylene glycol monomethyl ether 20 parts by mass Methyl acetate 40 parts by mass Methyl ethyl ketone 60 parts by mass
(フッ素-シロキサングラフトポリマーIの調製)
 以下、フッ素-シロキサングラフトポリマーIの調製に用いた素材の市販品名を示す。
 ラジカル重合性フッ素樹脂(FA):セフラルコートCF-803(ヒドロキシ(水酸基)価60、数平均分子量15000;セントラル硝子(株)製)
 片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM-0721(数平均分子量5000;JNC(株)製)
 ラジカル重合開始剤:パーブチルO(t-ブチルパーオキシ-2-エチルヘキサノエート;日本油脂(株)製)
 硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;住化バイエルウレタン(株)製)
(Preparation of fluorine-siloxane graft polymer I)
Hereinafter, commercial names of materials used for the preparation of the fluorine-siloxane graft polymer I are shown.
Radical polymerizable fluororesin (FA): Cefal coat CF-803 (hydroxy (hydroxyl group) value 60, number average molecular weight 15000; manufactured by Central Glass Co., Ltd.)
One-end radically polymerizable polysiloxane (B): Silaplane FM-0721 (number average molecular weight 5000; manufactured by JNC Corporation)
Radical polymerization initiator: Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
Curing agent: Sumidur N3200 (biuret type prepolymer of hexamethylene diisocyanate; manufactured by Sumika Bayer Urethane Co., Ltd.)
 まず、次のようにしてラジカル重合性フッ素樹脂(FA)を調製した。
 機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF-803(1554質量部)、キシレン(233質量部)、及び2-イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂(FA)を得た。
First, a radical polymerizable fluororesin (FA) was prepared as follows.
A glass reactor equipped with a mechanical stirrer, a thermometer, a condenser and a dry nitrogen gas inlet was added to cefal coat CF-803 (1554 parts by mass), xylene (233 parts by mass), and 2-isocyanatoethyl methacrylate (6 3 parts by mass) and heated to 80 ° C. in a dry nitrogen atmosphere. After reacting at 80 ° C. for 2 hours and confirming that the absorption of isocyanate disappeared by the infrared absorption spectrum of the sample, the reaction mixture was taken out and 50% by mass of radically polymerizable fluororesin (FA) via a urethane bond. Got.
 次いで、機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(FA)(26.1質量部)、キシレン(19.5質量部)、酢酸n-ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n-ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2-ヒドロキシエチルメタクリレート(1.8質量部)、FM-0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、更に90℃で5時間保持することによって、重量平均分子量が171000である35質量%フッ素-シロキサングラフトポリマーIの溶液を得た。 Next, the above synthesized radical polymerizable fluororesin (FA) (26.1 parts by mass), xylene (19.5 parts) were added to a glass reactor equipped with a mechanical stirrer, a thermometer, a condenser and a dry nitrogen gas inlet. Parts by weight), n-butyl acetate (16.3 parts by weight), methyl methacrylate (2.4 parts by weight), n-butyl methacrylate (1.8 parts by weight), lauryl methacrylate (1.8 parts by weight), 2- Hydroxyethyl methacrylate (1.8 parts by mass), FM-0721 (5.2 parts by mass), and perbutyl O (0.1 parts by mass) were added and heated to 90 ° C. in a nitrogen atmosphere. Held for hours. Perbutyl O (0.1 part) was added, and the mixture was further maintained at 90 ° C. for 5 hours to obtain a 35 mass% fluorine-siloxane graft polymer I solution having a weight average molecular weight of 171,000.
(2)円偏光板の作製
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥して偏光子を得た。
(2) Production of Circular Polarizing Plate A polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.
 次いで、特開2013-101229号公報の段落0277~0287に記載の方法で、λ/4位相差フィルムを作製した。 Next, a λ / 4 retardation film was produced by the method described in paragraphs 0277 to 0287 of JP2013-101229A.
 次いで、下記工程1~5に従って、偏光子とλ/4位相差フィルムと保護フィルム(コニカミノルタタック KC4UY(コニカミノルタ(株)製))とをロールtoロール方式で貼り合わせて、円偏光板を作製した。なお、保護フィルムが偏光子の裏面側(視認側)に配置されるように貼り合わせた。 Then, according to the following steps 1 to 5, a polarizer, a λ / 4 retardation film, and a protective film (Konica Minolta Tack KC4UY (manufactured by Konica Minolta Co., Ltd.)) are bonded together in a roll-to-roll method, and a circularly polarizing plate is attached. Produced. In addition, it bonded together so that a protective film might be arrange | positioned at the back surface side (viewing side) of a polarizer.
 工程1:λ/4位相差フィルム及び延伸した保護フィルムを、60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬した後、水洗して乾燥し、それぞれ偏光子と貼合する側の面をケン化した。 Step 1: The λ / 4 retardation film and the stretched protective film were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, washed with water, dried, and bonded to the polarizer. The surface was saponified.
 工程2:上記作製した偏光子を、固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒間浸漬した。 Step 2: The prepared polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き取り、これを工程1で処理したλ/4位相差フィルムの上に載せて配置した。 Step 3: Excess adhesive adhered to the polarizer in Step 2 was gently wiped, and this was placed on the λ / 4 retardation film processed in Step 1.
 工程4:工程3で積層したλ/4位相差フィルム及び偏光子と、保護フィルムとを圧力20~30N/cm、搬送スピードは約2m/分で貼合した。 Step 4: The λ / 4 retardation film and polarizer laminated in Step 3 were bonded to the protective film at a pressure of 20 to 30 N / cm 2 and a conveying speed of about 2 m / min.
 工程5:80℃の乾燥機中で工程4で作製した偏光子とλ/4位相差フィルムと保護フィルムとを貼り合わせた試料を2分間乾燥し、円偏光板を作製した。 Step 5: A sample obtained by bonding the polarizer, the λ / 4 retardation film, and the protective film prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes to prepare a circularly polarizing plate.
(3)有機EL表示デバイスの作製
 透明基板として実施例1で作製したポリイミドフィルム101~120を用い、その上にクロムからなる反射電極を形成し、更に当該反射電極上にITO(スズドープ酸化インジウム)からなる陽極を形成した。
(3) Production of organic EL display device Using the polyimide films 101 to 120 produced in Example 1 as a transparent substrate, a reflective electrode made of chromium is formed thereon, and ITO (tin-doped indium oxide) is further formed on the reflective electrode. An anode consisting of
 陽極上にポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)を用いてスパッタリング法で厚さ80nmの正孔輸送層を形成した。次いで、シャドーマスクを用いて、正孔輸送層上にそれぞれ層厚100nmの赤色発光層R、緑色発光層G及び青色発光層Bを形成した。赤色発光層Rは、ホストとしてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)と、発光性化合物として4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran(DCM)とを共蒸着(質量比99:1)して形成した。緑色発光層Gは、ホストとしてAlqと、発光性化合物としてクマリン6(3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン)とを共蒸着(質量比99:1)して形成した。青色発光層Bとしては、ホストとしてBAlqと、発光性化合物としてPeryleneとを共蒸着(質量比90:10)して形成した。このようにして、正孔輸送層、赤色発光層R、緑色発光層G及び青色発光層Bからなる有機発光層を形成した。 A hole transport layer having a thickness of 80 nm was formed on the anode by sputtering using poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS). Next, a red light emitting layer R, a green light emitting layer G, and a blue light emitting layer B each having a thickness of 100 nm were formed on the hole transport layer using a shadow mask. The red light emitting layer R includes tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host and 4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran (DCM) as a luminescent compound. ) And co-evaporated (mass ratio 99: 1). The green light-emitting layer G was formed by co-evaporation (mass ratio 99: 1) of Alq 3 as a host and coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin) as a light-emitting compound. The blue light emitting layer B was formed by co-evaporation (mass ratio 90:10) of BAlq as a host and Perylene as a light emitting compound. In this way, an organic light emitting layer composed of a hole transport layer, a red light emitting layer R, a green light emitting layer G, and a blue light emitting layer B was formed.
 更に、有機発光層上に、真空蒸着法によりカルシウムを4nmの厚さで成膜して第1の陰極を形成した。次に、第1の陰極上に、アルミニウムを2nmの厚さで成膜して第2の陰極を形成した。第2の陰極に用いたアルミニウムは、その上に形成される透明導電膜をスパッタリング法により成膜する際に、第1の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。 Further, a first cathode was formed on the organic light-emitting layer by depositing calcium with a thickness of 4 nm by vacuum deposition. Next, a second cathode was formed by depositing aluminum with a thickness of 2 nm on the first cathode. The aluminum used for the second cathode has a role to prevent the calcium as the first cathode from being chemically altered when the transparent conductive film formed thereon is formed by sputtering.
 次に、第1及び第2の陰極上に、スパッタリング法によりITOを80nmの厚さで成膜し透明電極を形成した。更に、透明電極上にCVD法によって窒化ケイ素を200nmの厚さで成膜して絶縁膜を形成した。このようにして有機EL素子を作製した。 Next, on the first and second cathodes, ITO was formed to a thickness of 80 nm by sputtering to form a transparent electrode. Further, an insulating film was formed by depositing silicon nitride with a thickness of 200 nm on the transparent electrode by a CVD method. In this way, an organic EL element was produced.
 次に、厚さ20μmのガスバリアー層付きポリエチレンテレフタレートフィルムの片面に、熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで付与して、封止ユニットを作製した。 Next, a thermosetting liquid adhesive (epoxy resin) was applied at a thickness of 25 μm to one surface of a 20 μm thick polyethylene terephthalate film with a gas barrier layer to produce a sealing unit.
 次に、90℃で0.1MPaの減圧条件下で、透明基板~絶縁膜まで形成した有機EL素子と封止ユニットとを重ねて押圧し、5分間保持した。続いて、その積層体を大気圧環境にて90℃で30分間加熱して接着剤を硬化させ、有機EL表示デバイスを作製した。 Next, the organic EL element formed from the transparent substrate to the insulating film and the sealing unit were stacked and pressed under reduced pressure conditions of 0.1 MPa at 90 ° C. and held for 5 minutes. Subsequently, the laminate was heated at 90 ° C. for 30 minutes in an atmospheric pressure environment to cure the adhesive, and an organic EL display device was produced.
 上記作製した有機EL表示デバイスの発光面積は1296mm×784mmであった。また、この有機EL表示デバイスに6Vの直流電圧を印加した際の正面輝度は1200cd/mであった。正面輝度の測定は、コニカミノルタ(株)製分光放射輝度計CS-1000を用いて、2度視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430~480nmの範囲を測定し、積分強度をとった。 The light emitting area of the produced organic EL display device was 1296 mm × 784 mm. Further, the front luminance when a DC voltage of 6 V was applied to the organic EL display device was 1200 cd / m 2 . The front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Co., Ltd. so that the front luminance is 2 degrees and the optical axis of the spectral radiance meter matches the normal from the light emitting surface. The visible light wavelength range of 430 to 480 nm was measured, and the integrated intensity was taken.
(4)有機EL表示装置の作製
 作製した有機EL表示デバイスに、上記作製した円偏光板を積層し、更にその上に前面板として、上記作製したハードコート層付きポリイミドフィルムをハードコート層が最表層となるように接着層を介して積層し、有機EL表示装置を作製した。
(4) Production of organic EL display device The produced circularly polarizing plate is laminated on the produced organic EL display device, and the hard coat layer is the outermost polyimide film with a hard coat layer as a front plate. It laminated | stacked through the contact bonding layer so that it might become a surface layer, and produced the organic electroluminescence display.
(5)有機EL表示装置の評価
 作製した有機EL表示装置をヒートショック試験機(日立アプライアンス(株)製、EC-35EXH)を用いて、80℃・45%RHで10分間保持した後、25℃・80%RHに変化させて10分間保持し、再び80℃・45%RHに変化させる操作を1サイクルとして、これを150サイクル繰り返す耐久試験を行った。当該耐久試験後の有機EL表示装置を平面ガラス上に置き、定規を用いてその反りを測定した。その結果、本発明のポリイミドフィルムを用いた有機EL表示装置は反りもなく平面性に優れていたが、比較例の有機EL表示装置は、反りが発生しており歪みが見られた。
(5) Evaluation of organic EL display device The prepared organic EL display device was held at 80 ° C. and 45% RH for 10 minutes using a heat shock tester (manufactured by Hitachi Appliances, Inc., EC-35EXH). The durability test was repeated 150 cycles with the operation of changing to 80 ° C./80% RH, holding for 10 minutes, and again changing to 80 ° C./45% RH as one cycle. The organic EL display device after the durability test was placed on a flat glass, and its warpage was measured using a ruler. As a result, the organic EL display device using the polyimide film of the present invention was excellent in flatness without warping, but the organic EL display device of the comparative example was warped and distorted.
 以上のように、本発明は、温湿度環境変動による寸法変動が抑制されたポリイミドフィルム、当該ポリイミドフィルムを備えるフレキシブルプリント基板、LED照明用基板及びフレキシブルディスプレイ用前面板を提供することに適している。 As described above, the present invention is suitable for providing a polyimide film in which dimensional fluctuation due to temperature and humidity environment fluctuation is suppressed, a flexible printed circuit board including the polyimide film, a substrate for LED illumination, and a front panel for flexible display. .

Claims (5)

  1.  4,4′-オキシジフタル酸無水物由来のジフェニルエーテル構造を有するポリイミドを含有するポリイミドフィルムにおいて、
     分子内に芳香環及び水素結合ドナー性部位を有する水素結合性化合物を含有することを特徴とするポリイミドフィルム。
    In a polyimide film containing a polyimide having a diphenyl ether structure derived from 4,4′-oxydiphthalic anhydride,
    A polyimide film comprising a hydrogen bonding compound having an aromatic ring and a hydrogen bond donor site in the molecule.
  2.  前記芳香環の数を前記水素結合ドナー性部位の数で除した値が、1~5の範囲内であることを特徴とする請求項1に記載のポリイミドフィルム。 2. The polyimide film according to claim 1, wherein a value obtained by dividing the number of the aromatic rings by the number of the hydrogen bond donor sites is in the range of 1 to 5.
  3.  請求項1又は請求項2に記載のポリイミドフィルムを備えることを特徴とするフレキシブルプリント基板。 A flexible printed circuit board comprising the polyimide film according to claim 1.
  4.  請求項1又は請求項2に記載のポリイミドフィルムを備えることを特徴とするLED照明用基板。 An LED illumination substrate comprising the polyimide film according to claim 1.
  5.  請求項1又は請求項2に記載のポリイミドフィルムを備えることを特徴とするフレキシブルディスプレイ用前面板。 A front panel for flexible display comprising the polyimide film according to claim 1.
PCT/JP2016/078221 2015-10-01 2016-09-26 Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display WO2017057247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543243A JPWO2017057247A1 (en) 2015-10-01 2016-09-26 Polyimide film, flexible printed circuit board, LED lighting substrate, and front panel for flexible display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195644 2015-10-01
JP2015-195644 2015-10-01

Publications (1)

Publication Number Publication Date
WO2017057247A1 true WO2017057247A1 (en) 2017-04-06

Family

ID=58423544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078221 WO2017057247A1 (en) 2015-10-01 2016-09-26 Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display

Country Status (2)

Country Link
JP (1) JPWO2017057247A1 (en)
WO (1) WO2017057247A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001989A (en) * 2017-06-16 2019-01-10 大日本印刷株式会社 Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
KR20200010089A (en) * 2018-07-19 2020-01-30 스미또모 가가꾸 가부시키가이샤 Polyimide-based resin powder and method for producing polyimide-based resin powder
CN113045754A (en) * 2021-01-20 2021-06-29 江汉大学 Polyimide molding powder containing isomeric mixed diamine monomer and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181281A (en) * 1997-12-19 1999-07-06 Central Glass Co Ltd Polyimide composition
JPH11254467A (en) * 1998-03-13 1999-09-21 Ube Ind Ltd Preparation of aromatic polyimide film
JP2000204251A (en) * 1999-01-11 2000-07-25 Tomoegawa Paper Co Ltd Thermosetting, lowly dielectric resin composition and circuit laminate
JP2004285284A (en) * 2003-03-25 2004-10-14 Mitsui Chemicals Inc Resin composition and film adhesive material comprising the same
JP2013018909A (en) * 2011-07-13 2013-01-31 Ube Industries Ltd Polyimide precursor resin composition for flexible device substrate, method for manufacturing flexible device, and flexible device
JP2014032951A (en) * 2012-07-12 2014-02-20 Jsr Corp Organic el element, radiation-sensitive resin composition, and cured film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181281A (en) * 1997-12-19 1999-07-06 Central Glass Co Ltd Polyimide composition
JPH11254467A (en) * 1998-03-13 1999-09-21 Ube Ind Ltd Preparation of aromatic polyimide film
JP2000204251A (en) * 1999-01-11 2000-07-25 Tomoegawa Paper Co Ltd Thermosetting, lowly dielectric resin composition and circuit laminate
JP2004285284A (en) * 2003-03-25 2004-10-14 Mitsui Chemicals Inc Resin composition and film adhesive material comprising the same
JP2013018909A (en) * 2011-07-13 2013-01-31 Ube Industries Ltd Polyimide precursor resin composition for flexible device substrate, method for manufacturing flexible device, and flexible device
JP2014032951A (en) * 2012-07-12 2014-02-20 Jsr Corp Organic el element, radiation-sensitive resin composition, and cured film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001989A (en) * 2017-06-16 2019-01-10 大日本印刷株式会社 Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
JP7155533B2 (en) 2017-06-16 2022-10-19 大日本印刷株式会社 Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
KR20200010089A (en) * 2018-07-19 2020-01-30 스미또모 가가꾸 가부시키가이샤 Polyimide-based resin powder and method for producing polyimide-based resin powder
KR102144896B1 (en) * 2018-07-19 2020-08-14 스미또모 가가꾸 가부시키가이샤 Polyimide-based resin powder and method for producing polyimide-based resin powder
CN113045754A (en) * 2021-01-20 2021-06-29 江汉大学 Polyimide molding powder containing isomeric mixed diamine monomer and preparation method thereof

Also Published As

Publication number Publication date
JPWO2017057247A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6638654B2 (en) Polyimide film and manufacturing method thereof, flexible printed circuit board, base material for flexible display, front panel for flexible display, LED lighting device, and organic electroluminescent display device
JP6635110B2 (en) Polyimide-based optical film, method for producing the same, and organic electroluminescent display
KR102014627B1 (en) Method for manufacturing transparent heat resistant laminated film, transparent heat resistant laminated film, flexible printed circuit board, flexible display substrate, front panel for flexible display, LED lighting device and organic electroluminescent display device
JP6801648B2 (en) Polyimide film, polyimide film manufacturing method, flexible printed circuit board, flexible display board, flexible display front plate, LED lighting device and organic electroluminescence display device
KR102482608B1 (en) Polyimide film, polyimide precursor, and polyimide
US7550194B2 (en) Low color polyimide compositions useful in optical type applications and methods and compositions relating thereto
JP6834440B2 (en) Polyimide film and display device using the film
WO2017099041A1 (en) Polyimide film, flexible printed board, led lighting device etc.
JP6806141B2 (en) Method of manufacturing polyimide film
KR20150037574A (en) Polyimide film and process for preparing same
JP6874759B2 (en) Polyimide film and its manufacturing method
WO2017010178A1 (en) Polarizing plate, manufacturing method for same, liquid crystal display device, and organic electroluminescent display device
KR20070017001A (en) Low Color Polyimide Compositions Useful in Optical Type Applications and Methods and Compositions Relating Thereto
JP2016075894A (en) Optical film, production method of the same, flexible printed circuit board, and led illumination
WO2017057247A1 (en) Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display
JP2016064642A (en) Manufacturing method of polyimide film, manufacturing method of flexible print substrate and manufacturing method of substrate for led illumination
TW202035520A (en) Polyimide precursor composition, polyimide film and flexible device produced therefrom, and method for producing polyimide film excellent in heat resistance and transparency, and causing no problem such as coloration at high temperature
JP7172981B2 (en) BASE FILM FOR TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
JP2017185743A (en) Manufacturing method and manufacturing device of polyimide film
JP6772519B2 (en) Polyimide film, its manufacturing method, transparent conductive film and touch panel
JPWO2019239865A1 (en) Polymer blend film and laminate
JP2017186466A (en) Polyimide film, manufacturing method therefor, and organic electroluminescent display device
JPWO2019203037A1 (en) Polymer blend composition and polymer film
CN115298248B (en) Polyimide film having moisture absorption resistance and water absorption resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851418

Country of ref document: EP

Kind code of ref document: A1