JP3881419B2 - Copper or copper alloy material with excellent resin adhesion - Google Patents

Copper or copper alloy material with excellent resin adhesion Download PDF

Info

Publication number
JP3881419B2
JP3881419B2 JP09133497A JP9133497A JP3881419B2 JP 3881419 B2 JP3881419 B2 JP 3881419B2 JP 09133497 A JP09133497 A JP 09133497A JP 9133497 A JP9133497 A JP 9133497A JP 3881419 B2 JP3881419 B2 JP 3881419B2
Authority
JP
Japan
Prior art keywords
copper
resin
copper alloy
alloy material
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09133497A
Other languages
Japanese (ja)
Other versions
JPH10265872A (en
Inventor
篤志 児玉
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP09133497A priority Critical patent/JP3881419B2/en
Publication of JPH10265872A publication Critical patent/JPH10265872A/en
Application granted granted Critical
Publication of JP3881419B2 publication Critical patent/JP3881419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂、フェノール樹脂、およびポリイミドなどの樹脂との密着性に優れた銅または銅合金材に係り、特に半導体パッケージやヒートスプレッダ材、回路用材料として使用されるに適した銅または銅合金材に関する。
【0002】
【従来の技術】
金属と樹脂とが接合された部分が、製品の一部もしくは全体を構成している工業製品は多い。例えば、半導体ICなどを格納するパッケージは、金属製リードフレームと封止用材料とから構成される。金属製リードフレームとしては、銅または銅合金がしばしば使用される。封止用材料には、過去にはセラミックスも使用されたが、現在ではコストの安い樹脂(エポキシ樹脂など)が主流を占めている。また、半導体パッケージ内部には、ヒートスプレッダとよばれる銅製金属板が使用される場合があるが、この金属板の周囲は樹脂で封止される。また、電子回路用基板では、銅箔がエポキシ樹脂を含有するガラス布基材やフェノール樹脂などに接合されている。
【0003】
このように銅または銅合金材と樹脂とが接合している製品では、樹脂密着性がしばしば問題になる。一例をあげると、図1は、銅製リードフレームLのダイパッド3の上に半導体チップ2を接着し、半導体チップをボンディングワイヤ5によりリードフレームのリード4と接続し、これらを一体のものとして熱硬化性樹脂からなる樹脂モールド1により封止することにより作製した半導体パッケージを示す。こうした樹脂を使用した半導体パッケージでは、図1に示すように、リードフレームと樹脂との密着性が不十分である場合には、パッケージ内部で樹脂が剥離したり、樹脂に亀裂が発生しやすいという問題がある。これを具体的に説明すると、樹脂内部に吸収された水分が、リードフレームダイパッドと樹脂との界面にまで達し、界面に蓄積した水分が半導体の発生する熱により膨張し、この膨張する力により樹脂がリードフレームダイパッドから剥離したり、あるいは樹脂に亀裂が発生するという現象である。この亀裂により、パッケージ内部の半導体は故障にいたるので、亀裂の発生は極力防止しなければならない。
上記の例のように、従来技術では、銅または銅合金のような金属材料と樹脂との密着性不良を起因とした問題が発生する場合があった。
【0004】
例えば、銅リードフレーム材では半導体の組立工程において種々の加熱工程を経るので表面に酸化膜が生成しており、この酸化膜のリードフレーム母材への密着性が樹脂とリードフレーム材との密着性を支配していることに鑑み、酸化膜の組成を改良するべく、リードフレーム材を少量のCr、Zr及びZnを含む銅合金、更にはFe及びNiを追加的に含む銅合金から作製することが提唱されている。
また、密着性不良を改善するべく、アンカー効果を得るよう表面を粗化する方法が一般に採用されているが、いまだ十分の信頼性を得るに至っていない。
【0005】
【発明が解決しようとする課題】
しかしながら、特定の組成の合金を使用する方法では、汎用性がなく、特定の分野にしか適用できない。銅または銅合金材と樹脂との接合部分が、製品の一部もしくは全体を構成している工業製品の種類が多いことに鑑み、本発明は、汎用性のある、そして十分の信頼性のある樹脂との密着性を与える銅または銅合金材を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために本発明者が研究を行った結果、ダルロールによる圧延、酸性溶液によるエッチングまたはアルカリ溶液への浸漬による酸化膜の形成により銅または銅合金材の表面を特定範囲のプロフィルを有する粗化表面として形成することにより、良好な樹脂密着性を得ることができることが見い出された。その場合、銅または銅合金材表面の算術平均粗さ(Ra)のみならず、銅または銅合金材材と樹脂とが接合する部分の正味の面積の指標である表面積代替値を適正な範囲とすることにより、良好な樹脂密着性を得ることができることが見い出されたものである。電子線3次元粗さ解析装置により表面を拡大して得られためっき材表面を基準として測定を行うのが好適であることも判明した。
【0007】
こうした知見に基づいて、本発明は、
(1)最終冷延または調質圧延時に、ダルロールを用いて圧延された粗化表面を有する銅または銅合金材であって、電子線3次元粗さ解析装置により表面を1000倍に拡大して得られた表面に基づいて、算術平均粗さ(Ra)が0.05〜0.8μmであり、かつ(測定から得られた試料の表面積)/(測定範囲の縦×横)として定義される表面積代替値が1.005〜1.08であることを特徴とする樹脂との接合性に優れた銅または銅合金材、
(2)最終冷延後において、酸性溶液によりエッチングされた粗化表面を有する銅または銅合金材であって、電子線3次元粗さ解析装置により表面を1000倍に拡大して得られた表面に基づいて、算術平均粗さ(Ra)が0.05〜0.8μmであり、かつ(測定から得られた試料の表面積)/(測定範囲の縦×横)として定義される表面積代替値が1.005〜1.08であることを特徴とする樹脂との接合性に優れた銅または銅合金材、及び
(3)最終冷延後においてアルカリ溶液中に浸漬され、該銅合金表面に形成された酸化皮膜による粗化表面を有する銅または銅合金材であって、電子線3次元粗さ解析装置により表面を3000倍に拡大して得られた表面に基づいて、算術平均粗さ(Ra)が0.03〜0.5μmであり、かつ(測定から得られた試料の表面積)/(測定範囲の縦×横)として定義される表面積代替値が1.005〜1.1であることを特徴とする樹脂との接合性に優れた銅または銅合金材
を提供する。
【0008】
【発明の実施の形態】
銅または銅合金材と樹脂との密着性を向上させることを目的として、選択された特定の方法により形成された粗化表面において、3次元表面粗さ解析装置の使用による表面粗さと表面積代替値とを最適の範囲に定め、適正なアンカー効果と表面積を有する表面特性を銅または銅合金材に賦与したことが本発明の特徴であり、この材料の使用で、より強固な樹脂との密着性を得ることができる。
【0009】
本発明の銅または銅合金材は、純銅条もしくはNi、Fe、Cr、Zr、Si、Sn、Mg、Zn、Pなどの合金元素を1種ないし複数種含有する銅合金条であり、りん青銅や高力導電性を有するコルソン合金(Cu−Ni−Si)などの一般的な銅合金も含まれる。銅および銅合金は、電気および熱の良導体であるので、半導体パッケージや回路用材料として広く使用される。
【0010】
本発明では、表面粗さと表面積代替値とを規定するが、これらは株式会社エリオニクス製の3次元表面粗さ解析装置を使用し、粗化表面を倍率1000倍または3000倍で測定した値を採用している。これが測定の信頼性と便宜性の観点から最適と判断したからである。
【0011】
3次元表面粗さ解析装置は、電子プローブで試料表面を高速でスキャンし、微細表面形状を確実にキャッチし、例えばSEM観察視野をリアルタイムでCRTに三次元表示することができ、また表面積、Ra、Rz、Rmax等や山数、粒度、等高線、面積率その他をグラフ等で表示することができる。表面積の計算は、微細表面形状画像において3点のサンプリング点を頂点とした三角形の面積和として算出する。なおこの計算は、測定機内部のコンピューターによりなされる。
【0012】
粗化表面の算術平均粗さ(JIS B0601にて定義、以下Raとよぶ)は、対象面からランダムに抜き取った各部分における中心線平均粗さの算術平均値である。
【0013】
表面積代替値は以下の式で表される:
【数4】
(測定から得られた試料の表面積)/(測定範囲の縦×横)
表面積代替値は、凹凸のある実際に樹脂と接触する表面の面積が凹凸のない平面の面積の何倍になっているかを表し、銅または銅合金材と樹脂とが接合する部分の正味の面積に比例する。樹脂密着性を向上させるためには、先述したアンカー効果のみならず、樹脂接合部の表面積も重要である。例をあげると、Raが大きい金属材料と、Raが小さい金属材料の樹脂密着性を比較すると、前者の密着性が必ずしもよいというわけではなく、後者の表面が微細に荒れて、表面積代替値が大きい場合には、後者の方がよくなる場合がある。すなわち、材料の表面粗さと表面積代替値とを適当に制御することが重要である。
【0014】
図3は、後で実施例と関連して示すダルロールで圧延した純銅材の粗化表面の1000倍の表面凹凸の鳥瞰図である。ここでは、120ミクロンのX軸と90ミクロンのY軸が、測定範囲の縦×横として選択され、実際の微細輪郭が三次元表示されている。こぶ状の凹凸の高さが左側の高さ−色表示に合わせて、カラーで表されている。この場合、表面積代替値は、3次元表面粗さ解析装置による測定から得られた試料の実際の表面積を120ミクロン×90ミクロンで割った値となる。
【0015】
本発明の第1の様相に従えば、銅または銅合金材は、最終冷延または調質圧延時に、ダルロールを用いて圧延し、所定のRaおよび表面積代替値を有する条を製造する。ダルロールとは、圧延ロールの一種であり、表面に微細な凹凸が形成されているロールである。圧延機に使用するダルロールは、表面をショットブラストや放電加工や研削砥石により加工し、調整したものである。ダルロールで圧延する理由は、本発明の銅または銅合金を安価でしかも再現良く製造できるからである。
この場合、ダルロールで圧延した銅または銅合金材の粗化表面の算術平均粗さ(Ra)は0.05〜0.8μmの範囲に規定される。このRaは、電子線3次元粗さ解析装置により表面を1000倍に拡大して得られた値である。Raが上記範囲にある場合は、金属材料が樹脂の中に食い込み(アンカー効果)、良好な密着性が得られる。Raが0.05μm未満の場合には、アンカー効果が不十分で、樹脂密着性向上の効果が期待できない。また0.8μmを超える場合には、樹脂密着性向上の効果が飽和するのに対し、この金属条を製造するためのダルロールの製造コストが高くなるなどの不都合が生じる。
表面性状を規定するもうひとつの条件である表面積代替値は、1.005〜1.08の範囲である。この値も、電子線3次元粗さ解析装置により表面を倍率1000倍で拡大して得られた値である。表面積代替値が1.005未満の材料では、接合部の面積が十分ではなく、一方、表面積代替値が1.08を超えるものでは、樹脂密着性向上効果が飽和する一方で、製造コストは上昇するので、不経済である。
【0016】
本発明の第2の様相に従えば、銅または銅合金材は、通常の最終圧延または調質圧延後に、銅または銅合金条を硫酸、塩酸、硝酸、硫酸+過酸化水素などを含有する酸溶液中に浸漬させてエッチングし、所定のRaおよび表面積代替値を有する条を製造する。この場合、先と同じく、電子線3次元粗さ解析装置により表面を1000倍に拡大して得られた表面に基づいて、銅または銅合金材粗化表面のRaを0.05〜0.8μmそして表面積代替値を1.005〜1.08の範囲とする。これら範囲に設定した理由は、ダルロールで圧延して得られた粗化表面に関して述べた理由と同じである。
エッチング加工はダルロール加工に比べコストは高いが、微細な凹凸を有する表面が得られるので、樹脂密着性を向上させる効果はより大きい。
【0017】
本発明の第3の様相に従えば、通常の最終圧延または調質圧延後に、金属条を水酸化ナトリウム、水酸化ナトリウム+過酸化水素などを含有するアルカリ溶液に浸漬させることにより表面に酸化皮膜を形成させ、所定のRaおよび表面積代替値を有する条を製造する。この場合、電子線3次元粗さ解析装置により表面を、ここでは測定の便宜上、3000倍に拡大して得られた表面に基づいて、銅または銅合金材の酸化皮膜による粗化表面のRaを0.03〜0.5μm、そして表面積代替値を1.005〜1.1の範囲とする。Raおよび表面積代替値が上記範囲未満では十分な効果が得られず、また、上記範囲を超える場合には、効果が飽和しかつコスト高になるので不経済である。
この方法では、ダルロール加工に比べコストは高いが、微細な凹凸を有する表面が得られるので、樹脂密着性を向上させる効果はより大きい。
【0018】
【実施例】
本発明の実施例を以下に示す。
純銅または銅合金材C7025(Cu−Ni−Si−Mg)条を製造する工程において、最終圧延時または最終圧延後において、以下に示す処理を行い、厚み0.25mmの金属条試料を作製した:
[処理A] ショットブラスト法(金属に硬い微粒子を吹きつけて表面を荒らす方法)により表面に凹凸を付けた圧延ロールを使用し、最終圧延を行う。この際、粒子を吹きつける時の圧力を変えて作製した数種のロールを使用し、表面形状の異なる試料を作製する。
[処理B] 最終圧延後に、硫酸と過酸化水素とを含有する水溶液(40℃)に金属条を浸漬させてエッチングする。この際、エッチング時間を変えて、表面形状の異なる試料を作製する。
[処理C] 最終圧延後に、水酸化ナトリウムと過酸化水素とを含有する水溶液(60℃)に金属条を浸漬させ、表面に酸化皮膜を形成させる。この際、浸漬時間を変えて、表面形状の異なる試料を作製する。
【0019】
表面粗さ(Ra)と表面積代替値は、株式会社エリオニクス製3次元粗さ解析装置ERA−8000を使用し、表面を1000または3000倍に拡大して測定した。
樹脂との密着性の評価は、図2に示すように、各種金属条の試験片の表面に、接合部の面積が50mm2 のエポキシ樹脂製の円柱体を密着硬化させ、試験片と上記円柱体を徐々に反対方向に引張り、それらの界面がせん断剥離するまでの引張強度で求めた。詳しくは、図2(a)〜(d)の手順に従った。すなわち、試験に供する矩形の試験片(60mm長×25mm巾×0.25mm厚)上にテフロン(Du Pont 社のポリテトラフルオロエチレンの商標名)製の面積50mm2 の穴の付いた型材(厚さ3mm)を穴が試験片の一端部近くの中央に位置するように置き、穴にエポキシ樹脂を流し込み、100℃で2時間硬化させ(a)、試験片上に断面積50mm2 のエポキシ樹脂製の円柱体を形成した剪断試験片を作成し(b)、次いで円柱体にぴったりと嵌合する穴のついた引張具をその穴がモールド樹脂円柱体に嵌合するように試験片上に被せ置き(c)、そして後室温下で、引張試験機を使用して5mm/分の引張速度で試験片端と引張具端を矢印のように反対方向に引っ張る(d)。こうして試験片上でのモールド樹脂の剪断強度が測定された。
【0020】
これらの評価結果を表1に示す。本発明例に示した銅および銅合金材では樹脂との密着がよく、一貫した樹脂密着性(剪断引張強度)を示す。比較例1は処理を行わなかった純銅の例である。比較例2〜4では、処理A〜Cにおいて得られた表面の算術平均粗さ(Ra)および表面積代替値の一方が所定の範囲から外れており、樹脂密着性(剪断引張強度)が低下している。以上の結果より、本発明例に示した銅または銅合金材は、樹脂密着性が優れることがわかる。
【0021】
【表1】

Figure 0003881419
【0022】
図3は、先にも触れたように、3次元表面粗さ解析装置により観察した実施例1のダルロール圧延材表面の倍率1000倍の表面凹凸の鳥瞰図である。図4は、3次元表面粗さ解析装置により観察した実施例3の酸溶液エッチング材表面の倍率1000倍の表面凹凸の鳥瞰図である。図5は、3次元表面粗さ解析装置により観察した実施例5のアルカリ液で酸化膜を形成した材の表面の倍率3000倍の表面凹凸の鳥瞰図である。図5は、同じく3次元表面粗さ解析装置により観察した比較例1の無処理の純銅材の倍率1000倍の表面凹凸の鳥瞰図である。図3〜5と図6の比較から明らかなように、本発明材表面にはこぶ状の凹凸が多数形成されている。また、酸溶液でエッチングした図4およびアルカリ液で酸化膜を形成した図5の方が、ダルロール圧延による図3より微細な凹凸を有する表面が得られている。
【0023】
【発明の効果】
本発明の樹脂密着性に密着性に優れた銅または銅合金材では、樹脂との良好な密着性が得られ、その結果、半導体パッケージなどの信頼性を向上させることができる。
【図面の簡単な説明】
【図1】樹脂モールドにより封止した半導体パッケージにクラックや剥離が生じた状況を示す説明図である。
【図2】(a)〜(d)はめっき材と樹脂との密着性を評価するための試験方法の段階を順次示す斜視図である。
【図3】3次元表面粗さ解析装置により観察した実施例1の純銅ダルロール圧延材表面の表面凹凸を示す画像写真である(倍率1000倍)。
【図4】3次元表面粗さ解析装置により観察した実施例3の純銅酸溶液エッチング材表面の表面凹凸を示す画像写真である(倍率1000倍)。
【図5】3次元表面粗さ解析装置により観察した実施例5の純銅のアルカリ液酸化膜形成材表面の表面凹凸を示す画像写真である(倍率3000倍)。
【図6】3次元表面粗さ解析装置により観察した比較例1の純銅材表面の画像写真である(倍率1000倍)。
【符号の説明】
L リードフレーム
1 樹脂モールド
2 半導体チップ
3 ダイパッド
4 リード
5 ボンディングワイヤ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper or copper alloy material having excellent adhesion to a resin such as an epoxy resin, a phenol resin, and a polyimide, and particularly suitable for use as a semiconductor package, a heat spreader material, or a circuit material. It relates to alloy materials.
[0002]
[Prior art]
There are many industrial products in which the part where the metal and the resin are joined constitutes a part or the whole of the product. For example, a package for storing a semiconductor IC or the like includes a metal lead frame and a sealing material. Copper or copper alloy is often used as the metal lead frame. In the past, ceramics were also used as the sealing material, but at present, low-cost resins (such as epoxy resins) dominate. In addition, a copper metal plate called a heat spreader may be used inside the semiconductor package, but the periphery of the metal plate is sealed with resin. Moreover, in the board | substrate for electronic circuits, copper foil is joined to the glass cloth base material, phenol resin, etc. which contain an epoxy resin.
[0003]
As described above, in the product in which the copper or copper alloy material and the resin are joined, the resin adhesion often becomes a problem. As an example, FIG. 1 shows that a semiconductor chip 2 is bonded onto a die pad 3 of a copper lead frame L, the semiconductor chip is connected to a lead 4 of the lead frame by a bonding wire 5, and these are integrated as one body and thermoset. The semiconductor package produced by sealing with the resin mold 1 which consists of resin is shown. In a semiconductor package using such a resin, as shown in FIG. 1, when the adhesion between the lead frame and the resin is insufficient, the resin is easily peeled inside the package or the resin is likely to crack. There's a problem. Specifically, the moisture absorbed inside the resin reaches the interface between the lead frame die pad and the resin, and the moisture accumulated at the interface expands due to the heat generated by the semiconductor. Is a phenomenon in which the resin is peeled off from the lead frame die pad or cracked in the resin. Since the semiconductor inside the package is damaged due to the crack, the generation of the crack must be prevented as much as possible.
As in the above example, in the prior art, there may be a problem caused by poor adhesion between a metal material such as copper or a copper alloy and a resin.
[0004]
For example, copper lead frame materials are subject to various heating processes in the semiconductor assembly process, so an oxide film is formed on the surface. The adhesion of this oxide film to the lead frame base material is the adhesion between the resin and the lead frame material. In view of controlling the properties, the lead frame material is made of a copper alloy containing a small amount of Cr, Zr and Zn, and further a copper alloy containing Fe and Ni in order to improve the composition of the oxide film. It has been advocated.
Further, a method of roughening the surface so as to obtain an anchor effect is generally employed to improve poor adhesion, but sufficient reliability has not yet been obtained.
[0005]
[Problems to be solved by the invention]
However, a method using an alloy having a specific composition is not versatile and can be applied only to a specific field. In view of the fact that there are many types of industrial products in which the joint between the copper or copper alloy material and the resin constitutes a part or the whole of the product, the present invention is versatile and sufficiently reliable. An object of the present invention is to provide a copper or copper alloy material that provides adhesion to a resin.
[0006]
[Means for Solving the Problems]
As a result of research conducted by the present inventor to solve the above-mentioned problems, the surface of a copper or copper alloy material is profiled in a specific range by forming an oxide film by rolling with a dull roll, etching with an acidic solution, or immersion in an alkaline solution. It has been found that good resin adhesion can be obtained by forming as a roughened surface having the following. In that case, not only the arithmetic mean roughness (Ra) of the copper or copper alloy material surface, but also the surface area substitution value that is an index of the net area of the portion where the copper or copper alloy material and the resin are joined is within an appropriate range. Thus, it has been found that good resin adhesion can be obtained. It has also been found that it is preferable to perform the measurement based on the plating material surface obtained by enlarging the surface with an electron beam three-dimensional roughness analyzer.
[0007]
Based on these findings, the present invention
(1) A copper or copper alloy material having a roughened surface rolled using a dull roll at the time of final cold rolling or temper rolling, and the surface is enlarged 1000 times by an electron beam three-dimensional roughness analyzer. Based on the obtained surface, the arithmetic average roughness (Ra) is 0.05 to 0.8 μm and is defined as (surface area of the sample obtained from the measurement) / (vertical x horizontal of the measurement range). Copper or copper alloy material excellent in bondability with resin, characterized in that the surface area alternative value is from 1.005 to 1.08,
(2) A copper or copper alloy material having a roughened surface etched with an acidic solution after the final cold rolling, and obtained by enlarging the surface 1000 times with an electron beam three-dimensional roughness analyzer Surface area substitution value defined as: (Actual average roughness (Ra) is 0.05 to 0.8 μm and (surface area of sample obtained from measurement) / (longitudinal x lateral of measurement range)) Copper or copper alloy material excellent in bondability with resin characterized by being 1.005 to 1.08, and (3) formed on the surface of the copper alloy by being immersed in an alkaline solution after the final cold rolling An arithmetic average roughness (Ra) based on a surface obtained by enlarging the surface by 3000 times with an electron beam three-dimensional roughness analyzer, which is a copper or copper alloy material having a roughened surface by an oxidized film. ) Is 0.03 to 0.5 μm, and ( The surface area substitute value defined as (surface area of sample obtained from measurement) / (longitudinal x lateral of measurement range) is 1.05 to 1.1, or copper having excellent bondability with resin, Provide copper alloy material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Surface roughness and surface area substitution values by using a three-dimensional surface roughness analyzer on the roughened surface formed by a specific method selected for the purpose of improving the adhesion between the copper or copper alloy material and the resin. It is a feature of the present invention that the surface characteristics having an appropriate anchor effect and surface area are imparted to copper or copper alloy material, and the use of this material makes it possible to adhere to a stronger resin. Can be obtained.
[0009]
The copper or copper alloy material of the present invention is a pure copper strip or a copper alloy strip containing one or more alloy elements such as Ni, Fe, Cr, Zr, Si, Sn, Mg, Zn, and P, and phosphor bronze. In addition, a general copper alloy such as a Corson alloy (Cu—Ni—Si) having high electrical conductivity is also included. Since copper and copper alloys are good conductors for electricity and heat, they are widely used as materials for semiconductor packages and circuits.
[0010]
In the present invention, the surface roughness and the surface area substitution value are defined, and these are values obtained by measuring the roughened surface at a magnification of 1000 or 3000 using a 3D surface roughness analyzer manufactured by Elionix Co., Ltd. is doing. This is because it was determined to be optimal from the viewpoint of measurement reliability and convenience.
[0011]
The three-dimensional surface roughness analyzer can scan a sample surface at high speed with an electronic probe, reliably catch a fine surface shape, and display, for example, a three-dimensional display of a SEM observation field on a CRT in real time. , Rz, Rmax, etc., the number of peaks, particle size, contour lines, area ratio, etc. can be displayed in a graph or the like. The calculation of the surface area is calculated as the area sum of triangles having three sampling points as vertices in the fine surface shape image. This calculation is performed by a computer inside the measuring machine.
[0012]
The arithmetic average roughness (defined in JIS B0601; hereinafter referred to as Ra) of the roughened surface is an arithmetic average value of the centerline average roughness in each portion randomly extracted from the target surface.
[0013]
The surface area alternative value is represented by the following formula:
[Expression 4]
(Surface area of the sample obtained from the measurement) / (longitudinal x lateral of measurement range)
The surface area substitution value indicates how many times the surface area that is actually uneven and in contact with the resin is the area of the flat surface that is not uneven, and is the net area where the copper or copper alloy material and resin are joined Is proportional to In order to improve the resin adhesion, not only the anchor effect described above but also the surface area of the resin joint is important. For example, when comparing the resin adhesion of a metal material with a large Ra and a metal material with a small Ra, the former adhesion is not necessarily good. If it is large, the latter may be better. That is, it is important to appropriately control the surface roughness and surface area substitute value of the material.
[0014]
FIG. 3 is a bird's-eye view of surface irregularities 1000 times the roughened surface of a pure copper material rolled with a dull roll, which will be described later in connection with an example. Here, the 120-micron X-axis and the 90-micron Y-axis are selected as vertical x horizontal in the measurement range, and the actual fine contour is displayed in three dimensions. The height of the bumpy unevenness is shown in color in accordance with the height-color display on the left side. In this case, the surface area substitute value is a value obtained by dividing the actual surface area of the sample obtained from the measurement by the three-dimensional surface roughness analyzer by 120 microns × 90 microns.
[0015]
According to the first aspect of the present invention, a copper or copper alloy material is rolled using a dull roll during final cold rolling or temper rolling to produce a strip having a predetermined Ra and surface area substitution value. A dull roll is a kind of rolling roll, and is a roll having fine irregularities formed on the surface. The dull roll used in the rolling mill is prepared by adjusting the surface by shot blasting, electric discharge machining or a grinding wheel. The reason for rolling with a dull roll is that the copper or copper alloy of the present invention can be produced inexpensively and with good reproducibility.
In this case, the arithmetic average roughness (Ra) of the roughened surface of the copper or copper alloy material rolled with a dull roll is specified in the range of 0.05 to 0.8 μm. This Ra is a value obtained by enlarging the surface 1000 times with an electron beam three-dimensional roughness analyzer. When Ra is in the above range, the metal material bites into the resin (anchor effect), and good adhesion is obtained. When Ra is less than 0.05 μm, the anchor effect is insufficient and the effect of improving resin adhesion cannot be expected. On the other hand, when the thickness exceeds 0.8 μm, the effect of improving the resin adhesion is saturated, but inconveniences such as an increase in the manufacturing cost of the dull roll for manufacturing the metal strip occur.
The surface area substitution value, which is another condition for defining the surface properties, is in the range of 1.005 to 1.08. This value is also a value obtained by enlarging the surface at a magnification of 1000 times with an electron beam three-dimensional roughness analyzer. When the surface area alternative value is less than 1.005, the area of the joint is not sufficient. On the other hand, when the surface area alternative value exceeds 1.08, the effect of improving the resin adhesion is saturated, but the manufacturing cost increases. It is uneconomical.
[0016]
According to the second aspect of the present invention, the copper or copper alloy material is obtained by subjecting the copper or copper alloy strip to an acid containing sulfuric acid, hydrochloric acid, nitric acid, sulfuric acid + hydrogen peroxide, etc. after the usual final rolling or temper rolling. It is immersed in a solution and etched to produce a strip having a predetermined Ra and surface area substitution value. In this case, the Ra of the roughened surface of the copper or copper alloy material is 0.05 to 0.8 μm based on the surface obtained by enlarging the surface 1000 times by the electron beam three-dimensional roughness analyzer as before. The surface area substitution value is set to a range of 1.005 to 1.08. The reason set in these ranges is the same as the reason described for the roughened surface obtained by rolling with a dull roll.
Although the etching process is more expensive than the dull roll process, since the surface having fine irregularities is obtained, the effect of improving the resin adhesion is greater.
[0017]
According to the third aspect of the present invention, after the normal final rolling or temper rolling, the metal strip is immersed in an alkaline solution containing sodium hydroxide, sodium hydroxide + hydrogen peroxide, etc., so that an oxide film is formed on the surface. To produce a strip having a predetermined Ra and surface area substitution value. In this case, the surface of the roughened surface by the oxide film of copper or copper alloy material is calculated based on the surface obtained by magnifying the surface by an electron beam three-dimensional roughness analyzer. 0.03 to 0.5 μm, and the surface area substitution value is in the range of 1.005 to 1.1. If Ra and the surface area substitution value are less than the above ranges, sufficient effects cannot be obtained, and if they exceed the above ranges, the effects are saturated and cost is uneconomical.
This method is more expensive than dull roll processing, but a surface having fine irregularities can be obtained, so that the effect of improving resin adhesion is greater.
[0018]
【Example】
Examples of the present invention are shown below.
In the process of producing a pure copper or copper alloy material C7025 (Cu—Ni—Si—Mg) strip, the following treatment was performed at the time of final rolling or after the final rolling to prepare a metal strip sample having a thickness of 0.25 mm:
[Processing A] The final rolling is performed using a rolling roll having irregularities on the surface by a shot blasting method (a method in which hard fine particles are sprayed on a metal to roughen the surface). At this time, samples having different surface shapes are prepared by using several types of rolls prepared by changing the pressure when spraying the particles.
[Process B] After the final rolling, the metal strip is immersed in an aqueous solution (40 ° C.) containing sulfuric acid and hydrogen peroxide and etched. At this time, samples having different surface shapes are produced by changing the etching time.
[Process C] After the final rolling, the metal strip is immersed in an aqueous solution (60 ° C.) containing sodium hydroxide and hydrogen peroxide to form an oxide film on the surface. At this time, samples having different surface shapes are prepared by changing the immersion time.
[0019]
The surface roughness (Ra) and the surface area substitution value were measured by using a three-dimensional roughness analyzer ERA-8000 manufactured by Elionix Co., Ltd. and enlarging the surface 1000 times or 3000 times.
As shown in FIG. 2, the evaluation of the adhesion to the resin is carried out by curing a cylindrical body made of an epoxy resin having a joint area of 50 mm 2 on the surface of a test piece of various metal strips. The body was gradually pulled in the opposite direction, and the tensile strength until the interface was sheared was determined. In detail, the procedure of Fig.2 (a)-(d) was followed. That is, a mold (thickness) having a hole of 50 mm 2 in area made of Teflon (trade name of polytetrafluoroethylene of Du Pont) on a rectangular test piece (60 mm length × 25 mm width × 0.25 mm thickness) used for the test. 3mm) is placed so that the hole is located in the center near one end of the test piece, and epoxy resin is poured into the hole and cured at 100 ° C. for 2 hours (a), made of epoxy resin having a cross-sectional area of 50 mm 2 on the test piece (B), and then place a tension tool with a hole that fits tightly on the cylinder over the specimen so that the hole fits into the mold resin cylinder. (C) After that, at room temperature, the end of the test piece and the end of the tension tool are pulled in the opposite directions as indicated by the arrows at a tensile speed of 5 mm / min using a tensile tester (d). Thus, the shear strength of the mold resin on the test piece was measured.
[0020]
These evaluation results are shown in Table 1. The copper and copper alloy materials shown in the examples of the present invention have good adhesion to the resin and show consistent resin adhesion (shear tensile strength). Comparative Example 1 is an example of pure copper that was not treated. In Comparative Examples 2 to 4, one of the arithmetic average roughness (Ra) and the surface area alternative value obtained in the treatments A to C is out of the predetermined range, and the resin adhesion (shear tensile strength) decreases. ing. From the above results, it can be seen that the copper or copper alloy material shown in the examples of the present invention has excellent resin adhesion.
[0021]
[Table 1]
Figure 0003881419
[0022]
FIG. 3 is a bird's-eye view of surface irregularities at a magnification of 1000 times on the surface of the rolled dull roll material of Example 1 observed with a three-dimensional surface roughness analyzer, as mentioned above. FIG. 4 is a bird's eye view of surface irregularities at a magnification of 1000 times of the surface of the acid solution etching material of Example 3 observed by a three-dimensional surface roughness analyzer. FIG. 5 is a bird's eye view of surface irregularities at a magnification of 3000 times on the surface of a material in which an oxide film is formed with an alkaline solution of Example 5 observed by a three-dimensional surface roughness analyzer. FIG. 5 is a bird's-eye view of surface irregularities at a magnification of 1000 times of the untreated pure copper material of Comparative Example 1, which was also observed by a three-dimensional surface roughness analyzer. As is clear from a comparison between FIGS. 3 to 5 and FIG. 6, a large number of knurled irregularities are formed on the surface of the present invention material. Further, FIG. 4 etched with an acid solution and FIG. 5 formed with an oxide film with an alkaline solution have a surface having finer irregularities than FIG. 3 by dull roll rolling.
[0023]
【The invention's effect】
With the copper or copper alloy material having excellent adhesion to the resin of the present invention, good adhesion with the resin can be obtained, and as a result, the reliability of the semiconductor package and the like can be improved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a situation where cracks and peeling occur in a semiconductor package sealed with a resin mold.
FIGS. 2A to 2D are perspective views sequentially showing stages of a test method for evaluating the adhesion between a plating material and a resin.
FIG. 3 is an image photograph showing surface irregularities on the surface of a rolled pure dull roll of Example 1 observed with a three-dimensional surface roughness analyzer (magnification 1000 times).
FIG. 4 is an image photograph showing surface irregularities on the surface of a pure cupric acid solution etching material of Example 3 observed with a three-dimensional surface roughness analyzer (magnification 1000 times).
5 is an image photograph showing surface irregularities on the surface of an alkaline liquid oxide film forming material of pure copper of Example 5 observed by a three-dimensional surface roughness analyzer (magnification 3000 times). FIG.
FIG. 6 is an image photograph of the surface of a pure copper material of Comparative Example 1 observed with a three-dimensional surface roughness analyzer (magnification 1000 times).
[Explanation of symbols]
L Lead frame 1 Resin mold 2 Semiconductor chip 3 Die pad 4 Lead 5 Bonding wire

Claims (3)

最終冷延または調質圧延時に、ダルロールを用いて圧延された粗化表面を有する銅または銅合金材であって、電子線3次元粗さ解析装置により表面を1000倍に拡大して得られた表面に基づいて、算術平均粗さ(Ra)が0.05〜0.8μmの範囲であり、かつ
Figure 0003881419
として定義される表面積代替値が1.005〜1.08の範囲であることを特徴とする樹脂との接合性に優れた銅または銅合金材。
A copper or copper alloy material having a roughened surface rolled with a dull roll at the time of final cold rolling or temper rolling, and obtained by enlarging the surface 1000 times with an electron beam three-dimensional roughness analyzer Based on the surface, the arithmetic mean roughness (Ra) is in the range of 0.05 to 0.8 μm, and
Figure 0003881419
A copper or copper alloy material excellent in bondability with a resin, wherein the surface area alternative value defined as is in the range of 1.005 to 1.08.
最終冷延後において、酸性溶液によりエッチングされた粗化表面を有する銅または銅合金材であって、電子線3次元粗さ解析装置により表面を1000倍に拡大して得られた表面に基づいて、算術平均粗さ(Ra)が0.05〜0.8μmの範囲であり、かつ
Figure 0003881419
として定義される表面積代替値が1.005〜1.08の範囲であることを特徴とする樹脂との接合性に優れた銅または銅合金材。
A copper or copper alloy material having a roughened surface etched with an acidic solution after the final cold rolling, based on a surface obtained by enlarging the surface 1000 times with an electron beam three-dimensional roughness analyzer The arithmetic average roughness (Ra) is in the range of 0.05 to 0.8 μm, and
Figure 0003881419
A copper or copper alloy material excellent in bondability with a resin, wherein the surface area alternative value defined as is in the range of 1.005 to 1.08.
最終冷延後においてアルカリ溶液中に浸漬され、該銅合金表面に形成された酸化皮膜による粗化表面を有する銅または銅合金材であって、電子線3次元粗さ解析装置により表面を3000倍に拡大して得られた表面に基づいて、算術平均粗さ(Ra)が0.03〜0.5μmの範囲であり、かつ
Figure 0003881419
として定義される表面積代替値が1.005〜1.1の範囲であることを特徴とする樹脂との接合性に優れた銅または銅合金材。
A copper or copper alloy material having a roughened surface formed by an oxide film immersed in an alkaline solution after the final cold rolling and formed on the surface of the copper alloy, and the surface is increased 3000 times by an electron beam three-dimensional roughness analyzer. And the arithmetic average roughness (Ra) is in the range of 0.03 to 0.5 μm based on the surface obtained by enlarging to
Figure 0003881419
A copper or copper alloy material excellent in bondability with a resin, wherein the surface area substitution value defined as is in the range of 1.005 to 1.1.
JP09133497A 1997-03-27 1997-03-27 Copper or copper alloy material with excellent resin adhesion Expired - Fee Related JP3881419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09133497A JP3881419B2 (en) 1997-03-27 1997-03-27 Copper or copper alloy material with excellent resin adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09133497A JP3881419B2 (en) 1997-03-27 1997-03-27 Copper or copper alloy material with excellent resin adhesion

Publications (2)

Publication Number Publication Date
JPH10265872A JPH10265872A (en) 1998-10-06
JP3881419B2 true JP3881419B2 (en) 2007-02-14

Family

ID=14023551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09133497A Expired - Fee Related JP3881419B2 (en) 1997-03-27 1997-03-27 Copper or copper alloy material with excellent resin adhesion

Country Status (1)

Country Link
JP (1) JP3881419B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146280A1 (en) * 2005-11-28 2009-06-11 Dai Nippon Printing Co., Ltd. Circuit member, manufacturing method of the circuit member, and semiconductor device including the circuit member
JP4737116B2 (en) * 2007-02-28 2011-07-27 株式会社日立製作所 Joining method
WO2008126812A1 (en) * 2007-04-06 2008-10-23 Taisei Plas Co., Ltd. Copper alloy composite and process for producing the same
JP5885054B2 (en) * 2010-04-06 2016-03-15 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
KR102128954B1 (en) 2012-06-06 2020-07-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Copper foil for printed wiring board, process for preparing the same, and printed wiring board using the copper foil
JP2021123787A (en) * 2020-02-07 2021-08-30 株式会社原田伸銅所 Phosphor bronze alloy exhibiting reduction in gloss (low gloss, or matte) by roughening surface having antibacterial property with dull roll to reduce gloss and significant amplification of antibacterial property, and article using the same
JP7338604B2 (en) * 2020-10-27 2023-09-05 Jfeスチール株式会社 Manufacturing method of cold-rolled steel sheet

Also Published As

Publication number Publication date
JPH10265872A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
KR101069198B1 (en) Packaging component and semiconductor package
US9748683B2 (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP4024244B2 (en) Conductive material for connecting parts and method for manufacturing the same
TWI429045B (en) Circuit member, manufacturing method of circuit member, laminated structure of semiconductor device and circuit member surface
CN102529224B (en) Metal-resin composite, method for producing the same, busbar, module case, and resinous connector part
Han et al. Evaluation of effectiveness of conformal coatings as tin whisker mitigation
KR20140117274A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP3881419B2 (en) Copper or copper alloy material with excellent resin adhesion
KR20150024252A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
EP3712933A1 (en) Semiconductor module and method for manufacturing same
JP4892033B2 (en) Lead frame manufacturing method
CN109937479B (en) Lead frame material, method for manufacturing the same, and semiconductor package
JPH0846116A (en) Lead frame and its manufacture
JP4789771B2 (en) Lead frame with resin envelope and manufacturing method thereof
JPH10270629A (en) Iron alloy superior in resin adhesion
KR102185586B1 (en) Cu-Ni-Si-based copper alloy bath
JPH05315511A (en) Lead frame material and manufacture thereof
JP4611419B2 (en) Copper alloy tin plating strip with excellent solder wettability and insertability
JP7032239B2 (en) Lead frame material and its manufacturing method and semiconductor package
JP2001073186A (en) Production of parts for wiring laminated with insulating film
JP2008036668A (en) Copper or copper alloy material, its manufacturing method, and semiconductor package
JPH0681189A (en) Production of plated copper sheet or plated copper alloy sheet for producing electric connector
JP5376540B2 (en) Lead frame and semiconductor device
EP4132235A1 (en) Bonded body and insulating circuit board
CN112912546A (en) Conductive material, molded article, and electronic component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees