JP4737116B2 - Joining method - Google Patents

Joining method Download PDF

Info

Publication number
JP4737116B2
JP4737116B2 JP2007048378A JP2007048378A JP4737116B2 JP 4737116 B2 JP4737116 B2 JP 4737116B2 JP 2007048378 A JP2007048378 A JP 2007048378A JP 2007048378 A JP2007048378 A JP 2007048378A JP 4737116 B2 JP4737116 B2 JP 4737116B2
Authority
JP
Japan
Prior art keywords
bonding
metal
joining
oxide layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007048378A
Other languages
Japanese (ja)
Other versions
JP2008208442A (en
Inventor
勝美 馬渕
晴夫 赤星
俊章 守田
雄亮 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007048378A priority Critical patent/JP4737116B2/en
Publication of JP2008208442A publication Critical patent/JP2008208442A/en
Application granted granted Critical
Publication of JP4737116B2 publication Critical patent/JP4737116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27332Manufacturing methods by local deposition of the material of the layer connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8485Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、半導体装置等の電子部品を実装基板へ実装する際の電極間あるいは電極とリード部材等の接合方法に関する。   The present invention relates to a bonding method between electrodes or between an electrode and a lead member when an electronic component such as a semiconductor device is mounted on a mounting substrate.

多層配線板上に半導体集積回路素子を支持固定し、配線板と半導体素子との電気的接続を形成するベアチップ実装組み立て技術としては、チップキャリア法、フィルムキャリア法、チップアンドワイヤ法、フリップチップ法、ビームリード法などが知られている。この中でフリップチップ法は、ベアチップのインナーリードボンディングパッドにはんだバンプを形成し、多層配線板上にハンダ付けにてフェースダウン実装する方法であり、実装密度の点で優れているために広く一般的に使用されている。しかし、放熱の点で問題があり、特殊な放熱設計が必要となってくる。このため、たとえば回路基板の凹部に発熱性を有する回路部品を収納し、該回路部品のはんだバンプを回路基板のランド電極にはんだ付けすること、およびこのようにして得た回路基板を親回路基板上に熱伝導部材を介して搭載し、更に回路基板の側面に設けた端子電極を親回路基板上のランド電極にはんだ付けすることにより、回路部品からの発熱を親回路基板に伝達して放熱する放熱モジュールが示されている。   Bare chip mounting assembly technology for supporting and fixing a semiconductor integrated circuit element on a multilayer wiring board and forming an electrical connection between the wiring board and the semiconductor element includes a chip carrier method, a film carrier method, a chip and wire method, and a flip chip method. The beam lead method is known. Of these, the flip chip method is a method in which solder bumps are formed on the inner lead bonding pads of the bare chip and soldered down on the multilayer wiring board, and is widely used because of its excellent mounting density. Has been used. However, there is a problem in terms of heat dissipation, and a special heat dissipation design is required. For this purpose, for example, a circuit component having heat generation is stored in a recess of a circuit board, solder bumps of the circuit component are soldered to land electrodes of the circuit board, and the circuit board thus obtained is used as a parent circuit board. By mounting the terminal electrode on the side of the circuit board and soldering to the land electrode on the parent circuit board, the heat generated from the circuit components is transmitted to the parent circuit board. A heat dissipating module is shown.

一方、インバータ等に用いられるパワー半導体装置の一つである非絶縁型半導体装置において、半導体素子を固定する部材は半導体装置の電極の一つでもある。例えば、パワートランジスタを固定部材(例えば銅−亜酸化銅製複合材料)上にSn−Pb系ろう付け材を用いて搭載した半導体装置では、固定部材(ベース材)はパワートランジスタのコレクタ電極となる。このコレクタ電極部は半導体装置稼動時には数アンペア以上の電流が流れトランジスタチップは発熱する。この発熱に起因する特性の不安定化や寿命の低下を避けるためは、ベース材料は熱放散に優れ、かつろう付け部の信頼性が確保できていなければならない。   On the other hand, in a non-insulated semiconductor device which is one of power semiconductor devices used for an inverter or the like, a member for fixing a semiconductor element is also one of electrodes of the semiconductor device. For example, in a semiconductor device in which a power transistor is mounted on a fixing member (for example, a copper-cuprous oxide composite material) using a Sn-Pb brazing material, the fixing member (base material) serves as a collector electrode of the power transistor. In the collector electrode portion, a current of several amperes or more flows when the semiconductor device is in operation, and the transistor chip generates heat. In order to avoid destabilization of characteristics and a decrease in service life due to this heat generation, the base material must be excellent in heat dissipation and ensure the reliability of the brazed part.

絶縁型半導体装置においても、半導体素子を安全かつ安定に動作させるためには、半導体装置の動作時に発生する熱を該パッケージの外へ効率良く放散させ、さらにろう付け部の接続信頼性を確保する必要がある。   Even in an insulated semiconductor device, in order to operate a semiconductor element safely and stably, heat generated during operation of the semiconductor device is efficiently dissipated out of the package, and connection reliability of the brazed portion is further ensured. There is a need.

高い放熱性と接続信頼性を有する接続材料として、粒子状銀化合物を含む導電性組成物を用いた導電性接着剤が知られている(例えば、特許文献1)。しかしながら、この導電性接着剤は界面での接合機構がバインダを用いた方法であるために、界面が金属結合された接合と比較すると放熱性、接合信頼性という点では劣っている。   As a connection material having high heat dissipation and connection reliability, a conductive adhesive using a conductive composition containing a particulate silver compound is known (for example, Patent Document 1). However, since this conductive adhesive is a method using a binder as the bonding mechanism at the interface, the conductive adhesive is inferior in terms of heat dissipation and bonding reliability as compared with bonding where the interface is metal-bonded.

一方、金属粒子の粒径が100nm以下のサイズまで小さくなり構成原子数が少なくなると、粒子の体積に対する表面積比は急激に増大し、融点や焼結温度がバルク状態に比較して大幅に低下することが知られている。この低温焼成機能を利用し、有機物で表面が被覆された平均粒径100nm以下の金属粒子を接合材料として用い、加熱により有機物を分解させて金属粒子同士を焼結させることで接合を行うことが知られている(例えば、特許文献2)。本接合方法では、接合後の金属粒子はバルク金属へと変化すると同時に接合界面では金属結合により接合されているため、非常に高い耐熱性と信頼性及び高放熱性を有する。また、はんだの鉛フリー対応が迫られているが、高温はんだに関してはその代替となる材料が出ていない。実装においては階層はんだを用いることが必要不可欠なため、この高温はんだに代わる材料の出現が望まれている。従って、本接合技術はこの高温はんだに代わる材料としても期待されている。   On the other hand, when the particle size of the metal particle is reduced to a size of 100 nm or less and the number of constituent atoms is reduced, the surface area ratio with respect to the volume of the particle increases rapidly, and the melting point and the sintering temperature are greatly reduced compared to the bulk state. It is known. Using this low-temperature firing function, metal particles having an average particle size of 100 nm or less whose surface is coated with an organic material are used as a bonding material, and the organic particles are decomposed by heating to perform bonding by sintering the metal particles. Known (for example, Patent Document 2). In this bonding method, the metal particles after bonding change into a bulk metal and at the same time are bonded by metal bonding at the bonding interface, so that they have very high heat resistance, reliability, and high heat dissipation. In addition, there is an urgent need for lead-free soldering, but there is no substitute material for high-temperature solder. Since the use of hierarchical solder is indispensable for mounting, the appearance of a material that replaces this high-temperature solder is desired. Therefore, this joining technique is also expected as a material to replace this high temperature solder.

特開2003−309352号公報JP 2003-309352 A 特開2004−107728号公報JP 2004-107728 A

特許文献2等に記載の平均粒径が100nm以下の金属粒子を用いた接合方法では、上述の通り、接合界面では金属結合による接合が行われていることから、高い耐熱性と信頼性及び高放熱性を有する。その反面、平均粒径が100nm以下と非常に微細な金属粒子は凝集を起こしやすく、このような金属粒子は安定化させるために有機物の保護膜を形成する必要がある。この有機物の保護膜は接合時には除去する必要があるが、低温での加熱では保護膜を完全に除去することが難しく十分な接合強度を得ることが困難となる。一方、金属粒子の有機物の保護膜を低温で分解するように分子設計を行った場合には、20℃〜30℃の室温下でこのような金属粒子を作製した際には直ちに金属粒子同士の凝集が起こることから、低温で焼結可能な金属粒子の作製は困難である。また、平均粒径が100nm以下の金属粒子を作製するには金属粒子の作製後、不純物の除去等の手間がかかる作業もあることから、接合材料のコストダウンが困難であった。   In the joining method using metal particles having an average particle diameter of 100 nm or less as described in Patent Document 2 and the like, as described above, joining by metal bonding is performed at the joining interface, so that high heat resistance and reliability are high. Has heat dissipation. On the other hand, very fine metal particles having an average particle diameter of 100 nm or less are likely to agglomerate, and it is necessary to form an organic protective film in order to stabilize such metal particles. This organic protective film needs to be removed at the time of bonding, but it is difficult to completely remove the protective film by heating at a low temperature, and it becomes difficult to obtain sufficient bonding strength. On the other hand, when the molecular design is performed so that the protective film of the organic substance of the metal particles is decomposed at a low temperature, when such metal particles are produced at a room temperature of 20 ° C. to 30 ° C., the metal particles immediately Since aggregation occurs, it is difficult to produce metal particles that can be sintered at a low temperature. In addition, since metal particles having an average particle size of 100 nm or less are troublesome operations such as removal of impurities after the metal particles are produced, it is difficult to reduce the cost of the bonding material.

これらの不純物において問題になるのは、NやS成分である。これらが存在すると、焼結金属中にこれらが残留し、導電性に悪影響を及ぼす。これに対して、特許文献2に開示されているように、平均粒径100nm以下の金属粒子からなる核の周囲をC、HおよびOを主成分とする有機物で結合・被覆した複合型金属ナノ粒子を接合剤として使用方法があるが、Cが存在することにより焼結時にこれが接合界面においてカーボン残渣として存在し、熱伝導率に悪影響を及ぼすことが大きく懸念される。このように、平均粒径が100nm以下の金属粒子を用いた接合方法では、金属粒子の作製、作製後の不純物の除去や保管、取り扱い等、実用面での課題が残されている。   The problem with these impurities is the N and S components. If they are present, they remain in the sintered metal, adversely affecting the conductivity. On the other hand, as disclosed in Patent Document 2, composite-type metal nanostructures in which a core composed of metal particles having an average particle size of 100 nm or less is bound and covered with an organic substance mainly composed of C, H, and O. Although there is a method of using particles as a bonding agent, there is a great concern that due to the presence of C, it exists as a carbon residue at the bonding interface during sintering and adversely affects the thermal conductivity. As described above, in the bonding method using metal particles having an average particle diameter of 100 nm or less, problems in practical use such as metal particle production, removal of impurities after the production, storage, and handling remain.

本発明の目的は、実装プロセス中の接合過程において接合温度の低温化を達成でき、接合後の有機物残渣が少ない接合プロセスを提供することにある。   An object of the present invention is to provide a joining process that can achieve a reduction in joining temperature in the joining process during the mounting process and that has less organic residue after joining.

平均粒径が1nm以上50μm以下の金属化合物粒子に対して、有機物からなる還元剤を添加することによって、金属化合物粒子単体を加熱分解するよりも低温で金属化合物粒子が還元され、その際に平均粒径が100nm以下の金属粒子が作製されることを見出した。この際、接合前にあらかじめ接合面に酸化物層を生成させた後に、その層の酸化処理を施し自然酸化膜厚以上の厚さの酸化層を生成させておくことで、接合時に接合材中の有機物の排出を効率的に行うことができ、これにより接合面のせん断強度を大幅に上げることが可能となる。   By adding a reducing agent made of an organic substance to metal compound particles having an average particle diameter of 1 nm to 50 μm, the metal compound particles are reduced at a lower temperature than when the metal compound particles are decomposed by heating. It has been found that metal particles having a particle size of 100 nm or less are produced. At this time, after forming an oxide layer on the joint surface in advance before bonding, the layer is oxidized to generate an oxide layer with a thickness greater than the natural oxide thickness. The organic matter can be efficiently discharged, and the shear strength of the joint surface can be greatly increased.

すなわち、本発明は、被接合部材の接合界面に酸素を含む酸化物層を形成し、接合界面に平均粒径が1nm以上50μm以下の金属化合物粒子と有機物からなる還元剤とを含む接合用材料を配置した後、被接合部材間を加熱、加圧することにより被接合部材を接合することを特徴とする。   That is, the present invention provides a bonding material in which an oxide layer containing oxygen is formed at a bonding interface of a member to be bonded, and a metal compound particle having an average particle size of 1 nm or more and 50 μm or less and a reducing agent made of an organic substance at the bonding interface Then, the members to be joined are joined by heating and pressurizing the members to be joined.

本発明により、実装プロセス中の接合過程において接合温度の低温化を達成でき、接合後の有機物残渣が少ない接合プロセスを提供することができる。   According to the present invention, the bonding temperature can be lowered in the bonding process during the mounting process, and a bonding process with less organic residue after bonding can be provided.

以下、本発明の実施形態を具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

本発明の接合方法は、被接合部材の間に平均粒径が1nm以上50μm以下の金属化合物と有機物からなる還元剤を含む接合用材料を配置し、加熱と加圧により被接合部材を接合する。この際、接合中における加熱と加圧時に粒径が100nm以下の金属粒子が作製された後、凝集が起こりバルクな金属に変化する現象を用いて接合を行っている。この接合方法では、接合の際に接合層における有機物を効率よく排出させることが必要となる。通常は、加圧により接合時における有機物の排出を行うが、本発明では、図1に示すように接合前にあらかじめ接合面に酸化物層を生成させた後に、その層の酸化処理を施し、自然酸化膜厚以上の厚さの酸化層を生成させている。この表面処理を施すことにより、表面層に存在する酸素により有機物を燃焼させ、さらに効率的に有機物を排出することが可能となる。   In the bonding method of the present invention, a bonding material including a reducing agent composed of a metal compound having an average particle diameter of 1 nm to 50 μm and an organic substance is disposed between bonded members, and the bonded members are bonded by heating and pressing. . At this time, bonding is performed using a phenomenon in which metal particles having a particle size of 100 nm or less are produced during heating and pressing during bonding, and then agglomerate and change into a bulk metal. In this joining method, it is necessary to efficiently discharge organic substances in the joining layer at the time of joining. Usually, organic substances are discharged at the time of bonding by pressurization, but in the present invention, an oxide layer is formed on the bonding surface in advance before bonding as shown in FIG. An oxide layer having a thickness greater than that of the natural oxide film is generated. By performing this surface treatment, it becomes possible to burn organic substances with oxygen present in the surface layer and to discharge organic substances more efficiently.

有機物は、カーボン残渣として接合界面に存在すると考えられ、これにより接合面のせん断強度が低下するが、本発明の表面処理を施すことにより有機物を効率よく除去することが可能となるために、接合面のせん断強度を大幅に上げることが可能となる。また、接合面に存在する酸素による有機物除去効果を促進させることから、接合時における加圧力を低減させることが可能となる。   The organic matter is considered to be present at the joining interface as a carbon residue, which reduces the shear strength of the joining surface. However, the organic treatment can be efficiently removed by applying the surface treatment of the present invention. It is possible to greatly increase the shear strength of the surface. Moreover, since the organic substance removal effect by oxygen existing on the bonding surface is promoted, it is possible to reduce the pressure applied during bonding.

本接合方法で接合対象となる被接合部材は導電性を有する金属部材であればよく、例えば、半導体装置等の電子部品の電極や配線などである。被接合部材の接合面の金属は特に規定はないが、実用上は銅、銀または金がよく、その中でも本発明の効果が顕著に現れるのは銅である。接合界面に使用する金属に酸化皮膜を形成させる方法としては、大きく湿式法と乾式法の2種類がある。乾式法の代表的な方法としては、高温の大気中にさらす高温酸化と、高温の水蒸気に曝す方法がある。湿式法では、アルカリ溶液中に浸漬する方法がある。時間短縮、効率性を上げるためには、アルカリ溶液中に酸化剤を添加することが効率的であり、この酸化剤としては、たとえば過硫酸アンモニウム、硝酸鉄、過酸化水素などが有効である。   A member to be joined by this joining method may be a metal member having conductivity, for example, an electrode or wiring of an electronic component such as a semiconductor device. Although the metal of the joining surface of a to-be-joined member is not prescribed | regulated, copper, silver, or gold | metal | money is good in practice, and it is copper that the effect of this invention appears notably among them. There are two main methods for forming an oxide film on the metal used for the bonding interface: a wet method and a dry method. As typical dry methods, there are high-temperature oxidation exposed to high-temperature air and exposure to high-temperature water vapor. In the wet method, there is a method of immersing in an alkaline solution. In order to shorten the time and increase the efficiency, it is efficient to add an oxidizing agent to the alkaline solution. As this oxidizing agent, for example, ammonium persulfate, iron nitrate, hydrogen peroxide and the like are effective.

接合用材料の平均粒径が50μm以下の金属化合物は、還元剤と混合し、加熱することで還元され、粒径が100nm以下の金属粒子を作製する物質である。この金属化合物としては、金属酸化物、金属炭酸塩、カルボン酸金属塩の粒子から選ばれる1種以上の粒子とすることが好ましい。これは、金属化合物中における金属含有量が高いことから、接合時における体積収縮が小さく、かつ分解時に酸素を発生するために、有機物の酸化分解を促進するからである。

The metal compound having an average particle size of 50 μm or less of the bonding material is a substance that is mixed with a reducing agent and reduced by heating to produce metal particles having a particle size of 100 nm or less. The metal compounds are metal oxides, metal carbonates, is preferably 1 or more particle element selected from particles of metal carboxylate. This is because, since the metal content in the metal compound is high, the volumetric shrinkage at the time of bonding is small, and oxygen is generated at the time of decomposition, so that the oxidative decomposition of the organic matter is promoted.

ここで用いる金属化合物の粒径を平均粒径が1nm以上50μm以下としたのは、金属粒子の平均粒径50μmより大きくなると、接合中に粒径が100nm以下の金属粒子が作製されにくくなり、これにより粒子間の隙間が多くなり、緻密な接合層を得ることが困難になるためである。また、1nm以上としたのは、平均粒子が1nm以下の金属化合物を実際に作製することが困難なためである。本発明では、接合中に粒径が100nm以下の金属粒子が作製されるため、金属化合物の粒径は100nm以下とする必要はなく、金属化合物の作製、取り扱い性、長期保存性の観点からは粒径が1〜50μmの粒子を用いることが好ましい。また、より緻密な接合層を得るために粒径が1nm〜100nmの金属化合物を用いることも可能である。   The average particle diameter of the metal compound used here is 1 nm or more and 50 μm or less. When the average particle diameter of the metal particles is larger than 50 μm, it is difficult to produce metal particles having a particle diameter of 100 nm or less during bonding. This is because the gaps between the particles increase, and it becomes difficult to obtain a dense bonding layer. The reason why the thickness is 1 nm or more is that it is difficult to actually produce a metal compound having an average particle size of 1 nm or less. In the present invention, since metal particles having a particle size of 100 nm or less are produced during bonding, it is not necessary that the metal compound has a particle size of 100 nm or less. From the viewpoint of production, handling properties, and long-term storage stability of the metal compound. It is preferable to use particles having a particle size of 1 to 50 μm. In order to obtain a denser bonding layer, a metal compound having a particle size of 1 nm to 100 nm can be used.

金属酸化物としては、酸化銀(Ag2O ,AgO)、酸化銅、酸化金、金属炭酸塩としては炭酸銀、カルボン酸金属塩としては酢酸銀などが挙げられ、これらの群から少なくとも1種類の金属あるいは2種類以上の金属からなる接合材料を用いることが可能である。この中でも、酸化金、酸化銀(Ag2O ,AgO)、酸化銅からなる金属酸化物は還元時に酸素のみを発生するために、接合後における残渣も残りにくく、体積減少率も非常に小さいことから金属酸化物を用いることが好ましい。 Examples of the metal oxide include silver oxide (Ag 2 O, AgO), copper oxide, gold oxide, silver carbonate as the metal carbonate, silver acetate as the carboxylic acid metal salt, and at least one kind selected from these groups. It is possible to use a bonding material made of two or more kinds of metals. Among these, metal oxides composed of gold oxide, silver oxide (Ag 2 O, AgO), and copper oxide generate only oxygen during reduction, so that residues after bonding are hardly left and the volume reduction rate is very small. It is preferable to use a metal oxide.

この金属酸化物、金属炭酸塩、カルボン酸金属塩は還元剤の存在下では、200℃以下で100nm以下の金属粒子が作製され始めることから、100nm以下の表面が有機物で被覆された金属粒子を接合材料に用いた場合には不可能であった200℃以下の低温でも接合を達成することが可能となる。これにより、従来技術では困難であった250℃以下の温度でも、接合層の接合界面におけるせん断強度が5MPa以上の強固な接合が可能となり、接合時のチップ周辺部材の劣化が300℃以上の接合と比較すると大幅に低減できる。   In the presence of a reducing agent, these metal oxides, metal carbonates, and carboxylic acid metal salts start to produce metal particles of 100 nm or less at 200 ° C. or less. Therefore, metal particles whose surfaces of 100 nm or less are coated with organic substances are used. Bonding can be achieved even at a low temperature of 200 ° C. or lower, which was impossible when used as a bonding material. As a result, even at a temperature of 250 ° C. or lower, which is difficult with the prior art, it becomes possible to perform strong bonding with a shear strength of 5 MPa or more at the bonding interface of the bonding layer, and deterioration of chip peripheral members during bonding is 300 ° C. or higher. Can be significantly reduced.

有機物からなる還元剤としては、アルコール類、カルボン酸類、アミン類から選ばれた1種以上の混合物を用いることができる。   As the reducing agent composed of an organic substance, one or more mixtures selected from alcohols, carboxylic acids, and amines can be used.

また、利用可能なアルコール基を含む化合物としては、アルキルアルコールが挙げられ、例えば、エタノール、プロパノール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、ノナデシルアルコール、イコシルアルコール、がある。さらには1級アルコール型に限らず、エチレングリコール、トリエチレングリコール、などの2級アルコール型、3級アルコール型、及びアルカンジオール、環状型の構造を有するアルコール化合物を用いることが可能である。それ以外にもクエン酸、アスコルビン酸など4つのアルコール基を有する化合物を用いてもよい。   Examples of the compound containing an alcohol group that can be used include alkyl alcohols, such as ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, and dodecyl. There are alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol, icosyl alcohol. Furthermore, not only the primary alcohol type, but also an alcohol compound having a secondary alcohol type, a tertiary alcohol type such as ethylene glycol or triethylene glycol, an alkanediol, or a cyclic type structure can be used. In addition, compounds having four alcohol groups such as citric acid and ascorbic acid may be used.

また、利用可能なカルボン酸を含む化合物としてアルキルカルボン酸がある。具体例としては、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸が挙げられる。また、上記アミノ基と同様に1級カルボン酸型に限らず、2級カルボン酸型、3級カルボン酸型、及びジカルボン酸、環状型の構造を有するカルボキシル化合物を用いることが可能である。   Moreover, there exists alkylcarboxylic acid as a compound containing carboxylic acid which can be utilized. Specific examples include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, Examples include octadecanoic acid, nonadecanoic acid, and icosanoic acid. Further, similarly to the amino group, it is possible to use not only the primary carboxylic acid type but also a secondary carboxylic acid type, tertiary carboxylic acid type, dicarboxylic acid, and a carboxyl compound having a cyclic structure.

また、利用可能なアミノ基を含む化合物としてアルキルアミンを挙げることができる。例えば、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、イコデシルアミンがある。また、アミノ基を有する化合物としては分岐構造を有していてもよく、そのような例としては、2−エチルヘキシルアミン、1,5ジメチルヘキシルアミンなどがある。また、1級アミン型に限らず、2級アミン型、3級アミン型を用いることも可能である。さらにこのような有機物としては環状の形状を有していてもよい。   Moreover, an alkylamine can be mentioned as a compound containing an available amino group. For example, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, There are nonadecylamine and icodecylamine. In addition, the compound having an amino group may have a branched structure, and examples thereof include 2-ethylhexylamine and 1,5 dimethylhexylamine. Moreover, not only a primary amine type but also a secondary amine type and a tertiary amine type can be used. Further, such an organic material may have an annular shape.

また、用いる還元剤は上記アルコール、カルボン酸、アミンを含む有機物に限らず、アルデヒド基やエステル基、スルファニル基、ケトン基などを含む有機物を用いても良い。   Further, the reducing agent to be used is not limited to the organic substance containing the alcohol, carboxylic acid, and amine, but may be an organic substance containing an aldehyde group, an ester group, a sulfanyl group, a ketone group, or the like.

ここで、エチレングリコール、トリエチレングリコール等の20〜30℃において液体である還元剤は、酸化銀(Ag2O )などと混ぜて放置すると一日後には銀に還元されてしまうため、混合後はすぐに用いる必要がある。一方、20〜30℃の温度範囲において固体であるミリスチルアルコール、ラウリルアミン、アスコルビン酸等は金属酸化物等と1ヵ月ほど放置しておいても大きくは反応が進まないため、保存性に優れており、混合後に長期間保管する場合にはこれらを用いることが好ましい。また、用いる還元剤は金属酸化物等を還元させた後には、精製された100nm以下の粒径を有する金属粒子の保護膜として働くために、ある程度の炭素数があることが望ましい。具体的には、2以上で20以下であることが望ましい。これは炭素数が2より少ないと、金属粒子が作製されると同時に粒径成長が起こり、100nm以下の金属粒子の作製が困難になるからである。また、20より多いと、分解温度が高くなり、金属粒子の焼結が起こりにくくなった結果、接合強度の低下を招くからである。 Here, reducing agents that are liquid at 20 to 30 ° C., such as ethylene glycol and triethylene glycol, are reduced to silver after one day if mixed with silver oxide (Ag 2 O) and left to stand. Need to be used immediately. On the other hand, myristyl alcohol, laurylamine, ascorbic acid, etc., which are solid in the temperature range of 20-30 ° C., do not proceed to a large extent even if left for about a month with metal oxides, etc. These are preferably used when stored for a long time after mixing. Further, it is desirable that the reducing agent used has a certain number of carbon atoms in order to function as a protective film for purified metal particles having a particle size of 100 nm or less after reducing metal oxides and the like. Specifically, it is desirably 2 or more and 20 or less. This is because, when the number of carbon atoms is less than 2, metal particles are produced at the same time as particle size growth occurs, making it difficult to produce metal particles of 100 nm or less. On the other hand, if it exceeds 20, the decomposition temperature becomes high and the metal particles are hardly sintered, resulting in a decrease in bonding strength.

還元剤の使用量は金属化合物の全重量に対して1質量部以上で50質量部以下の範囲であればよい。これは還元剤の量が1質量部より少ないと接合材料における金属化合物を全て還元して金属粒子を作製するのに十分な量ではないためである。また、50質量部を超えて用いると接合後における残渣が多くなり界面での金属接合と接合銀層中における緻密化の達成が困難であるためである。さらに、還元剤としては、400℃までの加熱時における熱重量減少率が99%以上であることが好ましい。これは、還元剤の分解温度が高いと接合後における残渣が多くなり、界面での金属接合と接合銀層中における緻密化の達成が困難であるためである。ここで、400℃までの加熱時における熱重量減少率の測定は、一般に市販されている、Seiko Instruments 製TG/DTA6200や、島津製作所製TGA−50等の熱重量測定が可能な装置を用いて10℃/min において大気中で行った場合のものとする。   The amount of the reducing agent used may be in the range of 1 part by mass to 50 parts by mass with respect to the total weight of the metal compound. This is because when the amount of the reducing agent is less than 1 part by mass, the amount of the metal compound in the bonding material is not reduced enough to produce metal particles. Moreover, when it exceeds 50 mass parts, it is because the residue after joining increases and it is difficult to achieve metal joining at the interface and densification in the joining silver layer. Furthermore, as a reducing agent, it is preferable that the thermal weight reduction rate at the time of a heating to 400 degreeC is 99% or more. This is because if the decomposition temperature of the reducing agent is high, the residue after bonding increases, and it is difficult to achieve metal bonding at the interface and densification in the bonding silver layer. Here, the measurement of the thermogravimetric decrease rate at the time of heating up to 400 ° C. is performed using a commercially available apparatus such as TG / DTA6200 manufactured by Seiko Instruments or TGA-50 manufactured by Shimadzu Corporation. It shall be when conducted in air at 10 ° C / min.

金属化合物と有機物からなる還元剤の組み合わせとしては、これらを混合することにより金属粒子を作製可能なものであれば特に限定されないが、接合用材料としての保存性の観点から、常温で金属粒子を作製しない組み合わせとすることが好ましい。   The combination of the reducing agent composed of a metal compound and an organic substance is not particularly limited as long as the metal particles can be produced by mixing them, but from the viewpoint of storage stability as a bonding material, the metal particles are used at room temperature. A combination that is not produced is preferable.

また、接合材料中には比較的粒径の大きい平均粒径50μm〜100μmの金属粒子を混合して用いることも可能である。これは接合中において作製された100nm以下の金属粒子が、平均粒径50μm〜100μmの金属粒子同士を焼結させる役割を果たすからである。また、粒径が100nm以下の金属粒子を予め混合しておいてもよい。この金属粒子の種類としては、金、銀、銅があげられる。上記以外にも白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、ケイ素、アルミニウム等の中から少なくとも1種類の金属あるいは2種類以上の金属からなる合金を用いることが可能である。   Moreover, it is also possible to mix and use metal particles having a relatively large average particle diameter of 50 μm to 100 μm in the bonding material. This is because the metal particles of 100 nm or less produced during bonding play a role of sintering metal particles having an average particle diameter of 50 μm to 100 μm. Further, metal particles having a particle size of 100 nm or less may be mixed in advance. Examples of the metal particles include gold, silver, and copper. In addition to the above, at least one metal selected from platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, silicon, aluminum, etc. It is possible to use an alloy made of more than one kind of metal.

この実施形態で用いられる接合材料は金属化合物と有機物からなる還元剤のみで用いてもよいが、ペースト状として用いる場合に溶媒を加えてもよい。混合後、すぐに用いるのであれば、メタノール、エタノール、プロパノール、エチレングリコール、トリエチレングリコール、テルピネオールのアルコール類等の還元作用があるものを用いてもよいが、長期間に保管する場合であれば、水、ヘキサン、テトラヒドロフラン、トルエン、シクロヘキサン、など常温での還元作用が弱いものを用いることが好ましい。また、還元剤としてミリスチルアルコールのように常温で還元が起こりにくいものを用いた場合には長期間保管可能であるが、エチレングリコールのような還元作用の強いものを用いた場合には使用時に混合して用いることが好ましい。   The bonding material used in this embodiment may be used only with a reducing agent composed of a metal compound and an organic substance, but a solvent may be added when used as a paste. If it is used immediately after mixing, it may be used that has a reducing action such as methanol, ethanol, propanol, ethylene glycol, triethylene glycol, terpineol alcohol, etc. It is preferable to use water, hexane, tetrahydrofuran, toluene, cyclohexane, or the like that has a weak reducing action at room temperature. In addition, when a reducing agent such as myristyl alcohol that is difficult to reduce at room temperature is used, it can be stored for a long time, but when a reducing agent such as ethylene glycol is used, it is mixed at the time of use. And preferably used.

また、金属化合物の溶媒への分散性を向上させるために必要に応じて分散剤を用いて金属化合物の周りを有機物で被覆し、分散性を向上させてよい。本発明で用いられる分散剤としては、ポリビニルアルコール、ポリアクリルニトリル、ポリビニルピロリドン、ポリエチレングリコールなどの他に、市販の分散剤として、例えばディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190(以上ビックケミー社製)、メガファックF−479(大日本インキ製)、ソルスパース20000、ソルスパース
24000、ソルスパース26000、ソルスパース27000、ソルスパース28000
(以上、アビシア社製)などの高分子系分散剤を用いることができる。このような分散剤の使用量は金属化合物に接合用材料中において0.01wt% 以上でかつ45wt%を超えない範囲とする。
Moreover, in order to improve the dispersibility of the metal compound in the solvent, the periphery of the metal compound may be coated with an organic substance using a dispersant as necessary to improve the dispersibility. As the dispersant used in the present invention, in addition to polyvinyl alcohol, polyacrylonitrile, polyvinyl pyrrolidone, polyethylene glycol and the like, commercially available dispersants such as Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Disperbic 166, Disperbic 170, Disperbic 180, Disperbic 182, Disperbic 184, Disperbic 190 (manufactured by Big Chemie), MegaFuck F-479 (Dainippon Ink), Solsperse 20000, Solsperse 24000, Solsperse 26000 Solsparse 27000, Solsparse 28000
Polymeric dispersants such as (Avisia) can be used. The amount of such a dispersant used is within the range of 0.01 wt% or more and not exceeding 45 wt% in the bonding material of the metal compound.

これらペースト材料は、インクジェット法により微細なノズルからペーストを噴出させて基板上の電極あるいは電子部品の接続部に塗布する方法や、あるいは塗布部分を開口したメタルマスクやメッシュ状マスクを用いて必要部分にのみ塗布を行う方法、ディスペンサを用いて必要部分に塗布する方法、シリコーンやフッ素等を含む撥水性の樹脂を必要な部分のみ開口したメタルマスクやメッシュ状マスクで塗布したり、感光性のある撥水性樹脂を基板あるいは電子部品上に塗布し、露光および現像することにより前記微細粒子等からなるペーストを塗布する部分を除去し、その後接合用ペーストをその開口部に塗布する方法や、さらには撥水性樹脂を基板あるいは電子部品に塗布後、前記金属粒子からなるペースト塗布部分をレーザーにより除去し、その後接合用ペーストをその開口部に塗布する方法がある。これらの塗布方法は、接合する電極の面積、形状に応じて組み合わせ可能である。また、ミリスチルアルコールやアスコルビン酸のような常温で固体のものを還元剤として用いた際には金属化合物と混合し加圧を加えることでシート状に成形して接合材料として用いる方法がある。   These paste materials can be applied using a method in which the paste is ejected from a fine nozzle by an ink jet method and applied to the electrode or the connection part of the electronic component on the substrate, or a metal mask or mesh mask with an open application part. A method of applying only to the surface, a method of applying to a necessary part using a dispenser, a water-repellent resin containing silicone, fluorine, etc., is applied with a metal mask or a mesh-like mask having an opening only on the necessary part, or photosensitive. A method of applying a water-repellent resin on a substrate or electronic component, removing a portion to which the paste composed of the fine particles and the like is applied by exposure and development, and then applying a bonding paste to the opening, and After applying the water-repellent resin to the substrate or electronic component, the paste application part consisting of the metal particles is applied with a laser. Removed, there is then a method of applying a bonding paste in the opening. These application methods can be combined according to the area and shape of the electrodes to be joined. In addition, when a solid at room temperature such as myristyl alcohol or ascorbic acid is used as a reducing agent, there is a method of mixing with a metal compound and applying pressure to form a sheet and using it as a bonding material.

本接合材料を用いた接合では、接合時に金属化合物から粒径が100nm以下の金属粒子を作製し、接合層における有機物を排出しながら粒径が100nm以下の金属粒子の融着による金属結合を行うために熱と圧力を加えることが必須である。接合条件としては、1秒以上10分以内で40℃以上400℃以下の加熱と0より大きく10Mpaより小さい加圧を加えることが好ましい。接合時に加圧を必須としたのは、加圧をかけないと、接合部の面積の向上、強いては強固な接合が達成されないためである。   In bonding using this bonding material, metal particles having a particle size of 100 nm or less are produced from a metal compound at the time of bonding, and metal bonding is performed by fusing metal particles having a particle size of 100 nm or less while discharging organic substances in the bonding layer. Therefore, it is essential to apply heat and pressure. As joining conditions, it is preferable to apply heating of 40 ° C. or more and 400 ° C. or less and pressurization of more than 0 and less than 10 Mpa within 1 second or more and 10 minutes or less. The reason why pressurization is indispensable at the time of joining is that unless pressurization is applied, the area of the joint is not improved, and strong joining cannot be achieved.

本発明の接合方法では、接合に使用する接合用材料にナノ粒子を使用しないため、使用する金属粒子は有機物で表面を保護する必要がなく、それでいてナノ粒子を使用した場合と同等以上の接合面のせん断強度が得られることから、接合プロセスの簡易化、接合材料の大幅なコストダウンを達成することが可能となる。当然ながら、接合後の接合層は従来のはんだと比較すると非常に高い耐熱性を有している。また、この凝集層を介して同時に配合した金属粒子と半導体素子および配線基板上に形成した電極等を接合する際に、低温で接合することが可能である。   In the bonding method of the present invention, since nanoparticles are not used for the bonding material used for bonding, the metal particles used do not need to protect the surface with organic substances, and yet the bonding surface is equal to or higher than when using nanoparticles. Therefore, it is possible to achieve a simplification of the joining process and a significant cost reduction of the joining material. Of course, the bonded layer after bonding has a very high heat resistance as compared with the conventional solder. In addition, when the metal particles mixed at the same time through this aggregated layer are bonded to the semiconductor element, the electrode formed on the wiring board, etc., it is possible to bond at a low temperature.

一方、導体素子のアクティブエリア上に設けた電極とこれを搭載する配線基板の搭載部の表面に銅をめっき等で析出させた後に、この銅の表面を酸化処理させた後に、平均50μm以下の金属化合物と有機物からなる還元剤を含む接合用材料からなる接合層を形成することにより、配線基板への半導体素子搭載後の熱工程において半導体素子搭載部が溶融しないために配線基板に接合時にダメージをあたえることなく、半導体装置の小型化と高信頼化を実現することが可能である。   On the other hand, after depositing copper on the surface of the mounting portion of the electrode provided on the active area of the conductor element and the wiring board on which the electrode is mounted by plating or the like, and then oxidizing the surface of the copper, an average of 50 μm or less By forming a bonding layer made of a bonding material containing a reducing agent composed of a metal compound and an organic substance, the semiconductor element mounting portion does not melt in the thermal process after mounting the semiconductor element on the wiring board, so that the wiring board is damaged during bonding. Therefore, the semiconductor device can be downsized and highly reliable.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
実施例1では、試験片として銅のペレットを使用し、その大きさは上側が直径5mm、厚さ2mmで下側が直径10mm、厚さ5mmである。この試験片を、前処理として25℃の200g/L,NH428+5mL/L,H2SO4 溶液中に90s浸漬しソフトエッチングを施した後、70℃の90g/L,NaClO2+30g/L,NaOH 溶液中に所定の時間浸漬し酸化処理を行った。接合に使用した接合材料は以下の方法で作製した。平均粒径が50μm以下の酸化銀0.8gとミリスチルアルコール0.2gを乳鉢を用いて10分間すり潰し混合させた後、この混合粉末にトルエンを0.4g添加してペースト状にした。これを1時間ほど振動機を用いて振動を加えることにより、混合溶液中に酸化銀とミリスチルアルコールを分散させた。上記、酸化処理をした試験片に上記ペーストを塗布し、次いで60℃で5分間乾燥を行いトルエンを除去させた後、接合を行った。接合時の条件は、接合温度が300℃および400℃、接合時間は2.5min、加圧力を2.5Mpa とした。酸化処理時間の影響を調べるため、10s,1min,2min,10min と変化させた場合の接合強度を測定した。接合強度は、純粋せん断応力で評価した。このせん断試験には、西進商事製ボンドテスターSS−100KP(最大荷重100kg)を用いた。せん断速度は300mm/min とし、試験片をせん断ツールで破断させ、破断時の最大荷重を測定し、この最大荷重を接合面積で割ったものをせん断強度とした。図2は、せん断強度の酸化処理時間依存性を示している。酸化処理を施さない場合、表面には約2nmの酸化物層が存在しているが、この場合の接合強度は高融点はんだの場合よりかなり低い。しかし酸化処理を施すと、急激に接合強度は上昇した後に、酸化処理時間とともに減少するようになる。10sの酸化処理時間を施した場合、酸化処理を施さない場合と比較して300℃では2倍以上、400℃でも1.5 倍程度の接合強度が上昇し、高融点はんだと同等の接合強度が得られることが確認できる。1分の酸化処理を施した場合でも、接合強度は、酸化処理を施した場合より大きい。しかしそれ以上の酸化処理を施すと、接合強度は酸化処理を施さない場合より、小さくなる。試験後の破断面を観察すると、酸化処理時間が10sおよび1分の場合は、焼結銀層中における破壊であるのに対し、1分を超えたものに関しては、界面破壊であった。これは、酸化皮膜層を厚くした場合、接合後においても酸化物層が残存するために、残差として存在するためにその部分で破壊が生じたためと思われる。図3は、上記アルカリ液中で酸化処理を実施した場合の酸化膜厚の時間変化を示したものである。酸化皮膜厚は、カソード還元法を利用して測定した。すなわち0.1M
NaOH溶液中で、−20mA/cm2 の定電流を印加し、その電位が変化するまでの電気量から酸化皮膜厚に換算した。図3と図2との対比から、高い接合強度が得られる酸化皮膜厚は、100nm以下であることが分かる。酸化処理を施していない場合、すなわち自然酸化による酸化膜厚は約2nmであるが、この場合は、1分以内の酸化処理を施した場合より接合強度が小さい。図4は、接合の際の加圧力を変化させた場合の接合力の変化を示している。酸化処理を行わない場合は、加圧力を増加させるとともにせん断強度は直線的に増加する。これは、加圧力を増加させることで、接合中における焼結銀層の緻密化、また焼結銀層と接合部材の界面での接触面積が増加するためにより広い面積において金属結合が達成されるようになるためと考えられる。一方、酸化処理を施した場合では、より低圧領域において酸化処理による接合力の増加の効果が顕著になる。この機構は必ずしも明らかではないが、酸化物が効果的に有機物を燃焼させている効果のあらわれと考えられる。
Example 1
In Example 1, a copper pellet was used as a test piece, and the size was 5 mm in diameter and 2 mm in thickness on the upper side, and 10 mm in diameter and 5 mm in thickness on the lower side. As a pretreatment, this test piece was immersed in a 200 g / L, NH 4 S 2 O 8 +5 mL / L, H 2 SO 4 solution at 25 ° C. for 90 s and subjected to soft etching, and then 90 g / L, NaClO at 70 ° C. 2 +30 g / L, immersed in a NaOH solution for a predetermined time to be oxidized. The joining material used for joining was produced by the following method. After 0.8 g of silver oxide having an average particle size of 50 μm or less and 0.2 g of myristyl alcohol were ground and mixed for 10 minutes using a mortar, 0.4 g of toluene was added to the mixed powder to make a paste. This was subjected to vibration for about 1 hour using a vibrator to disperse silver oxide and myristyl alcohol in the mixed solution. The above-mentioned paste was applied to the test piece subjected to the oxidation treatment, followed by drying at 60 ° C. for 5 minutes to remove toluene, and then bonding was performed. The bonding conditions were a bonding temperature of 300 ° C. and 400 ° C., a bonding time of 2.5 min, and a pressure of 2.5 Mpa. In order to investigate the influence of the oxidation treatment time, the bonding strength was measured when changing to 10 s, 1 min, 2 min, and 10 min. The bonding strength was evaluated by pure shear stress. For this shear test, Seishin Shoji Bond Tester SS-100KP (maximum load 100 kg) was used. The shear rate was 300 mm / min, the specimen was broken with a shearing tool, the maximum load at the time of breaking was measured, and the maximum load divided by the joint area was taken as the shear strength. FIG. 2 shows the dependency of the shear strength on the oxidation treatment time. When the oxidation treatment is not performed, an oxide layer of about 2 nm is present on the surface, but the bonding strength in this case is considerably lower than that in the case of the high melting point solder. However, when the oxidation treatment is performed, the bonding strength suddenly increases and then decreases with the oxidation treatment time. When the oxidation treatment time of 10 s is applied, the joint strength increases at least twice as high at 300 ° C and 1.5 times at 400 ° C compared to the case where no oxidation treatment is performed, and the same joint strength as that of the high melting point solder. Can be confirmed. Even when the oxidation treatment is performed for 1 minute, the bonding strength is larger than that when the oxidation treatment is performed. However, when the oxidation treatment is further performed, the bonding strength becomes smaller than that when the oxidation treatment is not performed. When the fracture surface after the test was observed, when the oxidation treatment time was 10 s and 1 minute, it was a fracture in the sintered silver layer, whereas when it exceeded 1 minute, it was an interface fracture. This is presumably because, when the oxide film layer is thickened, the oxide layer remains even after the bonding, so that it exists as a residual and thus breaks in that portion. FIG. 3 shows the change over time of the oxide film thickness when the oxidation treatment is performed in the alkaline solution. The oxide film thickness was measured using the cathode reduction method. That is, 0.1M
A constant current of −20 mA / cm 2 was applied in an NaOH solution, and the amount of electricity until the potential changed was converted to the oxide film thickness. From the comparison between FIG. 3 and FIG. 2, it can be seen that the thickness of the oxide film that provides high bonding strength is 100 nm or less. When the oxidation treatment is not performed, that is, the oxide film thickness by natural oxidation is about 2 nm. In this case, the bonding strength is smaller than that when the oxidation treatment is performed within 1 minute. FIG. 4 shows a change in bonding force when the applied pressure during bonding is changed. When the oxidation treatment is not performed, the shear strength increases linearly as the pressure is increased. This is because by increasing the pressing force, the sintered silver layer is densified during bonding, and the contact area at the interface between the sintered silver layer and the bonding member increases, so that metal bonding is achieved in a wider area. It is thought to be like that. On the other hand, when the oxidation treatment is performed, the effect of increasing the bonding force due to the oxidation treatment becomes remarkable in a lower pressure region. Although this mechanism is not necessarily clear, it is thought that the effect of the oxides effectively burning organic substances appears.

本実施例は、湿式法の代表例として酸化剤を含むアルカリ溶液中で処理した場合に関して示したが、他の溶液を使用した場合においても、同様の効果を得ることができる。   In the present embodiment, the case where the treatment is performed in an alkaline solution containing an oxidizing agent is shown as a representative example of the wet method, but the same effect can be obtained even when another solution is used.

(実施例2)
本実施例は、乾式法による代表例として、空気酸化法を適用したものである。実施例1のアルカリ+酸化剤による酸化皮膜処理以外の部分は、同じ方法を用いた。本実施例における酸化処理は、恒温槽または電気炉を用いて、温度200℃〜400℃、酸化時間2〜10分実施した。表1は、空気酸化処理をした試験片を使用して上記酸化銀ペーストを使用して接合した場合のせん断強度を温度と酸化時間をパラメータとして示している。結果を表1に示す。表中のセルの点線の上は酸化膜厚、下にせん断強度比(高融点はんだの強度を1)を示している。色の付いた領域が酸化処理による接合強度の増加が見られた領域である。酸化皮膜厚は、時間および温度の増加とともに厚くなる。せん断強度の増加がみられた酸化膜厚は、自然酸化膜厚より厚い8nm〜100nmの領域であり、それ以上酸化膜厚が厚くなると実施例1に示した場合と同様に、せん断強度は低下するようになる。
(Example 2)
In this embodiment, an air oxidation method is applied as a typical example of the dry method. The same method was used for portions other than the oxide film treatment with alkali + oxidant in Example 1. The oxidation treatment in this example was performed at a temperature of 200 ° C. to 400 ° C. and an oxidation time of 2 to 10 minutes using a thermostatic bath or an electric furnace. Table 1 shows the shear strength when the test piece subjected to air oxidation treatment is joined using the above-described silver oxide paste, using temperature and oxidation time as parameters. The results are shown in Table 1. The oxide film thickness is shown above the dotted line of the cell in the table, and the shear strength ratio (high melting point solder strength is 1) is shown below. The colored area is an area where the bonding strength is increased by the oxidation treatment. The oxide film thickness increases with increasing time and temperature. The oxide film thickness in which the increase in shear strength was observed was a region of 8 nm to 100 nm thicker than the natural oxide film thickness, and when the oxide film thickness became thicker than that, the shear strength decreased as shown in Example 1. To come.

Figure 0004737116
Figure 0004737116

(実施例3)
本実施例は、接合に使用する有機物と金属粒子の組み合わせを変えて接合させた場合の接合強度比を示している。接合面に使用した金属は、銅およびニッケルである。銅を使用した場合は、実施例1に示した25℃の200g/L,NH428+5mL/L,
2SO4溶液中に90s浸漬しソフトエッチング次いで、70℃の90g/L,NaClO2+30g/L,NaOH 溶液中に10s浸漬し酸化処理を施している。ニッケルを使用した場合は、実施例2に示した高温処理により酸化皮膜を形成させている。生成条件は、空気中、400℃、2分である。使用した粒子は、酸化銀、酸化銅、酸化金、炭酸銀、酢酸銀である。また還元性の有機物として、ミリスチルアルコール、エチレングリコール、トリエチレングリコール、メタノール、エタノール、オクチルアルコール、ウンデシルアルコール、ヘキシルアミン、オクチルアミン、ラウリルアルコール、テトラデカン酸、アスコルビン酸を使用した。表2は、それぞれの金属粒子および有機物を使用して接合した場合(温度400℃、時間2.5min、圧力2.5MPa),Iいずれの場合においても高融点はんだの80%I以上の接合強度を得ることができている。
(Example 3)
This example shows the bonding strength ratio when bonding is performed by changing the combination of the organic substance and metal particles used for bonding. The metals used for the joint surfaces are copper and nickel. When copper was used, 200 g / L at 25 ° C., NH 4 S 2 O 8 +5 mL / L shown in Example 1,
Soft etching by immersing in H 2 SO 4 solution for 90 s, followed by oxidation treatment by immersing in 70 g of 90 g / L, NaClO 2 +30 g / L, NaOH solution for 10 s. When nickel is used, an oxide film is formed by the high temperature treatment shown in Example 2. The generation conditions are 400 ° C. and 2 minutes in air. The used particles are silver oxide, copper oxide, gold oxide, silver carbonate, and silver acetate. In addition, myristyl alcohol, ethylene glycol, triethylene glycol, methanol, ethanol, octyl alcohol, undecyl alcohol, hexylamine, octylamine, lauryl alcohol, tetradecanoic acid and ascorbic acid were used as reducing organic substances. Table 2 shows the bonding strength of 80% I or more of the high melting point solder in either case when joining using each metal particle and organic matter (temperature 400 ° C., time 2.5 min, pressure 2.5 MPa). Can get.

Figure 0004737116
Figure 0004737116

(実施例4)
図5は本発明の実施例の一つである非絶縁型半導体装置の構造を示した図である。図5(a)は上面図、図5(b)は図5(a)A−A′部の断面図である。半導体素子
(MOSFET)301をセラミック絶縁基板302上に、セラミック絶縁基板302をベース材303上にそれぞれ搭載した後、エポキシ系樹脂ケース304、ボンディングワイヤ305、エポキシ系樹脂ふた306を設け、同一ケース内にシリコーンゲル樹脂307を充填した。ここで、ベース材303上のセラミック絶縁基板302は酸化銀とミリスチルアルコールをトルエンに分散したペースト材で構成された接合層308で接合され、セラミック絶縁板302の銅板302a上には8個のSiからなるMOSFET素子301が酸化銀とミリスチルアルコールをトルエンに分散したペースト材で構成された接合層
309で接合されている。酸化銀とミリスチルアルコールをトルエンに分散したペースト材で構成された接合層308及び309による接合は、先ず、セラミック絶縁板302の銅板302a上、及びベース材303上に酸化銀とミリスチルアルコールをトルエンに分散したペースト材を銅板302a上とベース材303上にそれぞれ塗布する。
Example 4
FIG. 5 is a view showing the structure of a non-insulated semiconductor device which is one embodiment of the present invention. 5A is a top view, and FIG. 5B is a cross-sectional view taken along the line AA ′ of FIG. 5A. After mounting the semiconductor element (MOSFET) 301 on the ceramic insulating substrate 302 and the ceramic insulating substrate 302 on the base material 303, an epoxy resin case 304, a bonding wire 305, and an epoxy resin lid 306 are provided. Was filled with silicone gel resin 307. Here, the ceramic insulating substrate 302 on the base material 303 is bonded by a bonding layer 308 made of a paste material in which silver oxide and myristyl alcohol are dispersed in toluene, and 8 Si are formed on the copper plate 302a of the ceramic insulating plate 302. A MOSFET element 301 made of is bonded with a bonding layer 309 made of a paste material in which silver oxide and myristyl alcohol are dispersed in toluene. Joining with the joining layers 308 and 309 made of a paste material in which silver oxide and myristyl alcohol are dispersed in toluene is first performed on the copper plate 302a of the ceramic insulating plate 302 and the base material 303 with silver oxide and myristyl alcohol in toluene. The dispersed paste material is applied onto the copper plate 302a and the base material 303, respectively.

それぞれセラミックス基板上の銅材302aおよび銅ベース材303は、実施例1に示す方法で酸化処理(10s)が施されている。また素子301の接合面にはあらかじめ接合前に無電解銅めっきおよび実施例1の酸化処理が施されている。   Each of the copper material 302a and the copper base material 303 on the ceramic substrate is subjected to an oxidation treatment (10 s) by the method shown in the first embodiment. In addition, the bonding surface of the element 301 is previously subjected to electroless copper plating and the oxidation treatment of Example 1 before bonding.

これらの酸化銀とミリスチルアルコールをトルエンに分散したペースト材の接合層上に半導体素子301、及びセラミック絶縁板302を配置させ接続する。このとき250℃程度において5分間、加圧力1MPaの元で加熱を行う。   A semiconductor element 301 and a ceramic insulating plate 302 are arranged and connected on a bonding layer of a paste material in which these silver oxide and myristyl alcohol are dispersed in toluene. At this time, heating is performed at about 250 ° C. for 5 minutes under an applied pressure of 1 MPa.

各素子301に形成されたゲート電極、エミッタ電極等と、絶縁基板上に形成した電極302a、302bエポキシ系樹脂ケース304にあらかじめ取り付けられている端子
310の間は、直径300μmのAl線305を用い超音波接合法によりでワイヤボンディングした。311は銅めっきおよび酸化処理を施した温度検出用サーミスタ素子で、酸化銀とミリスチルアルコールをトルエンに分散したペースト材で構成された接合層309で構成され、電極302と端子310との間を直径300μmのAl線305でワイヤボンディングし外部へ連絡されている。
An Al wire 305 having a diameter of 300 μm is used between the gate electrode, emitter electrode, and the like formed on each element 301 and the terminals 310 attached in advance to the electrodes 302a and 302b of the epoxy resin case 304 formed on the insulating substrate. Wire bonding was performed by ultrasonic bonding. Reference numeral 311 denotes a temperature detection thermistor element that has been subjected to copper plating and oxidation treatment. The temperature detection thermistor element 311 is composed of a bonding layer 309 made of a paste material in which silver oxide and myristyl alcohol are dispersed in toluene. Wire bonding is performed with an Al wire 305 of 300 μm and is communicated to the outside.

なお、エポキシ系樹脂ケース304とベース材303の間はシリコーン接着樹脂(図示せず)を用いて固定した。エポキシ系樹脂ふた306の内厚部には凹み306′、端子
310には穴310′がそれぞれ設けられ、絶縁型半導体装置1000を外部回路と接続するためのネジ(図示せず)が装着されるようになっている。端子310はあらかじめ所定形状に打抜き、成形された酸化処理を施した銅板にであり、エポキシ系樹脂ケース304に取付けられている。
The epoxy resin case 304 and the base material 303 were fixed using a silicone adhesive resin (not shown). The epoxy resin lid 306 is provided with a recess 306 ′ in the inner thick portion and a hole 310 ′ in the terminal 310, and a screw (not shown) for connecting the insulating semiconductor device 1000 to an external circuit is attached. It is like that. The terminal 310 is a copper plate that has been punched into a predetermined shape and formed and subjected to an oxidation treatment, and is attached to the epoxy resin case 304.

図6は図5に示した本発明絶縁型半導体装置のサブアッセンブリ部を示した図で、セラミック基板と半導体素子をベース材としてに搭載した。ベース材には周辺部に取付け穴
303Aが設けられている。ベース材はCuで構成されており、表面に酸化処理を施してある。ベース材303上には前記酸化銀とミリスチルアルコールをトルエンに分散したペースト層によりセラミック絶縁基板302(銅部は酸化処理済)を、そしてセラミック絶縁基板302(銅部は酸化処理済)上には酸化銀とミリスチルアルコールをトルエンに分散したペースト材による層によりMOSFET素子301がそれぞれ搭載されている。
FIG. 6 is a view showing a sub-assembly portion of the insulated semiconductor device of the present invention shown in FIG. 5, in which a ceramic substrate and a semiconductor element are mounted as a base material. A mounting hole 303A is provided in the periphery of the base material. The base material is made of Cu, and the surface is oxidized. A ceramic insulating substrate 302 (copper portion is oxidized) is formed on the base material 303 by a paste layer in which the silver oxide and myristyl alcohol are dispersed in toluene, and on the ceramic insulating substrate 302 (copper portion is oxidized). MOSFET elements 301 are respectively mounted by layers of paste material in which silver oxide and myristyl alcohol are dispersed in toluene.

図7は図6におけるMOSFET素子搭載部の接合前の断面の拡大概略図である。図7に示すように、接合層に酸化銀とミリスチルアルコールをトルエンに分散したペースト材を用いることが可能である。また酸化銀とミリスチルアルコールをトルエンに分散したペースト材の塗布時の溶液流れ防止のために、ベース材303上にはセラミック絶縁基板
302搭載領域に対応するように撥水膜322が施されている。さらに、セラミック絶縁基板302上には、半導体素子301の搭載領域に対応するように撥水膜321が施されており、Ag粒子含有溶液塗布時の溶液流れ防止を図っている。
FIG. 7 is an enlarged schematic view of a cross section of the MOSFET element mounting portion in FIG. 6 before joining. As shown in FIG. 7, a paste material in which silver oxide and myristyl alcohol are dispersed in toluene can be used for the bonding layer. Further, a water repellent film 322 is applied on the base material 303 so as to correspond to the region where the ceramic insulating substrate 302 is mounted in order to prevent a solution flow when applying a paste material in which silver oxide and myristyl alcohol are dispersed in toluene. . Furthermore, a water repellent film 321 is applied on the ceramic insulating substrate 302 so as to correspond to the mounting region of the semiconductor element 301 to prevent solution flow during application of the Ag particle-containing solution.

各接合面に存在する銅は、実施例1に示す方法で酸化皮膜処理が施されている。   Copper present on each joint surface is subjected to an oxide film treatment by the method shown in the first embodiment.

(実施例5)
図8は本発明を用いた非絶縁型半導体装置における他の実施例の一つを示した図である。
(Example 5)
FIG. 8 is a diagram showing another embodiment of the non-insulated semiconductor device using the present invention.

半導体素子401およびセラミックス絶縁基板402は前記実施例3と同様に、銅めっき配線部402aの酸化処理後に、酸化銀とミリスチルアルコールをトルエンに分散したペースト材接合層により接合されている。半導体素子のエミッタ電極も接合端子431を介しセラミック絶縁基板上に形成された酸化処理を施した銅配線402bは酸化銀とミリスチルアルコールをトルエンに分散したペースト材粒子層により接続されている。   Similar to the third embodiment, the semiconductor element 401 and the ceramic insulating substrate 402 are bonded by a paste material bonding layer in which silver oxide and myristyl alcohol are dispersed in toluene after the oxidation treatment of the copper-plated wiring portion 402a. The copper electrode 402b subjected to the oxidation treatment formed on the ceramic insulating substrate via the junction terminal 431 is also connected by a paste material particle layer in which silver oxide and myristyl alcohol are dispersed in toluene.

図9は図8における半導体素子搭載部分の接合前の断面拡大概略図である。接続用端子431は実施例1に示した酸化処理を施した銅板を使用し、絶縁基板の配線402a(酸化処理を実施)上に半導体素子401(接合面を銅めっきおよび酸化処理)を搭載した後、酸化銀とミリスチルアルコールをトルエンに分散したペースト材を半導体素子のエミッタ電極(上側)に置く。さらに、絶縁基板402上に形成した銅配線パターンで表面に酸化処理を行い、さらに半導体素子のエミッタ電極と端子431を介して接続する部分に酸化処理を施した銅配線402bに上記シート材料を置いた後、接続用端子431をこの表面が有機物で被覆された酸化銀とミリスチルアルコールをトルエンに分散したペースト材の電極上部に搭載し250℃程度の熱を0.5MPa の加圧の下で5分間加えることにより半導体素子401と絶縁基板配線402bとの接続が完了する。絶縁型半導体装置においてはコレクタ電極だけではなくエミッタ電極部分にも大きな電流が流れるため、配線幅の大きい接続端子431を用いることによりエミッタ電極側の接続信頼性をさらに向上させることが可能になる。   FIG. 9 is an enlarged schematic cross-sectional view of the semiconductor element mounting portion in FIG. 8 before joining. The connection terminal 431 uses the copper plate subjected to the oxidation treatment described in the first embodiment, and the semiconductor element 401 (copper plating and oxidation treatment on the bonding surface) is mounted on the wiring 402a (the oxidation treatment is performed) of the insulating substrate. Thereafter, a paste material in which silver oxide and myristyl alcohol are dispersed in toluene is placed on the emitter electrode (upper side) of the semiconductor element. Further, the sheet material is placed on the copper wiring 402b which is oxidized on the surface connected with the emitter electrode of the semiconductor element via the terminal 431 by the copper wiring pattern formed on the insulating substrate 402. After that, the connection terminal 431 is mounted on the upper part of the paste material electrode in which silver oxide and myristyl alcohol whose surfaces are coated with an organic substance are dispersed in toluene, and heat of about 250 ° C. is applied under a pressure of 0.5 MPa. By adding for a minute, the connection between the semiconductor element 401 and the insulating substrate wiring 402b is completed. In the insulating semiconductor device, a large current flows not only in the collector electrode but also in the emitter electrode portion. Therefore, the connection reliability on the emitter electrode side can be further improved by using the connection terminal 431 having a large wiring width.

(実施例6)
LEDを基板に実装する際に本発明に接合方法を用いて接合を行うことで、従来の半田乃至熱伝導性接着材よりも放熱性を向上させることが可能になる。
(Example 6)
When the LED is mounted on the substrate, the heat dissipation can be improved as compared with the conventional solder or heat conductive adhesive by bonding using the bonding method according to the present invention.

本発明の接合を行った際の概念図。The conceptual diagram at the time of joining of this invention. 酸化銀とミリスチルアルコールをトルエンに分散させたペーストを用いて酸化物層を有する面の接合を行った際の、せん断強度の酸化物層厚さ依存性。Dependence of shear strength on oxide layer thickness when joining surfaces with oxide layers using paste in which silver oxide and myristyl alcohol are dispersed in toluene. 酸化膜厚の酸化物処理時間依存性。Dependence of oxide thickness on oxide treatment time. せん断強度に及ぼす加圧力依存性。Dependence of applied pressure on shear strength. 本発明の実施例の一つである非絶縁型半導体装置の構造を示した図。The figure which showed the structure of the non-insulated semiconductor device which is one of the Examples of this invention. 本発明絶縁型半導体装置のサブアッセンブリ部を示した図。The figure which showed the sub-assembly part of the insulated type semiconductor device of this invention. 半導体素子と基板接合部の拡大概略図。The enlarged schematic diagram of a semiconductor element and a board | substrate junction part. 非絶縁型半導体装置のサブアッセンブリ部の他の実施例構造を示した図。The figure which showed the other Example structure of the sub-assembly part of the non-insulating semiconductor device. 半導体素子と基板接合部の拡大概略図。The enlarged schematic diagram of a semiconductor element and a board | substrate junction part.

符号の説明Explanation of symbols

301 半導体素子(MOSFET)
302,403 セラミック絶縁基板
302a,302b セラミック絶縁板上銅部
303 ベース材(銅)
304 エポキシ系樹脂ケース
305 Al材
308,309 接合層
310 端子
311 温度検出用サーミスタ
322 撥水膜
401 半導体素子
402a,402b 銅配線
402b 銅配線
431 接続用端子
301 Semiconductor device (MOSFET)
302, 403 Ceramic insulating substrate 302a, 302b Copper part 303 on ceramic insulating plate Base material (copper)
304 Epoxy resin case 305 Al material 308, 309 Bonding layer 310 Terminal 311 Temperature detection thermistor 322 Water repellent film 401 Semiconductor element 402a, 402b Copper wiring 402b Copper wiring 431 Connection terminal

Claims (14)

被接合部材の接合界面に酸素を含む酸化物層を形成する工程と、
接合界面に、平均粒径が1nm以上50μm以下の金属化合物粒子と有機物からなる還元剤とを含む接合用材料を配置する工程と、
被接合部材間を加熱、加圧することにより被接合部材を接合することを特徴とする接合方法。
Forming an oxide layer containing oxygen at the bonding interface of the members to be bonded;
Disposing a bonding material including a metal compound particle having an average particle diameter of 1 nm to 50 μm and a reducing agent made of an organic substance at a bonding interface;
A joining method comprising joining members to be joined by heating and pressurizing the members to be joined.
請求項1において、前記金属化合物が金属酸化物、金属炭酸塩、又はカルボン酸金属塩の粒子から選ばれる1種以上の粒子であることを特徴とする接合方法。 In claim 1, the joining method wherein said metal compound is a metal oxide is one or more particle element selected from particles of a metal carbonate or a metal carboxylate. 請求項1において、前記金属化合物が、銀、金または銅の少なくとも1種類以上の化合物であることを特徴とする接合方法。   The joining method according to claim 1, wherein the metal compound is at least one compound of silver, gold, and copper. 請求項1において、前記還元剤がアルコール類、カルボン酸類、アミン類から選ばれた1種または2種以上の混合物であることを特徴とする接合方法。   The joining method according to claim 1, wherein the reducing agent is one or a mixture of two or more selected from alcohols, carboxylic acids, and amines. 請求項1において、前記還元剤が、エチレングリコール、トリエチレングリコール、メタノール、エタノール、オクチルアルコール、ウンデシルアルコール、ミリスチルアルコールで代表されるアルコール類、または、ヘキシルアミン、オクチルアミン、ラウリルアミン、で代表されるアルキルアミン、テトラデカン酸で代表されるカルボン酸、アスコルビン酸、の中から少なくとも1種または2種以上の混合物であることを特徴とする接合方法。   2. The reducing agent according to claim 1, wherein the reducing agent is represented by ethylene glycol, triethylene glycol, methanol, ethanol, octyl alcohol, undecyl alcohol, or myristyl alcohol, or hexylamine, octylamine, or laurylamine. And a mixture of at least one or a mixture of two or more alkylamines, carboxylic acids typified by tetradecanoic acid, and ascorbic acid. 請求項1において、前記酸化物層の厚さが5nm以上でありかつ100nm以下であることを特徴とする接合方法。   2. The bonding method according to claim 1, wherein the oxide layer has a thickness of 5 nm or more and 100 nm or less. 請求項1において、前記被接合部材を、酸化剤を有するアルカリ溶液中に浸漬させることにより、表面に酸化物層を形成させることを特徴とする接合方法。 The joining method according to claim 1, wherein the member to be joined is immersed in an alkaline solution containing an oxidizing agent to form an oxide layer on the surface . 請求項7において、前記酸化剤が亜硫酸塩、過酸化水素、硝酸塩、過硫酸塩であることを特徴とする接合方法。   The joining method according to claim 7, wherein the oxidizing agent is sulfite, hydrogen peroxide, nitrate, or persulfate. 請求項1において、前記被接合部材を高温水蒸気環境に曝すことにより、表面に酸化物層を形成させることを特徴とする接合方法。   The bonding method according to claim 1, wherein an oxide layer is formed on a surface by exposing the member to be bonded to a high-temperature steam environment. 請求項1において、前記被接合部材を高温の空気に曝すことにより、表面に酸化物層を形成させることを特徴とする接合方法。 The bonding method according to claim 1, wherein an oxide layer is formed on a surface by exposing the member to be bonded to high-temperature air. 請求項1において、前記被接合部材の接合面に無電解めっきまたは電気めっきにより銅、銀またはニッケルを析出させた後、めっき金属表面を酸化させることを特徴とする接合方法。   2. The joining method according to claim 1, wherein copper, silver or nickel is deposited on the joining surface of the member to be joined by electroless plating or electroplating, and then the plated metal surface is oxidized. 請求項1において、前記酸化物層が銅の酸化物であることを特徴とする接合方法。   The bonding method according to claim 1, wherein the oxide layer is a copper oxide. 請求項1において、前記加熱により前記金属化合物粒子を還元させて平均粒径が100nm以下の金属粒子を生成させることを特徴とする接合方法。   The bonding method according to claim 1, wherein the metal compound particles are reduced by the heating to generate metal particles having an average particle diameter of 100 nm or less. 半導体素子の電極と前記半導体素子の電気信号を外部に取り出すための配線とを接合する接合方法であって、
前記半導体素子の電極、または、前記配線の少なくとも一方の表面に酸素を含む酸化物層を形成する工程と、
前記電極と前記配線との間に平均粒径が1nm以上50μm以下の金属化合物粒子と有機物からなる還元剤とを含む接合用材料を配置する工程と、
前記電極と配線との間を加熱、加圧することにより接合する工程とを有することを特徴とする接合方法。
A bonding method for bonding an electrode of a semiconductor element and a wiring for taking out an electric signal of the semiconductor element to the outside,
Forming an oxide layer containing oxygen on at least one surface of the electrode of the semiconductor element or the wiring;
Disposing a bonding material including metal compound particles having an average particle diameter of 1 nm or more and 50 μm or less and a reducing agent made of an organic substance between the electrode and the wiring;
Heating between the electrode and the wiring, joining method characterized by a step of bonding by pressing.
JP2007048378A 2007-02-28 2007-02-28 Joining method Expired - Fee Related JP4737116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048378A JP4737116B2 (en) 2007-02-28 2007-02-28 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048378A JP4737116B2 (en) 2007-02-28 2007-02-28 Joining method

Publications (2)

Publication Number Publication Date
JP2008208442A JP2008208442A (en) 2008-09-11
JP4737116B2 true JP4737116B2 (en) 2011-07-27

Family

ID=39784995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048378A Expired - Fee Related JP4737116B2 (en) 2007-02-28 2007-02-28 Joining method

Country Status (1)

Country Link
JP (1) JP4737116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796932A (en) * 2014-08-29 2017-05-31 Ev 集团 E·索尔纳有限责任公司 Method for manufacturing conductive many substrate stackings

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006081B2 (en) * 2007-03-28 2012-08-22 株式会社日立製作所 Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP5212364B2 (en) 2008-01-17 2013-06-19 日亜化学工業株式会社 Manufacturing method of conductive material, conductive material obtained by the method, electronic device including the conductive material, light emitting device, and method of manufacturing light emitting device
JP5399110B2 (en) * 2008-04-23 2014-01-29 トヨタ自動車株式会社 Bonding material and component calculation method for bonding material
JP5184488B2 (en) * 2008-11-05 2013-04-17 古河電気工業株式会社 Method for forming conductive circuit
WO2010084746A1 (en) 2009-01-23 2010-07-29 日亜化学工業株式会社 Semiconductor device and method for manufacturing same
US8836130B2 (en) 2009-01-23 2014-09-16 Nichia Corporation Light emitting semiconductor element bonded to a base by a silver coating
EP3151268B1 (en) * 2009-01-23 2020-04-01 Nichia Corporation Method of producing a semiconductor device by directly bonding silver oxide on a surface of a semiconductor element with silver or silver oxide on a surface of a base
JP5156658B2 (en) * 2009-01-30 2013-03-06 株式会社日立製作所 Electronic components for LSI
JP5375343B2 (en) * 2009-06-04 2013-12-25 日立金属株式会社 Bonding material, manufacturing method thereof, and mounting method using the same
TWI509630B (en) 2009-07-21 2015-11-21 Nichia Corp A method of manufacturing a conductive material, a conductive material obtained by the method, an electronic device containing the conductive material, and a light-emitting device
JP5158904B2 (en) 2010-03-19 2013-03-06 古河電気工業株式会社 Conductive connection member and method for producing conductive connection member
EP2487215B1 (en) * 2011-02-11 2013-07-24 Henkel AG & Co. KGaA Electrically conductive adhesives comprising at least one metal precursor
JP5812090B2 (en) 2011-03-10 2015-11-11 富士電機株式会社 Electronic component and method for manufacturing electronic component
CN102810524B (en) * 2011-05-31 2016-12-14 三菱综合材料株式会社 Power model and the manufacture method of power model
JP5966379B2 (en) * 2011-05-31 2016-08-10 三菱マテリアル株式会社 Power module and method for manufacturing power module
WO2013058291A1 (en) * 2011-10-17 2013-04-25 独立行政法人産業技術総合研究所 Semiconductor element bonding method and bonding structure
JP5670924B2 (en) * 2012-01-10 2015-02-18 株式会社ノリタケカンパニーリミテド Conductive bonding material, method of bonding ceramic electronic material using the same, and ceramic electronic device
JP5331929B2 (en) * 2012-08-10 2013-10-30 株式会社日立製作所 Electronic member, electronic component and method for manufacturing the same
WO2014027418A1 (en) 2012-08-17 2014-02-20 富士電機株式会社 Electronic component, and method for producing electronic component
FR2994768B1 (en) * 2012-08-21 2016-02-05 Commissariat Energie Atomique HYBRIDIZATION FACE AGAINST FACE OF TWO MICROELECTRONIC COMPONENTS USING A UV RECEIVER
JP5664625B2 (en) 2012-10-09 2015-02-04 三菱マテリアル株式会社 Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
WO2014142310A1 (en) 2013-03-14 2014-09-18 三菱マテリアル株式会社 Bonded body, substrate for power modules, and substrate with heat sink for power modules
CN104347438A (en) * 2013-08-06 2015-02-11 鸿富锦精密工业(深圳)有限公司 Method for combining glass base plate with metal base plate
WO2015053193A1 (en) 2013-10-07 2015-04-16 古河電気工業株式会社 Joining structure and electronic member-joining structural body
EP3056303B1 (en) 2013-10-09 2019-09-25 Furukawa Electric Co., Ltd. Method for bonding metal bodies and bonding structure for metal bodies
TWI642154B (en) 2013-12-25 2018-11-21 日商三菱綜合材料股份有限公司 Power module substrate, and method of producing the same; and power module
JP6432465B2 (en) 2014-08-26 2018-12-05 三菱マテリアル株式会社 Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
JP6432466B2 (en) 2014-08-26 2018-12-05 三菱マテリアル株式会社 Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
JP6565527B2 (en) 2014-09-30 2019-08-28 三菱マテリアル株式会社 Power module substrate and power module with Ag underlayer
WO2016052392A1 (en) 2014-09-30 2016-04-07 三菱マテリアル株式会社 SUBSTRATE FOR POWER MODULE WITH Ag UNDERLAYER AND POWER MODULE
JP6696215B2 (en) 2015-04-16 2020-05-20 三菱マテリアル株式会社 Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
JP6696214B2 (en) 2015-04-16 2020-05-20 三菱マテリアル株式会社 Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
US10497585B2 (en) 2015-04-16 2019-12-03 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP6613929B2 (en) 2016-02-01 2019-12-04 三菱マテリアル株式会社 Metal member with Ag underlayer, insulated circuit substrate with Ag underlayer, semiconductor device, insulating circuit substrate with heat sink, and method for producing metal member with Ag underlayer
JP6677886B2 (en) 2016-02-29 2020-04-08 三菱マテリアル株式会社 Semiconductor device
JP6904094B2 (en) 2016-06-23 2021-07-14 三菱マテリアル株式会社 Manufacturing method of insulated circuit board
CN109219878B (en) 2016-06-23 2022-06-03 三菱综合材料株式会社 Method for manufacturing insulated circuit board, and thermoelectric conversion module
CN113492255A (en) * 2020-04-08 2021-10-12 昆山微电子技术研究院 Sample welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309352A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Conductive adhesive and electronic component mounting structure using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226834A (en) * 1985-07-26 1987-02-04 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2004006944A (en) * 1996-11-15 2004-01-08 Ngk Spark Plug Co Ltd Wiring substrate and its manufacture method
JP3881419B2 (en) * 1997-03-27 2007-02-14 日鉱金属株式会社 Copper or copper alloy material with excellent resin adhesion
JP2002094223A (en) * 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd Mounting structure body, electronic component, and their manufacturing method
JP2004107728A (en) * 2002-09-18 2004-04-08 Ebara Corp Joining material and joining method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309352A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Conductive adhesive and electronic component mounting structure using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796932A (en) * 2014-08-29 2017-05-31 Ev 集团 E·索尔纳有限责任公司 Method for manufacturing conductive many substrate stackings

Also Published As

Publication number Publication date
JP2008208442A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4737116B2 (en) Joining method
JP4895994B2 (en) Joining method and joining material using metal particles
JP4872663B2 (en) Joining material and joining method
JP5286115B2 (en) Semiconductor device and bonding material
JP5151150B2 (en) Composition for forming conductive sintered layer, and method for forming conductive film and bonding method using the same
JP5156658B2 (en) Electronic components for LSI
JP5611537B2 (en) Conductive bonding material, bonding method using the same, and semiconductor device bonded thereby
JP5006081B2 (en) Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP5023710B2 (en) Semiconductor device and manufacturing method thereof
JP2011014556A (en) Semiconductor device and method of manufacturing the same
JP5135079B2 (en) Semiconductor device and bonding material
JP2008004651A (en) Bonding material using anisotropic fine particles
JP2010050189A (en) Bonding material, semiconductor device, and method of manufacturing the same
JP2009167436A (en) Joining material and junction forming method
JP2012191238A (en) Conductive sintered layer forming composition, and conductive coating film forming method and jointing method using the same
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
WO2013125022A1 (en) Semiconductor device
JP5865240B2 (en) Semiconductor device having a plurality of semiconductor elements
JP5677685B2 (en) Circuit board and semiconductor device using the same
JP5331929B2 (en) Electronic member, electronic component and method for manufacturing the same
JP2006068765A (en) Joint and joining method
JP2013197436A (en) High thermal conduction low thermal expansion bonding material and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees