JP5135079B2 - Semiconductor device and bonding material - Google Patents

Semiconductor device and bonding material Download PDF

Info

Publication number
JP5135079B2
JP5135079B2 JP2008169769A JP2008169769A JP5135079B2 JP 5135079 B2 JP5135079 B2 JP 5135079B2 JP 2008169769 A JP2008169769 A JP 2008169769A JP 2008169769 A JP2008169769 A JP 2008169769A JP 5135079 B2 JP5135079 B2 JP 5135079B2
Authority
JP
Japan
Prior art keywords
bonding
temperature
metal
particles
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008169769A
Other languages
Japanese (ja)
Other versions
JP2010010502A (en
Inventor
俊章 守田
雄亮 保田
英一 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008169769A priority Critical patent/JP5135079B2/en
Publication of JP2010010502A publication Critical patent/JP2010010502A/en
Application granted granted Critical
Publication of JP5135079B2 publication Critical patent/JP5135079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve bonding reliability of joint portions between various electrodes containing Cu, Ni and Al of a semiconductor device and a bonding material consisting of metal oxide particles as a main material for bonding. <P>SOLUTION: A semiconductor module having a semiconductor element and electrodes connected together through a bonding layer made of an Ag-based or Cu-based material is characterized in that a thin film of the same kind as the bonding layer is formed on an interface between the semiconductor element and bonding layer and an interface between the bonding layer and electrodes, the thin film having thickness of 1 to 200 nm. Further, the semiconductor element and electrodes are bonded together through a two-stage heat treatment wherein a heat treatment is carried out at temperature below the reduction temperature of the bonding material and then at temperature higher than the reduction temperature. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、金属酸化物粒子を接合の主剤とする接合材に係り、また、その接合材を使用して接合が行われた半導体装置に関する。   The present invention relates to a bonding material using metal oxide particles as a main agent for bonding, and also relates to a semiconductor device bonded using the bonding material.

金属粒子の粒径が100nm以下のサイズまで小さくなり構成原子数が少なくなると、粒子の体積に対する表面積比は急激に増大し、融点や焼結温度がバルクの状態に比較して大幅に低下することが知られている。この低温焼成機能を利用して、粒径が1〜100nm金属粒子を接合材として用いることが検討されている(例えば、特許文献1参照)。特許文献1には、平均粒径100nm以下の金属粒子からなる核の周囲に有機物よりなる皮膜を施した接合材料を用いて、加熱により有機物を分解させて金属粒子同士を焼結させることで接合を行うことが記載されている。本接合方法では、接合後の金属粒子はバルク金属へと変化すると同時に接合界面では金属結合により接合されているため、非常に高い耐熱性と信頼性及び高放熱性を有する。また、電子部品等の接続において、はんだの鉛フリー対応が迫られているが、高温はんだに関してはその代替となる材料が出ていない。実装においては階層はんだを用いることが必要不可欠なため、この高温はんだに代わる材料の出現が望まれている。従って、本接合技術はこの高温はんだに代わる材料としても期待されている。   When the particle size of metal particles is reduced to a size of 100 nm or less and the number of constituent atoms is reduced, the surface area ratio with respect to the volume of the particles increases rapidly, and the melting point and sintering temperature greatly decrease compared to the bulk state. It has been known. Using this low-temperature firing function, it has been studied to use metal particles having a particle size of 1 to 100 nm as a bonding material (see, for example, Patent Document 1). In Patent Document 1, a bonding material in which a film made of an organic substance is applied around a core made of metal particles having an average particle diameter of 100 nm or less is bonded by heating to decompose the organic substance to sinter the metal particles. It is described to do. In this bonding method, the metal particles after bonding change into a bulk metal and at the same time are bonded by metal bonding at the bonding interface, so that they have very high heat resistance, reliability, and high heat dissipation. In addition, in connection of electronic parts and the like, lead-free soldering is required, but there is no substitute material for high-temperature solder. Since the use of hierarchical solder is indispensable for mounting, the appearance of a material that replaces this high-temperature solder is desired. Therefore, this joining technique is also expected as a material to replace this high temperature solder.

特開2004−107728号公報JP 2004-107728 A

特許文献1等に記載の平均粒径100nm以下の金属粒子を接合の主剤として用いた接合材料について、本発明者らが検討したところ、被接合部材としてAu,Ag,Pd等の相手電極に対しては良好な接合強度が得られるものの、半導体実装で多く適用されているCu,Ni,Alに対しては十分な接合強度が得られないことが判明した。図8に各電極材に対して行った接合強度評価結果を示す。接合温度を250℃,加圧1.0MPa一定とし、接合材料として、アミン系有機材料を被膜した平均粒径10nmの銀粒子を用いて、大気中でAu,Ag,Al,Ni及びCu電極への接合を行った。図8の縦軸はせん断強度を示し、Ag電極の値で規格化したものである。この結果、大気中での接合では、Au,Ag電極に対しては良好な接合強度が得られているが、Ni,Cu電極に対しては十分な接合強度が得られず、Al電極に対してはまったく接合できないことが判った。   When the present inventors examined about the joining material which used the metal particle of the average particle diameter of 100 nm or less as described in patent document 1 etc. as a main agent of joining, as a to-be-joined member, with respect to the other electrodes, such as Au, Ag, Pd As a result, it was found that sufficient bonding strength could not be obtained for Cu, Ni, and Al, which are often applied in semiconductor mounting, although good bonding strength was obtained. FIG. 8 shows the results of evaluation of bonding strength performed on each electrode material. Using a silver particle with an average particle diameter of 10 nm coated with an amine-based organic material as the bonding material at a bonding temperature of 250 ° C. and a pressure of 1.0 MPa, to Au, Ag, Al, Ni, and Cu electrodes in the atmosphere. Were joined. The vertical axis in FIG. 8 indicates the shear strength and is normalized by the value of the Ag electrode. As a result, in the bonding in the atmosphere, good bonding strength is obtained for the Au and Ag electrodes, but sufficient bonding strength is not obtained for the Ni and Cu electrodes. It was found that it was not possible to join at all.

特許文献1に記載の超微粒子に被膜されている有機材料は大気中加熱でのみ消失する材料であり、酸化されにくい電極に対しては有効であるが、酸化されやすいCu,Ni,Alの接合には適さない。   The organic material coated with the ultrafine particles described in Patent Document 1 is a material that disappears only by heating in the atmosphere, and is effective for an electrode that is not easily oxidized, but it is a joint of Cu, Ni, and Al that are easily oxidized. Not suitable for.

半導体装置を構成する電子部品を、金属超微粒子を接合の主剤とした接合材を用いて接合する場合には、電気的導通を確保することが必要になる。また、接合材には熱伝導性,耐食性も要求される。   In the case where electronic components constituting a semiconductor device are bonded using a bonding material containing metal ultrafine particles as a main agent for bonding, it is necessary to ensure electrical continuity. The bonding material is also required to have thermal conductivity and corrosion resistance.

図9は特許文献1に記載の材料を用いて、耐食性を評価した結果である。接合相手電極材は、初期接合強度が良好であったAg、およびAgより劣っていたCuに対して行った。耐食性は温度85℃,湿度85%の密閉容器に接合サンプルを放置し、所定時間に到達したときにせん断試験を行い、その強度劣化で評価した。図9の縦軸はせん断強度を示し、Ag電極の値で規格化したものである。この結果、Ag電極,Cu電極とも、100時間を越えると強度劣化が始まり、500時間ではほとんど接合していない状態となったことが判った。強度劣化の要因は接合層の腐食である。その機構は、相手電極との接合部界面に存在していた空洞部において、その空洞部周囲から水分などの腐食物質が外部から侵入して空洞部に溜まり、これが腐食の起点となっていたことによる。通常、1000時間は強度劣化のないようにする必要があり、特許文献1に記載の材料では接合信頼性が確保できないことも判った。   FIG. 9 shows the results of evaluation of corrosion resistance using the material described in Patent Document 1. The bonding partner electrode material was formed on Ag which had good initial bonding strength and Cu which was inferior to Ag. Corrosion resistance was evaluated by evaluating the strength deterioration of a bonded sample which was allowed to stand in a sealed container having a temperature of 85 ° C. and a humidity of 85%, when a predetermined time was reached. The vertical axis | shaft of FIG. 9 shows shear strength, and is normalized with the value of Ag electrode. As a result, it was found that both the Ag electrode and the Cu electrode began to deteriorate in strength after 100 hours, and were hardly joined after 500 hours. The factor of strength deterioration is the corrosion of the bonding layer. The mechanism is that in the cavity that existed at the joint interface with the counterpart electrode, corrosive substances such as moisture entered from the outside and accumulated in the cavity, and this was the starting point of corrosion. by. Usually, it is necessary to prevent the strength from deteriorating for 1000 hours, and it has also been found that the bonding reliability cannot be secured with the material described in Patent Document 1.

本発明は、半導体装置のCu,Ni,Alを含めた各種電極と、金属酸化物粒子を接合の主剤とする接合材との接合部の接合信頼性を向上することを目的とする。   An object of the present invention is to improve the bonding reliability of a bonding portion between various electrodes including Cu, Ni, and Al of a semiconductor device and a bonding material containing metal oxide particles as a main agent for bonding.

上記課題を解決するために本発明者らが誠意検討した結果、金属粒子前駆体である平均粒径が1nm〜50μmの金属酸化物粒子と有機物からなる還元剤とを含む接合材料により、金属粒子が作製される温度以下で加熱保持し、その後、金属粒子焼結に必要な温度に昇温して保持する2段階加熱によって接合を行うことで、Cu,Ni,Al電極に対して優れた接合強度が得ることができることを見出した。   As a result of sincerity studies by the present inventors in order to solve the above-mentioned problems, metal particles are obtained by a bonding material including metal oxide particles having an average particle diameter of 1 nm to 50 μm, which is a metal particle precursor, and a reducing agent made of an organic substance. Bonding is excellent for Cu, Ni, and Al electrodes by performing heating and holding at a temperature below the temperature at which the metal particles are manufactured, and then performing two-step heating that raises and holds the temperature to the temperature required for metal particle sintering. It has been found that strength can be obtained.

本発明は半導体素子と電極がAg系またはCu系材で構成された接合層を介して接続された半導体モジュールであって、半導体素子と前記接合層との界面、及び前記接合層と前記電極との界面に前記接合層と同種の薄膜を有し、かつ前記薄膜の厚さが1乃至200nmであることを特徴とする。   The present invention is a semiconductor module in which a semiconductor element and an electrode are connected via a bonding layer made of an Ag-based or Cu-based material, the interface between the semiconductor element and the bonding layer, and the bonding layer and the electrode. And a thin film of the same kind as the bonding layer, and the thickness of the thin film is 1 to 200 nm.

また、粒径が1nm以上50μm以下の銀系,銅系、あるいは銀系と銅系を混在させた金属酸化物粒子と、アルコール類,カルボン酸類,アミン類から選ばれた1種以上の有機物を含有する接合材料を接合部材間に配置し、前記接合材料の還元温度よりも低い温度で保持する第1の加熱処理と、接合材料の還元温度よりも高い温度に昇温して保持する第2の加熱処理を施すことにより、接合部材間を接合する接合方法を特徴とする。   In addition, silver-based, copper-based particles having a particle size of 1 nm to 50 μm, or metal oxide particles in which silver and copper are mixed, and one or more organic substances selected from alcohols, carboxylic acids, and amines are used. A first heat treatment in which the contained bonding material is disposed between the bonding members, and is held at a temperature lower than the reduction temperature of the bonding material; and a second temperature that is raised to a temperature higher than the reduction temperature of the bonding material and held. This is characterized by a joining method for joining the joining members by performing the heat treatment.

本発明により、半導体装置の電極と、金属酸化物粒子を接合の主剤とする接合材との接合部の接合信頼性を向上することができる。   According to the present invention, it is possible to improve the bonding reliability of the bonding portion between the electrode of the semiconductor device and the bonding material containing metal oxide particles as the main bonding agent.

以下、本発明について詳細に説明する。従来の平均粒径100nm以下の金属粒子を接合の主剤とする接合材料を用いた場合では、Cu,Ni,Al電極表面の酸化物層と接合材とが接合されないことが判明した。これに対して、本発明者らが誠意検討した結果、特定の接合材を用いて接合を行うことにより、貴金属、及びCu,Ni,Al電極に対して優れた接合強度が得られることを見出した。すなわち、金属粒子前駆体である平均粒径が1nm〜50μmの金属酸化物粒子と酢酸系化合物、またはギ酸系化合物、及び有機物からなる還元剤とを含む接合材料により、接合を行うことで貴金属、Cu,Ni,Al電極に対して優れた接合強度が得ることができる。本接合では、金属粒子前駆体に対して有機物からなる還元剤を添加することによって、金属粒子前駆体単体を加熱分解するよりも低温で金属粒子前駆体が還元され、その際に平均粒径が100nm以下の金属粒子が作製され、金属粒子同士が相互に融合することで接合が行われるという現象を利用している。平均粒径が100nm以下の金属粒子が作製され、金属粒子同士が相互に融合し、接合に至る機構は、(1)生成した100nm以下の金属粒子が相手電極表面に1から200nmの層を形成、(2)この層は非常に薄く、平均粒径が100nm以下の金属粒子表面と同様に表面が活性なため、1から200nmの層形成に寄与しなかった金属粒子と融合(金属粒子と電極界面における接合を促進)、(3)さらに金属粒子同士の融合によって接合層を形成し、接合が達成される。本発明において、前記機構(1)に示したように、接合部界面、すなわち電極表面に1から200nmの薄層が形成していることが特徴である。この層の存在は、図4に示すように接合界面に形成した空洞、すなわちボイド部を観る事で判る。つまり、ボイドと相手電極間に前記薄層が形成しているので、これを確認すれば良い。   Hereinafter, the present invention will be described in detail. It has been found that when a conventional bonding material using metal particles having an average particle size of 100 nm or less as a main agent for bonding is used, the oxide layer on the Cu, Ni, Al electrode surface and the bonding material are not bonded. On the other hand, as a result of sincerity studies by the present inventors, it has been found that excellent bonding strength can be obtained for noble metals and Cu, Ni, Al electrodes by bonding using a specific bonding material. It was. That is, a noble metal by joining with a joining material containing a metal oxide particle having an average particle diameter of 1 nm to 50 μm, which is a metal particle precursor, and a reducing agent made of an acetic acid compound or a formic acid compound and an organic substance, Excellent bonding strength can be obtained for Cu, Ni, and Al electrodes. In this bonding, by adding a reducing agent made of an organic substance to the metal particle precursor, the metal particle precursor is reduced at a lower temperature than when the metal particle precursor alone is thermally decomposed. A phenomenon is used in which metal particles of 100 nm or less are produced and the metal particles are joined together by fusing each other. Metal particles having an average particle size of 100 nm or less are produced, and the metal particles are fused together to form a joint. (1) The generated metal particles of 100 nm or less form a layer of 1 to 200 nm on the surface of the counter electrode. (2) This layer is very thin, and the surface is active in the same manner as the surface of metal particles having an average particle size of 100 nm or less. Therefore, fusion with metal particles that did not contribute to the formation of a layer of 1 to 200 nm (metal particles and electrodes) (3) Furthermore, a joining layer is formed by fusion of metal particles, and joining is achieved. In the present invention, as shown in the mechanism (1), a thin layer having a thickness of 1 to 200 nm is formed at the junction interface, that is, the electrode surface. The existence of this layer can be seen by observing a cavity formed at the bonding interface, that is, a void portion as shown in FIG. That is, since the thin layer is formed between the void and the counter electrode, this can be confirmed.

金属酸化物粒子は還元剤の存在下では、200℃以下で100nm以下の金属粒子が作製され始めることから、従来では困難であった200℃以下の低温でも接合を達成することが可能である。特に前記接合機構(1)にある相手電極表面の薄層を形成させるには、金属粒子が作製される温度以下に加熱して保持し、その後金属粒子焼結に必要な温度に昇温して保持する2段階加熱によって促進される。2段階加熱は、接合材料の還元温度を超えない低温で熱処理し、その後、還元よりも高温での熱処理を行うことが好ましい。ここで、還元温度は、酸化物から酸素を供給して還元剤が酸化する燃焼温度のことである。低温側の熱処理温度としては、接合材料の成分により異なるが、40℃以上150℃以下、より好ましくは40℃以上80℃以下の温度とすることが望ましい。   In the presence of a reducing agent, metal oxide particles begin to be produced at a temperature of 200 ° C. or less and 100 nm or less. Therefore, bonding can be achieved even at a low temperature of 200 ° C. or less, which has been difficult in the past. In particular, in order to form a thin layer on the surface of the mating electrode in the bonding mechanism (1), the metal particles are heated and held below the temperature at which the metal particles are produced, and then heated to a temperature necessary for metal particle sintering. Promoted by holding two-stage heating. In the two-stage heating, it is preferable to perform heat treatment at a low temperature that does not exceed the reduction temperature of the bonding material, and then perform heat treatment at a higher temperature than the reduction. Here, the reduction temperature is a combustion temperature at which oxygen is supplied from the oxide and the reducing agent is oxidized. Although the heat treatment temperature on the low temperature side varies depending on the components of the bonding material, it is desirable that the temperature be 40 ° C. or higher and 150 ° C. or lower, more preferably 40 ° C. or higher and 80 ° C. or lower.

また、接合中においてその場で粒径が100nm以下の金属粒子が作製されるため、有機物で表面を保護した金属粒子の作製が不要であり、接合用材料の製造,接合プロセスの簡易化,接合材料の大幅なコストダウンを達成することが可能である。   In addition, since metal particles having a particle size of 100 nm or less are produced in-situ during joining, it is not necessary to produce metal particles whose surfaces are protected by organic substances, manufacturing of joining materials, simplification of joining processes, joining A significant cost reduction of the material can be achieved.

図5は本発明の接合部位に対して行った接合強度評価結果を示したもので、接合プロセスを(1)60℃の熱を約10分間加え、同時に1.0MPaの圧力を大気中で加える、(2)加圧は加えたまま温度を200℃に上昇させ、5分間保持する、プロセスとした。本評価では接合材料として、ミリスチルアルコール5wt%含んだ平均粒径2μmの酸化銀粒子と平均粒径10μmの酢酸銀粒子の混合材を用いて、大気中でそれぞれAu,Ag,Ni,Cu、及びAl電極への接合を行った。図5の縦軸はせん断強度を示し、Ag電極に対するせん断強度値で規格化したものである。比較のため、Cu電極に対して接合温度を250℃,加圧1.0MPa一定とし、相手電極の影響を調べた結果も示した。その結果、Al,Au,Ag,Ni,Cu各電極に対する接合強度は、全て同等の接合強度が得られており、強固な接合が達成されていることが判った。しかし、2段階加熱を経ない場合は、2段階加熱を経た場合より20%ほど接合強度が低かった。2段階加熱を経ないと、相手電極との界面に形成する薄膜層が均一に生成されにくくなることを確認している。このため接合性が劣ったと考えられる。   FIG. 5 shows the results of evaluation of the bonding strength performed on the bonding site of the present invention. (1) Heat at 60 ° C. is applied for about 10 minutes, and pressure of 1.0 MPa is simultaneously applied in the atmosphere. (2) The temperature was raised to 200 ° C. while applying pressure, and the process was held for 5 minutes. In this evaluation, as a bonding material, a mixture of silver oxide particles having an average particle diameter of 2 μm and silver acetate particles having an average particle diameter of 10 μm containing 5 wt% myristyl alcohol was used, and Au, Ag, Ni, Cu, and Bonding to an Al electrode was performed. The vertical axis in FIG. 5 indicates the shear strength and is normalized by the shear strength value with respect to the Ag electrode. For comparison, the results of investigating the influence of the mating electrode with the bonding temperature of 250 ° C. and the pressure of 1.0 MPa constant with respect to the Cu electrode are also shown. As a result, it was found that the same bonding strength was obtained for all the Al, Au, Ag, Ni, and Cu electrodes, and that strong bonding was achieved. However, when the two-step heating was not performed, the bonding strength was lower by about 20% than when the two-step heating was performed. It has been confirmed that the thin film layer formed at the interface with the counterpart electrode is less likely to be formed uniformly unless two-step heating is performed. For this reason, it is thought that bondability was inferior.

なお、酸化銀以外に酸化銅も選択できることを確認している。さらに酢酸銀以外にギ酸銀,酢酸銅,ギ酸銅も選択でき、同様の効果があることを確認している。   It has been confirmed that copper oxide can be selected in addition to silver oxide. In addition to silver acetate, silver formate, copper acetate, and copper formate can be selected, and it has been confirmed that the same effect is obtained.

次に耐食性を評価した結果を図6に示す。接合相手電極材はAgおよびCuに対して行った。ミリスチルアルコール5wt%含んだ平均粒径2μmの酸化銀粒子と平均粒径10μmの酢酸銀粒子の混合材を接合材として用いた。耐食性は温度85℃,湿度85%の密閉容器に接合サンプルを放置し、所定時間に到達したときにせん断試験を行い、その強度劣化で評価した。図6の縦軸はせん断強度を示し、Ag電極の値で規格化したものである。この結果、Ag電極,Cu電極とも、1000時間を越えても強度劣化がないことが確認できた。図4のように界面の空洞部において、電極表面に接合層と同物質の薄膜層があるため、外部から腐食物質の進入を妨げることができ、耐食性が向上した。   Next, the results of evaluating the corrosion resistance are shown in FIG. The bonding partner electrode material was applied to Ag and Cu. A mixture of silver oxide particles having an average particle diameter of 2 μm and silver acetate particles having an average particle diameter of 10 μm containing 5 wt% myristyl alcohol was used as a bonding material. Corrosion resistance was evaluated by evaluating the strength deterioration of a bonded sample which was allowed to stand in a sealed container having a temperature of 85 ° C. and a humidity of 85%, when a predetermined time was reached. The vertical axis in FIG. 6 represents the shear strength and is normalized by the value of the Ag electrode. As a result, it was confirmed that neither Ag electrode nor Cu electrode was deteriorated in strength even after 1000 hours. As shown in FIG. 4, since there is a thin film layer of the same material as the bonding layer on the electrode surface in the cavity at the interface, the entry of the corrosive substance from the outside can be prevented, and the corrosion resistance is improved.

図7は、Cu電極に対して、ミリスチルアルコール5wt%含んだ平均粒径2μmの酸化銀粒子と平均粒径10μmの酢酸銀粒子の混合材を用いて接合したサンプルに対して、レーザーフラッシュ法により熱伝導率を測定した結果である。接合方法は図5と同様である。比較のため、特許文献1に記載の従来材を用いた場合の結果も記した。これの接合方法は図8と同様である。縦軸は熱伝導率であり、ミリスチルアルコール5wt%含んだ平均粒径2μmの酸化銀粒子と平均粒径10μmの酢酸銀粒子の混合材を用いて接合したサンプルの時の値で規格化した。この結果から、本発明構造にくらべ従来材を用いた場合は、熱伝導率が20%低下していることがわかった。本発明構造は図4にあるように、相手電極との界面には薄膜が形成しているため、相手電極との界面に存在する空洞部においても熱的パスが確保できる。このため、薄膜が存在しない従来構造に比べて放熱性が向上した。   FIG. 7 shows a laser flash method for a sample bonded to a Cu electrode using a mixture of silver oxide particles having an average particle size of 2 μm and silver acetate particles having an average particle size of 10 μm, containing 5 wt% myristyl alcohol. It is the result of measuring thermal conductivity. The joining method is the same as in FIG. For comparison, the results in the case of using the conventional material described in Patent Document 1 are also shown. The joining method is the same as in FIG. The vertical axis represents the thermal conductivity, normalized by the value at the time of a sample joined using a mixture of silver oxide particles having an average particle diameter of 2 μm and silver acetate particles having an average particle diameter of 10 μm, containing 5 wt% myristyl alcohol. From this result, it was found that the thermal conductivity was reduced by 20% when the conventional material was used compared to the structure of the present invention. In the structure of the present invention, as shown in FIG. 4, since a thin film is formed at the interface with the counter electrode, a thermal path can be ensured even in the cavity existing at the interface with the counter electrode. For this reason, heat dissipation improved compared with the conventional structure without a thin film.

100nm以下の金属粒子を作製する平均粒径が1nm以上50μm以下の金属粒子前駆体として、金属酸化物と規定したのは金属粒子前駆体中における金属含有量が高いことから、接合時における体積収縮が小さく、かつ分解時に酸素を発生するために、有機物の酸化分解を促進するからである。ここで、金属粒子前駆体とは還元剤と混合し、加熱により還元された後に、粒径が100nm以下の金属粒子を作製する物質のことをいう。   The metal particle precursor having an average particle diameter of 1 nm to 50 μm for producing metal particles of 100 nm or less is defined as a metal oxide because the metal content in the metal particle precursor is high, so that the volume shrinkage during bonding This is because the oxidative decomposition of the organic matter is promoted because it is small and generates oxygen during decomposition. Here, the metal particle precursor refers to a substance that produces metal particles having a particle size of 100 nm or less after being mixed with a reducing agent and reduced by heating.

ここで用いる金属粒子前駆体の粒径を平均粒径が1nm以上50μm以下としたのは、金属粒子の平均粒径50μmより大きくなると、接合中に粒径が100nm以下の金属粒子が作製されにくくなり、これにより粒子間の隙間が多くなり、緻密な接合層を得ることが困難になるためである。また、1nm以上としたのは、平均粒子が1nm以下の金属粒子前駆体を実際に作製することが困難なためである。本発明では、接合中に粒径が100nm以下の金属粒子が作製されるため、金属粒子前駆体の粒径は100nm以下とする必要はなく、金属粒子前駆体の作製,取り扱い性,長期保存性の観点からは粒径が1〜50μmの粒子を用いることが好ましい。また、より緻密な接合層を得るために粒径が1nm〜100nmの金属粒子前駆体を用いることも可能である。   The reason why the average particle size of the metal particle precursor used here is 1 nm or more and 50 μm or less is that when the average particle size of the metal particles is larger than 50 μm, it is difficult to produce metal particles having a particle size of 100 nm or less during bonding. This increases the number of gaps between particles, making it difficult to obtain a dense bonding layer. The reason why the thickness is 1 nm or more is that it is difficult to actually produce a metal particle precursor having an average particle size of 1 nm or less. In the present invention, since metal particles having a particle size of 100 nm or less are produced during bonding, the particle size of the metal particle precursor does not have to be 100 nm or less, and the metal particle precursor is produced, handled, and stored for a long period of time. From this viewpoint, it is preferable to use particles having a particle diameter of 1 to 50 μm. In order to obtain a denser bonding layer, it is also possible to use a metal particle precursor having a particle size of 1 nm to 100 nm.

図4に示す薄膜層の厚さを1から200nmとしたのは、1nm以下であると薄膜の均一性が損なわれ、耐食性が確保できなくなるからである。またその厚さが200nmを超えると膜自体のち密さが損なわれ、やはり耐食性が確保できなくなるからである。   The reason why the thickness of the thin film layer shown in FIG. 4 is 1 to 200 nm is that when the thickness is 1 nm or less, the uniformity of the thin film is impaired and the corrosion resistance cannot be ensured. Further, if the thickness exceeds 200 nm, the denseness of the film itself is impaired, and it is impossible to secure corrosion resistance.

金属酸化物粒子としては、酸化銀(Ag2O,AgO),酸化銅(CuO)が挙げられ、これらの群から少なくとも1種類の金属あるいは2種類の金属からなる接合材料を用いることが可能である。酸化銀(Ag2O,AgO),酸化銅(CuO)からなる金属酸化物粒子は還元時に酸素のみを発生するために、接合後における残渣も残りにくく、体積減少率も非常に小さい。 Examples of the metal oxide particles include silver oxide (Ag 2 O, AgO) and copper oxide (CuO), and a bonding material composed of at least one kind of metal or two kinds of metals can be used from these groups. is there. Since metal oxide particles made of silver oxide (Ag 2 O, AgO) and copper oxide (CuO) generate only oxygen during reduction, residues after bonding are hardly left and the volume reduction rate is very small.

酢酸系化合物粒子としては、酢酸銀,酢酸銅が挙げられ、ギ酸系化合物粒子としては、ギ酸銀,ギ酸銅が挙げられ、これらの群から少なくとも1種類の金属あるいは2種類以上の金属からなる接合材料を用いることが可能である。先に挙げた酸化物粒子と酢酸系化合物粒子、またはギ酸系化合物粒子が混在している状態が必要である。   Examples of the acetic acid compound particles include silver acetate and copper acetate, and examples of the formic acid compound particles include silver formate and copper formate. A joining made of at least one metal or two or more metals from these groups. It is possible to use materials. A state in which the oxide particles and acetic acid compound particles or formic acid compound particles mentioned above are mixed is necessary.

金属粒子前駆体の含有量としては、接合材料中における全質量部において50質量部を超えて99質量部以下とすることが好ましい。これは接合材料中にける金属含有量が多い方が低温での接合後に有機物残渣が少なくなり、低温での緻密な焼成層の達成及び接合界面での金属結合の達成が可能となり、接合強度の向上さらには高放熱性,高耐熱性を有する接合層とすることが可能になるからである。   As content of a metal particle precursor, it is preferable to set it as 99 mass parts or less exceeding 50 mass parts in the total mass part in a joining material. This is because when the metal content in the bonding material is high, the organic residue is reduced after bonding at low temperature, and it becomes possible to achieve a dense fired layer at low temperature and to achieve metal bonding at the bonding interface. This is because it becomes possible to obtain a bonding layer having improved heat dissipation and high heat resistance.

有機物からなる還元剤としては、アルコール類,カルボン酸類,アミン類から選ばれた1種以上の混合物を用いることができる。他には、アルデヒド基やエステル基,スルファニル基,ケトン基などを含む有機物を用いても良い。   As the reducing agent composed of an organic substance, one or more mixtures selected from alcohols, carboxylic acids, and amines can be used. In addition, an organic substance containing an aldehyde group, an ester group, a sulfanyl group, a ketone group, or the like may be used.

ここで、エチレングリコール,トリエチレングリコール等の20〜30℃において液体である還元剤は、酸化銀(Ag2O)などと混ぜて放置すると一日後には銀に還元されてしまうため、混合後はすぐに用いる必要がある。 Here, reducing agents that are liquid at 20 to 30 ° C., such as ethylene glycol and triethylene glycol, are reduced to silver after one day if mixed with silver oxide (Ag 2 O) and left to stand. Need to be used immediately.

一方、20〜30℃の温度範囲において固体であるミリスチルアルコール,ラウリルアミン,アスコルビン酸等は金属酸化物等と1ヵ月ほど放置しておいても大きくは反応が進まないため、保存性に優れており、混合後に長期間保管する場合にはこれらを用いることが好ましい。また、用いる還元剤は金属酸化物等を還元させた後には、精製された100nm以下の粒径を有する金属粒子の保護膜として働くために、ある程度の炭素数があることが望ましい。具体的には、2以上で20以下であることが望ましい。これは炭素数が2より少ないと、金属粒子が作製されると同時に粒径成長が起こり、100nm以下の金属粒子の作製が困難になるからである。また、20より多いと、分解温度が高くなり、金属粒子の焼結が起こりにくくなった結果、接合強度の低下を招くからである。   On the other hand, myristyl alcohol, laurylamine, ascorbic acid, etc., which are solid in the temperature range of 20-30 ° C., do not react greatly with metal oxides for about a month, so they have excellent storage stability. These are preferably used when stored for a long time after mixing. Further, it is desirable that the reducing agent used has a certain number of carbon atoms in order to function as a protective film for purified metal particles having a particle size of 100 nm or less after reducing metal oxides and the like. Specifically, it is desirably 2 or more and 20 or less. This is because, when the number of carbon atoms is less than 2, metal particles are produced at the same time as particle size growth occurs, making it difficult to produce metal particles of 100 nm or less. On the other hand, if it exceeds 20, the decomposition temperature becomes high and the metal particles are hardly sintered, resulting in a decrease in bonding strength.

還元剤の使用量は金属粒子前駆体の全重量に対して1質量部以上で50質量部以下の範囲であればよい。これは還元剤の量が1質量部より少ないと接合材料における金属粒子前駆体を全て還元して金属粒子を作製するのに十分な量ではないためである。また、50質量部を超えて用いると接合後における残渣が多くなり界面での金属接合と接合銀層中における緻密化の達成が困難であるためである。さらに、還元剤としては、400℃までの加熱時における熱重量減少率が99%以上であることが好ましい。これは、還元剤の分解温度が高いと接合後における残渣が多くなり、界面での金属接合と接合銀層中における緻密化の達成が困難であるためである。ここで、400℃までの加熱時における熱重量減少率の測定は、一般に市販されている、Seiko Instruments製TG/DTA6200や、島津製作所製TGA−50等の熱重量測定が可能な装置を用いて10℃/minにおいて大気中で行った場合のものとする。   The amount of the reducing agent used may be in the range of 1 part by mass to 50 parts by mass with respect to the total weight of the metal particle precursor. This is because if the amount of the reducing agent is less than 1 part by mass, the amount of the metal particle precursor in the bonding material is not reduced enough to produce metal particles. Moreover, when it exceeds 50 mass parts, it is because the residue after joining increases and it is difficult to achieve metal joining at the interface and densification in the joining silver layer. Furthermore, as a reducing agent, it is preferable that the thermal weight reduction rate at the time of a heating to 400 degreeC is 99% or more. This is because if the decomposition temperature of the reducing agent is high, the residue after bonding increases, and it is difficult to achieve metal bonding at the interface and densification in the bonding silver layer. Here, the measurement of the thermogravimetric reduction rate at the time of heating up to 400 ° C. is performed using a commercially available apparatus such as TG / DTA6200 manufactured by Seiko Instruments or TGA-50 manufactured by Shimadzu Corporation. It is assumed that it is performed in the air at 10 ° C./min.

金属粒子前駆体と有機物からなる還元剤の組み合わせとしては、これらを混合することにより金属粒子を作製可能なものであれば特に限定されないが、接合用材料としての保存性の観点から、常温で金属粒子を作製しない組み合わせとすることが好ましい。   The combination of the metal particle precursor and the reducing agent composed of an organic substance is not particularly limited as long as the metal particles can be produced by mixing them, but from the viewpoint of storage stability as a bonding material, the metal is used at room temperature. A combination that does not produce particles is preferred.

また、接合材料中には比較的粒径の大きい平均粒径50μm〜100μmの金属粒子を混合して用いることも可能である。これは接合中において作製された100nm以下の金属粒子が、平均粒径50μm〜100μmの金属粒子同士を焼結させる役割を果たすからである。また、粒径が100nm以下の金属粒子を予め混合しておいてもよい。この金属粒子の種類としては、金,銀,銅があげられる。上記以外にも白金,パラジウム,ロジウム,オスミウム,ルテニウム,イリジウム,鉄,錫,亜鉛,コバルト,ニッケル,クロム,チタン,タンタル,タングステン,インジウム,ケイ素,アルミニウム等の中から少なくとも1種類の金属あるいは2種類以上の金属からなる合金を用いることが可能である。   Moreover, it is also possible to mix and use metal particles having a relatively large average particle diameter of 50 μm to 100 μm in the bonding material. This is because the metal particles of 100 nm or less produced during bonding play a role of sintering metal particles having an average particle diameter of 50 μm to 100 μm. Further, metal particles having a particle size of 100 nm or less may be mixed in advance. Examples of the metal particles include gold, silver, and copper. In addition to the above, at least one metal selected from platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, silicon, aluminum, etc. It is possible to use an alloy made of more than one kind of metal.

この実施形態で用いられる接合材料は金属粒子前駆体と有機物からなる還元剤のみで用いてもよいが、ペースト状として用いる場合に溶媒を加えてもよい。混合後、すぐに用いるのであれば、メタノール,エタノール,プロパノール,エチレングリコール,トリエチレングリコール,テルピネオールのアルコール類等の還元作用があるものを用いてもよいが、長期間に保管する場合であれば、水,ヘキサン,テトラヒドロフラン,トルエン,シクロヘキサン、など常温での還元作用が弱いものを用いることが好ましい。また、還元剤としてミリスチルアルコールのように常温で還元が起こりにくいものを用いた場合には長期間保管可能であるが、エチレングリコールのような還元作用の強いものを用いた場合には使用時に混合して用いることが好ましい。   The bonding material used in this embodiment may be used only with a reducing agent comprising a metal particle precursor and an organic substance, but a solvent may be added when used as a paste. If it is used immediately after mixing, it may be used with a reducing action such as methanol, ethanol, propanol, ethylene glycol, triethylene glycol, terpineol alcohol, etc. It is preferable to use water, hexane, tetrahydrofuran, toluene, cyclohexane, or the like having a weak reducing action at room temperature. In addition, when a reducing agent such as myristyl alcohol that is difficult to reduce at room temperature is used, it can be stored for a long time, but when a reducing agent such as ethylene glycol is used, it is mixed at the time of use. And preferably used.

また、金属粒子前駆体の溶媒への分散性を向上させるために必要に応じて分散剤を用いて金属粒子前駆体の周りを有機物で被覆し、分散性を向上させてよい。本発明で用いられる分散剤としては、ポリビニルアルコール,ポリアクリルニトリル,ポリビニルピロリドン,ポリエチレングリコールなどの他に、市販の分散剤として、例えばディスパービック160,ディスパービック161,ディスパービック162,ディスパービック163,ディスパービック166,ディスパービック170,ディスパービック180,ディスパービック182,ディスパービック184,ディスパービック190(以上ビックケミー社製),メガファックF−479(大日本インキ製),ソルスパース20000,ソルスパース24000,ソルスパース26000,ソルスパース27000,ソルスパース28000(以上、アビシア社製)などの高分子系分散剤を用いることができる。このような分散剤の使用量は金属粒子前駆体に接合用材料中において0.01wt%以上でかつ45wt%を超えない範囲とする。   Moreover, in order to improve the dispersibility of the metal particle precursor in the solvent, the periphery of the metal particle precursor may be coated with an organic substance using a dispersant as necessary to improve the dispersibility. Examples of the dispersant used in the present invention include polyvinyl alcohol, polyacrylonitrile, polyvinyl pyrrolidone, polyethylene glycol, and other commercially available dispersants such as Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, and the like. Dispersic 166, Dispersic 170, Dispersic 180, Dispersic 182, Dispersic 184, Dispersic 190 (manufactured by Big Chemie), MegaFuck F-479 (Dainippon Ink), Solsperse 20000, Solsperse 24000, Solsperse 26000 , Solsperse 27000, Solsperse 28000 (above, manufactured by Abyssia) and the like can be used. The amount of such a dispersant used is within a range of 0.01 wt% or more and not exceeding 45 wt% in the bonding material for the metal particle precursor.

これらペースト材料は、インクジェット法により微細なノズルからペーストを噴出させて基板上の電極あるいは電子部品の接続部に塗布する方法や、あるいは塗布部分を開口したメタルマスクやメッシュ状マスクを用いて必要部分にのみ塗布を行う方法,ディスペンサを用いて必要部分に塗布する方法,シリコーンやフッ素等を含む撥水性の樹脂を必要な部分のみ開口したメタルマスクやメッシュ状マスクで塗布したり、感光性のある撥水性樹脂を基板あるいは電子部品上に塗布し、露光および現像することにより前記微細粒子等からなるペーストを塗布する部分を除去し、その後接合用ペーストをその開口部に塗布する方法や、さらには撥水性樹脂を基板あるいは電子部品に塗布後、前記金属粒子からなるペースト塗布部分をレーザーにより除去し、その後接合用ペーストをその開口部に塗布する方法がある。これらの塗布方法は、接合する電極の面積,形状に応じて組み合わせ可能である。また、ミリスチルアルコールやアスコルビン酸のような常温で固体のものを還元剤として用いた際には金属粒子前駆体と混合し加圧を加えることでシート状に成形して接合材料として用いる方法がある。   These paste materials can be applied using a method in which the paste is ejected from a fine nozzle by an ink jet method and applied to the electrode or the connection part of the electronic component on the substrate, or a metal mask or mesh mask with an open application part. A method of applying only to the surface, a method of applying to a necessary part using a dispenser, a water-repellent resin containing silicone, fluorine, etc., is applied with a metal mask or mesh mask having an opening only on the necessary part, or photosensitive. A method of applying a water-repellent resin on a substrate or electronic component, removing a portion to which the paste composed of the fine particles and the like is applied by exposure and development, and then applying a bonding paste to the opening, and After applying the water-repellent resin to the substrate or electronic component, the paste application part consisting of the metal particles is applied with a laser. Removed, there is then a method of applying a bonding paste in the opening. These coating methods can be combined according to the area and shape of the electrodes to be joined. In addition, when a solid material at room temperature such as myristyl alcohol or ascorbic acid is used as the reducing agent, there is a method of forming a sheet by mixing with a metal particle precursor and applying pressure to use as a bonding material .

本接合材料を用いた接合では、接合時に金属粒子前駆体から粒径が100nm以下の金属粒子を作製し、接合層における有機物を排出しながら粒径が100nm以下の金属粒子の融着による金属結合を行うために熱と0.01〜10MPaの圧力を加えることが好ましい。   In bonding using this bonding material, metal particles having a particle size of 100 nm or less are produced from the metal particle precursor during bonding, and metal bonding is performed by fusing metal particles having a particle size of 100 nm or less while discharging organic substances in the bonding layer. In order to carry out, it is preferable to apply heat and a pressure of 0.01 to 10 MPa.

本発明の接合では、金属酸化物粒子,酢酸系化合物粒子,ギ酸系化合物粒子は接合時の加熱によって粒径0.1〜50nm程度の酸化物ではない純金属超微粒子化し、この純金属超粒子同士が相互に融合してバルクになる。バルクになった後の溶融温度は通常のバルクの状態での金属の溶融温度と同じであり、純金属超微粒子は低温の加熱で溶融し、溶融後はバルクの状態での溶融温度に加熱されるまで再溶融しないという特徴を有する。これは、純金属超微粒子を用いた場合に低い温度で接合を行うことができ、接合後は溶融温度が向上することから、その後、他の電子部品を接合している際に接合部が再溶融しないというメリットをもたらす。また、接合後の接合層の熱伝導率は50乃至430W/mKとすることが可能であり、放熱性にも優れている。さらに前駆体が金属酸化物であるため低コストというメリットもある。なお、金属酸化物粒子には還元効果を促進するため、アルコールなどの有機物を被膜させておくことが必要である。接合時の雰囲気は還元雰囲気,非酸化雰囲気,大気雰囲気でもよい。   In the bonding of the present invention, the metal oxide particles, acetic acid compound particles, and formic acid compound particles are converted to pure metal ultrafine particles that are not oxides having a particle size of about 0.1 to 50 nm by heating during bonding. Each other fuses into a bulk. The melting temperature after becoming bulk is the same as the melting temperature of metals in the normal bulk state, and the ultrafine metal particles are melted by low-temperature heating, and after melting, they are heated to the melting temperature in the bulk state. It does not re-melt until This is because when pure metal ultrafine particles are used, bonding can be performed at a low temperature, and the melting temperature is improved after bonding. The advantage of not melting. Further, the thermal conductivity of the bonding layer after bonding can be 50 to 430 W / mK, and the heat dissipation is excellent. Further, since the precursor is a metal oxide, there is a merit of low cost. Note that it is necessary to coat the metal oxide particles with an organic substance such as alcohol in order to promote the reduction effect. The atmosphere during bonding may be a reducing atmosphere, a non-oxidizing atmosphere, or an air atmosphere.

以上の接合材料と接合方法を経て接合された界面には薄膜層が形成される。生成した金属粒子は、接合によって相手部材と金属的に結合されることが接合強度を高めるために要求される。なお、酸化銀と酸化銅混在の場合も上述と同様に接合でき、かつ耐食性向上が図れる利点を有する。   A thin film layer is formed at the interface bonded through the bonding material and the bonding method described above. The generated metal particles are required to be bonded to the mating member in a metallic manner by bonding to increase the bonding strength. In addition, also in the case of silver oxide and copper oxide mixed, it has the advantage that it can join similarly to the above and can improve corrosion resistance.

以上で説明した接合材,接合方法を半導体装置の電極の接合に用いることにより、優れた接合信頼性を得ることが可能となる。   By using the bonding material and the bonding method described above for bonding the electrodes of the semiconductor device, it is possible to obtain excellent bonding reliability.

以下、図面を用いて、本発明の実施例を説明するが、本発明は、以下の実施形態に限定されるものではない。   Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

図1は本発明を適用した絶縁型半導体装置を示したものであり、(a)は平面図、(b)は(a)のA−A′の断面図を示したものである。また、図2は図1の要部を示した斜視図である。   1A and 1B show an insulating semiconductor device to which the present invention is applied. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA 'in FIG. FIG. 2 is a perspective view showing the main part of FIG.

本実施例において、半導体素子101の一方の面は、図示しないコレクタ電極が、80wt%の酸化銀粒子(ミリスチルアルコールを5wt%含有、接合後は純銀化)と20wt%の酢酸銀(接合後は純銀化)を混合した接合層105によって、セラミックス絶縁基板103上の配線層102に接合されている。セラミックス絶縁基板103は支持部材110にはんだ層109を介して接合されている。セラミックス絶縁基板103と配線層102をもって配線基板と称する。配線層102はCu配線である。接合層105は厚さ80μmである。半導体素子101の他方の面は、エミッタ電極が接続用端子201と酸化銀粒子酢酸銀粒子混合接合材(105と同一材、接合後は純銀層化)を用いて接合されており、接続用端子201はセラミックス絶縁基板103上のAl配線104と酸化銀粒子酢酸銀粒子混合接合材(105と同一材、接合後は純銀層化)を用いて接合されている。なお、図1における他の符号は、それぞれ、ケース111,外部端子112,ボンディングワイヤ113,封止材114を示している。   In this embodiment, one surface of the semiconductor element 101 has a collector electrode (not shown) having 80 wt% silver oxide particles (containing 5 wt% myristyl alcohol, pure silver after bonding) and 20 wt% silver acetate (after bonding). A bonding layer 105 mixed with pure silver) is bonded to the wiring layer 102 on the ceramic insulating substrate 103. The ceramic insulating substrate 103 is bonded to the support member 110 via the solder layer 109. The ceramic insulating substrate 103 and the wiring layer 102 are referred to as a wiring substrate. The wiring layer 102 is a Cu wiring. The bonding layer 105 has a thickness of 80 μm. On the other surface of the semiconductor element 101, the emitter electrode is bonded to the connection terminal 201 using a silver oxide particle / silver acetate particle mixed bonding material (same material as 105, pure silver layered after bonding). 201 is bonded to the Al wiring 104 on the ceramic insulating substrate 103 by using a silver oxide particle / silver acetate particle mixed bonding material (same material as 105, pure silver layered after bonding). 1 indicate the case 111, the external terminal 112, the bonding wire 113, and the sealing material 114, respectively.

図3は図1における半導体素子搭載部分を拡大して示した断面図である。半導体素子101のコレクタ電極106′と配線層102が酸化銀粒子と酢酸銀粒子の混合接合材の接合層105(接合後は純銀層化)で接合されている。配線層102はCu配線である。酸化銀粒子酢酸銀粒子混合接合材(接合後は純銀層化)は、半導体素子のエミッタ電極106と接続用端子201の接合部、及び接続用端子201と配線層104の接合部にも、同様の構成で適用されている。また、接続用端子201はCuまたはCu合金で構成されている。それぞれの酸化銀粒子酢酸銀粒子を用いた接合層105は個別に接合してもよいし、同時に接合しもよい。酸化銀粒子酢酸銀粒子使用接合材を接合すべき部材の間に配置し、その状態で60℃の熱を約10分間加え、同時に1.0MPaの圧力を大気中で加える。次に温度を200℃に上昇させ、5分間保持する。このときにも圧力は加えたままとしたが、加えなくてもよい。接合に当たり、超音波振動を加えることもできる。   FIG. 3 is an enlarged cross-sectional view of the semiconductor element mounting portion in FIG. The collector electrode 106 ′ and the wiring layer 102 of the semiconductor element 101 are joined by a joining layer 105 (pure silver layer after joining) of a mixed joining material of silver oxide particles and silver acetate particles. The wiring layer 102 is a Cu wiring. The silver oxide particle silver acetate particle mixed bonding material (pure silver layer after bonding) is also applied to the bonding portion between the emitter electrode 106 and the connection terminal 201 of the semiconductor element and the bonding portion between the connection terminal 201 and the wiring layer 104. It is applied in the configuration. The connection terminal 201 is made of Cu or Cu alloy. The bonding layer 105 using each silver oxide particle and silver acetate particle may be bonded individually or simultaneously. A bonding material using silver oxide particles and silver acetate particles is placed between the members to be bonded, and heat at 60 ° C. is applied for about 10 minutes in that state, and simultaneously a pressure of 1.0 MPa is applied in the atmosphere. The temperature is then raised to 200 ° C. and held for 5 minutes. At this time, the pressure was kept applied, but it need not be applied. In joining, ultrasonic vibration can be applied.

次に、本実施例による半導体装置の好ましい例について説明する。   Next, a preferred example of the semiconductor device according to the present embodiment will be described.

図3に示す金属接合部105は放熱部位である。このため、粒子層の材料には酸化銀のほかに酸化銅も有効な材料である。あるいは酸化銀と酸化銅の混合材を用いても良い。これらの場合も加熱時の還元効果(アルコールなどの有機物による還元作用、および還元雰囲気の併用)で、生成したナノサイズ粒子が相手電極と接合し、その際の接合温度は200℃以下でも行うことができる。Cu又はその合金の熱膨張係数は約8〜16ppm/℃である。セラミックス絶縁基板103には窒化珪素を用いることが好ましい。窒化珪素の熱膨張係数は約9ppm/℃である。またはんだ層109を、酸化物を用いた接合層とすることは放熱性向上のため望ましい構成である。   The metal joint 105 shown in FIG. For this reason, in addition to silver oxide, copper oxide is also an effective material for the material of the particle layer. Alternatively, a mixed material of silver oxide and copper oxide may be used. In these cases as well, the nano-sized particles produced are bonded to the mating electrode due to the reduction effect during heating (reduction action by an organic substance such as alcohol and a reducing atmosphere), and the bonding temperature at that time should be 200 ° C. or less. Can do. The thermal expansion coefficient of Cu or its alloy is about 8 to 16 ppm / ° C. Silicon nitride is preferably used for the ceramic insulating substrate 103. The thermal expansion coefficient of silicon nitride is about 9 ppm / ° C. It is desirable that the solder layer 109 be a bonding layer using an oxide in order to improve heat dissipation.

本構造のパワー半導体モジュールは、半導体素子101と熱膨張係数が約9ppm/℃の絶縁配線基板とが、熱膨張係数8〜16ppm/℃の接合材を介して接合されているため、高温環境で顕著になる各部材の熱膨張差に起因する熱応力を小さくすることができる。理想的には接合材の熱膨張係数を配線基板のそれに一致させることで、接合材に生じる熱応力が最小になり、長期信頼性が向上する。   In the power semiconductor module of this structure, since the semiconductor element 101 and the insulating wiring board having a thermal expansion coefficient of about 9 ppm / ° C. are bonded via a bonding material having a thermal expansion coefficient of 8 to 16 ppm / ° C. It is possible to reduce the thermal stress caused by the significant difference in thermal expansion of each member. Ideally, by matching the thermal expansion coefficient of the bonding material to that of the wiring board, the thermal stress generated in the bonding material is minimized, and long-term reliability is improved.

本発明の半導体装置は各種の電力変換装置に適用することができる。電力変換装置に本発明の半導体装置を適用することによって、高温環境の場所に搭載でき、かつ専用の冷却器を持たなくても長期的な信頼性を確保することが可能になる。   The semiconductor device of the present invention can be applied to various power conversion devices. By applying the semiconductor device of the present invention to the power conversion device, long-term reliability can be ensured even if it can be mounted in a place of a high temperature environment and does not have a dedicated cooler.

図10は半導体装置の回路を説明する図である。4個のMOSFET素子401が並列に配置された2系統のブロック910を有し、各ブロック910は直列に接続され、入力主端子30in,出力主端子30out,補助端子31が所定部から引き出されて半導体装置900の要部を構成している。また、この回路の稼働時における温度検出用サーミスタ34が半導体装置900内に独立して配置されている。   FIG. 10 illustrates a circuit of a semiconductor device. There are two systems of blocks 910 in which four MOSFET elements 401 are arranged in parallel. Each block 910 is connected in series, and the input main terminal 30in, the output main terminal 30out, and the auxiliary terminal 31 are drawn from a predetermined portion. The main part of the semiconductor device 900 is configured. Further, the thermistor 34 for temperature detection during operation of this circuit is disposed independently in the semiconductor device 900.

また、インバータ装置及び電動機は、電気自動車にその動力源として組み込むことができる。この自動車においては、動力源から車輪に至る駆動機構を簡素化できたため、ギヤーの噛込み比率の違いにより変速していた従来の自動車に比べ、変速時のショックが軽減され、スムーズな走行が可能で、振動や騒音の面でも従来よりも軽減することができる。なお、本実施例の半導体装置900は、図11に示すハイブリッド自動車電動機960の回転数制御用インバータ装置に組み込むことが可能である。   Further, the inverter device and the electric motor can be incorporated in the electric vehicle as a power source. In this car, the drive mechanism from the power source to the wheels has been simplified, so the shock at the time of shifting is reduced and smooth running is possible compared to the conventional car that has been shifting due to the difference in gear engagement ratio. Thus, vibration and noise can be reduced as compared with the conventional case. Note that the semiconductor device 900 of this embodiment can be incorporated in the inverter device for controlling the rotational speed of the hybrid vehicle electric motor 960 shown in FIG.

更に、本実施例の半導体装置900を組み込んだインバータ装置は冷暖房機に組み込むことも可能である。この際、従来の交流電動機を用いた場合よりも高い効率を得ることができる。これにより、冷暖房機使用時の電力消費を低減することができる。また、室内の温度が運転開始から設定温度に到達するまでの時間を、従来の交流電動機を用いた場合よりも短縮できる。   Furthermore, the inverter device incorporating the semiconductor device 900 of this embodiment can be incorporated into an air conditioner. In this case, higher efficiency can be obtained than when a conventional AC motor is used. Thereby, the power consumption at the time of air-conditioning machine use can be reduced. Moreover, the time until the room temperature reaches the set temperature from the start of operation can be shortened compared to the case where the conventional AC motor is used.

本実施例と同様の効果は、半導体装置900が他の流体を撹拌又は流動させる装置、例えば洗濯機,流体循環装置等に組み込まれた場合でも享受できる。   The same effect as that of the present embodiment can be enjoyed even when the semiconductor device 900 is incorporated in a device that stirs or flows another fluid, such as a washing machine or a fluid circulation device.

なお、本発明の金属超微粒子仕様接合材は、例えばLEDバックライトのような発熱が大きい部位の接合にも適用可能である。   In addition, the metal ultrafine particle specification bonding material of the present invention can also be applied to bonding at a portion where heat generation is large, such as an LED backlight.

(a)は本発明の位置実施例による絶縁型半導体装置の平面図、(b)はA−A断面図である。(A) is a top view of the insulation type semiconductor device by the position example of this invention, (b) is AA sectional drawing. 図1の要部を示した斜視図である。It is the perspective view which showed the principal part of FIG. 図1における半導体素子搭載部分を拡大して示した断面図である。It is sectional drawing which expanded and showed the semiconductor element mounting part in FIG. 本発明による接合部の状態を示す図である。It is a figure which shows the state of the junction part by this invention. 本発明による接合部の接合強度を示す図である。It is a figure which shows the joining strength of the junction part by this invention. 本発明による接合部の耐食性を示す図である。It is a figure which shows the corrosion resistance of the junction part by this invention. 本発明による接合部の熱伝導率を示す図である。It is a figure which shows the heat conductivity of the junction part by this invention. 従来材による接合部の接合強度を示す図である。It is a figure which shows the joining strength of the junction part by a conventional material. 従来材による接合部の耐食性を示す図である。It is a figure which shows the corrosion resistance of the junction part by a conventional material. 半導体装置の回路図である。It is a circuit diagram of a semiconductor device. ハイブリッド自動車電動機の回転数制御用インバータ装置を示す概略図である。It is the schematic which shows the inverter apparatus for rotation speed control of a hybrid vehicle electric motor.

符号の説明Explanation of symbols

101 半導体素子
102 配線層
103 セラミックス絶縁基板
104 配線層
105 接合層
106 エミッタ電極
110 支持部材
201 接続用端子
101 Semiconductor Element 102 Wiring Layer 103 Ceramic Insulating Substrate 104 Wiring Layer 105 Bonding Layer 106 Emitter Electrode 110 Support Member 201 Connection Terminal

Claims (5)

粒径が1nm以上50um以下の銀系,銅系、あるいは銀系と銅系を混在させた金属酸化物粒子と、アルコール類,カルボン酸類,アミン類から選ばれた1種以上の有機物を含有する接合材料を接合部材間に配置し、前記接合材料の還元温度よりも低い温度で保持する第1の加熱処理と、接合材料の還元温度よりも高い温度に昇温して保持する第2の加熱処理を施すことにより、接合部材間を接合することを特徴とする接合方法。   Contains silver-based, copper-based, or silver-copper-based metal oxide particles having a particle size of 1 nm to 50 um and one or more organic substances selected from alcohols, carboxylic acids, and amines A first heat treatment in which the bonding material is disposed between the bonding members and is held at a temperature lower than the reduction temperature of the bonding material, and a second heating that is heated to a temperature higher than the reduction temperature of the bonding material and held. The joining method characterized by joining between joining members by giving a process. 請求項に記載の接合方法において、接合部材の最表面がCu,Ni,Alのいずれかであることを特徴とする接合方法。 The joining method according to claim 1 , wherein the outermost surface of the joining member is any one of Cu, Ni, and Al. 請求項に記載の接合方法において、前記第1の加熱処理は、40度以上150度以下の温度で行われることを特徴とする接合方法。 The joining method according to claim 2 , wherein the first heat treatment is performed at a temperature of 40 degrees to 150 degrees. 半導体素子と、最表面がCu,Ni,Alのいずれかで構成される電極とがAg系またはCu系材で構成された接合層を介して接続された半導体モジュールの製造方法であって、
半導体素子又は電極の表面に、粒径が1nm以上50um以下の銀系,銅系、あるいは銀系と銅系を混在させた金属酸化物粒子と、アルコール類,カルボン酸類,アミン類から選ばれた1種以上の有機物を含有する接合材料を配置し、半導体素子と電極とを重ね合わせる工程と、
前記接合材料の還元温度よりも低い温度で保持する第1の加熱処理と、前記接合材料の還元温度よりも高い温度に昇温して保持する第2の加熱処理により、半導体素子及び電極を接合する工程と、を有することを特徴とする半導体モジュールの製造方法。
A method of manufacturing a semiconductor module in which a semiconductor element and an electrode whose outermost surface is made of Cu, Ni, or Al are connected via a bonding layer made of an Ag-based or Cu-based material,
The surface of the semiconductor element or electrode was selected from silver-based, copper-based particles having a particle diameter of 1 nm to 50 μm, or metal oxide particles in which silver-based and copper-based materials were mixed, alcohols, carboxylic acids, and amines. Arranging a bonding material containing one or more organic substances, and superimposing a semiconductor element and an electrode;
The semiconductor element and the electrode are joined by a first heat treatment that is held at a temperature lower than the reduction temperature of the bonding material and a second heat treatment that is held at a temperature higher than the reduction temperature of the bonding material. And a process for manufacturing the semiconductor module.
請求項に記載の半導体モジュールの製造方法において、40度以上150度以下の温度で前記第1の加熱処理を施し、200度以上の温度で第2の加熱処理を施すことを特徴とする半導体モジュールの製造方法。 5. The semiconductor module manufacturing method according to claim 4 , wherein the first heat treatment is performed at a temperature of 40 ° C. or more and 150 ° C. or less, and the second heat treatment is performed at a temperature of 200 ° C. or more. Module manufacturing method.
JP2008169769A 2008-06-30 2008-06-30 Semiconductor device and bonding material Active JP5135079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169769A JP5135079B2 (en) 2008-06-30 2008-06-30 Semiconductor device and bonding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169769A JP5135079B2 (en) 2008-06-30 2008-06-30 Semiconductor device and bonding material

Publications (2)

Publication Number Publication Date
JP2010010502A JP2010010502A (en) 2010-01-14
JP5135079B2 true JP5135079B2 (en) 2013-01-30

Family

ID=41590617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169769A Active JP5135079B2 (en) 2008-06-30 2008-06-30 Semiconductor device and bonding material

Country Status (1)

Country Link
JP (1) JP5135079B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018003A (en) * 2011-07-07 2013-01-31 Hitachi Ltd Metal-bonded structure and method for manufacturing the same
DE112012003228B4 (en) 2011-08-04 2021-08-12 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
JP5719740B2 (en) * 2011-09-30 2015-05-20 株式会社日立製作所 Wiring material and semiconductor module using the same
WO2013125022A1 (en) * 2012-02-24 2013-08-29 株式会社日立製作所 Semiconductor device
JP6070092B2 (en) * 2012-11-12 2017-02-01 三菱マテリアル株式会社 Power module and method for manufacturing power module
JP6157584B2 (en) 2013-02-26 2017-07-05 三菱電機株式会社 Power semiconductor device embedded device manufacturing method and power semiconductor device
JP5535375B2 (en) * 2013-06-12 2014-07-02 古河電気工業株式会社 Connection sheet
JPWO2015029152A1 (en) * 2013-08-28 2017-03-02 株式会社日立製作所 Semiconductor device
JP6265688B2 (en) * 2013-11-05 2018-01-24 古河電気工業株式会社 Connection structure
JP2016092970A (en) * 2014-11-05 2016-05-23 三菱電機株式会社 Power conversion module
WO2018025571A1 (en) 2016-08-05 2018-02-08 三菱電機株式会社 Power semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202586A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Bonding method and bonding structure

Also Published As

Publication number Publication date
JP2010010502A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5135079B2 (en) Semiconductor device and bonding material
JP5286115B2 (en) Semiconductor device and bonding material
JP5006081B2 (en) Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP4895994B2 (en) Joining method and joining material using metal particles
JP5023710B2 (en) Semiconductor device and manufacturing method thereof
JP4737116B2 (en) Joining method
JP5151150B2 (en) Composition for forming conductive sintered layer, and method for forming conductive film and bonding method using the same
JP5757359B2 (en) Cu / ceramic bonded body, Cu / ceramic bonded body manufacturing method, and power module substrate
JP5525335B2 (en) Sintered silver paste material and semiconductor chip bonding method
US8592996B2 (en) Semiconductor device and method of manufacturing the same
TWI512910B (en) Method for production of metalized substrate
JP2004107728A (en) Joining material and joining method
KR20130053400A (en) Conductive connecting member and manufacturing method of same
JP2014127537A (en) Semiconductor device using conductive bonding material and method of manufacturing semiconductor device
CN110060973B (en) Nano metal film module preparation method and substrate preparation method thereof
JPWO2005095040A1 (en) Joining method and joined body
WO2015029152A1 (en) Semiconductor device
JP2012191238A (en) Conductive sintered layer forming composition, and conductive coating film forming method and jointing method using the same
WO2013125022A1 (en) Semiconductor device
JP2006228804A (en) Ceramic substrate for semiconductor module and its manufacturing method
TW201742215A (en) Semiconductor device
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
JP2016032051A (en) Joining layer, electronic component, electric product and joining method
WO2012102267A1 (en) Circuit substrate and semiconductor device using same
JP6677231B2 (en) Method for joining electronic components and method for manufacturing joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5135079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350