JP2014127537A - Semiconductor device using conductive bonding material and method of manufacturing semiconductor device - Google Patents

Semiconductor device using conductive bonding material and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2014127537A
JP2014127537A JP2012281947A JP2012281947A JP2014127537A JP 2014127537 A JP2014127537 A JP 2014127537A JP 2012281947 A JP2012281947 A JP 2012281947A JP 2012281947 A JP2012281947 A JP 2012281947A JP 2014127537 A JP2014127537 A JP 2014127537A
Authority
JP
Japan
Prior art keywords
layer
sintered layer
sintered
semiconductor device
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012281947A
Other languages
Japanese (ja)
Inventor
Toshiaki Morita
俊章 守田
Yusuke Yasuda
雄亮 保田
Naoya Tokoo
尚也 床尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Power Semiconductor Device Ltd
Priority to JP2012281947A priority Critical patent/JP2014127537A/en
Publication of JP2014127537A publication Critical patent/JP2014127537A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device in which occurrence of conductive residue, due to protrusion of paste, is suppressed.SOLUTION: A semiconductor device has a semiconductor element 101 and an insulating substrate. A wiring layer 102 is formed on the insulating substrate, and a bond layer 105 composed of a sintered metal is formed between the semiconductor element and wiring layer. The bond layer has a first sintered layer 105a arranged on the side close to the semiconductor element, and sintered layers 105b, 105c arranged on the side close to the wiring layer. The sintered layers close to the wiring layer are formed wider than the first sintered layer.

Description

本発明は、導電性接合材料を用いた半導体装置及びその半導体装置の製造方法に関する。   The present invention relates to a semiconductor device using a conductive bonding material and a method for manufacturing the semiconductor device.

一般に半導体装置は電力変換装置、その電力変換装置を搭載した電車、風力発電装置、ハイブリッド自動車等の制御装置に多く使用されている。この半導体装置においては、例えば電子部品の電極端子と回路基板上の回路パターンの電極端子との電気的接合には「はんだ」や「はんだ合金」によるものが主流であった。   In general, semiconductor devices are often used in power conversion devices, and control devices such as trains, wind power generation devices, and hybrid vehicles equipped with the power conversion devices. In this semiconductor device, for example, “solder” or “solder alloy” is mainly used for electrical connection between the electrode terminals of electronic components and the electrode terminals of the circuit pattern on the circuit board.

ところが、地球環境保全の観点から鉛の使用が厳しく制限されており、鉛の使用を制限して鉛を含まない材料で電極等の接合を行なう開発が進められている。特に、「高温はんだ」に関してはその代替となる有効な材料がまだ見出されていない。そのため、この「高温はんだ」に代わる材料の出現が望まれている。   However, the use of lead is severely restricted from the viewpoint of global environmental protection, and the development of joining electrodes and the like using materials that do not contain lead by restricting the use of lead is being promoted. In particular, no effective material has yet been found for "high temperature solder". Therefore, the appearance of a material that can replace this “high temperature solder” is desired.

このような背景から、その開発の一環として金属粒子と有機化合物の複合材料を用いて電極を接合する接合材料が提案されている。   Under such circumstances, as a part of the development, a bonding material for bonding electrodes using a composite material of metal particles and an organic compound has been proposed.

例えば、金属粒子の粒径が100nm以下のサイズまで小さくなったナノ粒子のように構成原子数が少なくなると、粒子の体積に対する表面積比は急激に増大し、その融点や焼結温度がバルクの状態(ナノ粒子より大きい状態)に比較して大幅に低下することが知られている。   For example, when the number of constituent atoms decreases as in the case of nanoparticles in which the particle size of metal particles is reduced to 100 nm or less, the ratio of the surface area to the volume of the particles increases rapidly, and the melting point and sintering temperature are in a bulk state. It is known that it is significantly reduced compared to (a state larger than nanoparticles).

しかしながら、このような材料を用いて大面積で接合しようとした場合、金属ナノ粒子を覆っている有機保護膜や有機溶媒を揮発させることが接合面中央部では難しく、接合部の強度劣化や電気的特性・熱的特性の劣化を招くと言う問題がある。   However, when attempting to bond a large area using such a material, it is difficult to volatilize the organic protective film and the organic solvent covering the metal nanoparticles at the center of the bonding surface. There is a problem that it causes deterioration of mechanical characteristics and thermal characteristics.

特許文献1には、空隙率が互いに異なる複数種類の接合層によって接合部材を構成させることによって、有機成分の揮発経路を確保する発明が記載されている。   Patent Document 1 describes an invention that secures a volatilization path of an organic component by forming a bonding member with a plurality of types of bonding layers having different porosity.

特開2008−311371号公報JP 2008-31371 A

ところで、金属ナノ粒子を用いて接合する場合には接合部の接合信頼性を向上させる必要があり、そのために金属ナノ粒子を焼結させる際に加圧が必要となる。金属ナノ粒子は、上述した有機溶媒などでペースト化されているため、加圧によって接合部材間からペーストがはみ出してしまい、焼結後に導電性の残存物となり残ってしまうという課題がある。   By the way, when joining using a metal nanoparticle, it is necessary to improve the joining reliability of a junction part, For that reason, pressurization is needed when sintering a metal nanoparticle. Since the metal nanoparticles are pasted with the above-described organic solvent or the like, there is a problem that the paste protrudes from between the joining members due to pressurization and remains as a conductive residue after sintering.

特許文献1に記載の発明では、有機成分の揮発経路については考慮されているが、加圧によるペーストのはみ出しについては一切考慮されていない。   In the invention described in Patent Document 1, the volatilization route of the organic component is considered, but the protrusion of the paste due to pressurization is not considered at all.

そこで、本発明の目的は、ペーストのはみ出しに由来する導電性の残存物の発生を抑制した半導体装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that suppresses the generation of conductive residue resulting from the protrusion of paste.

本発明における半導体装置は、半導体素子と絶縁基板とを有し、前記絶縁基板には配線層が形成され、前記半導体素子と前記配線層の間には焼結金属からなる接合層が構成され、当該接合層は半導体素子に近い側に配置される第一の焼結層と、前記配線層に近い側に配置される焼結層を有し、前記配線層に近い側の焼結層は、前記第一の焼結層よりも幅広で形成されることを特徴とする。   The semiconductor device according to the present invention includes a semiconductor element and an insulating substrate, a wiring layer is formed on the insulating substrate, and a bonding layer made of a sintered metal is formed between the semiconductor element and the wiring layer. The bonding layer has a first sintered layer disposed on the side closer to the semiconductor element, and a sintered layer disposed on the side closer to the wiring layer, and the sintered layer on the side closer to the wiring layer includes: It is characterized by being formed wider than the first sintered layer.

本発明を用いることによって、ペーストのはみ出しに由来する導電性の残存物の発生を抑制した半導体装置を提供することができる。   By using the present invention, it is possible to provide a semiconductor device that suppresses the generation of conductive residues resulting from the protrusion of paste.

前駆焼結層105eの接合状態を示す図である。It is a figure which shows the joining state of the precursor sintering layer 105e. 図10の点線部Bの拡大図である。It is an enlarged view of the dotted line part B of FIG. 比較例1の一形態を表す図である。6 is a diagram illustrating one form of Comparative Example 1. FIG. 比較例1の他の形態を表す図である。It is a figure showing the other form of the comparative example 1. 比較例2の形態を表す図である。It is a figure showing the form of the comparative example 2. FIG. 配線層102の表面の詳細を示す図である。3 is a diagram showing details of the surface of a wiring layer 102. FIG. 焼結層が(a)単純2層焼結構造のクラック伸展、及び(b)本発明の焼結構造のクラック伸展を示す図である。It is a figure in which the sintered layer shows (a) crack extension of a simple two-layer sintered structure and (b) crack extension of the sintered structure of the present invention. 本発明の第二の実施形態を示す図である。It is a figure which shows 2nd embodiment of this invention. 本発明の第三の実施形態を示す図である。It is a figure which shows 3rd embodiment of this invention. 本発明の半導体装置150の(a)上面図、及び(b)断面図である。2A is a top view of the semiconductor device 150 of the present invention, and FIG. 本発明の接合プロセスの(a)第一工程、(b)第二工程、及び(c)第三工程を示す図である。It is a figure which shows the (a) 1st process, (b) 2nd process, and (c) 3rd process of the joining process of this invention.

以下、本発明について詳細に説明する。まず、図10を用いて本発明の半導体装置150の構造について説明する。図10は半導体装置150の外観を示したものであり、図10(a)は上面図、図10(b)は図10(a)のA−A’の断面図を示したものである。   Hereinafter, the present invention will be described in detail. First, the structure of the semiconductor device 150 of the present invention will be described with reference to FIG. 10A and 10B show the appearance of the semiconductor device 150, FIG. 10A is a top view, and FIG. 10B is a cross-sectional view taken along line A-A 'in FIG.

本実施例において、半導体素子101の一方の面は、図示しないコレクタ電極が、以下で説明する接合層105によってセラミックス絶縁基板103上の配線層102に接合されている。また、セラミックス絶縁基板103の裏面配線層122は、支持部材110にはんだ層109を介して接合されている。セラミックス絶縁基板103、配線層102、及び裏面配線層122をもって配線基板123と称する。配線層102はCu配線である。接合層105は厚さ80μmである。半導体素子101の他方の面は、エミッタ電極が接続用アルミワイヤ201を用いて接合されており、アルミワイヤ201はセラミックス絶縁基板103上の配線層102と接合されている。また、配線層102は銅で構成されている。   In this embodiment, a collector electrode (not shown) is bonded to the wiring layer 102 on the ceramic insulating substrate 103 on one surface of the semiconductor element 101 by a bonding layer 105 described below. Further, the back wiring layer 122 of the ceramic insulating substrate 103 is bonded to the support member 110 via the solder layer 109. The ceramic insulating substrate 103, the wiring layer 102, and the back surface wiring layer 122 are referred to as a wiring substrate 123. The wiring layer 102 is a Cu wiring. The bonding layer 105 has a thickness of 80 μm. On the other surface of the semiconductor element 101, the emitter electrode is bonded using the connecting aluminum wire 201, and the aluminum wire 201 is bonded to the wiring layer 102 on the ceramic insulating substrate 103. The wiring layer 102 is made of copper.

図10における他の符号は、それぞれ、ケース111、外部端子112、ボンディングワイヤ113、封止材114を示している。ケース111は、半導体素子101を搭載した配線基板123を収納するものであり、その内部には封止材114が充填されている。当該封止材114は半導体素子101等を覆っている。   The other reference numerals in FIG. 10 indicate the case 111, the external terminal 112, the bonding wire 113, and the sealing material 114, respectively. The case 111 accommodates the wiring substrate 123 on which the semiconductor element 101 is mounted, and the inside thereof is filled with a sealing material 114. The sealing material 114 covers the semiconductor element 101 and the like.

外部端子は電力を半導体装置150の外部に取り出すための端子であり、ボンディングワイヤ113を介して配線層102と接続されている。   The external terminal is a terminal for taking out electric power to the outside of the semiconductor device 150, and is connected to the wiring layer 102 through the bonding wire 113.

続いて、半導体素子101と配線層102の接合部の詳細について図2を用いて説明する。図2は図10のB(点線部)を拡大したものである。ここでは、本発明の特徴となる接合層105の構造を中心に説明する。   Next, details of the junction between the semiconductor element 101 and the wiring layer 102 will be described with reference to FIG. FIG. 2 is an enlarged view of B (dotted line portion) in FIG. Here, the description will focus on the structure of the bonding layer 105 that is a feature of the present invention.

接合層105は、半導体素子101側の第一の焼結層105a、第一の焼結層105aと配線層102の間に設けられた第二の焼結層105b、及び第二の焼結層105bのうち、第一の焼結層105aの上側に配置された半導体チップよりも外側部分に存在する第三の焼結層105cで構成されている。   The bonding layer 105 includes a first sintered layer 105a on the semiconductor element 101 side, a second sintered layer 105b provided between the first sintered layer 105a and the wiring layer 102, and a second sintered layer. Of the 105b, the third sintered layer 105c is present in the outer portion of the semiconductor chip disposed above the first sintered layer 105a.

このとき後述する方法によって接合層を形成させることによって、それぞれの焼結層の焼結密度を第一の焼結層105a、第二の焼結層105b、第三の焼結層105cの順に焼結密度が低くなるように接合層105を作成する。つまり焼結密度は、第一の焼結層105a>第二の焼結層105b>第三の焼結層105cとなる。   At this time, by forming a bonding layer by a method described later, the sintered density of each sintered layer is sintered in the order of the first sintered layer 105a, the second sintered layer 105b, and the third sintered layer 105c. The bonding layer 105 is formed so that the density is low. That is, the sintered density is such that the first sintered layer 105a> the second sintered layer 105b> the third sintered layer 105c.

第一の焼結層105aは半導体素子101のサイズとほぼ同等のサイズとなっている。そのため、第一の焼結層105aの形成時、すなわち半導体素子101搭載時に経た加圧工程時のペーストはみ出しが抑止されていることを示す。また下地である第二の焼結層105bがポーラス状態のため、焼結層を形成するためのペースト塗布、及び加圧時にはみ出しにくい状態とすることができる。続いて、接合層105に用いられている材料について説明する。   The first sintered layer 105 a has a size substantially equal to the size of the semiconductor element 101. Therefore, it is shown that the paste is prevented from protruding during the pressurizing process that is performed when the first sintered layer 105a is formed, that is, when the semiconductor element 101 is mounted. Further, since the second sintered layer 105b which is the base is in a porous state, it can be in a state in which it is difficult to protrude during paste application and pressurization for forming the sintered layer. Next, materials used for the bonding layer 105 will be described.

配線層102にCuや、表面にNiめっきされたものへの電極形成について、従来の粒径が100nm以下の銀粒子を接合の主剤とするペースト材料を用いた場合では、Cu、Ni電極表面の酸化物層が存在するため、接合材とが接合されないという問題があった。一方、銀をはじめとする貴金属めっき法による電極形成は、マスク形成、プロセスが複雑で、かつ廃液処理の問題などがあり、適用には障害が多かった。   For the electrode formation on the wiring layer 102 having Cu or Ni plated on the surface, in the case of using the past paste material mainly composed of silver particles having a particle size of 100 nm or less, the Cu, Ni electrode surface Since the oxide layer exists, there is a problem that the bonding material is not bonded. On the other hand, the electrode formation by the noble metal plating method including silver has a complicated mask formation and process, and there are problems of waste liquid treatment, and its application has many obstacles.

そこで、本実施形態では金属粒子前駆体である平均粒径が1nm〜5μmの酸化銀粒子と酸化銀粒子を還元する作用を有する酢酸系化合物、またはアルコールを添加し、さらに有機溶剤とを含む接合材料により、還元雰囲気下、300℃加熱でCu、あるいはNi電極上に銀電極を形成する。本プロセスは、金属粒子前駆体に対して化合物からなる還元剤を添加することによって、金属粒子前駆体単体を加熱分解するよりも低温で金属粒子前駆体が還元され、その際に平均粒径が100nm以下の銀粒子が作製され、金属粒子同士が相互に融合することで焼結、すなわち電極形成が行なわれるという現象を利用している。   Therefore, in the present embodiment, a silver particle having an average particle diameter of 1 nm to 5 μm, which is a metal particle precursor, an acetic acid compound having an action of reducing silver oxide particles, or an alcohol, and further including an organic solvent. Depending on the material, a silver electrode is formed on a Cu or Ni electrode by heating at 300 ° C. in a reducing atmosphere. In this process, by adding a reducing agent composed of a compound to the metal particle precursor, the metal particle precursor is reduced at a lower temperature than when the metal particle precursor alone is thermally decomposed. A phenomenon is used in which silver particles of 100 nm or less are produced, and metal particles are fused with each other to perform sintering, that is, electrode formation.

当該材料を用いることによって、Cu、Ni表面の酸化物を除去して接合ができるため、Cu、Ni電極に対して優れた接合強度が得ることができる。   By using this material, the oxides on the Cu and Ni surfaces can be removed for bonding, so that excellent bonding strength can be obtained for Cu and Ni electrodes.

続いて、図11を用いて接合層105の作成方法について説明する。   Next, a method for forming the bonding layer 105 will be described with reference to FIG.

まず、図11(a)に示すように、上述した接合用のペースト材料を配線層102の上に塗布し、無加圧で焼結させて第二の焼結層105b及び第三の焼結層105cの前駆焼結層105eを作成する。無加圧でペースト材料を焼結させることによって、前駆焼結層105eの焼結密度を低くし、空隙率を高くすることが可能になる。当該プロセスで前駆焼結層105eの焼結密度を低くすることによって、第一の焼結層105aを形成する際にペースト材料を吸収する領域が出来、ペーストのはみ出しをより抑制することができる。   First, as shown in FIG. 11A, the above-mentioned bonding paste material is applied on the wiring layer 102 and sintered without pressure to form the second sintered layer 105b and the third sintered material. A precursor sintered layer 105e of the layer 105c is formed. By sintering the paste material without applying pressure, the sintered density of the precursor sintered layer 105e can be lowered and the porosity can be increased. By lowering the sintered density of the precursor sintered layer 105e in the process, a region for absorbing the paste material is formed when the first sintered layer 105a is formed, and the protrusion of the paste can be further suppressed.

続いて、図11(b)に示すように、接合用のペースト材料101a1を前駆焼結層105eの上に塗布する。このとき、ペースト材料101a1を塗布する領域は前駆焼結層105eよりも内側の領域とすることが必要となる。このように塗布しなければ、ペースト材料105a1のはみ出しを抑制できないからである。そしてペースト材料105a1の塗布が終了したら、その上に半導体素子101を配置する。そして図示するように半導体素子101の上面より加圧しながら焼結を行なう。   Subsequently, as shown in FIG. 11B, a bonding paste material 101a1 is applied on the precursor sintered layer 105e. At this time, the area to which the paste material 101a1 is applied needs to be an area inside the precursor sintered layer 105e. This is because the protrusion of the paste material 105a1 cannot be suppressed unless it is applied in this way. When the application of the paste material 105a1 is completed, the semiconductor element 101 is disposed thereon. Then, as shown in the figure, sintering is performed while applying pressure from the upper surface of the semiconductor element 101.

ペースト材料105a1の焼結が終了すると、図11(c)に示すような、第一の焼結層105a、第二の焼結層105b、第三の焼結層105cが形成される。   When the sintering of the paste material 105a1 is completed, a first sintered layer 105a, a second sintered layer 105b, and a third sintered layer 105c are formed as shown in FIG.

なお、前駆焼結層105eを形成する材料と第一の焼結層105aを形成する材料は同じものを用いても良いが、前駆焼結層105eを形成する材料に還元促進剤として添加する酢酸系化合物やアルコールを用いると、卑金属電極との接合促進の他、反応時のガスが多いため、還元生成した銀微粒子による焼結層の状態を、高密度焼結状態では無く、スポンジのようなポーラス状態にできるためより好ましい。   The material for forming the precursor sintered layer 105e and the material for forming the first sintered layer 105a may be the same, but acetic acid added as a reduction accelerator to the material for forming the precursor sintered layer 105e. When using a system compound or alcohol, in addition to promoting bonding with the base metal electrode, there is a lot of gas during the reaction, so the state of the sintered layer due to the reduced silver particles is not a high-density sintered state but a sponge-like state It is more preferable because it can be in a porous state.

また、より詳細な接合条件や材料の条件については実験例にて示す。   Further, more detailed joining conditions and material conditions will be shown in experimental examples.

続いて、第二の焼結層105b及び第三の焼結層105cの前駆焼結層105eの詳細な構造について説明する。上述した材料を用いることによって、平均粒径が100nm以下の銀粒子が作製され、銀粒子同士が相互に融合し、接合に至る。図1はその機構を説明する図である。接合に至る機構は、(1)生成した100nm以下の銀粒子が相手電極(Cu、Ni)表面に薄膜層105dを形成、(2)この層は相手の金属電極板、すなわちCu、あるいはNiの結晶成長方向と同一方向に一部が結晶成長しており、(3)さらに薄膜層形成に寄与しなかった銀粒子同士の融合によって焼結層ができる。そして、薄膜層105dを含んだ前駆焼結層105eが形成される。   Next, the detailed structure of the precursor sintered layer 105e of the second sintered layer 105b and the third sintered layer 105c will be described. By using the above-described materials, silver particles having an average particle diameter of 100 nm or less are produced, and the silver particles are fused with each other to be joined. FIG. 1 is a diagram for explaining the mechanism. The mechanism leading to the bonding is as follows: (1) The generated silver particles of 100 nm or less form a thin film layer 105d on the surface of the counterpart electrode (Cu, Ni), (2) This layer is the counterpart metal electrode plate, that is, Cu or Ni. Part of the crystal grows in the same direction as the crystal growth direction, and (3) a sintered layer is formed by the fusion of silver particles that did not contribute to the formation of the thin film layer. Then, a pre-sintered layer 105e including the thin film layer 105d is formed.

このような構造に出来ることによって、前駆焼結層105eとしての焼結密度は低いが配線層102との界面では高密度になっているため、配線層102との間の抵抗を低減することが可能となる。   By being able to have such a structure, the sintering density as the precursor sintered layer 105e is low, but it is high at the interface with the wiring layer 102, so that the resistance with the wiring layer 102 can be reduced. It becomes possible.

以上、上述したように本実施形態では、配線層102側の焼結層を無加圧で焼結させることによって低密度の前駆焼結層105eを作成し、さらにその後に前駆焼結層105eよりも小さい領域にペースト材料を塗布して加圧・接合する。当該プロセスを利用して接合層を作成することによって、前駆焼結層105eに加圧によりはみ出る可能性のあるペーストを吸収させて第二の焼結層105bを作成し、かつペースト塗布領域に対応する領域の低密度焼結層で吸収しきれなかったペースト材料を、当該ペースト材料塗布領域外周の領域で吸収した第三の焼結層105cを作成することが可能となり、加圧によるペースト材料のはみ出しを抑制することが出来る。   As described above, in the present embodiment, the sintered layer on the wiring layer 102 side is sintered without pressure to create the low-density precursor sintered layer 105e, and then the precursor sintered layer 105e. Apply paste material in a small area and pressurize and bond. By creating a bonding layer using this process, the second sintered layer 105b is created by absorbing the paste that may protrude from the precursor sintered layer 105e by pressurization, and corresponds to the paste application region. It is possible to create the third sintered layer 105c in which the paste material that has not been absorbed by the low-density sintered layer in the region to be absorbed is absorbed in the region around the paste material application region. The protrusion can be suppressed.

また、前駆焼結層105eを形成した後にペースト材料105a1に圧力を加えて接合層105を作成することによって、無加圧で作成されたことによって低い焼結密度になり抵抗が上昇した前駆焼結層105eのうち、一部の焼結層(つまり第二の焼結層105bに対応する部分)の焼結密度を高くする出来る。そのため、ペーストのはみ出しを抑止しつつ半導体素子101から配線層102までの接合層の焼結密度を十分に高い状態を保つことができ、半導体素子101から配線層102に至るまでの抵抗上昇を防ぐことが可能となる。   In addition, by forming the bonding material 105 by applying pressure to the paste material 105a1 after forming the precursor sintered layer 105e, the precursor sintering whose resistance is increased due to the low sintering density due to the fact that it was created without pressure. Among the layers 105e, the sintered density of a part of the sintered layers (that is, the portion corresponding to the second sintered layer 105b) can be increased. Therefore, the sintering density of the bonding layer from the semiconductor element 101 to the wiring layer 102 can be kept sufficiently high while preventing the paste from protruding, and an increase in resistance from the semiconductor element 101 to the wiring layer 102 is prevented. It becomes possible.

また、接合層105の焼結密度が、第一の焼結層105a>第二の焼結層105b>第三の焼結層105cとなる構造にすることによって、半導体素子101と最も近い第一の焼結層105aの焼結密度が高くなるため、半導体素子101と第一の焼結層105aとの界面の接触抵抗を最も低減した接合層105の構造とすることができる。   Further, the first layer closest to the semiconductor element 101 is formed by setting the sintered density of the bonding layer 105 such that the first sintered layer 105a> the second sintered layer 105b> the third sintered layer 105c. Since the sintered density of the sintered layer 105a increases, the structure of the bonding layer 105 with the lowest contact resistance at the interface between the semiconductor element 101 and the first sintered layer 105a can be obtained.

また、配線層102の表面は、実際には図6に示すように数μmから数10μmのうねりがある。後述する図5のように2層の焼結層としない場合、図6に示すようにこのうねりの頂部では密焼結(密焼結部105g)、谷部では粗焼結(粗焼結部105h)となる。その影響で図6に示すように焼結層は粗と密の状態が混在した形となる。   Further, the surface of the wiring layer 102 actually has undulations of several μm to several tens of μm as shown in FIG. In the case of not using two sintered layers as shown in FIG. 5 to be described later, as shown in FIG. 6, as shown in FIG. 6, the top of this swell is densely sintered (densely sintered portion 105 g), and the valley is roughly sintered (roughly sintered portion). 105h). As a result, as shown in FIG. 6, the sintered layer has a mixed form of coarse and dense states.

粗な領域が半導体素子101の端部になった場合、ここがクラック伸展の起点となり、長期信頼性の確保が困難になる。さらに、うねりの谷部では空洞に近い状態になること熱溜まり部となり、熱抵抗の悪化を引き起こすことがある。   When the rough region becomes the end portion of the semiconductor element 101, this becomes a starting point of crack extension, and it is difficult to ensure long-term reliability. Furthermore, in the undulation valley, when it becomes a state close to a cavity, it becomes a heat accumulation part, which may cause deterioration of thermal resistance.

図2に示す実施形態は、このような不具合を解消するための形態でもあり、第二の焼結層105bが基板電極表面のうねりを埋め、かつある程度のポーラス性を有しているため、第一の焼結層105a形成時の加圧プロセス時に均一な加圧状態を確保でき、この結果第一の焼結層105aの焼結密度を均一化することができる。   The embodiment shown in FIG. 2 is also a form for solving such a problem, and the second sintered layer 105b fills the swell of the substrate electrode surface and has a certain degree of porous property. A uniform pressurization state can be secured during the pressurization process when forming one sintered layer 105a, and as a result, the sintered density of the first sintered layer 105a can be made uniform.

また、本実施形態のように、単純な2層の焼結構造では無く、第一の焼結層105aが第二の焼結層105b及び第三の焼結層105c(つまり配線層102に近い側に配置される焼結層)よりも高密度である構造は、繰り返し熱応力付加などによる長期信頼性確保にも非常に有効である。   Further, unlike the present embodiment, the first sintered layer 105a is not a simple two-layer sintered structure, but the second sintered layer 105b and the third sintered layer 105c (that is, close to the wiring layer 102). The structure having a higher density than the sintered layer disposed on the side is very effective for ensuring long-term reliability by repeatedly applying thermal stress.

図7(a)に示すように、単純2層構造では半導体素子101と第一の焼結層105aの界面にクラックが伸展することが多く、界面のクラック伸展は接続寿命が非常に短くなる。   As shown in FIG. 7A, in the simple two-layer structure, cracks often extend at the interface between the semiconductor element 101 and the first sintered layer 105a, and the crack extension at the interface has a very short connection life.

一方本発明構造では、図7(b)に示すようにクラックは焼結層中に伸展する。これは半導体素子101側は高密度焼結であるためチップとの界面を含めた接合強度が非常に高いためであり、このため長期信頼性の確保が実現できる。   On the other hand, in the structure of the present invention, the crack extends into the sintered layer as shown in FIG. This is because the semiconductor element 101 side is sintered at high density, so that the bonding strength including the interface with the chip is very high, and thus long-term reliability can be ensured.

このような界面破断のない破断モードを呈することは半導体装置設計に欠かすことのできない指標である。界面破断が支配的であると寿命策定ができず、信頼性設計が困難、あるいは不可能である。   Presenting such a fracture mode without interface fracture is an indispensable index for semiconductor device design. If the interfacial fracture is dominant, the life cannot be determined, and reliability design is difficult or impossible.

なお、本発明構造において、下地電極板材質は銅、ニッケルの他、貴金属めっきを施しても良い。また、第1焼結層、及び第2、第3焼結層は銀のみでは無く、銅と銅、あるいは銀と銅の組み合わせでも良い。
《実験例》
以下、実験例について説明する配線基板123上に半導体素子101を搭載するプロセスについて説明する。半導体素子101はIGBT、及びダイオード素子で、それぞれ同一の大きさで約13mm×13mmである。
In the structure of the present invention, the base electrode plate material may be precious metal plated in addition to copper and nickel. The first sintered layer and the second and third sintered layers are not limited to silver, but may be copper and copper, or a combination of silver and copper.
《Experimental example》
Hereinafter, a process for mounting the semiconductor element 101 on the wiring board 123 for explaining the experimental example will be described. The semiconductor element 101 is an IGBT and a diode element, each having the same size and approximately 13 mm × 13 mm.

先ず、酸化銀ペーストとしてセチルアルコールを5wt%含んだ平均粒径2μmの酸化銀粒子とジエチレングリコールモノブチルエーテル溶剤の混合材を用意した。このペーストを用い、無垢の銅配線電極を有し、絶縁部は窒化珪素で構成された配線基板123上にメタルマスクを用いて本ペーストを印刷した。メタルマスクの開口サイズは約15mm×15mmでパワー半導体素子よりも大きい。   First, a mixture of silver oxide particles containing 5 wt% cetyl alcohol and having an average particle diameter of 2 μm and a diethylene glycol monobutyl ether solvent was prepared as a silver oxide paste. Using this paste, this paste was printed using a metal mask on a wiring board 123 having a solid copper wiring electrode and an insulating part made of silicon nitride. The opening size of the metal mask is about 15 mm × 15 mm, which is larger than the power semiconductor element.

印刷後、水素雰囲気中、昇温速度10℃、ピーク温度300℃で15分保持して銅電極上に銀電極を形成した。このとき銀電極の形状は、目的の半導体素子の大きさや配置位置に対応するマスクによって決まる。焼結完了後の銀電極は空隙率約10%のポーラス状態であった。この状態を図1に示すとおりである。焼結層には空洞部が多く散見され、かつ相手電極との界面の一部には、相手電極である銅の結晶成長方向と同一方向に一部が結晶成長している。   After printing, a silver electrode was formed on the copper electrode by holding in a hydrogen atmosphere at a heating rate of 10 ° C. and a peak temperature of 300 ° C. for 15 minutes. At this time, the shape of the silver electrode is determined by a mask corresponding to the size and arrangement position of the target semiconductor element. The silver electrode after sintering was in a porous state with a porosity of about 10%. This state is as shown in FIG. Many cavities are scattered in the sintered layer, and a part of the crystal grows in a part of the interface with the counter electrode in the same direction as the crystal growth direction of copper as the counter electrode.

次に、形成した銀電極上に別の酸化銀系ペーストを塗布する。このときのペーストはアルコールなど積極的に酸化銀の還元促進する部材は少量にしたものを用い、酸化銀還元後の銀焼結層の焼結密度を、先に銅電極上に形成した焼結層よりも高い状態にする。なおこのペーストは貴金属電極とは良好に接合できるが卑金属とは接合性が劣るため、半導体素子の最表面電極は貴金属であることが必要である。   Next, another silver oxide paste is applied on the formed silver electrode. The paste used at this time was a small amount of a member that actively promotes the reduction of silver oxide, such as alcohol, and the sintered density of the silver sintered layer after the reduction of silver oxide was previously formed on the copper electrode. Make it higher than the layer. This paste can be satisfactorily bonded to the noble metal electrode, but has poor bonding properties to the base metal, so that the outermost electrode of the semiconductor element needs to be a noble metal.

ペースト塗布方法はここでもメタルマスクを用いる。マスクの開口寸法は半導体素子サイズと同じ約12mm×12mmである。なお、前駆焼結層105eの面積に対して64%の面積領域以下であればはみ出しが十分に抑制できる。塗布後、目的の半導体素子を配置し、加圧を加えて加熱する。このとき、加圧は0.3MPa、温度は250℃として20分保持した。雰囲気は大気中とした。   The paste coating method uses a metal mask here as well. The opening size of the mask is about 12 mm × 12 mm which is the same as the semiconductor element size. In addition, if the area area is 64% or less with respect to the area of the precursor sintered layer 105e, the protrusion can be sufficiently suppressed. After the application, the target semiconductor element is placed and heated by applying pressure. At this time, the pressure was 0.3 MPa and the temperature was 250 ° C. and held for 20 minutes. The atmosphere was air.

当該作成方法で作成した半導体装置では、ペーストのはみ出し部は形成されなかった。
《比較例1》
第一の焼結層105aと第二の焼結層105b、及び半導体素子101と同等のサイズで半導体装置を作成した場合、図3に示すようにはみ出し焼結部105fが形成された。これが外力や振動などの影響ではがれ落ちると、導電性のゴミとなり、短絡不良等の原因となることがあるため、好ましくない。
In the semiconductor device produced by the production method, no protruding portion of the paste was formed.
<< Comparative Example 1 >>
When the semiconductor device was produced with the same size as the first sintered layer 105a, the second sintered layer 105b, and the semiconductor element 101, the protruding sintered portion 105f was formed as shown in FIG. If this peels off due to the influence of external force or vibration, it becomes conductive dust and may cause a short circuit failure or the like, which is not preferable.

また、図4のように、はみ出し部105fが多くなったものも見られた。このような場合、そのはみ出し焼結部が半導体チップ上に形成したパッシベーション膜上を覆うと電界の乱れが生じ、耐圧などの半導体特性に影響することがある。さらにはチップ表面の電極に接触すると短絡不良となってしまうため、好ましくない。
《比較例2》
第二の焼結層105bを設けず、半導体素子と同等のサイズの焼結層が設けられたものを作成した。この場合、図5に示すようにポーラスな前駆焼結層105eが無いため、図4と同じくはみ出し部105fが形成された。
In addition, as shown in FIG. 4, the protrusions 105f were increased. In such a case, when the protruding sintered portion covers the passivation film formed on the semiconductor chip, the electric field is disturbed, which may affect semiconductor characteristics such as withstand voltage. Furthermore, if it comes into contact with the electrode on the chip surface, a short circuit failure occurs, which is not preferable.
<< Comparative Example 2 >>
A second sintered layer 105b was not provided, and a sintered layer having a size equivalent to that of the semiconductor element was prepared. In this case, since there is no porous precursor sintered layer 105e as shown in FIG. 5, the protruding portion 105f is formed as in FIG.

以上のように、本実施形態の発明を用いることによって、加圧をして焼結した場合であっても、ペーストのはみ出しを抑制した半導体装置を作成することができた。
《第二の実施形態》
図8は、本発明の第二の実施形態を示したものである。本実施形態と第一の実施形態の異なる点は、第二の焼結層205b及び第三の焼結層205cを銅で構成した点である。なお、第一の実施形態と同じ構成には、第一の実施形態で用いた図面番号と同様の図面番号を用いている。
As described above, by using the invention of the present embodiment, it was possible to produce a semiconductor device in which the protrusion of paste was suppressed even when pressure was applied and sintering was performed.
<< Second Embodiment >>
FIG. 8 shows a second embodiment of the present invention. The difference between this embodiment and the first embodiment is that the second sintered layer 205b and the third sintered layer 205c are made of copper. In addition, the same drawing number as the drawing number used in 1st embodiment is used for the same structure as 1st embodiment.

配線基板123には銅配線形成窒化珪素回路基板を用いた。当該銅配線形成窒化珪素回路基板に対して、ギ酸銅0.5wt%含んだ平均粒径2μmの酸化第二銅粒子とジエチレングリコールモノブチルエーテルの混合材を用いて15mm×15mmの銅電極を形成した後、この上にステアリン酸0.1wt%を含んだ平均粒径2μmの酸化銀粒子とジエチレングリコールモノブチルエーテル溶剤の混合材で構成した酸化銀ペーストを印刷し、12mm×12mmのIGBTチップを接合した半導体装置である。   A copper wiring-formed silicon nitride circuit board was used as the wiring board 123. After forming a copper electrode of 15 mm × 15 mm on the copper wiring-formed silicon nitride circuit substrate using a mixture of cupric oxide particles having an average particle diameter of 2 μm and diethylene glycol monobutyl ether containing 0.5 wt% of copper formate A semiconductor device in which a silver oxide paste composed of a mixture of silver oxide particles having an average particle diameter of 2 μm containing stearic acid of 0.1 wt% and a diethylene glycol monobutyl ether solvent is printed thereon and a 12 mm × 12 mm IGBT chip is bonded. It is.

IGBTチップは、窒素雰囲気下で、0.1MPa加圧を加えて、ピーク温度250℃で接合した。このIGBTの接合面(コレクタ側)の電極構造はAl/Ti/Ni/Auで最表面はAuである。本構造では、第二の焼結層205bが銅電極と接合した銅焼結層、金電極を有する半導体素子101と接合した第一の焼結層205aが銀であるため、各界面の接合強度が第一の実施形態よりも高くなっている。   The IGBT chip was bonded at a peak temperature of 250 ° C. under a nitrogen atmosphere by applying 0.1 MPa pressure. The electrode structure on the junction surface (collector side) of this IGBT is Al / Ti / Ni / Au, and the outermost surface is Au. In this structure, since the second sintered layer 205b is a copper sintered layer bonded to the copper electrode and the first sintered layer 205a bonded to the semiconductor element 101 having the gold electrode is silver, the bonding strength at each interface Is higher than in the first embodiment.

一方、第一の焼結層205aと第二の焼結層205bの界面は焼結銅と焼結銀の界面となり、図1に示す接合構造に加え、焼結金属同士の接合となることからアンカー効果も加わり、この界面強度も非常に強くなる。   On the other hand, the interface between the first sintered layer 205a and the second sintered layer 205b is an interface between sintered copper and sintered silver, and in addition to the bonded structure shown in FIG. An anchor effect is also added, and this interfacial strength becomes very strong.

また、本構造では一部を卑金属としたことによって、第一の実施形態と比較して耐マイグレーション性向上と低コストになるという利点もある。。
《第三の実施形態》
図9は、本発明の第三の実施形態を示したものである。本実施形態と第一の実施形態の異なる点は、接続層305(第一の焼結層305a、第二の焼結層305b、第三の焼結層305c)を全て銅で構成した点である。なお、第一の実施形態と同じ構成には、第一の実施形態で用いた図面番号と同様の図面番号を用いている。
In addition, since a part of the structure is a base metal, there is an advantage that the migration resistance is improved and the cost is reduced as compared with the first embodiment. .
<< Third embodiment >>
FIG. 9 shows a third embodiment of the present invention. The difference between this embodiment and the first embodiment is that the connection layer 305 (the first sintered layer 305a, the second sintered layer 305b, and the third sintered layer 305c) is all made of copper. is there. In addition, the same drawing number as the drawing number used in 1st embodiment is used for the same structure as 1st embodiment.

配線基板123には、第二の実施形態と同様に銅配線形成窒化珪素回路基板を用いた。銅配線形成窒化珪素回路基板に対して、ギ酸銅0.5wt%含んだ平均粒径2μmの酸化第二銅粒子とジエチレングリコールモノブチルエーテルの混合材を用いて15mm×15mmの銅電極を形成した後、この上にギ酸銅を含まない平均粒径2μmの酸化第二銅粒子とαテルピネオールの混合材で構成した酸化銅ペーストを印刷し、12mm×12mmのIGBTチップを接合した半導体装置である。   As the wiring substrate 123, a silicon nitride circuit substrate formed with copper wiring was used as in the second embodiment. After forming a copper electrode of 15 mm × 15 mm using a mixture of cupric oxide particles having an average particle size of 2 μm and diethylene glycol monobutyl ether containing 0.5 wt% of copper formate with respect to a silicon nitride circuit board formed with copper wiring, This is a semiconductor device in which a copper oxide paste composed of a mixture of cupric oxide particles having an average particle size of 2 μm and no alpha terpineol, which does not contain copper formate, is printed, and a 12 mm × 12 mm IGBT chip is bonded.

IGBTチップは、水素雰囲気下で、0.3MPa加圧を加えて、ピーク温度300℃で接合した。このIGBTの接合面(コレクタ側)の電極構造はAl/Ti/Niで最表面はNiである。本構造は、第一の焼結層305a、第二の焼結層305bとも銅であり、配線基板材質は銅、半導体素子101の最表面電極材質はAuを省いたNiとなっている。そのため、第一の実施形態と比較して耐マイグレーション性は非常に高いことに加え、貴金属を省いた構造でもあるため、低コスト構造である。   The IGBT chip was bonded at a peak temperature of 300 ° C. under a hydrogen atmosphere by applying 0.3 MPa pressure. The electrode structure on the IGBT junction surface (collector side) is Al / Ti / Ni, and the outermost surface is Ni. In this structure, the first sintered layer 305a and the second sintered layer 305b are both copper, the wiring board material is copper, and the outermost surface electrode material of the semiconductor element 101 is Ni without Au. Therefore, in addition to the extremely high migration resistance as compared with the first embodiment, the structure is a low-cost structure because it has a structure in which noble metals are omitted.

本発明の半導体装置は各種の電力変換装置に適用することができる。電力変換装置に本発明の半導体装置を適用することによって、高温環境の場所に搭載でき、かつ専用の冷却器を持たなくても長期的な信頼性を確保することが可能になる。   The semiconductor device of the present invention can be applied to various power conversion devices. By applying the semiconductor device of the present invention to the power conversion device, long-term reliability can be ensured even if it can be mounted in a place of a high temperature environment and does not have a dedicated cooler.

また、インバータ装置及び電動機は、電気自動車にその動力源として組み込むことができる。この自動車においては、動力源から車輪に至る駆動機構を簡素化できたため、ギヤーの噛込み比率の違いにより変速していた従来の自動車に比べ、変速時のショックが軽減され、スムーズな走行が可能で、振動や騒音の面でも従来よりも軽減することができる。   Further, the inverter device and the electric motor can be incorporated in the electric vehicle as a power source. In this car, the drive mechanism from the power source to the wheels has been simplified, so the shock at the time of shifting is reduced and smooth running is possible compared to the conventional car that has been shifting due to the difference in gear engagement ratio. Thus, vibration and noise can be reduced as compared with the conventional case.

更に、本実施例の半導体装置を組み込んだインバータ装置は冷暖房機に組み込むことも可能である。この際、従来の交流電動機を用いた場合よりも高い効率を得ることができる。これにより、冷暖房機使用時の電力消費を低減することができる。また、室内の温度が運転開始から設定温度に到達するまでの時間を、従来の交流電動機を用いた場合よりも短縮できる。   Furthermore, the inverter device incorporating the semiconductor device of this embodiment can be incorporated into an air conditioner. In this case, higher efficiency can be obtained than when a conventional AC motor is used. Thereby, the power consumption at the time of air-conditioning machine use can be reduced. Moreover, the time until the room temperature reaches the set temperature from the start of operation can be shortened compared to the case where the conventional AC motor is used.

本実施例と同様の効果は、半導体装置が他の流体を撹拌又は流動させる装置、例えば洗濯機、流体循環装置等に組み込まれた場合でも享受できる。
〔その他の実施形態〕
以上説明した第1〜第3実施形態は、本発明の具現化例を示したものである。したがって、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならない。本発明はその要旨またはその主要な特徴から逸脱することなく、様々な形態で実施することができるからである。
The same effect as that of the present embodiment can be enjoyed even when the semiconductor device is incorporated in a device that stirs or flows another fluid, such as a washing machine or a fluid circulation device.
[Other Embodiments]
The first to third embodiments described above show examples of realization of the present invention. Therefore, the technical scope of the present invention should not be limitedly interpreted by these. This is because the present invention can be implemented in various forms without departing from the gist or main features thereof.

例えば、第1〜第3実施形態のそれぞれは、その構成の一部を、その他の実施形態または変形例に記載の構成に置き換えることができる。また、ある実施形態または変形例に記載の構成に、その他の実施形態または変形例に記載の構成を加えることもできる。さらに、本発明の技術的範囲に包含される限りにおいて、第1〜第3実施形態のそれぞれに記載された構成の一部を削除することもできる。   For example, in each of the first to third embodiments, a part of the configuration can be replaced with the configuration described in the other embodiments or modifications. In addition, the configuration described in another embodiment or modification may be added to the configuration described in a certain embodiment or modification. Furthermore, as long as it is included in the technical scope of the present invention, a part of the configuration described in each of the first to third embodiments can be deleted.

101・・・半導体素子
102・・・配線層
105・・・接合層
105a・・・第一の焼結層
105b・・・第二の焼結層
105c・・・第三の焼結層
DESCRIPTION OF SYMBOLS 101 ... Semiconductor element 102 ... Wiring layer 105 ... Bonding layer 105a ... 1st sintered layer 105b ... 2nd sintered layer 105c ... 3rd sintered layer

Claims (8)

半導体素子と絶縁基板とを有する半導体装置において、
前記絶縁基板には配線層が形成され、
前記半導体素子と前記配線層の間には焼結金属からなる接合層が構成され、
当該接合層は半導体素子に近い側に配置される第一の焼結層と、前記配線層に近い側に配置される焼結層を有し、
前記配線層に近い側の焼結層は、前記第一の焼結層よりも幅広で形成されることを特徴とする半導体装置。
In a semiconductor device having a semiconductor element and an insulating substrate,
A wiring layer is formed on the insulating substrate,
A bonding layer made of sintered metal is configured between the semiconductor element and the wiring layer,
The bonding layer has a first sintered layer disposed on the side closer to the semiconductor element, and a sintered layer disposed on the side closer to the wiring layer,
The semiconductor device according to claim 1, wherein the sintered layer closer to the wiring layer is formed wider than the first sintered layer.
請求項1に記載の半導体装置において、
前記配線層に近い側の焼結層は、前記半導体素子に近い側の焼結層と対向する前記第二の焼結層と、前記第二の焼結層以外の第三の焼結層から構成され、
前記第三の焼結層は前記第二の焼結層よりも空隙率が大きく、前記第一の焼結層は前記第二の焼結層よりも空隙率が小さいことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The sintered layer on the side close to the wiring layer includes the second sintered layer facing the sintered layer on the side close to the semiconductor element, and a third sintered layer other than the second sintered layer. Configured,
The third sintered layer has a higher porosity than the second sintered layer, and the first sintered layer has a lower porosity than the second sintered layer. .
請求項2に記載の半導体装置において、
前記第一の焼結層、前記第二の焼結層、及び前記第三の焼結層がそれぞれ銀で構成されていることを特徴とする半導体装置。
The semiconductor device according to claim 2,
The semiconductor device, wherein the first sintered layer, the second sintered layer, and the third sintered layer are each composed of silver.
請求項2に記載の半導体装置において、
前記第一の焼結層は銀で構成され、前記第二の焼結層及び前記第三の焼結層は銅で構成されることを特徴とする半導体装置。
The semiconductor device according to claim 2,
The first sintered layer is made of silver, and the second sintered layer and the third sintered layer are made of copper.
請求項2に記載の半導体装置において、
前記第一の焼結層、前記第二の焼結層、及び前記第三の焼結層がそれぞれ銅で構成されていることを特徴とする半導体装置。
The semiconductor device according to claim 2,
The semiconductor device, wherein the first sintered layer, the second sintered layer, and the third sintered layer are each made of copper.
請求項1乃至5のいずれかに記載の半導体装置において、
前記第二の焼結層の下に配置される前記配線層の最表面は銅、またはニッケルであることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device according to claim 1, wherein an outermost surface of the wiring layer disposed under the second sintered layer is copper or nickel.
絶縁基板上に設けられた配線層上に焼結層を無加圧で形成する第一の工程と、
前記第一の工程の後に前記焼結層上に半導体素子とともに加圧して前記焼結層とは異なる焼結層を形成して当該半導体素子を接合する第二の工程を有することを特徴とする半導体装置の製造方法。
A first step of forming a sintered layer without pressure on a wiring layer provided on an insulating substrate;
After the first step, the method includes a second step of pressurizing together with the semiconductor element on the sintered layer to form a sintered layer different from the sintered layer and joining the semiconductor element. A method for manufacturing a semiconductor device.
請求項7において、前記配線層上に無加圧で形成した焼結層は、ニッケル、または銅に接合可能な酸化金属系ペーストを焼結することによって形成されることを特徴とする半導体装置の製造方法。 8. The semiconductor device according to claim 7, wherein the sintered layer formed without pressure on the wiring layer is formed by sintering a metal oxide paste that can be bonded to nickel or copper. Production method.
JP2012281947A 2012-12-26 2012-12-26 Semiconductor device using conductive bonding material and method of manufacturing semiconductor device Pending JP2014127537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281947A JP2014127537A (en) 2012-12-26 2012-12-26 Semiconductor device using conductive bonding material and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281947A JP2014127537A (en) 2012-12-26 2012-12-26 Semiconductor device using conductive bonding material and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2014127537A true JP2014127537A (en) 2014-07-07

Family

ID=51406821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281947A Pending JP2014127537A (en) 2012-12-26 2012-12-26 Semiconductor device using conductive bonding material and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2014127537A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082581A (en) * 2013-10-23 2015-04-27 三菱電機株式会社 Power semiconductor device and method of manufacturing the same
JP2016100424A (en) * 2014-11-20 2016-05-30 三菱電機株式会社 Power module
JP2016127219A (en) * 2015-01-08 2016-07-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JPWO2017013808A1 (en) * 2015-07-23 2017-10-19 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
WO2017195399A1 (en) * 2016-05-12 2017-11-16 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2018029143A (en) * 2016-08-18 2018-02-22 古河電気工業株式会社 Semiconductor device and method for manufacturing the semiconductor device
CN108174617A (en) * 2015-09-30 2018-06-15 日东电工株式会社 Heat engagement sheet material and the heating engagement sheet material with cutting belt
JP2020513696A (en) * 2016-12-14 2020-05-14 日本テキサス・インスツルメンツ合同会社 Two-layer nanoparticle adhesive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311371A (en) * 2007-06-13 2008-12-25 Denso Corp Joining method and joining element
JP2011216772A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Method of manufacturing semiconductor device, and bonding jig

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311371A (en) * 2007-06-13 2008-12-25 Denso Corp Joining method and joining element
JP2011216772A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Method of manufacturing semiconductor device, and bonding jig

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082581A (en) * 2013-10-23 2015-04-27 三菱電機株式会社 Power semiconductor device and method of manufacturing the same
JP2016100424A (en) * 2014-11-20 2016-05-30 三菱電機株式会社 Power module
JP2016127219A (en) * 2015-01-08 2016-07-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JPWO2017013808A1 (en) * 2015-07-23 2017-10-19 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US10262927B2 (en) 2015-07-23 2019-04-16 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
CN108174617A (en) * 2015-09-30 2018-06-15 日东电工株式会社 Heat engagement sheet material and the heating engagement sheet material with cutting belt
WO2017195399A1 (en) * 2016-05-12 2017-11-16 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP6261819B1 (en) * 2016-05-12 2018-01-17 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2018029143A (en) * 2016-08-18 2018-02-22 古河電気工業株式会社 Semiconductor device and method for manufacturing the semiconductor device
JP2020513696A (en) * 2016-12-14 2020-05-14 日本テキサス・インスツルメンツ合同会社 Two-layer nanoparticle adhesive film
JP7256343B2 (en) 2016-12-14 2023-04-12 テキサス インスツルメンツ インコーポレイテッド Double-layer nanoparticle adhesive film

Similar Documents

Publication Publication Date Title
JP2014127537A (en) Semiconductor device using conductive bonding material and method of manufacturing semiconductor device
JP5525335B2 (en) Sintered silver paste material and semiconductor chip bonding method
JP5286115B2 (en) Semiconductor device and bonding material
JP5135079B2 (en) Semiconductor device and bonding material
JP5023710B2 (en) Semiconductor device and manufacturing method thereof
JP5006081B2 (en) Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP4895994B2 (en) Joining method and joining material using metal particles
JP2010171271A (en) Semiconductor device and method of manufacturing the same
JP2014029897A (en) Conductive bonded body and semiconductor device using the same
CN110034090B (en) Nano metal film auxiliary substrate and preparation method thereof
JP6267229B2 (en) Lead-free solder foil and semiconductor device
JP2016167527A (en) Semiconductor module and manufacturing method of the same
WO2015029152A1 (en) Semiconductor device
WO2020215739A1 (en) Preparation method for nano-metal film module and substrate preparation method using nano-metal film module
WO2016079881A1 (en) Semiconductor power module, method for manufacturing same and mobile object
JP2006228804A (en) Ceramic substrate for semiconductor module and its manufacturing method
WO2013125022A1 (en) Semiconductor device
JP6677886B2 (en) Semiconductor device
JP6619661B2 (en) Semiconductor device and method for manufacturing semiconductor device
WO2014002949A1 (en) Bonded substrate, method for manufacturing same, semiconductor module using bonded substrate, and method for manufacturing same
JP2016143685A (en) Semiconductor module
JP2017092168A (en) Semiconductor module and power converter
JP6505004B2 (en) Semiconductor device, method of manufacturing the same, power module and vehicle
KR101929750B1 (en) Bonding paste for high temperature applications and bonding method using the in situ formation of fine Ag bumps
JP2018098219A (en) Semiconductor device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228