JP5023710B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5023710B2
JP5023710B2 JP2007009692A JP2007009692A JP5023710B2 JP 5023710 B2 JP5023710 B2 JP 5023710B2 JP 2007009692 A JP2007009692 A JP 2007009692A JP 2007009692 A JP2007009692 A JP 2007009692A JP 5023710 B2 JP5023710 B2 JP 5023710B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
bonding
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007009692A
Other languages
Japanese (ja)
Other versions
JP2008177378A (en
Inventor
俊章 守田
雄亮 保田
英一 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007009692A priority Critical patent/JP5023710B2/en
Publication of JP2008177378A publication Critical patent/JP2008177378A/en
Application granted granted Critical
Publication of JP5023710B2 publication Critical patent/JP5023710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Description

本発明は、粒径が1〜100nmの金属粒子を接合の主剤とする接合材に係り、また、その接合材を使用して接合が行われた半導体装置に関する。   The present invention relates to a bonding material using metal particles having a particle size of 1 to 100 nm as a main bonding agent, and also relates to a semiconductor device bonded using the bonding material.

金属粒子の粒径が100nm以下のサイズまで小さくなり構成原子数が少なくなると、粒子の体積に対する表面積比は急激に増大し、融点や焼結温度がバルクの状態に比較して大幅に低下することが知られている。この低温焼成機能を利用して、粒径が1〜100
nm金属粒子を接合材として用いることが検討されている(例えば、特許文献1参照)。特許文献1には、平均粒径100nm以下の金属粒子からなる核の周囲に有機物よりなる皮膜を施した接合材料を用いて、加熱により有機物を分解させて金属粒子同士を焼結させることで接合を行うことが記載されている。本接合方法では、接合後の金属粒子はバルク金属へと変化すると同時に接合界面では金属結合により接合されているため、非常に高い耐熱性と信頼性及び高放熱性を有する。また、電子部品等の接続において、はんだの鉛フリー対応が迫られているが、高温はんだに関してはその代替となる材料が出ていない。実装においては階層はんだを用いることが必要不可欠なため、この高温はんだに代わる材料の出現が望まれている。従って、本接合技術はこの高温はんだに代わる材料としても期待されている。
When the particle size of metal particles is reduced to a size of 100 nm or less and the number of constituent atoms is reduced, the surface area ratio with respect to the volume of the particles increases rapidly, and the melting point and sintering temperature greatly decrease compared to the bulk state. It has been known. Using this low temperature firing function, the particle size is 1-100
The use of nm metal particles as a bonding material has been studied (see, for example, Patent Document 1). In Patent Document 1, a bonding material in which a film made of an organic substance is applied around a core made of metal particles having an average particle diameter of 100 nm or less is bonded by heating to decompose the organic substance to sinter the metal particles. It is described to do. In this bonding method, the metal particles after bonding change into a bulk metal and at the same time are bonded by metal bonding at the bonding interface, so that they have very high heat resistance, reliability, and high heat dissipation. In addition, in connection of electronic parts and the like, lead-free soldering is required, but there is no substitute material for high-temperature solder. Since the use of hierarchical solder is indispensable for mounting, the appearance of a material that replaces this high-temperature solder is desired. Therefore, this joining technique is also expected as a material to replace this high temperature solder.

特開2004−107728号公報JP 2004-107728 A

特許文献1等に記載の平均粒径100nm以下の金属粒子を接合の主剤として用いた接合材料について、本発明者らが検討したところ、被接合部材としてAu,Ag,Pd等の相手電極に対しては良好な接合強度が得られるものの、半導体実装で多く適用されているCu,Niに対しては十分な接合強度が得られないことが判明した。図8に各電極材に対して行った接合強度評価結果を示す。接合温度を250℃、加圧1.0MPa 一定とし、接合材料として、アミン系有機材料を被膜した平均粒径10nmの銀粒子を用いて、大気中でAu,Ag,Pd,Ni及びCu電極への接合を行った。図8の縦軸はせん断強度を示し、Ag電極の値で規格化したものである。この結果、大気中での接合では、Au,
Ag,Pd電極に対しては良好な接合強度が得られているが、Ni,Cu電極に対しては十分な接合強度が得られないことが判った。
When the present inventors examined about the joining material which used the metal particle of the average particle diameter of 100 nm or less as described in patent document 1 etc. as a main agent of joining, as a to-be-joined member, with respect to the other electrodes, such as Au, Ag, Pd However, it was found that sufficient bonding strength could not be obtained for Cu and Ni, which are often applied in semiconductor mounting. FIG. 8 shows the results of evaluation of bonding strength performed on each electrode material. Using a silver particle having an average particle diameter of 10 nm coated with an amine-based organic material as a bonding material with a bonding temperature of 250 ° C. and a pressure of 1.0 MPa constant, to an Au, Ag, Pd, Ni, and Cu electrode in the atmosphere. Were joined. The vertical axis in FIG. 8 indicates the shear strength and is normalized by the value of the Ag electrode. As a result, Au,
It was found that good bonding strength was obtained for Ag and Pd electrodes, but sufficient bonding strength was not obtained for Ni and Cu electrodes.

特許文献1に記載の超微粒子に被膜されている有機材料は大気中加熱でのみ消失する材料であり、酸化されにくい電極に対しては有効であるが、酸化されやすいCu,Niの接合には適さない。   The organic material coated with the ultrafine particles described in Patent Document 1 is a material that disappears only by heating in the atmosphere, and is effective for electrodes that are difficult to oxidize. Not suitable.

半導体装置を構成する電子部品を、金属超微粒子を接合の主剤とした接合材を用いて接合する場合には、電気的導通を確保することが必要になる。また、接合材には熱ひずみの緩和,熱伝導性も要求される。さらに最も多く用いられているNi,Cu電極に対しても接合できなければならない。   In the case where electronic components constituting a semiconductor device are bonded using a bonding material containing metal ultrafine particles as a main agent for bonding, it is necessary to ensure electrical continuity. The bonding material is also required to relax thermal strain and to have thermal conductivity. Furthermore, it must be able to join even the most frequently used Ni and Cu electrodes.

本発明は、半導体装置のNi又はCu電極と、金属粒子を接合の主剤とする接合材との接合部の接合信頼性を向上することを目的とする。   An object of this invention is to improve the joining reliability of the junction part of Ni or Cu electrode of a semiconductor device, and the joining material which uses a metal particle as the main ingredient of joining.

上記課題を解決するために本発明者らが誠意検討した結果、金属粒子前駆体である平均粒径が1nm〜50μmの金属酸化物粒子と、有機物からなる還元剤とを含む接合材料により、還元雰囲気中において接合を行うことでNi又はCu電極に対して優れた接合強度が得ることができることを見出した。   As a result of sincerity studies by the present inventors in order to solve the above-mentioned problems, reduction is achieved by a bonding material containing metal oxide particles having an average particle diameter of 1 nm to 50 μm, which is a metal particle precursor, and a reducing agent made of an organic substance. It has been found that excellent bonding strength with respect to Ni or Cu electrodes can be obtained by bonding in an atmosphere.

本発明は、半導体素子とCuまたはNi電極がAg,Cu又はAuで構成された接合層を介して接続された半導体装置であって、前記接合層と前記CuまたはNi電極とが相互拡散接合している構造を備えた半導体装置を特徴とする。   The present invention is a semiconductor device in which a semiconductor element and a Cu or Ni electrode are connected via a bonding layer made of Ag, Cu or Au, and the bonding layer and the Cu or Ni electrode are bonded by mutual diffusion bonding. A semiconductor device having the above structure is characterized.

また、半導体素子の電極と前記半導体素子の電気信号を外部に取り出すための配線とを接合した半導体装置の製造方法であって、前記半導体素子の電極、または、前記配線の少なくと一方がCuまたはNiで構成され、平均粒径が1nm〜50μmの金属酸化物粒子と、有機物からなる還元剤とを含む接合材料により、還元雰囲気下で加熱により前記電極と配線とを接合する工程を有する半導体装置の製造方法を特徴とする。   A method of manufacturing a semiconductor device in which an electrode of a semiconductor element and a wiring for extracting an electrical signal of the semiconductor element to the outside are joined, wherein at least one of the electrode of the semiconductor element or the wiring is Cu or A semiconductor device comprising a step of bonding the electrode and the wiring by heating in a reducing atmosphere with a bonding material comprising metal oxide particles made of Ni and having an average particle diameter of 1 nm to 50 μm and a reducing agent made of an organic substance. The manufacturing method is characterized.

本発明により、半導体装置のNi又はCu電極と、金属粒子を接合の主剤とする接合材との接合部の接合信頼性を向上することができる。   According to the present invention, it is possible to improve the bonding reliability of a bonding portion between a Ni or Cu electrode of a semiconductor device and a bonding material using metal particles as a main bonding agent.

以下、本発明について詳細に説明する。従来の平均粒径100nm以下の金属粒子を接合の主剤とする接合材料を用いた接合では、接合時にNi又はCu電極表面に酸化物層が形成されていることが判明した。この酸化物層が接合強度を低下させる要因であると考えられる。これに対して、本発明者らが誠意検討した結果、特定の接合材を用いて還元雰囲気中において接合を行うことにより、Ni又はCu電極に対しても優れた接合強度が得られることを見出した。すなわち、金属粒子前駆体である平均粒径が1nm〜50μmの金属酸化物粒子と、有機物からなる還元剤とを含む接合材料により、還元雰囲気中において接合を行うことでNi又はCu電極に対して優れた接合強度が得ることができる。本接合では、金属粒子前駆体に対して有機物からなる還元剤を添加することによって、金属粒子前駆体単体を加熱分解するよりも低温で金属粒子前駆体が還元され、その際に平均粒径が100nm以下の金属粒子が作製され、金属粒子同士が相互に融合することで接合が行われるという現象を利用している。金属酸化物粒子は還元剤の存在下では、200℃以下で100nm以下の金属粒子が作製され始めることから、従来困難であった200℃以下の低温でも接合を達成することが可能である。また、接合中においてその場で粒径が100nm以下の金属粒子が作成されるため、有機物で表面を保護した金属粒子の作製が不要であり、接合用材料の製造,接合プロセスの簡易化,接合材料の大幅なコストダウンを達成することが可能である。また、還元雰囲気での接合ならびに還元剤の還元作用によりNi又はCu電極の酸化物層形成が抑制され、Ni又はCu電極と金属粒子との強固な金属結合を達成することができる。   Hereinafter, the present invention will be described in detail. It has been found that, in the conventional bonding using a bonding material having metal particles having an average particle size of 100 nm or less as the main agent for bonding, an oxide layer is formed on the surface of the Ni or Cu electrode at the time of bonding. This oxide layer is considered to be a factor for reducing the bonding strength. On the other hand, as a result of sincerity studies by the present inventors, it has been found that excellent bonding strength can be obtained even for Ni or Cu electrodes by performing bonding in a reducing atmosphere using a specific bonding material. It was. That is, by bonding in a reducing atmosphere with a bonding material containing metal oxide particles having an average particle diameter of 1 nm to 50 μm, which is a metal particle precursor, and a reducing agent made of an organic substance, a Ni or Cu electrode can be bonded. Excellent bonding strength can be obtained. In this bonding, by adding a reducing agent made of an organic substance to the metal particle precursor, the metal particle precursor is reduced at a lower temperature than when the metal particle precursor alone is thermally decomposed. A phenomenon is used in which metal particles of 100 nm or less are produced and the metal particles are joined together by fusing each other. In the presence of a reducing agent, metal oxide particles begin to be produced at a temperature of 200 ° C. or less and 100 nm or less. Therefore, bonding can be achieved even at a low temperature of 200 ° C. or less, which has been difficult in the past. In addition, since metal particles having a particle size of 100 nm or less are created in-situ during bonding, it is not necessary to prepare metal particles whose surfaces are protected by organic substances, manufacturing of bonding materials, simplification of bonding processes, bonding A significant cost reduction of the material can be achieved. Further, the formation of an oxide layer of the Ni or Cu electrode is suppressed by the bonding in a reducing atmosphere and the reducing action of the reducing agent, and a strong metal bond between the Ni or Cu electrode and the metal particles can be achieved.

100nm以下の金属粒子を作製する平均粒径が1nm以上50μm以下の金属粒子前駆体として、金属酸化物と規定したのは金属粒子前駆体中における金属含有量が高いことから、接合時における体積収縮が小さく、かつ分解時に酸素を発生するために、有機物の酸化分解を促進するからである。ここで、金属粒子前駆体とは還元剤と混合し、加熱により還元された後に、粒径が100nm以下の金属粒子を作製する物質のことをいう。   The metal particle precursor having an average particle diameter of 1 nm to 50 μm for producing metal particles of 100 nm or less is defined as a metal oxide because the metal content in the metal particle precursor is high, so that the volume shrinkage during bonding This is because the oxidative decomposition of the organic matter is promoted because it is small and generates oxygen during decomposition. Here, the metal particle precursor refers to a substance that produces metal particles having a particle size of 100 nm or less after being mixed with a reducing agent and reduced by heating.

ここで用いる金属粒子前駆体の粒径を平均粒径が1nm以上50μm以下としたのは、金属粒子の平均粒径50μmより大きくなると、接合中に粒径が100nm以下の金属粒子が作製されにくくなり、これにより粒子間の隙間が多くなり、緻密な接合層を得ることが困難になるためである。また、1nm以上としたのは、平均粒子が1nm以下の金属粒子前駆体を実際に作製することが困難なためである。本発明では、接合中に粒径が100nm以下の金属粒子が作製されるため、金属粒子前駆体の粒径は100nm以下とする必要はなく、金属粒子前駆体の作製,取り扱い性,長期保存性の観点からは粒径が1〜50μmの粒子を用いることが好ましい。また、より緻密な接合層を得るために粒径が1nm〜100nmの金属粒子前駆体を用いることも可能である。   The reason why the average particle size of the metal particle precursor used here is 1 nm or more and 50 μm or less is that when the average particle size of the metal particles is larger than 50 μm, it is difficult to produce metal particles having a particle size of 100 nm or less during bonding. This increases the number of gaps between particles, making it difficult to obtain a dense bonding layer. The reason why the thickness is 1 nm or more is that it is difficult to actually produce a metal particle precursor having an average particle size of 1 nm or less. In the present invention, since metal particles having a particle size of 100 nm or less are produced during bonding, the particle size of the metal particle precursor does not have to be 100 nm or less, and the metal particle precursor is produced, handled, and stored for a long period of time. From this viewpoint, it is preferable to use particles having a particle diameter of 1 to 50 μm. In order to obtain a denser bonding layer, it is also possible to use a metal particle precursor having a particle size of 1 nm to 100 nm.

金属酸化物粒子としては、酸化銀(Ag2O,AgO),酸化銅,酸化金などが挙げられ、これらの群から少なくとも1種類の金属あるいは2種類以上の金属からなる接合材料を用いることが可能である。酸化金,酸化銀(Ag2O,AgO),酸化銅からなる金属酸化物粒子は還元時に酸素のみを発生するために、接合後における残渣も残りにくく、体積減少率も非常に小さい。 Examples of the metal oxide particles include silver oxide (Ag 2 O, AgO), copper oxide, gold oxide, and the like, and a bonding material made of at least one metal or two or more metals from these groups is used. Is possible. Since metal oxide particles composed of gold oxide, silver oxide (Ag 2 O, AgO), and copper oxide generate only oxygen during reduction, residues after bonding are hardly left and the volume reduction rate is very small.

金属粒子前駆体の含有量としては、接合材料中における全質量部において50質量部を超えて99質量部以下とすることが好ましい。これは接合材料中にける金属含有量が多い方が低温での接合後に有機物残渣が少なくなり、低温での緻密な焼成層の達成及び接合界面での金属結合の達成が可能となり、接合強度の向上さらには高放熱性,高耐熱性を有する接合層とすることが可能になるからである。   As content of a metal particle precursor, it is preferable to set it as 99 mass parts or less exceeding 50 mass parts in the total mass part in a joining material. This is because when the metal content in the bonding material is high, the organic residue is reduced after bonding at low temperature, and it becomes possible to achieve a dense fired layer at low temperature and to achieve metal bonding at the bonding interface. This is because it becomes possible to obtain a bonding layer having improved heat dissipation and high heat resistance.

有機物からなる還元剤としては、アルコール類,カルボン酸類,アミン類から選ばれた1種以上の混合物を用いることができる。   As the reducing agent composed of an organic substance, one or more mixtures selected from alcohols, carboxylic acids, and amines can be used.

また、利用可能なアルコール基を含む化合物としては、アルキルアルコールが挙げられ、例えば、エタノール,プロパノール,ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルルコール,ウンデシルアルコール,ドデシルアルコール,トリデシルアルコール,テトラデシルアルコール,ペンタデシルアルコール,ヘキサデシルアルコール,ヘプタデシルアルコール,オクタデシルアルコール,ノナデシルアルコール,イコシルアルコール、がある。さらには1級アルコール型に限らず、エチレングリコール,トリエチレングリコール、などの2級アルコール型,3級アルコール型、及びアルカンジオール,環状型の構造を有するアルコール化合物を用いることが可能である。それ以外にもクエン酸,アスコルビン酸など4つのアルコール基を有する化合物を用いてもよい。   Examples of the compound containing an alcohol group that can be used include alkyl alcohols such as ethanol, propanol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, and dodecyl. There are alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol, icosyl alcohol. Furthermore, not only the primary alcohol type, but also an alcohol compound having a secondary alcohol type such as ethylene glycol or triethylene glycol, a tertiary alcohol type, alkanediol, or a cyclic type structure can be used. In addition, compounds having four alcohol groups such as citric acid and ascorbic acid may be used.

また、利用可能なカルボン酸を含む化合物としてアルキルカルボン酸がある。具体例としては、ブタン酸,ペンタン酸,ヘキサン酸,ヘプタン酸,オクタン酸,ノナン酸,デカン酸,ウンデカン酸,ドデカン酸,トリデカン酸,テトラデカン酸,ペンタデカン酸,ペンタデカン酸,ヘキサデカン酸,ヘプタデカン酸,オクタデカン酸,ノナデカン酸,イコサン酸が挙げられる。また、上記アミノ基と同様に1級カルボン酸型に限らず、2級カルボン酸型,3級カルボン酸型、及びジカルボン酸,環状型の構造を有するカルボキシル化合物を用いることが可能である。   Moreover, there exists alkylcarboxylic acid as a compound containing carboxylic acid which can be utilized. Specific examples include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, Examples include octadecanoic acid, nonadecanoic acid, and icosanoic acid. Further, similarly to the amino group, it is possible to use not only the primary carboxylic acid type but also a secondary carboxylic acid type, tertiary carboxylic acid type, dicarboxylic acid, and a carboxyl compound having a cyclic structure.

また、利用可能なアミノ基を含む化合物としてアルキルアミンを挙げることができる。例えば、ブチルアミン,ペンチルアミン,ヘキシルアミン,ヘプチルアミン,オクチルアミン,ノニルアミン,デシルアミン,ウンデシルアミン,ドデシルアミン,トリデシルアミン,テトラデシルアミン,ペンタデシルアミン,ヘキサデシルアミン,ヘプタデシルアミン,オクタデシルアミン,ノナデシルアミン,イコデシルアミンがある。また、アミノ基を有する化合物としては分岐構造を有していてもよく、そのような例としては、2−エチルヘキシルアミン、1,5−ジメチルヘキシルアミンなどがある。また、1級アミン型に限らず、2級アミン型,3級アミン型を用いることも可能である。さらにこのような有機物としては環状の形状を有していてもよい。   Moreover, an alkylamine can be mentioned as a compound containing an available amino group. For example, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, There are nonadecylamine and icodecylamine. The compound having an amino group may have a branched structure, and examples thereof include 2-ethylhexylamine and 1,5-dimethylhexylamine. In addition to the primary amine type, a secondary amine type or a tertiary amine type can also be used. Further, such an organic material may have an annular shape.

また、用いる還元剤は上記アルコール,カルボン酸,アミンを含む有機物に限らず、アルデヒド基やエステル基,スルファニル基,ケトン基などを含む有機物を用いても良い。   The reducing agent to be used is not limited to the organic substance containing the alcohol, carboxylic acid, and amine, but may be an organic substance containing an aldehyde group, an ester group, a sulfanyl group, or a ketone group.

ここで、エチレングリコール,トリエチレングリコール等の20〜30℃において液体である還元剤は、酸化銀(Ag2O )などと混ぜて放置すると一日後には銀に還元されてしまうため、混合後はすぐに用いる必要がある。一方、20〜30℃の温度範囲において固体であるミリスチルアルコール,ラウリルアミン,アスコルビン酸等は金属酸化物等と1ヵ月ほど放置しておいても大きくは反応が進まないため、保存性に優れており、混合後に長期間保管する場合にはこれらを用いることが好ましい。また、用いる還元剤は金属酸化物等を還元させた後には、精製された100nm以下の粒径を有する金属粒子の保護膜として働くために、ある程度の炭素数があることが望ましい。具体的には、2以上で20以下であることが望ましい。これは炭素数が2より少ないと、金属粒子が作製されると同時に粒径成長が起こり、100nm以下の金属粒子の作製が困難になるからである。また、20より多いと、分解温度が高くなり、金属粒子の焼結が起こりにくくなった結果、接合強度の低下を招くからである。 Here, reducing agents that are liquid at 20 to 30 ° C., such as ethylene glycol and triethylene glycol, are reduced to silver after one day if mixed with silver oxide (Ag 2 O) and the like and left after mixing. Need to be used immediately. On the other hand, myristyl alcohol, laurylamine, ascorbic acid, etc., which are solid in the temperature range of 20-30 ° C., do not react greatly with metal oxides for about a month, so they have excellent storage stability. These are preferably used when stored for a long time after mixing. Further, it is desirable that the reducing agent used has a certain number of carbon atoms in order to function as a protective film for purified metal particles having a particle size of 100 nm or less after reducing metal oxides and the like. Specifically, it is desirably 2 or more and 20 or less. This is because, when the number of carbon atoms is less than 2, metal particles are produced at the same time as particle size growth occurs, making it difficult to produce metal particles of 100 nm or less. On the other hand, if it exceeds 20, the decomposition temperature becomes high and the metal particles are hardly sintered, resulting in a decrease in bonding strength.

還元剤の使用量は金属粒子前駆体の全重量に対して1質量部以上で50質量部以下の範囲であればよい。これは還元剤の量が1質量部より少ないと接合材料における金属粒子前駆体を全て還元して金属粒子を作製するのに十分な量ではないためである。また、50質量部を超えて用いると接合後における残渣が多くなり界面での金属接合と接合銀層中における緻密化の達成が困難であるためである。さらに、還元剤としては、400℃までの加熱時における熱重量減少率が99%以上であることが好ましい。これは、還元剤の分解温度が高いと接合後における残渣が多くなり、界面での金属接合と接合銀層中における緻密化の達成が困難であるためである。ここで、400℃までの加熱時における熱重量減少率の測定は、一般に市販されている、Seiko Instruments 製TG/DTA6200や、島津製作所製TGA−50等の熱重量測定が可能な装置を用いて10℃/min において大気中で行った場合のものとする。   The amount of the reducing agent used may be in the range of 1 part by mass to 50 parts by mass with respect to the total weight of the metal particle precursor. This is because if the amount of the reducing agent is less than 1 part by mass, the amount of the metal particle precursor in the bonding material is not reduced enough to produce metal particles. Moreover, when it exceeds 50 mass parts, it is because the residue after joining increases and it is difficult to achieve metal joining at the interface and densification in the joining silver layer. Furthermore, as a reducing agent, it is preferable that the thermal weight reduction rate at the time of a heating to 400 degreeC is 99% or more. This is because if the decomposition temperature of the reducing agent is high, the residue after bonding increases, and it is difficult to achieve metal bonding at the interface and densification in the bonding silver layer. Here, the measurement of the thermogravimetric decrease rate at the time of heating up to 400 ° C. is performed using a commercially available apparatus such as TG / DTA6200 manufactured by Seiko Instruments or TGA-50 manufactured by Shimadzu Corporation. It shall be when conducted in air at 10 ° C / min.

金属粒子前駆体と有機物からなる還元剤の組み合わせとしては、これらを混合することにより金属粒子を作製可能なものであれば特に限定されないが、接合用材料としての保存性の観点から、常温で金属粒子を作製しない組み合わせとすることが好ましい。   The combination of the metal particle precursor and the reducing agent composed of an organic substance is not particularly limited as long as the metal particles can be produced by mixing them, but from the viewpoint of storage stability as a bonding material, the metal is used at room temperature. A combination that does not produce particles is preferred.

また、接合材料中には比較的粒径の大きい平均粒径50μm〜100μmの金属粒子を混合して用いることも可能である。これは接合中において作製された100nm以下の金属粒子が、平均粒径50μm〜100μmの金属粒子同士を焼結させる役割を果たすからである。また、粒径が100nm以下の金属粒子を予め混合しておいてもよい。この金属粒子の種類としては、金,銀,銅があげられる。上記以外にも白金,パラジウム,ロジウム,オスミウム,ルテニウム,イリジウム,鉄,錫,亜鉛,コバルト,ニッケル,クロム,チタン,タンタル,タングステン,インジウム,ケイ素,アルミニウム等の中から少なくとも1種類の金属あるいは2種類以上の金属からなる合金を用いることが可能である。   Moreover, it is also possible to mix and use metal particles having a relatively large average particle diameter of 50 μm to 100 μm in the bonding material. This is because the metal particles of 100 nm or less produced during bonding play a role of sintering metal particles having an average particle diameter of 50 μm to 100 μm. Further, metal particles having a particle size of 100 nm or less may be mixed in advance. Examples of the metal particles include gold, silver, and copper. In addition to the above, at least one metal selected from platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, silicon, aluminum, etc. It is possible to use an alloy made of more than one kind of metal.

この実施形態で用いられる接合材料は金属粒子前駆体と有機物からなる還元剤のみで用いてもよいが、ペースト状として用いる場合に溶媒を加えてもよい。混合後、すぐに用いるのであれば、メタノール,エタノール,プロパノール,エチレングリコール,トリエチレングリコール,テルピネオールのアルコール類等の還元作用があるものを用いてもよいが、長期間に保管する場合であれば、水,ヘキサン,テトラヒドロフラン,トルエン,シクロヘキサン、など常温での還元作用が弱いものを用いることが好ましい。また、還元剤としてミリスチルアルコールのように常温で還元が起こりにくいものを用いた場合には長期間保管可能であるが、エチレングリコールのような還元作用の強いものを用いた場合には使用時に混合して用いることが好ましい。   The bonding material used in this embodiment may be used only with a reducing agent comprising a metal particle precursor and an organic substance, but a solvent may be added when used as a paste. If it is used immediately after mixing, it may be used with a reducing action such as methanol, ethanol, propanol, ethylene glycol, triethylene glycol, terpineol alcohol, etc. It is preferable to use water, hexane, tetrahydrofuran, toluene, cyclohexane, or the like having a weak reducing action at room temperature. In addition, when a reducing agent such as myristyl alcohol that is difficult to reduce at room temperature is used, it can be stored for a long time, but when a reducing agent such as ethylene glycol is used, it is mixed at the time of use. And preferably used.

また、金属粒子前駆体の溶媒への分散性を向上させるために必要に応じて分散剤を用いて金属粒子前駆体の周りを有機物で被覆し、分散性を向上させてよい。本発明で用いられる分散剤としては、ポリビニルアルコール,ポリアクリルニトリル,ポリビニルピロリドン,ポリエチレングリコールなどの他に、市販の分散剤として、例えばディスパービック160,ディスパービック161,ディスパービック162,ディスパービック163,ディスパービック166,ディスパービック170,ディスパービック180,ディスパービック182,ディスパービック184,ディスパービック190(以上ビックケミー社製),メガファックF−479(大日本インキ製),ソルスパース20000,ソルスパース24000,ソルスパース26000,ソルスパース27000,ソルスパース
28000(以上、アビシア社製)などの高分子系分散剤を用いることができる。このような分散剤の使用量は金属粒子前駆体に接合用材料中において0.01wt% 以上でかつ45wt%を超えない範囲とする。
Moreover, in order to improve the dispersibility of the metal particle precursor in the solvent, the periphery of the metal particle precursor may be coated with an organic substance using a dispersant as necessary to improve the dispersibility. Examples of the dispersant used in the present invention include polyvinyl alcohol, polyacrylonitrile, polyvinyl pyrrolidone, polyethylene glycol, and other commercially available dispersants such as Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, and the like. Dispersic 166, Dispersic 170, Dispersic 180, Dispersic 182, Dispersic 184, Dispersic 190 (manufactured by Big Chemie), MegaFuck F-479 (Dainippon Ink), Solsperse 20000, Solsperse 24000, Solsperse 26000 , Solsperse 27000, Solsperse 28000 (above, manufactured by Abyssia) and the like can be used. The amount of such a dispersant used is in the range of 0.01 wt% or more and not exceeding 45 wt% in the bonding material for the metal particle precursor.

これらペースト材料は、インクジェット法により微細なノズルからペーストを噴出させて基板上の電極あるいは電子部品の接続部に塗布する方法や、あるいは塗布部分を開口したメタルマスクやメッシュ状マスクを用いて必要部分にのみ塗布を行う方法,ディスペンサを用いて必要部分に塗布する方法,シリコーンやフッ素等を含む撥水性の樹脂を必要な部分のみ開口したメタルマスクやメッシュ状マスクで塗布したり、感光性のある撥水性樹脂を基板あるいは電子部品上に塗布し、露光および現像することにより前記微細粒子等からなるペーストを塗布する部分を除去し、その後接合用ペーストをその開口部に塗布する方法や、さらには撥水性樹脂を基板あるいは電子部品に塗布後、前記金属粒子からなるペースト塗布部分をレーザーにより除去し、その後接合用ペーストをその開口部に塗布する方法がある。これらの塗布方法は、接合する電極の面積,形状に応じて組み合わせ可能である。また、ミリスチルアルコールやアスコルビン酸のような常温で固体のものを還元剤として用いた際には金属粒子前駆体と混合し加圧を加えることでシート状に成形して接合材料として用いる方法がある。   These paste materials can be applied using a method in which the paste is ejected from a fine nozzle by an ink jet method and applied to the electrode or the connection part of the electronic component on the substrate, or a metal mask or mesh mask with an open application part. A method of applying only to the surface, a method of applying to a necessary part using a dispenser, a water-repellent resin containing silicone, fluorine, etc., is applied with a metal mask or mesh mask having an opening only on the necessary part, or photosensitive. A method of applying a water-repellent resin on a substrate or electronic component, removing a portion to which the paste composed of the fine particles and the like is applied by exposure and development, and then applying a bonding paste to the opening, and After applying the water-repellent resin to the substrate or electronic component, the paste application part consisting of the metal particles is applied with a laser. Removed, there is then a method of applying a bonding paste in the opening. These coating methods can be combined according to the area and shape of the electrodes to be joined. In addition, when a solid material at room temperature such as myristyl alcohol or ascorbic acid is used as the reducing agent, there is a method of forming a sheet by mixing with a metal particle precursor and applying pressure to use as a bonding material .

本接合材料を用いた接合では、接合時に金属粒子前駆体から粒径が100nm以下の金属粒子を作製し、接合層における有機物を排出しながら粒径が100nm以下の金属粒子の融着による金属結合を行うために熱と圧力を加えることが必須である。また、Ni又はCu電極との相互拡散接合を達成するために還元雰囲気中で接合を行うことが必須である。接合条件としては、1秒以上10分以内で50℃以上400℃以下の加熱と0.01 〜10MPaの加圧を加えることが好ましい。   In bonding using this bonding material, metal particles having a particle size of 100 nm or less are produced from the metal particle precursor during bonding, and metal bonding is performed by fusing metal particles having a particle size of 100 nm or less while discharging organic substances in the bonding layer. It is essential to apply heat and pressure to do this. Further, in order to achieve mutual diffusion bonding with the Ni or Cu electrode, it is essential to perform bonding in a reducing atmosphere. As joining conditions, it is preferable to apply heating of 50 ° C. or more and 400 ° C. or less and pressurization of 0.01 to 10 MPa within 1 second or more and 10 minutes or less.

本発明の接合では、金属酸化物粒子は接合時の加熱によって粒径0.1 〜50nm程度の酸化物ではない純金属超微粒子化し、この純金属超粒子同士が相互に融合してバルクになる。バルクになった後の溶融温度は通常のバルクの状態での金属の溶融温度と同じであり、純金属超微粒子は低温の加熱で溶融し、溶融後はバルクの状態での溶融温度に加熱されるまで再溶融しないという特徴を有する。これは、純金属超微粒子を用いた場合に低い温度で接合を行うことができ、接合後は溶融温度が向上することから、その後、他の電子部品を接合している際に接合部が再溶融しないというメリットをもたらす。また、接合後の接合層の熱伝導率は50乃至430W/mKとすることが可能であり、放熱性にも優れている。さらに前駆体が金属酸化物であるため低コストというメリットもある。なお、金属酸化物粒子には還元効果を促進するため、アルコールなどの有機物を被膜させておくことが必要である。さらに、接合時の雰囲気は還元雰囲気とすることが必要である。還元雰囲気としては、例えば水素を用いることができる。   In the bonding according to the present invention, the metal oxide particles become pure ultrafine metal particles that are not oxides having a particle size of about 0.1 to 50 nm by heating at the time of bonding, and the pure metal ultraparticles are fused together to become a bulk. . The melting temperature after becoming bulk is the same as the melting temperature of metals in the normal bulk state, and the ultrafine metal particles are melted by low-temperature heating, and after melting, they are heated to the melting temperature in the bulk state. It does not re-melt until This is because when pure metal ultrafine particles are used, bonding can be performed at a low temperature, and the melting temperature is improved after bonding. The advantage of not melting. Further, the thermal conductivity of the bonding layer after bonding can be 50 to 430 W / mK, and the heat dissipation is excellent. Further, since the precursor is a metal oxide, there is a merit of low cost. Note that it is necessary to coat the metal oxide particles with an organic substance such as alcohol in order to promote the reduction effect. Furthermore, the atmosphere during bonding needs to be a reducing atmosphere. As the reducing atmosphere, for example, hydrogen can be used.

以上の接合材料と接合方法を経て接合された界面には金属的な接合を阻害する酸化物層が形成されない。還元して生成した金属粒子は、接合によって相手部材と金属的に結合されることが接合強度を高めるため、及び、電気的導通を確保するために要求される。もちろん、相手部材も金属粒子を形成する金属と金属的に結合されることが要求される。このために相手部材は、金属粒子と金属結合する材料によって形成されていることが望ましい。Ni、あるいはCu、又はそれらを主成分とする合金よりなる相手部材は、金属粒子と相手部材とが接合時に金属的に結合する。なお、酸化銀と酸化銅混在の場合も上述と同様に接合でき、かつ耐食性向上が図れる利点を有する。   An oxide layer that inhibits metallic bonding is not formed at the interface bonded through the bonding material and the bonding method described above. The metal particles generated by reduction are required to be bonded to the mating member in a metallic manner by bonding to increase the bonding strength and to ensure electrical conduction. Of course, the mating member is also required to be metallically bonded to the metal forming the metal particles. For this reason, it is desirable that the mating member be formed of a material that is metal-bonded to the metal particles. In the counterpart member made of Ni, Cu, or an alloy containing them as a main component, the metal particles and the counterpart member are metallicly bonded at the time of joining. In addition, also in the case of silver oxide and copper oxide mixed, it has the advantage that it can join similarly to the above and can improve corrosion resistance.

以上で説明した接合材,接合方法を半導体装置のNiあるいはCu電極の接合に用いることにより、優れた接合信頼性を得ることが可能となる。   By using the bonding material and the bonding method described above for bonding Ni or Cu electrodes of a semiconductor device, it is possible to obtain excellent bonding reliability.

以下、図面を用いて、本発明の実施例を説明するが、本発明は、以下の実施形態に限定されるものではない。   Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

図1は本発明を適用した絶縁型半導体装置を示したものであり、(a)は平面図、(b)は(a)のA−A′の断面図を示したものである。また、図2は図1の要部を示した斜視図である。   1A and 1B show an insulating semiconductor device to which the present invention is applied. FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA 'in FIG. FIG. 2 is a perspective view showing the main part of FIG.

本実施例において、半導体素子101の一方の面は、図示しないコレクタ電極が、酸化銀粒子を使用した接合層(ミリスチルアルコールを5wt%含有、接合後は純銀化)105によって、セラミックス絶縁基板103上の配線層102に接合されている。セラミックス絶縁基板103は支持部材110にはんだ層109を介して接合されている。セラミックス絶縁基板103と配線層102をもって配線基板と称する。配線層102はCu配線にNiめっきを施したものである。接合層105は厚さ80μmである。半導体素子101の他方の面は、エミッタ電極が接続用端子201と酸化銀粒子使用接合材(接合後は純銀層化)を用いて接合されており、接続用端子201はセラミックス絶縁基板103上の配線層104と酸化銀粒子使用接合材(接合後は純銀層化)を用いて接合されている。なお、図1における他の符号は、それぞれ、ケース111,外部端子112,ボンディングワイヤ113,封止材114を示している。   In this embodiment, one surface of the semiconductor element 101 has a collector electrode (not shown) formed on the ceramic insulating substrate 103 by a bonding layer 105 containing silver oxide particles (containing 5 wt% of myristyl alcohol and pure silver after bonding) 105. The wiring layer 102 is joined. The ceramic insulating substrate 103 is bonded to the support member 110 via the solder layer 109. The ceramic insulating substrate 103 and the wiring layer 102 are referred to as a wiring substrate. The wiring layer 102 is obtained by applying Ni plating to Cu wiring. The bonding layer 105 has a thickness of 80 μm. On the other surface of the semiconductor element 101, the emitter electrode is bonded to the connection terminal 201 using a bonding material using silver oxide particles (pure silver layer after bonding), and the connection terminal 201 is on the ceramic insulating substrate 103. The wiring layer 104 and the silver oxide particle using bonding material (pure silver layer after bonding) are used for bonding. 1 indicate the case 111, the external terminal 112, the bonding wire 113, and the sealing material 114, respectively.

図3は図1における半導体素子搭載部分を拡大して示した断面図である。半導体素子
101のコレクタ電極106′と配線層102が酸化銀粒子使用接合材(接合後は純銀層化)で接合されている。配線層102はCu配線にNiめっきを施したものである。酸化銀粒子使用接合材(接合後は純銀層化)は、半導体素子のエミッタ電極106と接続用端子201の接合部、及び接続用端子201と配線層104の接合部にも、同様の構成で適用されている。コレクタ電極106′表面とエミッタ電極106表面はNiが施されている。また、接続用端子201はCuまたはCu合金で構成されている。それぞれの酸化銀粒子使用接合部は個別に行ってもよいし、同時に行ってもよい。酸化銀粒子使用接合材を接合すべき部材の間に配置し、その状態で250℃の熱を約1分間加え、同時に1.0
MPaの圧力を100%水素中で加えることにより、接合を行うことができる。接合に当たり、超音波振動を加えることもできる。
FIG. 3 is an enlarged cross-sectional view of the semiconductor element mounting portion in FIG. The collector electrode 106 ′ of the semiconductor element 101 and the wiring layer 102 are bonded with a bonding material using silver oxide particles (pure silver layer after bonding). The wiring layer 102 is obtained by applying Ni plating to Cu wiring. The bonding material using silver oxide particles (pure silver layer after bonding) has the same structure at the bonding portion between the emitter electrode 106 of the semiconductor element and the connection terminal 201 and at the bonding portion between the connection terminal 201 and the wiring layer 104. Has been applied. Ni is applied to the surface of the collector electrode 106 ′ and the surface of the emitter electrode 106. The connection terminal 201 is made of Cu or Cu alloy. Each joint part using silver oxide particles may be performed individually or simultaneously. A joining material using silver oxide particles is placed between members to be joined, and heat at 250 ° C. is applied for about 1 minute in that state, and 1.0 at the same time.
Bonding can be performed by applying a pressure of MPa in 100% hydrogen. In joining, ultrasonic vibration can be applied.

図4は本発明の接合部位に対して行った接合強度評価結果を示したもので、接合温度を250℃、加圧1.0MPa 一定とし、相手電極、及び接合時の加熱雰囲気の影響を調べた結果を示す。本評価では接合材料として、ミリスチルアルコール5wt%含んだ平均粒径2μmの酸化銀粒子を用いて、大気中、還元雰囲気中でそれぞれAg,Ni及びCu電極への接合を行った。図4の縦軸はせん断強度を示し、水素中のNi電極の値で規格化したものである。   FIG. 4 shows the result of evaluation of the bonding strength performed on the bonded portion of the present invention. The bonding temperature was fixed at 250 ° C. and the pressure was fixed at 1.0 MPa, and the influence of the mating electrode and the heating atmosphere during bonding was investigated. The results are shown. In this evaluation, silver oxide particles having an average particle diameter of 2 μm containing 5 wt% myristyl alcohol were used as bonding materials and bonded to Ag, Ni, and Cu electrodes in air and in a reducing atmosphere, respectively. The vertical axis in FIG. 4 indicates the shear strength and is normalized by the value of the Ni electrode in hydrogen.

その結果、大気中での接合では、Ag電極に対しては良好な接合強度が得られているが、Ni,Cu電極に対しては十分な接合強度が得られないことが判った。これに対して、還元雰囲気中で接合した場合、Ni電極,Cu電極に対する接合強度は、Ag電極に対して接合した場合と同等の接合強度が得られており、Ni電極,Cu電極に対しても強固な接合が達成されている。本評価結果から、ミリスチルアルコールによる酸化銀の還元効果だけではNi,Cu電極への接合は達成できないことが判った。   As a result, it was found that, in bonding in the air, good bonding strength was obtained for the Ag electrode, but sufficient bonding strength was not obtained for the Ni and Cu electrodes. On the other hand, when bonded in a reducing atmosphere, the bonding strength to the Ni electrode and Cu electrode is the same as that bonded to the Ag electrode. Even strong bonding has been achieved. From this evaluation result, it was found that joining to Ni and Cu electrodes could not be achieved only by the reduction effect of silver oxide by myristyl alcohol.

また、同様の接合条件において、還元剤(ミリスチルアルコール)を含まない酸化銀粒子を接合材として用いて大気中、還元雰囲気中でCu電極に対する接合についても評価を行った。その結果、図4に示したように、大気中と比較して還元雰囲気の接合することにより接合強度が若干増加するものの、大気中,還元雰囲気中ともに十分な接合強度が得られないことが判った。本評価結果から、還元雰囲気中での接合のみではNi,Cu電極への接合は達成できないことが判った。   In addition, under the same bonding conditions, the bonding to the Cu electrode was evaluated in the air and in the reducing atmosphere using silver oxide particles not containing a reducing agent (myristyl alcohol) as a bonding material. As a result, as shown in FIG. 4, it can be seen that, although bonding strength is slightly increased by bonding in a reducing atmosphere as compared to the atmosphere, sufficient bonding strength cannot be obtained in both the air and the reducing atmosphere. It was. From this evaluation result, it was found that bonding to Ni and Cu electrodes cannot be achieved only by bonding in a reducing atmosphere.

以上の結果より、酸化物金属粒子と還元剤を含む接合材料を用いて、還元雰囲気中にて接合を行うことでNi,Cu電極への接合が可能である。   From the above results, bonding to Ni and Cu electrodes is possible by performing bonding in a reducing atmosphere using a bonding material containing oxide metal particles and a reducing agent.

なお、Ni,Cu電極以外の電極としてAg電極のみのを示したが、大気中での接合においてAu,Pt等の貴金属類に対してもAg電極と同様に良好な接合ができることを確認している。   In addition, although only the Ag electrode was shown as an electrode other than the Ni and Cu electrodes, it was confirmed that good bonding can be performed to noble metals such as Au and Pt as well as the Ag electrode in bonding in the air. Yes.

図5は図4の接合部断面の状態を示した図である。従来法では界面に酸化物層が形成され、金属的な接合が阻害されている。これに対して本発明方法ではNi,Cuに対して界面に接合を阻害するものが無く、金属的な接合(相互拡散接合)が達成できていることが判った。   FIG. 5 is a view showing a state of a cross section of the joint in FIG. In the conventional method, an oxide layer is formed at the interface, and metallic bonding is hindered. On the other hand, in the method of the present invention, it has been found that there is nothing that inhibits bonding at the interface with respect to Ni and Cu, and that metallic bonding (interdiffusion bonding) can be achieved.

次に、本実施例による半導体装置の好ましい例について説明する。   Next, a preferred example of the semiconductor device according to the present embodiment will be described.

図3に示す金属微粒子による接合層105は電流が流れる部位である。このため、粒子層の材料には酸化銀のほかに酸化銅も有効な材料である。あるいは酸化銀と酸化銅の混合材を用いても良い。これらの場合も加熱時の還元効果(アルコールなどの有機物による還元作用、および還元雰囲気の併用)で、生成したナノサイズ粒子が相手電極と接合し、その際の接合温度は200℃以下でも行うことができる。Cu又はその合金の熱膨張係数は約8〜16ppm/℃ である。セラミックス絶縁基板103には窒化珪素を用いることが好ましい。窒化珪素の熱膨張係数は約9ppm/℃ である。また、はんだ層109を酸化物を用いた接合層とすることは放熱性向上のため望ましい構成である。   The bonding layer 105 made of metal fine particles shown in FIG. 3 is a portion where current flows. For this reason, in addition to silver oxide, copper oxide is also an effective material for the material of the particle layer. Alternatively, a mixed material of silver oxide and copper oxide may be used. In these cases as well, the nano-sized particles produced are bonded to the mating electrode due to the reduction effect during heating (reduction action by an organic substance such as alcohol and a reducing atmosphere), and the bonding temperature at that time should be 200 ° C. or less. Can do. The thermal expansion coefficient of Cu or its alloy is about 8 to 16 ppm / ° C. Silicon nitride is preferably used for the ceramic insulating substrate 103. The thermal expansion coefficient of silicon nitride is about 9 ppm / ° C. In addition, it is desirable that the solder layer 109 be a bonding layer using an oxide in order to improve heat dissipation.

本構造のパワー半導体モジュールは、半導体素子101と熱膨張係数が約9ppm/℃ の絶縁配線基板とが、熱膨張係数8〜16ppm/℃ の接合材を介して接合されているため、高温環境で顕著になる各部材の熱膨張差に起因する熱応力を小さくすることができる。理想的には接合材の熱膨張係数を配線基板のそれに一致させることで、接合材に生じる熱応力が最小になり、長期信頼性が向上する。   In the power semiconductor module of this structure, since the semiconductor element 101 and the insulating wiring board having a thermal expansion coefficient of about 9 ppm / ° C. are bonded via a bonding material having a thermal expansion coefficient of 8 to 16 ppm / ° C. It is possible to reduce the thermal stress caused by the significant difference in thermal expansion of each member. Ideally, by matching the thermal expansion coefficient of the bonding material to that of the wiring board, the thermal stress generated in the bonding material is minimized, and long-term reliability is improved.

本発明の半導体装置は各種の電力変換装置に適用することができる。電力変換装置に本発明の半導体装置を適用することによって、高温環境の場所に搭載でき、かつ専用の冷却器を持たなくても長期的な信頼性を確保することが可能になる。   The semiconductor device of the present invention can be applied to various power conversion devices. By applying the semiconductor device of the present invention to the power conversion device, long-term reliability can be ensured even if it can be mounted in a place of a high temperature environment and does not have a dedicated cooler.

図6は半導体装置の回路を説明する図である。4個のMOS FET素子101が並列に配置された2系統のブロック910を有し、各ブロック910は直列に接続され、入力主端子30in,出力主端子30out,補助端子31が所定部から引き出されて半導体装置900の要部を構成している。また、この回路の稼働時における温度検出用サーミスタ34が半導体装置900内に独立して配置されている。   FIG. 6 is a diagram illustrating a circuit of a semiconductor device. There are two systems of blocks 910 in which four MOS FET elements 101 are arranged in parallel. Each block 910 is connected in series, and an input main terminal 30in, an output main terminal 30out, and an auxiliary terminal 31 are drawn from a predetermined portion. The main part of the semiconductor device 900 is configured. Further, the thermistor 34 for temperature detection during operation of this circuit is disposed independently in the semiconductor device 900.

また、インバータ装置及び電動機は、電気自動車にその動力源として組み込むことができる。この自動車においては、動力源から車輪に至る駆動機構を簡素化できたため、ギヤーの噛込み比率の違いにより変速していた従来の自動車に比べ、変速時のショックが軽減され、スムーズな走行が可能で、振動や騒音の面でも従来よりも軽減することができる。なお、本実施例の半導体装置900は、図7に示すハイブリッド自動車電動機960の回転数制御用インバータ装置に組み込むことが可能である。   Further, the inverter device and the electric motor can be incorporated in the electric vehicle as a power source. In this car, the drive mechanism from the power source to the wheels has been simplified, so the shock at the time of shifting is reduced and smooth running is possible compared to the conventional car that has been shifting due to the difference in gear engagement ratio. Thus, vibration and noise can be reduced as compared with the conventional case. Note that the semiconductor device 900 of this embodiment can be incorporated in the inverter device for controlling the rotational speed of the hybrid vehicle electric motor 960 shown in FIG.

更に、本実施例の半導体装置900を組み込んだインバータ装置は冷暖房機に組み込むことも可能である。この際、従来の交流電動機を用いた場合よりも高い効率を得ることができる。これにより、冷暖房機使用時の電力消費を低減することができる。また、室内の温度が運転開始から設定温度に到達するまでの時間を、従来の交流電動機を用いた場合よりも短縮できる。   Furthermore, the inverter device incorporating the semiconductor device 900 of this embodiment can be incorporated into an air conditioner. In this case, higher efficiency can be obtained than when a conventional AC motor is used. Thereby, the power consumption at the time of air-conditioning machine use can be reduced. Moreover, the time until the room temperature reaches the set temperature from the start of operation can be shortened compared to the case where the conventional AC motor is used.

本実施例と同様の効果は、半導体装置900が他の流体を撹拌又は流動させる装置、例えば洗濯機,流体循環装置等に組み込まれた場合でも享受できる。   The same effect as that of the present embodiment can be enjoyed even when the semiconductor device 900 is incorporated in a device that stirs or flows another fluid, such as a washing machine or a fluid circulation device.

なお、本発明の金属超微粒子仕様接合材は、例えばLEDバックライトのような発熱が大きい部位の接合にも適用可能である。   In addition, the metal ultrafine particle specification bonding material of the present invention can also be applied to bonding at a portion where heat generation is large, such as an LED backlight.

(a)は本発明の位置実施例による絶縁型半導体装置の平面図、(b)はA−A断面図である。(A) is a top view of the insulation type semiconductor device by the position example of this invention, (b) is AA sectional drawing. 図1の要部を示した斜視図である。It is the perspective view which showed the principal part of FIG. 図1における半導体素子搭載部分を拡大して示した断面図である。It is sectional drawing which expanded and showed the semiconductor element mounting part in FIG. 本発明による接合部の接合性を示す図である。It is a figure which shows the joining property of the junction part by this invention. 本発明による接合部の状態を示す図である。It is a figure which shows the state of the junction part by this invention. 半導体装置の回路図である。It is a circuit diagram of a semiconductor device. ハイブリッド自動車電動機の回転数制御用インバータ装置を示す概略図である。It is the schematic which shows the inverter apparatus for rotation speed control of a hybrid vehicle electric motor. 銀微粒子による接合部の接合性を示す図である。It is a figure which shows the bondability of the junction part by silver fine particles.

符号の説明Explanation of symbols

101 半導体素子
102,104 配線層
103 セラミックス絶縁基板
105 接合層
106 エミッタ電極
110 支持部材
201 接続用端子
DESCRIPTION OF SYMBOLS 101 Semiconductor element 102,104 Wiring layer 103 Ceramic insulation board | substrate 105 Joining layer 106 Emitter electrode 110 Support member 201 Connection terminal

Claims (11)

半導体素子と、
表面に配線層が設けられたセラミックス絶縁基板と、を有し、
前記配線層の表面はNiで構成され、
前記半導体素子の電極と、前記配線層とが、焼成層を介して接続された半導体装置であって、
前記焼成層は、Ag,Cu又はAuで構成された層であり、
前記焼成層と前記配線層の表面のNiとが、互いに直接金属結合していることを特徴とする半導体装置。
A semiconductor element;
A ceramic insulating substrate provided with a wiring layer on the surface,
The surface of the wiring layer is made of Ni,
A semiconductor device in which the electrode of the semiconductor element and the wiring layer are connected via a fired layer,
The fired layer is a layer made of Ag, Cu or Au,
The semiconductor device, wherein the fired layer and Ni on the surface of the wiring layer are directly metal-bonded to each other.
請求項1において、前記焼成層の熱伝導率が50乃至430W/mKであることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein the fired layer has a thermal conductivity of 50 to 430 W / mK. 請求項1又は2のいずれかに記載の半導体装置において、
前記焼成層と前記配線層の表面のNiとの境界には、酸化物層が存在しないことを特徴とする半導体装置。
The semiconductor device according to claim 1,
An oxide layer is not present at the boundary between the fired layer and Ni on the surface of the wiring layer.
一方の面に第一電極を有し、他方の面に第二電極を有する半導体素子と、
表面に配線層を有するセラミックス絶縁基板と、
一端が前記半導体素子の第二電極と接続され、他端が前記配線層と接続される接続用端子とを有する半導体装置であって、
前記配線層の表面がNiで構成され、
前記配線層と前記半導体素子の第一電極とは、第一焼成層を介して接合され、
前記配線層と前記接続用端子の他端とは、第二焼成層を介して接合され、
前記第一焼成層、および前記第二焼成層は、Ag,Cu又はAuで構成された層であり、
前記第一焼成層と前記配線層の表面のNiとが互いに直接金属結合し、かつ前記第二焼成層と前記配線層の表面のNiとが互いに直接金属結合していることを特徴とする半導体装置。
A semiconductor element having a first electrode on one side and a second electrode on the other side;
A ceramic insulating substrate having a wiring layer on the surface;
A semiconductor device having one end connected to the second electrode of the semiconductor element and the other end connected to the wiring layer;
The surface of the wiring layer is made of Ni,
The wiring layer and the first electrode of the semiconductor element are bonded via a first fired layer,
The wiring layer and the other end of the connection terminal are joined via a second firing layer,
The first fired layer and the second fired layer are layers made of Ag, Cu or Au,
The first fired layer and Ni on the surface of the wiring layer are directly metal-bonded to each other, and the second fired layer and Ni on the surface of the wiring layer are directly metal-bonded to each other apparatus.
請求項4に記載の半導体装置において、
前記接続用端子と前記第二電極とは、第三焼成層を介して接合され、
前記第二電極の表面はNiで構成され、
前記焼成層は、Ag,Cu又はAuで構成された層であり、
前記第三焼成層と前記接続用端子とが、互いに直接金属結合していることを特徴とする半導体装置。
The semiconductor device according to claim 4,
The connection terminal and the second electrode are joined via a third fired layer,
The surface of the second electrode is made of Ni,
The fired layer is a layer made of Ag, Cu or Au,
The semiconductor device, wherein the third fired layer and the connection terminal are directly metal-bonded to each other.
請求項4又は請求項5のいずれかに記載の半導体装置を内蔵することを特徴とする電力変換装置。   A power conversion device comprising the semiconductor device according to claim 4. 請求項6に記載の電力変換装置が、エンジンルームに搭載されることを特徴とするハイブリッド自動車。   A hybrid vehicle, wherein the power conversion device according to claim 6 is mounted in an engine room. 半導体素子の電極と、当該半導体素子に電流を供給する配線と接合した半導体装置の製造方法であって、
前記半導体素子の電極、または、前記配線の少なくとも一方がNiで構成され、
平均粒径が1nm〜50μmの金属酸化物粒子と、有機物からなる還元剤とを含む接合材料により、還元雰囲気下で加熱により前記電極と配線とを接合する工程を含み、
前記工程において、0.01乃至10MPaの加圧と、50乃至400℃に加熱を加えることを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device bonded to an electrode of a semiconductor element and a wiring for supplying current to the semiconductor element
At least one of the electrodes of the semiconductor element or the wiring is made of Ni,
A step of bonding the electrode and the wiring by heating in a reducing atmosphere with a bonding material including metal oxide particles having an average particle diameter of 1 nm to 50 μm and a reducing agent made of an organic substance;
A method of manufacturing a semiconductor device, characterized in that, in the step, pressurization of 0.01 to 10 MPa and heating to 50 to 400 ° C. are applied.
請求項8に記載の半導体装置の製造方法において、
前記金属化合物が、金,銀、または、銅の化合物であることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 8,
The method for manufacturing a semiconductor device, wherein the metal compound is a compound of gold, silver, or copper.
請求項8又は請求項9のいずれかに記載の半導体装置の製造方法において、
前記還元剤がアルコール類,カルボン酸,アミン類から選ばれた1種または2種以上の混合物であることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claim 8 or Claim 9,
A method of manufacturing a semiconductor device, wherein the reducing agent is one or a mixture of two or more selected from alcohols, carboxylic acids, and amines.
請求項乃至請求項10のいずれかに記載の半導体装置の製造方法において、
前記加熱により金属粒子前躯体を還元させて平均粒径が100nm以下の金属粒子を精製させることを特徴とする半導体装置の製造方法
In the manufacturing method of the semiconductor device in any one of Claims 8 thru / or 10 ,
A method of manufacturing a semiconductor device, wherein the metal particle precursor is reduced by the heating to refine metal particles having an average particle diameter of 100 nm or less.
JP2007009692A 2007-01-19 2007-01-19 Semiconductor device and manufacturing method thereof Active JP5023710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009692A JP5023710B2 (en) 2007-01-19 2007-01-19 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009692A JP5023710B2 (en) 2007-01-19 2007-01-19 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008177378A JP2008177378A (en) 2008-07-31
JP5023710B2 true JP5023710B2 (en) 2012-09-12

Family

ID=39704179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009692A Active JP5023710B2 (en) 2007-01-19 2007-01-19 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5023710B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895994B2 (en) * 2006-12-28 2012-03-14 株式会社日立製作所 Joining method and joining material using metal particles
JP5006081B2 (en) * 2007-03-28 2012-08-22 株式会社日立製作所 Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP2010118577A (en) * 2008-11-14 2010-05-27 Sumitomo Electric Ind Ltd Resin encapsulated semiconductor device and method of manufacturing the same
JP5370372B2 (en) * 2009-01-23 2013-12-18 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof
JPWO2012042907A1 (en) * 2010-09-30 2014-02-06 三洋電機株式会社 Metal joining method
JP2014100711A (en) 2011-02-28 2014-06-05 Sanyo Electric Co Ltd Metal joining structure and metal joining method
JP5812090B2 (en) * 2011-03-10 2015-11-11 富士電機株式会社 Electronic component and method for manufacturing electronic component
JP2012218020A (en) * 2011-04-07 2012-11-12 Jsr Corp Bonding method
WO2013021567A1 (en) * 2011-08-11 2013-02-14 三洋電機株式会社 Bonding method for metal, and metal bonded structure
JP2014210267A (en) * 2011-08-31 2014-11-13 三洋電機株式会社 Metal joining device
JP5780191B2 (en) * 2012-03-28 2015-09-16 三菱マテリアル株式会社 Power module and method for manufacturing power module
WO2015029152A1 (en) * 2013-08-28 2015-03-05 株式会社日立製作所 Semiconductor device
JP6847020B2 (en) 2017-11-17 2021-03-24 株式会社 日立パワーデバイス Semiconductor chips and power modules and their manufacturing methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071467A (en) * 2002-08-08 2004-03-04 Asahi Kasei Corp Connecting material
JP4378239B2 (en) * 2004-07-29 2009-12-02 株式会社日立製作所 A semiconductor device, a power conversion device using the semiconductor device, and a hybrid vehicle using the power conversion device.
JP4770533B2 (en) * 2005-05-16 2011-09-14 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP2008177378A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5286115B2 (en) Semiconductor device and bonding material
JP5023710B2 (en) Semiconductor device and manufacturing method thereof
JP5006081B2 (en) Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP4895994B2 (en) Joining method and joining material using metal particles
JP4737116B2 (en) Joining method
JP5135079B2 (en) Semiconductor device and bonding material
JP5151150B2 (en) Composition for forming conductive sintered layer, and method for forming conductive film and bonding method using the same
JP5611537B2 (en) Conductive bonding material, bonding method using the same, and semiconductor device bonded thereby
JP2011014556A (en) Semiconductor device and method of manufacturing the same
JP2012191238A (en) Conductive sintered layer forming composition, and conductive coating film forming method and jointing method using the same
JP5907861B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP2014127537A (en) Semiconductor device using conductive bonding material and method of manufacturing semiconductor device
JP2016167527A (en) Semiconductor module and manufacturing method of the same
WO2015029152A1 (en) Semiconductor device
WO2013125022A1 (en) Semiconductor device
JP2016032051A (en) Joining layer, electronic component, electric product and joining method
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
JP5677685B2 (en) Circuit board and semiconductor device using the same
JP6040729B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2014127536A (en) Semiconductor device including plurality of semiconductor elements
JP6505004B2 (en) Semiconductor device, method of manufacturing the same, power module and vehicle
JP6014419B2 (en) Electronic control unit
JP2018056249A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5023710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350