JP2016143685A - Semiconductor module - Google Patents

Semiconductor module Download PDF

Info

Publication number
JP2016143685A
JP2016143685A JP2015016283A JP2015016283A JP2016143685A JP 2016143685 A JP2016143685 A JP 2016143685A JP 2015016283 A JP2015016283 A JP 2015016283A JP 2015016283 A JP2015016283 A JP 2015016283A JP 2016143685 A JP2016143685 A JP 2016143685A
Authority
JP
Japan
Prior art keywords
sintered
bonding layer
bonding
semiconductor chip
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015016283A
Other languages
Japanese (ja)
Inventor
俊章 守田
Toshiaki Morita
俊章 守田
雄亮 保田
Yusuke Yasuda
雄亮 保田
元脇 成久
Narihisa Motowaki
成久 元脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015016283A priority Critical patent/JP2016143685A/en
Publication of JP2016143685A publication Critical patent/JP2016143685A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor module which is excellent in connection reliability even if a junction temperature becomes high.SOLUTION: Disclosed is a semiconductor module having a configuration in which a semiconductor chip 101 equipped with a surface electrode and a back electrode is mounted on a circuit board. This semiconductor module includes: a first sinter junction layer 105 in which a back electrode 106' of the semiconductor chip and wiring 102 of the circuit board are connected; and a second sinter junction layer 105' in which the surface electrode 106 of the semiconductor chip and a conductive plate 150 are connected. The rigidity of the first sinter junction layer 105 is higher than that of the second sinter junction layer 105'.SELECTED DRAWING: Figure 2

Description

本発明は、焼結接合層を有する半導体モジュールに関する。   The present invention relates to a semiconductor module having a sintered bonding layer.

IGBTモジュール等の半導体モジュールは、半導体チップあたり数十〜数百Aの大電流を扱うため、半導体チップの大きな発熱を伴う。近年、半導体モジュールの更なる小型化が求められており、発熱密度がますます上昇する傾向にある。特に耐熱性を確保するために、半導体チップと配線層の接合には従来は融点が300℃程度、鉛含有率85%以上の高鉛はんだが用いられてきた。しかし、半導体装置の鉛フリー化が必要とされるようになり、鉛フリーのはんだ材として、Sn-Cu系はんだ、Sn-Ag系はんだ、Sn−Sb系はんだ等が知られているが、融点が200℃程度であり、耐熱性を確保できない。   A semiconductor module such as an IGBT module handles a large current of several tens to several hundreds of A per semiconductor chip, and is accompanied by a large heat generation of the semiconductor chip. In recent years, further miniaturization of semiconductor modules has been demanded, and the heat generation density tends to increase more and more. In particular, in order to ensure heat resistance, high lead solder having a melting point of about 300 ° C. and a lead content of 85% or more has been conventionally used for joining a semiconductor chip and a wiring layer. However, lead-free semiconductor devices are required, and Sn-Cu solder, Sn-Ag solder, Sn-Sb solder, etc. are known as lead-free solder materials. Is about 200 ° C., and heat resistance cannot be ensured.

これに対して、金属ナノ粒子の低温焼成機能を利用した焼結接合が高温はんだに代わる材料として期待されている。粒径が100nm以下の金属ナノ粒子では、構成原子数が少なくなり粒子の体積に対する表面積比は急激に増大し、融点や焼結温度がバルクの状態に比較して大幅に低下する。この低温焼成機能を利用して金属粒子同士を焼結させて接合することで、接合後の金属粒子はバルク金属へと変化すると同時に接合界面では金属結合により接合されているため、非常に高い耐熱性と高放熱性を有する。   On the other hand, sintered bonding using the low-temperature firing function of metal nanoparticles is expected as a material to replace high-temperature solder. In the case of metal nanoparticles having a particle size of 100 nm or less, the number of constituent atoms is decreased, the surface area ratio to the volume of the particles is rapidly increased, and the melting point and sintering temperature are greatly reduced as compared with the bulk state. By using this low-temperature firing function to sinter and bond metal particles, the metal particles after bonding change into bulk metal and at the same time are bonded by metal bonds at the bonding interface, so they have extremely high heat resistance. And high heat dissipation.

一方、SiやSiCで構成される半導体チップの主電極は、銅やアルミニウムなどで構成されるワイヤ、リボン等の配線材料で他のチップや電極と接続される。半導体チップの動作温度が高くなると半導体チップと配線材料の熱膨張率に差があるために、スイッチング動作(通電のONとOFFの動作)を繰り返すうちに、熱疲労で接合部が破壊されるという問題があった。   On the other hand, the main electrode of a semiconductor chip made of Si or SiC is connected to another chip or electrode by a wiring material such as a wire or ribbon made of copper or aluminum. When the operating temperature of the semiconductor chip is increased, the thermal expansion coefficient of the semiconductor chip and the wiring material are different, so that the joint portion is destroyed due to thermal fatigue while switching operation (energization ON / OFF operation) is repeated. There was a problem.

そこで、配線接続の信頼性を向上させる技術として、特許文献1には、配線部材と半導体チップの中間の熱膨張係数の金属板を用いて、熱膨張係数差の大きな接続部を無くす、応力緩衝の観点からの解決方法が提案されている。また、引用文献1には半導体チップと金属板とを接合する接合材として、焼結性の銀微粒子を含有する材料を用いることが記載されている。   Therefore, as a technique for improving the reliability of wiring connection, Patent Document 1 discloses a stress buffer that uses a metal plate having a thermal expansion coefficient intermediate between the wiring member and the semiconductor chip to eliminate a connection portion having a large difference in thermal expansion coefficient. A solution from the viewpoint is proposed. Reference 1 describes that a material containing sinterable silver fine particles is used as a bonding material for bonding a semiconductor chip and a metal plate.

特開2012−28674号公報JP 2012-28684 A

このように、半導体チップ上に接合材を用いて接続された金属板(導電板)を介して配線材料と接続すれば、配線接合部の熱応力を低減でき、接続信頼性向上に有効である。しかしながら、絶縁基板の回路面と半導体チップとの接合部(以下、チップ下接合部という)、および、半導体チップ上面の主電極と導電板との接合部(以下、チップ上接合部という)を焼結接合層とした場合には、以下の課題を有する。半導体チップの動作時または半導体装置周囲の温度変化に伴う熱応力がチップ上接合部で最大となる。これは、チップ下接合部では絶縁基板によって変形が拘束されるため、熱歪み量は小さい。一方、チップ上接合部は変形が拘束されず動きやすい構造であることから、チップ上接合部での熱歪みが大きくなり、接合界面での熱応力が高くなるためである。また、銀や銅で構成される焼結接合層は従来のはんだ材に比べて硬く、接合層で熱応力を吸収しにくいという問題がある。半導体チップの動作温度が高くなり、特にジャンクション温度(Tj)が150℃を超えると、チップ上接合部に集中する熱応力が大きくなり、チップ上接合部の接合層端部を起点する接合界面での破壊や半導体チップ端部の破損を招くことが懸念され、高温動作環境における所望の信頼性が得られない。   Thus, if it connects with a wiring material via the metal plate (conductive plate) connected using the joining material on the semiconductor chip, the thermal stress of a wiring junction part can be reduced and it is effective for connection reliability improvement. . However, the bonding portion between the circuit surface of the insulating substrate and the semiconductor chip (hereinafter referred to as a lower chip bonding portion) and the bonding portion between the main electrode on the upper surface of the semiconductor chip and the conductive plate (hereinafter referred to as an upper chip bonding portion) are sintered. When it is set as a bonding layer, it has the following problems. The thermal stress accompanying the temperature change during the operation of the semiconductor chip or around the semiconductor device is maximized at the joint on the chip. This is because the deformation is restrained by the insulating substrate at the lower chip joint, and thus the amount of thermal strain is small. On the other hand, since the on-chip joint has a structure that is easy to move without being restrained from deformation, thermal strain at the on-chip joint increases, and thermal stress at the joint interface increases. In addition, a sintered joining layer made of silver or copper is harder than a conventional solder material, and there is a problem that the joining layer hardly absorbs thermal stress. When the operating temperature of the semiconductor chip becomes high, particularly when the junction temperature (Tj) exceeds 150 ° C., the thermal stress concentrated on the on-chip junction increases, and at the junction interface starting from the end of the junction layer of the on-chip junction. May cause damage to the semiconductor chip and damage to the end of the semiconductor chip, and the desired reliability in a high-temperature operating environment cannot be obtained.

本発明は、ジャンクション温度が高くなっても接続信頼性に優れる半導体モジュールを提供することを目的とする。   An object of this invention is to provide the semiconductor module which is excellent in connection reliability, even if junction temperature becomes high.

本発明の半導体モジュールは、表面電極及び裏面電極を備える半導体チップが回路基板に搭載された構成の半導体モジュールであって、半導体チップの裏面電極と回路基板の配線を接続した第1の焼結接合層と、半導体チップの表面電極と導電板とを接続した第2の焼結接合層を備え、第2の焼結接合層よりも第1の焼結接合層の剛性が高いことを特徴とする。   The semiconductor module of the present invention is a semiconductor module having a configuration in which a semiconductor chip having a front electrode and a back electrode is mounted on a circuit board, and is a first sintered joint in which the back electrode of the semiconductor chip and the wiring of the circuit board are connected. And a second sintered bonding layer in which the surface electrode of the semiconductor chip and the conductive plate are connected, and the first sintered bonding layer has higher rigidity than the second sintered bonding layer. .

本発明により、ジャンクション温度が高くなっても接続信頼性に優れる半導体モジュールを提供できる。   According to the present invention, it is possible to provide a semiconductor module having excellent connection reliability even when the junction temperature increases.

(a)は本発明の一実施例による絶縁型半導体装置の平面図、(b)はA−A断面図である。(A) is a top view of the insulation type semiconductor device by one Example of this invention, (b) is AA sectional drawing. 半導体チップ搭載部の詳細構造を示す図である。It is a figure which shows the detailed structure of a semiconductor chip mounting part. 本発明の実施例及び比較サンプルのパワーサイクル耐性を示す図である。It is a figure which shows the power cycle tolerance of the Example and comparative sample of this invention. 比較サンプルのパワーサイクル試験時の破壊状態を示す図である。It is a figure which shows the destruction state at the time of the power cycle test of a comparative sample.

本発明の半導体モジュールは、表面電極及び裏面電極を備える半導体チップが回路基板に搭載された構成の半導体モジュールであって、半導体チップの裏面電極と回路基板の配線を接続した第1の焼結接合層と、半導体チップの表面電極と導電板とを接続した第2の焼結接合層を備え、第1の焼結接合層よりも第2の焼結接合層の剛性が高いことを特徴とする。このように、第1の焼結接合層(チップ下接合層)の剛性を相対的に低くすることで、第2の焼結接合層(チップ上接合層)で生じる熱歪みを第1の焼結接合層側で吸収させることができる。その結果、第2の焼結接合層(チップ上接合層)に集中する熱歪みが小さくなり、接合部に集中する熱応力を小さくすることができる。これにより、チップ上接合層の接続信頼性を向上することが可能となる。   The semiconductor module of the present invention is a semiconductor module having a configuration in which a semiconductor chip having a front electrode and a back electrode is mounted on a circuit board, and is a first sintered joint in which the back electrode of the semiconductor chip and the wiring of the circuit board are connected. And a second sintered bonding layer in which the surface electrode of the semiconductor chip and the conductive plate are connected to each other, and the rigidity of the second sintered bonding layer is higher than that of the first sintered bonding layer. . As described above, by relatively reducing the rigidity of the first sintered bonding layer (under-chip bonding layer), the thermal strain generated in the second sintered bonding layer (on-chip bonding layer) can be reduced. It can be absorbed on the bonding layer side. As a result, the thermal strain concentrated on the second sintered bonding layer (on-chip bonding layer) is reduced, and the thermal stress concentrated on the bonded portion can be reduced. Thereby, the connection reliability of the bonding layer on the chip can be improved.

第1の焼結接合層よりも第2の焼結接合層の剛性を高くするための方法は特に限定されないが、例えば、接合時の加圧力、加熱速度、接合材料の溶剤濃度等の条件を第1,2の焼結接合層で変更することで焼結接合層の空隙率を変える方法、焼結接合層を構成する材料を変える方法、焼結接合層の厚さを変える方法などが挙げられる。焼結密度の違いによって第1の焼結接合層よりも第2の焼結接合層の剛性を高く場合には、チップ下接合層の焼結密度より、チップ上接合層の焼結密度を10%以上高くすることが望ましい。シミュレーション解析により、10%以上とすると熱応力耐性が約2倍向上し、この結果、パワーサイクル耐性が従来はんだの10倍以上向上することを確認した。   The method for increasing the rigidity of the second sintered bonding layer than the first sintered bonding layer is not particularly limited. For example, the conditions such as the applied pressure during heating, the heating rate, and the solvent concentration of the bonding material are set. Examples include a method of changing the porosity of the sintered bonding layer by changing the first and second sintered bonding layers, a method of changing the material constituting the sintered bonding layer, and a method of changing the thickness of the sintered bonding layer. It is done. When the rigidity of the second sintered bonding layer is higher than that of the first sintered bonding layer due to the difference in the sintered density, the sintering density of the on-chip bonding layer is set to 10 than the sintering density of the lower chip bonding layer. It is desirable to increase it by at least%. As a result of simulation analysis, it was confirmed that when it is 10% or more, the thermal stress resistance is improved about twice, and as a result, the power cycle resistance is improved more than 10 times that of the conventional solder.

半導体チップの表面電極と接続される導電板にはワイヤやリボンなどの配線部材が接続され、配線部材によって他のチップや電極と接続される。導電板には、半導体チップと配線部材の熱膨張率差による熱応力を緩和する役割と、半導体チップからの熱を放熱する役割が求められる。そこで、導電板としては、半導体チップと配線部材の中間の熱膨張率を有し、熱伝導率が100W/mK以上の材料を用いることが好ましい。さらに導電部材として、半導体チップの電極面に水平な方向が垂直な方向より熱伝導率が高い材料を用いれば、チップの発熱が上部のワイヤやリボンなどの配線に伝わる前に導電板のチップ面に沿った面内で熱が拡散し、良好な均熱効果が得られるため、チップの特定部分だけが高温になってワイヤもしくはリボンが剥がれることが無くなり、チップ全体として配線接続信頼性が向上する。例えば、ある面で20W/mK、その直交方向に2000W/mKといった熱伝導異方性を有するグラファイト繊維と金属(銅、アルミニウムなど)を複合化した材料を用いることができる。また、さらに銅/インバー/銅のクラッド材料など、異なる熱伝導率を有する層を積層した材料を用いることが好ましい。これは、一つにはインバー(鉄ニッケル合金)の熱伝導率が13W/mKと銅の400 W/mKよりも小さいため半導体チップの発熱を上部に伝えにくく、チップ面に沿って銅内部を熱が伝播し均熱化されるためである。もう一つには、銅(約16ppm/K)とインバー(約1ppm/K)の比率によって熱膨張率をSiやSiC(3〜5ppm/K)と配線部材(Al約23ppm/K、Cu約16ppm/K)の中間の好ましい値に調整することが可能であり、熱応力を低減できるためである。例えば銅/インバー/銅比を1:1:1にすることで約11ppm/Kの熱膨張率が得られ、熱膨張差の大きい材料の接続部を作らずに済み、配線接続信頼性も導電部材のチップへの接続信頼性も向上させることができる。   A wiring member such as a wire or a ribbon is connected to the conductive plate connected to the surface electrode of the semiconductor chip, and is connected to another chip or electrode by the wiring member. The conductive plate is required to have a role of relieving thermal stress due to a difference in thermal expansion coefficient between the semiconductor chip and the wiring member and a role of radiating heat from the semiconductor chip. Therefore, as the conductive plate, it is preferable to use a material having a thermal expansion coefficient intermediate between the semiconductor chip and the wiring member and having a thermal conductivity of 100 W / mK or more. Further, if a material having a higher thermal conductivity than the direction perpendicular to the electrode surface of the semiconductor chip is used as the conductive member, the chip surface of the conductive plate before the heat generated by the chip is transmitted to the upper wires, ribbons, and other wirings Because heat spreads in the plane along the surface and a good soaking effect is obtained, only a specific part of the chip becomes hot and the wire or ribbon does not peel off, improving the wiring connection reliability as a whole chip . For example, a material in which graphite fiber having a heat conduction anisotropy of 20 W / mK on a certain surface and 2000 W / mK in the orthogonal direction and a metal (copper, aluminum, etc.) are combined can be used. Further, it is preferable to use a material in which layers having different thermal conductivities such as a copper / invar / copper cladding material are laminated. This is because, in part, the thermal conductivity of Invar (iron-nickel alloy) is smaller than 13 W / mK, which is 400 W / mK, and it is difficult for the heat generated in the semiconductor chip to be transmitted to the top. This is because the heat propagates and is soaked. The other is that the coefficient of thermal expansion depends on the ratio of copper (about 16 ppm / K) and invar (about 1 ppm / K), and Si and SiC (3-5 ppm / K) and wiring members (Al about 23 ppm / K, Cu about This is because it is possible to adjust to an intermediate preferable value of 16 ppm / K) and to reduce thermal stress. For example, by setting the copper / invar / copper ratio to 1: 1: 1, a coefficient of thermal expansion of about 11 ppm / K can be obtained, and it is not necessary to make a connection part of a material having a large thermal expansion difference, and the wiring connection reliability is also conductive. The connection reliability of the member to the chip can also be improved.

焼結接合層を形成するための接合材料、接合方法としては公知の方法を適用することが可能である。本実施形態で用いた接合材料、接合方法を一例として説明する。本発明の実施形態においては、接合材料として、平均粒径が1nm〜5μmの酸化銅粒子と有機溶剤とを含む材料を用いた。この接合材料を用いて水素雰囲気下で接合を行うことで部材間を接合することができる。特に、Cu、Ni電極に対しても優れた接合強度が得ることができる。本接合では、酸化銅粒子前駆体が還元され、その際に平均粒径が100nm以下の銅粒子が生成され、銅粒子同士が相互に融合することで接合が行なわれるという現象を利用している。平均粒径が100nm以下の銅粒子が生成され、銅粒子同士が相互に融合し、接合に至る機構は、(1)生成した100nm以下の銅粒子が相手電極表面に薄膜層を形成、(2)この層は相手の金属電極板(Cu、Ni等)の結晶成長方向と同一方向に結晶成長しており、(3)さらに薄膜層形成に寄与しなかった銅粒子同士の融合によって焼結層、すなわち接合層を形成し、接合が達成される。前駆体の酸化銅粒子は酸化第一銅、酸化第二銅のどちらでも良い。酸化銅からなる金属酸化物粒子は還元時に酸素のみを発生するために、接合後における残渣も残りにくく、体積減少率も非常に小さい。ここで用いる酸化銅粒子の粒径を平均粒径が1nm以上5μm以下としたのは、平均粒径が5μmより大きくなると、接合中に粒径が100nm以下の金属銅粒子が生成されにくくなり、これにより粒子間の隙間が多くなり、緻密な接合層を得ることが困難になるためである。また、1nm以上としたのは、平均粒子が1nm以下の酸化第二銅粒子前駆体を実際に作製することが困難なためである。   As a bonding material and a bonding method for forming the sintered bonding layer, known methods can be applied. The bonding material and bonding method used in this embodiment will be described as an example. In the embodiment of the present invention, a material containing copper oxide particles having an average particle diameter of 1 nm to 5 μm and an organic solvent is used as the bonding material. By using this bonding material and bonding in a hydrogen atmosphere, the members can be bonded. In particular, excellent bonding strength can be obtained for Cu and Ni electrodes. In this bonding, the copper oxide particle precursor is reduced, copper particles having an average particle diameter of 100 nm or less are generated at that time, and the phenomenon that the bonding is performed by fusion of the copper particles to each other is utilized. . The copper particles having an average particle size of 100 nm or less are generated, the copper particles are fused with each other, and the mechanism of joining is as follows: (1) The generated copper particles of 100 nm or less form a thin film layer on the surface of the counterpart electrode; ) This layer is grown in the same direction as the crystal growth direction of the counterpart metal electrode plate (Cu, Ni, etc.). (3) Further, the sintered layer is formed by the fusion of copper particles that did not contribute to the formation of the thin film layer. That is, a bonding layer is formed and bonding is achieved. The precursor copper oxide particles may be cuprous oxide or cupric oxide. Since metal oxide particles made of copper oxide generate only oxygen during reduction, the residue after joining hardly remains, and the volume reduction rate is very small. The average particle size of the copper oxide particles used here is 1 nm or more and 5 μm or less. When the average particle size is larger than 5 μm, metal copper particles having a particle size of 100 nm or less are less likely to be generated during bonding. This is because the gaps between the particles increase, and it becomes difficult to obtain a dense bonding layer. The reason why the thickness is 1 nm or more is that it is difficult to actually produce a cupric oxide particle precursor having an average particle size of 1 nm or less.

接合プロセスは(1)60℃の熱を約10分間加え、同時に圧力を水素雰囲気中で加える、(2)加圧は加えたまま温度を250℃に上昇させ、5分間保持するプロセスとした。   The joining process was as follows: (1) Heat at 60 ° C. was applied for about 10 minutes, and pressure was simultaneously applied in a hydrogen atmosphere. (2) The temperature was raised to 250 ° C. while applying pressure and held for 5 minutes.

接合材料は、塗布部分を開口したメタルマスクやメッシュ状マスクを用いて必要部分にのみ塗布を行う方法、ディスペンサを用いて必要部分に塗布する方法、シリコーンやフッ素等を含む撥水性の樹脂を必要な部分のみ開口したメタルマスクやメッシュ状マスクで塗布したり、感光性のある撥水性樹脂を基板あるいは電子部品上に塗布し、露光および現像することにより接合材料を塗布する部分を除去し、接合用ペーストをその開口部に塗布する方法や、さらには撥水性樹脂を基板あるいは電子部品に塗布後、接合材料を塗布する部分をレーザーにより除去した後、接合用ペーストをその開口部に塗布する方法がある。これらの塗布方法は、接合する電極の面積、形状に応じて組み合わせ可能である。   The bonding material requires a method of applying only to the required part using a metal mask or mesh mask with an opening on the application part, a method of applying to the required part using a dispenser, and a water-repellent resin containing silicone, fluorine, etc. Apply with a metal mask or mesh mask with only an open part, or apply a photosensitive water-repellent resin on a substrate or electronic component, remove the part where the bonding material is applied by exposure and development, and bond A method of applying a bonding paste to the opening, or a method of applying a bonding paste to the opening after applying a water-repellent resin to a substrate or an electronic component and then removing a portion to which a bonding material is applied by a laser. There is. These application methods can be combined according to the area and shape of the electrodes to be joined.

本接合材料を用いた接合では、接合時に金属粒子前駆体から粒径が100nm以下の金属粒子を生成し、接合層における有機物を排出しながら粒径が100nm以下の金属粒子の融着による金属結合を行うために熱と0.01〜5MPaの圧力を加えることが好ましい。接合時の雰囲気は水素、ギ酸を含んだ還元雰囲気、非酸化雰囲気でもよい。   In bonding using this bonding material, metal particles having a particle size of 100 nm or less are generated from the metal particle precursor during bonding, and metal bonding is performed by fusing metal particles having a particle size of 100 nm or less while discharging organic substances in the bonding layer. In order to carry out, it is preferable to apply heat and a pressure of 0.01 to 5 MPa. The atmosphere during bonding may be a reducing atmosphere containing hydrogen or formic acid, or a non-oxidizing atmosphere.

本接合では、接合時の加熱還元によって純金属超微粒子を生成させ、この純金属超粒子同士は相互に融合してバルクになる。バルクになった後の溶融温度は通常のバルクの状態での金属の溶融温度と同じであり、純金属超微粒子は低温の加熱で溶融し、溶融後はバルクの状態での溶融温度に加熱されるまで再溶融しないという特徴を有する。これは、純金属超微粒子を用いた場合に低い温度で接合を行うことができ、接合後は溶融温度が向上することから、その後、他の電子部品を接合している際に接合部が再溶融しないというメリットをもたらす。なお、焼結接合層としては、焼結銅の他にも焼結銀も適用が可能であるが、焼結銅を用いることがより好ましい。これは、焼結銀よりも焼結銅の方が空孔拡散が少なく温度上昇に起因するボイド発生が抑制されるためである。   In this bonding, pure metal ultrafine particles are generated by heat reduction during bonding, and the pure metal ultraparticles are fused together to form a bulk. The melting temperature after becoming bulk is the same as the melting temperature of metals in the normal bulk state, and the ultrafine metal particles are melted by low-temperature heating, and after melting, they are heated to the melting temperature in the bulk state. It does not re-melt until This is because when pure metal ultrafine particles are used, bonding can be performed at a low temperature, and the melting temperature is improved after bonding. The advantage of not melting. As the sintered bonding layer, sintered silver can be applied in addition to sintered copper, but it is more preferable to use sintered copper. This is because sintered copper has less vacancy diffusion than sintered silver, and void generation due to temperature rise is suppressed.

以上で説明した接合材、接合方法を半導体チップの電極の接合に用いることにより、優れた接合信頼性を得ることが可能となる。   By using the bonding material and the bonding method described above for bonding the electrodes of the semiconductor chip, it is possible to obtain excellent bonding reliability.

以下、図面を用いて、本発明の実施例を説明するが、本発明は、以下の実施形態に限定されるものではない。   Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

図1は本発明を適用した絶縁型半導体モジュールを示したものであり、(a)は平面図、(b)は(a)のA−A’の断面図を示したものである。図2は半導体チップ周辺部の断面詳細図である。   1A and 1B show an insulating semiconductor module to which the present invention is applied. FIG. 1A is a plan view, and FIG. 1B is a sectional view taken along line A-A 'in FIG. FIG. 2 is a detailed cross-sectional view of the periphery of the semiconductor chip.

本実施例において、半導体チップ101は12mm×12mmのIGBTチップである。このIGBTのコレクタ側の電極構造はAl/Ti/Niで最表面はNiである。IGBTのエミッタ側はAl/Niで最表面はNiである。   In this embodiment, the semiconductor chip 101 is a 12 mm × 12 mm IGBT chip. The electrode structure on the collector side of this IGBT is Al / Ti / Ni and the outermost surface is Ni. The emitter side of the IGBT is Al / Ni and the outermost surface is Ni.

セラミックス絶縁基板103上の配線層102と半導体チップ101のコレクタ電極106’とが焼結接合層105(第1の焼結接合層)で接合されている。半導体チップのエミッタ電極106と導体板150が焼結接合層105’(第2の焼結接合層)で接合されている。また、導体板150は銅リボン201によってセラミックス絶縁基板103上の配線層104と接続されている。セラミックス絶縁基板103の裏面に設けられた配線層102は支持部材110にはんだ層109を介して接合されている。セラミックス絶縁基板103と配線層102をもって配線基板と称する。配線層102,104はCu配線である。なお、図1における他の符号は、それぞれ、ケース111、外部端子112、ボンディングワイヤ113、封止材114を示している。   The wiring layer 102 on the ceramic insulating substrate 103 and the collector electrode 106 ′ of the semiconductor chip 101 are joined by a sintered joining layer 105 (first sintered joining layer). The emitter electrode 106 of the semiconductor chip and the conductor plate 150 are joined by a sintered joining layer 105 ′ (second sintered joining layer). The conductor plate 150 is connected to the wiring layer 104 on the ceramic insulating substrate 103 by a copper ribbon 201. The wiring layer 102 provided on the back surface of the ceramic insulating substrate 103 is bonded to the support member 110 via the solder layer 109. The ceramic insulating substrate 103 and the wiring layer 102 are referred to as a wiring substrate. The wiring layers 102 and 104 are Cu wiring. 1 indicate the case 111, the external terminal 112, the bonding wire 113, and the sealing material 114, respectively.

本実施例では、焼結接合層105と焼結接合層105’は、88wt%の酸化第二銅粒子(接合後は純銅化)と12wt%のジエチレングリコールモノブチルエーテルを混合した接合材料を用いて形成した。焼結接合層105と焼結接合層105’の厚さは80μmであり、焼結接合層105よりも焼結接合層105’の剛性が高くなるように構成されている。   In this embodiment, the sintered bonding layer 105 and the sintered bonding layer 105 ′ are formed using a bonding material in which 88 wt% cupric oxide particles (pure copper after bonding) and 12 wt% diethylene glycol monobutyl ether are mixed. did. The thickness of the sintered bonding layer 105 and the sintered bonding layer 105 ′ is 80 μm, and the rigidity of the sintered bonding layer 105 ′ is higher than that of the sintered bonding layer 105.

本実施例の焼結接合層105と焼結接合層105’の形成方法を説明する。   A method for forming the sintered bonding layer 105 and the sintered bonding layer 105 ′ of this embodiment will be described.

セラミックス絶縁基板103の配線層102上の接合箇所にメタルマスクによって接合材料を印刷し、その上に半導体チップ101を配置する。その状態で大気中60℃の熱を約10分間加える。これは予備加熱であり、不要な有機溶剤成分を除去し、ガス発生を抑えるためのプロセスである。次に、0.5MPaで加圧状態にし、水素中で温度を250℃に上昇させて5分間保持する。なお、本実施例では圧力を加えたままとしたが、250℃保持時の加圧は必須ではない。以上のプロセスにより、半導体チップ101のコレクタ電極106’と配線層102とを焼結接合層105で接合した。   A bonding material is printed by a metal mask on a bonding portion on the wiring layer 102 of the ceramic insulating substrate 103, and the semiconductor chip 101 is disposed thereon. In that state, heat at 60 ° C. in the atmosphere is applied for about 10 minutes. This is preheating, which is a process for removing unnecessary organic solvent components and suppressing gas generation. Next, a pressurized state is applied at 0.5 MPa, the temperature is raised to 250 ° C. in hydrogen, and held for 5 minutes. In this embodiment, the pressure is kept applied, but the pressurization at the time of holding at 250 ° C. is not essential. Through the above process, the collector electrode 106 ′ of the semiconductor chip 101 and the wiring layer 102 were joined by the sintered joining layer 105.

次に、半導体チップ101のエミッタ電極106の接合箇所にメタルマスクによって接合材料を印刷し、その上に導体板150を配置する。この後、1.0MPaで加圧状態にする。この後の工程は焼結接合層105と同様の条件で、半導体チップ101のエミッタ電極106とを焼結接合層105’で接合した。   Next, a bonding material is printed with a metal mask on the bonding portion of the emitter electrode 106 of the semiconductor chip 101, and the conductor plate 150 is disposed thereon. Thereafter, the pressure is set at 1.0 MPa. Subsequent steps were performed by bonding the emitter electrode 106 of the semiconductor chip 101 with the sintered bonding layer 105 ′ under the same conditions as the sintered bonding layer 105.

この結果、焼結接合層105の焼結密度は約70%(空隙率30%)、焼結接合層105’の焼結密度は約80%(空隙率20%)であった。また、焼結接合層105の剛性(ヤング率)は84GPa、焼結接合層105’の剛性(ヤング率)は96GPaであり、焼結密度とヤング率は比例関係にあった。   As a result, the sintered density of the sintered joining layer 105 was about 70% (porosity 30%), and the sintered density of the sintered joining layer 105 'was about 80% (porosity 20%). Further, the rigidity (Young's modulus) of the sintered bonding layer 105 was 84 GPa, the rigidity (Young's modulus) of the sintered bonding layer 105 ′ was 96 GPa, and the sintered density and Young's modulus were in a proportional relationship.

本実施例で作製した半導体モジュールに対してパワーサイクル試験を実施した。パワーサイクル試験とは、半導体チップに所定の電流を所定時間流し、半導体チップ自体を発熱させ、所定の温度(本試験では150℃;Tjmax150℃と記す)に上昇した後電流をオフし、所定の温度に冷却(本試験では室温)後、再び通電するという半導体チップ自体の発熱、冷却を繰り返す試験であり、半導体モジュールにおける重要な信頼性試験の一つである。図3 にパワーサイクル試験結果を示す。図3の横軸は発熱、冷却のサイクル数、縦軸はTjmax値の推移を示している。Tjmax値は150℃設定としているが、半導体チップのチップ下接合部、チップ上接合部に損傷が生じ、さらにそれが進展するとその値が上昇する。本試験では上昇割合が初期値の15%上昇時を寿命と判断した。比較のために、焼結接合層105と焼結接合層105’を同一条件で形成した比較サンプルを作製し、同様にパワーサイクル試験を実施した結果を図3に併せて示す。図3に示したように、比較サンプルでは、Tjmax値が約3万回で15%以上上昇した。目標は10万回以上であり、1/3程度であった。一方、本実施例の半導体モジュールでは、サイクル寿命は約50万回と、大幅な信頼性向上を図ることができた。   A power cycle test was performed on the semiconductor module manufactured in this example. In the power cycle test, a predetermined current is passed through a semiconductor chip for a predetermined time, the semiconductor chip itself generates heat, and after rising to a predetermined temperature (150 ° C .; expressed as Tjmax 150 ° C. in this test), the current is turned off. This is a test in which heat generation and cooling of the semiconductor chip itself are repeated after cooling to temperature (room temperature in this test) and then turning on again, and is an important reliability test in semiconductor modules. Figure 3 shows the power cycle test results. In FIG. 3, the horizontal axis represents the number of cycles of heat generation and cooling, and the vertical axis represents the transition of the Tjmax value. Although the Tjmax value is set to 150 ° C., damage occurs in the lower chip bonding portion and upper chip bonding portion of the semiconductor chip, and the value increases as the damage further develops. In this test, the lifetime was determined when the rate of increase was 15% of the initial value. For comparison, a comparative sample in which the sintered bonding layer 105 and the sintered bonding layer 105 ′ are formed under the same conditions is manufactured, and the result of performing the power cycle test in the same manner is also shown in FIG. 3. As shown in FIG. 3, in the comparative sample, the Tjmax value increased by 15% or more after about 30,000 times. The target was 100,000 times or more, about 1/3. On the other hand, in the semiconductor module of this example, the cycle life was about 500,000 times, and the reliability could be greatly improved.

図4は、比較サンプルの損傷個所、及び損傷状態を調べた結果であり、断面状態を示したものである。これによると、主に半導体チップ上の導体板と焼結接合層の間にクラックが進展し、ほぼ破断状態になっていることが確認できた。これが低寿命の原因であったことが判った。本原因を調査するため、半導体チップ上に導体板を設置した構造において、有限要素法による熱ひずみ分布解析を行った。この結果、チップ下接合部よりもチップ上接合部に大きな熱ひずみが生じていることが確認でき、この部位の補強が必要であることが確認された。一方、本実施例の半導体モジュールでは、チップ上接合部に集中する熱ひずみが小さくなっており、接合部の長寿命化を図ることができる。   FIG. 4 is a result of examining the damaged part and the damaged state of the comparative sample, and shows a cross-sectional state. According to this, it was confirmed that cracks developed mainly between the conductor plate on the semiconductor chip and the sintered bonding layer, and the fracture state was almost achieved. It was found that this was the cause of the low life. In order to investigate this cause, thermal strain distribution analysis was performed by the finite element method in a structure in which a conductor plate was installed on a semiconductor chip. As a result, it was confirmed that a larger thermal strain was generated in the joint portion on the chip than in the joint portion under the chip, and it was confirmed that reinforcement of this portion was necessary. On the other hand, in the semiconductor module of this embodiment, the thermal strain concentrated on the on-chip junction is reduced, and the life of the junction can be extended.

また、パワーサイクル試験のほか、周囲環境温度の変化に対応した信頼性評価方法である温度サイクル試験を比較サンプルと本実施例の半導体モジュールについて行った。この結果、パワーサイクル試験と同様の傾向が確認された。   In addition to the power cycle test, a temperature cycle test, which is a reliability evaluation method corresponding to changes in ambient temperature, was performed on the comparative sample and the semiconductor module of this example. As a result, the same tendency as in the power cycle test was confirmed.

本構造の半導体モジュールは、半導体チップ101と熱膨張係数が約9ppm/℃の絶縁配線基板、半導体チップと熱膨張係数が約9ppm/℃の導体板とが接合材を介して接合されているため、高温環境で顕著になる各部材の熱膨張差に起因する熱応力を小さくすることができる。理想的には接合材の熱膨張係数を配線基板のそれに一致させることで、接合材に生じる熱応力が最小になり、長期信頼性が向上する。導体板には銅製のリボンで結線しているため、従来のアルミ製ワイヤボンディングよりも高信頼性を確保できている。   In the semiconductor module of this structure, the semiconductor chip 101 and the insulating wiring board having a thermal expansion coefficient of about 9 ppm / ° C., and the semiconductor chip and the conductor plate having a thermal expansion coefficient of about 9 ppm / ° C. are bonded via a bonding material. Further, it is possible to reduce the thermal stress caused by the difference in thermal expansion of each member that becomes prominent in a high temperature environment. Ideally, by matching the thermal expansion coefficient of the bonding material to that of the wiring board, the thermal stress generated in the bonding material is minimized, and long-term reliability is improved. Since the conductor plate is connected with a copper ribbon, higher reliability can be secured than conventional aluminum wire bonding.

本実施例では、接合時の加熱速度を調整することによって焼結密度の異なる焼結接合層105、焼結接合層105’を形成した例を説明する。焼結接合層105、焼結接合層105’の形成方法以外は実施例1と同じである。   In the present embodiment, an example will be described in which the sintered bonding layer 105 and the sintered bonding layer 105 ′ having different sintered densities are formed by adjusting the heating rate during bonding. Except for the method of forming the sintered bonding layer 105 and the sintered bonding layer 105 ′, it is the same as the first embodiment.

本実施例の焼結接合層105と焼結接合層105’の形成方法を説明する。   A method for forming the sintered bonding layer 105 and the sintered bonding layer 105 ′ of this embodiment will be described.

セラミックス絶縁基板103の配線層102上の接合箇所にメタルマスクによって接合材料を印刷し、その上に半導体チップ101を配置する。その状態で大気中60℃の熱を約10分間加える。次に、0.3MPaで加圧状態にし、水素中で温度を昇温速度10℃/minで250℃に上昇させて5分間保持する。以上のプロセスにより、半導体チップ101のコレクタ電極106’と配線層102とを焼結接合層105で接合した。   A bonding material is printed by a metal mask on a bonding portion on the wiring layer 102 of the ceramic insulating substrate 103, and the semiconductor chip 101 is disposed thereon. In that state, heat at 60 ° C. in the atmosphere is applied for about 10 minutes. Next, a pressure is applied at 0.3 MPa, and the temperature is increased to 250 ° C. in hydrogen at a rate of temperature increase of 10 ° C./min and held for 5 minutes. Through the above process, the collector electrode 106 ′ of the semiconductor chip 101 and the wiring layer 102 were joined by the sintered joining layer 105.

次に、半導体チップ101のエミッタ電極106の接合箇所にメタルマスクによって接合材料を印刷し、その上に導体板150を配置する。その状態で大気中60℃の熱を約10分間加える。次に、0.3MPaで加圧状態にし、水素中で温度を昇温速度5℃/minで250℃に上昇させて5分間保持する。以上のプロセスにより、半導体チップ101のエミッタ電極106とを焼結接合層105’で接合した。   Next, a bonding material is printed with a metal mask on the bonding portion of the emitter electrode 106 of the semiconductor chip 101, and the conductor plate 150 is disposed thereon. In that state, heat at 60 ° C. in the atmosphere is applied for about 10 minutes. Next, a pressure is applied at 0.3 MPa, and the temperature is increased to 250 ° C. at a rate of temperature increase of 5 ° C./min in hydrogen and held for 5 minutes. Through the above process, the emitter electrode 106 of the semiconductor chip 101 was joined by the sintered joining layer 105 '.

この結果、焼結接合層105の焼結密度は約70%(空隙率30%)、焼結接合層105’の焼結密度は約85%(空隙率15%)であった。また、焼結接合層105の剛性(ヤング率)は約80GPa、焼結接合層105’の剛性(ヤング率)は約90GPaであり、焼結密度とヤング率はほぼ比例関係にあった。   As a result, the sintered density of the sintered joining layer 105 was about 70% (porosity 30%), and the sintered density of the sintered joining layer 105 'was about 85% (porosity 15%). Further, the rigidity (Young's modulus) of the sintered bonding layer 105 was about 80 GPa, and the rigidity (Young's modulus) of the sintered bonding layer 105 ′ was about 90 GPa, and the sintered density and Young's modulus were in a substantially proportional relationship.

本実施例で作製した半導体モジュールに対してパワーサイクル試験を実施した結果、サイクル寿命は約70万回と、大幅な信頼性向上を図ることができた。実施例1に比べて寿命が向上したが、加圧力を下げたため、半導体素子へのダメージ低減の効果があったものと考えられる。   As a result of conducting a power cycle test on the semiconductor module manufactured in this example, the cycle life was about 700,000 times, and a significant improvement in reliability could be achieved. Although the lifetime was improved as compared with Example 1, it was considered that the effect of reducing damage to the semiconductor element was obtained because the applied pressure was lowered.

焼結接合層105よりも焼結接合層105’の接合時における加熱速度を遅くすることにより、焼結接合層105よりも焼結接合層105’の空隙率を少なくすることができる。この結果、焼結接合層105よりも焼結接合層105’を高剛性にすることができる。   By lowering the heating rate at the time of bonding the sintered bonding layer 105 ′ than that of the sintered bonding layer 105, the porosity of the sintered bonding layer 105 ′ can be made smaller than that of the sintered bonding layer 105. As a result, the sintered bonding layer 105 ′ can be made more rigid than the sintered bonding layer 105.

本実施例では、接合材料の溶剤濃度を変更することによって焼結密度の異なる焼結接合層105、焼結接合層105’を形成した例を説明する。焼結接合層105、焼結接合層105’の形成方法以外は実施例1と同じである。   In this embodiment, an example will be described in which the sintered bonding layer 105 and the sintered bonding layer 105 ′ having different sintering densities are formed by changing the solvent concentration of the bonding material. Except for the method of forming the sintered bonding layer 105 and the sintered bonding layer 105 ′, it is the same as the first embodiment.

本実施例の焼結接合層105と焼結接合層105’の形成方法を説明する。焼結接合層105を形成する接合材料として、80wt%の酸化第二銅粒子(接合後は純銅化)と20wt%のジエチレングリコールモノブチルエーテルを混合した材料を用いた。   A method for forming the sintered bonding layer 105 and the sintered bonding layer 105 ′ of this embodiment will be described. As a bonding material for forming the sintered bonding layer 105, a material in which 80 wt% cupric oxide particles (pure copper after bonding) and 20 wt% diethylene glycol monobutyl ether were mixed was used.

セラミックス絶縁基板103の配線層102上の接合箇所にメタルマスクによって接合材料を印刷し、その上に半導体チップ101を配置する。次に、半導体チップ101のエミッタ電極106の接合箇所にメタルマスクによって接合材料を印刷し、その上に導体板150を配置する。その状態で大気中60℃の熱を約10分間加える。次に、0.3MPaで加圧状態にし、水素中で温度を250℃に上昇させて5分間保持する。以上のプロセスにより、半導体チップ101のコレクタ電極106’と配線層102、及び、半導体チップ101のエミッタ電極106と導体板150とを一括で接合した。   A bonding material is printed by a metal mask on a bonding portion on the wiring layer 102 of the ceramic insulating substrate 103, and the semiconductor chip 101 is disposed thereon. Next, a bonding material is printed with a metal mask on the bonding portion of the emitter electrode 106 of the semiconductor chip 101, and the conductor plate 150 is disposed thereon. In that state, heat at 60 ° C. in the atmosphere is applied for about 10 minutes. Next, a pressurized state is applied at 0.3 MPa, the temperature is raised to 250 ° C. in hydrogen and held for 5 minutes. Through the above process, the collector electrode 106 ′ and the wiring layer 102 of the semiconductor chip 101, and the emitter electrode 106 and the conductor plate 150 of the semiconductor chip 101 were joined together.

次に、半導体チップ101のエミッタ電極106の接合箇所にメタルマスクによって接合材料を印刷し、その上に導体板150を配置する。焼結接合層105‘を形成する接合材料として、90wt%の酸化第二銅粒子(接合後は純銅化)と10wt%のジエチレングリコールモノブチルエーテルを混合した材料を用いた。その状態で大気中60℃の熱を約10分間加える。次に、0.3MPaで加圧状態にし、水素中で温度を昇温速度5℃/minで250℃に上昇させて5分間保持する。以上のプロセスにより、半導体チップ101のエミッタ電極106とを焼結接合層105’で接合した。   Next, a bonding material is printed with a metal mask on the bonding portion of the emitter electrode 106 of the semiconductor chip 101, and the conductor plate 150 is disposed thereon. As a bonding material for forming the sintered bonding layer 105 ′, a material obtained by mixing 90 wt% cupric oxide particles (pure copper after bonding) and 10 wt% diethylene glycol monobutyl ether was used. In that state, heat at 60 ° C. in the atmosphere is applied for about 10 minutes. Next, a pressure is applied at 0.3 MPa, and the temperature is increased to 250 ° C. at a rate of temperature increase of 5 ° C./min in hydrogen and held for 5 minutes. Through the above process, the emitter electrode 106 of the semiconductor chip 101 was joined by the sintered joining layer 105 '.

この結果、焼結接合層105の焼結密度は約75%(空隙率25%)、焼結接合層105’の焼結密度は約91%(空隙率9%)であった。また、焼結接合層105の剛性(ヤング率)は約80GPa、焼結接合層105’の剛性(ヤング率)は約95GPaであり、焼結密度とヤング率は比例関係にあった。   As a result, the sintered density of the sintered joining layer 105 was about 75% (porosity 25%), and the sintered density of the sintered joining layer 105 'was about 91% (porosity 9%). Further, the rigidity (Young's modulus) of the sintered bonding layer 105 was about 80 GPa, and the rigidity (Young's modulus) of the sintered bonding layer 105 ′ was about 95 GPa, and the sintered density and Young's modulus were in a proportional relationship.

本実施例で作製した半導体モジュールに対してパワーサイクル試験を実施した結果、サイクル寿命は約70万回と、実施例2と同等の高信頼性を示した。   As a result of performing a power cycle test on the semiconductor module manufactured in this example, the cycle life was about 700,000 times, indicating high reliability equivalent to that of Example 2.

なお、実施例1,2では焼結接合部105、105’を個別に接合したが、本実施例のように焼結接合層105より焼結接合層105’に溶剤濃度が低いペーストを塗布して同時に接合することでも焼結接合層105よりも焼結接合層105’の空隙率を少なくすることができる。この結果、焼結接合層105よりも焼結接合層105’を高剛性にすることができる。   In Examples 1 and 2, the sintered joints 105 and 105 ′ were individually joined, but a paste having a lower solvent concentration was applied to the sintered joint layer 105 ′ than the sintered joint layer 105 as in this example. The porosity of the sintered bonding layer 105 ′ can be made smaller than that of the sintered bonding layer 105 by bonding at the same time. As a result, the sintered bonding layer 105 ′ can be made more rigid than the sintered bonding layer 105.

本実施例では、焼結接合層105を構成する材料と、焼結接合層105’を構成する材料を変えることによって、焼結接合層105よりも焼結接合層105’の剛性を高くした例を説明する。焼結接合層105、焼結接合層105’の構成以外は実施例1と同じである。   In this example, the rigidity of the sintered bonding layer 105 ′ is made higher than that of the sintered bonding layer 105 by changing the material forming the sintered bonding layer 105 and the material forming the sintered bonding layer 105 ′. Will be explained. Except for the configuration of the sintered bonding layer 105 and the sintered bonding layer 105 ′, it is the same as the first embodiment.

本実施例では、焼結接合層105を形成する接合材料として、焼結銀ペーストを用い、焼結接合層105’を形成する接合材料として、90wt%の酸化第二銅粒子(接合後は純銅化)と10wt%のジエチレングリコールモノブチルエーテルを混合した材料を用いて、焼結接合層105の形成条件として加圧力を0.1MPaとした以外は、実施例1と同じ方法で焼結接合層105、焼結接合層105’を形成した。   In this embodiment, a sintered silver paste is used as a bonding material for forming the sintered bonding layer 105, and 90 wt% cupric oxide particles (pure copper after bonding) are used as the bonding material for forming the sintered bonding layer 105 ′. ) And 10 wt% of diethylene glycol monobutyl ether, and using the same method as in Example 1, except that the applied pressure was set to 0.1 MPa as a forming condition of the sintered bonding layer 105, A sintered bonding layer 105 ′ was formed.

この結果、焼結接合層105の焼結密度は約90%(空隙率10%)、焼結接合層105’の焼結密度は約90%(空隙率10%)であった。また、焼結接合層105の剛性(ヤング率)は約60GPa、焼結接合層105’の剛性(ヤング率)は約88GPaであった。   As a result, the sintered density of the sintered bonding layer 105 was about 90% (porosity 10%), and the sintered density of the sintered bonding layer 105 'was about 90% (porosity 10%). The rigidity (Young's modulus) of the sintered bonding layer 105 was about 60 GPa, and the rigidity (Young's modulus) of the sintered bonding layer 105 ′ was about 88 GPa.

本実施例で作製した半導体モジュールに対してパワーサイクル試験を実施した結果、サイクル寿命は約50万回であった。   As a result of conducting a power cycle test on the semiconductor module manufactured in this example, the cycle life was about 500,000 times.

本実施例では、焼結接合層105と焼結接合層105’の厚さを変えることによって、焼結接合層105よりも焼結接合層105’の剛性を見かけ高くした例を説明する。焼結接合層105、焼結接合層105’の構成以外は実施例1と同じである。厚さは焼結接合層105が約80μm、焼結接合層105’が約50μmとした。焼結接合層105、105’とも焼結密度は約80%(空隙率20%)、剛性(ヤング率)は双方とも約90GPaであった。   In this embodiment, an example will be described in which the rigidity of the sintered bonding layer 105 ′ is apparently higher than that of the sintered bonding layer 105 by changing the thicknesses of the sintered bonding layer 105 and the sintered bonding layer 105 ′. Except for the configuration of the sintered bonding layer 105 and the sintered bonding layer 105 ′, it is the same as the first embodiment. The thickness was about 80 μm for the sintered bonding layer 105 and about 50 μm for the sintered bonding layer 105 ′. Both the sintered bonding layers 105 and 105 ′ had a sintered density of about 80% (void ratio 20%) and rigidity (Young's modulus) of about 90 GPa.

本実施例で作製した半導体モジュールに対してパワーサイクル試験を実施した結果、サイクル寿命は約30万回と、従来のはんだよりも10倍の信頼性向上を図ることができた。   As a result of conducting a power cycle test on the semiconductor module manufactured in this example, the cycle life was about 300,000 times, which was 10 times higher than the conventional solder.

本発明の半導体装置は各種の電力変換装置に適用することができる。電力変換装置に本発明の半導体装置を適用することによって、高温環境の場所に搭載でき、かつ専用の冷却器を持たなくても長期的な信頼性を確保することが可能になる。   The semiconductor device of the present invention can be applied to various power conversion devices. By applying the semiconductor device of the present invention to the power conversion device, long-term reliability can be ensured even if it can be mounted in a place of a high temperature environment and does not have a dedicated cooler.

また、インバータ装置及び電動機は、高速車両や電気自動車にその動力源として組み込むことができる。この自動車においては、動力源から車輪に至る駆動機構を簡素化できたため、ギヤーの噛込み比率の違いにより変速していた従来の自動車に比べ、変速時のショックが軽減され、スムーズな走行が可能で、振動や騒音の面でも従来よりも軽減することができる。   Further, the inverter device and the electric motor can be incorporated as a power source in a high-speed vehicle or an electric vehicle. In this car, the drive mechanism from the power source to the wheels has been simplified, so the shock at the time of shifting is reduced and smooth running is possible compared to the conventional car that has been shifting due to the difference in gear engagement ratio. Thus, vibration and noise can be reduced as compared with the conventional case.

更に、本実施例の半導体装置を組み込んだインバータ装置は冷暖房機に組み込むことも可能である。この際、従来の交流電動機を用いた場合よりも高い効率を得ることができる。これにより、冷暖房機使用時の電力消費を低減することができる。また、室内の温度が運転開始から設定温度に到達するまでの時間を、従来の交流電動機を用いた場合よりも短縮できる。   Furthermore, the inverter device incorporating the semiconductor device of this embodiment can be incorporated into an air conditioner. In this case, higher efficiency can be obtained than when a conventional AC motor is used. Thereby, the power consumption at the time of air-conditioning machine use can be reduced. Moreover, the time until the room temperature reaches the set temperature from the start of operation can be shortened compared to the case where the conventional AC motor is used.

本実施例と同様の効果は、半導体装置が他の流体を撹拌又は流動させる装置、例えば洗濯機、流体循環装置等に組み込まれた場合でも享受できる。   The same effect as that of the present embodiment can be enjoyed even when the semiconductor device is incorporated in a device that stirs or flows another fluid, such as a washing machine or a fluid circulation device.

101…半導体チップ、102…配線層、103…セラミックス絶縁基板、105、105’…焼結接合層、106…エミッタ電極、106’…コレクタ電極、110…支持部材、150…導体板、201…銅リボン DESCRIPTION OF SYMBOLS 101 ... Semiconductor chip, 102 ... Wiring layer, 103 ... Ceramic insulating substrate, 105, 105 '... Sintered bonding layer, 106 ... Emitter electrode, 106' ... Collector electrode, 110 ... Support member, 150 ... Conductor plate, 201 ... Copper ribbon

Claims (6)

表面電極及び裏面電極を備える半導体チップが回路基板に搭載された構成の半導体モジュールであって、
半導体チップの裏面電極と回路基板の配線を接続した第1の焼結接合層と、半導体チップの表面電極と導電板とを接続した第2の焼結接合層を備え、第1の焼結接合層よりも第2の焼結接合層の剛性が高いことを特徴とする半導体モジュール。
A semiconductor module having a configuration in which a semiconductor chip having a front electrode and a back electrode is mounted on a circuit board,
A first sintered bonding layer comprising a first sintered bonding layer connecting the back electrode of the semiconductor chip and the wiring of the circuit board; and a second sintered bonding layer connecting the surface electrode of the semiconductor chip and the conductive plate. A semiconductor module, wherein the second sintered bonding layer has higher rigidity than the layer.
請求項1に記載の半導体モジュールにおいて、
第1の焼結接合層の空隙率よりも第2の焼結接合層の空隙率の方が低いことを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A semiconductor module, wherein the porosity of the second sintered bonding layer is lower than the porosity of the first sintered bonding layer.
請求項1に記載の半導体モジュールにおいて、
第1の焼結接合層が銅であり、第2の焼結接合層が銀であることを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A semiconductor module, wherein the first sintered bonding layer is copper and the second sintered bonding layer is silver.
請求項1に記載の半導体モジュールにおいて、
第1の焼結接合層の厚さよりも第2の焼結接合層の厚さが薄いことを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A semiconductor module, wherein the thickness of the second sintered bonding layer is smaller than the thickness of the first sintered bonding layer.
請求項1に記載の半導体モジュールにおいて、
第1の焼結接合層及び第2の焼結接合層が銅であることを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A semiconductor module, wherein the first sintered bonding layer and the second sintered bonding layer are copper.
請求項1に記載の半導体モジュールにおいて、
前記導電板と、他の素子あるいは前記回路基板の配線とを電気的に接続するワイヤまたはリボン状の配線部材を備えることを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A semiconductor module comprising a wire or ribbon-like wiring member that electrically connects the conductive plate and other elements or wiring of the circuit board.
JP2015016283A 2015-01-30 2015-01-30 Semiconductor module Pending JP2016143685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016283A JP2016143685A (en) 2015-01-30 2015-01-30 Semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016283A JP2016143685A (en) 2015-01-30 2015-01-30 Semiconductor module

Publications (1)

Publication Number Publication Date
JP2016143685A true JP2016143685A (en) 2016-08-08

Family

ID=56568810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016283A Pending JP2016143685A (en) 2015-01-30 2015-01-30 Semiconductor module

Country Status (1)

Country Link
JP (1) JP2016143685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198747A1 (en) * 2017-04-27 2018-11-01 株式会社 日立パワーデバイス Semiconductor device
WO2019044798A1 (en) 2017-08-28 2019-03-07 日立化成株式会社 Method for manufacturing power semiconductor device, sheet for hot pressing, and thermosetting resin composition for hot pressing
CN109727960A (en) * 2017-10-31 2019-05-07 三菱电机株式会社 Semiconductor module, its manufacturing method and power-converting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198747A1 (en) * 2017-04-27 2018-11-01 株式会社 日立パワーデバイス Semiconductor device
JP2018186220A (en) * 2017-04-27 2018-11-22 株式会社 日立パワーデバイス Semiconductor device
WO2019044798A1 (en) 2017-08-28 2019-03-07 日立化成株式会社 Method for manufacturing power semiconductor device, sheet for hot pressing, and thermosetting resin composition for hot pressing
CN109727960A (en) * 2017-10-31 2019-05-07 三菱电机株式会社 Semiconductor module, its manufacturing method and power-converting device
JP2019083283A (en) * 2017-10-31 2019-05-30 三菱電機株式会社 Semiconductor module, manufacturing method thereof, and power converter
CN109727960B (en) * 2017-10-31 2023-11-21 三菱电机株式会社 Semiconductor module, method for manufacturing the same, and power conversion device

Similar Documents

Publication Publication Date Title
JP6111764B2 (en) Power module substrate manufacturing method
JP4958735B2 (en) Power semiconductor module manufacturing method, power semiconductor module manufacturing apparatus, power semiconductor module, and joining method
JP4904767B2 (en) Semiconductor device
JP6061248B2 (en) Bonding method and semiconductor module manufacturing method
JP6072667B2 (en) Semiconductor module and manufacturing method thereof
WO2014148425A1 (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
JP5214936B2 (en) Semiconductor device
JP2016167527A (en) Semiconductor module and manufacturing method of the same
JP6206494B2 (en) Semiconductor device
KR102154373B1 (en) Power module
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
WO2011040313A1 (en) Semiconductor module, process for production thereof
WO2015114987A1 (en) Power module substrate, power module substrate manufacturing method, and power module using power module substrate
WO2017221730A1 (en) Power semiconductor device and method for manufacturing power semiconductor device
JP2014127537A (en) Semiconductor device using conductive bonding material and method of manufacturing semiconductor device
JP2011216772A (en) Method of manufacturing semiconductor device, and bonding jig
JP2005260181A (en) Resin-sealed semiconductor device and manufacturing method thereof
JP5031677B2 (en) Manufacturing method of bonded structure
JP2009231716A (en) Bonding material and method of manufacturing semiconductor module
JP2016143685A (en) Semiconductor module
JP5018250B2 (en) Semiconductor device and manufacturing method thereof
JP5252024B2 (en) Semiconductor device
JP6677886B2 (en) Semiconductor device
JP2017092168A (en) Semiconductor module and power converter
JP4877046B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112