JP2004107728A - Joining material and joining method - Google Patents

Joining material and joining method Download PDF

Info

Publication number
JP2004107728A
JP2004107728A JP2002272364A JP2002272364A JP2004107728A JP 2004107728 A JP2004107728 A JP 2004107728A JP 2002272364 A JP2002272364 A JP 2002272364A JP 2002272364 A JP2002272364 A JP 2002272364A JP 2004107728 A JP2004107728 A JP 2004107728A
Authority
JP
Japan
Prior art keywords
metal
joining
temperature
bonding
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002272364A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagasawa
長澤 浩
Kaori Mikojima
神子島 かおり
Naoaki Kogure
小榑 直明
Masayoshi Hirose
廣瀬 政義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002272364A priority Critical patent/JP2004107728A/en
Priority to CNB038009056A priority patent/CN100337782C/en
Priority to KR1020047000955A priority patent/KR20050040812A/en
Priority to DE60326760T priority patent/DE60326760D1/en
Priority to US10/484,454 priority patent/US20040245648A1/en
Priority to TW092125572A priority patent/TWI284581B/en
Priority to PCT/JP2003/011797 priority patent/WO2004026526A1/en
Priority to EP03788702A priority patent/EP1578559B1/en
Publication of JP2004107728A publication Critical patent/JP2004107728A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/203Ultrasonic frequency ranges, i.e. KHz

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining material and a joining method used for joining two or more parts particularly using composite type metal nano-particles as for a joining material and a joining method used for mutually joining various electronic parts such as a semiconductor device or various parts such as machine parts. <P>SOLUTION: Composite type metal nano-particles obtained by joining and coating the surroundings of nuclei consisting of metal particles having a mean particle diameter of about ≤100 nm with an organic matter consisting essentially of C, H and/or O are used as the main components for joining. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の各種電子部品や機械部品等の各種部品を相互に接合するのに使用される接合材料及び接合方法に係り、特に複合型金属ナノ粒子を用いて、2つ以上の部品を接合するのに使用される接合材料、及び接合方法に関する。
【0002】
【従来の技術】
従来、例えば電子部品の通電端子と回路基板上の回路パターン端子との電気的接合には、はんだ合金によるフェイスダウンボンディング等が多用される。つまり、裸の素子と呼ばれている外装されていない能動、受動素子であるチップ(chip)、ペレット(pellet)、ダイ(die)等の半導体素子を回路基板上に電気的に接合しつつ実装する場合には、半導体素子の電極パッド上に予めはんだバンプを形成し、このはんだバンプを回路基板の端子電極に対向して下向きに配置し高温に加熱して融着する、いわゆるフェイスダウンボンディング法が広く採用されるようになってきている。このはんだバンプは、例えばCr(クロム)、Cu(銅)及びAu(金)からなる3層の金属薄膜(Under Bump Metals)の上に、レジストを用いて、めっき法或いは蒸着法によって一般に形成される。この実装方法は、接合後の機械的強度が強く、かつ半導体素子の電極と回路基板の端子電極との電気的接合を一括して行えることから、有効な半導体素子の実装方法とされている。
【0003】
また、上述したはんだバンプ以外にも、プリント配線板への電子部品の実装等、金属間接合には、錫−鉛共晶合金を含むはんだペーストを用いたリフローソルダリングが広く利用されている。このリフローソルダリングは、はんだペーストを接合対象の金属表面に接触させて加熱し溶融させることにより、接合する金属面から溶融しているはんだへと一部金属の拡散を生じさせ、冷却した際に、界面に合金または金属間化合物を形成することによって物理的、電気的な接合を行うようにしたものである。この従来多用されてきた錫−鉛共晶合金は、その溶融温度が低く、接合すべき金属面の侵食を引き起こすといった心配が少ない利点を有している。また、機械部品を組合せて構造物を作製する際にも、はんだ付けを含むろう付けによる接合が多用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、近年、地球環境保全の観点から鉛の使用が厳しく制限されており、使用された電気器具を廃棄する時の鉛の環境への流出を避けたり、また製造時のろう付けの際に、錫−鉛はんだ素材の溶融に伴う鉛の蒸散や、酸化鉛などの飛散が不可避的に起こって作業環境を汚染する問題を回避したりするため、鉛を含まない素材を使用したはんだ接合やろう付け方法の開発が進められている。その結果融点が180℃程度の共晶はんだに対してはその代替品としてのSn−Ag系はんだ(融点〜250℃程度)が実用化されている。
【0005】
しかしながら、例えば、前述のフェイスダウンボンディング法等によって1回目の接合を行い、一旦パッケージングされた部品に再度別部品の接合を1回目と同種のはんだを用いて行えば、1回目に接合したはんだが2回目の加熱によって再溶融するので、1回目の接合部が損傷を受ける不具合を生じる。
【0006】
そこで、従来96%のPbを含有し、300℃の融点を持つ高温はんだを1回目の接合に用い、2回目の接合では通常の共晶はんだやSn−Ag系はんだを用いる手段をとって来ている。
然るに、前述の鉛の使用規制に対応出来るような、鉛不使用の高融点のはんだ材料の開発に成功した例は無い。したがって、やむを得ず1回目のはんだとして96%ものPbを含有する高融点はんだを利用している。
したがって、鉛の使用ができなければ、この実装技術が使用できなくなる。
【0007】
また、例えば熱交換器や航空機の各部品を接合する場合には、ろう付けが多用されている。このろう付けによる接合方法では、必然的に金属材料(ろう材)の融点以上までの加熱を伴うので、接合時の被接合部分の温度が450〜1000℃と非常に高くなり、このように、最高1000℃もの高温に曝されれば、一般的には、部材の広範囲な熱変形や大規模な熱応力・歪を生じることが不可避となる。このため、形状、寸法の精密さを要求される上記部品を、熱変形等の不都合を起こすことなく、比較的低温で確実に接合できるようにしたものの開発が強く望まれている。
【0008】
なお、金属超微粒子を有する金属ペーストでボールを形成し、このボールを前記はんだバンプの代わりに使用する方法も提案されている(特開平9−326416号公報等参照)。しかし、ここで使用されている金属超微粒子は、例えば、金属を真空中、若干のガスの存在下で蒸発させることによって気相中から金属のみから成る超微粒子を凝結させて、超微細な金属微粒子を得る方法で作製された金属単体の超微粒子であると考えられ、安定性、物性及びコストの面で問題があると考えられる。
【0009】
本発明は上記事情に鑑みて為されたもので、鉛を使用しない高温はんだ代替として使用できるようにした接合材料及び接合方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、平均粒径が100nm程度以下の金属粒子からなる金属核の周囲をC,H及び/またはOを主成分とする有機物で結合・被覆した構造を持つ複合型金属ナノ粒子を接合の主剤とした接合材料である。
請求項2に記載の発明は、有機酸金属塩を起源として生成した有機物で結合・被覆した複合型金属ナノ粒子を接合の主剤とした接合材料である。
請求項3に記載の発明は、金属塩と有機物質とを非水系溶媒中で加熱合成した後、これを加熱還元することによって得た複合型金属ナノ粒子を接合の主剤とした接合材料である。
請求項4に記載の発明は、金属塩と金属酸化物と金属水酸化物と有機物とを混合して加熱合成した後、これを加熱還元することによって得た複合型金属ナノ粒子を接合の主剤とした接合材料である。
請求項5に記載の発明は、金属塩とアルコール系有機物とを混合して加熱合成した後、これに還元剤を加えて加熱還元することによって得た複合型金属ナノ粒子を接合の主剤とした接合材料である。
請求項6に記載の発明は、金属塩と有機物とを非水系溶媒中で加熱合成した後、これに還元剤を加えて加熱還元することによって得た複合型金属ナノ粒子を接合の主剤とした接合材料である。
【0011】
金属粒子の溶融開始温度は、粒径が小さくなると低下することが知られているが、その効果が現れはじめるのは100nm以下であり、20nm以下になるとその効果が顕著となる。特に、金属によっては、10nm以下になるとバルク状態の該金属の持つ融点よりかなり低い温度で互いに溶融結合する。
【0012】
更に、溶融に先立って、粒子の焼結現象が起きるがこの焼結開始温度もバルクの場合よりも著しく低下し、低温焼結によって結合が生じる。
例えば、平均粒径が20nmのAg超微粒子の場合、60〜80℃の低温で焼結が開始するという公表データ(佐藤稔雄、日本金属学会シンポジウム予稿「金属超微粒子の製作から応用まで」(1975)P.26 参照)がある。
【0013】
また、金属核の表面を有機物で結合・被覆した構造を持つ複合型金属ナノ粒子は、この有機物に金属核を保護する保護皮膜としての役割を果たさせることで、有機溶媒中に安定して均一に分散し、しかも粒子としての高い性状安定性を有する。従って、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子)を均一に分散させた液状の接合材料を提供することができる。
【0014】
例えば、その大きさが5nm程度のクラスタ状の銀超微粒子の場合、その見かけ上の溶融開始温度は210℃程度であり、この温度以上に加熱することで銀超微粒子を溶融結合又は焼結することができる。
【0015】
一方、粒子長20nm以下の超微粒子を他の材料と混合した接着剤及びこれを用いる接着方法が提案されている(例えば、特開平5−54942号公報等参照)。
本方法に於ては、超微粒子は金属単独の形態で媒質中に存在しており、本発明とは異なって、有機物の被覆を全く有していない。我々の実験によると、このような裸の状態の金属超微粒子は、相互に凝集・粗大化しやすく不均一な分散状態に陥りやすいことがわかっている。
【0016】
超微粒子が凝集して大きな粒子が主体の集合になってしまえば、大きな粒子の溶融開始温度や焼結温度が超微粒子のそれよりも上昇する結果、低温接合が困難、又は不可能になるので、本方法の利点は大幅に損なわれることになる。
【0017】
本発明による骨材添加の場合、ナノ粒子よりも大きい粒子が存在することは前記凝集・粗大化粒子の場合と類似するが、前者ではもともとあったナノ粒子は依然として存在しているので、低温焼結が進行するのに対して、後者では、ナノ粒子はほとんど消失してしまうので低温焼結が起こらない点が大きく異なっている。
【0018】
本発明に於ては、請求項1で触れたように金属超微粒子を単独に媒質に分散させるのとは異なり、金属核の周囲を有機物で結合・被覆した複合金属ナノ粒子を媒質に分散させているため、該粒子同士が相互に凝集・粗大化せず、均一分散の状態を保持するので、前述の不都合を回避出来る。
【0019】
他方、前記有機物に窒素(N)、硫黄(S)等のように、C,HまたはO以外の元素を含む場合、接合時の加熱によって有機物を分解・蒸散させる工程を実行しても、有機物中に含まれる、NまたはS成分が焼結金属中に残留することがある。
【0020】
その結果、接合層の導電性に悪影響を及ぼす場合がある。例えば、高密度実装部品のように動作時の電流密度が高い部分で、このような理由で導電率が低下することは由々しい問題を生じると考えられる。
【0021】
一方、本発明が実現する金属接合部では、用いる複合型金属ナノ粒子にNやSは含まれていないので、有機物の分解・蒸散後も接合部にNやSが残留する現象は全く起こることが無い。
したがって、本発明法によって高密度実装部品を製造した場合、NやS成分の残留による導電率の低下を生じることが無い。
【0022】
請求項7に記載の発明は、金属核の平均粒径が100nm程度以下の複合型金属ナノ粒子を有機溶媒に分散する際、分散の条件を調整することによって、分散後の接合材料の状態を液状、又はスラリー、ペースト乃至はクリーム状、又は固化乃至はゼリー状に半固化して用いる接合材料である。
【0023】
前記液状の場合、金属部分の全液体に対する重量比率は、1%以上30%以下とするのが実用上好ましい。
有機溶媒としては例えば、トルエン、キシレン、ヘキサン、オクタン、デカン、シクロヘキサン、ピネン、リモネン等が挙げられる。
【0024】
また、スラリー、ペースト乃至はクリーム状の場合、全流動体に対する金属部分の重量比率を15〜90%とするのが実用上好ましい。
更に、固化乃至はゼリー状に半固化して用いる場合、全接合材料に占める金属部分の重量比率を20〜95%とするのが実用上好ましい。
【0025】
請求項8に記載の発明は有機物で結合・被覆された金属核を持ち、金属核部分の平均粒径が100nm程度以下の複合型金属ナノ粒子と平均粒子径が100μm程度以下の大きさの骨材とを有機溶媒に分散させて種々の粘度に調整したことを特徴とする接合材料である。
このように平均粒子径が100μm程度以下の大きさの骨材を添加することで、複合型金属ナノ粒子単独の場合と異なり、各種の特性を加えることが出来る。
【0026】
請求項9に記載の発明は前記骨材が金属、プラスチックまたは金属・プラスチック以外の無機物のうちのどれか1種又は複数を組合せて用いる接合材料である。この骨材の大きさはより好ましくは0.1〜1.0μmである。
【0027】
請求項10に記載の発明は前記無機物が、例えば各種のセラミック、炭素、ダイヤモンドまたはガラスなどを含むものである接合材料である。
前記骨材は金属の場合、その材質はAl、Cu、Mg、Fe、Ni、Au、Ag、Pdのうちの1種又は、それらの複数の元素からなる粉末で、このように各種の特性に優れた金属粉末を骨材として添加することによって、接合部の安定した強度・靱性等を確保したり、導電性を改善したりすることが出来る。
【0028】
また骨材がプラスチックの場合は接合部の軽量化の効果を得る。特に、耐熱性プラスチック粉末、例えばポリイミド、ポリアラミド、またはポリエーテルエーテルケトン粉末等を使用すると、接合時の加熱温度に曝されてもプラスチックとしての変質・劣化の度合いが少ないので都合が良い。
更に、骨材が金属・プラスチック以外の全ての無機物のいずれかである場合は、接合部の軽量化と強度増加が同時に達成出来る。
また、上記骨材はそのうちの1種類の物質だけを単独で用いる場合もあれば、多くの物質の中から必要に応じて複数の種類の物質を選定して、これらを組合せて用いても良い。
【0029】
次に表1は前記骨材の接合材料全体に対する含有率を示す。但し、金属の骨材の場合は骨材に複合型金属ナノ粒子の金属核部分の量を加算した全金属量の比率で示す。
【表1】

Figure 2004107728
表1は各態様に対する骨材の含有率の上限値を示している。
上記含有率が上限値を超えると、接合材料としての加熱時流動性が著しく低下するので、微細な隙間を接合材料で充填するに際し、充填の不完全な部分を生じやすくなる。従って、骨材の接合材料全体に対する容積比率を表1の範囲内とすることで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子)と骨材とを適切な比率で配合した所望の流動性を有する接合材料を提供することができる。
【0030】
請求項11に記載の発明は、複合型金属ナノ粒子の金属部分の材質がAu、Ag、Pd、Pt、Cu、又はNiのいずれか1つ、又は複数である接合材料である。
請求項12に記載の発明は、2つ以上の部品を接合するにあたり、平均粒径が100nm程度以下の金属粒子からなる核の周囲を有機物で結合・被覆した複合型金属ナノ粒子を有する接合材料を前記部品間の全面もしくは一部に接触・介在させ、全体もしくは局所にエネルギを付与し、前記接合材料に含まれる複合型金属ナノ粒子の形態を変化させて、複合型金属ナノ粒子相互間、及び/または複合型金属ナノ粒子と部品表面を接合することを特徴とする接合方法である。
【0031】
形態を変化した複合型金属ナノ粒子は、バルク状態の金属と同じ特性に変わり、特に溶融開始温度はバルク状態の融点まで上昇する。例えば、金属核の粒子径が5nmの銀の場合、その融点は210℃程度であるが、バルクでは961.93℃であり、一度接合すると961.93℃以上でなければ再溶融しない。従って、高温はんだに求められる、繰返しの接合には理想的な接合材料となる。
【0032】
また、従来の接合法によると、材種によって接合困難かまたは不可能な場合があるが、この接合方法によると、金属、プラスチック、及びセラミック等のうちの同種材同士、または異種材の組合せ等、基本的にあらゆる材料の接合を行うことができる。
なお、スプレー、塗布、ディップ、スピンコート、印刷、ディスペンス法、又は挿入等の任意の方法で接合材料を部品間の全面または一部に接触・介在させることができる。
【0033】
請求項13に記載の発明は、前記エネルギの付与を加熱によって行うか、又は加熱と加圧を併用して行う接合方法である。
ここで加熱方法としては、例えば燃焼熱、電熱、熱流体、エネルギビーム照射、部品自体への通電、誘導加熱、誘電加熱、乃至はプラズマ等を用いる手段によることが考えられる。
【0034】
請求項14に記載の発明は、前記加熱の温度を400℃以下の範囲内の値にする接合方法である。接合時の加熱による温度範囲を限定した理由を述べる。実用的によく用いられる貴金属の超微粒子の粒径と溶融開始温度の関係を検討する。例えば、図1はAu超微粒子の粒径と溶融開始温度の関係を示す(C.R.M.Wronski,Brit.J.Appl.Phys.,18(1967) P.1731 参照)。
図1で明らかなように、粒径が10nmよりも小さくなると急激な溶融開始温度の低下が現出する。例えば粒子径が2nmの場合、溶融開始温度は120℃付近まで低下している。
【0035】
また、接合のためには極力高温に加熱した方が原子拡散・焼結が活発になるので望ましいが、半導体素子の高温による劣化を避けるため、400℃を超える温度まで加熱することは許容されていない。
以上の理由から、本発明による接合のための加熱温度を400℃以下に限定している。
【0036】
請求項15に記載の発明は、前記接合を、大気中、乾燥空気中、酸化ガス雰囲気、不活性ガス雰囲気、真空中またはミストの存在量を低減した環境下で行う接合方法である。
被接合面の汚染・変質・劣化などを回避し、清浄表面で信頼性のある接合を行うために上記環境を利用することが出来る。
【0037】
請求項16に記載の発明は接合実施に先立って、被接合面の表面処理を行うことによって表面の粗度や活性、清浄度等を適切なものとし、接合の信頼性を改善するために行う。
表面処理の手段としては、例えば、洗浄、純水洗浄、薬液エッチング、コロナ放電処理、火炎処理、プラズマ処理、紫外線照射、レーザ照射、イオンビームエッチング、スパッタエッチング、陽極酸化、機械的研削、流体研削またはブラスト加工等のうちの少なくとも一つの操作を行うことが考えられる。
【0038】
請求項17に記載の方法は、前記接合材料に含まれる複合型金属ナノ粒子の形態を変化させて接合した構造物に、他の部品を、前記接合方法によるか、又は他の方法を用いて接合することを特徴とする接合方法である。
【0039】
これは、従来のはんだ・ろう付けではその接合温度がはんだ、ろう材の融点に等しいため、一度接合したポイントが再度同じ温度以上に加熱されると溶融・流動化することになるが、本法の場合、これと全く異なる、金属粒子の超微細化による溶融開始温度及び焼結温度の降下現象を用いているため先に接合した部分が、後に接合する際に加える熱によって再溶融することはない。すなわち、例えば直径5nmの複合銀ナノ粒子の場合、210℃以上で加熱され、一度接合してしまうと、接合部の融点はバルクの金属銀の融点である960℃以上まで上昇する。従って、再度の加熱によって960℃以上に到達しない限り、再溶融することは無いので、事実上ワンウェーの接合方法が可能となる。このことは、部品の全体を暖めるリフロー法によっては温度差を持った異種のろう付け材料を順次用いない限り、複数回数のろう付けが困難であったことに対し、大きく異なった特徴である。
【0040】
すなわち、本法では同一接合材料を用いて、繰り返しろう付けができることになる。従って、本法によって作製された部品にさらに本法を用いて部品を接合することは勿論、接合された部品同士を接合することもできる。
これにより、予めリフロー法により接合された部品を再度リフロー法により何度でも接合できることになり、特に電子部品の実装においては非常に有効な方法になる。
【0041】
請求項18に記載の発明は、2個以上の独立に作られた部品からなる構造物の接合方法であって、該構造物間の全面もしくは一部に、金属核部分の大きさが平均粒径で100nm程度以下である複合型金属ナノ粒子を接合の主剤とした接合材料を接触・介在させ、前記接合材料に含まれる複合型金属ナノ粒子の形態を変化させて前記構造物を接合することを特徴とする接合方法である。
【0042】
請求項19に記載の発明は、接合温度以上に加熱され固化して部材を接合する接合材料であって、前記接合材料が、金属からなる金属核と、該金属核と化学結合しており、該金属核の外殻を被覆する有機物とからなり、固化後に再溶融する温度が、前記接合温度より2倍以上高いことを特徴とする接合材料である。
【0043】
請求項20に記載の発明は、接合温度以上に加熱され固化して部材を接合する、室温で固体又は粉末状の接合材料であって、固化後に再溶融する温度が、前記接合温度より2倍以上高いことを特徴とする接合材料である。
【0044】
請求項21に記載の発明は、接合温度以上に加熱され固化して部材を接合する接合材料であって、前記接合材料が、金属からなる金属核と、その外殻を被覆する有機物とからなり、該有機物は窒素と硫黄を含んでおらず、固化後に再溶融する温度が、前記接合温度より2倍以上高いことを特徴とする接合材料である。
【0045】
請求項22に記載の発明は、前記金属核の直径が、0.5〜100nmであることを特徴とする請求項19乃至21のいずれかに記載の接合材料である。
請求項23に記載の発明は、前記金属核の材質が、Au,Ag,Pd,Pt,CuまたはNiのいずれか1つ又は複数であることを特徴とする請求項19乃至22のいずれかに記載の接合材料である。
【0046】
請求項24に記載の発明は、前記接合材料は、更に、平均粒径が0.1〜100μmの骨材を含んでいることを特徴とする請求項19乃至23のいずれかに記載の接合材料である。
請求項25に記載の発明は、前記骨材は、金属、プラスチック、又は無機物の1種又は複数を組合わせたものであることを特徴とする請求項24記載の接合材料である。
請求項26に記載の発明は、前記無機物は、セラミック、炭素、ダイヤモンドまたはガラスであることを特徴とする請求項25記載の接合材料である。
【0047】
請求項27に記載の発明は、接合温度以上に加熱され固化して部材を接合する接合材料であって、前記接合材料が、金属と無機物が結合した金属塩と、有機物とを混合し、該混合物を加熱することによって、該金属塩から無機物を分離するとともに、該金属からなる粒子径0.5〜100nmの金属核の外殻に、該有機物を被覆した金属ナノ粒子を含むことを特徴とする接合材料である。
【0048】
請求項28に記載の発明は、前記有機物はアルコール系有機物であることを特徴とする請求項27記載の接合材料である。
請求項29に記載の発明は、前記混合および加熱は、非水系溶媒中で行うことを特徴とする請求項27または28記載の接合材料である。
【0049】
請求項30に記載の発明は、金属からなる直径0.5nm以上100nm以下の金属核の外殻を有機物で被覆された金属ナノ粒子を含む接合材料を接合すべき2つ以上の部品の間に塗布し、前記有機物の分解開始温度以上であり、前記金属核を構成する金属のバルクとしての溶融温度以下の温度に加熱し、前記部材の間に塗布した接合材料の有機物を金属核から分解し金属核を融着させバルク金属を形成して前記2つ以上の部品を接合し、前記接合後の部材と他の部材との間に前記接合材料を塗布し、前記有機物の分解開始温度以上であり、上記金属核を構成する金属のバルクとしての溶融温度以下温度に加熱し、前記バルク金属を溶融せずに、前記接合後の部材と他の部材との間に塗布した接合材料の有機物を金属核から分解し金属核を融着させて前記接合後の部材と他の部材とを接合する接合方法である。
【0050】
請求項31に記載の発明は、金属からなる直径0.5nm以上100nm以下の金属核の外殻を有機物で被覆された金属ナノ粒子を含む接合材料を接合すべき2つ以上の部品の間に、互いに隣接する前記接合部材間の間隔を、前記接合部材に含まれる金属核の大きさの10〜10,000倍になるように塗布し、前記有機物の分解開始温度以上であり、前記金属核を構成する金属のバルクとしての溶融温度以下の温度に加熱し、前記部材の間に塗布した接合材料の有機物を金属核から分解し金属核を融着させバルク金属を形成して前記2つ以上の部品を接合する接合方法である。
【0051】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
先ず、図2に示すように、実質的に金属成分からなる金属核10と、C,HまたはOを主成分とする有機物からなる結合・被覆層(有機物層)12とからなる構造を持つ複合型金属ナノ粒子14を作製する。このような複合型金属ナノ粒子14は、金属核10が有機化合物からなる結合・被覆層12により覆われているので安定であり、しかも溶媒中において凝集する傾向が小さい。
【0052】
この複合型金属ナノ粒子14は、有機化合物と出発物質である金属塩、例えば炭酸塩、蟻酸塩または酢酸塩由来の金属成分から構成されており、その中心部が金属成分からなり、その周りを結合性有機化合物が取り囲んでいる。この時、有機化合物と金属成分とは、その一部または全部が化学的に結合した状態で一体化して存在しており、界面活性剤によりコーティングされることにより安定化された従来のナノ粒子と異なり、安定性が高いとともに、より高い金属濃度においても安定である。
【0053】
複合型金属ナノ粒子14の金属核10の平均粒径は、100nm程度以下、好ましくは20nm以下、更に好ましくは10nm以下とする。この金属核10の平均粒径の最小値は、可能な限り特に限定されないが、一般的には0.5nm程度、好ましくは1.0nm程度である。このように構成することにより、金属核10を構成する金属が持つ溶融開始温度よりもかなり低い温度で金属核10を溶融させることができ、これによって、低温焼結が可能となる。例えば、その大きさが5nm程度のクラスタ状の銀超微粒子の場合、その溶融開始温度は210℃程度であり、この温度以上に加熱することで銀超微粒子を焼結・溶融結合することができる。
【0054】
この複合型金属ナノ粒子14は、例えば非水系溶媒中でかつ結合性有機物の存在下で金属塩、例えば炭酸塩、蟻酸塩または酢酸塩をその分解還元温度以上でかつ結合性有機物の分解温度以下で加熱することによって製造することができる。金属成分としてはAg、AuまたはPdが用いられ、結合性の有機物としては、例えば炭素数5以上の脂肪酸および炭素数8以上の高級アルコールが用いられる。
【0055】
加熱温度は、金属塩、例えば炭酸塩、蟻酸塩または酢酸塩の分解還元温度以上でかつ結合性有機物の分解温度以下である、例えば酢酸銀の場合、分解開始温度が200℃であるので、200℃以上かつ上記の結合性有機物が分解しない温度に保持すればよい。この場合、結合性有機物が分解しにくいようにするために、加熱雰囲気は、不活性ガス雰囲気であることが好ましいが、非水溶剤の選択により、大気下においても加熱可能である。
【0056】
また、加熱するに際し、各種アルコール類を添加することもでき、反応を促進することが可能になる。アルコール類は、上記効果が得られる限り特に制限されず、例えばラウリルアルコール、グリセリン、エチレングリコール等が挙げられる。アルコール類の添加量は、用いるアルコールの種類等に応じて適宜定めることができるが、通常は重量部として金属塩100に対して5〜20程度、好ましくは5〜10とすれば良い。
加熱が終了した後、公知の精製法により精製を行う。精製法は例えば遠心分離、膜精製、溶媒抽出等により行えば良い。
【0057】
そして、複合型金属ナノ粒子14をトルエン、キシレン、ヘキサン、オクタン、デカン、シクロヘキサン、ピネンまたはリモネン等の所定の有機溶媒に分散させて接合材料を作製する。金属核10の表面を有機物からなる結合・被覆層(有機物層)12で被覆した構造を持つ複合型金属ナノ粒子14は、この有機物層12に金属核10を保護する保護皮膜としての役割を果たさせることで、溶媒中に安定して分散し、しかも粒子としての高い性状安定性を有する。従って、低温で焼結・溶融結合可能な結合素材(複合型金属ナノ粒子14)を均一に分散させた液状の接合材料を得ることができる。
【0058】
ここで、複合型金属ナノ粒子14を、金属部分の全液体に対する重量比率が好ましくは1%以上、85%以下となるように有機溶媒に分散させ、これに分散剤やゲル化剤を適宜添加して液状化することで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子14)を均一に分散させた所望の加熱時の流動性を有する液状の接合材料を得ることができる。複合型金属ナノ粒子14の金属部分の全液体に対する重量比率が85%を超えると、液状の接合材料としての流動性が著しく低下するので、微細な隙間を液状の接合材料で充填するに際し、充填の不完全な部分を生じやすくなる。
更に、複合型金属ナノ粒子14の金属部分の全液体に対する重量比率が1%以下では、接合材料に含まれる有機成分が多過ぎる結果、焼成時の脱ガスが不十分となって、接合層に欠陥を生じやすいので本比率を上記範囲に限定している。
【0059】
複合型金属ナノ粒子14を、金属部分の全流動体に対する重量比率が好ましくは15〜90%となるように有機溶媒に分散させ、これに分散剤やゲル化剤を適宜添加して液状化し、スラリー、ペーストまたはクリーム状に調整することで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子14)を均一に分散させた、所望の加熱時の流動性を有するスラリー、ペーストまたはクリーム状の接合材料を得ることができる。
【0060】
複合型金属ナノ粒子14を、金属部分の全接合材料に対する重量比率が、好ましくは20〜95%となるように有機溶媒に分散させ、これに分散剤やゲル化剤を適宜添加して液状化し、例えば棒状、紐状またはボール状等の各種形状に成形して固化させるか、またはゼリー状に半固化させることで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子14)を均一に分散させた、所望の加熱時の流動性を有する固化若しくは半固化した接合材料を得ることができる。
【0061】
この時、必要に応じて、0.1〜10μm、より好ましくは0.1〜1.0μm程度の大きさの、例えば金属粉末、プラスチック粉末、金属・プラスチック以外の無機物粉末等のうち単独で、もしくはこれらを組合せた骨材を添加して、接合材料中に均一に分散させてもよい。このように、骨材を添加することで、複合型金属ナノ粒子単独の場合と異なり、各種の特性を加えることができる。
【0062】
この骨材としては、例えばAl、Cu、Mg、Fe、Ni、Au、AgまたはPdからなる金属粉末を使用することができる。このように、各種電気電導性に優れた金属粉末を骨材として添加することで、安定した電気電導性を確保することができる。
【0063】
骨材がそれぞれの接合材料に占める含有率は、接合材料の態様によって表1のように上限値で定めている。上記含有率が上限値を超えると、接合材料としての加熱時の流動性が著しく低下するので、微細な隙間を液状の接合材料で充填するに際し、充填の不完全な部分を生じやすくなる。従って、骨材の全体に対する容積比率を表1の範囲内とすることで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子)と骨材とを適切な比率で配合した所望の流動性を有する接合材料を提供することができる。
【0064】
次に、前述の接合材料を使用して、セラミック回路基板に半導体素子(半導体チップ)をフェイスダウンボンディング法で接合する場合について、図3を参照して説明する。なお、ここでは、複合型金属ナノ粒子14としての、その大きさが5nmのクラスタ状の銀超微粒子からなる金属核10を有する複合型銀超微粒子を使用した例を示す。
【0065】
先ず、図3(a)に示すように、例えばペースト状の接合材料をセラミック回路基板20の端子電極22の所定の位置に塗布(印刷)して、主に複合型金属ナノ粒子14からなる高さ約2μmの複合金属バンプ24を形成する。
このような複合金属バンプ24は、分散粒子である複合型金属ナノ粒子14が非常に細かいので、複合型金属ナノ粒子14を混合して攪拌した状態ではほぼ透明であるが、溶媒の種類、複合型金属ナノ粒子濃度、温度等を適宜に選択することにより、表面張力、粘性等の物性値を調整することができる。
【0066】
次に図3(b)に示すように、半導体素子30を下向きにしたフェイスダウン法を用い、半導体素子30に設けた電極パッド部と前記複合金属バンプ24との位置合せを行う、いわゆるフリップチップ方式で、複合金属バンプ上に半導体素子30の電極パッド部を接合し、必要に応じて、半導体素子30の重量によるレベリングを行う。なお、フェイスアップ法を用いても良いことは勿論である。
【0067】
この状態で、例えば複合型銀超微粒子を使用した場合には、この溶融開始温度が210℃程度であるので、210〜250℃で約30分間の熱風炉により低温焼成を行うことにより、図3(c)に示すように、半導体素子30の電極パッド部と回路基板20の端子電極22とを、銀層からなる接合層32を介して接合する。つまり、複合金属バンプ24に含まれるトルエン等の溶媒を蒸発させ、更に複合金属バンプ24の主成分である複合型金属ナノ粒子14を、この結合・被覆層(有機物層)12(図2参照)の金属核(銀超微粒子)10から離脱させる温度への加熱、或いは結合・被覆層12自体の分解温度以上への加熱によって、金属核10から結合・被覆層12を離脱させるか、或いは結合・被覆層12を分解して蒸散させる。これにより、金属核(銀超微粒子)10同士を直接接触させ焼結させて銀層を形成し、この銀層からなる接合層32と半導体素子30の電極パッド部及び回路基板20の端子電極22とを直接接触させて凝着を起こさせ、この結果として、半導体素子30の電極パッド部と回路基板20の端子電極22とを銀層からなる接合層32を介して接合させる。
【0068】
このように、例えば210〜250℃の温度範囲で低温焼成して半導体素子と回路基板とを接合することで、従来のはんだ接合を代替出来る鉛不使用の接合が出来る。
しかも、前述のように、接合部の再溶融温度が接合温度よりもはるかに高いので一旦接合を行った後でも必要に応じて何回でも同じ温度、あるいはそれ以上の温度でも別の部品を接合できるという大きな効果を奏する。
【0069】
この時、前述のように、骨材として、導電率が高い金属粉末を添加した接合材料を使用することで、該金属粉末を介して高い導電率を確保して半導体素子実装の信頼性を高めることもできる。このように、金属粉末を添加した接合材料を使用すると、前述の複合型金属ナノ粒子の形態の変化に伴って、複合型金属ナノ粒子と骨材(金属粉末)の表面とが直接接触して接合する。このことは、骨材として、プラスチック粉末やセラミック等の無機物の粉末を使用した場合も同様である。
【0070】
そして、図3(d)に示すように、セラミック回路基板20の裏面側にも半導体素子30aを接合する場合には、前述と同様に、例えばペースト状の接合材料をセラミック回路基板20の端子電極22aの所定の位置に塗布して複合金属バンプ24aを形成し、この状態で、例えば200〜250℃、複合銀ナノ粒子を使用した場合には、210〜250℃で約30分間熱風炉により低温焼成を行う。これによって、半導体素子30aの電極パッド部と回路基板20の端子電極22aとを、銀層からなる接合層32aを介して接合する。
【0071】
この時、形態が変化した複合型金属ナノ粒子、即ち先に形成した銀層からなる接合層32は、バルク状態の金属と同じ特性に変わっており、特に接合層はバルク状態と同じ融点、すなわち961.93℃を持ち、一度融着した場合、961.93℃以上でなければ再溶融しなくなっている。従って、この裏面への接合時の加熱によって溶融することはなく、高温はんだに求められる、繰返しの接合には理想的な接合材料を提供する。
【0072】
なお、このペースト状の接合材料の供給は、単なる塗布法に限ることなく、スプレー、刷毛塗り、ディップ、スピンコート、ディスペンス、スクリーン印刷、転写法等の任意の方法で行うことができる。
また、この接合法によると、金属、プラスチック、及びセラミック等無機物のうちの同種材の部品同士、または異種材の部品の組合せ等、基本的にあらゆる部品の接合を行うことができる。
【0073】
なお、この例では、接合材料に含まれる複合型金属ナノ粒子の形態を変化させるためのエネルギの付与を熱風炉による加熱(低温焼成)で行っているが、エネルギビームによる局部加熱、粒子ビーム照射、部品間の通電、部品の誘導加熱または誘電加熱等、任意の方法によるものであっても良い。複合型金属ナノ粒子は、これらの方法により形態を変化させられると、相互にあるいは添加された金属粉末やその他添加物及び各種接合対象材との間で焼結、及び/又は溶融によって接合する。
【0074】
本発明は、前記加熱の温度を400℃以下の範囲内の値にする接合方法である。接合時の加熱による温度範囲を限定した理由を述べる。実用的によく用いられる貴金属の超微粒子の粒径と溶融開始温度との関係を図1を例として検討する。
図1によると、Au超微粒子の粒径が10nmよりも小さくなると急激な溶融開始温度点低下が現出する。例えば、粒子径が2nmの場合、この温度は120℃まで低下している。
一方、加熱温度が400℃を超えると電子部品で使われている半導体素子等の劣化・損傷が著しくなる。
以上の考察の結果、加熱温度の上限を400℃としている。
【0075】
ここで、前記接合を、大気中、乾燥空気中、不活性ガス雰囲気、真空中またはミストの存在量を低減した環境下で行うことができる。特に、例えば清浄雰囲気で接合を行うことによって、接合前に被接合面が空中に飛散・浮遊する鉱油、油脂、溶剤、水などのミストで汚染されることを回避することができる。
【0076】
更に、接合に先立って行う前記部品の被接合面の表面処理として、有機溶剤や純水による洗浄・脱脂、超音波洗浄、薬液エッチング、コロナ放電処理、火炎処理、プラズマ処理、紫外線照射、レーザ照射、イオンビームエッチング、スパッタエッチング、陽極酸化、機械的研削、流体研削またはブラスト加工の少なくとも一つの操作を行うことができる。
これにより、接合工程に先立って被接合部材表面の汚染・異物を除去したり、該表面の粗度を変化したりすることによって接合に適した表面形態を創成することができる。
【0077】
【発明の効果】
以上説明したように、この発明によれば、鉛を使用しない高温はんだ代替として使用できるようにした接合材料及び接合方法を提供することができる。
【図面の簡単な説明】
【図1】Au超微粒子の粒径と溶融開始温度の関係を示す図である。
【図2】本発明に使用される有機物による結合・被覆構造を持つ複合型金属ナノ粒子を模式的に示す図である。
【図3】本発明における一つの実施の形態の接合方法を工程順に示す図である。
【符号の説明】
10  金属核
12  接合・被覆層
14  複合型金属ナノ粒子
20  回路基板
22,22a  端子電極
24  複合金属バンプ
30,30a  半導体素子
32,32a  接合層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bonding material and a bonding method used for bonding various parts such as various electronic parts and mechanical parts such as semiconductor elements to each other, and in particular, by using composite metal nanoparticles, two or more parts. The present invention relates to a joining material and a joining method used for joining components.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, face-down bonding using a solder alloy or the like is frequently used for electrical connection between a current-carrying terminal of an electronic component and a circuit pattern terminal on a circuit board. That is, a semiconductor element such as a chip, a pellet, a die, or the like, which is an active or passive element that is not packaged and is called a naked element, is mounted on a circuit board while being electrically bonded. In this case, a so-called face-down bonding method is used in which a solder bump is formed in advance on an electrode pad of a semiconductor element, and the solder bump is arranged facing down to a terminal electrode of a circuit board and is heated and fused at a high temperature. Is becoming widely adopted. The solder bumps are generally formed on a three-layer metal thin film (Under Bump Metals) made of, for example, Cr (chromium), Cu (copper), and Au (gold) by using a resist by plating or vapor deposition. You. This mounting method is considered to be an effective method for mounting a semiconductor element because the mechanical strength after bonding is high and the electrical connection between the electrode of the semiconductor element and the terminal electrode of the circuit board can be performed collectively.
[0003]
In addition to the above-described solder bumps, reflow soldering using a solder paste containing a tin-lead eutectic alloy is widely used for metal-to-metal bonding, such as mounting of electronic components on a printed wiring board. In this reflow soldering, the solder paste is brought into contact with the metal surface to be joined and heated and melted, causing some metal diffusion from the metal surface to be joined to the molten solder, and when cooling, Physical and electrical bonding is performed by forming an alloy or an intermetallic compound at the interface. This tin-lead eutectic alloy, which has been frequently used in the past, has an advantage that its melting temperature is low and there is little fear of causing erosion of a metal surface to be joined. Also, when fabricating structures by combining mechanical parts, joining by brazing including soldering is often used.
[0004]
[Problems to be solved by the invention]
However, in recent years, the use of lead has been severely restricted from the viewpoint of global environmental protection, and it has been necessary to avoid the leakage of lead into the environment when discarding used electrical equipment, and to use brazing during manufacturing. To avoid the problem of lead-evaporation due to the melting of the tin-lead solder material and the scatter of lead oxide that inevitably occur and contaminate the work environment, solder joints using materials that do not contain lead will be used. Development of the attachment method is underway. As a result, Sn-Ag based solder (melting point to about 250 ° C.) as a substitute for eutectic solder having a melting point of about 180 ° C. has been put to practical use.
[0005]
However, for example, if the first bonding is performed by the above-described face-down bonding method or the like, and another component is bonded to the packaged component again using the same type of solder as the first bonding, the solder bonded first time Is melted by the second heating, so that the first joint is damaged.
[0006]
Therefore, conventionally, high-temperature solder containing 96% of Pb and having a melting point of 300 ° C. is used for the first joining, and a means using ordinary eutectic solder or Sn—Ag based solder is used for the second joining. ing.
However, there has been no example of successful development of a lead-free high melting point solder material that can respond to the above-mentioned regulations on the use of lead. Therefore, a high melting point solder containing as much as 96% Pb is used as the first solder.
Therefore, if lead cannot be used, this mounting technique cannot be used.
[0007]
Also, for example, when joining components of a heat exchanger or an aircraft, brazing is frequently used. In the joining method by brazing, the temperature of the portion to be joined at the time of joining becomes extremely high as 450 to 1000 ° C., since the joining method inevitably involves heating to the melting point of the metal material (brazing material) or more. When exposed to temperatures as high as 1000 ° C. at maximum, it is generally inevitable that a wide range of thermal deformation and large-scale thermal stress / strain of the member will occur. For this reason, there is a strong demand for the development of a component capable of reliably joining the above-mentioned parts requiring precision in shape and dimensions at a relatively low temperature without causing inconvenience such as thermal deformation.
[0008]
A method of forming a ball with a metal paste having ultrafine metal particles and using the ball instead of the solder bump has also been proposed (see Japanese Patent Application Laid-Open No. 9-326416). However, the metal ultrafine particles used here are, for example, the metal is evaporated in the presence of some gas in a vacuum to condense the ultrafine particles consisting of only the metal from the gas phase, thereby forming an ultrafine metal. It is considered to be ultrafine particles of a single metal produced by a method of obtaining fine particles, and it is considered that there are problems in stability, physical properties and cost.
[0009]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a bonding material and a bonding method that can be used as a high-temperature solder replacement without using lead.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a composite type metal having a structure in which a metal core composed of metal particles having an average particle size of about 100 nm or less is bonded and covered with an organic substance containing C, H and / or O as a main component. It is a bonding material that uses nanoparticles as the main agent for bonding.
The invention according to claim 2 is a bonding material in which composite metal nanoparticles bonded and coated with an organic substance generated from an organic acid metal salt as a main agent for bonding.
The invention according to claim 3 is a bonding material in which a composite metal nanoparticle obtained by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent and then reducing the resultant by heating is used as a main agent for bonding. .
The invention according to claim 4 is a method of mixing a metal salt, a metal oxide, a metal hydroxide, and an organic substance, heating and synthesizing the resultant, and then reducing the composite by heating and reducing the composite metal nanoparticle. It is a bonding material that was used.
The invention according to claim 5 is that, after mixing and heat-synthesizing a metal salt and an alcohol-based organic substance, a composite metal nanoparticle obtained by adding a reducing agent to the mixture and reducing by heating is used as a main agent for bonding. It is a joining material.
The invention according to claim 6 is a method in which a composite metal nanoparticle obtained by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent, adding a reducing agent thereto and heat-reducing the metal salt and the organic substance is used as a main agent for bonding. It is a joining material.
[0011]
It is known that the melting start temperature of metal particles decreases as the particle size decreases, but the effect starts to appear at 100 nm or less, and the effect becomes significant at 20 nm or less. In particular, depending on the metal, when the thickness is less than 10 nm, the metal is mutually melt-bonded at a temperature considerably lower than the melting point of the metal in a bulk state.
[0012]
Further, prior to melting, a particle sintering phenomenon occurs, but the sintering onset temperature is also significantly lower than in the case of bulk, and bonding occurs by low-temperature sintering.
For example, in the case of Ag ultrafine particles having an average particle diameter of 20 nm, published data that sintering starts at a low temperature of 60 to 80 ° C. ) P. 26).
[0013]
In addition, the composite metal nanoparticles having a structure in which the surface of the metal nucleus is bonded and covered with an organic material can be stably formed in an organic solvent by allowing the organic material to function as a protective film for protecting the metal nucleus. It is uniformly dispersed and has high property stability as particles. Therefore, it is possible to provide a liquid bonding material in which a bonding material (composite metal nanoparticles) that can be sintered and melt-bonded at a low temperature is uniformly dispersed.
[0014]
For example, in the case of cluster ultrafine silver particles having a size of about 5 nm, the apparent melting start temperature is about 210 ° C. By heating above this temperature, the ultrafine silver particles are fused or sintered. be able to.
[0015]
On the other hand, an adhesive in which ultrafine particles having a particle length of 20 nm or less are mixed with another material and an adhesive method using the same have been proposed (see, for example, JP-A-5-54942).
In the present method, the ultrafine particles are present in the medium in the form of a metal alone and, unlike the present invention, have no organic coating. According to our experiments, it is known that such bare metal ultrafine particles tend to aggregate and coarsen each other and easily fall into an uneven dispersion state.
[0016]
If the ultrafine particles aggregate and the large particles become the main body, the melting start temperature and sintering temperature of the large particles will be higher than those of the ultrafine particles, so low-temperature bonding will be difficult or impossible. However, the advantages of the method will be greatly impaired.
[0017]
In the case of adding the aggregate according to the present invention, the presence of particles larger than the nanoparticles is similar to the case of the agglomerated / coarsened particles, but in the former, the original nanoparticles are still present, so that low-temperature sintering is performed. In contrast to the progress of sintering, the latter is largely different in that low-temperature sintering does not occur because nanoparticles are almost completely eliminated.
[0018]
In the present invention, unlike the case where the ultrafine metal particles are dispersed alone in the medium as described in claim 1, the composite metal nanoparticles in which the periphery of the metal nucleus is bound and covered with an organic substance are dispersed in the medium. As a result, the particles do not agglomerate and coarsen with each other, and maintain a state of uniform dispersion, so that the above-described inconvenience can be avoided.
[0019]
On the other hand, when the organic substance contains elements other than C, H or O, such as nitrogen (N) and sulfur (S), even if a step of decomposing and evaporating the organic substance by heating at the time of joining is performed, The N or S component contained therein may remain in the sintered metal.
[0020]
As a result, the conductivity of the bonding layer may be adversely affected. For example, it is considered that a decrease in conductivity in a portion where the current density during operation is high, such as a high-density mounted component, for such a reason causes a serious problem.
[0021]
On the other hand, in the metal joint realized by the present invention, since the composite metal nanoparticles used do not contain N or S, the phenomenon that N or S remains at the joint even after the decomposition and evaporation of organic matter occurs at all. There is no.
Therefore, when a high-density mounting component is manufactured by the method of the present invention, the conductivity does not decrease due to the residual N and S components.
[0022]
In the invention according to claim 7, when dispersing composite metal nanoparticles having an average particle diameter of the metal core of about 100 nm or less in an organic solvent, the state of the bonding material after dispersion is adjusted by adjusting the conditions of dispersion. It is a bonding material that is semi-solidified into a liquid, a slurry, a paste or a cream, or a solid or a jelly.
[0023]
In the case of the liquid, it is practically preferable that the weight ratio of the metal portion to the total liquid is 1% or more and 30% or less.
Examples of the organic solvent include toluene, xylene, hexane, octane, decane, cyclohexane, pinene, limonene and the like.
[0024]
In the case of a slurry, paste or cream, it is practically preferable that the weight ratio of the metal portion to the total fluid is 15 to 90%.
Further, when the solidified or semi-solidified jelly is used, it is practically preferable that the weight ratio of the metal portion to the entire joining material be 20 to 95%.
[0025]
The invention according to claim 8 has a composite metal nanoparticle having a metal core bonded and coated with an organic substance, wherein the metal core portion has an average particle size of about 100 nm or less, and a bone having an average particle size of about 100 μm or less. A bonding material characterized by dispersing a material in an organic solvent and adjusting the viscosity to various values.
By adding the aggregate having an average particle diameter of about 100 μm or less as described above, various characteristics can be added unlike the case of the composite metal nanoparticles alone.
[0026]
According to a ninth aspect of the present invention, there is provided a bonding material in which the aggregate uses one or more of metal, plastic, and inorganic substances other than metal / plastic. The size of the aggregate is more preferably 0.1 to 1.0 μm.
[0027]
The invention according to claim 10 is a bonding material in which the inorganic substance includes, for example, various kinds of ceramics, carbon, diamond, and glass.
When the aggregate is a metal, the material is Al, Cu, Mg, Fe, Ni, Au, Ag, Pd, or a powder composed of a plurality of these elements. By adding an excellent metal powder as an aggregate, it is possible to secure stable strength and toughness of a joint portion and to improve conductivity.
[0028]
When the aggregate is plastic, the effect of reducing the weight of the joint is obtained. In particular, the use of a heat-resistant plastic powder, such as a polyimide, polyaramid, or polyetheretherketone powder, is convenient because the degree of deterioration and deterioration of the plastic is small even when exposed to the heating temperature at the time of joining.
Further, when the aggregate is any one of all inorganic substances other than metal and plastic, it is possible to simultaneously reduce the weight and increase the strength of the joint.
In addition, the above-mentioned aggregate may use only one kind of the substance alone, or may select a plurality of kinds of substances as necessary from many substances and use them in combination. .
[0029]
Next, Table 1 shows the content ratio of the above-mentioned aggregate to the whole joining material. However, in the case of a metal aggregate, it is indicated by a ratio of the total metal amount obtained by adding the amount of the metal core portion of the composite metal nanoparticles to the aggregate.
[Table 1]
Figure 2004107728
Table 1 shows the upper limit of the content of the aggregate for each embodiment.
If the above content exceeds the upper limit, the fluidity during heating as a joining material is significantly reduced, so that when filling minute gaps with the joining material, an incompletely filled portion is likely to occur. Therefore, by setting the volume ratio of the aggregate to the entire joint material within the range shown in Table 1, the joint material (composite metal nanoparticles) that can be sintered and melt-bonded at a low temperature and the aggregate are mixed in an appropriate ratio. It is possible to provide a bonding material having desired fluidity.
[0030]
The invention according to claim 11 is a bonding material in which the material of the metal portion of the composite metal nanoparticle is one or more of Au, Ag, Pd, Pt, Cu, and Ni.
The invention according to claim 12 is a bonding material having composite metal nanoparticles in which two or more components are bonded and covered with an organic substance around a core made of metal particles having an average particle diameter of about 100 nm or less when bonding two or more parts. The entire surface or a part between the parts contact and intervene, applying energy to the whole or local, changing the form of the composite metal nanoparticles contained in the bonding material, between the composite metal nanoparticles, And / or bonding the composite metal nanoparticles to the surface of the component.
[0031]
The composite metal nanoparticles having changed morphology have the same properties as the metal in the bulk state, and in particular, the melting start temperature rises to the melting point in the bulk state. For example, in the case of silver whose metal core has a particle diameter of 5 nm, its melting point is about 210 ° C., but it is 961.93 ° C. in a bulk. Therefore, it becomes an ideal bonding material for repeated bonding required for high-temperature solder.
[0032]
In addition, according to the conventional joining method, there are cases where joining is difficult or impossible depending on the material type. However, according to this joining method, the same kind of material among metals, plastics, ceramics, etc., or a combination of different materials, etc. Basically, any material can be joined.
The bonding material can be brought into contact with or interposed on the entire surface or a part between the components by any method such as spraying, coating, dipping, spin coating, printing, dispensing, or inserting.
[0033]
A thirteenth aspect of the present invention is a bonding method in which the energy is applied by heating or by using both heating and pressurization.
Here, as the heating method, for example, means using combustion heat, electric heat, thermal fluid, energy beam irradiation, energization to the component itself, induction heating, dielectric heating, or plasma may be used.
[0034]
The invention according to claim 14 is a bonding method in which the heating temperature is set to a value within a range of 400 ° C. or less. The reason for limiting the temperature range by heating during joining will be described. The relationship between the particle size of ultra-fine particles of noble metal, which is often used practically, and the melting start temperature is studied. For example, FIG. 1 shows the relationship between the particle size of Au ultrafine particles and the melting onset temperature (see CRM Wronski, Brit. J. Appl. Phys., 18 (1967), p. 1731).
As is clear from FIG. 1, when the particle size is smaller than 10 nm, a sharp decrease in the melting start temperature appears. For example, when the particle diameter is 2 nm, the melting start temperature has dropped to around 120 ° C.
[0035]
For bonding, it is desirable to heat to as high a temperature as possible because atomic diffusion and sintering become active. However, in order to avoid deterioration of the semiconductor element due to high temperature, heating to a temperature exceeding 400 ° C. is allowed. Absent.
For the above reasons, the heating temperature for bonding according to the present invention is limited to 400 ° C. or less.
[0036]
The invention according to claim 15 is a bonding method in which the bonding is performed in air, dry air, an oxidizing gas atmosphere, an inert gas atmosphere, a vacuum, or an environment in which the amount of mist is reduced.
The above environment can be used to avoid contamination, alteration, deterioration, and the like of the surface to be bonded and to perform reliable bonding on a clean surface.
[0037]
The invention according to claim 16 is performed to improve the reliability of the bonding by making the surface roughness, activity, cleanliness and the like appropriate by performing the surface treatment of the surface to be bonded before performing the bonding. .
As means for surface treatment, for example, cleaning, pure water cleaning, chemical solution etching, corona discharge treatment, flame treatment, plasma treatment, ultraviolet irradiation, laser irradiation, ion beam etching, sputter etching, anodic oxidation, mechanical grinding, fluid grinding Alternatively, it is conceivable to perform at least one operation such as blasting.
[0038]
The method according to claim 17, wherein another component is joined to the structure joined by changing the form of the composite metal nanoparticles contained in the joining material, by the joining method or by another method. This is a joining method characterized by joining.
[0039]
This is because in the conventional soldering and brazing, the joining temperature is equal to the melting point of the solder and brazing material, so if the point once joined is heated again to the same temperature or more, it will melt and fluidize. In the case of the above, a completely different part, the melting start temperature and the sintering temperature drop phenomenon due to ultra-fine metal particles are used, so the previously joined part cannot be re-melted by the heat applied when joining later. Absent. That is, for example, in the case of a composite silver nanoparticle having a diameter of 5 nm, it is heated at 210 ° C. or higher and once bonded, the melting point of the bonded portion rises to 960 ° C. or higher which is the melting point of bulk metallic silver. Therefore, unless the temperature reaches 960 ° C. or more by reheating, re-melting does not occur, so that a one-way joining method can be practically performed. This is a greatly different feature from the fact that it is difficult to perform brazing a plurality of times unless different brazing materials having different temperatures are sequentially used depending on the reflow method for warming the entire part.
[0040]
That is, in this method, brazing can be repeatedly performed using the same bonding material. Therefore, not only the components manufactured by the present method can be joined to the components by the present method, but also the joined components can be joined to each other.
As a result, components that have been previously joined by the reflow method can be joined again and again by the reflow method, which is a very effective method especially for mounting electronic components.
[0041]
The invention according to claim 18 is a method for joining a structure comprising two or more independently formed parts, wherein the size of the metal core portion is an average particle size on the entire surface or a part between the structures. Bonding the structure by contacting and interposing a bonding material having a composite metal nanoparticle having a diameter of about 100 nm or less as a main agent for bonding, and changing the form of the composite metal nanoparticle contained in the bonding material. It is a joining method characterized by the following.
[0042]
The invention according to claim 19 is a bonding material that is heated and solidified to a temperature equal to or higher than a bonding temperature to bond the members, wherein the bonding material is chemically bonded to a metal core made of metal and the metal core, A joining material comprising an organic material that coats the outer shell of the metal nucleus, and having a temperature at which re-melting after solidification is at least twice as high as the joining temperature.
[0043]
The invention according to claim 20 is a bonding material in a solid or powder form at room temperature, which is heated and solidified to a temperature higher than the bonding temperature to bond the members, and the temperature at which the material is remelted after the solidification is twice the bonding temperature. It is a bonding material characterized by being higher than the above.
[0044]
The invention according to claim 21 is a bonding material that is heated and solidified to a temperature equal to or higher than a bonding temperature to bond the members, wherein the bonding material includes a metal core made of a metal and an organic material covering the outer shell. The bonding material is characterized in that the organic material does not contain nitrogen and sulfur, and the temperature at which the organic material remelts after solidification is at least twice as high as the bonding temperature.
[0045]
The invention according to claim 22 is the bonding material according to any one of claims 19 to 21, wherein the diameter of the metal core is 0.5 to 100 nm.
The invention according to claim 23 is characterized in that the material of the metal nucleus is one or more of Au, Ag, Pd, Pt, Cu or Ni. It is a joining material of description.
[0046]
The bonding material according to any one of claims 19 to 23, wherein the bonding material further includes an aggregate having an average particle size of 0.1 to 100 µm. It is.
The invention according to claim 25 is the joining material according to claim 24, wherein the aggregate is one or a combination of metals, plastics, and inorganic substances.
The invention according to claim 26 is the bonding material according to claim 25, wherein the inorganic substance is ceramic, carbon, diamond, or glass.
[0047]
The invention according to claim 27 is a joining material that joins members by being heated and solidified to a joining temperature or higher, wherein the joining material is a mixture of a metal salt in which a metal and an inorganic substance are bonded, and an organic substance. By heating the mixture, the inorganic substance is separated from the metal salt, and the metal core having a particle diameter of 0.5 to 100 nm made of the metal contains metal nanoparticles coated with the organic substance. It is a bonding material to be used.
[0048]
The invention according to claim 28 is the bonding material according to claim 27, wherein the organic substance is an alcohol-based organic substance.
The invention according to claim 29 is the bonding material according to claim 27 or 28, wherein the mixing and heating are performed in a non-aqueous solvent.
[0049]
The invention according to claim 30 is characterized in that a metal material having a diameter of 0.5 nm or more and 100 nm or less made of a metal is bonded between two or more parts to be bonded with a bonding material including metal nanoparticles coated with an organic substance. It is heated to a temperature that is equal to or higher than the decomposition start temperature of the organic substance and is equal to or lower than the melting temperature of the metal constituting the metal core as a bulk, and decomposes the organic substance of the bonding material applied between the members from the metal core. A metal core is fused to form a bulk metal, and the two or more parts are joined together, the joining material is applied between the joined member and another member, and at a temperature not lower than the decomposition start temperature of the organic substance. Yes, heated to a temperature below the melting temperature of the metal constituting the metal core as a bulk, without melting the bulk metal, the organic material of the bonding material applied between the bonded member and another member Decomposes and melts metal nuclei It is a bonding method of bonding a member and another member after the joining by.
[0050]
The invention according to claim 31 is characterized in that a metal material having a diameter of 0.5 nm or more and 100 nm or less made of a metal is bonded between two or more parts to be bonded with a bonding material including metal nanoparticles coated with an organic substance. Coating is performed so that an interval between the joining members adjacent to each other is 10 to 10,000 times the size of a metal nucleus included in the joining member, and is equal to or higher than the decomposition start temperature of the organic substance; Heating to a temperature equal to or lower than the melting temperature of the bulk of the constituent metal, decomposing the organic material of the bonding material applied between the members from the metal nucleus, fusing the metal nucleus to form a bulk metal, and forming the bulk metal. This is a joining method for joining parts.
[0051]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, as shown in FIG. 2, a composite having a structure including a metal core 10 substantially composed of a metal component and a bonding / coating layer (organic substance layer) 12 composed of an organic substance containing C, H or O as a main component. Form the metal nanoparticles 14. Such a composite metal nanoparticle 14 is stable because the metal core 10 is covered with the binding / coating layer 12 made of an organic compound, and has a small tendency to aggregate in a solvent.
[0052]
The composite metal nanoparticles 14 are composed of an organic compound and a metal salt as a starting material, for example, a metal component derived from a carbonate, formate or acetate. A binding organic compound surrounds. At this time, the organic compound and the metal component are present in a state in which a part or all of them are integrated in a state of being chemically bonded, and the conventional nanoparticles stabilized by being coated with a surfactant. Differently, it is more stable and stable at higher metal concentrations.
[0053]
The average particle size of the metal cores 10 of the composite metal nanoparticles 14 is about 100 nm or less, preferably 20 nm or less, more preferably 10 nm or less. The minimum value of the average particle size of the metal core 10 is not particularly limited as much as possible, but is generally about 0.5 nm, preferably about 1.0 nm. With this configuration, the metal core 10 can be melted at a temperature considerably lower than the melting start temperature of the metal constituting the metal core 10, thereby enabling low-temperature sintering. For example, in the case of cluster ultrafine silver particles having a size of about 5 nm, the melting start temperature is about 210 ° C. By heating above this temperature, the ultrafine silver particles can be sintered and melt-bonded. .
[0054]
The composite metal nanoparticles 14 are used, for example, in a non-aqueous solvent and in the presence of a binding organic substance to convert a metal salt, for example, a carbonate, formate or acetate, to a temperature not lower than its decomposition reduction temperature and not higher than the decomposition temperature of the binding organic substance. And can be produced by heating. Ag, Au or Pd is used as the metal component, and as the binding organic substance, for example, a fatty acid having 5 or more carbon atoms and a higher alcohol having 8 or more carbon atoms are used.
[0055]
The heating temperature is equal to or higher than the decomposition reduction temperature of a metal salt, for example, a carbonate, formate or acetate, and is equal to or lower than the decomposition temperature of a binding organic substance. For example, in the case of silver acetate, the decomposition onset temperature is 200 ° C. The temperature may be maintained at a temperature of not less than 0 ° C. and a temperature at which the above-mentioned binding organic substance is not decomposed. In this case, the heating atmosphere is preferably an inert gas atmosphere in order to make it difficult for the binding organic substance to be decomposed. However, heating can be performed even in the atmosphere by selecting a non-aqueous solvent.
[0056]
When heating, various alcohols can be added, and the reaction can be promoted. The alcohol is not particularly limited as long as the above effects are obtained, and examples thereof include lauryl alcohol, glycerin, and ethylene glycol. The amount of the alcohol to be added can be appropriately determined according to the type of the alcohol to be used and the like, but is usually 5 to 20 parts by weight, preferably 5 to 10 relative to 100 parts by weight of metal salt.
After the heating is completed, purification is performed by a known purification method. The purification may be performed by, for example, centrifugation, membrane purification, solvent extraction, or the like.
[0057]
Then, the composite metal nanoparticles 14 are dispersed in a predetermined organic solvent such as toluene, xylene, hexane, octane, decane, cyclohexane, pinene or limonene to prepare a bonding material. The composite metal nanoparticles 14 having a structure in which the surface of the metal core 10 is covered with a bonding / coating layer (organic material layer) 12 made of an organic material serve as a protective film for protecting the metal core 10 on the organic material layer 12. By doing so, it is stably dispersed in a solvent, and has high property stability as particles. Therefore, it is possible to obtain a liquid bonding material in which a bonding material (composite metal nanoparticles 14) that can be sintered and melt-bonded at a low temperature is uniformly dispersed.
[0058]
Here, the composite metal nanoparticles 14 are dispersed in an organic solvent so that the weight ratio of the metal portion to the total liquid is preferably 1% or more and 85% or less, and a dispersant or a gelling agent is appropriately added thereto. By liquefaction, it is possible to obtain a liquid bonding material having desired fluidity at the time of heating in which a bonding material (composite metal nanoparticles 14) capable of being sintered and melt-bonded at a low temperature is uniformly dispersed. it can. When the weight ratio of the metal portion of the composite metal nanoparticles 14 to the total liquid exceeds 85%, the fluidity of the liquid bonding material is significantly reduced, so that when filling the fine gaps with the liquid bonding material, Imperfect part is likely to occur.
Further, when the weight ratio of the metal portion of the composite metal nanoparticles 14 to the total liquid is 1% or less, the amount of organic components contained in the bonding material is too large, so that degassing during firing becomes insufficient, and This ratio is limited to the above range because defects are likely to occur.
[0059]
The composite metal nanoparticles 14 are dispersed in an organic solvent so that the weight ratio of the metal portion to the total fluid is preferably 15 to 90%, and a dispersant or a gelling agent is appropriately added thereto to liquefy, A slurry or paste having desired fluidity at the time of heating, in which a joining material (composite-type metal nanoparticles 14) capable of being sintered and melt-bonded at a low temperature is uniformly dispersed by adjusting to a slurry, paste or cream form. Alternatively, a creamy bonding material can be obtained.
[0060]
The composite metal nanoparticles 14 are dispersed in an organic solvent so that the weight ratio of the metal portion to the total bonding material is preferably 20 to 95%, and a dispersant or a gelling agent is appropriately added thereto to liquefy. For example, a bonding material (composite metal nanoparticle 14) that can be sintered and melt-bonded at a low temperature by being formed into various shapes such as a rod shape, a string shape or a ball shape and solidified, or semi-solidified in a jelly shape. Can be obtained, and a solidified or semi-solidified bonding material having desired fluidity during heating can be obtained.
[0061]
At this time, if necessary, 0.1 to 10 μm, more preferably about 0.1 to 1.0 μm, for example, metal powder, plastic powder, inorganic powder other than metal and plastic alone, etc., Alternatively, an aggregate obtained by combining them may be added to be uniformly dispersed in the joining material. Thus, by adding the aggregate, various characteristics can be added unlike the case of the composite metal nanoparticles alone.
[0062]
As the aggregate, for example, a metal powder made of Al, Cu, Mg, Fe, Ni, Au, Ag, or Pd can be used. Thus, stable electric conductivity can be secured by adding various metal powders having excellent electric conductivity as aggregates.
[0063]
The content of the aggregate in the respective joining materials is determined by the upper limit value as shown in Table 1 depending on the mode of the joining material. If the above content exceeds the upper limit, the fluidity of the joining material during heating is significantly reduced, so that when filling the fine gaps with the liquid joining material, an incompletely filled portion is likely to occur. Therefore, by setting the volume ratio to the entirety of the aggregate within the range shown in Table 1, it is desirable to mix the bonding material (composite metal nanoparticles) that can be sintered and melt-bonded at a low temperature and the aggregate in an appropriate ratio. It is possible to provide a bonding material having fluidity.
[0064]
Next, a case where a semiconductor element (semiconductor chip) is bonded to a ceramic circuit board by a face-down bonding method using the above-described bonding material will be described with reference to FIG. Here, an example is shown in which composite silver ultrafine particles having metal nuclei 10 composed of cluster ultrafine silver particles having a size of 5 nm are used as composite metal nanoparticles 14.
[0065]
First, as shown in FIG. 3A, for example, a paste-like bonding material is applied (printed) to a predetermined position of the terminal electrode 22 of the ceramic circuit board 20, and the high-pressure material mainly composed of the composite metal nanoparticles 14 is applied. A composite metal bump 24 having a thickness of about 2 μm is formed.
Such composite metal bumps 24 are almost transparent when the composite metal nanoparticles 14 which are dispersed particles are very fine because the composite metal nanoparticles 14 are very fine. By appropriately selecting the concentration of the metal nanoparticles, the temperature, and the like, physical properties such as surface tension and viscosity can be adjusted.
[0066]
Next, as shown in FIG. 3B, a so-called flip chip is used in which the electrode pad portion provided on the semiconductor element 30 and the composite metal bump 24 are aligned using a face-down method with the semiconductor element 30 facing downward. The electrode pad portion of the semiconductor element 30 is bonded on the composite metal bump by a method, and leveling is performed according to the weight of the semiconductor element 30 as necessary. Of course, the face-up method may be used.
[0067]
In this state, for example, when composite silver ultrafine particles are used, since the melting start temperature is about 210 ° C., low-temperature sintering is performed at 210 to 250 ° C. for about 30 minutes using a hot air oven to obtain FIG. As shown in (c), the electrode pad portion of the semiconductor element 30 and the terminal electrode 22 of the circuit board 20 are joined via a joining layer 32 made of a silver layer. That is, the solvent such as toluene contained in the composite metal bumps 24 is evaporated, and the composite metal nanoparticles 14 which are the main components of the composite metal bumps 24 are further combined with the bonding / coating layer (organic material layer) 12 (see FIG. 2). The bonding / coating layer 12 is detached from the metal nucleus 10 by heating to a temperature at which the bonding / coating layer 12 itself decomposes or a temperature higher than the decomposition temperature of the bonding / coating layer 12 itself. The coating layer 12 is decomposed and evaporated. As a result, the metal nuclei (ultrafine silver particles) 10 are brought into direct contact with each other and sintered to form a silver layer. The bonding layer 32 made of the silver layer and the electrode pads of the semiconductor element 30 and the terminal electrodes 22 of the circuit board 20 are formed. Are brought into direct contact with each other to cause adhesion, and as a result, the electrode pad portion of the semiconductor element 30 and the terminal electrode 22 of the circuit board 20 are joined via the joining layer 32 made of a silver layer.
[0068]
In this way, by bonding the semiconductor element and the circuit board by firing at a low temperature in a temperature range of, for example, 210 to 250 ° C., lead-free bonding that can replace conventional solder bonding can be performed.
Moreover, as mentioned above, the re-melting temperature of the joint is much higher than the joining temperature, so once the joint has been made, another part can be joined at the same temperature or as many times as necessary, even if necessary. It has a great effect that it can be done.
[0069]
At this time, as described above, by using, as an aggregate, a bonding material to which a metal powder having a high conductivity is added, a high conductivity is secured through the metal powder, and the reliability of the semiconductor element mounting is improved. You can also. As described above, when the bonding material to which the metal powder is added is used, the composite metal nanoparticles and the surface of the aggregate (metal powder) come into direct contact with the change in the form of the composite metal nanoparticles described above. Join. The same applies to the case where inorganic powder such as plastic powder or ceramic is used as the aggregate.
[0070]
Then, as shown in FIG. 3D, when the semiconductor element 30a is also joined to the back surface side of the ceramic circuit board 20, for example, a paste-like joining material is applied to the terminal electrodes of the ceramic circuit board 20 in the same manner as described above. The composite metal bumps 24a are formed by applying to predetermined positions of the composite metal bumps 22a. In this state, when using composite silver nanoparticles, for example, at a temperature of 210 to 250 ° C. for about 30 minutes, a low temperature Perform baking. Thereby, the electrode pad portion of the semiconductor element 30a and the terminal electrode 22a of the circuit board 20 are joined via the joining layer 32a made of a silver layer.
[0071]
At this time, the composite metal nanoparticle in which the form has changed, that is, the bonding layer 32 made of the silver layer formed earlier has changed to the same properties as the metal in the bulk state, and particularly, the bonding layer has the same melting point as the bulk state, that is, It has a temperature of 961.93 ° C, and once fused, it cannot be re-melted unless it is 961.93 ° C or higher. Therefore, it is not melted by the heating at the time of joining to the back surface, and provides an ideal joining material required for high-temperature solder for repeated joining.
[0072]
The paste-like joining material can be supplied by any method such as spraying, brushing, dip, spin coating, dispensing, screen printing, and transfer, without being limited to a simple coating method.
In addition, according to this joining method, basically, all kinds of parts can be joined, such as parts of the same kind of materials such as metals, plastics, and ceramics, or combinations of parts of different kinds of materials.
[0073]
In this example, the application of energy for changing the form of the composite metal nanoparticles contained in the bonding material is performed by heating with a hot blast stove (low-temperature sintering). Any method such as energization between components, induction heating or dielectric heating of components may be used. When the morphology of the composite metal nanoparticles is changed by these methods, the composite metal nanoparticles are bonded to each other or between the added metal powder or other additives and various materials to be bonded by sintering and / or melting.
[0074]
The present invention is a bonding method for setting the heating temperature to a value within a range of 400 ° C. or less. The reason for limiting the temperature range by heating during joining will be described. The relationship between the particle size of ultrafine particles of a noble metal, which is often used practically, and the melting start temperature will be examined with reference to FIG.
According to FIG. 1, when the particle size of the Au ultrafine particles is smaller than 10 nm, a sharp decrease in the melting start temperature point appears. For example, if the particle size is 2 nm, this temperature has dropped to 120 ° C.
On the other hand, when the heating temperature exceeds 400 ° C., deterioration and damage of semiconductor elements and the like used in electronic components become remarkable.
As a result of the above considerations, the upper limit of the heating temperature is set to 400 ° C.
[0075]
Here, the bonding can be performed in the air, in dry air, in an inert gas atmosphere, in a vacuum, or in an environment in which the amount of mist is reduced. In particular, for example, by performing the bonding in a clean atmosphere, it is possible to prevent the surfaces to be bonded from being contaminated with mist such as mineral oil, oil and fat, a solvent, and water that are scattered or floated in the air before the bonding.
[0076]
Further, surface treatment of the surface to be joined of the component prior to joining includes cleaning / degreasing with an organic solvent or pure water, ultrasonic cleaning, chemical solution etching, corona discharge treatment, flame treatment, plasma treatment, ultraviolet irradiation, laser irradiation. And at least one operation of ion beam etching, sputter etching, anodic oxidation, mechanical grinding, fluid grinding or blasting.
This makes it possible to create a surface morphology suitable for joining by removing contamination and foreign matter on the surface of the member to be joined and changing the roughness of the surface prior to the joining step.
[0077]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a bonding material and a bonding method that can be used as a high-temperature solder substitute without using lead.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the particle size of Au ultrafine particles and the melting start temperature.
FIG. 2 is a view schematically showing a composite metal nanoparticle having a bonding / coating structure with an organic substance used in the present invention.
FIG. 3 is a view showing a bonding method according to one embodiment of the present invention in the order of steps.
[Explanation of symbols]
10 Metal core
12 Bonding and coating layers
14 Composite metal nanoparticles
20 circuit board
22, 22a Terminal electrode
24 Composite Metal Bump
30, 30a Semiconductor element
32, 32a bonding layer

Claims (31)

平均粒径100nm程度以下の金属粒子からなる核の周囲をC,H及び/またはOを主成分とする有機物で結合・被覆した複合型金属ナノ粒子を接合の主剤とした接合材料。A bonding material mainly composed of composite metal nanoparticles in which the periphery of a core made of metal particles having an average particle diameter of about 100 nm or less is bonded and coated with an organic substance containing C, H and / or O as a main component. 前記有機物は、有機酸金属塩を起源として生成したものであることを特徴とする請求項1記載の接合材料。The bonding material according to claim 1, wherein the organic substance is generated from an organic acid metal salt. 前記複合型金属ナノ粒子は、金属塩と有機物質とを非水系溶媒中で加熱合成した後、これを加熱還元することによって生成したものであることを特徴とする請求項1記載の接合材料。2. The bonding material according to claim 1, wherein the composite metal nanoparticles are produced by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent, and then reducing the resultant by heating. 3. 前記複合型金属ナノ粒子は、金属塩と金属酸化物と金属水酸化物と有機物とを混合して加熱合成した後、これを加熱還元することによって生成したものであることを特徴とする請求項1記載の接合材料。The composite metal nanoparticles are produced by mixing and heating and synthesizing a metal salt, a metal oxide, a metal hydroxide, and an organic substance, and then reducing the mixture by heating. The bonding material according to 1. 前記複合型金属ナノ粒子は、金属塩とアルコール系有機物とを混合して加熱合成した後、これに還元剤を加えて加熱還元することによって生成したものであることを特徴とする請求項1記載の接合材料。The composite metal nanoparticles are produced by mixing and heating a metal salt and an alcoholic organic substance, adding a reducing agent thereto, and reducing the mixture by heating. Joining material. 前記複合型金属ナノ粒子は、金属塩と有機物とを非水系溶媒中で加熱合成した後、これに還元剤を加えて加熱還元することによって生成したものであることを特徴とする請求項1記載の接合材料。2. The composite metal nanoparticles are produced by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent, and then adding a reducing agent thereto and reducing by heating. Joining material. 前記複合型金属ナノ粒子を、有機溶媒に分散することによって液状化して接合に用いるか、又は液状化したものを更にスラリー、ペースト乃至はクリーム状に調整して接合に用いるか、又は液状化したものを各種形状に成形して固化、或いはゼリー状に半固化して接合に用いることを特徴とする請求項1乃至6のいずれかに記載の接合材料。The composite metal nanoparticles are liquefied by being dispersed in an organic solvent and used for bonding, or the liquefied one is further used as a slurry, paste or cream to be used for bonding, or liquefied. The joining material according to any one of claims 1 to 6, wherein the joining material is formed into various shapes and solidified or semi-solidified in a jelly shape and used for joining. 前記接合材料には、前記複合型金属ナノ粒子に加えて、平均粒子径が100μm程度以下の骨材が混入していることを特徴とする請求項1乃至7のいずれかに記載の接合材料。The bonding material according to any one of claims 1 to 7, wherein the bonding material further contains an aggregate having an average particle diameter of about 100 µm or less, in addition to the composite metal nanoparticles. 前記骨材は、金属、プラスチックまたは金属・プラスチック以外の無機物のうちのどれか1種又は複数を組合せたものであることを特徴とする請求項8記載の接合材料。9. The bonding material according to claim 8, wherein the aggregate is one or a combination of any one of a metal, a plastic, and an inorganic substance other than a metal / plastic. 前記無機物は、例えば各種のセラミック、炭素、ダイヤモンドまたはガラスなどを含むものであることを特徴とする請求項9記載の接合材料。10. The bonding material according to claim 9, wherein the inorganic substance includes, for example, various kinds of ceramics, carbon, diamond, and glass. 複合型金属ナノ粒子の金属核部分の材質が、Au,Ag,Pd,Pt,CuまたはNiのいずれか1つ又は複数であることを特徴とする請求項1乃至10のいずれかに記載の接合材料。The joint according to any one of claims 1 to 10, wherein the material of the metal core portion of the composite metal nanoparticle is one or more of Au, Ag, Pd, Pt, Cu, and Ni. material. 2つ以上の部品を接合するにあたり、請求項1乃至11のいずれかに記載の接合材料を前記部品間の全面、もしくは、一部に接触・介在させ、全体、もしくは局所的にエネルギを付与し、前記接合材料に含まれる複合型金属ナノ粒子の形態を変化させることによって、該粒子相互間、該粒子と骨材表面、及び/又は該粒子と部品表面とを接合することを特徴とする接合方法。In joining two or more components, the joining material according to any one of claims 1 to 11 is brought into contact with or interposed on the entire surface or a part between the components, and imparts energy entirely or locally. Bonding, by changing the form of the composite metal nanoparticles contained in the bonding material, to bond between the particles, the particles and the surface of the aggregate, and / or the particles and the surface of the component. Method. 前記エネルギの付与は加熱によるものであるか、又は加熱と加圧を併用するものであることを特徴とする請求項12記載の接合方法。13. The joining method according to claim 12, wherein the application of the energy is performed by heating, or by using both heating and pressurizing. 請求項13記載の手段によって接合すべき対象を400℃以下の範囲内の温度に加熱することを特徴とする請求項12または13記載の接合方法。14. The joining method according to claim 12, wherein an object to be joined is heated to a temperature within a range of 400 ° C. or less by the means according to claim 13. 前記接合を、大気中、乾燥空気中、酸化ガス雰囲気、不活性ガス雰囲気、真空中またはミストの存在量を低減した環境下で行うことを特徴とする請求項12乃至14のいずれかに記載の接合方法。The method according to any one of claims 12 to 14, wherein the bonding is performed in air, dry air, an oxidizing gas atmosphere, an inert gas atmosphere, a vacuum, or an environment in which the amount of mist is reduced. Joining method. 接合に先立って被接合面の表面処理を行うことを特徴とする請求項12乃至15のいずれかに記載の接合方法。The bonding method according to any one of claims 12 to 15, wherein the surface to be bonded is subjected to a surface treatment prior to the bonding. 前記接合材料に含まれる複合型金属ナノ粒子の形態を変化させて接合した構造物に更に必要な回数、繰返して、他の部品を、請求項12乃至16記載の方法か又は他の公知の方法を用いて、接合することを特徴とする請求項12乃至16のいずれかに記載の接合方法。17. The method according to claim 12, wherein the composite metal nanoparticles contained in the bonding material are changed in morphology, and the structure is bonded to the bonded structure by the necessary number of times. The joining method according to any one of claims 12 to 16, wherein the joining is performed by using. 請求項12記載の接合すべき部品は2個以上の独立に作られた部品からなる構造物であることを特徴とする請求項12乃至17のいずれかに記載の接合方法。The joining method according to any one of claims 12 to 17, wherein the part to be joined according to claim 12 is a structure including two or more independently formed parts. 接合温度以上に加熱され固化して部材を接合する接合材料であって、前記接合材料が、金属からなる金属核と、該金属核と化学結合しており、該金属核の外殻を被覆する有機物とからなり、固化後に再溶融する温度が、前記接合温度より2倍以上高いことを特徴とする接合材料。A bonding material that is heated and solidified to a temperature higher than a bonding temperature to bond the members, wherein the bonding material is a metal nucleus made of metal, and is chemically bonded to the metal nucleus, and covers an outer shell of the metal nucleus. A bonding material comprising an organic material, wherein a temperature at which the material is remelted after solidification is at least twice as high as the bonding temperature. 接合温度以上に加熱され固化して部材を接合する、室温で固体又は粉末状の接合材料であって、固化後に再溶融する温度が、前記接合温度より2倍以上高いことを特徴とする接合材料。A joining material in a solid or powder form at room temperature, which is heated and solidified to a temperature higher than the joining temperature to join the members, wherein the temperature at which the material is remelted after solidification is at least twice as high as the joining temperature. . 接合温度以上に加熱され固化して部材を接合する接合材料であって、前記接合材料が、金属からなる金属核と、その外殻を被覆する有機物とからなり、該有機物は窒素と硫黄を含んでおらず、固化後に再溶融する温度が、前記接合温度より2倍以上高いことを特徴とする接合材料。A bonding material that is heated to a temperature equal to or higher than a bonding temperature and solidifies to bond the members, wherein the bonding material includes a metal core made of a metal and an organic material covering the outer shell, and the organic material contains nitrogen and sulfur. And a temperature at which re-melting after solidification is at least twice as high as the bonding temperature. 前記金属核の直径が、0.5〜100nmであることを特徴とする請求項19乃至21のいずれかに記載の接合材料。22. The bonding material according to claim 19, wherein the diameter of the metal core is 0.5 to 100 nm. 前記金属核の材質が、Au,Ag,Pd,Pt,CuまたはNiのいずれか1つ又は複数であることを特徴とする請求項19乃至22のいずれかに記載の接合材料。23. The bonding material according to claim 19, wherein a material of the metal nucleus is one or more of Au, Ag, Pd, Pt, Cu, and Ni. 前記接合材料は、更に、平均粒径が0.1〜100μmの骨材を含んでいることを特徴とする請求項19乃至23のいずれかに記載の接合材料。24. The bonding material according to claim 19, wherein the bonding material further includes an aggregate having an average particle size of 0.1 to 100 [mu] m. 前記骨材は、金属、プラスチック、又は無機物の1種又は複数を組合わせたものであることを特徴とする請求項24記載の接合材料。The joining material according to claim 24, wherein the aggregate is one or a combination of metals, plastics, and inorganic substances. 前記無機物は、セラミック、炭素、ダイヤモンドまたはガラスであることを特徴とする請求項25記載の接合材料。The joining material according to claim 25, wherein the inorganic substance is ceramic, carbon, diamond, or glass. 接合温度以上に加熱され固化して部材を接合する接合材料であって、前記接合材料が、金属と無機物が結合した金属塩と、有機物とを混合し、該混合物を加熱することによって、該金属塩から無機物を分離するとともに、該金属からなる粒子径0.5〜100nmの金属核の外殻に、該有機物を被覆した金属ナノ粒子を含むことを特徴とする接合材料。A bonding material that is heated to a temperature equal to or higher than a bonding temperature and solidifies to bond the members, wherein the bonding material is obtained by mixing a metal salt in which a metal and an inorganic substance are bonded, and an organic substance, and heating the mixture to form the metal. A bonding material, which separates an inorganic substance from a salt and includes metal nanoparticles coated with the organic substance in the outer shell of a metal core having a particle diameter of 0.5 to 100 nm made of the metal. 前記有機物はアルコール系有機物であることを特徴とする請求項27記載の接合材料。The bonding material according to claim 27, wherein the organic substance is an alcohol-based organic substance. 前記混合および加熱は、非水系溶媒中で行うことを特徴とする請求項27または28記載の接合材料。29. The bonding material according to claim 27, wherein the mixing and heating are performed in a non-aqueous solvent. 金属からなる直径0.5nm以上100nm以下の金属核の外殻を有機物で被覆された金属ナノ粒子を含む接合材料を接合すべき2つ以上の部品の間に塗布し、
前記有機物の分解開始温度以上であり、前記金属核を構成する金属のバルクとしての溶融温度以下の温度に加熱し、前記部材の間に塗布した接合材料の有機物を金属核から分解し金属核を融着させバルク金属を形成して前記2つ以上の部品を接合し、
前記接合後の部材と他の部材との間に前記接合材料を塗布し、
前記有機物の分解開始温度以上であり、上記金属核を構成する金属のバルクとしての溶融温度以下温度に加熱し、前記バルク金属を溶融せずに、前記接合後の部材と他の部材との間に塗布した接合材料の有機物を金属核から分解し金属核を融着させて前記接合後の部材と他の部材とを接合する接合方法。
An outer shell of a metal nucleus having a diameter of 0.5 nm or more and 100 nm or less made of a metal is applied between two or more components to be joined with a joining material including metal nanoparticles coated with an organic substance,
It is heated to a temperature that is equal to or higher than the decomposition start temperature of the organic substance and is equal to or lower than the melting temperature of the metal constituting the metal core as a bulk, and decomposes the organic substance of the bonding material applied between the members from the metal core to form the metal core. Fusing to form a bulk metal and joining the two or more parts;
Applying the joining material between the joined member and another member,
It is heated to a temperature equal to or higher than the decomposition start temperature of the organic substance and equal to or lower than the melting temperature of the metal constituting the metal nucleus as a bulk, without melting the bulk metal, between the joined member and another member. A bonding method for decomposing an organic substance of a bonding material applied to a metal core from a metal core and fusing the metal core to bond the joined member to another member.
金属からなる直径0.5nm以上100nm以下の金属核の外殻を有機物で被覆された金属ナノ粒子を含む接合材料を接合すべき2つ以上の部品の間に、互いに隣接する前記接合部材間の間隔を、前記接合部材に含まれる金属核の大きさの10〜10,000倍になるように塗布し、
前記有機物の分解開始温度以上であり、前記金属核を構成する金属のバルクとしての溶融温度以下の温度に加熱し、前記部材の間に塗布した接合材料の有機物を金属核から分解し金属核を融着させバルク金属を形成して前記2つ以上の部品を接合する接合方法。
Between two or more parts to be joined with a joining material containing metal nanoparticles in which the outer shell of a metal nucleus made of metal having a diameter of 0.5 nm or more and 100 nm or less is coated with an organic substance, between the joining members adjacent to each other. The interval is applied so as to be 10 to 10,000 times the size of the metal core included in the joining member,
It is heated to a temperature that is equal to or higher than the decomposition start temperature of the organic substance and is equal to or lower than the melting temperature of the metal constituting the metal core as a bulk, and decomposes the organic substance of the bonding material applied between the members from the metal core to form the metal core. A joining method for joining the two or more components by fusing to form a bulk metal.
JP2002272364A 2002-09-18 2002-09-18 Joining material and joining method Pending JP2004107728A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002272364A JP2004107728A (en) 2002-09-18 2002-09-18 Joining material and joining method
CNB038009056A CN100337782C (en) 2002-09-18 2003-09-17 Joining material and joining method
KR1020047000955A KR20050040812A (en) 2002-09-18 2003-09-17 Bonding material and bonding method
DE60326760T DE60326760D1 (en) 2002-09-18 2003-09-17 PROCESS FOR CONNECTING
US10/484,454 US20040245648A1 (en) 2002-09-18 2003-09-17 Bonding material and bonding method
TW092125572A TWI284581B (en) 2002-09-18 2003-09-17 Bonding material and bonding method
PCT/JP2003/011797 WO2004026526A1 (en) 2002-09-18 2003-09-17 Bonding material and bonding method
EP03788702A EP1578559B1 (en) 2002-09-18 2003-09-17 Bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272364A JP2004107728A (en) 2002-09-18 2002-09-18 Joining material and joining method

Publications (1)

Publication Number Publication Date
JP2004107728A true JP2004107728A (en) 2004-04-08

Family

ID=32269395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272364A Pending JP2004107728A (en) 2002-09-18 2002-09-18 Joining material and joining method

Country Status (1)

Country Link
JP (1) JP2004107728A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298921A (en) * 2004-04-13 2005-10-27 Masami Nakamoto Composite metal ultrafine particle and method for producing the same
JP2006032412A (en) * 2004-07-12 2006-02-02 Ricoh Co Ltd Elastic conductive adhesive and inter-electrode connection structure
JP2006102810A (en) * 2004-10-06 2006-04-20 Tadamasa Fujimura Soldering material
JP2006202938A (en) * 2005-01-20 2006-08-03 Kojiro Kobayashi Semiconductor device and its manufacturing method
KR100610988B1 (en) 2004-01-05 2006-08-10 세이코 엡슨 가부시키가이샤 Bonding struture and method for bonding members
JP2008515635A (en) * 2004-09-30 2008-05-15 インテル コーポレイション Nano-sized metals and alloys, and methods for assembling packages containing them
JP2008161907A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Low-temperature joining material and joining method
JPWO2006038376A1 (en) * 2004-09-30 2008-07-31 株式会社タムラ製作所 Solder composition and method for forming solder layer using the same
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method
JP2008208442A (en) * 2007-02-28 2008-09-11 Hitachi Ltd Joining method using intermetallic compound
JP2008244242A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Semiconductor device and its manufacturing method, and composite metallic body and its manufacturing method
KR100878447B1 (en) 2007-05-30 2009-01-13 연세대학교 산학협력단 Nanostructured welding method for reducing deformation
US7528485B2 (en) 2004-07-29 2009-05-05 Hitachi, Ltd. Semiconductor device, power converter device using it, and hybrid vehicle using the power converter device
WO2009090767A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticles, composite silver nanopaste, process and apparatus for producing the composite silver nanopaste, joining method, and method for pattern formation
JP2010050189A (en) * 2008-08-20 2010-03-04 Hitachi Metals Ltd Bonding material, semiconductor device, and method of manufacturing the same
JP2010150653A (en) * 2008-11-20 2010-07-08 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2010189681A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Method for producing oxidation resistant copper nanoparticle, and joining method using the same
EP2278032A2 (en) 2009-04-28 2011-01-26 Hitachi Chemical Company, Ltd. Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same
JP2011094223A (en) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2012009546A (en) * 2010-06-23 2012-01-12 Hitachi Ltd Thin-film manufacturing method, thin-film fitted substrate, and thin-film manufacturing apparatus
DE102010042721A1 (en) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Starting material of a sintered compound and method for producing the sintered compound
DE102010042702A1 (en) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Starting material of a sintered compound and method for producing the sintered compound
JP2012124497A (en) * 2011-12-26 2012-06-28 Hitachi Metals Ltd Semiconductor device
JP2012515266A (en) * 2009-01-14 2012-07-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sintered material, sintered joint and method for producing sintered joint
JP2012214027A (en) * 2011-03-31 2012-11-08 Toyota Central R&D Labs Inc Joined body of metallic material and resin material, method of manufacturing metallic material for joining with resin material used for manufacturing same, and method of manufacturing the joined body
WO2012173187A1 (en) * 2011-06-16 2012-12-20 新日鉄住金化学株式会社 Electronic component bonding material, composition for bonding, bonding method, and electronic component
JP2013077745A (en) * 2011-09-30 2013-04-25 Rohm Co Ltd Semiconductor device and method of manufacturing the same
WO2013058291A1 (en) 2011-10-17 2013-04-25 独立行政法人産業技術総合研究所 Semiconductor element bonding method and bonding structure
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
US8497022B2 (en) 2009-07-16 2013-07-30 Applied Nanoparticle Laboratory Corporation Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
US8513534B2 (en) 2008-03-31 2013-08-20 Hitachi, Ltd. Semiconductor device and bonding material
WO2013145258A1 (en) * 2012-03-30 2013-10-03 株式会社応用ナノ粒子研究所 Composite nanometal paste containing copper filler and bonding method
US8592996B2 (en) 2009-06-30 2013-11-26 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
JP2013251295A (en) * 2012-05-30 2013-12-12 Nichia Chem Ind Ltd Light source device
JPWO2012070262A1 (en) * 2010-11-22 2014-05-19 Dowaエレクトロニクス株式会社 Joining material, joined body, and joining method
US8821768B2 (en) 2006-12-28 2014-09-02 Hitachi, Ltd. Bonding method and bonding material using metal particle
DE102014213083A1 (en) 2013-08-08 2015-02-12 Mitsubishi Electric Corporation Bond structure with metal nanoparticles and bonding methods using metal nanoparticles
WO2015052791A1 (en) 2013-10-09 2015-04-16 古河電気工業株式会社 Joining method for metal body and joining structure for metal body
WO2015053193A1 (en) 2013-10-07 2015-04-16 古河電気工業株式会社 Joining structure and electronic member-joining structural body
DE102014222993A1 (en) 2013-11-12 2015-05-13 Mitsubishi Electric Corporation Semiconductor device and manufacturing method therefor
JP2015232181A (en) * 2009-09-11 2015-12-24 Dowaエレクトロニクス株式会社 Joint material and joint method using it
JP5925928B1 (en) * 2015-02-26 2016-05-25 日本航空電子工業株式会社 Electrical connection structure and electrical connection member
JP2016178334A (en) * 2016-06-09 2016-10-06 ローム株式会社 Semiconductor device and manufacturing method of the same
KR20170020426A (en) 2014-06-11 2017-02-22 반도 카가쿠 가부시키가이샤 Fine silver particle dispersion, fine silver particles, and method for producing same
US20180183205A1 (en) * 2016-12-27 2018-06-28 Nichia Corporation Method for manufacturing laser package
JP2018111885A (en) * 2005-08-03 2018-07-19 ユニバシダデ デ サンチャゴ デ コンポステラ Atomic quantum clusters, production method thereof and methods of use thereof
JP2018160699A (en) * 2012-09-20 2018-10-11 ローム株式会社 Semiconductor device
JP2020097774A (en) * 2018-12-17 2020-06-25 キョン ドン ウォン コーポレーションKyung Dong One Corporation Sintering paste composition for joining power semiconductor
US10818405B2 (en) 2015-07-09 2020-10-27 Furukawa Electric Co., Ltd. Metal fine particle-containing composition
JPWO2022070330A1 (en) * 2020-09-30 2022-04-07
US20220288681A1 (en) * 2019-08-26 2022-09-15 Kyocera Corporation Silver particles, method for producing silver particles, paste composition, semiconductor device, and electrical and/or electronic components
JP7440598B2 (en) 2017-11-13 2024-02-28 日東電工株式会社 Composition for sintered bonding, sheet for sintered bonding, and dicing tape with sheet for sintered bonding
US11955414B2 (en) 2020-10-14 2024-04-09 Rohm Co., Ltd. Semiconductor module
US11955451B2 (en) 2020-10-14 2024-04-09 Rohm Co., Ltd. Semiconductor module
US11961790B2 (en) 2020-10-14 2024-04-16 Rohm Co., Ltd. Semiconductor module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524942A (en) * 1991-07-16 1993-02-02 Hitachi Maxell Ltd Joining method and adhesive
JPH10505538A (en) * 1994-08-25 1998-06-02 キューキューシー,インコーポレイテッド Nano-scale particles and their uses
JPH10183207A (en) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk Ultrafine grain and production thereof
JP2794360B2 (en) * 1992-03-11 1998-09-03 三ツ星ベルト株式会社 Bonding method of materials to be bonded selected from metals and ceramics, and bonding agent used therefor
JP2000512339A (en) * 1996-03-12 2000-09-19 テクル,バーハン Method for isolating micro and micro particles and resulting particles
JP2001144417A (en) * 1999-11-17 2001-05-25 Ebara Corp Printed-circuit board and its manufacturing method
JP2001167633A (en) * 1999-12-09 2001-06-22 Ebara Corp Metal-component-containing solution and method forming metal thin film
JP2001168140A (en) * 1999-12-10 2001-06-22 Ebara Corp Method for mounting semiconductor element and semiconductor device
JP2001176339A (en) * 1999-12-21 2001-06-29 Ebara Corp Method of manufacturing transparent conductive base material
JP2002126869A (en) * 2000-10-25 2002-05-08 Harima Chem Inc Braze-jointing method between metals

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524942A (en) * 1991-07-16 1993-02-02 Hitachi Maxell Ltd Joining method and adhesive
JP2794360B2 (en) * 1992-03-11 1998-09-03 三ツ星ベルト株式会社 Bonding method of materials to be bonded selected from metals and ceramics, and bonding agent used therefor
JPH10505538A (en) * 1994-08-25 1998-06-02 キューキューシー,インコーポレイテッド Nano-scale particles and their uses
JP2000512339A (en) * 1996-03-12 2000-09-19 テクル,バーハン Method for isolating micro and micro particles and resulting particles
JPH10183207A (en) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk Ultrafine grain and production thereof
JP2001144417A (en) * 1999-11-17 2001-05-25 Ebara Corp Printed-circuit board and its manufacturing method
JP2001167633A (en) * 1999-12-09 2001-06-22 Ebara Corp Metal-component-containing solution and method forming metal thin film
JP2001168140A (en) * 1999-12-10 2001-06-22 Ebara Corp Method for mounting semiconductor element and semiconductor device
JP2001176339A (en) * 1999-12-21 2001-06-29 Ebara Corp Method of manufacturing transparent conductive base material
JP2002126869A (en) * 2000-10-25 2002-05-08 Harima Chem Inc Braze-jointing method between metals

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610988B1 (en) 2004-01-05 2006-08-10 세이코 엡슨 가부시키가이샤 Bonding struture and method for bonding members
JP2005298921A (en) * 2004-04-13 2005-10-27 Masami Nakamoto Composite metal ultrafine particle and method for producing the same
JP2006032412A (en) * 2004-07-12 2006-02-02 Ricoh Co Ltd Elastic conductive adhesive and inter-electrode connection structure
JP4542842B2 (en) * 2004-07-12 2010-09-15 株式会社リコー Interelectrode connection structure
US7528485B2 (en) 2004-07-29 2009-05-05 Hitachi, Ltd. Semiconductor device, power converter device using it, and hybrid vehicle using the power converter device
JP5001655B2 (en) * 2004-09-30 2012-08-15 株式会社タムラ製作所 Solder composition and solder layer forming method using the same
JP2008515635A (en) * 2004-09-30 2008-05-15 インテル コーポレイション Nano-sized metals and alloys, and methods for assembling packages containing them
JPWO2006038376A1 (en) * 2004-09-30 2008-07-31 株式会社タムラ製作所 Solder composition and method for forming solder layer using the same
JP2006102810A (en) * 2004-10-06 2006-04-20 Tadamasa Fujimura Soldering material
JP4514581B2 (en) * 2004-10-06 2010-07-28 忠正 藤村 Lead-free solder composite powder and lead-free solder solder paste
JP2006202938A (en) * 2005-01-20 2006-08-03 Kojiro Kobayashi Semiconductor device and its manufacturing method
JP2018111885A (en) * 2005-08-03 2018-07-19 ユニバシダデ デ サンチャゴ デ コンポステラ Atomic quantum clusters, production method thereof and methods of use thereof
JP7190818B2 (en) 2005-08-03 2022-12-16 ユニバシダデ デ サンチャゴ デ コンポステラ Atomic Quantum Clusters, Methods of Making Them and Methods of Using Them
US8821676B2 (en) 2006-12-28 2014-09-02 Hitachi, Ltd. Low temperature bonding material comprising coated metal nanoparticles, and bonding method
US8821768B2 (en) 2006-12-28 2014-09-02 Hitachi, Ltd. Bonding method and bonding material using metal particle
US7955411B2 (en) 2006-12-28 2011-06-07 Hitachi, Ltd. Low temperature bonding material comprising metal particles and bonding method
JP2008161907A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Low-temperature joining material and joining method
EP2108474A4 (en) * 2007-02-08 2017-07-05 Toyota Jidosha Kabushiki Kaisha Method of joining
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method
US7770781B2 (en) * 2007-02-08 2010-08-10 Toyota Jidosha Kabushiki Kaisha Bonding method
JP2008208442A (en) * 2007-02-28 2008-09-11 Hitachi Ltd Joining method using intermetallic compound
US8008772B2 (en) 2007-03-28 2011-08-30 Hitachi, Ltd. Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP2008244242A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Semiconductor device and its manufacturing method, and composite metallic body and its manufacturing method
KR100878447B1 (en) 2007-05-30 2009-01-13 연세대학교 산학협력단 Nanostructured welding method for reducing deformation
JPWO2009090846A1 (en) * 2008-01-17 2011-05-26 株式会社応用ナノ粒子研究所 COMPOSITE SILVER NANOPARTICLES, COMPOSITE SILVER NANOPASTE, PROCESS FOR PRODUCING THE SAME, MANUFACTURING APPARATUS, JOINING METHOD AND PATTERN FORMING METHOD
WO2009090767A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticles, composite silver nanopaste, process and apparatus for producing the composite silver nanopaste, joining method, and method for pattern formation
US8348134B2 (en) 2008-01-17 2013-01-08 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method
US8459529B2 (en) 2008-01-17 2013-06-11 Applied Nanoparticle Laboratory Corporation Production method of composite silver nanoparticle
WO2009090846A1 (en) 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticles, composite silver nanopaste, and production method, production apparatus, conjugation method and patterning method of the same
WO2009090748A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Silver composite nanoparticle and process and apparatus for producing the same
US8906317B2 (en) 2008-01-17 2014-12-09 Applied Nanoparticle Laboratory Corporation Production apparatus of composite silver nanoparticle
JP4680313B2 (en) * 2008-01-17 2011-05-11 株式会社応用ナノ粒子研究所 COMPOSITE SILVER NANOPARTICLES, COMPOSITE SILVER NANOPASTE, PROCESS FOR PRODUCING THE SAME, MANUFACTURING APPARATUS, JOINING METHOD, AND PATTERN FORMING METHOD
US8513534B2 (en) 2008-03-31 2013-08-20 Hitachi, Ltd. Semiconductor device and bonding material
JP2010050189A (en) * 2008-08-20 2010-03-04 Hitachi Metals Ltd Bonding material, semiconductor device, and method of manufacturing the same
JP2010150653A (en) * 2008-11-20 2010-07-08 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2011094223A (en) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2012515266A (en) * 2009-01-14 2012-07-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sintered material, sintered joint and method for producing sintered joint
JP2010189681A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Method for producing oxidation resistant copper nanoparticle, and joining method using the same
EP2722410A1 (en) 2009-04-28 2014-04-23 Hitachi Chemical Co., Ltd. Electrically conductive bonding material and method of bonding with the same
US8840811B2 (en) 2009-04-28 2014-09-23 Hitachi Chemical Company, Ltd. Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same
EP2278032A2 (en) 2009-04-28 2011-01-26 Hitachi Chemical Company, Ltd. Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same
US8592996B2 (en) 2009-06-30 2013-11-26 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
US8497022B2 (en) 2009-07-16 2013-07-30 Applied Nanoparticle Laboratory Corporation Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
JP2015232181A (en) * 2009-09-11 2015-12-24 Dowaエレクトロニクス株式会社 Joint material and joint method using it
JP2012009546A (en) * 2010-06-23 2012-01-12 Hitachi Ltd Thin-film manufacturing method, thin-film fitted substrate, and thin-film manufacturing apparatus
DE102010042721A1 (en) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Starting material of a sintered compound and method for producing the sintered compound
DE102010042702A1 (en) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Starting material of a sintered compound and method for producing the sintered compound
JP5986929B2 (en) * 2010-11-22 2016-09-06 Dowaエレクトロニクス株式会社 Joining method
EP2645408A4 (en) * 2010-11-22 2016-06-08 Dowa Electronics Materials Co Binding material, binding body, and binding method
JPWO2012070262A1 (en) * 2010-11-22 2014-05-19 Dowaエレクトロニクス株式会社 Joining material, joined body, and joining method
JP2012214027A (en) * 2011-03-31 2012-11-08 Toyota Central R&D Labs Inc Joined body of metallic material and resin material, method of manufacturing metallic material for joining with resin material used for manufacturing same, and method of manufacturing the joined body
WO2012173187A1 (en) * 2011-06-16 2012-12-20 新日鉄住金化学株式会社 Electronic component bonding material, composition for bonding, bonding method, and electronic component
JPWO2012173187A1 (en) * 2011-06-16 2015-02-23 新日鉄住金化学株式会社 Electronic component bonding material, bonding composition, bonding method, and electronic component
JP2013077745A (en) * 2011-09-30 2013-04-25 Rohm Co Ltd Semiconductor device and method of manufacturing the same
US10608136B2 (en) 2011-10-17 2020-03-31 National Institute Of Advanced Industrial Science And Technology Method of bonding semiconductor elements and junction structure
JPWO2013058291A1 (en) * 2011-10-17 2015-04-02 独立行政法人産業技術総合研究所 Semiconductor element bonding method and bonding structure
WO2013058291A1 (en) 2011-10-17 2013-04-25 独立行政法人産業技術総合研究所 Semiconductor element bonding method and bonding structure
JP2012124497A (en) * 2011-12-26 2012-06-28 Hitachi Metals Ltd Semiconductor device
US9796052B2 (en) 2012-03-30 2017-10-24 Applied Nanoparticle Laboratory Corporation Composite nanometal paste containing copper filler and joining method
WO2013145258A1 (en) * 2012-03-30 2013-10-03 株式会社応用ナノ粒子研究所 Composite nanometal paste containing copper filler and bonding method
JP5398935B1 (en) * 2012-03-30 2014-01-29 株式会社応用ナノ粒子研究所 Copper filler-containing composite nanometal paste and bonding method
JP2013251295A (en) * 2012-05-30 2013-12-12 Nichia Chem Ind Ltd Light source device
US11532537B2 (en) 2012-09-20 2022-12-20 Rohm Co., Ltd. Power module semiconductor device and inverter equipment, and fabrication method of the power module semiconductor device, and metallic mold
JP2018160699A (en) * 2012-09-20 2018-10-11 ローム株式会社 Semiconductor device
US10896866B2 (en) 2012-09-20 2021-01-19 Rohm Co., Ltd. Power module semiconductor device and inverter equipment, and fabrication method of the power module semiconductor device, and metallic mold
US11973007B2 (en) 2012-09-20 2024-04-30 Rohm Co., Ltd. Power module semiconductor device and inverter equipment, and fabrication method of the power module semiconductor device, and metallic mold
US11967543B2 (en) 2012-09-20 2024-04-23 Rohm Co., Ltd. Power module semiconductor device and inverter equipment, and fabrication method of the power module semiconductor device, and metallic mold
US9362242B2 (en) 2013-08-08 2016-06-07 Mitsubishi Electric Corporation Bonding structure including metal nano particle
DE102014213083A1 (en) 2013-08-08 2015-02-12 Mitsubishi Electric Corporation Bond structure with metal nanoparticles and bonding methods using metal nanoparticles
KR20160067119A (en) 2013-10-07 2016-06-13 후루카와 덴키 고교 가부시키가이샤 Joining structure and electronic member-joining structural body
WO2015053193A1 (en) 2013-10-07 2015-04-16 古河電気工業株式会社 Joining structure and electronic member-joining structural body
EP3056303A4 (en) * 2013-10-09 2017-07-05 Furukawa Electric Co. Ltd. Joining method for metal body and joining structure for metal body
WO2015052791A1 (en) 2013-10-09 2015-04-16 古河電気工業株式会社 Joining method for metal body and joining structure for metal body
US9324684B2 (en) 2013-11-12 2016-04-26 Mitsubishi Electric Corporation Semiconductor device and manufacturing method thereof
DE102014222993A1 (en) 2013-11-12 2015-05-13 Mitsubishi Electric Corporation Semiconductor device and manufacturing method therefor
DE102014222993B4 (en) 2013-11-12 2022-07-14 Mitsubishi Electric Corporation Semiconductor device and manufacturing method therefor
KR20170020426A (en) 2014-06-11 2017-02-22 반도 카가쿠 가부시키가이샤 Fine silver particle dispersion, fine silver particles, and method for producing same
US10427251B2 (en) 2014-06-11 2019-10-01 Bando Chemical Industries, Ltd. Fine silver particle dispersion, fine silver particles, and method for producing same
WO2016136064A1 (en) * 2015-02-26 2016-09-01 日本航空電子工業株式会社 Electric connection structure and electric connection member
JP2016157660A (en) * 2015-02-26 2016-09-01 日本航空電子工業株式会社 Electric connection structure and electric connection member
JP5925928B1 (en) * 2015-02-26 2016-05-25 日本航空電子工業株式会社 Electrical connection structure and electrical connection member
US10314175B2 (en) 2015-02-26 2019-06-04 Japan Aviation Electronics Industry, Limited Electric connection structure and electric connection member
US10721822B2 (en) 2015-02-26 2020-07-21 Japan Aviation Electronics Industry, Limited Electric connection structure and electric connection member
US10818405B2 (en) 2015-07-09 2020-10-27 Furukawa Electric Co., Ltd. Metal fine particle-containing composition
JP2016178334A (en) * 2016-06-09 2016-10-06 ローム株式会社 Semiconductor device and manufacturing method of the same
US20180183205A1 (en) * 2016-12-27 2018-06-28 Nichia Corporation Method for manufacturing laser package
JP7440598B2 (en) 2017-11-13 2024-02-28 日東電工株式会社 Composition for sintered bonding, sheet for sintered bonding, and dicing tape with sheet for sintered bonding
JP2020097774A (en) * 2018-12-17 2020-06-25 キョン ドン ウォン コーポレーションKyung Dong One Corporation Sintering paste composition for joining power semiconductor
US20220288681A1 (en) * 2019-08-26 2022-09-15 Kyocera Corporation Silver particles, method for producing silver particles, paste composition, semiconductor device, and electrical and/or electronic components
JP7198548B2 (en) 2020-09-30 2023-01-04 国立大学法人東北大学 Metal nanoparticle dispersion
JPWO2022070330A1 (en) * 2020-09-30 2022-04-07
US11955451B2 (en) 2020-10-14 2024-04-09 Rohm Co., Ltd. Semiconductor module
US11955452B2 (en) 2020-10-14 2024-04-09 Rohm Co., Ltd. Semiconductor module
US11955413B2 (en) 2020-10-14 2024-04-09 Rohm Co., Ltd. Semiconductor module
US11961790B2 (en) 2020-10-14 2024-04-16 Rohm Co., Ltd. Semiconductor module
US11955414B2 (en) 2020-10-14 2024-04-09 Rohm Co., Ltd. Semiconductor module

Similar Documents

Publication Publication Date Title
JP2004107728A (en) Joining material and joining method
TWI284581B (en) Bonding material and bonding method
JP6556197B2 (en) Metal particles
EP1946626B1 (en) Method for soldering electronic component and soldering structure of electronic component
KR101332532B1 (en) Electronic device manufacturing method, substrate for mounting electronic component and method for manufacturing substrate for mounting semicomductor device
TWI505898B (en) A bonding method, a bonding structure, and a method for manufacturing the same
JP5135079B2 (en) Semiconductor device and bonding material
JP2013540591A (en) Variable melting point solder
JP2004130371A (en) Joined body
JP2005183904A (en) Method for forming solder region on electronic part and electronic part with solder region
CN106660178A (en) Lead-free solder alloy composition and method for preparing lead-free solder alloy
CN103718280B (en) Mounting structure and manufacture method thereof
WO2015125855A1 (en) Lead-free solder alloy, solder material, and joined structure
JP2004128357A (en) Electrode arranged substrate and its electrode connection method
WO2010098357A1 (en) Metal filler, low-temperature-bonding lead-free solder and bonded structure
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
KR20190135501A (en) Molded article for joining and manufacturing method thereof
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
JP6350967B2 (en) Semiconductor device and manufacturing method thereof
JP2005254254A (en) Lead-free solder, its manufacturing method and electronic component
JP6182877B2 (en) Solder paste, conductive adhesive, manufacturing method thereof, and manufacturing method of semiconductor device
WO2021045131A1 (en) Solder paste and solder bonded body
JP6156136B2 (en) Core paste for forming sintered cores of solder bumps
JP7024671B2 (en) A method of joining members to be joined using a joining paste
JP7024670B2 (en) A method of joining members to be joined using a joining paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310