JP2012124497A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2012124497A
JP2012124497A JP2011282940A JP2011282940A JP2012124497A JP 2012124497 A JP2012124497 A JP 2012124497A JP 2011282940 A JP2011282940 A JP 2011282940A JP 2011282940 A JP2011282940 A JP 2011282940A JP 2012124497 A JP2012124497 A JP 2012124497A
Authority
JP
Japan
Prior art keywords
metal
bonding
semiconductor device
dispersed phase
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011282940A
Other languages
Japanese (ja)
Inventor
Hidekazu Ide
英一 井出
Toshiaki Morita
俊章 守田
Yusuke Yasuda
雄亮 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011282940A priority Critical patent/JP2012124497A/en
Publication of JP2012124497A publication Critical patent/JP2012124497A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29021Disposition the layer connector being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29239Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/203Ultrasonic frequency ranges, i.e. KHz

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device that contains a junction material which contains no lead component and has a junction strength/fracture toughness that are higher than conventional technology as a junction layer of an electrical connection part in an electronic component.SOLUTION: The semiconductor device of the present invention has electronic members electrically connected together through a junction layer. The junction layer contains an Ag matrix and a dispersion phase, which is made of a metal X whose hardness is higher than that of Ag, being dispersed in the Ag matrix. The Ag matrix and the metal X dispersion phase are metal-jointed together. The Ag matrix and the top surface of the electronic member are metal-jointed together. The metal X dispersion phase and the top surface of the electronic member are metal-jointed together. The metal X dispersion phase contains a crystal grain of 1 μm or less. The Ag matrix contains a crystal grain smaller than 100 nm.

Description

本発明は、電子部品(特に半導体装置)中の電気的接合部(例えば、半導体素子と回路部材との接合部)の接合層に関し、特に、粒径が1〜1000 nmのAg(銀)粒子を主材とする接合材、該接合材を用いて接合した部分を有する半導体装置およびその製造方法に関する。以下、半導体素子や回路部材等を総称して電子部材と称す。   The present invention relates to a bonding layer of an electric bonding portion (for example, a bonding portion between a semiconductor element and a circuit member) in an electronic component (particularly a semiconductor device), and in particular, Ag (silver) particles having a particle size of 1 to 1000 nm. The present invention relates to a bonding material mainly composed of a semiconductor material, a semiconductor device having a portion bonded using the bonding material, and a method for manufacturing the same. Hereinafter, semiconductor elements, circuit members, and the like are collectively referred to as electronic members.

一般に、金属粒子の粒径がナノメートルサイズまで小さくなり粒子あたりの構成原子数が少なくなると、粒子の体積に対する表面積の影響は急激に増大し、バルク状態に比較して融点や焼結温度が大幅に低下することが知られている(本明細書では、粒径が1〜1000 nmの粒子をナノ粒子と定義する)。そして、この金属ナノ粒子の低温焼結性を利用したエレクトロニクス実装における接合材として適用する報告がなされている(例えば、非特許文献1参照)。   In general, when the particle size of metal particles is reduced to nanometer size and the number of constituent atoms per particle decreases, the influence of the surface area on the volume of the particles increases rapidly, and the melting point and sintering temperature are greatly increased compared to the bulk state. (In this specification, a particle having a particle size of 1 to 1000 nm is defined as a nanoparticle). And the report applied as a joining material in the electronics mounting using the low temperature sintering property of this metal nanoparticle is made (for example, refer nonpatent literature 1).

特許文献1には、有機物に被覆された平均粒径100 nm以下の金属ナノ粒子を主材とする接合材を用いて、加熱により有機物を分解するとともに金属ナノ粒子同士を焼結させることで接合を行うことが記載されている。該接合方法では、接合後の金属粒子はその界面が金属結合により接合され、全体としてバルク金属へと変化することから、非常に高い耐熱性と信頼性および高放熱性を有するとされている。また、特許文献1には、上述の接合材に対して、骨材として100μm程度以下の金属粒子を混合する方法についても記載されている。   In Patent Document 1, using a bonding material mainly composed of metal nanoparticles with an average particle diameter of 100 nm or less coated with an organic material, the organic material is decomposed by heating and the metal nanoparticles are sintered together. It is described to do. In the bonding method, the metal particles after bonding are bonded to each other by a metal bond and changed to a bulk metal as a whole. Therefore, the metal particles are considered to have very high heat resistance, reliability, and high heat dissipation. Patent Document 1 also describes a method of mixing metal particles of about 100 μm or less as an aggregate with the above-described bonding material.

一方、電子部品等の接続において、近年、はんだの鉛フリー化が求められているが、高温はんだ(融点:300℃程度)に関してはその代替となる材料が未だ定まっていない。電子部品等の実装においては階層はんだを用いることが必要不可欠とされているため、現在使われている高温はんだ(鉛含有率:約96%)に代わる材料の出現が強く望まれている。   On the other hand, in connection with electronic parts and the like, in recent years, there has been a demand for lead-free solder, but an alternative material for high-temperature solder (melting point: about 300 ° C.) has not yet been determined. The use of hierarchical solder is indispensable for mounting electronic components and the like, and the emergence of a material that replaces the currently used high-temperature solder (lead content: about 96%) is strongly desired.

第13回マイクロエレクトロニクスシンポジウム論文集(MES2003)、pp. 96-99.Proceedings of the 13th Microelectronics Symposium (MES2003), pp. 96-99. 特開2004−107728号公報JP 2004-107728 A

前述のような先行技術は、通常使われている高温はんだ(鉛含有率:約96%)の代替材料として期待されるが、300〜400℃の高温環境下で用いたとき(電子部品の製造プロセスにおいて該高温環境を経験すると)、接合強度の観点で良好な結果が得られない場合がある。本発明はそのような問題点に鑑みてなされたものである。   Prior art as described above is expected as an alternative material for high-temperature solder (lead content: about 96%) that is normally used, but when used in a high-temperature environment of 300-400 ° C (manufacturing electronic components) If the high temperature environment is experienced in the process), good results may not be obtained in terms of bonding strength. The present invention has been made in view of such problems.

したがって、本発明の目的は、電子部品の製造プロセス(特に、半導体装置の製造プロセス)における電子部材同士の電気的接合において、先行技術のAgナノ粒子を利用した接合材を用いた場合に比して、より高い接合強度・破壊靱性が得られる接合材を接合層として有する半導体装置を提供することにある。   Therefore, the object of the present invention is compared with the case where a bonding material using Ag nanoparticles of the prior art is used in the electrical bonding between electronic members in the manufacturing process of electronic components (particularly, the manufacturing process of a semiconductor device). An object of the present invention is to provide a semiconductor device having, as a bonding layer, a bonding material that can provide higher bonding strength and fracture toughness.

本発明は、上記目的を達成するため、電子部材同士が接合層を介して電気的に接続されている半導体装置であって、
前記接合層は、Agマトリックスと、前記Agマトリックス中に分散しAgよりも硬度が高い金属Xからなる分散相とを含み、
前記Agマトリックスと前記金属X分散相とは互いに金属接合し、前記Agマトリックスと前記電子部材の最表面とは互いに金属接合し、前記金属X分散相と前記電子部材の最表面とは互いに金属接合しており、
前記金属X分散相は1μm以下の結晶粒を含み、前記Agマトリックスは100 nmよりも小さな結晶粒を含んでいることを特徴とする半導体装置を提供する。
In order to achieve the above object, the present invention is a semiconductor device in which electronic members are electrically connected to each other through a bonding layer,
The bonding layer includes an Ag matrix, and a dispersed phase composed of a metal X dispersed in the Ag matrix and having a hardness higher than Ag.
The Ag matrix and the metal X dispersed phase are metal bonded to each other, the Ag matrix and the outermost surface of the electronic member are metal bonded to each other, and the metal X dispersed phase and the outermost surface of the electronic member are bonded to each other. And
The metal X dispersed phase includes crystal grains of 1 μm or less, and the Ag matrix includes crystal grains smaller than 100 nm.

本発明によれば、電子部品の製造プロセス(特に、半導体装置の製造プロセス)における部材同士の電気的接合において、先行技術に比して、より高い接合強度・破壊靱性が得られる接合材を接合層として有する半導体装置を提供することができる。   According to the present invention, in the electrical joining of members in an electronic component manufacturing process (especially a semiconductor device manufacturing process), a bonding material capable of obtaining higher bonding strength and fracture toughness than those of the prior art is bonded. A semiconductor device including the layer can be provided.

上述の本発明において、以下のような改良や変更を加えることは好ましい。
(i)前記金属X分散相は複数の結晶粒から構成され、前記複数の結晶粒同士は互いに酸化皮膜を介さずに金属接合している。
(ii)前記Agマトリックスに対する前記金属X分散相の質量比は、0より大きく1より小さい。
(iii)前記金属接合の接合界面領域には、該界面を挟む結晶に起因する相互拡散層が形成されている。
(iv)前記金属X分散相は略球体または略楕円体であり、前記金属X分散相が略球体とみなせる場合はその直径が、前記金属X分散相が略楕円体とみなせる場合にはその長軸が、前記接合層の厚さTに対して「T/(2×104) 〜T/2」の範囲にある。
(v)前記金属X分散相におけるひとつの分散相から最隣接の分散相までの距離は、「T/(4×104) 〜T/2」の範囲にある。
(vi)前記電子部材の最表面は該電子部材表面上に形成されたメタライズ層であり、前記メタライズ層はAu,Pt,Pd,Ag,Cu,Niのいずれか、またはそれらの合金で構成されている。
(vii)前記金属Xは、Cuおよび/またはNiである。
In the present invention described above, it is preferable to add the following improvements and changes.
(I) The metal X dispersed phase is composed of a plurality of crystal grains, and the plurality of crystal grains are metal-bonded without intervening an oxide film.
(Ii) The mass ratio of the metal X dispersed phase to the Ag matrix is greater than 0 and less than 1.
(Iii) An interdiffusion layer caused by crystals sandwiching the interface is formed in the bonding interface region of the metal bond.
(Iv) The metal X dispersed phase is substantially a sphere or an ellipsoid, and the diameter is when the metal X dispersed phase can be regarded as a substantially sphere, and the length when the metal X dispersed phase can be regarded as a substantially ellipsoid. The axis is in the range of “T / (2 × 10 4 ) to T / 2” with respect to the thickness T of the bonding layer.
(V) The distance from one dispersed phase to the nearest dispersed phase in the metal X dispersed phase is in the range of “T / (4 × 10 4 ) to T / 2”.
(Vi) The outermost surface of the electronic member is a metallized layer formed on the surface of the electronic member, and the metallized layer is made of any of Au, Pt, Pd, Ag, Cu, Ni, or an alloy thereof. ing.
(Vii) The metal X is Cu and / or Ni.

本発明は、半導体装置中で用いられる接合材に関する発明者らの精力的な調査・研究により完成した。はじめに、本発明者らが行った接合プロセスにおける予備的検討について説明する。   The present invention has been completed by the inventors' extensive research and research on bonding materials used in semiconductor devices. First, the preliminary examination in the joining process performed by the present inventors will be described.

本発明者らは、Agナノ粒子を主材とする次のような接合材を用いてCu(銅)電極同士を接合した接合部の剪断強度について検討した。
(1)有機物に被覆された粒径1〜100 nmのAgナノ粒子と有機物に被覆されていない平均粒径0.2μmのCuナノ粒子とを混合した接合材
(2)有機物に被覆された粒径1〜100 nmのAgナノ粒子と有機物に被覆されていない平均粒径5μmのCu粒子とを混合した接合材
(3)有機物に被覆された粒径1〜100 nmのAgナノ粒子のみの接合材(基準用試料)
それぞれの接合材についてAgナノ粒子に対するCu粒子の質量比と熱処理温度を変化させて調査を行った。接合条件は、熱処理温度を300〜400℃、接合時間を150 s、接合加圧力を2.5 MPaとした。剪断試験には、ボンドテスター(西進商事株式会社製、SS-100KP、最大荷重100 kg)を用いた(その他詳細は後述する)。その結果を図1,2にそれぞれ示す。
The present inventors examined the shear strength of the joint part in which Cu (copper) electrodes were joined together using the following joining material mainly composed of Ag nanoparticles.
(1) Bonding material in which Ag nanoparticles with a particle diameter of 1 to 100 nm coated with organic substances and Cu nanoparticles with an average particle diameter of 0.2 μm not coated with organic substances are mixed (2) Particle diameters coated with organic substances Bonding material in which Ag nanoparticles of 1-100 nm and Cu particles with an average particle size of 5 μm not coated with organic substances are mixed (3) Bonding material only of Ag nanoparticles with particle diameters of 1-100 nm coated with organic substances (Reference sample)
Each bonding material was investigated by changing the mass ratio of Cu particles to Ag nanoparticles and the heat treatment temperature. The joining conditions were a heat treatment temperature of 300 to 400 ° C., a joining time of 150 s, and a joining pressure of 2.5 MPa. For the shear test, a bond tester (manufactured by Seishin Shoji Co., Ltd., SS-100KP, maximum load 100 kg) was used (other details will be described later). The results are shown in FIGS.

図1は、上記(1)の接合材におけるAgナノ粒子に対するCu粒子の質量比と規格化剪断強度の関係を示すグラフである。図2は、上記(2)の接合材におけるAgナノ粒子に対するCu粒子の質量比と規格化剪断強度の関係を示すグラフである。なお、規格化剪断強度とは、上記(3)の接合材(Agナノ粒子のみ、Cu粒子の質量比=0)の場合の剪断強度を1として規格化したものである。図1,2から判るように、いずれの場合においても接合材中のCu粒子の質量比が増加するほど接合部の剪断強度が低下する傾向があることが判明した。   FIG. 1 is a graph showing the relationship between the mass ratio of Cu particles to Ag nanoparticles and the normalized shear strength in the bonding material (1). FIG. 2 is a graph showing the relationship between the mass ratio of Cu particles to Ag nanoparticles and the normalized shear strength in the bonding material of (2). The normalized shear strength is normalized with the shear strength in the case of the above-mentioned bonding material (3) (only Ag nanoparticles, mass ratio of Cu particles = 0) being 1. As can be seen from FIGS. 1 and 2, in any case, it was found that the shear strength of the joint tends to decrease as the mass ratio of the Cu particles in the joining material increases.

そこで、その傾向の要因を調査するために、剪断試験による破壊途中および破壊後の接合部組織を観察した。図3は、Cu電極接合部の断面を表したモデル図である。図3に示すように、Cu電極301とCu電極302は、接合材300を介して接合されている。接合材300は、前述したようにAgナノ粒子とCu粒子(骨材)からなり、熱処理によって、焼結銀303のマトリックス中に骨材304が分散した組織となる。   Therefore, in order to investigate the factor of the tendency, the joint structure during and after the fracture by the shear test was observed. FIG. 3 is a model diagram showing a cross section of the Cu electrode joint. As shown in FIG. 3, the Cu electrode 301 and the Cu electrode 302 are joined via a joining material 300. The bonding material 300 is made of Ag nanoparticles and Cu particles (aggregate) as described above, and has a structure in which the aggregate 304 is dispersed in the matrix of the sintered silver 303 by heat treatment.

剪断試験による破壊途中および破壊後の接合部微細組織を観察した結果、主たる破壊経路および/または破壊の起点が、骨材304同士(Cu粒子同士)の界面部305,306、および、骨材304とCu電極301,302との界面307,308にあることが判った。これは、これらの領域(305〜308)での接合強度が、Agナノ粒子により形成された焼結銀303内部の強度、焼結銀303と骨材304との界面部309の接合強度、焼結銀303とCu電極301,302との界面部310,311の接合強度に比して低いことを強く示唆するものである。   As a result of observing the joint microstructure during and after the fracture by the shear test, the main fracture path and / or the origin of fracture are the interface parts 305 and 306 between the aggregates 304 (Cu particles), and the aggregate 304. And the Cu electrodes 301 and 302 at the interfaces 307 and 308. This is because the bonding strength in these regions (305 to 308) is the strength inside the sintered silver 303 formed by Ag nanoparticles, the bonding strength at the interface 309 between the sintered silver 303 and the aggregate 304, and the sintering strength. This strongly suggests that the bonding strength of the interface portions 310 and 311 between the silver joint 303 and the Cu electrodes 301 and 302 is low.

また、図1と図2を比較すると、図1に示した(1)の接合材の方が、図2に示した(2)の接合材よりも規格化剪断強度が小さいことが判る。これに関しては次のように考えることができる。(1)の接合材における骨材(平均粒径0.2μmのCuナノ粒子)は、(2)の接合材における骨材(平均粒径5μmのCu粒子)よりも粒径が小さいために自己凝集性が大きく、Agマトリックス中でも骨材同士の凝集箇所が多く生じやすいと考えられる。骨材同士の凝集は、図3の305,306に示したような骨材同士の界面部に起因する接合不良部分になりやすく、剪断試験における破壊の起点や破壊経路を構成する。このため、(1)の接合材の方が、(2)の接合材よりも規格化剪断強度が小さくなったと考えられた。   Further, comparing FIG. 1 and FIG. 2, it can be seen that the bonding material (1) shown in FIG. 1 has a smaller normalized shear strength than the bonding material (2) shown in FIG. This can be thought of as follows. The aggregate (Cu nanoparticles with an average particle size of 0.2 μm) in the bonding material of (1) has a smaller particle size than the aggregate (Cu particles with an average particle size of 5 μm) in the bonding material of (2). It is considered that there are many aggregated portions between aggregates even in the Ag matrix. Aggregation of aggregates tends to be a joint failure portion caused by an interface portion between aggregates as shown by 305 and 306 in FIG. 3, and constitutes a fracture starting point and a fracture path in a shear test. For this reason, it was thought that the normalized shear strength was smaller in the bonding material (1) than in the bonding material (2).

以下に、図を参照しながら、本発明に係る実施の形態を説明する。ただし、本発明はここで取り上げた実施の形態に限定されることはなく、適宜組み合わせてもよい。   Embodiments according to the present invention will be described below with reference to the drawings. However, the present invention is not limited to the embodiment taken up here, and may be appropriately combined.

本発明は、電子部材同士が接合層を介して電気的に接続されている半導体装置であって、前記接合層は、Agマトリックスと、前記Agマトリックス中に分散しAgよりも硬度が高い金属Xからなる分散相とを含み、前記Agマトリックスと前記金属X分散相とは互いに金属接合し、前記Agマトリックスと前記電子部材の最表面とは互いに金属接合し、前記金属X分散相と前記電子部材の最表面とは互いに金属接合しており、前記金属X分散相は1μm以下の結晶粒を含み、前記Agマトリックスは100 nmよりも小さな結晶粒を含んでいることを特徴とする。金属XがAgマトリックス中に略均等に分散し、かつ各界面が良好な金属結合を形成することにより、Ag相のみあるいは金属X相のみの焼結体組織よりも機械的強度(例えば、剪断強度)が向上するものである。   The present invention is a semiconductor device in which electronic members are electrically connected to each other through a bonding layer, and the bonding layer includes an Ag matrix and a metal X dispersed in the Ag matrix and having a hardness higher than Ag. The Ag matrix and the metal X dispersed phase are metal bonded to each other, the Ag matrix and the outermost surface of the electronic member are metal bonded to each other, and the metal X dispersed phase and the electronic member are The metal X dispersed phase includes crystal grains of 1 μm or less, and the Ag matrix includes crystal grains smaller than 100 nm. Metal X is dispersed almost uniformly in the Ag matrix, and each interface forms a good metal bond, so that the mechanical strength (for example, shear strength) is higher than the sintered structure of Ag phase alone or only metal X phase. ) Is improved.

一般に、単一相における応力破壊のメカニズムは、応力によりまず微小なクラックが発生し、次に発生したクラックの先端部周辺への応力集中が生じることにより、該クラックが成長し全体に進展して破壊に至ると言われている。また、分散強化や析出強化と言われる機構は、マトリックス相よりも塑性変形しにくい相(いわゆる硬い相)をマトリックス相中に分散させることで、分散相をクラック成長のバリアとして機能させたり、該分散相を転位のピン止めとして機能させたりすることで、全体としての破壊靱性や強度を向上させるものである。   In general, the mechanism of stress fracture in a single phase is that a micro crack is first generated by the stress, and then the stress is concentrated around the tip of the generated crack. It is said to lead to destruction. The mechanism called dispersion strengthening or precipitation strengthening is to disperse a phase that is less plastically deformed than the matrix phase (so-called hard phase) in the matrix phase, thereby allowing the dispersed phase to function as a crack growth barrier, By making the dispersed phase function as dislocation pinning, the fracture toughness and strength as a whole are improved.

上述の剪断試験結果において、分散強化が期待されるはずの接合材(1),(2)でAgナノ粒子のみ(Cu粒子の質量比=0)の接合材よりも剪断強度が低くなる傾向が見られた。そして微細組織観察から、マトリックス相と分散相との界面、マトリックス相と電子部材との界面、分散相と電子部材との界面、分散相内部の界面など、全ての界面における接合強度のバランス(全ての界面が良好な接合強度を有すること)が重要であることが判った。すなわち、本発明においては、接合層中に存在する界面が全て金属結合していることがポイントである。   In the above shear test results, the joint materials (1) and (2), which should be expected to be dispersion strengthened, tend to have lower shear strength than the joint material of only Ag nanoparticles (Cu particle mass ratio = 0). It was seen. From the microstructure observation, the balance of bonding strength at all interfaces such as the interface between the matrix phase and the dispersed phase, the interface between the matrix phase and the electronic member, the interface between the dispersed phase and the electronic member, and the interface inside the dispersed phase (all It has been found that it is important that the interface has a good bonding strength. That is, the point in the present invention is that all the interfaces existing in the bonding layer are metal-bonded.

言い換えると、接合層において、焼結銀層と金属X分散相との界面、焼結銀層と電子部材の最表面との界面、金属X分散相と電子部材の最表面との界面、金属X分散相内部に界面が存在する場合はその界面のいずれかひとつでも金属接合が得られていない接合状態であれば、その領域が応力負荷時にクラックの起点やクラックの伝達経路となりやすく、剪断強度が著しく低下する。なお、本発明において、金属接合が得られていない接合状態とは、接合界面に空隙等が存在し密着が得られていない、あるいはいずれか一方あるいは両方の酸化皮膜層を介して接合が行われている状態と定義する。また、本発明において、金属結合している状態とは、酸化皮膜層を介さずに焼結している状態で、異種金属界面の場合は接合界面領域(例えば、界面から15 nm程度)で相互拡散層を形成している状態と定義する。酸化皮膜層や相互拡散層の有無は、例えばTEM−EDX(透過型電子顕微鏡−エネルギー分散型X線分析装置)等で評価することができる。   In other words, in the bonding layer, the interface between the sintered silver layer and the metal X dispersed phase, the interface between the sintered silver layer and the outermost surface of the electronic member, the interface between the metal X dispersed phase and the outermost surface of the electronic member, metal X If there is an interface inside the dispersed phase, if any one of the interfaces is in a bonded state, the region is likely to become a starting point of cracks or a crack transmission path when stress is applied, and the shear strength is high. It drops significantly. In the present invention, the bonded state in which metal bonding is not obtained means that there is a gap or the like at the bonding interface and adhesion is not obtained, or bonding is performed through one or both oxide film layers. Is defined as In the present invention, the state of metal bonding refers to the state of sintering without an oxide film layer, and in the case of a dissimilar metal interface, mutual bonding is performed in the bonding interface region (for example, about 15 nm from the interface). It is defined as a state in which a diffusion layer is formed. The presence or absence of an oxide film layer or an interdiffusion layer can be evaluated by, for example, TEM-EDX (transmission electron microscope-energy dispersive X-ray analyzer).

上記の接合部の強化や破壊靱性の向上効果は、金属XがAgマトリックス中に分散する、すなわちAgマトリックスが分散相に対し網目状にネットワークを形成することで効果を発揮する。より具体的には、金属X分散相が略球体または略楕円体であり、金属X分散相が略球体とみなせる場合はその直径が、金属X分散相が略楕円体とみなせる場合にはその長軸が、接合層の厚さTに対して「T/(2×104) 〜T/2」の範囲にあることが望ましい。さらに、ひとつの分散相から最隣接の分散相までの距離が「T/(4×104) 〜T/2」の範囲にあることが望ましい。上記範囲から外れると、金属X分散相による骨材として期待される機能が発揮されない。 The effects of strengthening the joint and improving the fracture toughness described above are exhibited when the metal X is dispersed in the Ag matrix, that is, the Ag matrix forms a network in the form of a network with respect to the dispersed phase. More specifically, when the metal X dispersed phase is substantially a sphere or an ellipsoid, and the metal X dispersed phase can be regarded as a substantially sphere, the diameter is long, and when the metal X dispersed phase can be regarded as a substantially ellipsoid, the length is long. The axis is preferably in the range of “T / (2 × 10 4 ) to T / 2” with respect to the thickness T of the bonding layer. Furthermore, it is desirable that the distance from one disperse phase to the nearest disperse phase is in the range of “T / (4 × 10 4 ) to T / 2”. If it is out of the above range, the function expected as an aggregate by the metal X dispersed phase is not exhibited.

接合層のマトリックス相としてはAgが好ましい。マトリックスを形成する金属は、分散相を形成する金属よりも焼結能に優れることが望ましいためである。優れた焼結能とは、焼結機構を構成する表面拡散係数や体積拡散係数が大きいことを意味する特性である。また、表面拡散は焼結層形成に対する影響が大きいため、表面拡散を阻害しないように酸化し難い性質(貴な性質)を有することも焼結能に強く影響を及ぼす。このような観点から、Cu,Ag,Au(金),Pt(白金),Pd(パラジウム)のうちの単独または2種類以上の金属や合金などもマトリックスを形成するための金属として用いることが可能である。中でも、拡散係数の最も大きいAgが好ましい。また、この観点から、Cuマトリックス中にこれよりも硬度が高いNi(ニッケル)が分散する接合部についても、Cuのみで構成されるよりも強度や破壊靱性が向上すると考えられる。   Ag is preferred as the matrix phase of the bonding layer. This is because the metal forming the matrix is preferably superior in sintering ability to the metal forming the dispersed phase. Excellent sinterability is a characteristic that means that the surface diffusion coefficient and volume diffusion coefficient constituting the sintering mechanism are large. Further, since surface diffusion has a great influence on the formation of the sintered layer, having a property (precious property) that is difficult to oxidize so as not to inhibit the surface diffusion strongly affects the sintering ability. From this point of view, Cu, Ag, Au (gold), Pt (platinum), or Pd (palladium) can be used alone or as a metal for forming a matrix. It is. Among them, Ag having the largest diffusion coefficient is preferable. From this point of view, it is considered that the strength and fracture toughness of the joint where Ni (nickel) having a higher hardness is dispersed in the Cu matrix are improved as compared with the case where only Cu is used.

上述のような分散組織は、個々の粒子表面が有機物で被覆された粒径1〜1000 nmのAgナノ粒子と、個々の粒子表面が有機物で被覆された粒径1〜1000 nmのAgよりも硬い金属Xナノ粒子を混合・焼結することで得られる(詳細は後述する)。なお、「硬い金属」とは、例えば、焼鈍された状態でAgよりも高いビッカース高度を有する金属を意味するものとする。金属X粒子がAgマトリックス中に分散していないと、金属X粒子同士の界面、金属X粒子と電子部材の最表面との界面が脆弱になりやすく、本発明の目的を達成することができない。ここで、脆弱になる(脆弱な界面)とは、金属X粒子同士の界面、金属X粒子と電子部材の最表面との界面に隙間がある、あるいは金属接合が得られていない状態を意味する。また、金属ナノ粒子(Agおよび金属X)の粒径は、それぞれ1〜1000 nmの粒径分布が好ましく、1〜100 nmの粒径分布が更に好ましい。一方、個々の金属ナノ粒子表面を被覆する有機物量は、熱処理前の接合材全体の1〜15 mass%とするのが好ましい。さらに好ましくは1〜10 mass%である。個々の金属ナノ粒子表面を一様に被覆することができる範囲で有機物量をできるだけ抑制した方が、有機物除去にかかる時間と手間が減少し接合プロセスの短縮化や低温化が図れる。   The dispersed structure as described above is more than Ag nanoparticles having a particle size of 1 to 1000 nm in which individual particle surfaces are coated with organic substances, and Ag particles having a particle diameter of 1 to 1000 nm in which individual particle surfaces are coated with organic substances. It can be obtained by mixing and sintering hard metal X nanoparticles (details will be described later). The “hard metal” means, for example, a metal having a Vickers height higher than Ag in an annealed state. If the metal X particles are not dispersed in the Ag matrix, the interface between the metal X particles and the interface between the metal X particles and the outermost surface of the electronic member tend to be brittle, and the object of the present invention cannot be achieved. Here, becoming brittle (fragile interface) means a state in which there is a gap at the interface between the metal X particles, the interface between the metal X particles and the outermost surface of the electronic member, or metal bonding is not obtained. . Moreover, the particle size distribution of the metal nanoparticles (Ag and metal X) is preferably 1 to 1000 nm, and more preferably 1 to 100 nm. On the other hand, it is preferable that the amount of the organic substance covering the surface of each metal nanoparticle is 1 to 15 mass% of the entire bonding material before the heat treatment. More preferably, it is 1-10 mass%. If the amount of the organic substance is suppressed as much as possible within the range in which the surface of each metal nanoparticle can be uniformly coated, the time and labor required for removing the organic substance can be reduced, and the joining process can be shortened and the temperature can be reduced.

粒径1〜1000 nmの金属ナノ粒子を有機物で被覆する方法に特段の制限は無く、個々の粒子表面を一様に被覆できるかぎり既知の方法を利用することができる。また、金属ナノ粒子を被覆する有機物は金属ナノ粒子の凝集を防止し、分散媒中に独立に(略均等に)分散することが可能な有機物であれば、被覆の形態については特に限定されない。有機物の種類としては、カルボン酸類、アルコール類、アミン類から選ばれる1種以上の有機物が好ましい。なお、「類」のなかには、有機物が金属と化学的に結合した場合などに由来するイオンや錯体等も含めるものとする。ただし、硫黄やハロゲン元素を含有する有機物は、接合後の接合層内に当該元素が残留して腐食の原因となる可能性があるため、避ける方が望ましい。   There is no particular limitation on the method of coating metal nanoparticles having a particle size of 1 to 1000 nm with an organic substance, and a known method can be used as long as the surface of each particle can be uniformly coated. Further, the form of the coating is not particularly limited as long as the organic substance covering the metal nanoparticles is an organic substance that prevents aggregation of the metal nanoparticles and can be dispersed independently (substantially uniformly) in the dispersion medium. As a kind of organic substance, 1 or more types of organic substances chosen from carboxylic acids, alcohols, and amines are preferable. Note that “class” includes ions, complexes, and the like derived from cases where organic substances are chemically bonded to metals. However, it is preferable to avoid organic substances containing sulfur or halogen elements because the elements may remain in the bonded layer after bonding and cause corrosion.

カルボン酸類の例としては、酢酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、エルカ酸ネルボン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸、イワシ酸、シュウ酸、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、リンゴ酸、アジピン酸、クエン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、2,4-ヘキサジインカルボン酸、2,4-ヘプタジインカルボン酸、2,4-オクタジインカルボン酸、2,4-デカジインカルボン酸、2,4-ドデカジインカルボン酸、2,4-テトラデカジインカルボン酸、2,4-ペンタデカジインカルボン酸、2,4-ヘキサデカジインカルボン酸、2,4-オクタデカジインカルボン酸、2,4-ノナデカジインカルボン酸、10,12-テトラデカジインカルボン酸、10,12-ペンタデカジインカルボン酸、10,12-ヘキサデカジインカルボン酸、10,12-ヘプタデカジインカルボン酸、10,12-オクタデカジインカルボン酸、10,12-トリコサジインカルボン酸、10,12-ペンタコサジインカルボン酸、10,12-ヘキサコサジインカルボン酸、10,12-ヘプタコサジインカルボン酸、10,12-オクタコサジインカルボン酸、10,12-ノナコサジインカルボン酸、2,4-ヘキサジインジカルボン酸、3,5-オクタジインジカルボン酸、4,6-デカジインジカルボン酸、8,10-オクタデカジインジカルボン酸などが挙げられる。   Examples of carboxylic acids include acetic acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, myristolein Acid, palmitoleic acid, oleic acid, elaidic acid, erucic acid, nervonic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid, succinic acid, oxalic acid, malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, Malic acid, adipic acid, citric acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, 2,4-hexadiynecarboxylic acid, 2,4-heptadiynecarboxylic acid, 2,4-octadiynecarboxylic acid, 2,4-decadiynecarboxylic acid, 2,4-dodecadiynecarboxylic acid, 2,4-tetradecadiinca Boronic acid, 2,4-pentadecadiyne carboxylic acid, 2,4-hexadecadiyne carboxylic acid, 2,4-octadecadiine carboxylic acid, 2,4-nonadecadiyne carboxylic acid, 10,12-tetradecadiyne Carboxylic acid, 10,12-Pentadecadiyne carboxylic acid, 10,12-Hexadecadiine carboxylic acid, 10,12-Heptadecadiine carboxylic acid, 10,12-Octadecadiyne carboxylic acid, 10,12-tricosadiyne Carboxylic acid, 10,12-pentacosadiyne carboxylic acid, 10,12-hexacosadiyne carboxylic acid, 10,12-heptacosadiyne carboxylic acid, 10,12-octacosadiyne carboxylic acid, 10,12-nonacosadi Examples thereof include incarboxylic acid, 2,4-hexadiyne dicarboxylic acid, 3,5-octadiyne dicarboxylic acid, 4,6-decadiyne dicarboxylic acid, and 8,10-octadecadin dicarboxylic acid.

アルコール類の例としては、エチルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、オエレイルアルコール、リノリルアルコール、エチレングリコール、トリエチレングリコール、グリセリンなどが挙げられる。   Examples of alcohols include ethyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, Examples include oleyl alcohol, linoleyl alcohol, ethylene glycol, triethylene glycol, and glycerin.

アミン類の例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、オレイルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、イソプロピルアミン、1,5-ジメチルヘキシルアミン、2-エチルヘキシルアミン、ジ(2-エチルヘキシル)アミン、メチレンジアミン、トリメチルアミン、トリエチルアミン、エチレンジアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミン、N,N-ジメチルプロパン-2-アミン、アニリン、N,N-ジイソプロピルエチルアミン、2,4-ヘキサジイニルアミン、2,4-ヘプタジイニルアミン、2,4-オクタジイニルアミン、2,4-デカジイニルアミン、2,4-ドデカジイニルアミン、2,4-テトラデカジイニルアミン、2,4-ペンタデカジイニルアミン、2,4-ヘキサデカジイニルアミン、2,4-オクタデカジイニルアミン、2,4-ノナデカジイニルアミン、10,12-テトラデカジイニルアミン、10,12-ペンタデカジイニルアミン、10,12-ヘキサデカジイニルアミン、10,12-ヘプタデカジイニルアミン、10,12-オクタデカジイニルアミン、10,12-トリコサジイニルアミン、10,12-ペンタコサジイニルアミン、10,12-ヘキサコサジイニルアミン、10,12-ヘプタコサジイニルアミン、10,12-オクタコサジイニルアミン、10,12-ノナコサジイニルアミン、2,4-ヘキサジイニルジアミン、3,5-オクタジイニルジアミン、4,6-デカジイニルジアミン、8,10-オクタデカジイニルジアミン、ステアリン酸アミド、パルミチン酸アミド、ラウリン酸ラウリルアミド、オレイン酸アミド、オレイン酸ジエタノールアミド、オレイン酸ラウリルアミドなどが挙げられる。   Examples of amines include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine Amine, hexadecylamine, heptadecylamine, octadecylamine, oleylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, isopropylamine, 1,5 -Dimethylhexylamine, 2-ethylhexylamine, di (2-ethylhexyl) amine, methylenediamine, trimethylamine, triethylamine, ethyl Diamine, tetramethylethylenediamine, hexamethylenediamine, N, N-dimethylpropan-2-amine, aniline, N, N-diisopropylethylamine, 2,4-hexadiynylamine, 2,4-heptadiynylamine, 2,4- Octadiynylamine, 2,4-decadiynylamine, 2,4-dodecadiynylamine, 2,4-tetradecadiynylamine, 2,4-pentadecadiynylamine, 2,4-hexadecadiynylamine, 2,4 -Octadecadiynylamine, 2,4-nonadecadiynylamine, 10,12-tetradecadiynylamine, 10,12-pentadecadiynylamine, 10,12-hexadecadiynylamine, 10,12-heptadecadiynylamine 10,12-octadecadiynylamine, 10,12-tricosadiynylamine, 10,12-pentacosadiynylamine, 10,12-hexacosadiynylamine, 10,12-heptacosadiynylamine, 1 0,12-octacosadiynylamine, 10,12-nonacosadiynylamine, 2,4-hexadiynyldiamine, 3,5-octadiynyldiamine, 4,6-decadiynyldiamine, 8,10-octa Examples include decadiynyldiamine, stearic acid amide, palmitic acid amide, lauric acid lauryl amide, oleic acid amide, oleic acid diethanolamide, oleic acid lauryl amide, and the like.

金属ナノ粒子を被覆する有機物は金属表面から脱離した際に、副生成物が低温で分解しやすい分子構造であることが好ましい。また、詳細は後述するが、マトリックスとなる金属ナノ粒子と骨材となる金属ナノ粒子を被覆する有機物は、互いに同程度の極性を有するものを用いることが好ましい。極性が同程度の有機物で被覆することにより、それぞれの金属ナノ粒子の有機分散媒への分散性を同程度にすることができるからである。なお、極性の程度は、極性の小さいトルエンや極性の大きい水などへ分散させることにより調査できる。   The organic substance covering the metal nanoparticles preferably has a molecular structure in which by-products are easily decomposed at a low temperature when detached from the metal surface. Although details will be described later, it is preferable to use organic substances that cover the metal nanoparticles as a matrix and the metal nanoparticles as an aggregate having the same degree of polarity. This is because the dispersibility of each metal nanoparticle in the organic dispersion medium can be made comparable by coating with an organic substance having the same polarity. In addition, the degree of polarity can be investigated by dispersing in low polarity toluene or high polarity water.

本発明に係る接合材における金属Xの質量比は、マトリックス相のAgの質量に対して0より大きく1より小さい範囲が好ましい。より好ましくは、0より大きく0.25以下である(詳細は後述する)。   The mass ratio of the metal X in the bonding material according to the present invention is preferably in the range of more than 0 and less than 1 with respect to the mass of Ag in the matrix phase. More preferably, it is larger than 0 and not larger than 0.25 (details will be described later).

個々の粒子表面に有機物が被覆されたAgナノ粒子と個々の粒子表面に有機物が被覆された金属Xナノ粒子とを混合する方法としては、両者の有機物と略同じ大きさの極性を持つ分散媒に分散させて混合する方法が最も簡便であり好ましい。また、混合する具体的な手段としては、例えば、三本ロール法、攪拌振動子、攪拌器など一般的な手段を用いることができる。一方、極性の小さい分散媒としては、例えば、トルエン、α-テルピネオールなどが挙げられ、極性の大きい分散媒としては、例えば水が挙げられ、中間としては、例えば、1級アルコール、トリエチレングリコールなどが挙げられる。   As a method of mixing Ag nanoparticles whose surface is coated with organic substances and metal X nanoparticles whose surface is coated with organic substances, a dispersion medium having the same polarity as both organic substances is used. The method of dispersing and mixing in the most simple and preferred. As specific means for mixing, for example, general means such as a three-roll method, a stirring vibrator, and a stirrer can be used. On the other hand, examples of the dispersion medium with small polarity include toluene and α-terpineol. Examples of the dispersion medium with large polarity include water. Examples of intermediates include primary alcohols and triethylene glycol. Is mentioned.

有機物によりその表面を被覆された金属Xナノ粒子およびAgナノ粒子から構成される接合材は、そのままで用いてもよいが、電子部材の接合箇所に供給(例えば、塗布や印刷)しやすくするためにインク状・ペースト状、またはシート状とするのも好ましい。インク状・ペースト状として用いる場合には、分散媒として水や有機溶媒などを添加してもよい。分散媒の例としては、メタノール、エタノール、プロパノール、エチレングリコール、トリエチレングリコール、テルピネオール、水、ヘキサン、テトラヒドロフラン、トルエン、シクロヘキサン、ポリビニルアルコール、ポリアクリルニトリル、ポリビニルピロリドン、ポリエチレングリコールなどが挙げられる。また、市販の溶剤としては、例えば、ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190(以上、ビックケミー・ジャパン株式会社製)、メガファックF-479(大日本インキ化学工業株式会社製、メガファック:登録商標)、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(以上、富士フイルムイメージングカラーラント株式会社製、ソルスパース:登録商標)などの高分子系分散剤などを用いることができる。   The bonding material composed of metal X nanoparticles and Ag nanoparticles whose surfaces are coated with an organic substance may be used as it is, but in order to facilitate supply (for example, coating or printing) to a bonding portion of an electronic member. In addition, it is also preferable to use ink, paste, or sheet. When used as an ink or paste, water or an organic solvent may be added as a dispersion medium. Examples of the dispersion medium include methanol, ethanol, propanol, ethylene glycol, triethylene glycol, terpineol, water, hexane, tetrahydrofuran, toluene, cyclohexane, polyvinyl alcohol, polyacrylonitrile, polyvinyl pyrrolidone, polyethylene glycol, and the like. Examples of commercially available solvents include Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 166, Dispersic 170, Dispersic 180, Dispersic 182, Dispersic 184, Dispersic 190 ( Above, Big Chemie Japan Co., Ltd., MegaFuck F-479 (Dainippon Ink Chemical Co., Ltd., MegaFuck: registered trademark), Sol Sparse 20000, Sol Sparse 24000, Sol Sparse 26000, Sol Sparse 27000, Sol Sparse 28000 (above, Fuji Polymeric dispersants such as “Solsperse” (registered trademark) manufactured by Film Imaging Colorant Co., Ltd. can be used.

インク状・ペースト状の接合材は、例えば、インクジェット法により微細なノズルからインクやペーストを噴出させて電子部材の接合する部分に塗布する方法、塗布する部分が開口したメタルマスクやメッシュ状マスクを用いて必要部分にのみ塗布を行う方法など、接合する部分の面積・形状に応じて、既知の方法を適宜組み合わせて塗布・印刷することが可能である。   The ink-like / paste-like bonding material is, for example, a method in which ink or paste is ejected from a fine nozzle by an ink jet method and applied to a portion where an electronic member is to be bonded, or a metal mask or mesh-shaped mask having an opening to be applied is used. It is possible to apply and print by appropriately combining known methods according to the area and shape of the part to be joined, such as a method of using and applying only to a necessary part.

また、加圧成形によりシート状に加工して接合材として用いることができる。このとき、ミリスチルアルコール、セチルアルコール、ステアリルアルコールやカプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸のような室温で固体である有機物を添加することで成形性が向上する。以上のように、電子部材の接合箇所に塗布・印刷しやすくするために、接合材をインク状・ペースト状、またはシート材に調整することは好ましいが、このとき接合材中の金属ナノ粒子の含有量が60〜99 mass%となるようにすることが好ましい。   Moreover, it can process into a sheet form by pressure molding and can be used as a joining material. At this time, moldability is improved by adding an organic substance that is solid at room temperature, such as myristyl alcohol, cetyl alcohol, stearyl alcohol, capric acid, undecanoic acid, lauric acid, and myristic acid. As described above, it is preferable to adjust the bonding material to an ink-like / paste-like or sheet material in order to facilitate application / printing at the joining portion of the electronic member, but at this time, the metal nanoparticles in the bonding material The content is preferably 60 to 99 mass%.

上述のような本発明に係る個々の粒子表面が有機物で被覆されたAgナノ粒子と個々の粒子表面が有機物で被覆された金属Xナノ粒子を含む接合材を、接合する電子部材間に配置し加熱処理することにより、接合材中の有機物成分が除去されるとともにAgナノ粒子と金属Xナノ粒子が焼結され、本発明に係るAgマトリックス中に金属Xが分散した複合金属焼結体(接合層)となる。これにより、該電子部材同士を接合することができる。なお、このとき接合層と電子部材との界面においても金属接合が得られる。   As described above, a bonding material including Ag nanoparticles whose individual particle surfaces are coated with organic substances and metal X nanoparticles whose individual particle surfaces are coated with organic substances as described above is disposed between the electronic members to be bonded. By the heat treatment, the organic component in the bonding material is removed and the Ag nanoparticles and the metal X nanoparticles are sintered, and the composite metal sintered body in which the metal X is dispersed in the Ag matrix according to the present invention (bonding) Layer). Thereby, this electronic member can be joined. At this time, metal bonding is also obtained at the interface between the bonding layer and the electronic member.

加熱処理における温度に関しては、150〜400℃で行うことが好ましい(詳細は後述する)。150℃未満では接合材中の有機物成分の除去が不完全になる場合があり、400℃を超えると電子部材の耐熱性の観点から不具合が生じる場合がある。なお、上限温度は接合する電子部材の耐熱性に起因することから、接合する電子部材が許容する場合は400℃に限定されるものではない。   Regarding the temperature in the heat treatment, it is preferably performed at 150 to 400 ° C. (details will be described later). If the temperature is lower than 150 ° C., removal of organic components in the bonding material may be incomplete, and if the temperature exceeds 400 ° C., problems may occur from the viewpoint of heat resistance of the electronic member. Since the upper limit temperature is due to the heat resistance of the electronic member to be joined, the upper limit temperature is not limited to 400 ° C. when the electronic member to be joined permits.

また、加熱処理とともに該接合部を0より大きい圧力で加圧することは好ましい。熱処理中に加圧することで、有機物成分の分解・排出および金属ナノ粒子の焼結にともなう体積収縮を補うことができる。これにより、該接合部の接合強度が向上する。なお、付与する加圧力は10 MPa未満とすることが好ましい。より好ましくは5 MPa以下である。これは、接合する電子部材(例えば、半導体チップやその上面に形成された配線および電極)が一般的に物理的な変形に弱いためである。表1に示すように、10 MPa以上の加圧を付与すると接合する半導体チップに破損が生じる場合があった。   In addition, it is preferable to pressurize the joint with a pressure greater than 0 together with the heat treatment. By applying pressure during the heat treatment, it is possible to compensate for the volume shrinkage associated with the decomposition and discharge of the organic component and the sintering of the metal nanoparticles. Thereby, the joint strength of the joint is improved. The applied pressure is preferably less than 10 MPa. More preferably, it is 5 MPa or less. This is because electronic members to be joined (for example, semiconductor chips and wirings and electrodes formed on the upper surface thereof) are generally vulnerable to physical deformation. As shown in Table 1, when a pressure of 10 MPa or more was applied, the semiconductor chip to be bonded might be damaged.

Figure 2012124497
Figure 2012124497

本発明に係る接合材と当接する電子部材の最表面は、Agと金属接合が得られやすい金属種でメタライズされることが好ましく、例えば、Au、Pt、Pd、Ag、Cu、Ni、またはそれらの合金から選ばれた材料を用いることができる(詳細は後述する)。   The outermost surface of the electronic member that comes into contact with the bonding material according to the present invention is preferably metallized with a metal species that facilitates metal bonding with Ag, for example, Au, Pt, Pd, Ag, Cu, Ni, or those A material selected from these alloys can be used (details will be described later).

本発明に係る接合材は、加熱処理によって複合金属焼結体(接合層)となることでバルク体としての性質を示すようになることから、その融点が熱処理温度(焼結温度)よりもはるかに高いものになる。半導体装置の製造プロセスにおける現行の実装方法は、階層はんだを用いることが主流となっており、1次実装で用いられるはんだには、2次実装で主に用いられるSn−Ag−Cu系はんだの実装温度(230〜260℃)以上の融点を有していることが求められる。この理由により、高温はんだ(鉛含有率:約96%、融点:約300℃)がしばしば用いられている。また、この融点の観点から、金属XはAgと合金化してもその融点が少なくとも300℃を超える金属であるAu、Cu、Ni、Ti、Pt、Pdの群から選ばれる単体、またはその合金であることが好ましい。これにより、現状では困難となっている高温はんだの鉛フリー化が可能になる。   Since the bonding material according to the present invention becomes a composite metal sintered body (bonding layer) by heat treatment and exhibits properties as a bulk body, its melting point is much higher than the heat treatment temperature (sintering temperature). It will be expensive. The current mounting method in the semiconductor device manufacturing process is mainly to use hierarchical solder, and the solder used in the primary mounting is the Sn-Ag-Cu solder mainly used in the secondary mounting. It is required to have a melting point equal to or higher than the mounting temperature (230 to 260 ° C.). For this reason, high-temperature solder (lead content: about 96%, melting point: about 300 ° C.) is often used. From the viewpoint of this melting point, the metal X is a simple substance selected from the group consisting of Au, Cu, Ni, Ti, Pt, and Pd, or an alloy thereof, whose melting point exceeds 300 ° C. even when alloyed with Ag. Preferably there is. This makes it possible to make the high-temperature solder lead-free, which is difficult at present.

一方、電子部材の接合部には、上述の耐熱性(融点)の要求に加えて、高い放熱性(高い熱伝導性)が求められている。例えば、インバータ等に用いられるパワー半導体装置の1つである非絶縁型半導体装置においては、該半導体装置の電極は、電流を流す電極であるのと同時に半導体素子を固定する部材でもある。より具体的には、パワートランジスタの固定部材(ベース材)は、しばしばコレクタ電極を兼ねており、半導体装置稼動時に数アンペア以上の電流が流れる。このような半導体装置を安全かつ安定して動作させるためには、半導体装置の動作時に発生する熱を該パッケージの外へ効率良く放散させ、さらに接合部の接続信頼性も確保する必要がある。このために、長期信頼性を含む耐熱性に加えて高い放熱性が要求される。   On the other hand, in addition to the above-mentioned requirements for heat resistance (melting point), high heat dissipation (high thermal conductivity) is required for the joint portion of the electronic member. For example, in a non-insulated semiconductor device which is one of power semiconductor devices used for an inverter or the like, the electrode of the semiconductor device is an electrode for passing a current and also a member for fixing a semiconductor element. More specifically, the fixing member (base material) of the power transistor often serves also as a collector electrode, and a current of several amperes or more flows when the semiconductor device is in operation. In order to operate such a semiconductor device safely and stably, it is necessary to efficiently dissipate heat generated during the operation of the semiconductor device to the outside of the package and to secure connection reliability of the junction. For this reason, high heat dissipation is required in addition to heat resistance including long-term reliability.

前述したように、本発明に係る接合材は、加熱処理によって複合金属焼結体(接合層)となることでバルク体としての性質を示すようになることから、優れた耐熱性に加えて高い放熱性(高い熱伝導性)を有する(具体的な実施例は後述する)。なお、本発明に係る複合金属焼結体において、分散相としてCuやNiを用いることは、マトリックス相であるAgと金属間化合物を形成しないこと、共晶による固相線温度が770℃以上であること等の理由から特に好ましい。   As described above, the bonding material according to the present invention exhibits properties as a bulk body by becoming a composite metal sintered body (bonding layer) by heat treatment, so that it is high in addition to excellent heat resistance. It has heat dissipation (high thermal conductivity) (specific examples will be described later). In the composite metal sintered body according to the present invention, the use of Cu or Ni as the dispersed phase does not form an intermetallic compound with Ag as the matrix phase, and the solidus temperature due to the eutectic is 770 ° C. or higher. It is particularly preferable for some reason.

本発明に係る接合層は、ろう付け・溶接・共晶のような溶融凝固組織ではなく、金属結晶の焼結組織を有していることに特徴がある。400℃以下の焼結温度により形成された接合層は、Agと金属Xの全体が合金化することはないため、一方が他方の粒成長バリア層として機能し、結晶粒径が微細な組織(例えば、粒径1μm以下)を得ることが可能である。結晶粒を微細に制御する(粒界や異材界面が増加する)ことで接合部の靱性・破壊靱性が向上する。   The bonding layer according to the present invention is characterized by having a sintered structure of metal crystals, not a melt-solidified structure such as brazing, welding, or eutectic. In the bonding layer formed at a sintering temperature of 400 ° C. or less, Ag and the metal X are not alloyed as a whole, so that one of them functions as the other grain growth barrier layer and the crystal grain size is fine ( For example, it is possible to obtain a particle size of 1 μm or less. Fine control of crystal grains (increasing grain boundaries and different material interfaces) improves joint toughness and fracture toughness.

なお、接合層においては、マトリックス相のみならず、分散相も金属Xナノ粒子の焼結により形成されるため、その形状は焼結を反映した形態となる。また、分散相を構成する金属Xナノ粒子に関しては、焼結前の段階においてその粒子表面に自然酸化皮膜が存在していてもよい。詳細は後述するが、分散相を構成する金属Xナノ粒子およびAgナノ粒子を被覆する有機物の存在により、熱処理途中で該自然酸化皮膜が還元されるためである。   In the bonding layer, not only the matrix phase but also the disperse phase is formed by sintering the metal X nanoparticles, so that the shape reflects the sintering. Further, regarding the metal X nanoparticles constituting the dispersed phase, a natural oxide film may exist on the particle surface before the sintering. Although details will be described later, this is because the natural oxide film is reduced during the heat treatment due to the presence of the organic substance covering the metal X nanoparticles and Ag nanoparticles constituting the dispersed phase.

以下、本発明の実施例について図面を用いて説明する。ただし、本発明はここで取り上げた実施例に限定されることはなく、適宜組み合わせてもよい。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the embodiments described here, and may be combined as appropriate.

実施例1では、骨材として混合する金属Xナノ粒子表面に対する有機物被覆の効果について検討した。接合材(4)として、個々の粒子表面が有機物に被覆された粒径1〜100 nmのAgナノ粒子と個々の粒子表面が有機物に被覆された平均粒径0.2μmのCuナノ粒子とを混合した接合材を用意した。このとき、前述の接合材(1),(2)と同様に、Agナノ粒子を被覆する有機物はアミン類、Cuナノ粒子を被覆する有機物はカルボン酸類とし、混合するときの分散媒としては水を用いた。また、Ag粒子に対するCu粒子の質量比を変化させた接合材を用意した。上記接合材を用いて接合する被接合試験片は、無酸素銅製とし、上側として直径5mm、厚さ2mmの円板形状の試験片、下側として直径10 mm、厚さ5mmの円板形状の試験片とした。   In Example 1, the effect of organic coating on the surface of the metal X nanoparticles mixed as an aggregate was examined. As bonding material (4), Ag nanoparticles with a particle size of 1 to 100 nm coated with organic substances on the surface of each particle and Cu nanoparticles with an average particle diameter of 0.2 μm coated with organic substances on the surface of each particle are mixed. The prepared bonding material was prepared. At this time, similarly to the bonding materials (1) and (2) described above, the organic substance covering the Ag nanoparticles is an amine, the organic substance covering the Cu nanoparticle is a carboxylic acid, and the dispersion medium when mixing is water. Was used. Moreover, the joining material which changed mass ratio of Cu particle | grains with respect to Ag particle | grains was prepared. The test piece to be joined using the above-mentioned joining material is made of oxygen-free copper, and is a disk-shaped test piece having a diameter of 5 mm and a thickness of 2 mm on the upper side and a disk shape having a diameter of 10 mm and a thickness of 5 mm on the lower side. A test piece was obtained.

上記の上下試験片間に接合材(4)を設置後、真空乾燥処理を加えることによって、水のみを除去した。次に、加圧しながら加熱処理を行うことにより接合継手を接合した。接合条件は、接合最高加熱温度(接合温度)が300〜400℃、接合時間が150 s、接合加圧力が2.5 MPaである。なお、接合時間とは、室温からの接合温度までの昇温と最高加熱温度で保持した時間の総和である。   After installing the bonding material (4) between the above-mentioned upper and lower test pieces, only water was removed by applying a vacuum drying treatment. Next, the joint was joined by performing a heat treatment while applying pressure. The bonding conditions are a maximum heating temperature (bonding temperature) of 300 to 400 ° C., a bonding time of 150 s, and a bonding pressure of 2.5 MPa. The joining time is the sum of the temperature rise from room temperature to the joining temperature and the time kept at the maximum heating temperature.

次に、上記接合条件により作製した接合継手を用い、純粋剪断応力下での接合部強度を測定した。剪断試験には、ボンドテスター(西進商事株式会社製、SS-100KP、最大荷重100 kg)を用いた。剪断速度は30 mm/minとし、試験片を剪断ツールで破断させ、破断時の最大荷重を測定した。このようにして得られた最大荷重を接合面積で除することにより得られた値を接合継手の剪断強度とした。   Next, the joint strength under pure shear stress was measured using a joint joint produced under the above joining conditions. For the shear test, a bond tester (manufactured by Seishin Shoji Co., Ltd., SS-100KP, maximum load 100 kg) was used. The shear rate was 30 mm / min, the test piece was broken with a shearing tool, and the maximum load at the time of breaking was measured. The value obtained by dividing the maximum load thus obtained by the joint area was taken as the shear strength of the joint joint.

図4は、上記(4)の接合材におけるAgナノ粒子に対するCuナノ粒子の質量比と規格化剪断強度の関係を示すグラフである。前述したように、規格化剪断強度とは、(3)の接合材(Agナノ粒子のみ、Cu粒子の質量比=0)の場合の剪断強度を1として規格化したものである。図4と図1を比較すると明らかなように、いずれの接合温度においても(4)の接合材の方が(1)の接合材よりも高い規格化剪断強度を有していることが判る。また、接合温度400℃の場合において、(4)の接合材のCuナノ粒子質量比が0〜1(少なくとも0.25)のとき、規格化剪断強度が1より大きくなっていることが判る。   FIG. 4 is a graph showing the relationship between the mass ratio of Cu nanoparticles to Ag nanoparticles and the normalized shear strength in the bonding material of (4). As described above, the normalized shear strength is standardized with the shear strength in the case of the bonding material (3) (only Ag nanoparticles, mass ratio of Cu particles = 0) being 1. As is clear from comparison between FIG. 4 and FIG. 1, it can be seen that the bonding material (4) has a higher normalized shear strength than the bonding material (1) at any bonding temperature. It can also be seen that the normalized shear strength is greater than 1 when the Cu nanoparticle mass ratio of the bonding material (4) is 0 to 1 (at least 0.25) when the bonding temperature is 400 ° C.

上記(4)の接合材と前記(1)の接合材との差異は、骨材として混合したCuナノ粒子の個々の表面が有機物で被覆されているか否かである。図4の結果から、複合金属焼結体による接続層を形成した場合に、個々の粒子表面を有機物で被覆したCuナノ粒子を用いることによって、図3で示したような骨材304同士(Cu粒子同士)の界面部305,306、および、骨材304とCu電極301,302との界面307,308における接合強度(金属接合性)が大幅に改善したものと考えられる。すなわち、実施例1の検討から、接合材に混合する金属Xナノ粒子は、少なくとも個々の粒子表面を有機物で被覆することが重要であることが明らかになった。   The difference between the bonding material of the above (4) and the bonding material of the above (1) is whether or not the individual surfaces of Cu nanoparticles mixed as an aggregate are covered with an organic substance. From the result of FIG. 4, when forming the connection layer by the composite metal sintered body, the aggregates 304 (Cu) as shown in FIG. It is considered that the bonding strength (metal bonding property) at the interface portions 305 and 306 between the particles) and the interfaces 307 and 308 between the aggregate 304 and the Cu electrodes 301 and 302 has been greatly improved. That is, the examination of Example 1 revealed that it is important for the metal X nanoparticles mixed with the bonding material to cover at least the surface of each particle with an organic substance.

実施例2では、個々のナノ粒子表面を被覆する有機物の極性の大きさについて検討した。接合材(5)として、個々の粒子表面がアミン類有機物に被覆された粒径1〜100 nmのAgナノ粒子と個々の粒子表面がカルボン酸類有機物に被覆された平均粒径0.2μmのCuナノ粒子とを混合した接合材を用意した。このとき、混合するときの分散媒としてはトルエンを用いた。また、Ag粒子に対するCu粒子の質量比を変化させた接合材を用意した。その後、実施例1と同様の条件・方法で、接合継手を作製しその接合部強度を測定した。   In Example 2, the polarity magnitude of the organic substance covering the surface of each nanoparticle was examined. As the bonding material (5), Ag nanoparticles having a particle diameter of 1 to 100 nm each having a particle surface coated with an amine organic substance and Cu nano particles having an average particle diameter of 0.2 μm having each particle surface coated with a carboxylic acid organic substance. A bonding material mixed with particles was prepared. At this time, toluene was used as a dispersion medium when mixing. Moreover, the joining material which changed mass ratio of Cu particle | grains with respect to Ag particle | grains was prepared. Then, the joint joint was produced on the conditions and methods similar to Example 1, and the junction strength was measured.

剪断強度の結果を図5に示す。図5は、上記(5)の接合材におけるAgナノ粒子に対するCuナノ粒子の質量比と規格化剪断強度の関係を示すグラフである。図5と図4を比較すると明らかなように、いずれの接合温度においても(5)の接合材の方が(4)の接合材よりも更に高い規格化剪断強度を有していることが判る。また、(5)の接合材のCuナノ粒子質量比が0〜1のとき、規格化剪断強度が1より大きくなっていることが判る。   The result of shear strength is shown in FIG. FIG. 5 is a graph showing the relationship between the mass ratio of Cu nanoparticles to Ag nanoparticles and the normalized shear strength in the bonding material of (5) above. As is clear from comparison between FIG. 5 and FIG. 4, it can be seen that the bonding material (5) has a higher normalized shear strength than the bonding material (4) at any bonding temperature. . It can also be seen that the normalized shear strength is greater than 1 when the Cu nanoparticle mass ratio of the bonding material of (5) is 0 to 1.

上記のような結果が得られた理由は、次のように考えることができる。接合材(4)および(5)で用いたカルボン酸類有機物で被覆されたCuナノ粒子と、接合材(5)で用いたアミン類有機物に被覆されたAgナノ粒子は、トルエンなどの無極性分散媒(あるいは極性が小さい分散媒)に対して分散性がよい。よって、接合材(5)は、分散媒としてトルエンを用いたため、分散媒中で均質な混合が得られたものと考えられる。一方、接合材(4)で用いたアミン類有機物に被覆されたAgナノ粒子は、水などの極性分散媒(あるいは極性が大きい分散媒)に対して分散性がよい。これに対し、接合材(4)は、分散媒として水を用いたため、分散媒中での混合にアンバランスが生じたものと考えられる。   The reason why the above results were obtained can be considered as follows. Cu nanoparticles coated with carboxylic acid organic materials used in bonding materials (4) and (5) and Ag nanoparticles coated with amine organic materials used in bonding materials (5) are nonpolar dispersions such as toluene. Dispersibility is good with respect to a medium (or a dispersion medium with small polarity). Therefore, since the bonding material (5) used toluene as a dispersion medium, it is considered that homogeneous mixing was obtained in the dispersion medium. On the other hand, the Ag nanoparticles coated with the amine organic material used in the bonding material (4) have good dispersibility with respect to a polar dispersion medium such as water (or a dispersion medium having a large polarity). On the other hand, since the bonding material (4) used water as a dispersion medium, it is considered that imbalance occurred in mixing in the dispersion medium.

各試料の接合層の微細組織をSEM(走査型電子顕微鏡)で観察したところ、極性が異なる有機物の組み合わせ(例えば、接合材(4))の場合、Cuナノ粒子による分散相の一部に凝集に起因すると考えられる偏析が認められた。これに対し、極性が同程度の有機物の組み合わせ(接合材(5))場合、Agマトリックス中にCu分散相が略均等に分散した組織となっていた。実施例2の検討から、接合材を調合する際に用いる有機物は、その極性が同程度になるような組み合わせを選定することが重要であることが明らかになった。   When the microstructure of the bonding layer of each sample was observed with a scanning electron microscope (SEM), in the case of a combination of organic substances having different polarities (for example, bonding material (4)), it aggregated into a part of the dispersed phase of Cu nanoparticles. Segregation, which is considered to be caused by, was observed. On the other hand, in the case of a combination of organic substances having the same polarity (joining material (5)), the structure was such that the Cu dispersed phase was dispersed substantially uniformly in the Ag matrix. From the examination of Example 2, it has been clarified that it is important to select a combination of the organic substances used for preparing the bonding material so that the polarities thereof are approximately the same.

実施例3では、本発明に係る接合材における接合温度について検討した。熱測定は、熱天秤/示差熱分析計(セイコーインスツル株式会社製、TG/DTA6200)を用い、昇温速度を10℃/minとし大気中で測定を行った。図6は、個々の粒子表面がアミン類有機物に被覆された粒径1〜100 nmのAgナノ粒子と個々の粒子表面がカルボン酸類有機物に被覆された平均粒径0.2μmのCuナノ粒子とを質量比「Ag:Cu = 1:0.25」で混合した接合材に対する熱分析結果である。図6に示すように、約150℃から約300℃において発熱ピークが検出され、この発熱ピークに伴って重量減少が観察された。また、重量はその後ほぼ一定となっていた。   In Example 3, the bonding temperature in the bonding material according to the present invention was examined. The heat measurement was performed in the atmosphere using a thermobalance / differential thermal analyzer (TG / DTA6200, manufactured by Seiko Instruments Inc.) at a temperature rising rate of 10 ° C./min. FIG. 6 shows Ag nanoparticles having a particle size of 1 to 100 nm coated with amine organic substances on the individual particle surfaces and Cu nanoparticles having an average particle diameter of 0.2 μm coated with carboxylic acid organic substances on the individual particle surfaces. It is a thermal analysis result with respect to the joining material mixed by mass ratio "Ag: Cu = 1: 0.25". As shown in FIG. 6, an exothermic peak was detected at about 150 ° C. to about 300 ° C., and weight loss was observed with this exothermic peak. Moreover, the weight was almost constant thereafter.

この結果から、発熱ピークおよび重量減少は、個々の粒子表面を被覆した有機物の酸化分解に起因するものと考えられた。さらに、測定後の試料をTEM(透過型電子顕微鏡)で観察したところ、金属ナノ粒子同士の焼結が確認された。実施例3の検討から、接合温度を150℃以上とすることが望ましいことが明らかになった。   From these results, it was considered that the exothermic peak and the weight reduction were caused by the oxidative decomposition of the organic substances covering the individual particle surfaces. Furthermore, when the sample after measurement was observed with TEM (transmission electron microscope), sintering of metal nanoparticles was confirmed. From the examination of Example 3, it became clear that the bonding temperature is desirably 150 ° C. or higher.

実施例4では、Cuナノ粒子の表面性状(表面に存在する自然酸化皮膜)について検討した。図7は、個々の粒子表面がカルボン酸類有機物に被覆された平均粒径0.2μmのCuナノ粒子に対して、XRD測定(X線回折装置:株式会社リガク製、RU200B)を行った結果である。図7に示すように、Cuのピークの他にCu2Oのピークが検出された。また、該Cuナノ粒子をTEM観察したところ、Cuナノ粒子の表面に1〜5 nm程度のCu2O層の存在が観察された。 In Example 4, the surface properties of Cu nanoparticles (natural oxide film present on the surface) were examined. FIG. 7 shows the result of XRD measurement (X-ray diffractometer: RU200B, manufactured by Rigaku Corporation) on Cu nanoparticles having an average particle diameter of 0.2 μm whose individual particle surfaces are coated with carboxylic acid organic substances. . As shown in FIG. 7, a Cu 2 O peak was detected in addition to the Cu peak. Further, when the Cu nanoparticles were observed by TEM, the presence of a Cu 2 O layer of about 1 to 5 nm was observed on the surface of the Cu nanoparticles.

次に、個々の粒子表面がアミン類有機物に被覆された粒径1〜100 nmのAgナノ粒子と上記Cuナノ粒子(表面にCu2Oが存在し、その外側がカルボン酸類有機物で被覆されている)とを質量比「Ag:Cu = 1:0.25」で混合した接合材(6)を用意した。混合するときの分散媒としては極性の小さいトルエンを用いた。その後、接合温度400℃、接合時間150 s、加圧力2.5 MPaで接合継手を作製し、得られた継手の接合層に対してXRD測定を行った。その結果を図8に示す。図8は、接合材(6)を用いて接合した接合層に対してXRD測定を行った結果の1例である。図8に示すように、接合材(6)で検出されたCu2Oの存在を表すピークは検出されなかった。これは、Agナノ粒子およびCuナノ粒子を被覆した有機物の酸化分解によって自然酸化被膜(例えばCu2O)を還元したためと考えられた。実施例4の検討から、混合する金属Xナノ粒子は、その粒子表面に自然酸化程度の皮膜を有していても問題にならないことが明らかになった。 Next, Ag nanoparticles having a particle diameter of 1 to 100 nm and the Cu nanoparticles (the surface of which has Cu 2 O present and the outer surface thereof being coated with a carboxylic acid organic material). A bonding material (6) prepared at a mass ratio of “Ag: Cu = 1: 0.25” was prepared. As the dispersion medium when mixing, toluene having a small polarity was used. Thereafter, a bonded joint was produced at a bonding temperature of 400 ° C., a bonding time of 150 s, and a pressure of 2.5 MPa, and XRD measurement was performed on the bonding layer of the obtained joint. The result is shown in FIG. FIG. 8 shows an example of the result of XRD measurement performed on the bonding layer bonded using the bonding material (6). As shown in FIG. 8, no peak representing the presence of Cu 2 O detected in the bonding material (6) was detected. This was thought to be due to the reduction of the natural oxide film (for example, Cu 2 O) by oxidative decomposition of the organic substance coated with Ag nanoparticles and Cu nanoparticles. From the examination of Example 4, it became clear that the metal X nanoparticles to be mixed do not pose a problem even if the surface of the particles has a film having a degree of natural oxidation.

接合層中に存在する界面(マトリックス相と分散相との界面、マトリックス相と電子部材との界面、分散相と電子部材との界面、分散相内部の界面など)が全て金属接合しているかを調査するために、接合層をTEM-EDX(透過型電子顕微鏡−エネルギー分散型X線分析装置)で観察した。一般に、Agナノ粒子により形成された焼結銀層は、ボイドなどの接合欠陥が存在しない場合、多結晶体となっており、その結晶サイズはサブミクロン程度(100〜1000 nmの範囲)である。一方、本発明に係る接合層については、その結晶サイズは、10〜1000 nmと100 nmよりも明らかに小さな結晶粒が確認された。その理由は、分散相である焼結銅がマトリックス相である焼結銀の粒成長のバリア層として機能したものと考えられた。   Whether the interfaces existing in the bonding layer (the interface between the matrix phase and the dispersed phase, the interface between the matrix phase and the electronic member, the interface between the dispersed phase and the electronic member, the interface inside the dispersed phase, etc.) are all metal-bonded In order to investigate, the bonding layer was observed with TEM-EDX (transmission electron microscope-energy dispersive X-ray analyzer). In general, a sintered silver layer formed of Ag nanoparticles is a polycrystalline body when there is no bonding defect such as a void, and its crystal size is about submicron (100 to 1000 nm range). . On the other hand, with respect to the bonding layer according to the present invention, crystal grains whose crystal size was clearly smaller than 10 to 1000 nm and 100 nm were confirmed. The reason was considered that the sintered copper as the dispersed phase functioned as a barrier layer for the grain growth of the sintered silver as the matrix phase.

また、観察の結果、接合層中に存在する界面(マトリックス相と分散相との界面、マトリックス相と電子部材との界面、分散相と電子部材との界面、分散相内部の界面など)で酸化皮膜等の存在は認められなかった。一方、それら界面領域において、多数の双晶が導入されていることを確認した。これらの双晶は、主として焼結・粒成長の際に導入されたものと考えられ、酸化皮膜が存在しないことと併せて、各種界面が金属接合していることを強く示唆するものである。   In addition, as a result of observation, oxidation is performed at interfaces existing in the bonding layer (interface between matrix phase and dispersed phase, interface between matrix phase and electronic member, interface between dispersed phase and electronic member, interface inside dispersed phase, etc.) The presence of a film or the like was not recognized. On the other hand, it was confirmed that many twins were introduced in these interface regions. These twins are considered to be introduced mainly during sintering and grain growth, and strongly suggest that various interfaces are metal-bonded together with the absence of an oxide film.

図9は、接合材(6)を用いて接合した接合層において、マトリックス相である焼結銀と分散相である焼結銅との界面領域に対して、TEM−EDXによる定量分析を行った結果の1例である。界面を挟む両側数nm(5〜15 nm程度)の範囲に相互拡散を表す濃度変化が認められた。また、その界面領域で格子ひずみが観察された。格子定数の異なる両者(Ag:0.4086 nm、Cu:0.3615 nm)が金属接合・相互拡散した結果、格子ひずみが導入されたものと考えられた。すなわち、該界面領域は傾斜的に合金化した金属接合を形成していると考えられ、その結果、酸素原子の粒界拡散を阻害し接合部全体の耐酸化性がAgと略同等になることが期待される(少なくともCu単体の焼結体よりも耐酸化性が向上すると考えられる)。   FIG. 9 shows a TEM-EDX quantitative analysis performed on the interface region between sintered silver as a matrix phase and sintered copper as a dispersed phase in the bonding layer bonded using the bonding material (6). It is an example of a result. Concentration changes indicating mutual diffusion were observed in the range of several nm on both sides of the interface (about 5 to 15 nm). In addition, lattice strain was observed in the interface region. It was considered that lattice strain was introduced as a result of both metal lattice bonding and interdiffusion between two different lattice constants (Ag: 0.4086 nm, Cu: 0.3615 nm). That is, it is considered that the interface region forms a metal alloy that is graded and alloyed, and as a result, the grain boundary diffusion of oxygen atoms is inhibited, and the oxidation resistance of the entire joint becomes substantially equal to Ag. (It is thought that the oxidation resistance is improved at least as compared with a sintered body of Cu alone).

実施例6では、電子部材(被接合電極)の最表面の性状について調査した。前述したように、一般に高い接合部強度を得るためには、電子部材と接合層との界面においても金属接合を得ることが重要である。そこで、被接合試験片の表面にメタライズ層としてAu層,Ag層,Cu層,Ni層を形成し、その効果を検証した。各メタライズ層での接合強度を評価するために、上記(6)の接合材を用いて、実施例1と同様の条件・方法で、接合継手を作製しその接合部強度を測定した。図10は、各メタライズ層における接合温度と規格化剪断強度との関係を示すグラフである。図10に示したように、いずれのメタライズ層に対しても1以上の規格化剪断強度が得られた。特に、Au層やAg層は全接合温度範囲(300〜400℃)において、Cu層やNi層は少なくとも350℃以上の接合温度範囲において1.5以上の規格化剪断強度が得られた。メタライズ層としてのPt層やPd層は、元素の化学的性質を考慮するとAu層やAg層と同等の結果が得られると考えられる。   In Example 6, the properties of the outermost surface of the electronic member (bonded electrode) were investigated. As described above, in order to obtain a high joint strength in general, it is important to obtain a metal joint even at the interface between the electronic member and the joining layer. Therefore, an Au layer, an Ag layer, a Cu layer, and a Ni layer were formed as metallization layers on the surface of the test specimen, and the effects were verified. In order to evaluate the joint strength in each metallized layer, joint joints were produced under the same conditions and methods as in Example 1 using the joint material (6), and the joint strength was measured. FIG. 10 is a graph showing the relationship between the bonding temperature and the normalized shear strength in each metallized layer. As shown in FIG. 10, a normalized shear strength of 1 or more was obtained for any metallized layer. In particular, the normalized shear strength of 1.5 or more was obtained in the entire bonding temperature range (300 to 400 ° C.) for the Au layer and the Ag layer, and the Cu layer and the Ni layer in the bonding temperature range of at least 350 ° C. or more. The Pt layer and the Pd layer as the metallized layer are considered to obtain the same results as the Au layer and the Ag layer in consideration of the chemical properties of the elements.

実施例7では、本発明に係る半導体装置について説明する。図11は、本発明に係る半導体装置の1つである非絶縁型半導体装置の構造例を示した模式図であり、図11(a)は上面図、図11(b)は図11(a)のA-A'断面図である。図11に示すように、半導体素子(例えばMOSFET)101はセラミックス絶縁基板102上に形成された配線電極102a,102b上に搭載され、該セラミックス絶縁基板102はベース材103上に搭載され、該ベース材103はエポキシ系樹脂ケース105に収納されている。エポキシ系樹脂ケース105に形成された電極端子110と配線電極102a,102bとの間は、ボンディングワイヤ104(例えば、直径300μmのAl線)によって超音波接合法などの方法で接続されている。また、各半導体素子101に形成されたゲート電極・エミッタ電極(図示せず)と電極端子110との間もボンディングワイヤ104によって接続されている。エポキシ系樹脂ケース105の内部は、シリカケトン樹脂107が充填され、該ケースの上部には、エポキシ系樹脂の蓋106が設けられている。   In Example 7, a semiconductor device according to the present invention will be described. 11A and 11B are schematic views showing an example of the structure of a non-insulated semiconductor device that is one of the semiconductor devices according to the present invention. FIG. 11A is a top view and FIG. It is an AA 'sectional view of). As shown in FIG. 11, a semiconductor element (eg, MOSFET) 101 is mounted on wiring electrodes 102a and 102b formed on a ceramic insulating substrate 102, and the ceramic insulating substrate 102 is mounted on a base material 103. The material 103 is housed in an epoxy resin case 105. The electrode terminal 110 formed on the epoxy resin case 105 and the wiring electrodes 102a and 102b are connected by a bonding wire 104 (for example, an Al wire having a diameter of 300 μm) by a method such as ultrasonic bonding. Further, a gate electrode / emitter electrode (not shown) formed in each semiconductor element 101 and the electrode terminal 110 are also connected by a bonding wire 104. The epoxy resin case 105 is filled with a silica ketone resin 107, and an epoxy resin lid 106 is provided on the case.

ここで、ベース材103とセラミックス絶縁基板102とは、本発明に係る接合材(7)を用いて形成された接合層108により接合されている。セラミックス絶縁板102に形成された配線電極102a上には、8個のMOSFET素子101が接合材(7)により形成された接合層109を介して接合されている。また、温度検出用サーミスタ素子111が、配線電極102b上に接合層109を介して搭載されている。なお、接合材(7)とは、個々の粒子表面がカルボン酸類有機物で被覆された粒径1〜1000 nmのAgナノ粒子と個々の粒子表面がアミン類とカルボン酸類からなる有機物で被覆された粒径1〜1000 nmのCuナノ粒子とを質量比「Ag:Cu = 1:0.1」で混合し、さらにα-テルピネオールに分散させたペースト状の接合材である。   Here, the base material 103 and the ceramic insulating substrate 102 are bonded together by a bonding layer 108 formed using the bonding material (7) according to the present invention. On the wiring electrode 102a formed on the ceramic insulating plate 102, eight MOSFET elements 101 are bonded via a bonding layer 109 formed of a bonding material (7). Further, the temperature detection thermistor element 111 is mounted on the wiring electrode 102b via the bonding layer 109. Note that the bonding material (7) is an Ag nanoparticle having a particle diameter of 1 to 1000 nm in which each particle surface is coated with a carboxylic acid organic material, and each particle surface is coated with an organic material composed of an amine and a carboxylic acid. It is a paste-like bonding material in which Cu nanoparticles having a particle diameter of 1 to 1000 nm are mixed at a mass ratio “Ag: Cu = 1: 0.1” and further dispersed in α-terpineol.

接合層108,109による接合は、次のような手順で行った。まず、セラミックス絶縁板102の配線電極102a(最表面にNiめっきが施されたCu電極)およびベース材103上の所定の箇所に上記接合材(7)をそれぞれ塗布した。次に、塗布した接合材(7)の上にセラミックス絶縁板102および半導体素子101(端子最表面にはAuめっきが施されている)を配置した。その後、接合温度が約300℃、接合時間が300 s、加圧力が1 MPaの接合条件により接合を行った。   Bonding by the bonding layers 108 and 109 was performed in the following procedure. First, the bonding material (7) was applied to predetermined positions on the wiring electrode 102a (Cu electrode with Ni plating on the outermost surface) and the base material 103 of the ceramic insulating plate 102, respectively. Next, the ceramic insulating plate 102 and the semiconductor element 101 (Au plating was applied to the outermost surface of the terminal) were placed on the applied bonding material (7). Thereafter, bonding was performed under the bonding conditions of a bonding temperature of about 300 ° C., a bonding time of 300 s, and a pressure of 1 MPa.

なお、エポキシ系樹脂ケース105とベース材103との間は、シリカケトン接着樹脂(図示せず)を用いて固定されている。また、エポキシ系樹脂の蓋106には凹部106’が設けられ、電極端子110には穴110’が設けられており、絶縁型半導体装置を外部回路と接続するためのネジ(図示せず)が装着できるようになっている。ベース材103および電極端子110は、あらかじめ所定形状に打抜き成形されたCu板の表面にNiめっきを施したものである。   The epoxy resin case 105 and the base material 103 are fixed using a silica ketone adhesive resin (not shown). The lid 106 made of epoxy resin is provided with a recess 106 ′, the electrode terminal 110 is provided with a hole 110 ′, and a screw (not shown) for connecting the insulating semiconductor device to an external circuit is provided. It can be installed. The base material 103 and the electrode terminal 110 are obtained by performing Ni plating on the surface of a Cu plate that has been punched into a predetermined shape in advance.

図12は、図11に示した半導体素子101搭載部分の接合処理前における拡大断面模式図である。図12に示すように、ベース材103とセラミックス絶縁基板102との間にはペースト状の接合材(7)が配置され、セラミックス絶縁板102に形成された配線電極102aと半導体素子101との間にもペースト状の接合材(7)が配置されている。このとき、ペースト状接合材の塗布時にペーストの流出防止のために、ベース材103上にはセラミックス絶縁基板102の搭載領域を規定するように撥水膜122が施されている。同様に、セラミックス絶縁基板102上には、半導体素子101の搭載領域を規定するように撥水膜121が施されており、ペースト塗布時の流出防止を図っている。   FIG. 12 is an enlarged schematic cross-sectional view of the semiconductor element 101 mounting portion shown in FIG. 11 before the bonding process. As shown in FIG. 12, a paste-like bonding material (7) is disposed between the base material 103 and the ceramic insulating substrate 102, and between the wiring electrode 102a formed on the ceramic insulating plate 102 and the semiconductor element 101. Also, a paste-like bonding material (7) is disposed. At this time, a water-repellent film 122 is applied on the base material 103 so as to define a mounting region of the ceramic insulating substrate 102 in order to prevent the paste from flowing out when the paste-like bonding material is applied. Similarly, a water-repellent film 121 is applied on the ceramic insulating substrate 102 so as to define the mounting area of the semiconductor element 101 so as to prevent outflow when applying the paste.

図13は、本発明に係る半導体装置の他の構造例を示した斜視模式図である。図13に示すように、ベース材203上にセラミックス絶縁基板202が搭載され、セラミックス絶縁基板202上に形成された配線電極202a上に半導体素子201が搭載され、半導体素子201のエミッタ電極は接続端子204を介してセラミックス絶縁基板202上に形成された配線電極202bと接続されている。ベース材203、配線電極202a,202b、および接続端子204は、それぞれCu板の表面にNiめっきを施し、その上にAgめっきを施したものである。   FIG. 13 is a schematic perspective view showing another structural example of the semiconductor device according to the present invention. As shown in FIG. 13, a ceramic insulating substrate 202 is mounted on a base material 203, a semiconductor element 201 is mounted on a wiring electrode 202a formed on the ceramic insulating substrate 202, and an emitter electrode of the semiconductor element 201 serves as a connection terminal. The wiring electrode 202 b formed on the ceramic insulating substrate 202 is connected via the 204. The base material 203, the wiring electrodes 202a and 202b, and the connection terminal 204 are obtained by performing Ni plating on the surface of the Cu plate and applying Ag plating thereon.

図14は、図13に示した半導体素子搭載部分の接合処理前における拡大断面模式図である。セラミックス絶縁基板202上に形成された配線電極202aと半導体素子201との間、半導体素子201のエミッタ電極と接続端子204との間、電極配線202bと接続端子204との間には、それぞれ本発明に係る接合材(8)が配置されている。なお、接合材(8)とは、個々の粒子表面がアミン類とアルコール類からなる有機物で被覆された粒径5〜100 nmのAgナノ粒子と個々の粒子表面がアミン類とカルボン酸類からなる有機物で被覆された粒径30〜500 nmのCuナノ粒子とを質量比「Ag:Cu = 1:0.25」で混合し、さらに加圧成型してシート状に加工した接合材である。   14 is an enlarged schematic cross-sectional view of the semiconductor element mounting portion shown in FIG. 13 before the bonding process. The present invention is provided between the wiring electrode 202a formed on the ceramic insulating substrate 202 and the semiconductor element 201, between the emitter electrode of the semiconductor element 201 and the connection terminal 204, and between the electrode wiring 202b and the connection terminal 204, respectively. The bonding material (8) according to the above is arranged. Note that the bonding material (8) is an Ag nanoparticle having a particle diameter of 5 to 100 nm in which each particle surface is coated with an organic substance composed of amines and alcohols, and each particle surface is composed of amines and carboxylic acids. It is a bonding material obtained by mixing Cu nanoparticles with a particle size of 30 to 500 nm coated with an organic substance at a mass ratio of “Ag: Cu = 1: 0.25”, and further pressing and processing into a sheet.

図14のように配置・搭載した後、接合温度が約300℃、接合時間が300 s、加圧力が0.5 MPaの接合条件により接合を行った。これにより、Agマトリックス相中に分散相であるCu相が均等に分散した接続層(複合金属焼結層)が形成され接合が完了した。本実施例の半導体装置は、配線幅の大きい接続端子204を用いることで、コレクタ電極だけでなくエミッタ電極部分にも大きな電流を流すことができる。このとき、本発明に係る接続層は、良好な耐熱性、高い電気伝導性、高い熱伝導性を有することから、当該半導体装置を安全かつ安定して動作させることができる。   After placement and mounting as shown in FIG. 14, joining was performed under the joining conditions of a joining temperature of about 300 ° C., a joining time of 300 s, and a pressure of 0.5 MPa. As a result, a connection layer (composite metal sintered layer) in which the dispersed Cu phase was uniformly dispersed in the Ag matrix phase was formed, and the joining was completed. In the semiconductor device of this embodiment, by using the connection terminal 204 having a large wiring width, a large current can flow not only to the collector electrode but also to the emitter electrode portion. At this time, since the connection layer according to the present invention has good heat resistance, high electrical conductivity, and high thermal conductivity, the semiconductor device can be operated safely and stably.

上記の実施例では、半導体装置の例としてMOSFETの場合について説明したが、本発明に係る半導体装置はそれに限定されることはない。例えば、LED(特に、高輝度LED等)を基板に実装する際に本発明の接合材を用いて接合を行うことは、従来のはんだや熱伝導性接着材よりも放熱性を格段に向上させることが可能となり好適である。   In the above embodiment, the case of the MOSFET has been described as an example of the semiconductor device, but the semiconductor device according to the present invention is not limited thereto. For example, when mounting an LED (particularly a high-brightness LED, etc.) on a substrate, bonding using the bonding material of the present invention significantly improves heat dissipation compared to conventional solders and heat conductive adhesives. This is preferable.

接合材(1)におけるAgナノ粒子に対するCuナノ粒子の質量比と規格化剪断強度の関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of Cu nanoparticle with respect to Ag nanoparticle in a bonding material (1), and normalized shear strength. 接合材(2)におけるAgナノ粒子に対するCu粒子の質量比と規格化剪断強度の関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of Cu particle | grains with respect to Ag nanoparticle in a bonding | jointing material (2), and normalized shear strength. Cu電極接合部の断面を表したモデル図である。It is a model figure showing the section of Cu electrode joined part. 接合材(4)におけるAgナノ粒子に対するCuナノ粒子の質量比と規格化剪断強度の関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of Cu nanoparticle with respect to Ag nanoparticle in a bonding material (4), and normalized shear strength. 接合材(5)におけるAgナノ粒子に対するCuナノ粒子の質量比と規格化剪断強度の関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of Cu nanoparticle with respect to Ag nanoparticle in a bonding | jointing material (5), and normalized shear strength. 個々の粒子表面がアミン類有機物に被覆された粒径1〜100 nmのAgナノ粒子と個々の粒子表面がカルボン酸類有機物に被覆された平均粒径0.2μmのCuナノ粒子とを質量比「Ag:Cu = 1:0.2」で混合した接合材に対する熱分析結果である。The mass ratio of Ag nanoparticles with a particle size of 1 to 100 nm with the surface of each particle coated with an amine organic substance and Cu nanoparticles with an average particle size of 0.2 μm with the surface of each particle coated with a carboxylic acid organic substance is `` Ag : Cu = 1: 0.2 ”is a thermal analysis result for the bonding material mixed. 個々の粒子表面がカルボン酸類有機物に被覆された平均粒径0.2μmのCuナノ粒子に対して、XRD測定を行った結果である。It is the result of having performed the XRD measurement with respect to Cu nanoparticle with an average particle diameter of 0.2 micrometer by which each particle | grain surface was coat | covered with carboxylic acid organic substance. 接合材(6)を用いて接合した接合層に対してXRD測定を行った結果の1例である。It is an example of the result of having performed the XRD measurement with respect to the joining layer joined using the joining material (6). 接合材(6)を用いて接合した接合層において、マトリックス相である焼結銀と分散相である焼結銅との界面領域に対して、TEM−EDXによる定量分析を行った結果の1例である。An example of the result of quantitative analysis by TEM-EDX for the interface region between sintered silver as the matrix phase and sintered copper as the dispersed phase in the bonding layer bonded using the bonding material (6) It is. 接合材(6)を用いて作製した各電極との接合強度における各メタライズ層における接合温度と規格化剪断強度との関係を示すグラフである。It is a graph which shows the relationship between the joining temperature in each metallization layer in the joining strength with each electrode produced using the joining material (6), and the normalized shear strength. 本発明に係る半導体装置の1つである非絶縁型半導体装置の構造例を示した模式図であり、図11(a)は上面図、図11(b)は図11(a)のA-A'断面図である。FIG. 11A is a schematic view showing a structural example of a non-insulated semiconductor device which is one of the semiconductor devices according to the present invention, FIG. 11A is a top view, and FIG. It is A 'sectional drawing. 図11に示した半導体素子搭載部分の接合処理前における拡大断面模式図である。FIG. 12 is an enlarged schematic cross-sectional view of the semiconductor element mounting portion shown in FIG. 11 before the bonding process. 本発明に係る半導体装置の他の構造例を示した斜視模式図である。It is the isometric view schematic diagram which showed the other structural example of the semiconductor device which concerns on this invention. 図13に示した半導体素子搭載部分の接合処理前における拡大断面模式図である。FIG. 14 is an enlarged schematic cross-sectional view of the semiconductor element mounting portion shown in FIG. 13 before a bonding process.

101…半導体素子、102…セラミックス絶縁基板、102a,102b…配線電極、
103…ベース材、104…ボンディングワイヤ、105…エポキシ系樹脂ケース、
106…エポキシ系樹脂の蓋、106’…凹部、107…シリカケトン樹脂、
108,109…接合層、110…電極端子、110’…穴、111…温度検出用サーミスタ素子、
121,122…撥水膜、
201…半導体素子、202…セラミックス絶縁基板、202a,202b…配線電極、
203…ベース材、204…接続端子、
300…接合材、301,302…Cu電極、303…焼結銀、304…骨材、
305,306…骨材同士の界面部、307、308…Cu電極との界面部、
309…焼結銀と骨材の界面部、310,311…焼結銀とCu電極との界面部。
101 ... semiconductor element, 102 ... ceramic insulating substrate, 102a, 102b ... wiring electrode,
103 ... Base material, 104 ... Bonding wire, 105 ... Epoxy resin case,
106 ... Epoxy resin lid, 106 '... concave, 107 ... silica ketone resin,
108, 109 ... bonding layer, 110 ... electrode terminal, 110 '... hole, 111 ... thermistor element for temperature detection,
121, 122 ... water repellent film,
201 ... semiconductor element, 202 ... ceramic insulating substrate, 202a, 202b ... wiring electrode,
203 ... Base material, 204 ... Connection terminal,
300 ... Bonding material, 301,302 ... Cu electrode, 303 ... Sintered silver, 304 ... Aggregate,
305, 306 ... interface part between aggregates, 307, 308 ... interface part with Cu electrode,
309 ... interfacial part between sintered silver and aggregate, 310,311 ... interfacial part between sintered silver and Cu electrode.

Claims (8)

電子部材同士が接合層を介して電気的に接続されている半導体装置であって、
前記接合層は、Agマトリックスと、前記Agマトリックス中に分散しAgよりも硬度が高い金属Xからなる分散相とを含み、
前記Agマトリックスと前記金属X分散相とは互いに金属接合し、
前記Agマトリックスと前記電子部材の最表面とは互いに金属接合し、
前記金属X分散相と前記電子部材の最表面とは互いに金属接合しており、
前記金属X分散相は1μm以下の結晶粒を含み、
前記Agマトリックスは100 nmよりも小さな結晶粒を含んでいることを特徴とする半導体装置。
A semiconductor device in which electronic members are electrically connected via a bonding layer,
The bonding layer includes an Ag matrix, and a dispersed phase composed of a metal X dispersed in the Ag matrix and having a hardness higher than Ag.
The Ag matrix and the metal X dispersed phase are metal bonded to each other,
The Ag matrix and the outermost surface of the electronic member are metal bonded to each other,
The metal X dispersed phase and the outermost surface of the electronic member are metal bonded to each other,
The metal X dispersed phase includes crystal grains of 1 μm or less,
The semiconductor device, wherein the Ag matrix includes crystal grains smaller than 100 nm.
請求項1に記載の半導体装置において、
前記金属X分散相は複数の結晶粒から構成され、
前記複数の結晶粒同士は互いに酸化皮膜を介さずに金属接合していることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The metal X dispersed phase is composed of a plurality of crystal grains,
The semiconductor device, wherein the plurality of crystal grains are metal-bonded without intervening an oxide film.
請求項1または請求項2に記載の半導体装置において、
前記Agマトリックスに対する前記金属X分散相の質量比が、0より大きく1より小さいことを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2,
A semiconductor device, wherein a mass ratio of the metal X dispersed phase to the Ag matrix is larger than 0 and smaller than 1.
請求項1乃至請求項3のいずれかに記載の半導体装置において、
前記金属接合の接合界面領域には、該界面を挟む結晶に起因する相互拡散層が形成されていることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 3,
An interdiffusion layer resulting from a crystal sandwiching the interface is formed in a junction interface region of the metal junction.
請求項1乃至請求項4のいずれかに記載の半導体装置において、
前記金属X分散相は略球体または略楕円体であり、前記金属X分散相が略球体とみなせる場合はその直径が、前記金属X分散相が略楕円体とみなせる場合にはその長軸が、前記接合層の厚さTに対して「T/(2×104) 〜T/2」の範囲にあることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 4,
The metal X dispersed phase is substantially a sphere or a substantially ellipsoid, and when the metal X dispersed phase can be regarded as a substantially sphere, the diameter thereof, and when the metal X dispersed phase can be regarded as a substantially ellipsoid, the major axis thereof, A semiconductor device characterized by being in a range of “T / (2 × 10 4 ) to T / 2” with respect to the thickness T of the bonding layer.
請求項5に記載の半導体装置において、
前記金属X分散相におけるひとつの分散相から最隣接の分散相までの距離が「T/(4×104) 〜T/2」の範囲にあることを特徴とする半導体装置。
The semiconductor device according to claim 5,
A semiconductor device, wherein a distance from one dispersed phase to the nearest dispersed phase in the metal X dispersed phase is in a range of “T / (4 × 10 4 ) to T / 2”.
請求項1乃至請求項6のいずれかに記載の半導体装置において、
前記電子部材の最表面は該電子部材表面上に形成されたメタライズ層であり、
前記メタライズ層はAu,Pt,Pd,Ag,Cu,Niのいずれか、またはそれらの合金で構成されていることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 6,
The outermost surface of the electronic member is a metallized layer formed on the surface of the electronic member,
The metallized layer is made of any one of Au, Pt, Pd, Ag, Cu, and Ni, or an alloy thereof.
請求項1乃至請求項7のいずれかに記載の半導体装置において、
前記金属XがCuおよび/またはNiであることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the metal X is Cu and / or Ni.
JP2011282940A 2011-12-26 2011-12-26 Semiconductor device Pending JP2012124497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282940A JP2012124497A (en) 2011-12-26 2011-12-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282940A JP2012124497A (en) 2011-12-26 2011-12-26 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008211477A Division JP2010050189A (en) 2008-08-20 2008-08-20 Bonding material, semiconductor device, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012124497A true JP2012124497A (en) 2012-06-28

Family

ID=46505568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282940A Pending JP2012124497A (en) 2011-12-26 2011-12-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2012124497A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858101A3 (en) * 2013-09-10 2016-01-27 Kabushiki Kaisha Toshiba Paste comprising first metal particles and a polar solvent with a second metal dissolved therein, cured product obtained therefrom, and semiconductor device comprising the cured product
JP2016167379A (en) * 2015-03-09 2016-09-15 株式会社東芝 Conductive paste, dry matter thereof, and composite body
CN110431657A (en) * 2017-03-24 2019-11-08 三菱电机株式会社 Semiconductor device and its manufacturing method
US10573617B2 (en) 2015-07-01 2020-02-25 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
EP3855514A4 (en) * 2018-09-20 2022-06-22 Shin-Etsu Chemical Co., Ltd. Lid for optical element package, optical element package, and manufacturing method for lid for optical element package and optical element package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011492A1 (en) * 1995-09-20 1997-03-27 Hitachi, Ltd. Semiconductor device and its manufacture
JP2004107728A (en) * 2002-09-18 2004-04-08 Ebara Corp Joining material and joining method
JP2004130371A (en) * 2002-10-11 2004-04-30 Ebara Corp Joined body
JP2008166086A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Conductive sintered layer forming composition, and conductive film forming method and jointing method using this

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011492A1 (en) * 1995-09-20 1997-03-27 Hitachi, Ltd. Semiconductor device and its manufacture
JP2004107728A (en) * 2002-09-18 2004-04-08 Ebara Corp Joining material and joining method
JP2004130371A (en) * 2002-10-11 2004-04-30 Ebara Corp Joined body
JP2008166086A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Conductive sintered layer forming composition, and conductive film forming method and jointing method using this

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858101A3 (en) * 2013-09-10 2016-01-27 Kabushiki Kaisha Toshiba Paste comprising first metal particles and a polar solvent with a second metal dissolved therein, cured product obtained therefrom, and semiconductor device comprising the cured product
US10086478B2 (en) 2013-09-10 2018-10-02 Kabushiki Kaisha Toshiba Metallic particle paste, cured product using same, and semiconductor device
JP2016167379A (en) * 2015-03-09 2016-09-15 株式会社東芝 Conductive paste, dry matter thereof, and composite body
US10573617B2 (en) 2015-07-01 2020-02-25 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
US11094664B2 (en) 2015-07-01 2021-08-17 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
CN110431657A (en) * 2017-03-24 2019-11-08 三菱电机株式会社 Semiconductor device and its manufacturing method
DE112018001566T5 (en) 2017-03-24 2019-12-19 Mitsubishi Electric Corporation SEMICONDUCTOR UNIT AND METHOD FOR PRODUCING THE SAME
US11569169B2 (en) 2017-03-24 2023-01-31 Mitsubishi Electric Corporation Semiconductor device comprising electronic components electrically joined to each other via metal nanoparticle sintered layer and method of manufacturing the same
EP3855514A4 (en) * 2018-09-20 2022-06-22 Shin-Etsu Chemical Co., Ltd. Lid for optical element package, optical element package, and manufacturing method for lid for optical element package and optical element package

Similar Documents

Publication Publication Date Title
JP2010050189A (en) Bonding material, semiconductor device, and method of manufacturing the same
JP5151150B2 (en) Composition for forming conductive sintered layer, and method for forming conductive film and bonding method using the same
JP5156658B2 (en) Electronic components for LSI
JP5718536B2 (en) Connection structure and semiconductor device
JP4895994B2 (en) Joining method and joining material using metal particles
JP5286115B2 (en) Semiconductor device and bonding material
EP3217424B1 (en) Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly
JP6642865B2 (en) Solder joint
JP2014029897A (en) Conductive bonded body and semiconductor device using the same
JP5463280B2 (en) Circuit board for semiconductor module
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
TW201110146A (en) Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same
JP2012191238A (en) Conductive sintered layer forming composition, and conductive coating film forming method and jointing method using the same
JP2012124497A (en) Semiconductor device
JP5375343B2 (en) Bonding material, manufacturing method thereof, and mounting method using the same
JP6617049B2 (en) Conductive paste and semiconductor device
JP2015012187A (en) Connection structure
Calata et al. Sintered nanosilver paste for high-temperature power semiconductor device attachment
Zhao et al. Evaluation of Ag sintering die attach for high temperature power module applications
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
JP2010283105A (en) Wiring board cooling mechanism and method of manufacturing the same, and bonding structure and method of manufacturing the same
Lee et al. Evaluation of copper nanoparticles for low temperature bonded interconnections
Liu et al. Ultrasonic-assisted nano Ag-Al alloy sintering to enable high-temperature electronic interconnections
JP2021529258A (en) Nanocopper pastes and films for sintered die attach and similar applications

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212