JP2004128357A - Electrode arranged substrate and its electrode connection method - Google Patents

Electrode arranged substrate and its electrode connection method Download PDF

Info

Publication number
JP2004128357A
JP2004128357A JP2002292868A JP2002292868A JP2004128357A JP 2004128357 A JP2004128357 A JP 2004128357A JP 2002292868 A JP2002292868 A JP 2002292868A JP 2002292868 A JP2002292868 A JP 2002292868A JP 2004128357 A JP2004128357 A JP 2004128357A
Authority
JP
Japan
Prior art keywords
electrode
bonding
composite metal
heating
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292868A
Other languages
Japanese (ja)
Other versions
JP2004128357A5 (en
Inventor
Yusuke Chikamori
近森 祐介
Kaori Mikojima
神子島 かおり
Naoaki Kogure
小榑 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002292868A priority Critical patent/JP2004128357A/en
Priority to US10/484,454 priority patent/US20040245648A1/en
Priority to DE60326760T priority patent/DE60326760D1/en
Priority to KR1020047000955A priority patent/KR20050040812A/en
Priority to PCT/JP2003/011797 priority patent/WO2004026526A1/en
Priority to TW092125572A priority patent/TWI284581B/en
Priority to CNB038009056A priority patent/CN100337782C/en
Priority to EP03788702A priority patent/EP1578559B1/en
Publication of JP2004128357A publication Critical patent/JP2004128357A/en
Publication of JP2004128357A5 publication Critical patent/JP2004128357A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8322Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/83222Induction heating, i.e. eddy currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/203Ultrasonic frequency ranges, i.e. KHz

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To meet the requirement for higher integration and higher density in a mounting technique of a semiconductor device, for example, and to enable connection or the like of a first step of step junction, for example, by using a connecting material which does not include Pb. <P>SOLUTION: A substrate 42 has a number of electrodes. An electrode of the substrate 42 is jointed to an electrode 44 provided to another substrate 46 by a junction material 40 whose main material is composite metallic nanoparticles produced by combining and coating the circumference of a metal core of an average diameter of about 100nm or less with an organic matter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電極配設基体及びその電極接合方法に係り、特に半導体装置(半導体パッケージ)をインタポーザやプリント配線基板等に表面実装する時の該インタポーザやプリント配線基板等として使用される電極配設基体及びその電極接合方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型化に伴って、半導体パッケージに対する高集積化の要求がますます強まって来ている。 半導体パッケージをインタポーザやプリント配線基板に固定して、電流経路を相互に接続するようにした実装技術にあっても、更に高集積・高密度なものが希求されている。
【0003】
従来、半導体パッケージの周辺に直線状に配置したリードをプリント配線基板に設けた所定の電極にはんだを利用して接合する方法としては、マイクロソルダリングが広く知られている。ここで、半導体パッケージの周辺に直線状にリードを配置する場合、設置可能なリードの数には限りがある。例えば、表面実装型半導体パッケージとして多用されているQFP(Quad Flat Package)の場合、そのリードの間隔の最小限界値は、0.3mm(例えば、小林紘二郎、荘司郁夫、水曜会誌、23、2(2000.2)P.123参照)とされており、これによって、取付け可能なリードの数が制約を受けることになる。
【0004】
このため、半導体パッケージの裏面全体に接点端子(電極)としてのはんだボールを格子状に配列するようにした、所謂BGA(Ball Grid Array)方式が90年代後半から注目され、実用例が増加している。このBGA方式の半導体パッケージ(BGAパッケージ)は、裏面全体に電極を配置出来るので、前述のQFPと比べ単位面積当りの電極数を格段に高めることが出来、高密度実装や実装面積の縮小に多大の効果を発揮することが出来る。
【0005】
このBGAパッケージのはんだボールの最小配置間隔は、0.5mm(例えば、松浦亮、珍田聡、日立電線、No.21(2002.1)P.53参照)とされている。これは、溶融したはんだ材料に働く表面張力と重力の作用で生じるはんだボールの扁平化現象によって決められたものと考えられる。更に、はんだボールの直径とはんだボールの相互の間隔(ピッチ)が小さいほど、高密度実装を行うには都合が良いものの、はんだボールの狭ピッチ化が進むと、はんだの材料特性に起因する不具合が生じる。
【0006】
すなわち、図7は、溶融・液状化によって生じたはんだボールの扁平化(高さが減少して高さと垂直方向の直径が増加する)現象の観察例(大澤直、「はんだ付のおはなし」(2001.12日本規格協会)P.105参照)を示すもので、このように、はんだボールの扁平化現象の影響を大きく受けて、BGAパッケージのはんだボールのピッチは、最少で0.5mmとなっている。
【0007】
更に、BGAパッケージ側のビアホール径とはんだボール径の狭小化に伴って、はんだボール接合の信頼性が損なわれる傾向が生じる。図8は、はんだボールの狭ピッチ化に伴って生じるはんだボール接合の代表的な不具合例を示す。つまり、図8(a)は、配線板10とBGAパッケージ12の電極14とを接続するはんだボール16が配線板10側に偏って、BGAパッケージ12のビアホール12a内に位置するはんだボール16にはんだが細くなる、はんだ括れ現象が生じた状態を示し、図8(b)は、はんだボール16が配線板10だけと接合し、導通が切断される、はんだ脱落現象が生じた状態を示す。
【0008】
図8に示す不具合は、主にはんだボールのピッチとボール径が限度以下に小さくなったことに起因しており、はんだ合金の加熱による溶融・液状化→凝固という過程を経て接合を実現するマイクロソルダリングに不可避的に伴う現象と考えられる。
以上のように、BGAパッケージにあっても、はんだボールのピッチ及びボール径の狭小化には自ずと限界がある。
【0009】
また、必要な部品を接合して1つの製品を作る際には、所謂ステップはんだ付が行われるが、このステップはんだ付の場合、少なくとも第1ステップのはんだ接合には、Pbを含む高温はんだが用いられる。ステップはんだ付は、図9に示すように、例えば複数の部品P,P…をはんだ接合による接合層C,C…を介して順次積層し、最終的にn個の部品P〜Pを一体化した製品を作る方法を意味している。この場合、一旦接合した部分がそれ以降の接合工程によって再溶融することを回避することが必要になる。そのためには、1回目の接合層Cを形成するときに最も融点の高いはんだ材料を用い、2回目以降の接合のためには順次融点が低いはんだ材料を用いてこれを行うことが不可欠となる。半導体装置では、特に、大電流密度の所謂ハイパワーモジュールと称するもので高温はんだの使用が必須とされる。
【0010】
ここで、環境保全の要求から鉛(Pb)使用に対する法規制が厳しくなっており、低温の融点のはんだとしては、従来の60%Sn−40%Pbの共晶系のはんだに替わって、Sn−Ag系やSn−Ag−Cu系のはんだを使用するようにしたものが開発され、その実用が広がりつつある。しかし、ステップはんだ付の初期ステップで使用すべき高温はんだとしては、5%Sn−95%Pb系が唯一の実用材料であって、これに替る無鉛はんだの開発は、その目途さえつかない状況となっている。更に、半導体パッケージを高温環境(例えば車両のエンジンの近傍等)で用いる場合にも、従来同様の高温はんだが用いられるので、これにも代替品のはんだ材料が要求されている。
【0011】
【発明が解決しようとする課題】
以上のように、例えば半導体装置の実装技術にあっては、その高集積・高密度化に一定の限界があり、また、高温はんだに替わる、Pbを含まない接合材料を用いて、例えば、ステップ接合の第1ステップの接合等が行えるようにしたものの開発が強く望まれていた。
【0012】
本発明は上記事情に鑑みてなされたもので、例えば半導体装置の実装技術における、更なる高集積・高密度化の要請に応えることができ、しかもPbを含まない接合材料を用いて、例えば、ステップ接合の第1ステップの接合等を行えるようにした電極配設基体及びその電極接合方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に記載の発明は、多数の電極を有する基体であって、平均直径が100nm程度以下の金属核の周囲を有機物で結合・被覆することによって生成した複合型金属ナノ粒子を主材とする接合材料によって、前記基体の電極を他の基体に設けた電極に接合するようにしたことを特徴とする電極配設基体である。
【0014】
一般に、直径の小さな粒子同士を互いに接触させて一定の温度以上に加熱すると、粒子同士が互いに結合を強め、最終的に全体が一体化する焼結現象を生じることが知られている(例えば、作井誠太編「100万人の金属学」(1989.9アグネ)P.272〜277参照)。このような焼結現象は、互いに接触する粒子の直径が小さくなるほど、単位体積の系内での接触点の数が増すと共に、焼結開始温度が低くなる性質を持つので、粒子直径が小さいほど焼結が起こりやすくなる。
【0015】
図1(a)は、小さな粒子20a,20bとの間で焼結による結合が起きる過程を、図1(b)は、小さな粒子20と大型の物体22との間で焼結による結合が起きる過程を模式的に示す(例えば、作井誠太編「100万人の金属学」(1989.9アグネ)P.272〜277参照)。即ち、図1(a)及び(b)において、仮想線は焼結前の形態を、実線は焼結後の形態をそれぞれ示している。焼結現象の研究によって、小さい粒子の表面や内部で夫々を構成する原子が熱活性化によって拡散・移動を起こし、これが徐々に接触部に移動することによって結合が進むことが実証されている。
【0016】
この原子の拡散を生ずる原動力は、物質の表面張力であって、これは、2つの物体が小面積で接触している部分の周囲の凹んだ面に特に強く働き、接触点へ原子を引張り込む傾向が強くなる。表面張力は、表面エネルギによって生じるが、この表面エネルギは、粉粒体の表面に貯えられており、更に系内の表面エネルギの総和は、粒子の表面積の総和に比例するので、粒子の直径が小さいほど表面エネルギ量が大きくなり、焼結が起こりやすくなる(例えば、作井誠太編「100万人の金属学」(1989.9アグネ)P.272〜277参照)。
【0017】
本発明による複合型金属ナノ粒子の金属核の平均直径は、100nm程度以下、好ましくは20nm程度以下、更に好ましくは5nm程度以下である。この金属核の平均直径の最小値は、製造が可能な限り特に限定されないが、一般的には0.5nm程度、または1.0nm程度である。表1は、直径が50nm程度以下の金属超微粒子(Fe,Ag,Ni,Cu)が焼結を開始する温度を示す(例えば、一ノ瀬昇、尾崎義治、賀集誠一郎、「超微粒子技術入門」(1988.7オーム社)P.26〜29参照)。
【0018】
【表1】

Figure 2004128357
表1に示すように、例えば直径20nmの銀粒子を用いれば、焼結は、60〜80℃と常温に極めて近い温度で起きる(低温焼結)。これが発明による接合原理・機構の本質をなしている。従って、粒子の大きさを選べば、従来のはんだ接合よりも、遙かに低い温度で接合作業をすることが原理的に可能となる。また、温度、その他の条件を選ぶことによって、本発明による接合は、金属、プラスチック、セラミック等全ての材質の被接合部材に適用出来る。
【0019】
本発明による複合型金属ナノ粒子は、小さな金属核の周囲を、有機物によって結合・被覆した構造を有しており、これを接合素材として利用する。このような複合型金属ナノ粒子は、例えば金属塩と有機物質を加熱還元することによって容易かつ安価に製造することが出来る。このように、金属核の周囲を有機物で結合・被覆した状態の複合型金属ナノ粒子は、単なる金属粒子同士の場合と異なり、これを一定量集合しておいても、相互に凝集・粗大化してしまうという不具合を回避することが出来るという大きな利点を持っている。
【0020】
前述のように、粒子は、その大きさが小さいほど容易に焼結を起こすことが出来るので、相互に凝集を生じることなく、均一な分散状態を保持することが極めて重要かつ不可欠な特性となる。金属核の周囲を有機物で結合・被覆した状態の複合型金属ナノ粒子ならば、これを、適当な溶媒等に溶解した場合でも凝集・粗大化を起こすことなく、接合素材として有効に使用出来るという優れた機能を持っている。
【0021】
以上述べたように、本発明による接合の機構は、超微小な金属粒子に特有の低温焼結による結合現象である。従って、従来のはんだ接合と異なり、固体物質の溶融→液化→凝固の過程を経由することはない。
【0022】
固体が溶融すれば、液体状態での表面張力と重力の関係によって、図8に示すように、はんだの括れや脱落という不都合を起こすとともに、液状態に於けるはんだボールの扁平化現象に起因する電極ピッチ狭小化の限界値=0.5mmに直面する。これに対して、本発明による接合は、溶融現象によらず、あくまで固相状態での焼結現象を利用しているので、図8に示す不都合や、はんだボール扁平化に伴う電極ピッチ狭小化の限界から解放される。これは、前述のはんだの溶融・液状化の場合と異なり、金属の焼結現象に伴う形状・体積変化が極小規模であることに由来している。換言すると、本発明による接合の電極ピッチ間隔は、はんだ接合のそれよりもはるかに狭小化することが可能となる。
【0023】
本発明にあっては、常温に近い極めて低い温度の加熱で接合を行うことが可能で、しかも一旦接合が完了してしまえば、この接合部分を再溶融するためには、その金属のバルク状態の融点まで昇温・加熱することが必要となる。例えば、銀粒子を用いて接合を行った場合、接合部は、少なくとも960℃以上に加熱しないと溶融しない。このように、接合時の加熱温度よりも遙かに高い温度になるまで加熱しなければ、接合部は接合したままで保持される。従って、高い融点から低い融点までのはんだ材料を順次使用することなく、図9に示すステップはんだ付を行うことができる。すなわち、段階的に複数の部品を順次接合して製造する場合でも、部品数に制約はなく、同一の接合材料で一貫した接合・製造が可能となる。
【0024】
請求項2に記載の発明は、前記複合型金属ナノ粒子は、金属塩とアルコール系有機物とを混合して加熱合成した後、これに還元剤を加えて加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体である。
請求項3に記載の発明は、前記複合型金属ナノ粒子は、金属塩と有機物質とを非水系溶媒中で加熱合成した後、これを加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体である。
【0025】
請求項4に記載の発明は、前記複合型金属ナノ粒子は、金属塩と金属酸化物と金属水酸化物と有機物とを混合して加熱合成した後、これを加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体である。
請求項5に記載の発明は、前記複合型金属ナノ粒子は、金属塩と有機物とを非水系溶媒中で加熱合成した後、これに還元剤を加えて加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体である。
【0026】
請求項6に記載の発明は、前記複合型金属ナノ粒子の周囲を結合・被覆する有機物は、C,H及び/またはOを主成分としたものであることを特徴とする請求項1乃至5のいずれかに記載の電極配設基体である。
有機物に窒素(N)、硫黄(S)等のように、C,HまたはO以外の元素を含むと、接合時の加熱によって有機物を分解・蒸散させる工程を実行しても、有機物中に含まれるNまたはS成分が焼結金属中に残留し、その結果、接合層の導電性に悪影響を及ぼす場合がある。例えば、高密度実装部品のように、動作時の電流密度が高い部分で、このような理由で導電率が低下することは由々しい問題を生じると考えられる。しかし、有機物として、C,H及び/またはOを主成分とするものを使用し、有機物の分解・蒸散後も接合部にNやSが残留しないようにすることで、このような弊害を防止することができる。
【0027】
請求項7に記載の発明は、前記基体は、半導体装置の装着のために用いるものであることを特徴とする請求項1乃至6のいずれかに記載の電極配設基体である。この基体としては、例えば半導体パッケージを表面実装するインタポーザやプリント配線基板等が挙げられる。
請求項8に記載の発明は、基体に設けた電極と他の基体に設けた電極との間に、平均直径が100nm程度以下の金属核の周囲を有機物で結合・被覆することによって生成した複合型金属ナノ粒子を主材とする接合材料を介在させ、前記接合材料に含まれる複合型金属ナノ粒子の形態を変化させて電極同士を接合することを特徴とする電極配設基体の電極接合方法である。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。なお、はんだ接合に於ては、▲1▼コテはんだ接合、▲2▼フローはんだ接合、▲3▼リフローはんだ接合という3タイプの接合プロセスが一般に行われている(例えば、「はんだ付のおはなし」(2001.12 日本規格協会) p65〜74参照)。それに対し、本発明のプロセスは、基本的に接合材料を必要部分に塗布しておいて、その後、これを加熱・焼結させることによって接合を達成するという形態が採られる。
【0029】
先ず、図2に示すように、実質的に金属成分からなる金属核30と、C,H及び/またはOを主成分とする有機物からなる結合・被覆層(有機物層)32とからなる構造を持つ複合型金属ナノ粒子34を作製する。このような複合型金属ナノ粒子34は、金属核30が有機化合物からなる結合・被覆層32により覆われているので安定であり、しかも溶媒中において凝集する傾向が小さい。
【0030】
この複合型金属ナノ粒子34は、有機化合物と出発物質である金属塩、例えば炭酸塩、蟻酸塩または酢酸塩由来の金属成分から構成されており、その中心部が金属成分からなり、その周りを結合性有機化合物が取り囲んでいる。この時、有機化合物と金属成分とは、その一部または全部が化学的に結合した状態で一体化して存在しており、界面活性剤によりコーティングされることにより安定化された従来のナノ粒子と異なり、安定性が高いとともに、より高い金属濃度においても安定である。
【0031】
複合型金属ナノ粒子34の金属核30の平均直径dは、100nm程度以下、好ましくは20nm以下、更に好ましくは5nm以下とする。また、結合・被覆層32の高さhは、例えば1.5nm程度である。この金属核30の平均直径dの最小値は、可能な限り特に限定されないが、一般的には0.5nm程度、または1.0nm程度である。このように構成することにより、金属核30を構成する金属粒子は前述の低温焼結を起こすことが可能となる。
【0032】
この複合型金属ナノ粒子34は、例えば非水系溶媒中でかつ結合性有機物の存在下で金属塩、例えば炭酸塩、蟻酸塩または酢酸塩をその分解還元温度以上でかつ結合性有機物の分解温度以下で加熱することによって製造することができる。金属成分としてはAg、AuまたはPdが用いられ、結合性の有機物としては、例えば炭素数5以上の脂肪酸および炭素数8以上の高級アルコールが用いられる。
【0033】
加熱温度は、金属塩、例えば炭酸塩、蟻酸塩または酢酸塩の分解還元温度以上でかつ結合性有機物の分解温度以下である、例えば酢酸銀の場合、分解開始温度が200℃であるので、200℃以上かつ上記の結合性有機物が分解しない温度に保持すればよい。この場合、結合性有機物が分解しにくいようにするために、加熱雰囲気は、不活性ガス雰囲気であることが好ましいが、非水溶剤の選択により、大気下においても加熱可能である。
【0034】
また、加熱するに際し、各種アルコール類を添加することもでき、反応を促進することが可能になる。アルコール類は、上記効果が得られる限り特に制限されず、例えばラウリルアルコール、グリセリン、エチレングリコール等が挙げられる。アルコール類の添加量は、用いるアルコールの種類等に応じて適宜定めることができるが、通常は重量部として金属塩100に対して5〜20程度、好ましくは5〜10とすれば良い。
加熱が終了した後、公知の精製法により精製を行う。精製法は例えば遠心分離、膜精製、溶媒抽出等により行えば良い。
【0035】
そして、複合型金属ナノ粒子34をトルエン、キシレン、ヘキサン、オクタン、デカン、シクロヘキサン、ピネンまたはリモネン等の所定の有機溶媒に分散させて接合材料を作製する。金属核30の表面を有機物からなる結合・被覆層(有機物層)32で被覆した構造を持つ複合型金属ナノ粒子34は、この有機物層32に金属核30を保護する保護皮膜としての役割を果たさせることで、溶媒中に安定して分散し、しかも粒子としての高い性状安定性を有する。従って、低温で焼結・溶融結合可能な結合素材(複合型金属ナノ粒子34)を均一に分散させた液状の接合材料を得ることができる。
【0036】
ここで、複合型金属ナノ粒子34を、金属部分の全液体に対する重量比率が好ましくは1%以上、85%以下となるように有機溶媒に分散させ、これに分散剤やゲル化剤を適宜添加して液状化することで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子34)を均一に分散させた所望の加熱時の流動性を有する液状の接合材料を得ることができる。複合型金属ナノ粒子34の金属部分の全液体に対する重量比率が85%を超えると、液状の接合材料としての流動性が著しく低下するので、微細な隙間を液状の接合材料で充填するに際し、充填の不完全な部分を生じやすくなる。
【0037】
更に、複合型金属ナノ粒子34の金属部分の全液体に対する重量比率が1%以下では、接合材料に含まれる有機成分が多過ぎる結果、焼成時の脱ガスが不十分となって、接合層に欠陥を生じやすいので本比率を上記範囲に限定している。
【0038】
複合型金属ナノ粒子34を、金属部分の全流動体に対する重量比率が好ましくは15〜90%となるように有機溶媒に分散させ、これに分散剤やゲル化剤を適宜添加して液状化し、スラリー、ペーストまたはクリーム状に調整することで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子34)を均一に分散させた、所望の加熱時の流動性を有するスラリー、ペーストまたはクリーム状の接合材料を得ることができる。
【0039】
複合型金属ナノ粒子34を、金属部分の全接合材料に対する重量比率が、好ましくは20〜95%となるように有機溶媒に分散させ、これに分散剤やゲル化剤を適宜添加して液状化し、例えば棒状、紐状またはボール状等の各種形状に成形して固化させるか、またはゼリー状に半固化させることで、低温で焼結・溶融結合可能な接合素材(複合型金属ナノ粒子34)を均一に分散させた、所望の加熱時の流動性を有する固化若しくは半固化した接合材料を得ることができる。
【0040】
この時、必要に応じて、0.1μm程度の大きさの、例えば金属粉末、プラスチック粉末、金属・プラスチック以外の無機物粉末等のうち単独で、もしくはこれらを組合せた骨材を添加して、接合材料中に均一に分散させてもよい。このように、骨材を添加することで、複合型金属ナノ粒子単独の場合と異なり、各種の特性を加えることができる。
この骨材としては、例えばAl,Cu,Mg,Fe,Ni,Au,AgまたはPdからなる金属粉末を使用することができる。このように、各種電気電導性に優れた金属粉末を骨材として添加することで、安定した電気電導性を確保することができる。
【0041】
次に、前述の接合材料を使用して、配線板に半導体パッケージを接合(表面実装)する過程を図3及び図4を参照して説明する。なお、ここでは、複合型金属ナノ粒子34として、その平均直径dが5nmのクラスタ状の銀超微粒子からなる金属核30を有する複合型銀超微粒子を使用した例を示す。先ず、複合型金属ナノ粒子(複合型銀超微粒子)34をヘキサン等の溶媒に分散し、更に、骨材となる30〜300nmの銀粒子を混合して印刷による仮固定が可能な、粘ちゅう性のクリーム状態に調整した接合材料を用意する。
【0042】
そして、図3(a)に示すように、例えばスクリーン印刷法等によって、この接合材料40を配線板42の所定の位置(電極)に塗布する。次に、図3(b)に示すように、この配線板42に、裏面に格子状に接点用バンプ(電極)44を配列した半導体パッケージ46を位置決めして搭載する。この状態で、全体を加熱することによって、低温焼結を起こして、配線板42上に半導体パッケージ46を接合・固定する。つまり、接合材料40に含まれるトルエン等の溶媒を蒸発させ、更に接合材料40の主成分である複合型金属ナノ粒子34を、この結合・被覆層(有機物層)32の金属核(銀超微粒子)30から離脱させる温度への加熱、或いは結合・被覆層32自体の分解温度以上への加熱によって、金属核30から結合・被覆層32を離脱させるか、或いは結合・被覆層32を分解して蒸散させる。これにより、金属核(銀超微粒子)30同士を直接接触させ焼結させて銀層を形成し、この銀層からなる接合層と半導体パッケージ46のバンプ44及び配線板42の電極とを直接接触させて凝着を起こさせ、この結果として、配線板42の電極と半導体パッケージ46のバンプ44とを銀層からなる接合層を介して接合させる。
【0043】
平均直径dが5nmの銀を金属核とする接合素材を用いた場合、この加熱としては、300℃×3minという条件で十分な接合が出来ることを確認している。このように、例えば300℃程度の温度で低温焼成して配線板42の電極と半導体パッケージ46のバンプ44とを接合することで、従来のはんだ接合を代替出来る鉛不使用の接合が出来る。
【0044】
スクリーン印刷法を用いる場合、接合材料40のスポットサイズSとスポット間隔Pは、共に30μm程度まで狭小化出来ることを実験によって確認している。従って、従来のBGAパッケージにおけるはんだボールによる狭小化の限界値0.5mmに対しては1/10以下への狭小化が達成出来るので、従来よりもはるかに高い密度の配線を実現することが可能となり、半導体装置の高密度実装に資するところが大きい。
【0045】
表2は、電極のスポット間隔として、実用的に採用可能な最小値を接合方法別に示している。
【表2】
Figure 2004128357
前述のように、従来のマイクロソルダリングによれば、QFPパッケージのリード間隔の最少限界値(限界スポット間隔)は、0.3mmで、BGAパッケージのはんだボールのピッチの限界値(限界スポット間隔)は、CSPパッケージやLGAパッケージを含め、0.5mmであるが、本発明によれば、接合材料のスポット間隔の限界値を30μmまで狭めることができる。
【0046】
ここで、図5に半導体パッケージ46のバンプ44と配線板42の接合部を拡大して模式的に示すように、接合材料40を該接合材料40,40間にガス抜き溝48ができるようにして配線板42に塗布しても良い。これにより、接合材料40に元々含有される有機溶媒の蒸発ガスや金属核を結合・被覆している有機物の分解ガスが容易に離脱出来るようにすることができる。つまり、このように、ガス抜き溝48を設けることによって、ガスの離脱性が改善するので、他の条件が同一であればガス抜き溝が無い場合と比較して、焼成の低温度化・短時間化が図られる。従って、実用上の効果が大きい。
【0047】
図6は、大電流密度の半導体装置であるハイパワーモジュール50を、インタポーザ52を介して配線板42に接合・固定した状態を示す。図6に示すハイパワーモジュール50では、内部の電流密度が高いので、自らの発熱・昇温による熱変形が大きくなるため、通常配線板42との間にインタポーザ52を挿入することによってハイパワーモジュール50と配線板42との熱膨張差に起因して生じる熱応力を緩和し、熱衝撃や熱疲労による部品の損傷を回避している。
【0048】
この例にあっては、先ず、前述と同様にして、例えばスクリーン印刷法等によって、インタポーザ52の表面の所定の位置(電極)に接合材料を塗布し、このインタポーザ52に、裏面に格子状に接点用バンプ(電極)54を配列したハイパワーモジュール50を位置決めして搭載し、例えば300℃×3minという条件で低温焼結させる。これによって、インタポーザ52の電極とハイパワーモジュール50のバンプ54とを接合層56を介して接合し、インタポーザ52の上面にハイパワーモジュール50を装着する。次に、例えばスクリーン印刷法等によって、配線板42の所定の位置(電極)に接合材料を塗布し、この配線板42に、裏面に格子状に接点用バンプ(電極)58を配列したインタポーザ52を位置決めして搭載し、例えば300℃×3minという条件で低温焼結させる。これによって、配線板42の電極とインタポーザ52のバンプ58とを接合層60を介して接合し、配線板42上にインタポーザ52を装着する。
【0049】
このように、2ステップのはんだ接合を必要とする場合、ハイパワーモジュール50とインタポーザ52間の接合には、従来、Sn−95%Pb系の高温はんだを用いることを余儀なくされている。しかも、前述のように鉛不使用の高温はんだ開発の目途が立たないために、環境保全上の法規制との整合性を図る方途は、暗礁に乗り上げた状況となっていた。
【0050】
しかしながら、本発明の方法によると、同じ接合材料を何回でも使用出来るので、上記問題は解決される。つまり、形態が変化した複合型金属ナノ粒子、即ち先に形成した銀層等からなる接合層56は、バルク状態の金属と同じ特性に変わっており、接合層56はバルク状態と同じ融点、すなわち961.93℃を持ち、一度焼結した場合、961.93℃以上でなければ溶融しなくなっている。従って、この裏面への接合時の加熱によって溶融することはなく、高温はんだに求められる、繰返しの接合には理想的な接合材料を提供することができる。
【0051】
なお、このペースト状の接合材料の供給は、単なる塗布法に限ることなく、スプレー、刷毛塗り、ディップ、スピンコート、ディスペンス、スクリーン印刷、転写法等の任意の方法で行うことができる。
また、この接合法によると、金属、プラスチック、及びセラミック等無機物のうちの同種材の部品同士、または異種材の部品の組合せ等、基本的にあらゆる部品の接合を行うことができる。
【0052】
なお、この例では、接合材料に含まれる複合型金属ナノ粒子の形態を変化させるためのエネルギの付与を熱風炉による加熱(低温焼成)で行っているが、エネルギビームによる局部加熱、粒子ビーム照射、部品間の通電、部品の誘導加熱または誘電加熱等、任意の方法によるものであっても良い。複合型金属ナノ粒子は、これらの方法により形態を変化させられると、相互にあるいは添加された金属粉末やその他添加物及び各種接合対象材との間で焼結によって接合する。
【0053】
ここで、前記接合を、大気中、乾燥空気中、不活性ガス雰囲気、真空中またはミストの存在量を低減した環境下で行うことができる。特に、例えば清浄雰囲気で接合を行うことによって、接合前に被接合面が空中に飛散・浮遊する鉱油、油脂、溶剤、水などのミストで汚染されることを回避することができる。
【0054】
更に、接合に先立って行う前記部品の被接合面の表面処理として、有機溶剤や純水による洗浄・脱脂、超音波洗浄、薬液エッチング、コロナ放電処理、火炎処理、プラズマ処理、紫外線照射、レーザ照射、イオンビームエッチング、スパッタエッチング、陽極酸化、機械的研削、流体研削またはブラスト加工の少なくとも一つの操作を行うことができる。
これにより、接合工程に先立って被接合部材表面の汚染・異物を除去したり、該表面の粗度を変化したりすることによって接合に適した表面形態を創成することができる。
【0055】
【発明の効果】
以上説明したように、本発明によれば、例えば半導体装置の実装技術における、更なる高集積・高密度化の要請に応えることができる。しかもPbを含まない接合材料を用いて、例えば、ステップ接合の第1ステップの接合等を行うことが出来る。
【図面の簡単な説明】
【図1】焼結による小粒子の結合の概念を示す図である。
【図2】本発明に使用される有機物による結合・被覆構造を持つ複合型金属ナノ粒子を模式的に示す図である。
【図3】本発明による配線板への半導体パッケージの接合例を工程順に模式的に示す断面図である。
【図4】本発明による配線板への半導体パッケージの接合例を工程順に示すフロー図である。
【図5】配線板と半導体パッケージのバンプとの他の接合例を拡大して模式的に示す断面図である。
【図6】本発明によるステップ接合による半導体装置の実装例を模式的に示す断面図である。
【図7】溶融・液状化によって生じたはんだボールの扁平化現象を示す図である。
【図8】従来例における、はんだボールの狭ピッチ化に伴って生じるはんだボール接合の代表的な不具合例を示す図である。
【図9】従来例における、ステップはんだ付の説明に付する図である。
【符号の説明】
30 金属核
32 結合・被覆層(有機物層)
34 複合型金属ナノ粒子
40 接合材料
42 配線板
44,54,58 バンプ
46 半導体パッケージ
48 ガス抜き溝
50 ハイパワーモジュール
52 インタポーザ
56,60 接合層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode mounting base and an electrode bonding method thereof, and particularly to an electrode mounting used as an interposer or a printed wiring board when a semiconductor device (semiconductor package) is surface-mounted on an interposer or a printed wiring board. The present invention relates to a base and an electrode bonding method thereof.
[0002]
[Prior art]
In recent years, with the miniaturization of electronic devices, demands for higher integration of semiconductor packages have been increasing more and more. Even in a mounting technology in which a semiconductor package is fixed to an interposer or a printed wiring board and current paths are connected to each other, a higher integration and a higher density are required.
[0003]
2. Description of the Related Art Conventionally, micro soldering is widely known as a method for joining leads arranged linearly around a semiconductor package to predetermined electrodes provided on a printed wiring board using solder. Here, when the leads are linearly arranged around the semiconductor package, the number of leads that can be installed is limited. For example, in the case of QFP (Quad Flat Package) which is frequently used as a surface mount semiconductor package, the minimum limit value of the lead interval is 0.3 mm (for example, Koujiro Kobayashi, Ikuo Shoji, Wednesday Journal, 23, 2). (2000.2), p. 123), which limits the number of leads that can be attached.
[0004]
For this reason, a so-called BGA (Ball Grid Array) system in which solder balls as contact terminals (electrodes) are arranged in a grid pattern on the entire back surface of the semiconductor package has been attracting attention since the late 1990s, and practical examples have increased. I have. In this BGA type semiconductor package (BGA package), electrodes can be arranged on the entire back surface, so that the number of electrodes per unit area can be remarkably increased as compared with the above-described QFP, and a great deal of reduction is required for high-density mounting and mounting area reduction. The effect of can be exhibited.
[0005]
The minimum spacing between the solder balls in the BGA package is 0.5 mm (see, for example, Ryo Matsuura, Satoshi Kinta, Hitachi Cable, No. 21 (2002. 1) p. 53). This is considered to be determined by the flattening phenomenon of the solder ball generated by the action of the surface tension and gravity acting on the molten solder material. In addition, the smaller the diameter of the solder ball and the distance (pitch) between the solder balls, the more convenient it is to perform high-density mounting. However, as the pitch of the solder balls becomes narrower, the defect caused by the material properties of the solder becomes worse. Occurs.
[0006]
That is, FIG. 7 shows an example of observation of a flattening (reducing the height and increasing the height and the diameter in the vertical direction) of the solder ball caused by melting and liquefaction (Nao Osawa, “Soldering Story” ( 2001.12, Japanese Standards Association), p. 105), and thus the pitch of the solder balls of the BGA package is a minimum of 0.5 mm, largely affected by the flattening phenomenon of the solder balls. ing.
[0007]
Further, as the via hole diameter and the solder ball diameter on the BGA package side become narrower, the reliability of solder ball joining tends to be impaired. FIG. 8 shows a typical failure example of solder ball joining that occurs with the narrow pitch of the solder balls. In other words, FIG. 8A shows that the solder balls 16 connecting the wiring board 10 and the electrodes 14 of the BGA package 12 are biased toward the wiring board 10, and the solder balls 16 located in the via holes 12 a of the BGA package 12 are soldered. FIG. 8B shows a state in which the solder balls 16 are joined to the wiring board 10 alone, the conduction is cut off, and a solder falling-off phenomenon occurs.
[0008]
The defect shown in FIG. 8 is mainly attributable to the fact that the pitch and the ball diameter of the solder balls have become smaller than the limits. It is considered to be a phenomenon inevitably involved in soldering.
As described above, even in the BGA package, there is naturally a limit in reducing the pitch and ball diameter of the solder balls.
[0009]
In addition, when a required product is joined to form one product, so-called step soldering is performed. In this step soldering, at least the first step soldering involves high-temperature solder containing Pb. Used. In step soldering, for example, as shown in FIG. 1 , P 2 ... is a bonding layer C by soldering 1 , C 2 Are sequentially laminated, and finally n parts P 1 ~ P n Means a product that integrates In this case, it is necessary to prevent the once joined portion from being re-melted by the subsequent joining process. For that purpose, the first bonding layer C 1 It is indispensable to use a solder material having the highest melting point when forming the soldering layer and to use a solder material having a sequentially lower melting point for the second and subsequent bonding. In a semiconductor device, a so-called high power module having a large current density is required to use a high-temperature solder.
[0010]
Here, legislation on the use of lead (Pb) has become strict due to the demand for environmental protection. As a solder having a low melting point, instead of the conventional 60% Sn-40% Pb eutectic solder, Sn -Ag-based and Sn-Ag-Cu-based solders have been developed, and their practical use is expanding. However, as the high-temperature solder to be used in the initial step of the step soldering, 5% Sn-95% Pb is the only practical material, and the development of a lead-free solder that replaces it is inconceivable. Has become. Further, even when the semiconductor package is used in a high-temperature environment (for example, in the vicinity of an engine of a vehicle), a high-temperature solder similar to the conventional one is used.
[0011]
[Problems to be solved by the invention]
As described above, for example, in the mounting technology of a semiconductor device, there is a certain limit to its high integration and high density, and, instead of using a high-temperature solder, a bonding material that does not contain Pb is used, There has been a strong demand for the development of a device capable of performing the first step of bonding and the like.
[0012]
The present invention has been made in view of the above circumstances, for example, in the mounting technology of semiconductor devices, it is possible to meet the demand for higher integration and higher density, and using a bonding material that does not contain Pb, for example, An object of the present invention is to provide an electrode-provided base body and a method for bonding electrodes, which are capable of performing the first step bonding of step bonding and the like.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 is a substrate having a large number of electrodes, wherein the main material is a composite metal nanoparticle produced by binding and coating an organic substance around a metal core having an average diameter of about 100 nm or less. An electrode-provided base, wherein an electrode of the base is bonded to an electrode provided on another base by a bonding material to be formed.
[0014]
Generally, it is known that, when particles having small diameters are brought into contact with each other and heated to a certain temperature or higher, the particles are strengthened to bond with each other, and finally a sintering phenomenon in which the whole is integrated is caused (for example, See Seita Sakui, "Metallurgy of One Million People" (1989.9 Agne), pp.272-277). Such a sintering phenomenon has a property that the smaller the diameter of the particles that come into contact with each other, the more the number of contact points in the unit volume system, and the lower the sintering start temperature, the smaller the particle diameter. Sintering is likely to occur.
[0015]
FIG. 1A illustrates a process in which sintering occurs between the small particles 20a and 20b, and FIG. 1B illustrates a process in which sintering occurs between the small particles 20 and the large object 22. The process is schematically shown (for example, see Seita Sakui, “Metallurgy of One Million People” (1989.9 Agne), pages 272 to 277). That is, in FIGS. 1A and 1B, the imaginary line indicates the form before sintering, and the solid line indicates the form after sintering. Research on the sintering phenomena has demonstrated that atoms constituting the surface and inside of small particles diffuse and move due to thermal activation, and this gradually moves to the contact part, thereby promoting bonding.
[0016]
The driving force that causes this diffusion of atoms is the surface tension of the material, which acts particularly strongly on the concave surface around the point where the two objects are in contact in a small area, pulling the atoms to the point of contact The tendency becomes stronger. The surface tension is generated by the surface energy. This surface energy is stored on the surface of the granular material, and the total surface energy in the system is proportional to the total surface area of the particles. The smaller the value is, the larger the surface energy becomes, and sintering is likely to occur (see, for example, Seitai Sakui, “Metalology for One Million People” (1989.9 Agne), pages 272 to 277).
[0017]
The average diameter of the metal nuclei of the composite metal nanoparticles according to the present invention is about 100 nm or less, preferably about 20 nm or less, more preferably about 5 nm or less. The minimum value of the average diameter of the metal nuclei is not particularly limited as long as production is possible, but is generally about 0.5 nm or about 1.0 nm. Table 1 shows the temperature at which metal ultrafine particles (Fe, Ag, Ni, Cu) having a diameter of about 50 nm or less start sintering (for example, Noboru Ichinose, Yoshiharu Ozaki, Seiichiro Kashu, "Introduction to Ultrafine Particle Technology" ( (1988.8 Ohm) see pages 26-29).
[0018]
[Table 1]
Figure 2004128357
As shown in Table 1, when silver particles having a diameter of, for example, 20 nm are used, sintering occurs at a temperature very close to room temperature of 60 to 80 ° C. (low-temperature sintering). This is the essence of the joining principle and mechanism according to the invention. Therefore, if the size of the particles is selected, it is possible in principle to perform the joining operation at a much lower temperature than the conventional solder joining. Further, by selecting the temperature and other conditions, the joining according to the present invention can be applied to members to be joined of all materials such as metals, plastics, and ceramics.
[0019]
The composite metal nanoparticles according to the present invention have a structure in which small metal nuclei are bound and covered with an organic substance, and are used as a joining material. Such composite metal nanoparticles can be easily and inexpensively produced by, for example, heating and reducing a metal salt and an organic substance. In this way, composite metal nanoparticles in a state in which the surroundings of the metal nuclei are bonded and covered with an organic substance are different from mere metal particles, and even if a certain amount of these are aggregated, they are mutually aggregated and coarsened. It has a great advantage that it can avoid the disadvantage that it will
[0020]
As described above, the smaller the particle size, the easier it is to cause sintering. Therefore, it is extremely important and indispensable to maintain a uniform dispersion state without causing mutual aggregation. . It is said that composite metal nanoparticles with the surroundings of the metal nuclei bonded and covered with an organic substance can be effectively used as a joining material without causing aggregation or coarsening even when dissolved in an appropriate solvent. Has excellent features.
[0021]
As described above, the bonding mechanism according to the present invention is a bonding phenomenon by low-temperature sintering peculiar to ultrafine metal particles. Therefore, unlike the conventional solder joining, the solid material does not go through the process of melting → liquefaction → solidification.
[0022]
When the solid is melted, the relationship between the surface tension and the gravity in the liquid state causes inconvenience such as squeezing and falling off of the solder as shown in FIG. 8 and also causes the flattening phenomenon of the solder ball in the liquid state. The limit value for narrowing the electrode pitch is 0.5 mm. On the other hand, the bonding according to the present invention utilizes the sintering phenomenon in the solid state to the last, without relying on the melting phenomenon. Therefore, the inconvenience shown in FIG. Freed from the limits of This is because, unlike the case of melting and liquefaction of the above-mentioned solder, the shape and volume change accompanying the metal sintering phenomenon is extremely small. In other words, the electrode pitch interval of the joint according to the present invention can be much smaller than that of the solder joint.
[0023]
In the present invention, bonding can be performed by heating at an extremely low temperature close to room temperature, and once the bonding is completed, in order to re-melt the bonded portion, the bulk state of the metal is required. It is necessary to raise the temperature and heat up to the melting point. For example, when bonding is performed using silver particles, the bonded portion does not melt unless heated to at least 960 ° C. or higher. As described above, if the heating is not performed until the temperature becomes much higher than the heating temperature at the time of the joining, the joined portion is maintained in the joined state. Therefore, the step soldering shown in FIG. 9 can be performed without sequentially using solder materials having a high melting point to a low melting point. That is, even when a plurality of components are sequentially joined in a step-by-step manner, the number of components is not limited, and consistent joining / manufacturing can be performed using the same joining material.
[0024]
According to a second aspect of the present invention, the composite metal nanoparticles are produced by mixing a metal salt and an alcohol-based organic substance, heating and synthesizing the mixture, and then adding a reducing agent to the mixture to reduce by heating. The electrode-provided base according to claim 1, wherein:
The invention according to claim 3 is characterized in that the composite metal nanoparticle is produced by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent, and then heating and reducing this. The electrode-provided base according to claim 1.
[0025]
In the invention according to claim 4, the composite metal nanoparticles are produced by mixing and heating a metal salt, a metal oxide, a metal hydroxide, and an organic substance, and then reducing the mixture by heating. 2. The electrode-provided base according to claim 1, wherein:
In the invention according to claim 5, the composite metal nanoparticle is produced by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent, and then adding a reducing agent thereto and heat-reducing it. The electrode-provided base according to claim 1, wherein:
[0026]
The invention according to claim 6 is characterized in that the organic substance that binds and coats the periphery of the composite metal nanoparticles is mainly composed of C, H and / or O. 5. The electrode-provided base according to any one of the above.
If the organic matter contains elements other than C, H or O, such as nitrogen (N) and sulfur (S), even if a step of decomposing and evaporating the organic matter by heating at the time of joining is included in the organic matter N or S components may remain in the sintered metal, which may adversely affect the conductivity of the bonding layer. For example, it is considered that a decrease in the electrical conductivity in a portion where the current density during operation is high, such as a high-density component, causes a serious problem. However, by using an organic material containing C, H and / or O as a main component and preventing N and S from remaining at the joint even after the decomposition and evaporation of the organic material, such adverse effects are prevented. can do.
[0027]
The invention according to claim 7 is the electrode-provided base according to any one of claims 1 to 6, wherein the base is used for mounting a semiconductor device. Examples of the base include an interposer for mounting a semiconductor package on the surface, a printed wiring board, and the like.
The invention according to claim 8 is a composite formed by bonding and covering the periphery of a metal core having an average diameter of about 100 nm or less with an organic material between an electrode provided on a base and an electrode provided on another base. Electrode bonding method for an electrode-provided base, wherein a bonding material mainly composed of metal nanoparticles is interposed, and electrodes are bonded to each other by changing the form of the composite metal nanoparticles contained in the bonding material. It is.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the case of solder joining, three types of joining processes, namely, (1) iron soldering, (2) flow soldering, and (3) reflow soldering, are generally performed (for example, "soldering"). (2001.12 Japan Standards Association) p. 65-74). On the other hand, the process of the present invention basically adopts a form in which a bonding material is applied to a necessary portion, and then the material is heated and sintered to achieve the bonding.
[0029]
First, as shown in FIG. 2, a structure composed of a metal core 30 substantially composed of a metal component and a bonding / coating layer (organic substance layer) 32 composed of an organic substance containing C, H and / or O as a main component. A composite type metal nanoparticle 34 is prepared. Such composite metal nanoparticles 34 are stable because the metal nuclei 30 are covered with the bonding / coating layer 32 made of an organic compound, and have a small tendency to aggregate in a solvent.
[0030]
The composite metal nanoparticles 34 are composed of an organic compound and a metal component derived from a metal salt as a starting material, for example, carbonate, formate or acetate. A binding organic compound surrounds. At this time, the organic compound and the metal component are present in a state in which a part or all of them are integrated in a state of being chemically bonded, and the conventional nanoparticles stabilized by being coated with a surfactant. Differently, it is more stable and stable at higher metal concentrations.
[0031]
The average diameter d of the metal nuclei 30 of the composite metal nanoparticles 34 is about 100 nm or less, preferably 20 nm or less, more preferably 5 nm or less. The height h of the bonding / coating layer 32 is, for example, about 1.5 nm. Although the minimum value of the average diameter d of the metal core 30 is not particularly limited as much as possible, it is generally about 0.5 nm or about 1.0 nm. With such a configuration, the metal particles forming the metal core 30 can be subjected to the low-temperature sintering described above.
[0032]
The composite metal nanoparticles 34 are used, for example, in a non-aqueous solvent and in the presence of a binding organic substance to convert a metal salt, for example, a carbonate, formate or acetate, to a temperature not lower than its decomposition reduction temperature and not higher than the decomposition temperature of the binding organic substance. And can be produced by heating. Ag, Au or Pd is used as the metal component, and as the binding organic substance, for example, a fatty acid having 5 or more carbon atoms and a higher alcohol having 8 or more carbon atoms are used.
[0033]
The heating temperature is equal to or higher than the decomposition reduction temperature of a metal salt, for example, a carbonate, formate or acetate, and is equal to or lower than the decomposition temperature of a binding organic substance. For example, in the case of silver acetate, the decomposition onset temperature is 200 ° C. The temperature may be maintained at a temperature of not less than 0 ° C. and a temperature at which the above-mentioned binding organic substance is not decomposed. In this case, the heating atmosphere is preferably an inert gas atmosphere in order to make it difficult for the binding organic substance to be decomposed. However, heating can be performed even in the atmosphere by selecting a non-aqueous solvent.
[0034]
When heating, various alcohols can be added, and the reaction can be promoted. The alcohol is not particularly limited as long as the above effects are obtained, and examples thereof include lauryl alcohol, glycerin, and ethylene glycol. The amount of the alcohol to be added can be appropriately determined according to the type of the alcohol to be used and the like, but is usually 5 to 20 parts by weight, preferably 5 to 10 relative to 100 parts by weight of metal salt.
After the heating is completed, purification is performed by a known purification method. The purification may be performed by, for example, centrifugation, membrane purification, solvent extraction, or the like.
[0035]
Then, the composite metal nanoparticles 34 are dispersed in a predetermined organic solvent such as toluene, xylene, hexane, octane, decane, cyclohexane, pinene or limonene to prepare a bonding material. The composite metal nanoparticles 34 having a structure in which the surface of the metal core 30 is covered with a bonding / coating layer (organic layer) 32 made of an organic material serve as a protective film for protecting the metal core 30 on the organic material layer 32. By doing so, it is stably dispersed in a solvent, and has high property stability as particles. Therefore, it is possible to obtain a liquid bonding material in which a bonding material (composite metal nanoparticles 34) that can be sintered and melt-bonded at a low temperature is uniformly dispersed.
[0036]
Here, the composite metal nanoparticles 34 are dispersed in an organic solvent so that the weight ratio of the metal portion to the total liquid is preferably 1% or more and 85% or less, and a dispersant or a gelling agent is appropriately added thereto. By liquefaction, it is possible to obtain a liquid bonding material having desired fluidity at the time of heating in which a bonding material (composite metal nanoparticles 34) capable of being sintered and melt-bonded at a low temperature is uniformly dispersed. it can. If the weight ratio of the metal portion of the composite metal nanoparticles 34 to the total liquid exceeds 85%, the fluidity of the liquid bonding material is significantly reduced, so that when filling the fine gaps with the liquid bonding material, Imperfect part is likely to occur.
[0037]
Further, when the weight ratio of the metal portion of the composite metal nanoparticles 34 to the total liquid is 1% or less, the amount of the organic component contained in the bonding material is too large. This ratio is limited to the above range because defects are likely to occur.
[0038]
The composite metal nanoparticles 34 are dispersed in an organic solvent so that the weight ratio of the metal portion to the total fluid is preferably 15 to 90%, and a dispersant or a gelling agent is appropriately added thereto to liquefy, A slurry, paste having desired fluidity at the time of heating, in which a joining material (composite metal nanoparticles 34) capable of being sintered and melt-bonded at a low temperature is uniformly dispersed by adjusting to a slurry, paste or cream form. Alternatively, a creamy bonding material can be obtained.
[0039]
The composite metal nanoparticles 34 are dispersed in an organic solvent so that the weight ratio of the metal portion to the total bonding material is preferably 20 to 95%, and a dispersing agent or a gelling agent is appropriately added thereto to liquefy. For example, a bonding material (composite metal nanoparticle 34) that can be sintered and melt-bonded at a low temperature by being formed into various shapes such as a rod shape, a string shape or a ball shape and solidified, or by being semi-solidified in a jelly shape. Can be obtained, and a solidified or semi-solidified bonding material having desired fluidity during heating can be obtained.
[0040]
At this time, if necessary, for example, a metal powder, a plastic powder, an inorganic powder other than a metal / plastic, or the like, having a size of about 0.1 μm, alone, or by adding an aggregate containing a combination thereof, is joined. It may be uniformly dispersed in the material. Thus, by adding the aggregate, various characteristics can be added unlike the case of the composite metal nanoparticles alone.
As the aggregate, for example, a metal powder made of Al, Cu, Mg, Fe, Ni, Au, Ag or Pd can be used. Thus, stable electric conductivity can be secured by adding various metal powders having excellent electric conductivity as aggregates.
[0041]
Next, a process of bonding (surface mounting) a semiconductor package to a wiring board using the above-described bonding material will be described with reference to FIGS. Here, an example is shown in which, as the composite metal nanoparticles 34, composite silver ultrafine particles having metal nuclei 30 composed of cluster ultrafine silver particles having an average diameter d of 5 nm are used. First, composite metal nanoparticles (composite silver ultrafine particles) 34 are dispersed in a solvent such as hexane, and silver particles of 30 to 300 nm serving as an aggregate are mixed and temporarily fixed by printing. Prepare a bonding material adjusted to a creamy condition.
[0042]
Then, as shown in FIG. 3A, the bonding material 40 is applied to a predetermined position (electrode) of the wiring board 42 by, for example, a screen printing method or the like. Next, as shown in FIG. 3B, a semiconductor package 46 having contact bumps (electrodes) 44 arranged in a lattice pattern on the back surface is positioned and mounted on the wiring board 42. In this state, by heating the whole, low-temperature sintering occurs, and the semiconductor package 46 is joined and fixed on the wiring board 42. That is, the solvent such as toluene contained in the bonding material 40 is evaporated, and the composite metal nanoparticles 34 which are the main components of the bonding material 40 are further combined with the metal nuclei (silver ultrafine particles) of the bonding / coating layer (organic material layer) 32. ) By heating to a temperature at which the bonding / coating layer 32 is released from the metal core 30 or by heating the bonding / coating layer 32 to a temperature higher than the decomposition temperature of the bonding / coating layer 32 itself, or by decomposing the bonding / coating layer 32. Evaporate. As a result, the metal nuclei (ultrafine silver particles) 30 are brought into direct contact with each other and sintered to form a silver layer. As a result, adhesion occurs, and as a result, the electrodes of the wiring board 42 and the bumps 44 of the semiconductor package 46 are bonded via a bonding layer made of a silver layer.
[0043]
It has been confirmed that when a bonding material having an average diameter d of 5 nm and using silver as a metal nucleus is used, sufficient bonding can be performed under the condition of 300 ° C. × 3 min. In this manner, by bonding the electrodes of the wiring board 42 and the bumps 44 of the semiconductor package 46 by firing at a low temperature of, for example, about 300 ° C. at low temperatures, lead-free bonding that can replace conventional solder bonding can be performed.
[0044]
When using the screen printing method, it has been experimentally confirmed that the spot size S and the spot interval P of the bonding material 40 can both be reduced to about 30 μm. Therefore, the narrowing down to 1/10 or less can be achieved with respect to the limit value of 0.5 mm for the narrowing due to the solder balls in the conventional BGA package, so that a wiring having a much higher density than the conventional one can be realized. This greatly contributes to high-density mounting of semiconductor devices.
[0045]
Table 2 shows the minimum value that can be practically employed as the electrode spot interval for each bonding method.
[Table 2]
Figure 2004128357
As described above, according to the conventional micro soldering, the minimum limit value of the lead interval of the QFP package (limit spot interval) is 0.3 mm, and the limit value of the pitch of the solder balls of the BGA package (limit spot interval). Is 0.5 mm including the CSP package and the LGA package. According to the present invention, the limit value of the spot interval of the bonding material can be reduced to 30 μm.
[0046]
Here, as shown in FIG. 5 in which the bonding portion between the bump 44 of the semiconductor package 46 and the wiring board 42 is enlarged and schematically shown, the bonding material 40 is formed so that a gas vent groove 48 is formed between the bonding materials 40. May be applied to the wiring board 42. Thereby, the evaporating gas of the organic solvent originally contained in the bonding material 40 and the decomposition gas of the organic substance binding and covering the metal core can be easily released. In other words, by providing the gas vent groove 48 in this manner, the gas desorption property is improved, so that if the other conditions are the same, a lower temperature and shorter firing time can be achieved as compared with the case without the gas vent groove. Time is achieved. Therefore, a practical effect is great.
[0047]
FIG. 6 shows a state in which a high power module 50, which is a semiconductor device having a large current density, is joined and fixed to a wiring board 42 via an interposer 52. In the high power module 50 shown in FIG. 6, since the internal current density is high, the heat deformation due to its own heat generation and temperature increase is large. Therefore, the interposer 52 is inserted between the high power module 50 and the normal wiring board 42. The thermal stress generated due to the difference between the thermal expansion of the wiring board 50 and the thermal expansion of the wiring board 42 is reduced, and damage to the components due to thermal shock or thermal fatigue is avoided.
[0048]
In this example, first, in the same manner as described above, a bonding material is applied to a predetermined position (electrode) on the surface of the interposer 52 by, for example, a screen printing method or the like, and the interposer 52 is formed in a grid pattern on the back surface. The high power module 50 on which the contact bumps (electrodes) 54 are arranged is positioned and mounted, and is sintered at a low temperature of, for example, 300 ° C. for 3 minutes. Thus, the electrodes of the interposer 52 and the bumps 54 of the high power module 50 are bonded via the bonding layer 56, and the high power module 50 is mounted on the upper surface of the interposer 52. Next, a bonding material is applied to a predetermined position (electrode) of the wiring board 42 by, for example, a screen printing method, and the interposer 52 in which contact bumps (electrodes) 58 are arranged on the wiring board 42 in a lattice pattern on the back surface. Is positioned and mounted, and is sintered at a low temperature, for example, at 300 ° C. for 3 minutes. Thus, the electrodes of the wiring board 42 and the bumps 58 of the interposer 52 are bonded via the bonding layer 60, and the interposer 52 is mounted on the wiring board 42.
[0049]
As described above, when two-step soldering is required, it is conventionally necessary to use a Sn-95% Pb-based high-temperature solder for the bonding between the high power module 50 and the interposer 52. In addition, since there is no prospect of developing lead-free high-temperature solder as described above, the method of achieving consistency with laws and regulations on environmental protection has been on a deadlock.
[0050]
However, according to the method of the present invention, the same problem can be solved because the same bonding material can be used any number of times. In other words, the composite metal nanoparticles having changed form, that is, the bonding layer 56 made of the silver layer or the like previously formed has changed to the same characteristics as the metal in the bulk state, and the bonding layer 56 has the same melting point as the bulk state, that is, It has a temperature of 961.93 ° C, and once sintered, it will not melt unless it is 961.93 ° C or higher. Therefore, it is not melted by the heating at the time of joining to the back surface, and it is possible to provide an ideal joining material required for high-temperature solder for repeated joining.
[0051]
The paste-like joining material can be supplied by any method such as spraying, brushing, dip, spin coating, dispensing, screen printing, and transfer, without being limited to a simple coating method.
In addition, according to this joining method, basically, all kinds of parts can be joined, such as parts of the same kind of materials such as metals, plastics, and ceramics, or combinations of parts of different kinds of materials.
[0052]
In this example, the application of energy for changing the form of the composite metal nanoparticles contained in the bonding material is performed by heating with a hot blast stove (low-temperature sintering). Any method such as energization between components, induction heating or dielectric heating of components may be used. When the morphology of the composite metal nanoparticles is changed by these methods, they are bonded to each other or between the added metal powder or other additives and various materials to be bonded by sintering.
[0053]
Here, the bonding can be performed in the air, in dry air, in an inert gas atmosphere, in a vacuum, or in an environment in which the amount of mist is reduced. In particular, for example, by performing the bonding in a clean atmosphere, it is possible to prevent the surfaces to be bonded from being contaminated with mist such as mineral oil, oil and fat, a solvent, and water that are scattered or floated in the air before the bonding.
[0054]
Further, surface treatment of the surface to be joined of the component prior to joining includes cleaning / degreasing with an organic solvent or pure water, ultrasonic cleaning, chemical solution etching, corona discharge treatment, flame treatment, plasma treatment, ultraviolet irradiation, laser irradiation. And at least one operation of ion beam etching, sputter etching, anodic oxidation, mechanical grinding, fluid grinding or blasting.
This makes it possible to create a surface morphology suitable for joining by removing contamination and foreign matter on the surface of the member to be joined and changing the roughness of the surface prior to the joining step.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to meet the demand for higher integration and higher density in, for example, a semiconductor device mounting technique. In addition, for example, the first step bonding of step bonding can be performed using a bonding material containing no Pb.
[Brief description of the drawings]
FIG. 1 is a view showing the concept of bonding of small particles by sintering.
FIG. 2 is a view schematically showing a composite metal nanoparticle having a bonding / coating structure with an organic substance used in the present invention.
FIG. 3 is a cross-sectional view schematically showing an example of joining a semiconductor package to a wiring board according to the present invention in the order of steps.
FIG. 4 is a flowchart showing an example of joining a semiconductor package to a wiring board according to the present invention in the order of steps.
FIG. 5 is an enlarged cross-sectional view schematically showing another example of joining a wiring board and a bump of a semiconductor package.
FIG. 6 is a cross-sectional view schematically showing an example of mounting a semiconductor device by step bonding according to the present invention.
FIG. 7 is a view showing a flattening phenomenon of a solder ball caused by melting and liquefaction.
FIG. 8 is a diagram showing a typical failure example of solder ball joining that occurs with a narrow pitch of solder balls in a conventional example.
FIG. 9 is a diagram for explaining step soldering in a conventional example.
[Explanation of symbols]
30 metal core
32 Bonding / coating layer (organic layer)
34 Composite Metal Nanoparticles
40 joining materials
42 Wiring board
44,54,58 Bump
46 Semiconductor Package
48 Gas vent groove
50 High Power Module
52 Interposer
56,60 bonding layer

Claims (8)

多数の電極を有する基体であって、平均直径が100nm程度以下の金属核の周囲を有機物で結合・被覆することによって生成した複合型金属ナノ粒子を主材とする接合材料によって、前記基体の電極を他の基体に設けた電極に接合するようにしたことを特徴とする電極配設基体。A base material having a large number of electrodes, wherein a bonding material mainly composed of composite metal nanoparticles formed by binding and coating an organic substance around a metal core having an average diameter of about 100 nm or less is used as an electrode of the base material. Is bonded to an electrode provided on another substrate. 前記複合型金属ナノ粒子は、金属塩とアルコール系有機物とを混合して加熱合成した後、これに還元剤を加えて加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体。The composite metal nanoparticles are produced by mixing and heating a metal salt and an alcoholic organic substance, adding a reducing agent thereto, and reducing the mixture by heating. Electrode-provided base. 前記複合型金属ナノ粒子は、金属塩と有機物質とを非水系溶媒中で加熱合成した後、これを加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体。2. The electrode arrangement according to claim 1, wherein the composite metal nanoparticles are produced by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent, and then reducing the resultant by heating. 3. Substrate. 前記複合型金属ナノ粒子は、金属塩と金属酸化物と金属水酸化物と有機物とを混合して加熱合成した後、これを加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体。The composite metal nanoparticles are produced by mixing and heating and synthesizing a metal salt, a metal oxide, a metal hydroxide, and an organic substance, and then reducing the mixture by heating. 2. The electrode-provided base according to 1. 前記複合型金属ナノ粒子は、金属塩と有機物とを非水系溶媒中で加熱合成した後、これに還元剤を加えて加熱還元することによって生成したものであることを特徴とする請求項1記載の電極配設基体。2. The composite metal nanoparticles are produced by heat-synthesizing a metal salt and an organic substance in a non-aqueous solvent, and then adding a reducing agent thereto and reducing by heating. Electrode-provided base. 前記複合型金属ナノ粒子の周囲を結合・被覆する有機物は、C,H及び/またはOを主成分としたものであることを特徴とする請求項1乃至5のいずれかに記載の電極配設基体。The electrode arrangement according to any one of claims 1 to 5, wherein the organic substance that binds and coats the periphery of the composite metal nanoparticles is mainly composed of C, H, and / or O. Substrate. 前記基体は、半導体装置の装着のために用いるものであることを特徴とする請求項1乃至6のいずれかに記載の電極配設基体。7. The electrode-provided base according to claim 1, wherein the base is used for mounting a semiconductor device. 基体に設けた電極と他の基体に設けた電極との間に、平均直径が100nm程度以下の金属核の周囲を有機物で結合・被覆することによって生成した複合型金属ナノ粒子を主材とする接合材料を介在させ、前記接合材料に含まれる複合型金属ナノ粒子の形態を変化させて電極同士を接合することを特徴とする電極配設基体の電極接合方法。A composite metal nanoparticle formed by binding and coating an organic substance around a metal core having an average diameter of about 100 nm or less between an electrode provided on a base and an electrode provided on another base. An electrode bonding method for an electrode-provided base, wherein electrodes are bonded to each other by interposing a bonding material and changing the form of the composite metal nanoparticles contained in the bonding material.
JP2002292868A 2002-09-18 2002-10-04 Electrode arranged substrate and its electrode connection method Pending JP2004128357A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002292868A JP2004128357A (en) 2002-10-04 2002-10-04 Electrode arranged substrate and its electrode connection method
US10/484,454 US20040245648A1 (en) 2002-09-18 2003-09-17 Bonding material and bonding method
DE60326760T DE60326760D1 (en) 2002-09-18 2003-09-17 PROCESS FOR CONNECTING
KR1020047000955A KR20050040812A (en) 2002-09-18 2003-09-17 Bonding material and bonding method
PCT/JP2003/011797 WO2004026526A1 (en) 2002-09-18 2003-09-17 Bonding material and bonding method
TW092125572A TWI284581B (en) 2002-09-18 2003-09-17 Bonding material and bonding method
CNB038009056A CN100337782C (en) 2002-09-18 2003-09-17 Joining material and joining method
EP03788702A EP1578559B1 (en) 2002-09-18 2003-09-17 Bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292868A JP2004128357A (en) 2002-10-04 2002-10-04 Electrode arranged substrate and its electrode connection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008002999A Division JP2008098683A (en) 2008-01-10 2008-01-10 Electrode connection method of electrode arrangement base

Publications (2)

Publication Number Publication Date
JP2004128357A true JP2004128357A (en) 2004-04-22
JP2004128357A5 JP2004128357A5 (en) 2005-08-25

Family

ID=32283993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292868A Pending JP2004128357A (en) 2002-09-18 2002-10-04 Electrode arranged substrate and its electrode connection method

Country Status (1)

Country Link
JP (1) JP2004128357A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186748A (en) * 2004-12-28 2006-07-13 Daishinku Corp Piezoelectric vibration device
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
JP2006211089A (en) * 2005-01-26 2006-08-10 Daishinku Corp Piezoelectric vibration device
WO2007122925A1 (en) 2006-04-24 2007-11-01 Murata Manufacturing Co., Ltd. Electronic component, electronic component device using same, and method for manufacturing same
JP2007330980A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Joining method
US7361590B2 (en) 2005-01-20 2008-04-22 Nissan Motor Co., Ltd. Semiconductor device and manufacturing method thereof
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method
JP2008244242A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Semiconductor device and its manufacturing method, and composite metallic body and its manufacturing method
JP2008545257A (en) * 2005-06-30 2008-12-11 インテル・コーポレーション Electromigration resistant and flexible wire interconnects, nano-sized solder compositions, systems for forming them, and methods for assembling soldered packages
US7528485B2 (en) 2004-07-29 2009-05-05 Hitachi, Ltd. Semiconductor device, power converter device using it, and hybrid vehicle using the power converter device
WO2011114751A1 (en) * 2010-03-19 2011-09-22 古河電気工業株式会社 Conductive connecting member and manufacturing method of same
JP2013041870A (en) * 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The Semiconductor device
JP5182296B2 (en) * 2008-02-07 2013-04-17 株式会社村田製作所 Manufacturing method of electronic component device
WO2014208690A1 (en) 2013-06-28 2014-12-31 古河電気工業株式会社 Connection structure and semiconductor device
JP2016178334A (en) * 2016-06-09 2016-10-06 ローム株式会社 Semiconductor device and manufacturing method of the same
KR101898647B1 (en) * 2017-05-11 2018-09-14 서울과학기술대학교 산학협력단 Bonding material of a Cu foil coated with Ag and bonding method using the Cu foil with coated Ag
JP2018206840A (en) * 2017-05-31 2018-12-27 株式会社応用ナノ粒子研究所 Heat dissipation structure
JP2021072304A (en) * 2019-10-29 2021-05-06 ミクロン電気株式会社 Joining method of ptc thermistor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528485B2 (en) 2004-07-29 2009-05-05 Hitachi, Ltd. Semiconductor device, power converter device using it, and hybrid vehicle using the power converter device
JP2006186748A (en) * 2004-12-28 2006-07-13 Daishinku Corp Piezoelectric vibration device
JP4635230B2 (en) * 2005-01-20 2011-02-23 日産自動車株式会社 Joining method and joining structure
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
US7361590B2 (en) 2005-01-20 2008-04-22 Nissan Motor Co., Ltd. Semiconductor device and manufacturing method thereof
JP2006211089A (en) * 2005-01-26 2006-08-10 Daishinku Corp Piezoelectric vibration device
JP4918088B2 (en) * 2005-06-30 2012-04-18 インテル・コーポレーション Electromigration resistant and flexible wire interconnects, nano-sized solder compositions, systems for forming them, and methods for assembling soldered packages
JP2008545257A (en) * 2005-06-30 2008-12-11 インテル・コーポレーション Electromigration resistant and flexible wire interconnects, nano-sized solder compositions, systems for forming them, and methods for assembling soldered packages
US7960834B2 (en) 2006-04-24 2011-06-14 Murata Manufacturing Co., Ltd. Electronic element that includes multilayered bonding interface between first electrode having aluminum-containing surface and second electrode composed of metal nanoparticle sintered body
WO2007122925A1 (en) 2006-04-24 2007-11-01 Murata Manufacturing Co., Ltd. Electronic component, electronic component device using same, and method for manufacturing same
JP2007330980A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Joining method
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method
JP2008244242A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Semiconductor device and its manufacturing method, and composite metallic body and its manufacturing method
JP5182296B2 (en) * 2008-02-07 2013-04-17 株式会社村田製作所 Manufacturing method of electronic component device
JP5158904B2 (en) * 2010-03-19 2013-03-06 古河電気工業株式会社 Conductive connection member and method for producing conductive connection member
WO2011114751A1 (en) * 2010-03-19 2011-09-22 古河電気工業株式会社 Conductive connecting member and manufacturing method of same
US10177079B2 (en) 2010-03-19 2019-01-08 Furukawa Electric Co., Ltd. Conductive connecting member and manufacturing method of same
JP2013041870A (en) * 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The Semiconductor device
WO2014208690A1 (en) 2013-06-28 2014-12-31 古河電気工業株式会社 Connection structure and semiconductor device
JP2016178334A (en) * 2016-06-09 2016-10-06 ローム株式会社 Semiconductor device and manufacturing method of the same
KR101898647B1 (en) * 2017-05-11 2018-09-14 서울과학기술대학교 산학협력단 Bonding material of a Cu foil coated with Ag and bonding method using the Cu foil with coated Ag
JP2018206840A (en) * 2017-05-31 2018-12-27 株式会社応用ナノ粒子研究所 Heat dissipation structure
JP2021072304A (en) * 2019-10-29 2021-05-06 ミクロン電気株式会社 Joining method of ptc thermistor

Similar Documents

Publication Publication Date Title
JP2004128357A (en) Electrode arranged substrate and its electrode connection method
EP2346680B1 (en) Lead solder-free electronics
EP1578559B1 (en) Bonding method
JP2004107728A (en) Joining material and joining method
JP4848674B2 (en) Resin metal composite conductive material and method for producing the same
JP4737116B2 (en) Joining method
JP6556197B2 (en) Metal particles
JP5135079B2 (en) Semiconductor device and bonding material
JP2010177481A (en) Electronic member, electronic component, and manufacturing method therefor
WO2006075459A1 (en) Solder paste and electronic device
JP2004130371A (en) Joined body
JP5042017B2 (en) Silver-coated ball and method for producing the same
KR100737498B1 (en) Method for mounting semiconductor device and structure thereof
KR20190122741A (en) Solder Materials, Solder Pastes, Foam Solders and Solder Joints
Jiang et al. Recent advances of nanolead-free solder material for low processing temperature interconnect applications
JP2007242900A (en) Electron device, and its manufacturing method
Zhang et al. Shear performance and accelerated reliability of solder interconnects for fan-out wafer-level package
JP3638486B2 (en) Semiconductor element mounting method and metal paste
Lu et al. Electrically conductive adhesives (ECAs)
JP2008238253A (en) Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME
Kotadia et al. Limitations of nanoparticle enhanced solder pastes for electronics assembly
JP6182877B2 (en) Solder paste, conductive adhesive, manufacturing method thereof, and manufacturing method of semiconductor device
Jiang et al. Tin/silver/copper alloy nanoparticle pastes for low temperature lead-free interconnect applications
JP2008098683A (en) Electrode connection method of electrode arrangement base
CN111033703A (en) Mounting structure and nanoparticle mounting material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318