JP2008238253A - Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME - Google Patents

Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME Download PDF

Info

Publication number
JP2008238253A
JP2008238253A JP2007086375A JP2007086375A JP2008238253A JP 2008238253 A JP2008238253 A JP 2008238253A JP 2007086375 A JP2007086375 A JP 2007086375A JP 2007086375 A JP2007086375 A JP 2007086375A JP 2008238253 A JP2008238253 A JP 2008238253A
Authority
JP
Japan
Prior art keywords
powder
solder
connection material
free solder
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086375A
Other languages
Japanese (ja)
Inventor
Yasushi Ikeda
池田靖
Tetsuya Nakatsuka
中塚哲也
Shiro Yamashita
山下志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007086375A priority Critical patent/JP2008238253A/en
Publication of JP2008238253A publication Critical patent/JP2008238253A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Pb-free soldering material which does not cause cracks or the like in a soldered connection part even when the inclination of a parts is insufficiently reduced or the thickness of the soldered part is insufficiently secured when mounting a low heat-resistant leadless parts which are hard to mitigate the stress on a substrate, and has high connection reliability, and to provide the manufacturing method of a semi-conductor mounted structure using the same. <P>SOLUTION: A solder paste is used as a soldering material 100, in which Sn-Zn solder powder and Sn powder or Zn powder having a melting point higher than that of the solder powder are mixed. When mounting a low heat-resistant leadless parts, since the Sn powder or the Zn powder functions as a metallic spacer 103, the inclination of the parts can be suppressed, and the thickness of a soldered part can be secured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低耐熱部品を基板に実装する際に、部品傾きを低減することによって高い接続信頼性が得られるPbフリーはんだ接続材料及びこれを用いた半導体実装構造体の製造方法に関するものである。   The present invention relates to a Pb-free solder connection material that can obtain high connection reliability by reducing component inclination when mounting a low heat-resistant component on a substrate, and a method for manufacturing a semiconductor mounting structure using the Pb-free solder connection material. .

従来、Sn-Pb共晶はんだが電気・電子部品の接続材料として広く用いられてきた。しかしながら、近年、はんだに含まれるPbの人体への影響が問題視されるようになってきた。廃棄された基板上のはんだは、廃棄管理が不十分な場合、酸性雨によりPbが溶け出し、土壌や地下水などを汚染することがある。そのため、Pbを使わないはんだ合金の開発が急速に進められ、実用化が促進されている。   Conventionally, Sn—Pb eutectic solder has been widely used as a connection material for electrical and electronic components. However, in recent years, the influence of Pb contained in solder on the human body has been regarded as a problem. When the solder on the discarded board is inadequately managed, Pb may be dissolved by acid rain and contaminate soil and groundwater. For this reason, the development of solder alloys that do not use Pb is rapidly progressing and its practical application is being promoted.

Sn-Pb共晶はんだに替わる材料として、Sn-Ag-Cu系はんだが一般的に用いられている。しかしながら、Sn-Ag-Cu系はんだ(融点217〜221℃)はSn-Pb共晶はんだ(融点183℃)に比べて融点が高いため、一部の低耐熱部品の実装には使用することができない。そのため、融点200℃前後のSn-Zn系はんだやSn-Ag-Cu系はんだにInを添加したもの、さらにこれらにBiを添加して融点を下げたはんだが適用されつつある。   Sn-Ag-Cu solder is generally used as an alternative to Sn-Pb eutectic solder. However, Sn-Ag-Cu solder (melting point 217-221 ° C) has a higher melting point than Sn-Pb eutectic solder (melting point 183 ° C), so it can be used for mounting some low heat-resistant components. Can not. For this reason, Sn-Zn solder and Sn-Ag-Cu solder having a melting point of around 200 ° C. and In added to them, and further adding Bi to these to lower the melting point are being applied.

一方、現在、携帯電話やPDA(Personal Digital Assistant)等のモバイル機器の小型化、高機能化が進んでおり、QFN(Quad Flat Non-lead package)、BGA(Ball Grid Array)、CSP(Chip Scale Package)、LGA(Land Grid Array)といったリードレス部品の使用が増している。
その一例として、QFNパッケージ1は、図1に示す通り、半導体素子6と、これを高温はんだ又は導電性接着剤7で接続して搭載するヒートスプレッダ4と、該半導体素子6の電極とワイヤ5を介して電気的に接続された端子3と、該半導体素子を封止するレジン2と、で構成されており、端子3がガルウイング形状のリード構造をとらないため、小型化を実現している。また、ヒートスプレッダ4を露出するパッケージ構造とすることにより放熱機能も備えている。
しかしながら、このQFNパッケージ1を基板に実装した場合、端子3の構造ではリードに依存していた応力緩和が困難となり、また、露出したヒートスプレッダ4も放熱のために直接基板にはんだ付けする必要があるため、その接続信頼性を確保するためにははんだ材料・はんだ付け工程をも考慮した接続構造設計が重要となっている。
Meanwhile, currently, the miniaturization of mobile devices such as mobile phones and PDA (Personal Digital Assistant), which is highly functional is progressed, QFN (Q uad F lat N on-lead package), BGA (B all G rid A rray ), CSP (C hip S cale P ackage), the use of leadless components such as LGA (L and G rid a rray ) is increasing.
As an example, the QFN package 1 includes a semiconductor element 6, a heat spreader 4 that is mounted by connecting the semiconductor element 6 with a high-temperature solder or a conductive adhesive 7, and electrodes and wires 5 of the semiconductor element 6, as shown in FIG. The terminal 3 is electrically connected to the resin element 2 and the resin 2 that seals the semiconductor element. Since the terminal 3 does not have a gull-wing-shaped lead structure, a reduction in size is realized. Further, the heat spreader 4 is provided with a heat dissipation function by using a package structure that exposes the heat spreader 4.
However, when this QFN package 1 is mounted on a substrate, it is difficult to relieve stress depending on the lead in the structure of the terminal 3, and the exposed heat spreader 4 also needs to be soldered directly to the substrate for heat dissipation. Therefore, in order to ensure the connection reliability, it is important to design a connection structure in consideration of the solder material and the soldering process.

ここで、上記したSn-Zn系およびSn-Ag-Cu系はんだにInやBiを添加して融点を下げたはんだ材料の場合、Sn-Pb共晶に比べて濡れが悪いため、接続部にボイドが形成されやすく、接続信頼性が悪い。すなわち、図2に記載のように、はんだ接続材料100としてこれらの材料を用いてQFNパッケージ1を実装基板9のパッド上8に実装した場合、実装時にヒートスプレッダ4下に形成されたボイド200によって、QFNパッケージ1が傾きやすい。さらに、搭載部品であるQFNパッケージ1が傾くと、端子3と実装基板9のパッド8との接続部のはんだ厚が一部で薄く、また一部ではみ出すため、接続信頼性の確保がより難しくなる。   Here, in the case of a solder material in which In and Bi are added to the above Sn-Zn and Sn-Ag-Cu solders to lower the melting point, the wetting is worse than that of the Sn-Pb eutectic. Voids are easily formed and connection reliability is poor. That is, as shown in FIG. 2, when the QFN package 1 is mounted on the pad 8 of the mounting board 9 using these materials as the solder connection material 100, the void 200 formed under the heat spreader 4 at the time of mounting QFN package 1 is easy to tilt. Furthermore, when the QFN package 1 that is a mounted component is tilted, the solder thickness of the connection portion between the terminal 3 and the pad 8 of the mounting substrate 9 is partially thin and protrudes partially, so it is more difficult to ensure connection reliability. Become.

このような部品傾きを抑制するため、特開平9-122967号(特許文献1)でははんだ中に固体粒子として平均粒径1〜30μmの金属間化合物粒子を0,01〜0.1容量%含有させたはんだ材料が提案され、特開昭62-197292号(特許文献2)でははんだ中にMo等の金属粒子や、TiC等の金属炭化物粒子を分散含有した材料、特開昭50-6550号(特許文献3)ではPb基はんだ中にNiボールを分散したペースト状材料により半導体素子とフレームもしくは基板を水平に搭載することが提案されている。   In order to suppress such component inclination, Japanese Patent Laid-Open No. 9-122967 (Patent Document 1) contains 0.101 to 0.1% by volume of intermetallic compound particles having an average particle size of 1 to 30 μm as solid particles in the solder. A solder material has been proposed, and Japanese Patent Laid-Open No. 62-197292 (Patent Document 2) discloses a material in which metal particles such as Mo and metal carbide particles such as TiC are dispersed in solder. Document 3) proposes to horizontally mount a semiconductor element and a frame or a substrate with a paste-like material in which Ni balls are dispersed in a Pb-based solder.

特開平9-122967号公報JP-A-9-122967 特開昭62-197292号公報JP-A 62-197292 特開昭50-6550号公報JP-A-50-6550

本発明者は、上記従来技術に記載のように、Sn-Zn系はんだにこれらで用いられるスペーサとなる粉末を分散することで、実装時の部品傾き抑制が図れるのではないかと考えた。
しかしながら、従来技術では、下記の問題が生じる恐れがある。
As described in the above-mentioned prior art, the present inventor thought that the component tilt during mounting can be suppressed by dispersing the powder used as a spacer in the Sn—Zn solder.
However, in the prior art, the following problems may occur.

特許文献1に記載のように、はんだ合金の平衡組成として形成される金属間化合物をスペーサとした場合には、液相線直下の接続温度では金属間化合物の大きさを所望の大きさに制御することができない。また、固相を大きくするために接続温度を下げた場合、良好な濡れが得られない。
また、特許文献2の記載のように低熱膨張の金属粒子または金属炭化物をスペーサとした場合には、はんだが濡れにくい材質であるため、スペーサ/はんだ界面にクラックが発生しやすい。
さらに、特許文献3で開示された材料の場合には、Pb基合金であるため融点が高く、低耐熱部品の接続には使用できないという問題がある。
As described in Patent Document 1, when an intermetallic compound formed as an equilibrium composition of a solder alloy is used as a spacer, the size of the intermetallic compound is controlled to a desired size at the connection temperature immediately below the liquidus line. Can not do it. Moreover, when the connection temperature is lowered to increase the solid phase, good wetting cannot be obtained.
In addition, when the metal particles or metal carbide having low thermal expansion is used as the spacer as described in Patent Document 2, since the solder is a material that is difficult to wet, cracks are likely to occur at the spacer / solder interface.
Furthermore, in the case of the material disclosed in Patent Document 3, since it is a Pb-based alloy, there is a problem that it has a high melting point and cannot be used for connecting low heat resistant components.

そこで、本発明の目的は、上記課題を解決し、低耐熱部品、特にリードレス部品を基板に実装する際に、部品傾きを低減することによって高い接続信頼性が得られるPbフリーはんだ接続材料を提供することにある。
また、本発明の他の目的は、本発明のPbフリーはんだ接続材料を用いて接続信頼性に優れた半導体実装構造を製造する方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a Pb-free solder connection material that can obtain high connection reliability by reducing the component inclination when mounting a low heat-resistant component, particularly a leadless component, on a substrate. It is to provide.
Another object of the present invention is to provide a method of manufacturing a semiconductor mounting structure having excellent connection reliability using the Pb-free solder connection material of the present invention.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
(1)Sn-Zn系はんだ粉を主成分として有し、さらにSn粉又はZn粉のいずれか1種を含むことを特徴とするPbフリーはんだ接続材料である。
(2)(1)記載のPbフリーはんだ接続材料であって、前記Sn-Zn系はんだ粉は、第一の平均粒径を有するSn-Zn系はんだ粉と、当該第一の平均粒径よりも大きい第二の平均粒径を有するSn-Zn系はんだ粉とが混合されてなることを特徴とするPbフリーはんだ接続材料である。
(3)Sn-Ag-Cu-In系はんだ粉を主成分として有し、さらにSn粉を含むことを特徴とするPbフリーはんだ接続材料である。
(4)半導体実装構造体の製造方法であって、半導体装置の端子と基板のパッドとをPbフリーはんだ接続材料を用いて接続する工程を有し、前記Pbフリーはんだ材料は、Sn-Zn系はんだ粉を主成分として有し、さらにSn粉又はZn粉のいずれか1種を含むものであることを特徴とする半導体実装構造体の製造方法である。
Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.
(1) A Pb-free solder connection material having Sn—Zn solder powder as a main component and further containing any one of Sn powder and Zn powder.
(2) The Pb-free solder connecting material according to (1), wherein the Sn-Zn solder powder is based on Sn-Zn solder powder having a first average particle diameter and the first average particle diameter. A Pb-free solder connection material characterized in that it is mixed with Sn—Zn solder powder having a second average particle size that is larger.
(3) A Pb-free solder connecting material having Sn—Ag—Cu—In solder powder as a main component and further containing Sn powder.
(4) A method for manufacturing a semiconductor mounting structure, comprising a step of connecting a terminal of a semiconductor device and a pad of a substrate using a Pb-free solder connection material, wherein the Pb-free solder material is Sn-Zn-based A method for manufacturing a semiconductor mounting structure comprising a solder powder as a main component and further containing any one of Sn powder and Zn powder.

本発明によれば、低耐熱部品を基板に実装する際に、部品傾きを低減することによって高い接続信頼性が得られるPbフリーはんだ接続材料及びこれを用いた半導体実装構造体の製造方法を提供することができる。   According to the present invention, there is provided a Pb-free solder connection material capable of obtaining high connection reliability by reducing component inclination when mounting a low heat-resistant component on a substrate, and a method for manufacturing a semiconductor mounting structure using the Pb-free solder connection material can do.

上記課題を解決するために、本発明は、第一の実施形態としてSn-Zn系はんだ粉にこれよりも融点の高いSn粉又はZn粉の金属スペーサ、フラックスを混合したペースト状のPbフリーはんだペーストを提案するものである。   In order to solve the above-mentioned problems, the present invention provides a paste-like Pb-free solder in which a Sn-Zn solder powder having a higher melting point than that of Sn or Zn powder, a metal spacer, and a flux are mixed as a first embodiment. A paste is proposed.

図3は、本発明のはんだペーストを用いてQFNパッケージ等の電子部品のヒートスプレッダ4部分と実装基板9のパッド8とを接続する工程を示す。まず、メタルマスク等を用いて印刷することにより実装基板のパッド上にはんだペーストを供給する(図3(a))。供給したはんだペースト上に電子部品を図3(b)のように搭載し、低耐熱部品実装時の加熱温度約200℃で加熱すると、Sn-Zn系はんだ粉102が溶けて接続界面に濡れるのと同時にSn粉またはZn粉の金属スペーサ103にも濡れ広がる。最も部品傾きが生じやすいSn-Zn系はんだ溶融直後には、Sn粉又はZn粉の金属スペーサ103は融点に達していないため、図3(c)のように部品傾き抑制、接続部の厚さ確保が可能となり、結果として図4のように傾きのほぼ無い状態で実装することができる。また、多少の傾きがあった場合でも、金属スペーサ103があるため、スペーサの径以上のはんだ厚を確保することができ、接続信頼性の高いはんだ接続部を得ることができる。   FIG. 3 shows a process of connecting the heat spreader 4 portion of an electronic component such as a QFN package and the pad 8 of the mounting substrate 9 using the solder paste of the present invention. First, a solder paste is supplied onto the pads of the mounting substrate by printing using a metal mask or the like (FIG. 3A). When an electronic component is mounted on the supplied solder paste as shown in FIG. 3 (b) and heated at a heating temperature of about 200 ° C. when mounting a low heat-resistant component, the Sn-Zn solder powder 102 melts and wets the connection interface. At the same time, the metal powder 103 of Sn powder or Zn powder spreads wet. Immediately after Sn-Zn solder melting, where the component tilt is most likely to occur, the metal spacer 103 of Sn powder or Zn powder does not reach the melting point, so the component tilt is suppressed as shown in FIG. As a result, it can be mounted with almost no inclination as shown in FIG. Even when there is a slight inclination, the metal spacer 103 is provided, so that a solder thickness larger than the diameter of the spacer can be ensured, and a solder connection portion with high connection reliability can be obtained.

本発明のはんだペーストでは、Sn-Zn系はんだ粉と混合する金属スペーサとしてSn粉又はZn粉を用いるため、所望の大きさに制御することが容易であり、さらに、これらはSn-Zn系はんだを構成する成分であるため、接続後の金属間化合物層のような反応界面が形成されず、クラック進展等の不良発生の基点になる恐れもない点で優れている接続信頼性を有する。   In the solder paste of the present invention, Sn powder or Zn powder is used as a metal spacer to be mixed with Sn-Zn solder powder, so that it can be easily controlled to a desired size, and these are Sn-Zn solder. Therefore, it has excellent connection reliability in that a reaction interface such as an intermetallic compound layer after connection is not formed and there is no possibility of becoming a starting point of occurrence of defects such as crack propagation.

なお、金属スペーサはSn粉若しくはZn粉のどちらか一方のみに限る必要はなく、両者を併せて混合させてもよい。また、Sn-Zn系はんだとしては、約200℃の融点を有しており、低耐熱部品にほぼダメージを与えずに実装することが可能であるSn-9ZnやSn-8Zn-3Biなどを用いればよい。   The metal spacer need not be limited to either Sn powder or Zn powder, and may be mixed together. As Sn-Zn solder, Sn-9Zn, Sn-8Zn-3Bi, etc., which has a melting point of about 200 ° C and can be mounted with almost no damage to low heat-resistant parts, are used. That's fine.

さらに、Sn-Zn系はんだ粉の平均粒径は直径5〜100μm、スペーサの平均粒径は直径50〜150μm程度を用いることが望ましい。ただし、メタルマスクを用いた印刷によりはんだを供給する場合、はんだ粉およびスペーサのサイズは、マスク厚より直径を小さくすることが望ましい。   Furthermore, it is desirable to use Sn—Zn solder powder having an average particle diameter of 5 to 100 μm and spacers having an average particle diameter of about 50 to 150 μm. However, when supplying solder by printing using a metal mask, it is desirable that the solder powder and the spacer have a diameter smaller than the mask thickness.

次に、本発明のはんだペーストの第二の実施形態は、2種以上の平均粒径を有するSn-Zn系はんだ粉とSn粉又はZn粉の金属スペーサ、フラックスを混合したペースト状のPbフリーはんだペーストを提案するものであり、第一の実施形態と異なるのは、Sn-Zn系はんだ粉としてあえて2種以上の平均粒径を有するはんだ粉を混合して用いる点である。ここで2種以上の平均粒径とは、例えば粒子それぞれの粒径の統計値においてピーク値が2つ以上出るようなものをいう。
Sn-Zn系はんだは、一般的に粉末表面が酸化されやすく、良好な濡れ性を得るのが難しいが、あえて10〜30体積%程度粉末粒径の大きなSn-Zn系粉末を混ぜることにより、ペースト全体の表面を小さくし、酸化量を抑えることで、濡れ性が改善される。この際、平均粒径の大きい粒子と小さい粒子とは体積比で2:8〜3:7の範囲にすることが好ましい。例えば、Sn-9Znはんだ粉として、平均粒径100μm程度のSn-9Znはんだ粉と平均粒径50μm程度のSn-9Znはんだ粉とを体積比2:8で混合して使うことでより良い濡れ性を確保することができる。
Next, the second embodiment of the solder paste of the present invention is a paste-like Pb-free material in which Sn-Zn solder powder having two or more average particle diameters, Sn powder or Zn powder metal spacer, and flux are mixed. A solder paste is proposed, which is different from the first embodiment in that a solder powder having two or more kinds of average particle diameters is mixed and used as the Sn—Zn solder powder. Here, the average particle size of two or more types means that two or more peak values appear in the statistical value of the particle size of each particle.
Sn-Zn solder is generally easy to oxidize the powder surface, it is difficult to obtain good wettability, but dare to mix Sn-Zn powder with a large particle size of about 10-30% by volume, The wettability is improved by reducing the surface of the entire paste and reducing the amount of oxidation. In this case, it is preferable that the particles having a large average particle diameter and the small particles have a volume ratio of 2: 8 to 3: 7. For example, as Sn-9Zn solder powder, better wettability is achieved by mixing Sn-9Zn solder powder with an average particle size of about 100μm and Sn-9Zn solder powder with an average particle size of about 50μm in a volume ratio of 2: 8. Can be secured.

ここで、上記第一の実施形態のはんだペースト、第二の実施形態のはんだペーストのいずれの場合においても、図6に示すように、金属スペーサとして、Sn粉、Zn粉103表面にNi、Cu、Ag等のいずれかによる金属コート104を施した金属スペーサを用いてもよい。これにより、溶融したSn-Zn系はんだ中に長時間さらされた場合でも、Sn粉又はZn粉がはんだ中に溶融することを遅らせることが可能であり、多様な接続条件に対応することができる。ここで、Ni、Cu、Ag等の金属コート厚は、0.1μmより厚いことが望ましい。0.1μmより薄い場合、金属コートによる溶解の遅延化の効果があまり得られないためである。   Here, in both cases of the solder paste of the first embodiment and the solder paste of the second embodiment, as shown in FIG. Alternatively, a metal spacer provided with a metal coat 104 made of any one of Ag, Ag, and the like may be used. This makes it possible to delay the melting of Sn powder or Zn powder into the solder even when exposed to molten Sn-Zn solder for a long time, and can cope with various connection conditions. . Here, the thickness of the metal coat of Ni, Cu, Ag or the like is desirably thicker than 0.1 μm. This is because when the thickness is less than 0.1 μm, the effect of delaying dissolution by the metal coating is not obtained.

また、本発明の上記いずれの実施形態のはんだペーストにおいても、そのSn-Zn系はんだ粉とSn粉又はZn粉の金属スペーサとの体積比は8.5:1.5〜9.9:0.1が望ましく、さらに8.5:1.5〜9:1が好ましい。Sn-Zn系はんだ粉と金属スペーサの体積比において8.5:1.5よりもスペーサの体積が増加すると、接続時にペーストの揮発成分起因あるいは巻き込みによるボイドが排出されにくくなり、接続部に導入されたボイドにより接続信頼性が低下するからである。また、Sn-Zn系はんだ粉とスペーサの体積比が9.9:0.1より少なくなると、図5に記載のように、ヒートスプレッダ4接続部に存在するスペーサ103数が減って全体的に行き渡らず、実装時の部品傾きを抑制できないからである。   In the solder paste of any of the above embodiments of the present invention, the volume ratio of the Sn—Zn solder powder to the Sn powder or the metal spacer of the Zn powder is desirably 8.5: 1.5 to 9.9: 0.1, and further 8.5: 1.5-9: 1 is preferred. When the volume of the Sn-Zn solder powder and metal spacer is larger than 8.5: 1.5 in the volume ratio, voids due to the volatile components of the paste or entrainment are difficult to be discharged at the time of connection. This is because the connection reliability is lowered. Further, when the volume ratio of the Sn—Zn solder powder and the spacer is less than 9.9: 0.1, as shown in FIG. 5, the number of the spacers 103 existing in the connection portion of the heat spreader 4 is reduced and the entire area is not spread. This is because the inclination of the parts cannot be suppressed.

なお、Sn-Zn系はんだと金属スペーサとの界面に形成される金属間化合物層が20μm以下になる範囲であれば、金属粉スペーサとしてCu、Ni、Agのうち1種類以上を用いてもよい。Cu、Ni、AgはSn-Zn系はんだと良好な濡れが得られるほか、Sn粉、Zn粉に比べて融点が高く、Sn-Zn中に溶解しにくいため、長時間の接続においても利用できる点で有効である。   As long as the intermetallic compound layer formed at the interface between the Sn-Zn solder and the metal spacer is 20 μm or less, one or more of Cu, Ni, and Ag may be used as the metal powder spacer. . Cu, Ni and Ag have good wetting with Sn-Zn solder, and have a higher melting point than Sn and Zn powders and are difficult to dissolve in Sn-Zn, so they can be used for long-time connections. Effective in terms.

次に、本発明のはんだペーストの第三の実施形態は、Sn-Ag-Cu-In-Bi系はんだ粉にこれよりも融点の高いSn粉の金属スペーサ、フラックスを混合したペースト状のPbフリーはんだペーストを提案するものであり、第一の実施形態と異なるのは、Sn-Zn系はんだ粉に代えて低耐熱部品実装に適したSn-Ag-Cu-In-Bi系はんだ粉を用いた点である。
本はんだペーストの場合にも、金属スペーサとしてSn粉を用いるため、大きさ制御が容易であり、Sn-Ag-Cu-In-Bi系はんだ粉との組み合わせで用いるため、接続後の金属間化合物層のような反応界面がほとんど形成されず、クラック進展等の不良発生の基点になる恐れもない点で接続信頼性の優れた接続部を実現することができる。
Next, a third embodiment of the solder paste of the present invention is a paste-like Pb-free material in which Sn-Ag-Cu-In-Bi solder powder is mixed with a metal spacer of Sn powder having a melting point higher than this, and a flux. The solder paste is proposed. The difference from the first embodiment is that Sn-Ag-Cu-In-Bi solder powder suitable for low heat-resistant component mounting is used instead of Sn-Zn solder powder. Is a point.
Also in the case of this solder paste, Sn powder is used as a metal spacer, so the size control is easy, and since it is used in combination with Sn-Ag-Cu-In-Bi solder powder, the intermetallic compound after connection A connection interface having excellent connection reliability can be realized in that a reaction interface such as a layer is hardly formed and there is no possibility of becoming a starting point of occurrence of defects such as crack propagation.

ここで、Sn-Ag-Cu-In-Bi系はんだ粉としては、Agが0〜5重量%、Cuが0〜1重量%、Inが0〜10重量%、Biが0〜10重量%、残部がSnで固相線温度が210℃以下の合金であることが望ましく、この範囲であれば低耐熱部品にほぼダメージを与えずに実装することが可能である。すなわち、これまでSn-Ag-Cu-In-Bi系はんだ粉として記載したが、上記範囲であれば、Biを有さないSn-Ag-Cu-In系はんだ粉であってもよい。
さらに、Sn-Ag-Cu-In-Bi系はんだ粉の平均粒径は直径5〜100μm、スペーサの平均粒径は直径50〜150記号mであることが望ましい。ただし、メタルマスクを用いた印刷によりはんだを供給する場合、はんだ粉およびスペーサのサイズは、マスク厚より直径を小さくすることが望ましい。
Here, as Sn-Ag-Cu-In-Bi-based solder powder, Ag is 0-5 wt%, Cu is 0-1 wt%, In is 0-10 wt%, Bi is 0-10 wt%, It is desirable that the balance is Sn and the solidus temperature is 210 ° C. or less, and if it is within this range, it is possible to mount it with almost no damage to the low heat-resistant component. That is, although it described as Sn-Ag-Cu-In-Bi type solder powder until now, if it is the said range, Sn-Ag-Cu-In type solder powder which does not have Bi may be sufficient.
Further, it is desirable that the Sn—Ag—Cu—In—Bi solder powder has an average particle diameter of 5 to 100 μm and the spacer has an average particle diameter of 50 to 150 symbols m. However, when supplying solder by printing using a metal mask, it is desirable that the solder powder and the spacer have a diameter smaller than the mask thickness.

なお、上記第二の実施形態と同様の観点から、濡れ性を向上させるべく、Sn-Ag-Cu-In-Bi系はんだ粉として、10〜30体積%程度粉末粒径の大きなSn-Ag-Cu-In-Bi系はんだ粉を混合した2種以上の平均粒径を有するSn-Ag-Cu-In-Bi系はんだ粉を用いてもよい。この際、平均粒径の大きい粒子と小さい粒子とは体積比で2:8〜3:7の範囲にすることが好ましい。また、Sn-Zn系はんだ粉と組み合わせてはんだペーストを構成しても構わない。   In addition, from the same viewpoint as the second embodiment, Sn—Ag—Cu—In—Bi based solder powder having a large powder particle size of about 10 to 30% by volume is used to improve wettability. You may use Sn-Ag-Cu-In-Bi type | system | group solder powder which has 2 or more types of average particle diameter which mixed Cu-In-Bi type | system | group solder powder. In this case, it is preferable that the particles having a large average particle diameter and the small particles have a volume ratio of 2: 8 to 3: 7. Moreover, you may comprise a solder paste combining with Sn-Zn type solder powder.

また、上記第一の実施形態及び第二の実施形態と同様に、図6に示すように、金属スペーサとして、Sn粉103表面にNi、Cu、Ag等のいずれかによる金属コート104を施した金属スペーサを用いてもよい。これにより、溶融したSn-Ag-Cu-In-Bi系はんだ中に長時間さらされた場合でも、Sn粉がはんだ中に溶融することを遅らせることが可能であり、多様な接続条件に対応することができる。ここで、Ni、Cu、Ag等の金属コート厚は、0.1μmより厚いことが望ましい。0.1μmより薄い場合、金属コートによる溶解の遅延化の効果があまり得られないためである。   Further, as in the first embodiment and the second embodiment, as shown in FIG. 6, a metal coat 104 made of any one of Ni, Cu, Ag, or the like was applied to the surface of the Sn powder 103 as a metal spacer. Metal spacers may be used. As a result, even when exposed to molten Sn-Ag-Cu-In-Bi-based solder for a long time, it is possible to delay the melting of Sn powder into the solder, corresponding to various connection conditions be able to. Here, the thickness of the metal coat of Ni, Cu, Ag or the like is desirably thicker than 0.1 μm. This is because when the thickness is less than 0.1 μm, the effect of delaying dissolution by the metal coating is not obtained.

さらに、Sn-Ag-Cu-In-Bi系はんだ粉とSn粉の金属スペーサとの体積比は、上記他の実施形態と同様、スペーサの体積増加によるボイド発生に起因した接続信頼性低下、スペーサの体積が少なすぎることによる実装時の部品傾きの問題を踏まえ、8.5:1.5〜9.9:0.1が望ましく、さらに8.5:1.5〜9:1が好ましい。   Furthermore, the volume ratio of the Sn-Ag-Cu-In-Bi solder powder to the metal spacer of Sn powder is similar to the other embodiments described above, the connection reliability decreases due to void generation due to the increase in the volume of the spacer, the spacer In view of the problem of component inclination at the time of mounting due to the volume of being too small, 8.5: 1.5 to 9.9: 0.1 is desirable, and 8.5: 1.5 to 9: 1 is more desirable.

なお、Sn-Ag-Cu-In-Bi系はんだと金属スペーサとの界面に形成される金属間化合物層が20μm以下になる範囲であれば、金属粉スペーサとしてCu、Ni、Agのうち1種類以上を用いてもよい。Cu、Ni、AgはSn-Ag-Cu-In-Bi系はんだ粉はんだと良好な濡れが得られるほか、Sn粉に比べて融点が高く、Sn-Ag-Cu-In-Bi系はんだ中に溶解しにくいため、長時間の接続においても利用できる点で有効である。   As long as the intermetallic compound layer formed at the interface between the Sn-Ag-Cu-In-Bi solder and the metal spacer is 20 μm or less, one type of Cu, Ni, and Ag is used as the metal powder spacer. The above may be used. Cu, Ni, and Ag provide good wettability with Sn-Ag-Cu-In-Bi solder powder solder, and have a higher melting point than Sn powder, and in Sn-Ag-Cu-In-Bi solder Since it is difficult to dissolve, it is effective in that it can be used for a long-time connection.

以下、上記した本発明のはんだペーストを用いた実験例を示す。
(実験例1〜11)
今回は図1のQFNパッケージ実装構造をモデルとして評価を行った。厚さ1.6mmのプリント基板(FR-4)9に、サイズが5mm角のQFNパッケージ1を表1に示す各種はんだ100で実装した。まず、プリント基板9上に、メタルマスクを用いて各種はんだペースト100を印刷し、QFNパッケージ1を搭載した。接続は、リフロー炉を用いてN2気流中で行った。このとき、耐熱温度220℃の低耐熱部品が破壊しないように、最高温度211℃、200℃以上40sになるような温度プロファイルで接続した。
Hereinafter, experimental examples using the above-described solder paste of the present invention will be shown.
(Experimental examples 1-11)
This time, we evaluated the QFN package mounting structure in Fig. 1 as a model. A QFN package 1 having a size of 5 mm square was mounted on a printed circuit board (FR-4) 9 having a thickness of 1.6 mm with various solders 100 shown in Table 1. First, various solder pastes 100 were printed on the printed board 9 using a metal mask, and the QFN package 1 was mounted. The connection was made in a N 2 stream using a reflow furnace. At this time, the connection was made with a temperature profile such that the maximum temperature was 211 ° C. and 200 ° C. or more and 40 seconds so that the low heat-resistant components having a heat resistance temperature of 220 ° C. were not destroyed.

接続したサンプルについて、QFNパッケージの4角の接続部厚さを測定して部品傾きを調査した。部品の傾きが、4角の接続部厚さのうちで最も厚いものが最も薄いものの2倍以上の厚さになった場合に部品傾き不良と定義した。表1に示すように、実験例1〜11すべてのサンプルにおいて部品傾き不良は発生しなかった。これらのサンプルを-25(30min.)/125℃(30min.)で1000サイクルの条件で温度サイクル試験を行い、接続信頼性の検討を行った。QFN端子接続部にクラックが発生し端子接続部の50%以上にクラックが進展した場合、接続信頼性不良と定義した。表1に示すように、実験例1〜11すべてのサンプルにおいて、クラック等は観察されず、接続信頼性不良は発生しなかった。以上のことから、実験例1〜11のはんだ材料によって、リードレス低耐熱部品の部品傾きを抑制し、接続信頼性を確保できることが確認できた。   For the connected samples, the thickness of the four corners of the QFN package was measured to investigate the component inclination. The component inclination failure was defined when the inclination of the component was more than twice the thickness of the thinnest of the four corners. As shown in Table 1, no component tilt failure occurred in all the samples of Experimental Examples 1 to 11. These samples were subjected to a temperature cycle test at -25 (30 min.) / 125 ° C (30 min.) Under 1000 cycles, and the connection reliability was examined. If a crack occurred in the QFN terminal connection and the crack progressed to 50% or more of the terminal connection, it was defined as poor connection reliability. As shown in Table 1, no cracks or the like were observed in all the samples of Experimental Examples 1 to 11, and no connection reliability failure occurred. From the above, it was confirmed that the soldering materials of Experimental Examples 1 to 11 can suppress the inclination of the leadless low heat-resistant component and ensure the connection reliability.

Figure 2008238253
Figure 2008238253

(比較例1〜4)
実験例1〜11と同様の方法により試験サンプルを作製し、同様の試験を行った。その結果を同じく表1に示す。部品傾きについては、Sn-Pb共晶はんだを除いた比較例1〜3で、サンプルの約2/3で部品傾き不良が発生した。これらについて温度サイクル試験を行った結果、部品傾き不良が発生した比較例1〜3では図7に示すように接続部が薄くなった端子3とパッド8とのはんだ100による接続部にクラック201の進展が見られた。なお、単なるSn-9Znはんだを用いた場合のヒートスプレッダ下接続部のX線像は、その模式図として図8に示すように、凝集した大きなボイド200が存在しており、このことが部品傾きを抑制している原因と考えられる。
これにより、本発明のはんだペーストによれば、Pbフリーはんだ材料でありがながら、部品傾き抑制・接続部厚さの確保が可能となり、低耐熱部品実装において高い接続信頼性が得られることが確認できた。
(Comparative Examples 1 to 4)
Test samples were prepared by the same method as in Experimental Examples 1 to 11, and the same test was performed. The results are also shown in Table 1. Regarding component inclination, in Comparative Examples 1 to 3 excluding Sn-Pb eutectic solder, component inclination failure occurred in about 2/3 of the sample. As a result of performing a temperature cycle test on these, in Comparative Examples 1 to 3 in which a component tilt failure occurred, cracks 201 were formed in the connection portion by the solder 100 between the terminal 3 and the pad 8 having a thin connection portion as shown in FIG. Progress has been made. In addition, as shown in FIG. 8 as a schematic diagram of the X-ray image of the heat spreader lower connection portion in the case of using simple Sn-9Zn solder, there is a large aggregated void 200, which indicates the inclination of the component. This is considered to be the cause of the suppression.
As a result, according to the solder paste of the present invention, although it is a Pb-free solder material, it is possible to suppress component inclination and secure the thickness of the connection part, and to confirm that high connection reliability can be obtained in low heat-resistant component mounting did it.

以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. Not too long.

QFNパッケージの上面図、下面図、側面図及び断面図を示す。The top view, bottom view, side view and cross-sectional view of the QFN package are shown. 部品傾きが生じたQFNパッケージの実装構造の断面図を示す。A cross-sectional view of a QFN package mounting structure with tilted components is shown. 本発明のはんだペーストによる基板と電子部品との接続工程を示す図であり、(a)ははんだペーストを供給した状態、(b)は該はんだペースト上に電子部品を搭載した状態、(c)は接続後のはんだ接続部の状態を示す。It is a figure which shows the connection process of the board | substrate and electronic component by the solder paste of this invention, (a) is the state which supplied solder paste, (b) is the state which mounted the electronic component on this solder paste, (c) Indicates the state of the solder joint after connection. 本発明のはんだペーストで接続したQFNパッケージの実装構造の断面図を示す。Sectional drawing of the mounting structure of the QFN package connected with the solder paste of this invention is shown. 金属スペーサ量が少ないはんだペーストで接続したQFNパッケージの実装構造の断面図を示す。A cross-sectional view of a QFN package mounting structure connected with a solder paste with a small amount of metal spacer is shown. 金属コートを施したスペーサの断面図を示す。Sectional drawing of the spacer which gave metal coating is shown. 温度サイクル試験によりクラックが進展した接続部の断面図を示す。Sectional drawing of the connection part in which the crack progressed by the temperature cycle test is shown. Sn-9Znはんだで接続したときのはんだ接続部のX線像の模式図を示す。The schematic diagram of the X-ray image of the solder connection part when it connects with Sn-9Zn solder is shown.

符号の説明Explanation of symbols

1 QFNパッケージ、
2 レジン、
3 端子、
4 ヒートスプレッダ、
5 ワイヤ、
6 半導体素子、
7 高温はんだ又は導電性接着剤、
8 パッド、
9 実装基板、
100 はんだ接続材料
101 フラックス又は溶剤、
102 Sn-Zn系はんだ、
103 金属スペーサ、
104 金属コート、
200 ボイド、
201 クラック
1 QFN package,
2 Resin,
3 terminals,
4 Heat spreader,
5 wires,
6 Semiconductor elements,
7 High-temperature solder or conductive adhesive,
8 pads,
9 Mounting board,
100 solder connection material 101 flux or solvent,
102 Sn-Zn solder,
103 metal spacer,
104 metal coat,
200 voids,
201 crack

Claims (20)

Sn-Zn系はんだ粉を主成分として有し、さらにSn粉又はZn粉のいずれか1種を含むことを特徴とするPbフリーはんだ接続材料。 A Pb-free solder connection material comprising Sn-Zn solder powder as a main component and further containing any one of Sn powder and Zn powder. 請求項1記載のPbフリーはんだ接続材料であって、
前記Sn-Zn系はんだ粉と前記Sn粉又はZn粉のいずれか1種以上との体積比は、8.5:1.5から9.9:0.1の範囲のいずれかであることを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to claim 1,
The volume ratio of the Sn-Zn solder powder and any one or more of the Sn powder or Zn powder is in the range of 8.5: 1.5 to 9.9: 0.1. Characteristic Pb-free solder connection material.
請求項1又は2記載のPbフリーはんだ接続材料であって、
前記Sn粉又はZn粉はNi、Cu、Agのいずれかで覆われていることを特徴とするPbフリーはんだ接続材料。
A Pb-free solder connection material according to claim 1 or 2,
The Pb-free solder connection material, wherein the Sn powder or Zn powder is covered with Ni, Cu, or Ag.
請求項1乃至3のいずれかに記載のPbフリーはんだ接続材料であって、
前記Sn-Zn系はんだ粉は、第一の平均粒径を有するSn-Zn系はんだ粉と、当該第一の平均粒径よりも大きい第二の平均粒径を有するSn-Zn系はんだ粉とが混合されてなることを特徴とするPbフリーはんだ接続材料。
A Pb-free solder connection material according to any one of claims 1 to 3,
The Sn-Zn solder powder includes a Sn-Zn solder powder having a first average particle diameter, and a Sn-Zn solder powder having a second average particle diameter larger than the first average particle diameter. A Pb-free solder connection material characterized by being mixed.
請求項4記載のPbフリーはんだ接続材料であって、
前記第一の平均粒径を有するSn-Zn系はんだ粉と前記第二の平均粒径を有するSn-Zn系はんだ粉との体積比は、8:2から7:3の範囲のいずれかであることを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to claim 4,
The volume ratio of the Sn—Zn solder powder having the first average particle size to the Sn—Zn solder powder having the second average particle size is in the range of 8: 2 to 7: 3. A Pb-free solder connection material characterized by being.
請求項1乃至5のいずれかに記載のPbフリーはんだ接続材料であって、
前記Sn-Zn系はんだ粉は、Sn-9Zn粉であることを特徴とするPbフリーはんだ接続材料。
A Pb-free solder connection material according to any one of claims 1 to 5,
The Pb-free solder connection material, wherein the Sn—Zn solder powder is Sn-9Zn powder.
請求項1乃至5のいずれかに記載のPbフリーはんだ接続材料であって、
前記Sn-Zn系はんだは、Sn-8Zn-3Bi粉であることを特徴とするPbフリーはんだ接続材料。
A Pb-free solder connection material according to any one of claims 1 to 5,
The Pb-free solder connection material, wherein the Sn—Zn solder is Sn-8Zn-3Bi powder.
Sn-Ag-Cu-In系はんだ粉を主成分として有し、さらにSn粉を含むことを特徴とするPbフリーはんだ接続材料。 A Pb-free solder connection material comprising Sn-Ag-Cu-In solder powder as a main component and further containing Sn powder. 請求項8記載のPbフリーはんだ接続材料であって、
前記Sn-Ag-Cu-In系はんだ粉と前記Sn粉との体積比は、8.5:1.5から9.9:0.1の範囲のいずれかであることを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to claim 8,
The Pb-free, wherein the volume ratio of the Sn—Ag—Cu—In solder powder and the Sn powder is in the range of 8.5: 1.5 to 9.9: 0.1 Solder connection material.
請求項8又は9記載のPbフリーはんだ接続材料であって、
前記Sn粉はNi、Cu、Agのいずれかで覆われていることを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to claim 8 or 9,
The Pb-free solder connection material, wherein the Sn powder is covered with Ni, Cu, or Ag.
請求項8乃至10のいずれかに記載のPbフリーはんだ接続材料であって、
前記Sn-Ag-Cu-In系はんだ粉は、第一の平均粒径を有するSn-Ag-Cu-In系はんだ粉と、当該第一の平均粒径よりも大きい第二の平均粒径を有するSn-Ag-Cu-In系はんだ粉とが混合されてなることを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to any one of claims 8 to 10,
The Sn-Ag-Cu-In solder powder has a Sn-Ag-Cu-In solder powder having a first average particle diameter and a second average particle diameter larger than the first average particle diameter. A Pb-free solder connection material comprising a mixed Sn—Ag—Cu—In solder powder.
請求項11記載のPbフリーはんだ接続材料であって、
前記第一の平均粒径を有するSn-Ag-Cu-In系はんだ粉と前記第二の平均粒径を有するSn-Ag-Cu-In系はんだ粉との体積比は、8:2から7:3の範囲のいずれかであることを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to claim 11,
The volume ratio of the Sn—Ag—Cu—In solder powder having the first average particle diameter to the Sn—Ag—Cu—In solder powder having the second average particle diameter is from 8: 2 to 7 : A Pb-free solder connecting material characterized by being in one of the ranges of 3.
請求項8乃至12のいずれかに記載のPbフリーはんだ接続材料であって、
前記Sn-Ag-Cu-In系はんだ粉は、Agが0〜5重量%、Cuが0〜1重量%、Inが0〜10重量%、残部がSnからなることを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to any one of claims 8 to 12,
The Sn-Ag-Cu-In solder powder is a Pb-free solder characterized in that Ag is 0 to 5% by weight, Cu is 0 to 1% by weight, In is 0 to 10% by weight, and the balance is Sn. Connection material.
請求項13記載のPbフリーはんだ接続材料であって、
前記Sn-Ag-Cu-In系はんだ粉は、更に10重量%以下のBi成分を有することを特徴とするPbフリーはんだ接続材料。
The Pb-free solder connection material according to claim 13,
The Sn-Ag-Cu-In solder powder further has a Bi component of 10% by weight or less, and a Pb-free solder connection material.
半導体実装構造体の製造方法であって、
半導体装置の端子と基板のパッドとをPbフリーはんだ接続材料を用いて接続する工程を有し、
前記Pbフリーはんだ材料は、Sn-Zn系はんだ粉を主成分として有し、さらにSn粉又はZn粉のいずれか1種を含むものであることを特徴とする半導体実装構造体の製造方法。
A method for manufacturing a semiconductor mounting structure,
A step of connecting the terminal of the semiconductor device and the pad of the substrate using a Pb-free solder connection material,
The method for producing a semiconductor mounting structure, wherein the Pb-free solder material has Sn—Zn solder powder as a main component and further contains any one of Sn powder and Zn powder.
請求項15記載の半導体実装構造体の製造方法であって、
前記Pbフリーはんだ材料の前記Sn-Zn系はんだ粉と前記Sn粉又はZn粉のいずれか1種以上との体積比は8.5:1.5から9.9:0.1の範囲のいずれかであることを特徴とする半導体実装構造体の製造方法。
A method for manufacturing a semiconductor mounting structure according to claim 15,
The volume ratio of the Sn-Zn solder powder of the Pb-free solder material to one or more of the Sn powder or Zn powder is any of the range from 8.5: 1.5 to 9.9: 0.1. A method for manufacturing a semiconductor mounting structure, wherein
請求項15又は16記載の半導体実装構造の製造方法であって、
前記Sn-Zn系はんだ粉は、第一の平均粒径を有するSn-Zn系はんだ粉と、当該第一の平均粒径よりも大きい第二の平均粒径を有するSn-Zn系はんだ粉とが混合されてなることを特徴とする半導体実装構造体の製造方法。
A method for manufacturing a semiconductor mounting structure according to claim 15 or 16,
The Sn-Zn solder powder includes a Sn-Zn solder powder having a first average particle diameter, and a Sn-Zn solder powder having a second average particle diameter larger than the first average particle diameter. A method for manufacturing a semiconductor mounting structure, comprising:
半導体実装構造体の製造方法であって、
半導体装置の端子と基板のパッドとをPbフリーはんだ接続材料を用いて接続する工程を有し、
前記Pbフリーはんだ材料は、Sn-Ag-Cu-In系はんだ粉を主成分として有し、さらにSn粉を含むものであることを特徴とする半導体実装構造体の製造方法。
A method for manufacturing a semiconductor mounting structure,
A step of connecting the terminal of the semiconductor device and the pad of the substrate using a Pb-free solder connection material,
The method for producing a semiconductor mounting structure, wherein the Pb-free solder material has Sn—Ag—Cu—In solder powder as a main component and further contains Sn powder.
請求項18記載の半導体実装構造体の製造方法であって、
前記Pbフリーはんだ材料の前記Sn-Ag-Cu-In系はんだ粉と前記Sn粉との体積比は8.5:1.5から9.9:0.1の範囲のいずれかであることを特徴とする半導体実装構造体の製造方法。
A method for manufacturing a semiconductor mounting structure according to claim 18,
The volume ratio of the Sn-Ag-Cu-In-based solder powder and the Sn powder of the Pb-free solder material is in the range of 8.5: 1.5 to 9.9: 0.1 A method of manufacturing a semiconductor mounting structure, which is characterized.
請求項18又は19記載の半導体実装構造の製造方法であって、
前記Sn-Ag-Cu-In系はんだ粉は、第一の平均粒径を有するSn-Ag-Cu-In系はんだ粉と、当該第一の平均粒径よりも大きい第二の平均粒径を有するSn-Ag-Cu-In系はんだ粉とが混合されてなることを特徴とする半導体実装構造体の製造方法。
A method for manufacturing a semiconductor mounting structure according to claim 18 or 19,
The Sn-Ag-Cu-In solder powder has a Sn-Ag-Cu-In solder powder having a first average particle diameter and a second average particle diameter larger than the first average particle diameter. A method for producing a semiconductor mounting structure, comprising mixing Sn-Ag-Cu-In solder powder.
JP2007086375A 2007-03-29 2007-03-29 Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME Pending JP2008238253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086375A JP2008238253A (en) 2007-03-29 2007-03-29 Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086375A JP2008238253A (en) 2007-03-29 2007-03-29 Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME

Publications (1)

Publication Number Publication Date
JP2008238253A true JP2008238253A (en) 2008-10-09

Family

ID=39910211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086375A Pending JP2008238253A (en) 2007-03-29 2007-03-29 Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME

Country Status (1)

Country Link
JP (1) JP2008238253A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018832A (en) * 2012-07-18 2014-02-03 Nippon Handa Kk Molded solder with metal wire, and method for producing the same
US8680932B2 (en) 2011-02-07 2014-03-25 Nihon Dempa Kogyo Co., Ltd Oscillator
EP2922091A3 (en) * 2014-03-20 2015-12-02 Micross Components Limited Leadless chip carrier
EP2521429A4 (en) * 2009-12-28 2016-08-31 Senju Metal Industry Co Method for soldering surface-mount component and surface-mount component
GB2603488A (en) * 2021-02-04 2022-08-10 Rockwood Composites A soldering compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2521429A4 (en) * 2009-12-28 2016-08-31 Senju Metal Industry Co Method for soldering surface-mount component and surface-mount component
US10297539B2 (en) 2009-12-28 2019-05-21 Senju Metal Industry Co., Ltd. Electronic device including soldered surface-mount component
US10354944B2 (en) 2009-12-28 2019-07-16 Senju Metal Industry Co., Ltd. Method for soldering surface-mount component and surface-mount component
US8680932B2 (en) 2011-02-07 2014-03-25 Nihon Dempa Kogyo Co., Ltd Oscillator
JP2014018832A (en) * 2012-07-18 2014-02-03 Nippon Handa Kk Molded solder with metal wire, and method for producing the same
EP2922091A3 (en) * 2014-03-20 2015-12-02 Micross Components Limited Leadless chip carrier
GB2603488A (en) * 2021-02-04 2022-08-10 Rockwood Composites A soldering compound

Similar Documents

Publication Publication Date Title
JP4753090B2 (en) Solder paste and electronic device
JP4428448B2 (en) Lead-free solder alloy
JP4152596B2 (en) Electronic member having solder alloy, solder ball and solder bump
KR20030070075A (en) Solder foil and semiconductor device and electronic device
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
JP4722751B2 (en) Powder solder material and bonding material
JP2007134476A (en) Soldering method and soldering structure of electronic component
JP2006134982A (en) Paste for solder jointing and solder jointing method
WO2008056676A1 (en) Lead-free solder paste, electronic circuit board using lead-free solder paste, and method for manufacturing electronic circuit board
JP3597810B2 (en) Solder paste and connection structure
JP2008238253A (en) Pb-FREE SOLDERING MATERIAL, AND MANUFACTURING METHOD OF SEMI-CONDUCTOR MOUNTED STRUCTURE USING THE SAME
JP5169354B2 (en) Joining material and joining method using the same
TWI744907B (en) Solder alloy, solder paste, preform solder, solder ball, wire solder, grease-filled solder, solder joint, electronic circuit board and multilayer electronic circuit board
JP4672352B2 (en) Solder paste for bump formation
JP2004207494A (en) Electronic device, mounting method and manufacturing method thereof
JP2008006499A (en) Solder paste
JP3719624B2 (en) Solder for mounting electronic components and mounting method of electronic components
JP4339723B2 (en) Semiconductor device and manufacturing method thereof, electronic device and mounting structure
JP2001001180A (en) Solder and electronic part using the solder
JP4432041B2 (en) Solder alloys and solder balls
JP6969070B2 (en) Solder materials, solder pastes, foam solders and solder fittings
JP4345487B2 (en) Solder paste
JP2012061508A (en) Joining material
JP2003275891A (en) Solder paste, junction obtained by using the solder paste and electronic equipment provided with the junction
JP2005252030A (en) Lead free solder material and manufacturing method of solder material