JP3638486B2 - Semiconductor element mounting method and metal paste - Google Patents

Semiconductor element mounting method and metal paste Download PDF

Info

Publication number
JP3638486B2
JP3638486B2 JP35179699A JP35179699A JP3638486B2 JP 3638486 B2 JP3638486 B2 JP 3638486B2 JP 35179699 A JP35179699 A JP 35179699A JP 35179699 A JP35179699 A JP 35179699A JP 3638486 B2 JP3638486 B2 JP 3638486B2
Authority
JP
Japan
Prior art keywords
metal
semiconductor element
metal paste
ultrafine particles
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35179699A
Other languages
Japanese (ja)
Other versions
JP2001168140A (en
Inventor
明 福永
浩 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18419673&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3638486(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP35179699A priority Critical patent/JP3638486B2/en
Priority to US09/731,898 priority patent/US6519842B2/en
Priority to TW089126168A priority patent/TW511122B/en
Priority to KR1020000074899A priority patent/KR100737498B1/en
Priority to EP00127089A priority patent/EP1107305A3/en
Publication of JP2001168140A publication Critical patent/JP2001168140A/en
Priority to US10/315,172 priority patent/US20030079680A1/en
Publication of JP3638486B2 publication Critical patent/JP3638486B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Landscapes

  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子(チップ、ペレットまたはダイ等)の電極と、回路基板上の端子電極とを電気的に接続する方法に係り、特に接合用金属ペーストを用いたフェースダウンボンディング法による半導体素子の実装方法およびその方法に使用される金属ペーストに関する。
【0002】
【従来の技術】
従来、電子部品の接続端子と回路基板上の回路パターン端子との電気的接続には、はんだ付けが一般に利用されてきたが、近年、例えばICフラットパッケージ等の小型化と、接続端子の増加等により、接続端子間のいわゆるピッチ間隔が次第に狭くなり、従来のはんだ付け技術では対処することが次第に難しくなってきている。
【0003】
そこで、最近では、例えば、裸の素子と呼ばれている外装されていない能動、受動素子であるチップ(chip)、ペレット(pellet)、ダイ(die)等の半導体素子を回路基板上に電気的に接続しつつ実装する場合には、半導体素子の電極パッド上に予めはんだバンプを形成し、このはんだバンプを回路基板の端子電極に対向して下向きに配置し、高温に加熱して融着する、いわゆるフェイスダウンボンディング法が広く採用されている。このはんだバンプは、例えばCr(クロム)、Cu(銅)およびAu(金)からなる3層の金属薄膜(Under Bump Metals)の上に、レジストを用いて、はんだやめっき或いは蒸着によって一般に形成される。
【0004】
この実装方法は、接続後の機械的強度が強く、かつ半導体素子の電極と回路基板の端子電極との電気的接続を一括して行えることから有効な半導体素子の実装方法とされていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来のはんだバンプを用いた半導体素子の実装方法においては、加熱溶融の際にはんだが広がって、互いに隣接するはんだバンプ(電極)同士がショートする危険性があり、微細化に対応しきれない場合があるといった問題があった。
【0006】
なお、金属超微粒子を有する金属ペーストでボールを形成し、このボールを前記はんだバンプの代わりに使用する方法も提案されている(特開平9−326416号公報等参照)。しかし、ここで使用されている金属超微粒子は、例えば、金属を真空中、若干のガスの存在下で蒸発させることによって気相中から金属のみから成る超微粒子を凝結させて、超微細な金属微粒子を得る方法で作製された金属単体の超微粒子であると考えられ、安定性、物性及びコストの面で問題があると考えられる。
【0007】
本発明は上記事情に鑑みて為されたもので、微細ピッチの電極への接続であっても隣の電極とショートする危険性がなく、安定性が高く、低コストで信頼性の高い電気接続を実現できる半導体素子の実装方法およびその方法に使用される金属ペーストを提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、平均粒径が1〜10nmの実質的に金属成分からなるコア部の周囲を、炭素数が5以上の有機物からなる被覆層で被覆した複合金属超微粒子を予め作製し、該複合金属超微粒子を溶媒に分散させて金属ペーストを調整する工程と、該金属ペーストを回路基板の端子電極上に付着させて主に複合金属超微粒子からなる金属ペーストボールを形成する工程と、該金属ペーストボール上にフェイスダウン法を用いて半導体素子の電極を接続する工程と、低温焼成により半導体素子と回路基板とを電気的に接続する工程とを有することを特徴とする半導体素子の実装方法である。
【0009】
この方法によれば、複合金属超微粒子は、液相中での化学的なプロセスにおいて作製することができるので、大がかりな真空装置を用いることなく、簡単な装置を用いて通常の大気雰囲気下において大量生産が可能であり、コストが安価である。しかも、周囲を有機化合物で被覆されているので、溶媒中における凝集性が小さいばかりでなく、安定していてハンドリングがしやすく、従って、複合金属超微粒子が均一に分散した金属ペーストを調整できるばかりでなく、工程管理が容易である。更に、粒径が均一であるので、低温焼成の際に、一定温度で全ての複合金属超粒子どうしが融着する。
【0011】
金属粒子の融点は粒径が小さくなると低下することが知られているが、その効果が現れはじめるのは20nm以下であり、10nm以下になるとその効果が顕著となる。従って、平均粒径が1〜10nmの実質的に金属成分からなるコア部は、該金属が持つ融点よりかなり低い温度で互いに溶融結合し、これによって、低温焼成が可能となる。また、コア金属と該コア金属を保護する保護皮膜としての役割を果たす被覆層とを強固にイオン結合させて、溶媒中における分散安定性を向上させ、しかも粒子としての性状安定性を高めることができる。
【0012】
請求項2に記載の発明は、前記コア部は、正に帯電したAg,AuまたはPb金属超微粒子で、前記被覆層は、有機性陰イオンであることを特徴とする請求項1記載の半導体素子の実装方法である。
請求項3に記載の発明は、前記金属ペーストには、0.1〜1μm程度の導電率が高い金属と樹脂分とが添加されていることを特徴とする請求項1または2記載の半導体素子の実装方法である。この導電率が高い金属としては、Ag,Au,PdまたはAl等が挙げられる。これにより、金属を介して高い導電率を確保して半導体素子実装の信頼性を高めることができる。
【0013】
請求項4に記載の発明は、前記低温焼成を200〜250℃の温度範囲で行うことを特徴とする請求項1乃至3のいずれかに記載の半導体素子の実装方法である。
請求項5に記載の発明は、平均粒径が1〜10nmの実質的に金属成分からなるコア部の周囲を、炭素数が5以上の有機物からなる被覆層で被覆した複合金属超微粒子を予め作製し、該複合金属超微粒子を溶媒に分散させて調整したことを特徴とする金属ペーストである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
先ず、図1に示すように、実質的に金属成分からなるコア部10と、有機化合物からなる被覆層12とからなる複合金属超微粒子14を作製する。このような複合金属超微粒子14は、有機化合物からなる被覆層12により覆われているので安定であり、しかも溶媒中において凝集する傾向が小さい。
【0015】
この複合金属超微粒子14は、有機化合物と出発物質である金属塩、例えば炭酸塩・蟻酸塩・酢酸塩由来の金属成分から構成されており、その中心部が金属成分からなり、その周りをイオン性有機化合物が取り囲んでいる。この時、有機化合物と金属成分とは、その一部又は全部が化学的に結合した状態で一体化して存在しており、界面活性剤によりコーティングされることにより安定化された従来の超微粒子と異なり、安定性が高いとともに、より高い金属濃度においても安定である。
【0016】
複合金属超微粒子14のコア部10の平均粒径は1〜10nmとする。このように構成することにより、コア部10を構成する金属が持つ融点よりもかなり低い温度でコア部10を溶融させることができ、これによって、低温焼成が可能となる。
【0017】
この複合金属超微粒子14は、例えば非水系溶媒中で且つイオン性有機物の存在下で金属塩、例えば炭酸塩・蟻酸塩・酢酸塩をその分解還元温度以上でかつイオン性有機物の分解温度以下で加熱することによって製造することができる。金属成分としては、Ag,AuまたはPbが用いられ、イオン性の有機物としては炭素数5以上の脂肪酸およびアルキルベンゼンスルフォン酸、アルキルスルフォン酸が用いられる。
【0018】
加熱温度は、金属塩、例えば炭酸塩・蟻酸塩・酢酸塩の分解還元温度以上でかつイオン性有機物の分解温度以下であり、例えば酢酸銀の場合、分解開始温度が200℃あるので、200℃以上かつ上記のイオン性有機物が分解しない温度に保持すればよい。この場合、イオン性有機物が分解しにくいようにするために、加熱雰囲気は、不活性ガス雰囲気であることが好ましいが、非水溶剤の選択により、大気下においても加熱可能である。
【0019】
また、加熱するに際し、各種アルコール類を添加することもでき、反応を促進することが可能になる。アルコール類は、上記効果が得られる限り特に制限されず、例えばラウリルアルコール、グリセリン、エチレングリコール等が挙げられる。アルコール類の添加量は、用いるアルコールの種類等に応じて適宜定めることができるが、通常は重量部として金属塩100に対して5〜20程度、好ましくは5〜10とすれば良い。
【0020】
加熱が終了した後、公知の精製法により精製を行う。精製法は例えば遠心分離、膜精製、溶媒抽出等により行えば良い。
【0021】
例えば、有機アニオン性物質としてオレイン酸を、金属源として酢酸銀をそれぞれ用い、これらを留点250℃のナフテン系高沸点溶媒の中に入れ、240℃にて3時間加熱し、更にアセトンを加えて沈殿精製を行うことで、平均粒径が約10nmのクラスター状の正に帯電したAg金属超微粒子(コア金属)の周囲を有機性陰イオン(被覆層)で被覆した複合金属超微粒子を作製することができる。
【0022】
そして、複合金属超微粒子14をトルエン等の所定の溶媒に分散させ、必要に応じて、0.1〜1μm程度の、例えばAg,Au,PdまたはAl等の導電率が高い金属と樹脂分とを添加した金属ペーストを調整し、図2(a)に示すように、この金属ペーストを回路基板20の端子電極22の所定の位置に滴下して、主に複合金属超微粒子14からなる高さ約2μmの金属ペーストボール24を形成する。
【0023】
このような金属ペーストは、分散粒子である複合金属超微粒子14が非常に細かいので、複合金属超微粒子14を混合して攪拌した状態ではほぼ透明であるが、溶媒の種類、複合金属超微粒子濃度、温度等を適宜に選択することにより、表面張力、粘性等の物性値を調整することができる。
【0024】
次に、図2(b)に示すように、半導体素子30を下向きにしたフェイスダウン法を用い、半導体素子30に設けた電極パッド部と前記金属ペーストボール24との位置合わせを行う、いわゆるフリップチップ方式で、金属ペーストボール24上に半導体素子30の電極パッド部を接続し、必要に応じて、半導体素子30の重量によるレベリングを行う。
【0025】
この状態で、例えば200〜250℃で30分間の熱風炉により低温焼成を行うことにより、半導体素子30と回路基板20とを電気的に接続する。つまり、金属ペーストボール24に含まれるトルエン等の溶媒を蒸発させ、更に金属ペーストボール24の主成分である複合金属超微粒子14をこの被覆層(有機化合物)12(図1参照)のコア部10からの離脱或いは被覆層12自体の分解温度以上に加熱することで、コア部10から被覆層12を離脱或いは被覆層12を分解して消滅させ、同時にコア部10を溶融結合させる。
【0026】
このように、例えば200〜250℃の温度範囲で低温焼成して半導体素子と回路基板とを電気的に接続することで、熱歪みを起こり難くし、しかもはんだを用いないため、はんだの流れによるショートを回避して、より微細なピッチでの接続が可能となる。
【0027】
この時、前述のように、導電率が高い金属を添加した金属ペーストを使用することで、該金属を介して高い導電率を確保して半導体素子実装の信頼性を高めることもできる。
【0028】
【発明の効果】
以上説明したように、この発明によれば、微細ピッチの電極への接続であっても隣の電極とショートする危険性がなく、安定性が高く、低コストで信頼性の高い電気接続を実現して、半導体素子を回路基板に実装できる。
【図面の簡単な説明】
【図1】複合金属超微粒子の構造を模式的に示す図である。
【図2】本発明の実施の形態の半導体素子の実装方法を工程順に示す図である。
【符号の説明】
10 コア部
12 被覆層
14 複合金属超微粒子
20 回路基板
22 端子電極
24 金属ペーストボール
30 半導体素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of electrically connecting an electrode of a semiconductor element (chip, pellet, die, etc.) and a terminal electrode on a circuit board, and in particular, a semiconductor element by a face-down bonding method using a bonding metal paste. And a metal paste used for the method.
[0002]
[Prior art]
Conventionally, soldering has been generally used for electrical connection between connection terminals of electronic components and circuit pattern terminals on a circuit board. However, in recent years, for example, downsizing of IC flat packages and the like, increase in connection terminals, etc. Thus, the so-called pitch interval between the connection terminals is gradually narrowed, and it is becoming increasingly difficult to cope with the conventional soldering technique.
[0003]
Therefore, recently, for example, semiconductor elements such as chips, pellets, dies, etc., which are active and passive elements that are not packaged, which are called bare elements, are electrically mounted on a circuit board. In the case of mounting while being connected to the semiconductor device, solder bumps are formed in advance on the electrode pads of the semiconductor element, the solder bumps are disposed facing downward against the terminal electrodes of the circuit board, and are heated and fused to a high temperature. The so-called face-down bonding method is widely used. These solder bumps are generally formed on a three-layered metal thin film (Under Bump Metals) made of, for example, Cr (chrome), Cu (copper), and Au (gold) by using a resist, solder, plating, or vapor deposition. The
[0004]
This mounting method has been considered to be an effective method for mounting a semiconductor element because it has a high mechanical strength after connection and can collectively connect the electrodes of the semiconductor element and the terminal electrodes of the circuit board.
[0005]
[Problems to be solved by the invention]
However, in the semiconductor element mounting method using the conventional solder bumps described above, there is a risk that the solder spreads when heated and melted, and the solder bumps (electrodes) adjacent to each other may be short-circuited. There was a problem that sometimes it could not be done.
[0006]
A method has also been proposed in which a ball is formed of a metal paste having ultrafine metal particles, and the ball is used in place of the solder bump (see Japanese Patent Application Laid-Open No. 9-326416). However, the ultra-fine metal particles used here are, for example, ultra-fine metal particles by condensing ultra-fine particles consisting only of metal from the gas phase by evaporating the metal in a vacuum in the presence of some gas. It is considered to be ultrafine particles of a single metal produced by a method for obtaining fine particles, and it is considered that there are problems in terms of stability, physical properties, and cost.
[0007]
The present invention has been made in view of the above circumstances, and there is no risk of short-circuiting with an adjacent electrode even when connected to a fine pitch electrode, and the electrical connection has high stability, low cost, and high reliability. An object of the present invention is to provide a method for mounting a semiconductor device capable of realizing the above and a metal paste used in the method.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, the composite metal ultrafine particles obtained by coating the periphery of the core portion substantially composed of a metal component having an average particle diameter of 1 to 10 nm with a coating layer composed of an organic substance having 5 or more carbon atoms in advance. A step of preparing and preparing a metal paste by dispersing the composite metal ultrafine particles in a solvent, and attaching the metal paste onto a terminal electrode of a circuit board to form a metal paste ball mainly composed of the composite metal ultrafine particles. A semiconductor device comprising: a step of connecting a semiconductor element electrode on the metal paste ball using a face-down method; and a step of electrically connecting the semiconductor element and the circuit board by low-temperature firing. This is an element mounting method.
[0009]
According to this method, since the composite metal ultrafine particles can be produced in a chemical process in a liquid phase, a simple apparatus is used in a normal atmospheric atmosphere without using a large vacuum apparatus. Mass production is possible and the cost is low. Moreover, since the surroundings are coated with an organic compound, not only the cohesiveness in the solvent is small, but also stable and easy to handle, and therefore, a metal paste in which composite metal ultrafine particles are uniformly dispersed can be adjusted. In addition, process management is easy. Furthermore, since the particle size is uniform, all the composite metal superparticles are fused at a constant temperature during low-temperature firing.
[0011]
The melting point of the metal particles is known to decrease as the particle size decreases, but the effect starts to appear at 20 nm or less, and the effect becomes significant when the particle size is 10 nm or less. Therefore, the core portion substantially composed of a metal component having an average particle diameter of 1 to 10 nm is melt-bonded to each other at a temperature considerably lower than the melting point of the metal, thereby enabling low-temperature firing. In addition, the core metal and the coating layer that serves as a protective film for protecting the core metal can be strongly ionically bonded to improve dispersion stability in the solvent and to improve the property stability as particles. it can.
[0012]
According to a second aspect of the present invention, in the semiconductor device according to the first aspect, the core portion is positively charged Ag, Au or Pb ultrafine metal particles, and the coating layer is an organic anion. This is an element mounting method.
The invention according to claim 3 is characterized in that a metal having a high conductivity of about 0.1 to 1 μm and a resin component are added to the metal paste. This is the implementation method. Examples of the metal having a high conductivity include Ag, Au, Pd, and Al. Thereby, high electrical conductivity can be ensured via a metal, and the reliability of semiconductor element mounting can be improved.
[0013]
According to a fourth aspect of the present invention, there is provided the semiconductor element mounting method according to any one of the first to third aspects, wherein the low-temperature firing is performed in a temperature range of 200 to 250 ° C.
In the invention according to claim 5, the composite metal ultrafine particles in which the periphery of the core portion substantially composed of a metal component having an average particle diameter of 1 to 10 nm is coated with a coating layer composed of an organic substance having 5 or more carbon atoms in advance. A metal paste prepared and prepared by dispersing the composite metal ultrafine particles in a solvent.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, as shown in FIG. 1, composite metal ultrafine particles 14 including a core portion 10 substantially made of a metal component and a coating layer 12 made of an organic compound are produced. Such composite metal ultrafine particles 14 are stable because they are covered with the coating layer 12 made of an organic compound, and have a low tendency to aggregate in a solvent.
[0015]
The composite metal ultrafine particles 14 are composed of an organic compound and a metal salt that is a starting material, such as carbonate, formate, and acetate. Surrounding organic compounds. At this time, the organic compound and the metal component are present in an integrated state in a state where part or all of them are chemically bonded, and the conventional ultrafine particles stabilized by being coated with the surfactant. In contrast, it is highly stable and stable at higher metal concentrations.
[0016]
The average particle diameter of the core part 10 of the composite metal ultrafine particles 14 is 1 to 10 nm. By comprising in this way, the core part 10 can be fuse | melted at temperature considerably lower than melting | fusing point which the metal which comprises the core part 10 has, and, thereby, low temperature baking is attained.
[0017]
The composite metal ultrafine particles 14 are, for example, in a non-aqueous solvent and in the presence of an ionic organic substance, a metal salt such as carbonate / formate salt / acetic acid salt at a decomposition reduction temperature or higher and a decomposition temperature of the ionic organic substance or lower. It can be manufactured by heating. As the metal component, Ag, Au, or Pb is used, and as the ionic organic substance, a fatty acid having 5 or more carbon atoms, alkylbenzene sulfonic acid, or alkyl sulfonic acid is used.
[0018]
The heating temperature is not less than the decomposition reduction temperature of metal salts such as carbonates, formates and acetates and not more than the decomposition temperature of ionic organic substances. For example, in the case of silver acetate, the decomposition start temperature is 200 ° C. What is necessary is just to hold | maintain at the temperature which the above and ionic organic substance do not decompose | disassemble. In this case, the heating atmosphere is preferably an inert gas atmosphere so that the ionic organic matter is not easily decomposed, but it can be heated even in the air by selecting a non-aqueous solvent.
[0019]
Moreover, when heating, various alcohols can also be added and it becomes possible to accelerate reaction. The alcohol is not particularly limited as long as the above effects are obtained, and examples thereof include lauryl alcohol, glycerin, and ethylene glycol. Although the addition amount of alcohols can be suitably determined according to the kind of alcohol to be used, etc., it is usually about 5 to 20, preferably 5 to 10 parts by weight with respect to the metal salt 100.
[0020]
After the heating is completed, purification is performed by a known purification method. The purification method may be performed, for example, by centrifugation, membrane purification, solvent extraction or the like.
[0021]
For example, oleic acid is used as the organic anionic substance and silver acetate is used as the metal source. These are placed in a naphthenic high boiling point solvent having a boiling point of 250 ° C., heated at 240 ° C. for 3 hours, and further added with acetone. By carrying out precipitation purification, a composite metal ultrafine particle in which the periphery of a cluster-like positively charged Ag metal ultrafine particle (core metal) having an average particle diameter of about 10 nm is coated with an organic anion (coating layer) is produced. can do.
[0022]
Then, the composite metal ultrafine particles 14 are dispersed in a predetermined solvent such as toluene, and a metal having a high conductivity such as Ag, Au, Pd or Al, for example, about 0.1 to 1 μm and a resin component, if necessary. 2A, the metal paste is dropped onto a predetermined position of the terminal electrode 22 of the circuit board 20 to form a height mainly composed of the composite metal ultrafine particles 14 as shown in FIG. A metal paste ball 24 of about 2 μm is formed.
[0023]
Such metal paste has very fine composite metal ultrafine particles 14 which are dispersed particles, and is therefore almost transparent when the composite metal ultrafine particles 14 are mixed and stirred. By appropriately selecting the temperature and the like, physical property values such as surface tension and viscosity can be adjusted.
[0024]
Next, as shown in FIG. 2B, a so-called flip is performed in which the electrode pad portion provided on the semiconductor element 30 and the metal paste ball 24 are aligned using a face-down method with the semiconductor element 30 facing downward. The electrode pad portion of the semiconductor element 30 is connected to the metal paste ball 24 by a chip method, and leveling based on the weight of the semiconductor element 30 is performed as necessary.
[0025]
In this state, the semiconductor element 30 and the circuit board 20 are electrically connected by performing low temperature baking in a hot air oven at 200 to 250 ° C. for 30 minutes, for example. That is, a solvent such as toluene contained in the metal paste ball 24 is evaporated, and the composite metal ultrafine particles 14 which are the main components of the metal paste ball 24 are further converted into the core portion 10 of the coating layer (organic compound) 12 (see FIG. 1). The coating layer 12 is detached from the core portion 10 or decomposed and disappeared by heating at a temperature equal to or higher than the decomposition temperature of the coating layer 12 itself.
[0026]
In this manner, for example, by electrically connecting the semiconductor element and the circuit board by firing at a low temperature in a temperature range of 200 to 250 ° C., heat distortion hardly occurs, and solder is not used. A short-circuit can be avoided and connection at a finer pitch becomes possible.
[0027]
At this time, as described above, by using a metal paste to which a metal having a high conductivity is added, a high conductivity can be ensured through the metal and the reliability of semiconductor element mounting can be improved.
[0028]
【The invention's effect】
As described above, according to the present invention, there is no risk of short-circuiting with an adjacent electrode even when connecting to an electrode with a fine pitch, and high stability, low cost, and reliable electrical connection are realized. Thus, the semiconductor element can be mounted on the circuit board.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the structure of composite metal ultrafine particles.
FIG. 2 is a diagram showing a semiconductor element mounting method according to an embodiment of the present invention in the order of steps.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Core part 12 Covering layer 14 Composite metal ultrafine particle 20 Circuit board 22 Terminal electrode 24 Metal paste ball 30 Semiconductor element

Claims (5)

平均粒径が1〜10nmの実質的に金属成分からなるコア部の周囲を、炭素数が5以上の有機物からなる被覆層で被覆した複合金属超微粒子を予め作製し、該複合金属超微粒子を溶媒に分散させて金属ペーストを調整する工程と、
該金属ペーストを回路基板の端子電極上に付着させて主に複合金属超微粒子からなる金属ペーストボールを形成する工程と、
該金属ペーストボール上にフェイスダウン法を用いて半導体素子の電極を接続する工程と、
低温焼成により半導体素子と回路基板とを電気的に接続する工程とを有することを特徴とする半導体素子の実装方法。
Preparation of composite metal ultrafine particles in which the periphery of the core portion substantially consisting of a metal component having an average particle diameter of 1 to 10 nm is coated in advance with a coating layer made of an organic substance having 5 or more carbon atoms , A step of preparing a metal paste by dispersing in a solvent;
Attaching the metal paste onto a terminal electrode of a circuit board to form a metal paste ball mainly composed of composite metal ultrafine particles;
Connecting a semiconductor element electrode on the metal paste ball using a face-down method;
And a step of electrically connecting the semiconductor element and the circuit board by low-temperature firing.
前記コア部は、正に帯電したAg,AuまたはPb金属超微粒子で、前記被覆層は、有機性陰イオンであることを特徴とする請求項1記載の半導体素子の実装方法。The core portion, Ag charged positively, with Au or Pb metal ultrafine particles, the coating layer, mounting method of a semiconductor device according to claim 1, characterized in that the organic anion. 前記金属ペーストには、0.1〜1μm程度の導電率が高い金属と樹脂分とが添加されていることを特徴とする請求項1または2記載の半導体素子の実装方法。  3. The method of mounting a semiconductor element according to claim 1, wherein a metal having a high conductivity of about 0.1 to 1 [mu] m and a resin component are added to the metal paste. 前記低温焼成を200〜250℃の温度範囲で行うことを特徴とする請求項1乃至3のいずれかに記載の半導体素子の実装方法。  The method for mounting a semiconductor element according to claim 1, wherein the low-temperature firing is performed in a temperature range of 200 to 250 ° C. 5. 平均粒径が1〜10nmの実質的に金属成分からなるコア部の周囲を、炭素数が5以上の有機物からなる被覆層で被覆した複合金属超微粒子を予め作製し、該複合金属超微粒子を溶媒に分散させて調整したことを特徴とする金属ペースト。Preparation of composite metal ultrafine particles in which the periphery of the core portion substantially consisting of a metal component having an average particle diameter of 1 to 10 nm is coated in advance with a coating layer made of an organic substance having 5 or more carbon atoms; A metal paste characterized by being dispersed in a solvent.
JP35179699A 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste Expired - Lifetime JP3638486B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP35179699A JP3638486B2 (en) 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste
US09/731,898 US6519842B2 (en) 1999-12-10 2000-12-08 Method for mounting semiconductor device
TW089126168A TW511122B (en) 1999-12-10 2000-12-08 Method for mounting semiconductor device and structure thereof
KR1020000074899A KR100737498B1 (en) 1999-12-10 2000-12-09 Method for mounting semiconductor device and structure thereof
EP00127089A EP1107305A3 (en) 1999-12-10 2000-12-11 Method for mounting a semiconductor device
US10/315,172 US20030079680A1 (en) 1999-12-10 2002-12-10 Method for mounting a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35179699A JP3638486B2 (en) 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste

Publications (2)

Publication Number Publication Date
JP2001168140A JP2001168140A (en) 2001-06-22
JP3638486B2 true JP3638486B2 (en) 2005-04-13

Family

ID=18419673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35179699A Expired - Lifetime JP3638486B2 (en) 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste

Country Status (1)

Country Link
JP (1) JP3638486B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146695A (en) * 2002-10-25 2004-05-20 Ebara Corp Metallization device
JP2004107728A (en) * 2002-09-18 2004-04-08 Ebara Corp Joining material and joining method
JP2005205696A (en) * 2004-01-21 2005-08-04 Ebara Corp Joining article
US7615476B2 (en) * 2005-06-30 2009-11-10 Intel Corporation Electromigration-resistant and compliant wire interconnects, nano-sized solder compositions, systems made thereof, and methods of assembling soldered packages
JP4779710B2 (en) * 2006-03-03 2011-09-28 トヨタ自動車株式会社 Joining method and inverter using the same
WO2009116136A1 (en) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 Composite silver nanopaste, process for producing the composite silver nanopaste, and method for bonding the nanopaste
WO2009090849A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Method of wire bonding and structure including mounted electronic part
JP5824201B2 (en) * 2009-09-11 2015-11-25 Dowaエレクトロニクス株式会社 Bonding material and bonding method using the same
EP3151270B1 (en) * 2014-05-27 2022-06-01 Denka Company Limited Semiconductor package and method for manufacturing same

Also Published As

Publication number Publication date
JP2001168140A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
US6519842B2 (en) Method for mounting semiconductor device
JP2751912B2 (en) Semiconductor device and manufacturing method thereof
JP2994375B2 (en) Interconnect structure and process for module assembly and rework
JP2807940B2 (en) Adhesive having flux agent and metal particles
US8716068B2 (en) Method for contacting agglomerate terminals of semiconductor packages
EP1796155A1 (en) Bump forming method and solder bump
JP5085932B2 (en) Mounted body and manufacturing method thereof
JPWO2006126361A1 (en) Solder bump forming method and semiconductor element mounting method
WO2006098196A1 (en) Package equipped with semiconductor chip and method for producing same
CN101958298A (en) Semiconductor device and manufacture method thereof
JP3638486B2 (en) Semiconductor element mounting method and metal paste
JP2004128357A (en) Electrode arranged substrate and its electrode connection method
US20120042511A1 (en) Method of producing circuit board
JPH09326416A (en) Packaging of semiconductor device and product thereof
JP4115306B2 (en) Manufacturing method of semiconductor device
US20100167466A1 (en) Semiconductor package substrate with metal bumps
KR100744149B1 (en) Semiconductor package having silver bump and method for fabricating the same
JP3638487B2 (en) Mounting method of semiconductor element
Lu et al. Electrically conductive adhesives (ECAs)
JP7480789B2 (en) Connection structure and method for manufacturing the same
KR101988890B1 (en) method for manufacturing solder on pad and flip chip bonding method used the same
KR20210076511A (en) Anisotropic conductive adhesive containing polyurethane resin which is a thermoplastic resin, a method of forming solder bumps and a method of manufacturing a bonded structure using the same
KR20210076493A (en) Cluster type anisotropic conductive adhesive film containing thermoplastic resin, a method of forming solder bumps and a method of manufacturing a bonded structure using the same
Li et al. Isotropically conductive adhesives (ICAs)
KR102334671B1 (en) Anisotropic conductive adhesive containing a polysiloxane resin which is a thermoplastic resin, a method of forming solder bumps and a method of manufacturing a bonded structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

RVTR Cancellation of determination of trial for invalidation
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6