JP2008285727A - Electrolytic copper foil with high tensile-strength, and manufacturing method therefor - Google Patents

Electrolytic copper foil with high tensile-strength, and manufacturing method therefor Download PDF

Info

Publication number
JP2008285727A
JP2008285727A JP2007132581A JP2007132581A JP2008285727A JP 2008285727 A JP2008285727 A JP 2008285727A JP 2007132581 A JP2007132581 A JP 2007132581A JP 2007132581 A JP2007132581 A JP 2007132581A JP 2008285727 A JP2008285727 A JP 2008285727A
Authority
JP
Japan
Prior art keywords
copper foil
tensile strength
foil
electrolytic copper
high tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007132581A
Other languages
Japanese (ja)
Inventor
Takahiro Saito
貴広 齋藤
Sadao Matsumoto
貞雄 松本
Yuji Suzuki
裕二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP2007132581A priority Critical patent/JP2008285727A/en
Publication of JP2008285727A publication Critical patent/JP2008285727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic copper foil which is not softened in a period while being stored at ordinary temperature after the foil production process of the copper foil has been finished and before the next manufacturing process starts, or by heat treatment to be conducted at about 200 to 300°C in the next process, and maintains its high tensile-strength, and to provide a manufacturing method therefor. <P>SOLUTION: The electrolytic copper foil with high tensile-strength has a tensile strength of 400 N/mm<SP>2</SP>or higher which has been measured at 25°C after the foil production process of the copper foil has been finished and after the characteristics of the copper foil have been stabilized. A period of time necessary for the characteristics to become stable after the foil production process has been finished is preferably 48 hours or longer and further preferably is 72 hours or longer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、製箔後において高い抗張力を維持する高抗張力電解銅箔及びその製造方法に関するものである。   The present invention relates to a high tensile strength electrolytic copper foil that maintains a high tensile strength after foil production and a method for producing the same.

HDDサスペンション、各種コネクタ部等に銅配線が使用されている。これらの用途ではその使用環境上、高い抗張力が求められる。   Copper wiring is used for HDD suspensions, various connector parts, and the like. In these applications, high tensile strength is required in the usage environment.

HDDサスペンション、各種コネクタ部等の銅配線部に銅箔が使用されるが、近年高密度実装が進みより薄い銅箔が求められている。銅箔には圧延銅箔と電解銅箔があるが、その製造方法上、圧延銅箔は薄くするにつれて生産性が落ちるので高コストとなるが電解銅箔は薄くするにつれて生産性が上がり低コストとなる。また、電解銅箔の方が圧延銅箔よりも幅広化が可能である。よって、HDDサスペンション、各種コネクタ部等の銅配線部への用途として電解銅箔への需要が高まってきている。   Copper foils are used for copper wiring parts such as HDD suspensions and various connector parts, but in recent years, high density mounting has progressed and thinner copper foils are required. There are two types of copper foil: rolled copper foil and electrolytic copper foil, but due to its manufacturing method, the productivity decreases as the thickness of the rolled copper foil decreases, but the cost increases as the thickness of the electrolytic copper foil increases. It becomes. Further, the electrolytic copper foil can be wider than the rolled copper foil. Therefore, the demand for electrolytic copper foil is increasing as a use for copper wiring parts such as HDD suspensions and various connector parts.

しかしながら、現在製造されている電解銅箔は製箔完了時点では高い抗張力を有するが、製箔後の銅箔を常温維持し、あるいは後工程における200〜300℃程度の加熱処理によって製箔直後の高い抗張力が維持できなくなり、上記のHDDサスペンション、各種コネクタ部等の銅配線部に使用するのに十分な高い抗張力が維持できないため、これらの用途には採用できない状況にあった。この原因は、製箔直後の微細な結晶状態から、低い抗張力となる粗大な結晶状態へと再結晶を起こし軟化してしまうためである。   However, the electrolytic copper foil currently produced has high tensile strength at the time of completion of foil production, but the copper foil after foil production is maintained at room temperature or heat treatment at about 200 to 300 ° C. in the subsequent process is performed immediately after the foil production. The high tensile strength cannot be maintained, and the high tensile strength sufficient for use in the above-described HDD suspension and various copper wiring portions cannot be maintained. This is because recrystallization occurs from a fine crystal state immediately after foil formation to a coarse crystal state having a low tensile strength and softens.

本発明は、従来の製造方法の電解銅箔では困難であった製箔完了時から次の製造工程に移るまでの常温保管、または次工程における200〜300℃程度の加熱処理によっても軟化せず高い抗張力を維持する電解銅箔、並びにその製造方法を提供することを目的とする。   The present invention is not softened even at room temperature storage from the time of completion of foil production to the next production process, or heat treatment at about 200 to 300 ° C. in the next process, which was difficult with the electrolytic copper foil of the conventional production method. It aims at providing the electrolytic copper foil which maintains high tensile strength, and its manufacturing method.

本発明の電解銅箔は、銅箔の製箔完了時から該銅箔の特性安定時以降の25℃で測定した抗張力が400N/mm2以上である高抗張力電解銅箔である。 The electrolytic copper foil of the present invention is a high-strength electrolytic copper foil having a tensile strength of 400 N / mm 2 or more measured at 25 ° C. after the completion of copper foil production and after the stabilization of the characteristics of the copper foil.

好ましくは、前記特性安定に要する時間が製箔完了時から48時間以降、更に好ましくは72時間以降である。   Preferably, the time required for the characteristic stabilization is 48 hours or more, more preferably 72 hours or more after the completion of foil production.

本発明の電解銅箔は、銅箔の製箔を完了し、該銅箔の特性が安定した後、該銅箔を300℃で1時間加熱処理し、該加熱処理後に25℃で測定した抗張力が400N/mm2以上である高抗張力電解銅箔である。 The electrolytic copper foil of the present invention is a tensile strength measured at 25 ° C. after heat treatment at 300 ° C. for 1 hour after the copper foil is completed and the properties of the copper foil are stabilized. Is a high tensile strength electrolytic copper foil having 400 N / mm 2 or more.

好ましくは、前記特性が安定するまでに要する時間が製箔完了時から48時間以降、更に好ましくは72時間以降である。   Preferably, the time required for the above characteristics to stabilize is 48 hours or more, more preferably 72 hours or more after the completion of foil production.

本発明の電解銅箔の製造方法は、銅箔の製箔完了時から該銅箔の特性安定時以降の25℃で測定した抗張力が400N/mm2以上である電解銅箔を、少なくとも平均分子量が100以上の有機化合物の濃度が100ppm以上である硫酸銅浴を用いて製箔する高抗張力電解銅箔の製造方法である。 The method for producing an electrolytic copper foil of the present invention comprises at least an average molecular weight of an electrolytic copper foil having a tensile strength of 400 N / mm 2 or more measured at 25 ° C. after the completion of copper foil production and after stabilization of the characteristics of the copper foil. Is a method for producing a high tensile strength electrolytic copper foil in which a copper sulfate bath having a concentration of 100 or more organic compounds is 100 ppm or more.

本発明の電解銅箔の製造方法は、銅箔の製箔を完了し、該銅箔の特性が安定した後、該銅箔を300℃で1時間加熱処理し、該加熱処理後に25℃で測定した抗張力が400N/mm2以上である電解銅箔を、少なくとも平均分子量が100以上の有機化合物の濃度が100ppm以上である硫酸銅浴を用いて製箔する高抗張力電解銅箔の製造方法である。 The manufacturing method of the electrolytic copper foil of the present invention is as follows. After the copper foil is completed and the characteristics of the copper foil are stabilized, the copper foil is heat-treated at 300 ° C. for 1 hour, and at 25 ° C. after the heat treatment. In the method for producing a high tensile strength electrolytic copper foil, an electrolytic copper foil having a measured tensile strength of 400 N / mm 2 or more is formed using a copper sulfate bath having a concentration of an organic compound having an average molecular weight of 100 or more and 100 ppm or more. is there.

好ましくは、前記硫酸銅浴は有機硫黄系化合物を含有し、前記少なくとも平均分子量が100以上である有機化合物を前記有機硫黄系化合物の100倍以上の濃度で含む硫酸銅浴を用いて製造する高抗張力電解銅箔の製造方法である。   Preferably, the copper sulfate bath contains an organic sulfur-based compound, and is manufactured using a copper sulfate bath containing the organic compound having an average molecular weight of 100 or more at a concentration 100 times or more that of the organic sulfur-based compound. It is a manufacturing method of a tensile strength electrolytic copper foil.

本発明によれば製箔完了時から次の製造工程に移るまでの常温保管時、または後工程における200〜300℃程度の加熱処理においても400N/mm2以上の高い抗張力を維持する電解銅箔を提供することができる。 According to the present invention, an electrolytic copper foil that maintains a high tensile strength of 400 N / mm 2 or more during normal temperature storage from the completion of foil production to the next production process, or in heat treatment at about 200 to 300 ° C. in the subsequent process. Can be provided.

本発明において電解銅箔の厚みは1μm以上300μm以下が好適である。銅箔の厚みが1μmより薄いと製造時に電解ドラムからうまく剥がせず、例え剥がせたとしてもシワなどが入りうまく巻き取れないため現実的ではない。また、300μm以上の厚みにおいては電解製箔は好ましくなく、現実的でないためである。   In the present invention, the thickness of the electrolytic copper foil is preferably 1 μm or more and 300 μm or less. If the thickness of the copper foil is less than 1 μm, it will not be peeled off from the electrolytic drum at the time of manufacture, and even if it is peeled off, wrinkles will enter and it will not wind up well, which is not realistic. Moreover, in the thickness of 300 micrometers or more, it is because electrolytic foil is not preferable and is not realistic.

本発明において、電解銅箔を製造するには、銅めっきの浴として硫酸銅めっき浴を用いる。本発明では硫酸銅めっき液に添加剤として少なくとも平均分子量が100以上の有機化合物を混入する。平均分子量が100以上の有機化合物の添加量は100ppm以上が好ましい。この濃度は従来のこの種添加剤の添加量を大きく上回る量である。
なた、電解浴には一般に有機硫黄系化合物が混入されている。本発明の抗張力銅箔を製造する電解浴においては、平均分子量が100以上の有機化合物の濃度は有機硫黄系化合物の濃度に対する比率を100倍以上大きくしている。
In the present invention, to produce an electrolytic copper foil, a copper sulfate plating bath is used as a copper plating bath. In the present invention, at least an organic compound having an average molecular weight of 100 or more is mixed in the copper sulfate plating solution as an additive. The addition amount of the organic compound having an average molecular weight of 100 or more is preferably 100 ppm or more. This concentration is much larger than the conventional amount of this kind additive.
In general, an organic sulfur compound is mixed in the electrolytic bath. In the electrolytic bath for producing the tensile strength copper foil of the present invention, the concentration of the organic compound having an average molecular weight of 100 or more increases the ratio to the concentration of the organic sulfur compound by 100 times or more.

このように、平均分子量が100以上の有機化合物の濃度を濃くすると、銅箔中へ取り込まれる不純物の量が多くなる。その結果、結晶粒界に不純物が多量に分散し、結晶成長を抑制することとなる。そのため、製箔完了後常温で保持しても、また、後工程における200〜300℃での加熱処理後も高い抗張力を維持させることが可能となる。   As described above, when the concentration of the organic compound having an average molecular weight of 100 or more is increased, the amount of impurities taken into the copper foil is increased. As a result, a large amount of impurities are dispersed in the crystal grain boundary, and crystal growth is suppressed. Therefore, even if it hold | maintains at normal temperature after completion of foil manufacture, it becomes possible to maintain a high tensile strength also after the heat processing at 200-300 degreeC in a post process.

本発明で用いる硫酸銅めっき浴組成とめっき条件の一実施例を表1に示す。
なお、表1には従来の硫酸銅めっき浴の組成とめっき条件を比較例として併記する。
Table 1 shows an example of the copper sulfate plating bath composition and plating conditions used in the present invention.
In Table 1, the composition and plating conditions of a conventional copper sulfate plating bath are also shown as comparative examples.

Figure 2008285727
Figure 2008285727

上記電解銅箔を製造する硫酸銅めっき浴には添加剤として少なくとも平均分子量が100以上である1種以上の有機化合物を添加する。少なくとも平均分子量が100以上である有機化合物としては膠、高分子界面活性剤、含窒素有機化合物等が使用できる。平均分子量が100未満の有機化合物では、求める添加剤の効果は期待できない。膠は一般に市販されているものが使用できるが、特に低分子量のものが好ましい。高分子界面活性剤としてはヒドロキシエチルセルロース、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールジメチルエーテル、ポリエチレンオキシド等が挙げられる。含窒素有機化合物としてはポリエチレンイミン、ポリアクリル酸アミド等が挙げられる。   At least one organic compound having an average molecular weight of 100 or more is added as an additive to the copper sulfate plating bath for producing the electrolytic copper foil. As an organic compound having at least an average molecular weight of 100 or more, glue, a polymer surfactant, a nitrogen-containing organic compound, or the like can be used. For organic compounds having an average molecular weight of less than 100, the desired additive effect cannot be expected. As the glue, commercially available ones can be used, but those having a low molecular weight are particularly preferred. Examples of the polymer surfactant include hydroxyethyl cellulose, polyethylene glycol, polypropylene glycol, polyethylene glycol dimethyl ether, and polyethylene oxide. Examples of the nitrogen-containing organic compound include polyethyleneimine and polyacrylic acid amide.

平均分子量が100以上である有機化合物の添加量は100ppm以上が好ましく、更に好ましくは500ppm以下である。少なくとも平均分子量が100以上である有機化合物の添加量が100ppm未満では製箔した銅箔中へ取り込まれる不純物の量が不足し目的とする高抗張力性能の箔が得られない。また、500ppmを超えると添加量が過剰となり正常な製箔が困難になるばかりでなくコスト、電解浴としての安定性の面からも好ましくない。   The addition amount of the organic compound having an average molecular weight of 100 or more is preferably 100 ppm or more, more preferably 500 ppm or less. If the addition amount of the organic compound having an average molecular weight of 100 or more is less than 100 ppm, the amount of impurities taken into the copper foil that has been made is insufficient, and the desired high tensile strength foil cannot be obtained. On the other hand, if it exceeds 500 ppm, the amount added is excessive and normal foil production becomes difficult, and this is not preferable from the viewpoint of cost and stability as an electrolytic bath.

上記電解銅箔を製造する硫酸銅めっき浴への添加剤として少なくとも平均分子量が100以上である1種以上の有機化合物と有機硫黄系化合物を添加する。
添加する有機硫黄系化合物としては3-メルカプト-1-プロパンスルホン酸、ビス(3−スルホプロピル)ジスルフィド等が挙げられる。平均分子量が100以上である有機化合物の添加量は100ppm以上が好ましく、更に有機硫黄系化合物の100倍以上の濃度となるように添加する。具体的には有機硫黄系化合物を1〜5ppm、少なくとも平均分子量が100以上である有機化合物を100〜500ppmの範囲で比率を変えて添加する。有機硫黄系化合物は1ppm未満となると過少となり目的の性能の箔の製造が困難となる。また、5ppmを超えると共に添加する有機化合物の濃度が500ppmを超えて過剰となり正常な製箔が困難になるばかりでなくコスト、液の安定性の面からも好ましくない。
As an additive to the copper sulfate plating bath for producing the electrolytic copper foil, at least one organic compound having an average molecular weight of 100 or more and an organic sulfur compound are added.
Examples of the organic sulfur compound to be added include 3-mercapto-1-propanesulfonic acid and bis (3-sulfopropyl) disulfide. The addition amount of the organic compound having an average molecular weight of 100 or more is preferably 100 ppm or more, and is further added so that the concentration is 100 times or more that of the organic sulfur compound. Specifically, an organic sulfur compound is added in an amount of 1 to 5 ppm, and an organic compound having an average molecular weight of at least 100 is added in a range of 100 to 500 ppm. If the amount of the organic sulfur compound is less than 1 ppm, the amount becomes too small, making it difficult to produce a foil having the desired performance. Further, when the concentration exceeds 5 ppm, the concentration of the organic compound to be added exceeds 500 ppm, which makes it difficult to produce a normal foil, and is not preferable from the viewpoint of cost and liquid stability.

以下、本発明を実施例に基づき説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these.

<実施例1〜5>
表2に示す組成の硫酸銅めっき液(以後電解液という)を活性炭フィルターに通して清浄処理した。次いで、この電解液に表3に示す添加剤をそれぞれの濃度となるように添加して実施例1〜5の製箔用電解液を調整した。なお、本実施例1〜5において使用した添加剤は有機硫黄系化合物は3-メルカプト-1-プロパンスルホン酸ナトリウム(MPS)、少なくとも平均分子量が100以上である有機化合物は膠(PBF)(株式会社ニッピ製)である。このようにして調製した電解液を用い、アノードには貴金属酸化物被膜チタン電極、陰極にはチタン製回転ドラムを用いて、表3に示す電解条件の下に電解製箔によって銅箔を製造した。
<Examples 1-5>
A copper sulfate plating solution (hereinafter referred to as an electrolytic solution) having the composition shown in Table 2 was passed through an activated carbon filter for cleaning treatment. Subsequently, the additive shown in Table 3 was added to this electrolyte solution so that it might become each density | concentration, and the electrolyte solution for foil manufacture of Examples 1-5 was adjusted. The additive used in Examples 1 to 5 is an organic sulfur compound, sodium 3-mercapto-1-propanesulfonate (MPS), and an organic compound having an average molecular weight of 100 or more is glue (PBF) (stock) Company Nippi). Using the electrolytic solution thus prepared, a copper foil was produced by electrolytic foil under the electrolysis conditions shown in Table 3, using a noble metal oxide-coated titanium electrode for the anode and a titanium rotating drum for the cathode. .

<比較例1〜5>
表2に示す組成の電解液を活性炭フィルターに通して清浄処理した。次いで、この電解液に表3に示す添加剤をそれぞれの濃度となるように添加して比較例1〜5の製箔用電解液を調整した。このようにして調製した電解液を用い、実施例1〜5と同様に、アノードには貴金属酸化物被膜チタン電極、陰極にはチタン製回転ドラムを用いて、表3に示す電解条件の下に電解製箔によって銅箔を製造した。
<Comparative Examples 1-5>
The electrolytic solution having the composition shown in Table 2 was passed through an activated carbon filter for cleaning treatment. Subsequently, the additive shown in Table 3 was added to this electrolyte so that it might become each density | concentration, and the electrolyte solution for foil manufacture of Comparative Examples 1-5 was adjusted. Using the electrolytic solution thus prepared, as in Examples 1 to 5, using a noble metal oxide-coated titanium electrode for the anode and a titanium rotating drum for the cathode, the electrolytic conditions shown in Table 3 were used. Copper foil was manufactured by electrolytic foil.

Figure 2008285727
Figure 2008285727

Figure 2008285727
Figure 2008285727

<抗張力、伸びの測定>
実施例1〜5及び比較例1〜5で製造した電解銅箔にいて製箔完了時から24時間後、48時間後、72時間後、96時間後、及び72時間後に窒素雰囲気中300℃1時間加熱処理後の25℃における抗張力と伸びをJIS Z 2201:1998に基づいて引張試験機を用いて測定した。結果を表4、表5に示す。
<Measurement of tensile strength and elongation>
In the electrolytic copper foils produced in Examples 1 to 5 and Comparative Examples 1 to 5, 24 hours, 48 hours, 72 hours, 96 hours, and 72 hours after completion of the foil production, in a nitrogen atmosphere at 300 ° C. The tensile strength and elongation at 25 ° C. after the time heat treatment were measured using a tensile tester based on JIS Z 2201: 1998. The results are shown in Tables 4 and 5.

Figure 2008285727
Figure 2008285727

Figure 2008285727
Figure 2008285727

<抗張力の評価>
抗張力は表4から明らかなように実施例1〜5、比較例1〜5ともに製箔完了時から短くとも48時間後には常温における再結晶とそれに伴う抗張力の低下は収拾するとみなすことができる。実施例1〜5では添加剤として少なくとも平均分子量が100以上である有機化合物(PBF)を有機硫黄系化合物(MPS)の100倍以上の濃度で含む硫酸銅浴を用いて製造することで、48時間経過後も400N/mm2以上の高抗張力を維持する電解銅箔が得られている。
一方、添加剤として少なくとも平均分子量が100以上である有機化合物(PBF)を有機硫黄系化合物(MPS)の10倍程度の濃度で含む硫酸銅浴を用いて製造した比較例1〜5では、いずれにおいても製箔完了時から48時間程度までは400N/mm2以上の抗張力を維持しているが、48時間経過後では抗張力が400N/mm2以下となっている。
<Evaluation of tensile strength>
As is apparent from Table 4, in Examples 1 to 5 and Comparative Examples 1 to 5, it can be considered that the recrystallization at room temperature and the accompanying decrease in the tensile strength are collected after 48 hours from the completion of the foil production. In Examples 1 to 5, it is produced by using a copper sulfate bath containing an organic compound (PBF) having an average molecular weight of 100 or more as an additive at a concentration 100 times or more that of an organic sulfur compound (MPS). An electrolytic copper foil that maintains a high tensile strength of 400 N / mm 2 or more after the elapse of time has been obtained.
On the other hand, in Comparative Examples 1 to 5 manufactured using a copper sulfate bath containing an organic compound (PBF) having an average molecular weight of 100 or more as an additive at a concentration about 10 times that of the organic sulfur compound (MPS), Also, the tensile strength of 400 N / mm 2 or more is maintained for about 48 hours from the completion of foil production, but after 48 hours, the tensile strength is 400 N / mm 2 or less.

また、表5に常温における72時間後の抗張力とこの銅箔を300℃で1時間加熱処理した後自然冷却し、25℃に達した時点で測定した抗張力とを比較して示している。表5から明らかなように実施例1〜5は製箔完了時から72時間の抗張力に比較して、72時間後に300℃1時間加熱処理後の抗張力はやや低下しているが、いずれにおいても400N/mm2以上の抗張力を維持している。これに対して、比較例1〜5は製箔完了時から72時間後で既に抗張力が400N/mm2以下であり、この銅箔を72時間後に300℃1時間加熱処理するとかなり抗張力は低下している。 Table 5 shows a comparison between the tensile strength after 72 hours at room temperature and the tensile strength measured when the copper foil was naturally cooled after being heated at 300 ° C for 1 hour and reached 25 ° C. As is clear from Table 5, Examples 1 to 5 are slightly lower in tensile strength after heat treatment at 300 ° C. for 1 hour after 72 hours compared to the tensile strength for 72 hours from the completion of foil production. The tensile strength of 400 N / mm 2 or more is maintained. In contrast, in Comparative Examples 1 to 5, the tensile strength is already 400 N / mm 2 or less after 72 hours from the completion of the foil production, and when this copper foil is heated at 300 ° C. for 1 hour after 72 hours, the tensile strength is considerably lowered. ing.

<伸びの評価>
製箔後の常温での伸びは表4に示すように実施例1〜5、比較例1〜5共に同じような傾向を示すが、表5に示すように製箔完了時から72時間後の伸びと、72時間後に300℃1時間加熱処理後の伸びは、実施例1〜5はほとんど変化がないが、比較例1〜5は72時間後に300℃1時間加熱処理すると伸び率は大きくなっている。
即ち、実施例の伸び特性は熱処理によっても安定しているため、寸法精度を要求される製品に好適に採用することができる。
<Evaluation of elongation>
As shown in Table 4, the elongation at normal temperature after foil production shows the same tendency in Examples 1 to 5 and Comparative Examples 1 to 5, but as shown in Table 5, 72 hours after the completion of foil production. Elongation and elongation after heating treatment at 300 ° C. for 1 hour after 72 hours have almost no change in Examples 1 to 5, but Comparative Examples 1 to 5 increase the elongation rate when heat treatment is performed at 300 ° C. for 1 hour after 72 hours. ing.
That is, since the elongation characteristics of the examples are stable even by heat treatment, it can be suitably used for products that require dimensional accuracy.

上述したように本発明は、製箔後も安定した伸び特性を示し、高い抗張力を維持する電解銅箔を提供することができ、HDDサスペンション、各種コネクタ部等の銅配線として好適に使用することができる優れた効果を有する。   As described above, the present invention can provide an electrolytic copper foil that exhibits a stable elongation characteristic even after foil formation and maintains high tensile strength, and can be suitably used as a copper wiring for HDD suspensions, various connector portions, and the like. Has an excellent effect.

Claims (7)

銅箔の製箔完了時から該銅箔の特性安定時以降の25℃で測定した抗張力が400N/mm2以上である高抗張力電解銅箔。 A high tensile strength electrolytic copper foil having a tensile strength of 400 N / mm 2 or more measured at 25 ° C. after the completion of copper foil production and after the characteristics of the copper foil are stabilized. 前記特性安定に要する時間が製箔完了時から48時間以降である請求項1に記載の高抗張力電解銅箔。   The high-tensile-strength electrolytic copper foil according to claim 1, wherein the time required for stabilizing the characteristics is 48 hours or more after the completion of foil production. 銅箔の製箔を完了し、該銅箔の特性が安定した後、該銅箔を300℃で1時間加熱処理し、該加熱処理後に25℃で測定した抗張力が400N/mm2以上である高抗張力電解銅箔。 After completing the copper foil manufacturing and stabilizing the characteristics of the copper foil, the copper foil is heat treated at 300 ° C. for 1 hour, and the tensile strength measured at 25 ° C. after the heat treatment is 400 N / mm 2 or more. High tensile strength electrolytic copper foil. 前記特性が安定するまでに要する時間が製箔完了時から48時間以降である請求項3に記載の高抗張力電解銅箔。   4. The high tensile strength electrolytic copper foil according to claim 3, wherein the time required for the characteristics to stabilize is 48 hours or more after the completion of foil production. 銅箔の製箔完了時から該銅箔の特性安定時以降の25℃で測定した抗張力が400N/mm2以上である電解銅箔を、少なくとも平均分子量が100以上の有機化合物の濃度が100ppm以上である硫酸銅浴を用いて製箔する高抗張力電解銅箔の製造方法。 An electrolytic copper foil having a tensile strength of 400 N / mm 2 or more measured at 25 ° C. after the completion of copper foil production and after stabilization of the characteristics of the copper foil is at least 100 ppm in concentration of an organic compound having an average molecular weight of 100 or more. The manufacturing method of the high tensile strength electrolytic copper foil foil-made using the copper sulfate bath which is. 銅箔の製箔を完了し、該銅箔の特性が安定した後、該銅箔を300℃で1時間加熱処理し、該加熱処理後に25℃で測定した抗張力が400N/mm2以上である電解銅箔を、少なくとも平均分子量が100以上の有機化合物の濃度が100ppm以上である硫酸銅浴を用いて製箔する高抗張力電解銅箔の製造方法。 After completing the copper foil manufacturing and stabilizing the characteristics of the copper foil, the copper foil is heat treated at 300 ° C. for 1 hour, and the tensile strength measured at 25 ° C. after the heat treatment is 400 N / mm 2 or more. A method for producing a high tensile strength electrolytic copper foil, in which an electrolytic copper foil is made using at least a copper sulfate bath in which the concentration of an organic compound having an average molecular weight of 100 or more is 100 ppm or more. 前記硫酸銅浴は有機硫黄系化合物を含有し、前記少なくとも平均分子量が100以上である有機化合物を前記有機硫黄系化合物の100倍以上の濃度で含む硫酸銅浴を用いて製造する請求項5または6に記載の高抗張力電解銅箔の製造方法。   The said copper sulfate bath contains an organic sulfur type compound, It manufactures using the copper sulfate bath which contains the said organic compound whose average molecular weight is 100 or more at a density | concentration 100 times or more of the said organic sulfur type compound. 6. A method for producing a high tensile strength electrolytic copper foil according to 6.
JP2007132581A 2007-05-18 2007-05-18 Electrolytic copper foil with high tensile-strength, and manufacturing method therefor Pending JP2008285727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007132581A JP2008285727A (en) 2007-05-18 2007-05-18 Electrolytic copper foil with high tensile-strength, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132581A JP2008285727A (en) 2007-05-18 2007-05-18 Electrolytic copper foil with high tensile-strength, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2008285727A true JP2008285727A (en) 2008-11-27

Family

ID=40145747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132581A Pending JP2008285727A (en) 2007-05-18 2007-05-18 Electrolytic copper foil with high tensile-strength, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2008285727A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246567A (en) * 2011-05-31 2012-12-13 Nippon Denkai Kk Ultrathin copper foil with support therefor, and method for manufacturing the same
CN103429793A (en) * 2011-03-30 2013-12-04 Jx日矿日石金属株式会社 Electrolytic copper foil and method for producing electrolytic copper foil
JP5373970B2 (en) * 2010-07-01 2013-12-18 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the same
CN104024483A (en) * 2012-03-02 2014-09-03 Jx日矿日石金属株式会社 Electrolytic Copper Foil, And Negative Electrode Collector For Secondary Battery
KR20150114484A (en) 2013-01-31 2015-10-12 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
KR20190003451A (en) 2016-06-14 2019-01-09 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488185A (en) * 1990-07-30 1992-03-23 Nippon Denkai Kk Production of coppering bath and electrolytic copper foil using same
JPH07188969A (en) * 1993-10-22 1995-07-25 Gould Electron Inc Electrodeposited copper foil and its preparation
JPH0853789A (en) * 1994-08-09 1996-02-27 Furukawa Circuit Foil Kk Production of elelctrolytic copper foil
WO1997043466A1 (en) * 1996-05-13 1997-11-20 Mitsui Mining & Smelting Co., Ltd. High-tensile electrolytic copper foil and process for producing the same
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JP2001123290A (en) * 1999-10-27 2001-05-08 Dowa Mining Co Ltd Electrolytic copper foil and method for manufacturing the same
JP2001523303A (en) * 1995-06-16 2001-11-20 ジーエイテック インコーポレイテッド Electrodeposited copper foil with high fatigue ductility
JP2002298854A (en) * 2002-03-19 2002-10-11 Nippon Denkai Kk Secondary battery
JP2004263289A (en) * 2002-10-25 2004-09-24 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and production method therefor
JP2004339558A (en) * 2003-05-14 2004-12-02 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and its production method
JP2006152420A (en) * 2004-12-01 2006-06-15 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for producing the same
WO2006080148A1 (en) * 2005-01-25 2006-08-03 Nippon Mining & Metals Co., Ltd. Copper electrolysis solution containing compound having specific skeleton as additive, and electrolytic copper foil produced therefrom
JP2006299320A (en) * 2005-04-19 2006-11-02 Ls Cable Ltd High strength low roughness copper foil and method of manufacturing the same
JP2008101267A (en) * 2006-04-28 2008-05-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP2008133513A (en) * 2006-11-29 2008-06-12 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and manufacturing method therefor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488185A (en) * 1990-07-30 1992-03-23 Nippon Denkai Kk Production of coppering bath and electrolytic copper foil using same
JPH07188969A (en) * 1993-10-22 1995-07-25 Gould Electron Inc Electrodeposited copper foil and its preparation
JP2002129373A (en) * 1993-10-22 2002-05-09 Ga Tek Inc Electrodeposited copper foil and manufacturing method therefor
JPH0853789A (en) * 1994-08-09 1996-02-27 Furukawa Circuit Foil Kk Production of elelctrolytic copper foil
JP2001523303A (en) * 1995-06-16 2001-11-20 ジーエイテック インコーポレイテッド Electrodeposited copper foil with high fatigue ductility
WO1997043466A1 (en) * 1996-05-13 1997-11-20 Mitsui Mining & Smelting Co., Ltd. High-tensile electrolytic copper foil and process for producing the same
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JP2001123290A (en) * 1999-10-27 2001-05-08 Dowa Mining Co Ltd Electrolytic copper foil and method for manufacturing the same
JP2002298854A (en) * 2002-03-19 2002-10-11 Nippon Denkai Kk Secondary battery
JP2004263289A (en) * 2002-10-25 2004-09-24 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and production method therefor
JP2004339558A (en) * 2003-05-14 2004-12-02 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and its production method
JP2006152420A (en) * 2004-12-01 2006-06-15 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for producing the same
WO2006080148A1 (en) * 2005-01-25 2006-08-03 Nippon Mining & Metals Co., Ltd. Copper electrolysis solution containing compound having specific skeleton as additive, and electrolytic copper foil produced therefrom
JP2006299320A (en) * 2005-04-19 2006-11-02 Ls Cable Ltd High strength low roughness copper foil and method of manufacturing the same
JP2008101267A (en) * 2006-04-28 2008-05-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP2008133513A (en) * 2006-11-29 2008-06-12 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373970B2 (en) * 2010-07-01 2013-12-18 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the same
CN103429793A (en) * 2011-03-30 2013-12-04 Jx日矿日石金属株式会社 Electrolytic copper foil and method for producing electrolytic copper foil
CN103429793B (en) * 2011-03-30 2019-03-05 Jx日矿日石金属株式会社 The manufacturing method of electrolytic copper foil and electrolytic copper foil
JP2012246567A (en) * 2011-05-31 2012-12-13 Nippon Denkai Kk Ultrathin copper foil with support therefor, and method for manufacturing the same
CN104024483A (en) * 2012-03-02 2014-09-03 Jx日矿日石金属株式会社 Electrolytic Copper Foil, And Negative Electrode Collector For Secondary Battery
EP2821527A4 (en) * 2012-03-02 2015-10-28 Jx Nippon Mining & Metals Corp Electrolytic copper foil, and negative electrode collector for secondary battery
CN104024483B (en) * 2012-03-02 2017-02-22 Jx日矿日石金属株式会社 Electrolytic Copper Foil, And Negative Electrode Collector For Secondary Battery
KR20150114484A (en) 2013-01-31 2015-10-12 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
KR20190006075A (en) 2013-01-31 2019-01-16 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
KR20190003451A (en) 2016-06-14 2019-01-09 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil

Similar Documents

Publication Publication Date Title
JP2008285727A (en) Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
JP5771392B2 (en) Electrolytic copper foil and method for producing the same
KR101385761B1 (en) Electrodeposited copper foil and process for production thereof
JP6529646B2 (en) Electrodeposited copper foil and surface treated copper foil obtained using the electrodeposited copper foil
JP2005290559A (en) Anodizing electrolyte for high voltage capacitor anode
JP2022008857A (en) Electrolytic copper foil for secondary battery and manufacturing method thereof
JP2017043834A (en) Additive for high purity electrolytic copper refinery and high purity copper manufacturing method
CN111910222A (en) Electrolytic copper foil additive with brightening and leveling functions and application thereof
JP2004035918A (en) Method of producing electrolytic copper foil
JP4883534B2 (en) Molten salt bath, method for producing molten salt bath, and tungsten precipitate
TWI598005B (en) Thick copper layer and method for manufacturing the same
JP5170681B2 (en) Electric aluminum plating solution and aluminum plating film
JP4721448B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP2007131909A5 (en) Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte
JP2013053362A (en) Copper foil for forming circuit superior in etching property, and copper-clad laminate plate using the same and printed wiring board
JP3983785B2 (en) Aluminum foil for electrolytic capacitors
JP5063057B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
KR101421503B1 (en) High purity methane sulfonic acid copper salt and Method for manufacturing PCB plating solution having the same
JP2008078277A (en) Aluminum alloy foil for electrolytic capacitor cathode, and alloy foil material used therefor
US12091766B2 (en) Electrolytic copper foil and method for producing same
JP2013204088A (en) Electrolytic solution for producing electrolytic copper foil and electrolytic copper foil
JP2017137517A (en) Aluminum plating solution, production method of aluminum plating film, and aluminum porous body
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
KR20240020681A (en) An electrolytic copper foil, a method for manufacturing the same, and articles made therefrom
JP2007092167A (en) Etching method for forming etching pits

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110517

Free format text: JAPANESE INTERMEDIATE CODE: A02