JP2004263289A - Low rough surface electrolytic copper foil, and production method therefor - Google Patents

Low rough surface electrolytic copper foil, and production method therefor Download PDF

Info

Publication number
JP2004263289A
JP2004263289A JP2003100647A JP2003100647A JP2004263289A JP 2004263289 A JP2004263289 A JP 2004263289A JP 2003100647 A JP2003100647 A JP 2003100647A JP 2003100647 A JP2003100647 A JP 2003100647A JP 2004263289 A JP2004263289 A JP 2004263289A
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
low
rough surface
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100647A
Other languages
Japanese (ja)
Other versions
JP4120806B2 (en
Inventor
Kyoji Sano
恭司 佐野
Kaoru Sakon
薫 左近
Hisashi Akamine
尚志 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2003100647A priority Critical patent/JP4120806B2/en
Priority to KR1020057018237A priority patent/KR100772946B1/en
Priority to CNB2004800078246A priority patent/CN100554527C/en
Priority to PCT/JP2004/004927 priority patent/WO2004090197A1/en
Priority to US10/551,035 priority patent/US20060191798A1/en
Publication of JP2004263289A publication Critical patent/JP2004263289A/en
Application granted granted Critical
Publication of JP4120806B2 publication Critical patent/JP4120806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide low rough surface electrolytic copper foil which has a low rough surface practically used for a printed circuit board and the negative electrode collector of a lithium secondary battery, and has excellent fatigue flexibility, concretely low rough surface electrolytic copper foil which has a uniformly low-roughened surface with a surface roughness Rz of ≤2.0 μm and free from the waviness of ruggedness in the rough surface, and also has an elongation percentage of ≥10.0% at 180°C. <P>SOLUTION: In the method of producing electrolytic copper foil where a sulfuric acid-copper sulfate aqueous solution is used as an electrolyte, an insoluble positive electrode consisting of a titanium plate coated with a platinum group element or the oxide element thereof and a drum made of titanium as a negative electrode confronted with the positive electrode are used, and a direct electric current is passed through the space between both the electrodes, an oxyethylene based surfactant, polyethylene imine or the derivative thereof, the sulfonate of an active organic sulfur compound and chlorine ions are allowed to be present in the electrolyte, so that the low rough surface electrolytic copper foil having a uniformly low-roughened surface in which surface roughness Rz is ≤2.0 μm, and waviness of ruggedness is not present, and having an elongation percentage of ≥10.0% at 180°C is obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低粗面電解銅箔及びその製造方法に関するものである。
【0002】
【従来の技術】
周知のとおり、電解銅箔は、硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタン板からなる不溶性陽極と該陽極に対向する陰極にチタン製ドラムを用い、当該両極間に直流電流を通ずることによってチタン製ドラム表面に電解銅を析出させ、このときチタン製ドラムは一定速度で回転しており、析出した電解銅をドラム表面から引き剥がして連続的に巻き取るという方法によって製造されている。
【0003】
なお、本発明においては、電解銅箔のドラム表面に接していた側の面を「光沢面」と指称し、逆の面を「粗面」と指称する。
【0004】
前記の様にして電解銅箔は製造されているが、この電解銅箔は当業者間において「未処理銅箔」と呼ばれており、通常はこの未処理銅箔のままで使用されることはなく、印刷回路用電解銅箔の場合には、樹脂との接着性を向上させることを目的にした粗化処理工程や耐熱性、耐薬品性及び防錆力を付与することを目的にした各種表面処理工程を経て製品とされている。
【0005】
古くは、未処理電解銅箔の製造工程において電解液に10〜100mg/L の塩素イオンと0.1 〜4.0mg/L のにかわ又はゼラチンとを存在させることによって粗面側の山谷形状を先鋭化させる(粗くする)手段が採られているが、近年に到っては、電解銅箔の用途であるプリント配線板やリチウム二次電池用負極集電体には粗面側の粗度ができるだけ低く、光沢面と粗面との粗度差が小さく(光沢面は陰極ドラム表面の平滑な形状を写し取るので、光沢面と粗面との間には必然的に粗度差が生じる。)、しかも薄い電解銅箔が求められてきている。
【0006】
これは、プリント配線板の場合には、ファインライン化やファインパターン化に伴う回路精度向上の観点からの要求からであり、また、リチウムイオン二次電池用負極集電体の場合には、光沢面と粗面との粗度差、換言すれば、表面積の差に基づく電池反応の差を考慮する必要が少なくなるという理由からである。
【0007】
しかし、光沢面と粗面との粗度差を小さくし、しかも実用可能な機械的諸特性を満足させることは困難である。
【0008】
従来、電解銅箔の製造方法において、電解液に各種水溶性高分子物質、各種界面活性剤、各種有機イオウ系化合物、塩素イオンなどを適宜選定して添加することによって光沢面と粗面との粗度差を小さくできることが知られており、例えば後出特許文献1には、電解液に低分子量水溶性セルロースエーテル、低分子量水溶性ポリアルキレングリコールエーテル、低分子量水溶性ポリエチレンイミン及び水溶性スルフォン化有機硫黄化合物を添加する場合には粗面側に約3.8 μm以下の高さの微細突端を持つ電解銅箔(未処理電解銅箔)が得られることが開示されており、例えば後出特許文献2には、電解液にセルロースエーテル、低分子量膠、メルカプト基を持つ化合物及び塩化物イオンを添加する場合には、粗面側の粗度が低くて光沢面と粗面との粗度差が小さく、しかも高い高温時伸び率を示す電解銅箔(未処理電解銅箔)が得られることが開示されている。
【0009】
【特許文献1】
特表2002−506484号公報
【特許文献2】
特許第3313277号公報
【0010】
本発明者等は、硫酸−硫酸銅水溶液からなる電解液に特許文献1,2に記載されている各種水溶性高分子物質、各種有機イオウ系化合物、塩素イオンなどを適宜組み合せて添加し、電解銅箔を得る実験を数多く行ったところ、得られた電解銅箔の粗面側の粗度は低くできたが、当該粗面には緩やかな凹凸のうねり(後出図7参照)が生じていた。
【0011】
電解銅箔(未処理銅箔)の粗面に生じている緩やかな凹凸のうねりは、前記粗化処理工程において銅結晶粒子の異常折出を誘起する要因となり、製品の粗面粗さ(Rz)を上昇させることになる。
【0012】
また、フレキシブルプリント配線板用途では絶縁フイルムと接着させる工程で銅箔は熱履歴を受けるが、この熱履歴によって銅結晶粒子が小さい場合には該銅結晶粒子が粒成長して粗大化する。
【0013】
【発明が解決しようとする課題】
そこで、本発明は、プリント配線板用途やリチウム二次電池用負極集電体用途に実用できる粗面に凹凸のうねりがなく均一に低粗度化された粗面を持つ低粗面電解銅箔、具体的には、粗面粗さRzが2.0 μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180 ℃における伸び率が10.0%以上である低粗面電解銅箔を提供することを技術的課題とする。
【0014】
本発明者等は、前記課題を達成すべく鋭意検討を重ねた結果、硫酸−硫酸銅水溶液からなる電解液にポリオキシエチレン系界面活性剤、ポリエチレンイミンまたはその誘導体、活性有機イオウ化合物のスルフォン酸塩及び塩素イオンの4つの添加剤を存在させる場合には、粗面粗さRzが2.0 μm以下で該粗面に凹凸のうねりが実質的になく均一に低粗度化された粗面を持ち、且つ、180 ℃における伸び率が10.0%以上である低粗面電解銅箔が得られるという刮目すべき知見を得、当該課題を達成したのである。
【0015】
【課題を解決するための手段】
すなわち、本発明は、電解銅箔の粗面粗さRzが2.0 μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180 ℃における伸び率が10.0%以上であることを特徴とする低粗面電解銅箔である。
【0016】
また、本発明は、前記低粗面電解銅箔において、JISZ8741に基づきGs(85°)にて測定した粗面の鏡面光沢度が100 以上のものである。
【0017】
また、本発明は、硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタン板からなる不溶性陽極と該陽極に対向する陰極にチタン製ドラムを用い、当該両極間に直流電流を通じる電解銅箔の製造方法において、前記電解液にオキシエチレン系界面活性剤、ポリエチレンイミン又はその誘導体、活性有機イオウ化合物のスルフォン酸塩及び塩素イオンを存在させることによって粗面粗さRzが2.0 μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180 ℃における伸び率が10.0%以上である低粗面電解銅箔を得ることを特徴とする低粗面電解銅箔の製造方法である。
【0018】
また、本発明は、前記低粗面電解銅箔の製造方法において、JISZ8741に基づきGs(85°)にて測定した粗面の鏡面光沢度が100 以上である低粗面電解銅箔を得ることができるものである。
【0019】
また、本発明は、電解液中におけるオキシエチレン系界面活性剤の濃度が10〜200 mg/Lである前記低粗面電解銅箔の製造方法である。
【0020】
また、本発明は、電解液中におけるポリエチレンイミン又はその誘導体の濃度が0.5 〜30.0mg/Lである前記低粗面電解銅箔の製造方法である。
【0021】
また、本発明は、電解液中における活性有機イオウ化合物のスルフォン酸塩の濃度が5.5 〜450 μmol/L である前記低粗面電解銅箔の製造方法である。
【0022】
また、本発明は、電解液中における塩素イオンの濃度が20〜120mg/L である前記低粗面電解銅箔の製造方法である。
【0023】
本発明の構成を詳しく説明すれば、次のとおりである。
【0024】
本発明において硫酸−硫酸銅水溶液からなる電解液中に添加する添加剤は、オキシエチレン系界面活性剤、ポリエチレンイミンまたはその誘導体、活性有機イオウのスルフォン酸塩及び塩素イオンの4つの添加剤であるが、これら添加剤が一定の濃度領域であって、しかも水溶性高分子群については一定の分子量域でのみ、目的とする低粗面電解銅箔を得ることが出来る。
【0025】
先ず、本発明に用いるオキシエチレン系界面活性剤としては、ポリエチレングリコールであって平均分子量が2000〜35000 のものポリオキシエチレン・ポリオキシプロピレン共重合体であってオキシプロピレン部分の平均分子量が2000〜4000で全分子量中のオキシエチレンの重量比が80wt%以上のもの、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ビスフェノールA−エチレンオキサイド付加物などが挙げられる。なお、全分子量中のオキシエチレンの重量比が80wt%以下のものは、硫酸−硫酸銅水溶液からなる電解液に溶解しない。
【0026】
ポリエチレングリコールの平均分子量が2000以下の場合には電解銅箔の表面に異常電着が起こる。
【0027】
本発明においては、前記化合物の内の1種類又は2種類以上を組み合わせて、その単独もしくは合計の電解液中における濃度が10〜200mg/L となるように電解液に添加する。この濃度範囲の下限値は重要であり、ポリエチレンイミン及びその誘導体、活性有機イオウのスルフォン酸塩及び塩素イオンの三者が後述する各好適濃度範囲に調整されていても目的とする低粗面電解銅箔が得られない閾値を示している。これに対して上限値は下限域が示すような目的とする低粗面電解銅箔が得られるか、得られないかを分ける閾値では無く、工業的な操業条件下では経済的な観点からその濃度を高い値に保つことは何ら積極的価値を持たない。従って、ここで規定した上限値は得られる電解銅箔の特性を規定する為のものではなく、実際には上限域を超える領域でも目的とする低粗面電解銅箔を得ることは出来るが現実的ではない。
【0028】
また、平均分子量の下限値も重要であり、平均分子量2000に満たない場合には目的とする低粗面電解銅箔が得られない。一方、上限値は濃度範囲の上限値と同称のことが言え、例えば、平均分子量35000 を超えるポリエチレングリコールを用いても低粗面電解銅箔が得られる可能性が十分推察できる。
【0029】
次に、オキシエチレン系界面活性剤、活性有機イオウ化合物及び塩素イオンを電解液中に添加することによって得られる電解銅箔の粗面には緩やかな凹凸のうねりが生じるが、ポリエチレンイミンを添加することによってこの様なうねりの発生を抑制することが出来る。
【0030】
本発明に用いるポリエチレンイミンは、重量平均分子量が600 以上のものが望ましく、10000 以上のものがより望ましい。重量平均分子量が600 以上のものであれば、化1に示す直線型、化2に示す分岐型のいずれを用いてもよく、両者の混合物を用いることもできる。
【0031】
【化1】

Figure 2004263289
【0032】
【化2】
Figure 2004263289
【0033】
なお、市販品としては、例えば「エポミン:商品名・品番:P−1000・日本触媒製・重量平均分子量:70000 」が挙げられる。
【0034】
ポリエチレンイミン誘導体としては、プロピレンオキサイド付加物であってその重量平均分子量が1000以上のものが望ましく、プロピレンオキサイドが付加されるポリエチレンイミンの分子量は600 以上であることが望ましい。
【0035】
また、化3に示すようにポリエチレンイミンの第1級及び第2級アミン水素への置換基ができることが望ましい。
【0036】
【化3】
Figure 2004263289
【0037】
なお、市販品としては、例えば「エポミン:商品名・品番:PP−061・日本触媒製・重量平均分子量:1200」が挙げられる。
【0038】
ポリエチレンイミンの重量平均分子量が600 未満の場合及び前記ポリエチレンイミン誘導体の重量平均分子量が1000未満の場合には、その濃度によらず得られる電解銅箔の粗面には緩やかな凹凸のうねりが生じて光沢化(均一な低粗度化)しない。なお、粗面に緩やかな凹凸のうねりが生じておらず均一に低粗度化されている場合にはその外観は光沢を有しているが、粗面に緩やかな凹凸のうねりが生じ均一に低粗度化されていない場合にはその外観は半光沢乃至くすんだものとなる。
【0039】
ポリエチレンイミン及びその誘導体の濃度領域と分子量の関係の一般的傾向として、分子量が高くなるに従い、粗面が半光沢から光沢へと変化し始める濃度閾値が上昇し、メッキ膜を形成せず粉状の銅析出となる「ヤケメッキ」領域へと変化し始める濃度もより高濃度側へと移行する。また、光沢領域内であってもポリエチレンイミンの濃度を上昇させて行くと高温時の伸び率の低下が生じるようになる。このようなポリエチレンイミン及びその誘導体の分子量とその濃度が与える影響を考慮した上で分子量と濃度の各範囲を定める必要があり、ポリエチレンイミン及びその誘導体の分子量は600 〜70000 であることが望ましく、その電解液中における濃度は0.5 〜30.0mg/Lの範囲、好ましくは1.0 〜10.0mg/Lの範囲であることが望ましい。
【0040】
ポリエチレンイミン及びその誘導体の電解液中における濃度が0.5mg/L 未満の場合には粗面はくすんだ外観を呈し、30mg/Lを超えるとヤケメッキ領域へと移行し、もはや電解銅箔が得られることはない。
【0041】
次に、本発明に用いる活性有機イオウ化合物は、水難溶性のアルキルチオールを可溶化した化合物であることが必須であるが、可溶化する為に水酸基またはカルボキシル基を付加した場合には目的とする低粗面電解銅箔を得ることは出来ない。従って、必ずスルフォン酸塩の形で可溶化する必要がある。本発明に好適な活性有機イオウ化合物のスルフォン酸塩の代表的な化合物は化4、化5、化6、化7に示すものである。
【0042】
【化4】
Figure 2004263289
【0043】
【化5】
Figure 2004263289
【0044】
【化6】
Figure 2004263289
【0045】
【化7】
Figure 2004263289
【0046】
これら化合物の添加量を質量濃度として表現することは適当では無い。これら化合物はその構造内に存在するチオール基によってその効果が決定されることに注目すれば、化4で示した3−メルカプト−1− プロパンスルフォン酸の2分子会合形である化5の化合物は2つのチオール基が生成することになり、1分子でも3−メルカプト−1− プロパンスルフォン酸ナトリウムの2倍の効果を示すことになるから、分子内に存在するチオール基のモル数によって規定できることになる。
【0047】
そこで、チオール基の存在量をモル濃度で表現すれば、本発明における活性有機イオウ化合物の好ましい電解液への添加量(モル濃度) は5.5 〜450 μmol/L の範囲、好ましくは55〜180 μmol/L の範囲であることが望ましい。電解液中における濃度が5.5 μmol/L に満たない場合には、粗面に緩やかな凹凸のうねりが生じ均一に低粗度化せずにくすんだ外観を呈し光沢が生じない。しかも180 ℃における伸び率も低い。添加量が450 μmol/L を越えても粗面状態や180 ℃伸び率に影響はないが、電解液中の活性有機イオウ化合物の濃度を高く保つことは、不溶性陽極を使って電解銅箔を得る場合には、高いアノード電位の為に高価な有機イオウ系化合物を無駄に分解消耗することになるので現実的ではない。
【0048】
次に、本発明においては、塩素イオンの存在が非常に重要であり、オキシエチレン系界面活性剤、ポリエチレンイミン又はその誘導体及び活性有機イオウ化合物のスルフォン酸塩の三者が前述した各好適濃度範囲に調整されていても目的とする低粗面電解銅箔を得ることは出来ない。塩素イオンが共存する時にのみ本発明の目的が達せられるのである。
【0049】
また、塩素イオン濃度と活性有機イオウ化合物濃度との関係も重要であり、粗面が光沢外観(粗面に緩やかな凹凸のうねりが生じておらず均一に低粗度している状態)を呈する濃度領域は両者によってほぼ決定づけられ、この光沢範囲は塩素イオン濃度が上昇するに従い縮小する傾向にあり、活性有機イオウ化合物の濃度を低下させて操業する為にも塩素イオンの濃度を低く抑えることが望ましい。従って、電解液中における塩素イオン濃度は20〜120mg/L の範囲、好ましくは30〜100mg/L の範囲であることが望ましい。塩素イオンの濃度が20mg/Lに満たない場合には粗面が粗面粗さ2.0 μm以下にまで低粗度化しない。塩素イオンが120mg/L をこえるとメッキ面にざらつきが生じる。
【0050】
塩素イオンの供給源は、水溶液中で解離して塩素イオンを放出する無機塩類であれば良く、その代表例としてはNaClやHCl などがあげられる。
【0051】
本発明においては、前記オキシエチレン系界面活性剤、前記ポリエチレンイミン又はその誘導体、前記活性有機イオン化合物のスルフォン酸塩及び塩素イオンの4つの添加剤を、それぞれ前述の各好適濃度範囲に調整してなる硫酸−硫酸銅水溶液を電解液として用い、陽極には白金属酸化物被覆チタン板を陰極にはチタン製ドラムを使って、電解液温35〜50℃及び電解電流密度30〜50A/dmの条件で電解することによって、目的とする低粗面電解銅箔を得ることが出来る。
【0052】
【発明の実施の形態】
硫酸(HSO):100g/L、硫酸銅五水和物(CuSO・5HO):280g/Lの硫酸−硫酸銅水溶液からなる電解液を調整した(以下、この電解液を「基本電解液」という)。
【0053】
添加剤としてポリエチレングリコール(平均分子量20000 ・三洋化成製)、ポリエチレンイミン(エポミン:商品名・品番:P−1000・日本触媒製・重量平均分子量:70000 )、3−メルカプト−1− プロパンスルフォン酸ナトリウム及び塩酸を基本電解液に添加してポリエチレングリコール:30mg/L、ポリエチレンイミン:0.5mg/L 、3−メルカプト−1− プロパンスルフォン酸ナトリウム:220 μmol/L 及び塩素イオン:35mg/Lに調整した。
【0054】
この添加剤を含む電解液を陽極である白金属酸化物被覆チタン板と陰極であるチタン製ドラムとの間に流入させ、電解電流密度:45A/dm、電解液温:40℃、で電析して厚さ18μmの低粗面電解銅箔を得た。なお、目視観察により、この低粗面電解銅箔の粗面が光沢を有していることが確認できた。
【0055】
ここに得た低粗面電解銅箔(未処理電解銅箔)の室温(約25℃)及び180 ℃での抗張力(MPa )と伸び率(%)をIPC−TM−650に基づき、インテスコ社製の2001型引張力試験機を用いて測定すると共に、粗面の表面粗さ(Rz)をJISB0601に基づき、小坂研究所製のサーフコーダーSE1700αを用いて測定した。また、当該低粗面電解銅箔の粗面における凹凸のうねり度合いを表す指標として、粗面の鏡面光沢度をJISZ8741に基づき、ミノルタ株式会社製の光沢計(商品名:マルチグロス268 型)を用い、Gs(85°)にて低粗面電解銅箔の幅方向と長さ(流れ)方向の二方向について測定した。各測定結果を表2に示す。
【0056】
なお、前記鏡面光沢度Gs(85°)は、粗面に凹凸のうねりが実質的に生じていない場合には100 以上の数値を示し、粗面に緩やかな凹凸のうねりが生じている場合には100 未満の数値を示す(後出表2及び図1〜7参照)。すなわち、前記鏡面光沢度Gs(85°)の値を粗面における凹凸のうねり度合いの指標とすることができ、該値が小さくなるほど凹凸のうねり度合いは大きく、該値が大きくなるほど凹凸のうねり度合いは小さい。
【0057】
図1は、ここに得た低粗面電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)であり、同図により、粗面には凹凸のうねりが実質的になく均一に低粗度化している粗面状態が確認できる。
【0058】
【実施例】
【0059】
実施例1〜7,比較例1〜9.
【0060】
添加剤の種類と電解液中における濃度及び電解電流密度と電解液温を表1に示すとおりに変更した外は、前記発明の実施の形態と同じ条件で厚さ18μmの電解銅箔を得た。得られた各電解銅箔(未処理電解銅箔)の室温(約25℃)及び180 ℃での抗張力(MPa )と伸び率(%)並びに表面粗さ(Rz)・(μm)、及び粗面における幅方向と長さ(流れ)方向の前記鏡面光沢度Gs(85°)を前記発明の実施の形態と同じ測定法によって測定した結果を表2に示す。
【0061】
【表1】
Figure 2004263289
【0062】
【表2】
Figure 2004263289
【0063】
図2〜6は、各比較例で得た各電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)であり、図2は比較例1(ポリエチレングリコールの平均分子量が低くポリエチレンイミンの濃度が低い場合)の粗面状態を、図3は比較例3(ポリエチレンイミンの重量平均分子量が低い場合)の粗面状態を、図4は比較例4(ポリエチレングリコールの平均分子量が低くポリエチレンイミンの濃度が高い場合)の粗面状態を、図5は比較例6(ポリエチレンイミンの濃度が低い場合)の粗面状態を、図6は比較例7(3−メルカプト−1− プロパンスルフォン酸ナトリウムの濃度が低い場合)の粗面状態を、それぞれ示している。
【0064】
図7は、ポリエチレンイミンを添加しなかった外は、前記発明の実施の形態と同じ条件で得た厚さ18μmの電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)であり、粗面に緩やかな凹凸のうねりが生じている状態が確認できる。なお、図7と前記発明の実施の形態における図1とを対比すれば、ポリエチレンイミンの添加によって粗面に緩やかな凹凸のうねりが生じず表面粗さが顕著に低下することが確認できる。
【0065】
また、表1及び表2から、前記発明の実施の形態並びに実施例1〜7の各電解液においては、ポリエチレンイミンの濃度が増すに従って室温での抗張力が増加するが粗面粗さ(Rz)はほぼ一定の値を維持していることが確認できる。
【0066】
なお、本発明者らは、数多くの実験によって基本電解液中に、ポリエチレングリコールが存在しない場合には粗面が光沢外観を呈さず、ポリエチレンイミンが存在しない場合には粗面が粗くてくすんだ外観を呈し、180 ℃での伸び率が低く、3−メルカプト−1− プロパンスルフォン酸ナトリウムが存在しない場合には粗面が非常に粗く、180 ℃での伸び率が低く、塩素イオンが存在しない場合には電着面(メッキ面)が割れ、180 ℃の伸び率が低いことを確認している。
【0067】
また、水溶性高分子の濃度や平均分子量を前記所定範囲内で増加させた場合には、これに伴って前記鏡面光沢度Gs(85°)が増す傾向にあることを確認している。なお、前記鏡面光沢度Gs(85°)が100 以上の低粗面電解銅箔を得るには、基本電解液中にポリエチレングリコール、3−メルカプト−1− プロパンスルフォン酸ナトリウム、ポリエチレンイミン及び塩素イオンを存在させることが好適であるが、これらの内いずれか一つの物質でも欠落したり、濃度又は平均分子量が前記所定範囲外になった場合には前記鏡面光沢度(85°)が100 未満になる。
【0068】
【発明の効果】
本発明によれば、プリント配線板用途や二次電池用負極集電体用途に最適の粗面粗さRzが2.0 μm以下で該粗面に凹凸のうねりが実質的になく前記鏡面光沢度Gs(85°)が100 以上の均一に低粗度化された粗面を持ち、且つ、180 ℃における伸び率が10.0%以上であり、光沢面と粗面との間の粗度差が可及的に小さい低粗面電解銅箔(未処理電解銅箔)を提供することができる。
【0069】
従って、本発明の作業利用性は非常に高いといえる。
【図面の簡単な説明】
【図1】発明の実施の形態で得た電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)である。
【図2】比較例1で得た電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)である。
【図3】比較例3で得た電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)である。
【図4】比較例4で得た電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)である。
【図5】比較例6で得た電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)である。
【図6】比較例7で得た電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)である。
【図7】ポリエチレンイミンを添加しない電解液を用いて得た電解銅箔(未処理電解銅箔)の粗面を撮影した電子顕微鏡写真(倍率×1000)である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-roughness electrolytic copper foil and a method for producing the same.
[0002]
[Prior art]
As is well known, the electrolytic copper foil uses a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution, using a titanium drum as an insoluble anode made of a titanium plate coated with a white metal element or its oxide element and a cathode facing the anode, By passing a direct current between the two electrodes, electrolytic copper is deposited on the surface of the titanium drum.At this time, the titanium drum is rotating at a constant speed, and the deposited electrolytic copper is peeled off from the drum surface and continuously wound. It is manufactured by the method of taking.
[0003]
In the present invention, the surface of the electrodeposited copper foil on the side in contact with the drum surface is referred to as “glossy surface”, and the opposite surface is referred to as “rough surface”.
[0004]
Although the electrolytic copper foil is manufactured as described above, this electrolytic copper foil is called `` untreated copper foil '' by those skilled in the art, and is usually used as it is. However, in the case of electrolytic copper foil for printed circuits, it was intended to impart a roughening treatment step and heat resistance, chemical resistance, and rust resistance for the purpose of improving the adhesiveness with the resin. It is a product after various surface treatment processes.
[0005]
In the old days, in the manufacturing process of the untreated electrolytic copper foil, the peaks and valleys on the rough surface side were formed by the presence of 10 to 100 mg / L of chloride ions and 0.1 to 4.0 mg / L of glue or gelatin in the electrolytic solution. Means for sharpening (roughening) have been adopted, but recently, the roughness of the rough surface side has been increased for printed wiring boards and negative electrode current collectors for lithium secondary batteries, which are used for electrolytic copper foil. Is as low as possible, and the difference in roughness between the glossy surface and the rough surface is small. (Since the glossy surface captures the smooth shape of the surface of the cathode drum, a roughness difference is inevitably generated between the glossy surface and the rough surface. ) In addition, a thin electrolytic copper foil has been demanded.
[0006]
This is due to the requirement from the viewpoint of improving the circuit accuracy accompanying fine line and fine pattern in the case of a printed wiring board, and the glossiness in the case of a negative electrode current collector for a lithium ion secondary battery. This is because the difference in roughness between the surface and the rough surface, in other words, the difference in battery reaction based on the difference in surface area becomes less necessary.
[0007]
However, it is difficult to reduce the difference in roughness between the glossy surface and the rough surface and to satisfy practical mechanical properties.
[0008]
Conventionally, in a method for producing an electrolytic copper foil, by appropriately selecting and adding various water-soluble polymer substances, various surfactants, various organic sulfur-based compounds, chloride ions, and the like to an electrolytic solution, a glossy surface and a rough surface can be obtained. It is known that the roughness difference can be reduced. For example, Patent Literature 1 mentioned below discloses that a low molecular weight water-soluble cellulose ether, a low molecular weight water-soluble polyalkylene glycol ether, a low molecular weight water-soluble polyethyleneimine and a water-soluble sulfone are used in an electrolytic solution. It is disclosed that when an organic sulfur compound is added, an electrolytic copper foil (untreated electrolytic copper foil) having a fine tip having a height of about 3.8 μm or less on the rough surface side can be obtained. Patent Document 2 discloses that when a cellulose ether, a low molecular weight glue, a compound having a mercapto group and chloride ions are added to the electrolytic solution, the roughness on the rough side is low and the glossy surface is low. Roughness difference between the rough surface is small, yet electrodeposited copper foil exhibiting high high temperature elongation (untreated electrolytic copper foil) that is obtained is disclosed.
[0009]
[Patent Document 1]
Japanese Patent Application Publication No. 2002-506484 [Patent Document 2]
Japanese Patent No. 3313277
The present inventors have added an appropriate combination of various water-soluble polymer substances, various organic sulfur-based compounds, and chloride ions described in Patent Literatures 1 and 2 to an electrolytic solution comprising a sulfuric acid-copper sulfate aqueous solution. When a large number of experiments for obtaining a copper foil were performed, the roughness of the rough surface side of the obtained electrolytic copper foil could be reduced, but the rough surface had undulating undulations (see FIG. 7 described later). Was.
[0011]
The undulation of the gradual unevenness generated on the roughened surface of the electrolytic copper foil (untreated copper foil) becomes a factor inducing abnormal precipitation of the copper crystal particles in the roughening process, and the roughness of the product (Rz ) Will rise.
[0012]
Further, in a flexible printed wiring board application, the copper foil receives a heat history in the step of bonding to the insulating film, and when the copper crystal particles are small due to the heat history, the copper crystal particles grow and become coarse.
[0013]
[Problems to be solved by the invention]
Therefore, the present invention provides a low-roughened electrolytic copper foil having a roughened surface having a uniformly roughened surface without undulations on the rough surface, which can be used for printed wiring boards and negative electrode current collectors for lithium secondary batteries. Specifically, the rough surface has a roughness Rz of 2.0 μm or less, the rough surface has a uniformly roughened surface without uneven waviness, and an elongation at 180 ° C. of 10. It is a technical object to provide a low-roughness electrolytic copper foil having 0% or more.
[0014]
The present inventors have conducted intensive studies to achieve the above object, and as a result, a polyoxyethylene surfactant, polyethyleneimine or a derivative thereof, and a sulfonate of an active organic sulfur compound were added to an electrolytic solution composed of a sulfuric acid-copper sulfate aqueous solution. In the case where the four additives of salt and chloride ion are present, a rough surface having a rough surface roughness Rz of 2.0 μm or less, having substantially no irregularities on the rough surface and having a uniform low roughness. The present inventors have obtained remarkable knowledge that a low-roughened electrolytic copper foil having an elongation at 180 ° C. of 10.0% or more can be obtained, thereby achieving the object.
[0015]
[Means for Solving the Problems]
That is, the present invention relates to an electrodeposited copper foil having a rough surface roughness Rz of 2.0 μm or less, a rough surface having no uneven waviness, a uniformly reduced roughness, and an elongation at 180 ° C. A low-roughness electrolytic copper foil having a ratio of 10.0% or more.
[0016]
Further, in the present invention, the low-roughness electrolytic copper foil has a specular glossiness of a rough surface measured at Gs (85 °) based on JISZ8741 of 100 or more.
[0017]
Further, the present invention uses a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution, using a titanium drum coated on a titanium plate coated with a white metal element or an oxide element thereof, and a titanium drum facing the anode, between the two electrodes. In the method for producing an electrolytic copper foil passing a direct current through the oxyethylene-based surfactant, polyethyleneimine or a derivative thereof, a sulfonate of an active organic sulfur compound and chloride ions in the electrolytic solution, the rough surface roughness A low-roughness electrolytic copper having an Rz of 2.0 μm or less, a rough surface having a uniformly reduced roughness without uneven waviness, and an elongation at 180 ° C. of 10.0% or more. A method for producing a low-roughness electrolytic copper foil, characterized by obtaining a foil.
[0018]
In addition, the present invention provides the method for producing a low-roughened electrolytic copper foil, wherein the low-roughened electrolytic copper foil has a specular gloss of 100 or more on the rough surface measured by Gs (85 °) based on JISZ8741. Can be done.
[0019]
Further, the present invention is the method for producing the low-roughened electrolytic copper foil, wherein the concentration of the oxyethylene-based surfactant in the electrolytic solution is 10 to 200 mg / L.
[0020]
Further, the present invention is the method for producing the low-roughened electrolytic copper foil described above, wherein the concentration of the polyethyleneimine or a derivative thereof in the electrolytic solution is 0.5 to 30.0 mg / L.
[0021]
Further, the present invention is the method for producing the low-roughened electrolytic copper foil, wherein the concentration of the sulfonate of the active organic sulfur compound in the electrolytic solution is 5.5 to 450 μmol / L.
[0022]
Further, the present invention is the method for producing a low-roughened electrolytic copper foil, wherein the concentration of chlorine ions in the electrolytic solution is 20 to 120 mg / L.
[0023]
The configuration of the present invention will be described in detail as follows.
[0024]
In the present invention, the additives to be added to the electrolytic solution composed of the sulfuric acid-copper sulfate aqueous solution are four additives of oxyethylene surfactant, polyethyleneimine or its derivative, sulfonate of active organic sulfur and chloride ion. However, the desired low-roughness electrolytic copper foil can be obtained only when these additives are in a certain concentration region and the water-soluble polymer group is only in a certain molecular weight region.
[0025]
First, the oxyethylene-based surfactant used in the present invention is a polyethylene glycol having an average molecular weight of 2,000 to 35,000, a polyoxyethylene / polyoxypropylene copolymer having an average molecular weight of the oxypropylene portion of 2,000 to 2,000. When the molecular weight is 4000 and the weight ratio of oxyethylene in the total molecular weight is 80% by weight or more, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, bisphenol A-ethylene oxide adduct and the like can be mentioned. It should be noted that those having a weight ratio of oxyethylene of 80% by weight or less in the total molecular weight do not dissolve in an electrolytic solution composed of a sulfuric acid-copper sulfate aqueous solution.
[0026]
When the average molecular weight of polyethylene glycol is 2000 or less, abnormal electrodeposition occurs on the surface of the electrolytic copper foil.
[0027]
In the present invention, one or a combination of two or more of the above compounds is added to the electrolytic solution such that the concentration of the compound alone or in the total electrolytic solution is 10 to 200 mg / L. The lower limit of this concentration range is important, and even if the three components of polyethyleneimine and its derivatives, sulfonate of active organic sulfur and chloride ion are adjusted to the respective preferred concentration ranges described below, the desired low surface roughness This indicates a threshold at which a copper foil cannot be obtained. On the other hand, the upper limit is not a threshold value for determining whether or not a low-surface-roughened electrolytic copper foil intended as shown by the lower limit region is obtained, and is not economically viable under industrial operating conditions. Keeping the concentration high has no positive value. Therefore, the upper limit value specified here is not for defining the characteristics of the obtained electrolytic copper foil, and in practice, it is possible to obtain a target low-roughness electrolytic copper foil even in a region exceeding the upper limit range. Not a target.
[0028]
The lower limit of the average molecular weight is also important. If the average molecular weight is less than 2,000, the desired low-surface-roughness electrolytic copper foil cannot be obtained. On the other hand, the upper limit can be said to have the same name as the upper limit of the concentration range. For example, even if polyethylene glycol having an average molecular weight of more than 35,000 is used, the possibility of obtaining a low-roughened electrolytic copper foil can be sufficiently estimated.
[0029]
Next, the undulating surface of the electrolytic copper foil obtained by adding the oxyethylene-based surfactant, the active organic sulfur compound and the chloride ion to the electrolytic solution has undulating irregularities, but polyethyleneimine is added. Thus, occurrence of such undulation can be suppressed.
[0030]
The polyethyleneimine used in the present invention preferably has a weight average molecular weight of 600 or more, more preferably 10,000 or more. As long as the weight average molecular weight is 600 or more, any of the linear type shown in Chemical formula 1 and the branched type shown in Chemical formula 2 may be used, and a mixture of both may be used.
[0031]
Embedded image
Figure 2004263289
[0032]
Embedded image
Figure 2004263289
[0033]
In addition, as a commercially available product, for example, "Epomin: trade name / part number: P-1000 / manufactured by Nippon Shokubai / weight average molecular weight: 70000" can be mentioned.
[0034]
As the polyethyleneimine derivative, a propylene oxide adduct having a weight average molecular weight of 1,000 or more is desirable, and the molecular weight of polyethyleneimine to which propylene oxide is added is desirably 600 or more.
[0035]
Further, it is desirable that a substituent can be formed on the primary and secondary amine hydrogens of polyethyleneimine as shown in Chemical formula 3.
[0036]
Embedded image
Figure 2004263289
[0037]
Examples of commercially available products include “Epomin: trade name / part number: PP-061 / manufactured by Nippon Shokubai / weight average molecular weight: 1200”.
[0038]
When the weight average molecular weight of polyethyleneimine is less than 600 and when the weight average molecular weight of the polyethyleneimine derivative is less than 1000, undulations of gentle irregularities occur on the rough surface of the obtained electrolytic copper foil regardless of the concentration. And does not gloss (uniform low roughness). In addition, when the rough surface does not have undulating undulations and is uniformly low in roughness, the appearance is glossy, but the undulating undulations on the rough surface are uniform. If the roughness is not reduced, the appearance becomes semi-glossy or dull.
[0039]
As a general trend of the relationship between the concentration range and molecular weight of polyethyleneimine and its derivatives, as the molecular weight increases, the concentration threshold at which the rough surface starts to change from semi-glossy to gloss increases, and the The concentration that starts to change to the “burn plating” region where copper is deposited also shifts to a higher concentration side. Further, even in the glossy region, if the concentration of polyethyleneimine is increased, the elongation at a high temperature decreases. It is necessary to determine the respective ranges of the molecular weight and the concentration in consideration of the influence of the molecular weight and the concentration of such polyethyleneimine and its derivative, and it is preferable that the molecular weight of polyethyleneimine and its derivative be 600 to 70,000, The concentration in the electrolyte is preferably in the range of 0.5 to 30.0 mg / L, and more preferably in the range of 1.0 to 10.0 mg / L.
[0040]
When the concentration of polyethyleneimine and its derivatives in the electrolytic solution is less than 0.5 mg / L, the rough surface has a dull appearance, and when it exceeds 30 mg / L, it shifts to the burnt plating area, and an electrolytic copper foil is no longer obtained. It will not be done.
[0041]
Next, the active organic sulfur compound used in the present invention is essential to be a compound obtained by solubilizing a poorly water-soluble alkyl thiol. A low-roughness electrolytic copper foil cannot be obtained. Therefore, it must be solubilized in the form of a sulfonate. Representative compounds of sulfonates of active organic sulfur compounds suitable for the present invention are shown in Chemical formulas (4), (5), (6) and (7).
[0042]
Embedded image
Figure 2004263289
[0043]
Embedded image
Figure 2004263289
[0044]
Embedded image
Figure 2004263289
[0045]
Embedded image
Figure 2004263289
[0046]
It is not appropriate to express the added amount of these compounds as mass concentration. Noting that the effect of these compounds is determined by the thiol group present in the structure, the compound of Chemical Formula 5, which is a bimolecular association form of 3-mercapto-1-propanesulfonic acid shown in Chemical Formula 4, is Since two thiol groups are generated, and even one molecule has twice the effect of sodium 3-mercapto-1-propanesulfonate, it can be defined by the number of moles of the thiol group present in the molecule. Become.
[0047]
Therefore, if the abundance of the thiol group is expressed in terms of molar concentration, the preferred amount (molar concentration) of the active organic sulfur compound to be added to the electrolyte in the present invention is in the range of 5.5 to 450 μmol / L, preferably 55 to 450 μmol / L. It is desirable to be in the range of 180 μmol / L. If the concentration in the electrolytic solution is less than 5.5 μmol / L, the rough surface will have undulating undulations and will not have a uniform roughness, but will have a dull appearance and no gloss. Moreover, the elongation at 180 ° C. is low. Although the addition amount exceeding 450 μmol / L does not affect the rough surface state or the elongation at 180 ° C., keeping the concentration of the active organic sulfur compound in the electrolyte high depends on the use of an insoluble anode to remove the electrolytic copper foil. When it is obtained, it is not realistic because an expensive organic sulfur compound is unnecessarily decomposed and consumed due to a high anode potential.
[0048]
Next, in the present invention, the presence of chloride ions is very important, and the oxyethylene-based surfactant, polyethyleneimine or its derivative and the sulfonate of the active organic sulfur compound are used in each of the preferred concentration ranges described above. However, the desired low-roughness electrolytic copper foil cannot be obtained. The object of the present invention can be achieved only when chloride ions coexist.
[0049]
In addition, the relationship between the chloride ion concentration and the active organic sulfur compound concentration is also important, and the rough surface exhibits a glossy appearance (a state in which the rough surface does not have gentle undulations and is uniformly low in roughness). The concentration range is largely determined by both, and this gloss range tends to shrink as the chloride ion concentration increases, and it is necessary to keep the concentration of chloride ions low in order to operate with a reduced concentration of active organic sulfur compounds. desirable. Therefore, the chloride ion concentration in the electrolyte is desirably in the range of 20 to 120 mg / L, preferably in the range of 30 to 100 mg / L. When the chloride ion concentration is less than 20 mg / L, the roughness does not decrease to a roughness of 2.0 μm or less. If the chlorine ion exceeds 120 mg / L, the plating surface becomes rough.
[0050]
The source of chlorine ions may be any inorganic salt that dissociates in an aqueous solution to release chlorine ions, and typical examples thereof include NaCl and HCl.
[0051]
In the present invention, the four additives of the oxyethylene-based surfactant, the polyethyleneimine or a derivative thereof, the sulfonate of the active organic ionic compound, and the chloride ion are adjusted to the respective suitable concentration ranges described above. Using a sulfuric acid-copper sulfate aqueous solution as an electrolyte, a titanium plate coated with a white metal oxide as an anode, and a titanium drum as a cathode, at an electrolyte temperature of 35 to 50 ° C. and an electrolytic current density of 30 to 50 A / dm 2. By performing electrolysis under the conditions described above, the intended low-roughness electrolytic copper foil can be obtained.
[0052]
BEST MODE FOR CARRYING OUT THE INVENTION
Sulfuric acid (H 2 SO 4): 100g / L, copper sulfate pentahydrate (CuSO 4 · 5H 2 O) : 280g / L of sulfuric acid - to adjust the electrolyte solution composed of copper sulfate aqueous solution (hereinafter, the electrolyte "Basic electrolyte").
[0053]
Polyethylene glycol (average molecular weight 20,000, manufactured by Sanyo Chemical Industries), polyethyleneimine (epomin: trade name, product number: P-1000, manufactured by Nippon Shokubai, weight average molecular weight: 70000), sodium 3-mercapto-1-propanesulfonate as additives And hydrochloric acid added to the basic electrolyte to adjust polyethylene glycol: 30 mg / L, polyethyleneimine: 0.5 mg / L, sodium 3-mercapto-1-propanesulfonate: 220 μmol / L, and chloride ion: 35 mg / L. did.
[0054]
An electrolytic solution containing this additive was allowed to flow between a white metal oxide-coated titanium plate serving as an anode and a titanium drum serving as a cathode, and the electrolyte was charged at an electrolytic current density of 45 A / dm 2 and an electrolytic solution temperature of 40 ° C. Then, a low-roughness electrolytic copper foil having a thickness of 18 μm was obtained. In addition, it was confirmed by visual observation that the rough surface of the low-roughness electrolytic copper foil had gloss.
[0055]
Based on IPC-TM-650, the tensile strength (MPa) and elongation (%) at room temperature (about 25 ° C.) and at 180 ° C. of the low-roughness electrolytic copper foil (untreated electrolytic copper foil) obtained here were measured based on IPC-TM-650. The surface roughness (Rz) of the rough surface was measured using a surf coder SE1700α manufactured by Kosaka Laboratories based on JISB0601. Further, as an index indicating the degree of undulation of the irregularities on the rough surface of the low-roughness electrolytic copper foil, a gloss meter (trade name: Multi Gloss 268, manufactured by Minolta Co., Ltd.) based on JIS Z8741 is used. Using Gs (85 °), measurements were made in two directions of the width direction and the length (flow) direction of the low-roughness electrolytic copper foil. Table 2 shows the measurement results.
[0056]
The specular gloss Gs (85 °) indicates a value of 100 or more when the rough surface has substantially no undulations, and indicates the value when the rough surface has gently uneven undulations. Indicates a numerical value less than 100 (see Table 2 below and FIGS. 1 to 7). That is, the value of the specular gloss Gs (85 °) can be used as an index of the degree of undulation of the unevenness on the rough surface, and the undulation degree of the unevenness increases as the value decreases, and the undulation degree of the unevenness increases as the value increases. Is small.
[0057]
FIG. 1 is an electron micrograph (magnification × 1000) of a rough surface of the low-roughness electrolytic copper foil (untreated electrolytic copper foil) obtained here. As shown in FIG. A rough surface state in which the roughness is substantially and uniformly reduced can be confirmed.
[0058]
【Example】
[0059]
Examples 1 to 7, Comparative Examples 1 to 9.
[0060]
An electrolytic copper foil having a thickness of 18 μm was obtained under the same conditions as in the embodiment of the invention except that the type of the additive, the concentration in the electrolytic solution, the electrolytic current density, and the electrolytic solution temperature were changed as shown in Table 1. . Tensile strength (MPa) and elongation (%), surface roughness (Rz) · (μm), and roughness of each of the obtained electrolytic copper foils (untreated electrolytic copper foils) at room temperature (about 25 ° C.) and 180 ° C. Table 2 shows the results of measuring the specular gloss Gs (85 °) in the width direction and the length (flow) direction on the surface by the same measurement method as in the embodiment of the invention.
[0061]
[Table 1]
Figure 2004263289
[0062]
[Table 2]
Figure 2004263289
[0063]
2 to 6 are electron micrographs (magnification × 1000) of the rough surface of each electrolytic copper foil (untreated electrolytic copper foil) obtained in each comparative example, and FIG. 2 is a comparative example 1 (polyethylene glycol). FIG. 3 shows the rough surface state of Comparative Example 3 (when the weight average molecular weight of polyethylene imine is low), and FIG. 4 shows the rough surface state of Comparative Example 4 (when the polyethylene imine concentration is low). FIG. 5 shows the rough surface state of Comparative Example 6 (when the concentration of polyethyleneimine is low), and FIG. 6 shows the rough surface state of Comparative Example 7 (when the concentration of polyethyleneimine is low). -1 in the case where the concentration of sodium propanesulfonate is low).
[0064]
FIG. 7 shows an electron micrograph (not shown) of a roughened surface of an 18 μm-thick electrolytic copper foil (untreated electrolytic copper foil) obtained under the same conditions as in the embodiment of the invention except that polyethyleneimine was not added. Magnification × 1000), and it can be confirmed that undulations of gentle irregularities are generated on the rough surface. When FIG. 7 is compared with FIG. 1 according to the embodiment of the present invention, it can be confirmed that the addition of polyethyleneimine does not cause undulation of gentle irregularities on the rough surface, and significantly reduces the surface roughness.
[0065]
Further, from Tables 1 and 2, in each of the electrolyte solutions of the embodiment of the invention and Examples 1 to 7, the tensile strength at room temperature increases as the concentration of polyethyleneimine increases, but the rough surface roughness (Rz) It can be confirmed that is maintained at a substantially constant value.
[0066]
Incidentally, the present inventors have found in a number of experiments that in the basic electrolyte solution, when polyethylene glycol was not present, the rough surface did not show a glossy appearance, and when polyethylene imine was not present, the rough surface was rough and dull. Appearance, low elongation at 180 ° C., very rough surface in the absence of sodium 3-mercapto-1-propanesulfonate, low elongation at 180 ° C., no chlorine ions In this case, it was confirmed that the electrodeposited surface (plated surface) was cracked and the elongation at 180 ° C. was low.
[0067]
In addition, it has been confirmed that when the concentration or average molecular weight of the water-soluble polymer is increased within the above-mentioned predetermined range, the specular gloss Gs (85 °) tends to increase accordingly. In order to obtain a low-roughness electrolytic copper foil having a mirror gloss Gs (85 °) of 100 or more, polyethylene glycol, sodium 3-mercapto-1-propanesulfonate, polyethyleneimine and chlorine ion It is preferable that any one of these substances is missing, or if the concentration or the average molecular weight is out of the predetermined range, the specular glossiness (85 °) becomes less than 100. Become.
[0068]
【The invention's effect】
According to the present invention, the surface roughness Rz of 2.0 μm or less, which is most suitable for a printed wiring board application or a negative electrode current collector application for a secondary battery, is substantially free from irregularities on the rough surface, and the mirror surface gloss is reduced. The surface has a uniformly low-roughness surface having a degree Gs (85 °) of 100 or more, and has an elongation at 180 ° C. of 10.0% or more, and the roughness between the glossy surface and the rough surface. A low-roughness electrolytic copper foil (untreated electrolytic copper foil) having a difference as small as possible can be provided.
[0069]
Therefore, it can be said that the work utility of the present invention is very high.
[Brief description of the drawings]
FIG. 1 is an electron micrograph (× 1000) of a rough surface of an electrolytic copper foil (untreated electrolytic copper foil) obtained in an embodiment of the present invention.
FIG. 2 is an electron micrograph (magnification × 1000) of a rough surface of the electrolytic copper foil (untreated electrolytic copper foil) obtained in Comparative Example 1.
FIG. 3 is an electron micrograph (× 1000) of a rough surface of the electrolytic copper foil (untreated electrolytic copper foil) obtained in Comparative Example 3.
FIG. 4 is an electron micrograph (× 1000) of a rough surface of the electrolytic copper foil (untreated electrolytic copper foil) obtained in Comparative Example 4.
FIG. 5 is an electron micrograph (× 1000) of a rough surface of the electrolytic copper foil (untreated electrolytic copper foil) obtained in Comparative Example 6.
6 is an electron micrograph (magnification: 1000) of a rough surface of the electrolytic copper foil (untreated electrolytic copper foil) obtained in Comparative Example 7. FIG.
FIG. 7 is an electron micrograph (× 1000) of a rough surface of an electrolytic copper foil (untreated electrolytic copper foil) obtained using an electrolytic solution to which polyethyleneimine is not added.

Claims (8)

電解銅箔の粗面粗さRzが2.0 μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180 ℃における伸び率が10.0%以上であることを特徴とする低粗面電解銅箔。The electrodeposited copper foil has a rough surface roughness Rz of 2.0 μm or less, the rough surface has a uniformly roughened surface without undulations, and an elongation at 180 ° C. of 10.0%. A low-roughness electrolytic copper foil characterized by the above. JISZ8741に基づきGs(85°)にて測定した粗面の鏡面光沢度が100 以上である請求項1記載の低粗面電解銅箔。The low-roughness electrolytic copper foil according to claim 1, wherein the specular glossiness of the rough surface measured at Gs (85 °) based on JIS Z8741 is 100 or more. 硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタン板からなる不溶性陽極と該陽極に対向する陰極にチタン製ドラムを用い、当該両極間に直流電流を通じる電解銅箔の製造方法において、前記電解液にオキシエチレン系界面活性剤、ポリエチレンイミン又はその誘導体、活性有機イオウ化合物のスルフォン酸塩及び塩素イオンを存在させることによって粗面粗さRzが2.0 μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180 ℃における伸び率が10.0%以上である低粗面電解銅箔を得ることを特徴とする低粗面電解銅箔の製造方法。Using an aqueous solution of sulfuric acid-copper sulfate as an electrolytic solution, using an insoluble anode made of a titanium plate coated with a white metal element or its oxide element and a titanium drum as a cathode opposed to the anode, and passing a direct current between the two electrodes, In the method for producing a copper foil, the presence of an oxyethylene-based surfactant, polyethyleneimine or a derivative thereof, a sulfonate of an active organic sulfur compound, and chloride ion in the electrolytic solution results in a roughness Rz of 2.0 μm. In the following, there is obtained a low-roughened electrolytic copper foil having a uniformly roughened surface with no irregularities on the rough surface and an elongation at 180 ° C. of 10.0% or more. Method for producing low-roughness electrolytic copper foil. 低粗面電解銅箔におけるJISZ8741に基づきGs(85°)にて測定した粗面の鏡面光沢度が100 以上である請求項3記載の低粗面電解銅箔の製造方法。The method for producing a low-roughened electrolytic copper foil according to claim 3, wherein the low-roughened electrolytic copper foil has a specular glossiness of a rough surface measured at Gs (85 °) of 100 or more based on JISZ8741. 電解液中におけるオキシエチレン系界面活性剤の濃度が10〜200 mg/Lである請求項3又は4記載の低粗面電解銅箔の製造方法。The method for producing a low-roughened electrolytic copper foil according to claim 3 or 4, wherein the concentration of the oxyethylene-based surfactant in the electrolyte is 10 to 200 mg / L. 電解液中におけるポリエチレンイミン又はその誘導体の濃度が0.5 〜30.0mg/Lである請求項3又は4記載の低粗面電解銅箔の製造方法。The method according to claim 3 or 4, wherein the concentration of polyethyleneimine or a derivative thereof in the electrolyte is 0.5 to 30.0 mg / L. 電解液中における活性有機イオウ化合物のスルフォン酸塩の濃度が5.5 〜450 μmol/L である請求項3又は4記載の低粗面電解銅箔の製造方法。The method for producing a low-roughened electrolytic copper foil according to claim 3 or 4, wherein the concentration of the sulfonate of the active organic sulfur compound in the electrolytic solution is 5.5 to 450 µmol / L. 電解液中における塩素イオンの濃度が20〜120mg/L である請求項3又は4記載の低粗面電解銅箔の製造方法。The method for producing a low-roughened electrolytic copper foil according to claim 3 or 4, wherein the concentration of chloride ions in the electrolyte is 20 to 120 mg / L.
JP2003100647A 2002-10-25 2003-04-03 Low rough surface electrolytic copper foil and method for producing the same Expired - Lifetime JP4120806B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003100647A JP4120806B2 (en) 2002-10-25 2003-04-03 Low rough surface electrolytic copper foil and method for producing the same
KR1020057018237A KR100772946B1 (en) 2003-04-03 2004-04-05 Electrodeposited copper foil with low roughness surface and process for producing the same
CNB2004800078246A CN100554527C (en) 2003-04-03 2004-04-05 Low uneven surface electrolytic copper foil and manufacture method thereof
PCT/JP2004/004927 WO2004090197A1 (en) 2003-04-03 2004-04-05 Electrolytic copper foil with low roughness surface and process for producing the same
US10/551,035 US20060191798A1 (en) 2003-04-03 2004-04-05 Electrolytic copper foil with low roughness surface and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002311355 2002-10-25
JP2003100647A JP4120806B2 (en) 2002-10-25 2003-04-03 Low rough surface electrolytic copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004263289A true JP2004263289A (en) 2004-09-24
JP4120806B2 JP4120806B2 (en) 2008-07-16

Family

ID=33133472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100647A Expired - Lifetime JP4120806B2 (en) 2002-10-25 2003-04-03 Low rough surface electrolytic copper foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP4120806B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
WO2006106956A1 (en) * 2005-03-31 2006-10-12 Mitsui Mining & Smelting Co., Ltd Electrolytic copper foil and process for producing electrolytic copper foil, surface treated elctrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
WO2007007870A1 (en) * 2005-07-14 2007-01-18 Mitsui Mining & Smelting Co., Ltd. Blackening surface treated copper foil and electromagnetic wave shielding conductive mesh for front panel of plasma display using the blackening surface treated copper foil
JP2007131946A (en) * 2005-10-14 2007-05-31 Mitsui Mining & Smelting Co Ltd Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
WO2007105635A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Surface treated elctrolytic copper foil and process for producing the same
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
JP2008285727A (en) * 2007-05-18 2008-11-27 Furukawa Circuit Foil Kk Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
JPWO2012046804A1 (en) * 2010-10-06 2014-02-24 古河電気工業株式会社 Copper foil and manufacturing method thereof, copper foil with carrier and manufacturing method thereof, printed wiring board, multilayer printed wiring board
WO2014033917A1 (en) * 2012-08-31 2014-03-06 Jx日鉱日石金属株式会社 Electrolytic copper foil and process for producing same
JP2015014051A (en) * 2010-11-15 2015-01-22 Jx日鉱日石金属株式会社 Electrolytic copper foil
WO2015104999A1 (en) * 2014-01-07 2015-07-16 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
US9307639B2 (en) 2006-04-28 2016-04-05 Mitsui Mining & Smelting Co., Ltd. Electro-deposited copper foil, surface-treated copper foil using the electro-deposited copper foil and copper clad laminate using the surface-treated copper foil, and a method for manufacturing the electro-deposited copper foil
US9457541B2 (en) 2010-07-15 2016-10-04 Ls Mtron Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics
JP2016204749A (en) * 2015-04-27 2016-12-08 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Acid copper electroplating bath and method for electroplating low internal stress and good ductility copper deposits
WO2022085371A1 (en) * 2020-10-22 2022-04-28 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary cell, and lithium ion secondary cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669087B1 (en) 2011-07-29 2016-10-25 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
CN107587172B (en) 2011-10-31 2019-09-24 古河电气工业株式会社 High-intensitive, high heat resistance electrolytic copper foil and its manufacturing method
JP5706045B2 (en) 2013-01-24 2015-04-22 古河電気工業株式会社 Electrolytic copper foil and manufacturing method thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
KR100941219B1 (en) * 2005-03-31 2010-02-10 미쓰이 긴조꾸 고교 가부시키가이샤 Electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
WO2006106956A1 (en) * 2005-03-31 2006-10-12 Mitsui Mining & Smelting Co., Ltd Electrolytic copper foil and process for producing electrolytic copper foil, surface treated elctrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
US8722199B2 (en) 2005-03-31 2014-05-13 Mitsui Mining & Smelting Co., Ltd. Electrodeposited copper foil, its manufacturing method, surface-treated electrodeposited copper foil using the electrodeposited copper foil, and copper-clad laminate and printed wiring board using the surface-treated electrodeposited copper foil
KR100975491B1 (en) 2005-03-31 2010-08-11 미쓰이 긴조꾸 고교 가부시키가이샤 Electrolytic copper foil and process for producing electrolytic copper foil
WO2007007870A1 (en) * 2005-07-14 2007-01-18 Mitsui Mining & Smelting Co., Ltd. Blackening surface treated copper foil and electromagnetic wave shielding conductive mesh for front panel of plasma display using the blackening surface treated copper foil
JP2007131946A (en) * 2005-10-14 2007-05-31 Mitsui Mining & Smelting Co Ltd Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
JP2013019056A (en) * 2006-03-10 2013-01-31 Mitsui Mining & Smelting Co Ltd Surface treated electrolytic copper foil and copper clad laminate obtained by using the same
JP2013147755A (en) * 2006-03-10 2013-08-01 Mitsui Mining & Smelting Co Ltd Surface-treated electrolytic copper foil and copper clad laminated sheet obtained by using the surface-treated copper foil
WO2007105635A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Surface treated elctrolytic copper foil and process for producing the same
US8715836B2 (en) 2006-03-10 2014-05-06 Mitsui Mining & Smelting Co., Ltd Surface-treated electro-deposited copper foil and method for manufacturing the same
KR101049997B1 (en) 2006-03-10 2011-07-19 미쓰이 긴조꾸 고교 가부시키가이샤 Surface-treated electrolytic copper foil and its manufacturing method
JP5180815B2 (en) * 2006-03-10 2013-04-10 三井金属鉱業株式会社 Surface-treated electrolytic copper foil and method for producing the same
US9307639B2 (en) 2006-04-28 2016-04-05 Mitsui Mining & Smelting Co., Ltd. Electro-deposited copper foil, surface-treated copper foil using the electro-deposited copper foil and copper clad laminate using the surface-treated copper foil, and a method for manufacturing the electro-deposited copper foil
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
JP4712759B2 (en) * 2006-06-07 2011-06-29 古河電気工業株式会社 Surface-treated electrolytic copper foil, method for producing the same, and circuit board
JP2008285727A (en) * 2007-05-18 2008-11-27 Furukawa Circuit Foil Kk Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
US10283778B2 (en) 2010-07-15 2019-05-07 Kcf Technologies Co., Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics
US9457541B2 (en) 2010-07-15 2016-10-04 Ls Mtron Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics
JPWO2012046804A1 (en) * 2010-10-06 2014-02-24 古河電気工業株式会社 Copper foil and manufacturing method thereof, copper foil with carrier and manufacturing method thereof, printed wiring board, multilayer printed wiring board
JP2015014051A (en) * 2010-11-15 2015-01-22 Jx日鉱日石金属株式会社 Electrolytic copper foil
WO2014033917A1 (en) * 2012-08-31 2014-03-06 Jx日鉱日石金属株式会社 Electrolytic copper foil and process for producing same
JP5810249B1 (en) * 2014-01-07 2015-11-11 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
WO2015104999A1 (en) * 2014-01-07 2015-07-16 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
JP2016204749A (en) * 2015-04-27 2016-12-08 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Acid copper electroplating bath and method for electroplating low internal stress and good ductility copper deposits
WO2022085371A1 (en) * 2020-10-22 2022-04-28 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary cell, and lithium ion secondary cell

Also Published As

Publication number Publication date
JP4120806B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4273309B2 (en) Low rough surface electrolytic copper foil and method for producing the same
JP2004263289A (en) Low rough surface electrolytic copper foil, and production method therefor
TWI574452B (en) Electrolytic copper foil, electric component and battery comprising the foil
JP2004339558A5 (en)
KR100772946B1 (en) Electrodeposited copper foil with low roughness surface and process for producing the same
KR100389061B1 (en) Electrolytic copper foil and process producing the same
JP5883485B2 (en) Electrolytic copper foil
JP3332289B2 (en) Method for producing electrodeposited copper foil using electrodeposited copper foil and electrolyte solution containing chloride ion and control additive of organic additive
CN112543822B (en) Method for producing electrolytic copper foil
US9899683B2 (en) Electrolytic copper foil, electric component and battery including the same
TWI449814B (en) Low internal stress copper electroplating method
JPH10330983A (en) Electrolytic copper foil and its production
JP4709575B2 (en) Copper foil roughening treatment method and roughening treatment liquid
KR20140050541A (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
JP4445616B2 (en) Electrolytic copper foil
KR20130077240A (en) Additive for electroylite solution of electroplating process for copper coating with high elongation and electroylite solution of electroplating process for copper coating with high elongation comprising the same
EP3067442A1 (en) Electrolytic copper foil, electric component and battery including the same
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
KR101502373B1 (en) Electrolytic copper foil, electric component and battery comprising the foil
KR20240010058A (en) Electrolytic copper foil for collector of secondary battery
KR20230062081A (en) Electrolytic copper foil for current collector of secondary battery
TW200806810A (en) Methods for manufacturing copper foil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term