JP5771392B2 - Electrolytic copper foil and method for producing the same - Google Patents

Electrolytic copper foil and method for producing the same Download PDF

Info

Publication number
JP5771392B2
JP5771392B2 JP2010292686A JP2010292686A JP5771392B2 JP 5771392 B2 JP5771392 B2 JP 5771392B2 JP 2010292686 A JP2010292686 A JP 2010292686A JP 2010292686 A JP2010292686 A JP 2010292686A JP 5771392 B2 JP5771392 B2 JP 5771392B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
tensile strength
acid
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010292686A
Other languages
Japanese (ja)
Other versions
JP2012140660A (en
Inventor
洋史 小口
洋史 小口
智寛 山口
智寛 山口
利雄 川▲崎▼
利雄 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP2010292686A priority Critical patent/JP5771392B2/en
Publication of JP2012140660A publication Critical patent/JP2012140660A/en
Application granted granted Critical
Publication of JP5771392B2 publication Critical patent/JP5771392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、長時間保管後及び加熱後も高強度で、電気伝導性に優れた電解銅箔とその製造方法に関する。   The present invention relates to an electrolytic copper foil having high strength after storage for a long time and after heating, and excellent electrical conductivity, and a method for producing the same.

電解銅箔は、各種のプリント配線板やリチウム電池負極などに用いられてきたが、HDDの磁気ヘッドなど高強度を要求される用途には使用できず、ベリリウム銅やコルソン合金をはじめとする各種の高強度合金箔が使用されてきた。これは、電解銅箔が再結晶しやすく、初期特性として十分な高強度を示しても、加工時の熱履歴や経時変化により軟化してしまうためである。しかしながら、上記の合金箔には添加元素が障害となり、純銅に比べて電気伝導性が低い問題点がある。   Electrolytic copper foil has been used for various printed wiring boards and lithium battery negative electrodes, but it cannot be used for applications requiring high strength such as HDD magnetic heads. Various types including beryllium copper and corson alloys High strength alloy foils have been used. This is because the electrolytic copper foil is easily recrystallized and softens due to a thermal history during processing or a change with time even if it exhibits a sufficiently high initial strength. However, the above-mentioned alloy foil has a problem that the additive element becomes an obstacle and has lower electrical conductivity than pure copper.

電解銅箔は、硫酸銅水溶液を電気分解し、銅を析出させることによって製造される。硫酸銅水溶液に各種の有機イオウ系化合物を添加することによって、高強度の電解銅箔を製造できることが知られている。たとえば、添加剤として3−メルカプト−1−プロパンスルホン酸塩又は3,3′−ジチオビス(1−プロパンスルホン酸塩)、チオ尿素などを用いた場合、得られる電解銅箔は製造直後には700MPaを超える引張り強さを示す。しかしながら、これらの一般的な添加剤では銅の再結晶性を抑制することができず、常温で急速に再結晶して、引張り強さは400MPa以下に低下する。   Electrolytic copper foil is manufactured by electrolyzing a copper sulfate aqueous solution and depositing copper. It is known that high strength electrolytic copper foil can be produced by adding various organic sulfur compounds to an aqueous copper sulfate solution. For example, when 3-mercapto-1-propanesulfonate, 3,3′-dithiobis (1-propanesulfonate), thiourea or the like is used as an additive, the obtained electrolytic copper foil is 700 MPa immediately after production. It shows a tensile strength exceeding. However, these general additives cannot suppress the recrystallization of copper and rapidly recrystallize at room temperature, so that the tensile strength is reduced to 400 MPa or less.

特殊な添加剤の組み合わせにより再結晶性を抑制することが提案されている。特許文献1には、分子量250000〜1600000のヒドロキシエチルセルロース、ポリエチレンイミン、活性有機イオウ化合物のスルホン酸塩、アセチレングリコール及び塩素イオンを含有する硫酸銅水溶液を用いる電解銅箔の製造方法が開示されている。この特許文献1では、電着完了から20分以内に測定した25℃における抗張力と比較して、電着完了時点から300分経過時に測定した25℃における抗張力の低下率が10%以下であるとしているが、一般的な銅箔の保障期間が3ヶ月から6ヶ月であることに対して、十分であるとは言い難い。一方、特許文献2には、添加剤A:ベンゼン環とNを含む複素環とを備え、該複素環にはメルカプト基が結合している構造を有する化合物又はチオ尿素系化合物、添加剤B:活性硫黄化合物のスルホン酸塩、添加剤C:環状構造を持つ4級アンモニウム塩重合体を用いて、初期の引張り強さが70kgf/mm、180℃−60分間加熱後の引張り強さが初期の引張り強さに対して85%以上の電解銅箔を製造すること記載されている。しかしながら、ポリイミド樹脂などの高耐熱性樹脂を用いる用途での耐熱温度が十分ではなく、さらに高い耐熱温度の電解銅箔が望まれている。 It has been proposed to suppress recrystallization by a combination of special additives. Patent Document 1 discloses a method for producing an electrolytic copper foil using a copper sulfate aqueous solution containing hydroxyethyl cellulose having a molecular weight of 250,000 to 1600000, polyethyleneimine, a sulfonate of an active organic sulfur compound, acetylene glycol and chloride ions. . In this Patent Document 1, it is assumed that the rate of decrease in tensile strength at 25 ° C. measured after 300 minutes from the completion of electrodeposition is 10% or less compared to the tensile strength at 25 ° C. measured within 20 minutes after completion of electrodeposition. However, it is difficult to say that the general copper foil warranty period is 3 to 6 months. On the other hand, Patent Document 2 includes additive A: a benzene ring and a heterocyclic ring containing N, a compound having a structure in which a mercapto group is bonded to the heterocyclic ring or a thiourea compound, additive B: Sulfonate of active sulfur compound, additive C: Initial tensile strength is 70 kgf / mm 2 using a quaternary ammonium salt polymer having a cyclic structure, initial tensile strength after heating at 180 ° C. for 60 minutes The production of an electrolytic copper foil of 85% or more with respect to the tensile strength of is described. However, the heat resistance temperature is not sufficient in applications using a high heat resistance resin such as polyimide resin, and an electrolytic copper foil having a higher heat resistance temperature is desired.

特開2004−339558号公報JP 2004-339558 A 特開2008−101267号公報JP 2008-101267 A

本発明は、長時間保管後も高強度を維持し、また、ポリイミド樹脂などの高耐熱性樹脂を用いる用途で要求される熱履歴によっても、十分な高強度を有し、かつ、電気伝導性が80%IACS以上の電解銅箔を提供するものである。   The present invention maintains high strength even after storage for a long time, and has sufficient high strength due to the thermal history required for applications using a high heat resistant resin such as polyimide resin, and has electrical conductivity. Provides an electrolytic copper foil of 80% IACS or higher.

常温で再結晶することにより引張り強さが低下する銅箔について、引張り強さの経時変化を測定した結果を図1に示す。引張り強さは経時的に低下するが、次第に低下速度が減少し、電着終了後168時間以内に安定することを確認した。従って、電着終了から168時間後の引張り強さを評価することにより、3ヶ月程度の長期間保管後の引張り強さを保証できることが確認された。   FIG. 1 shows the results of measuring the change in tensile strength over time for a copper foil whose tensile strength is reduced by recrystallization at room temperature. Although the tensile strength decreased with time, it was confirmed that the rate of decrease gradually decreased and stabilized within 168 hours after the completion of electrodeposition. Therefore, it was confirmed that the tensile strength after long-term storage of about 3 months can be guaranteed by evaluating the tensile strength after 168 hours from the end of electrodeposition.

本発明者らは鋭意検討を重ねた結果、硫酸酸性銅めっき液中に、添加剤として、(A)ジチオカルバミン酸誘導体又はその塩、(B)チオ尿素、(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩が、(D)ポリアルキレングリコール及び(E)塩素イオンの五つの添加剤を存在させることにより、電着完了から168時間後の引張り強さが高く(例えば700MPa以上)、かつ、初期の引張り強さからの低下率が低く、240℃−10分間加熱後(以下、加熱後と表記することがある)における引張り強さが高い(例えば650MPa以上)であると共に、電気伝導性が80%IACS以上である電解銅箔の製造が可能となることを見出し、電解銅箔の製造方法に係る本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that water-soluble sulfur having (A) a dithiocarbamic acid derivative or a salt thereof, (B) thiourea, and (C) a mercapto group as an additive in an acidic copper sulfate plating solution. The compound or a derivative thereof or a salt thereof has a high tensile strength after 168 hours from completion of electrodeposition (for example, 700 MPa or more) by the presence of five additives (D) polyalkylene glycol and (E) chloride ion. ), And the rate of decrease from the initial tensile strength is low, and the tensile strength after heating at 240 ° C. for 10 minutes (hereinafter sometimes referred to as after heating) is high (for example, 650 MPa or more), The inventors have found that it is possible to produce an electrolytic copper foil having an electrical conductivity of 80% IACS or more, and have completed the present invention relating to a method for producing an electrolytic copper foil.

即ち、本発明は、下記の電解銅箔及びその製造方法に関する。
(1)電着終了後120分以内に、240℃で10分間加熱後、20℃において引張り強さ及び電気伝導性を測定したとき、引張り強さが650MPa以上で、電気伝導性が80%IACS以上であり、電着終了から168時間後に測定した20℃における引張り強さが、電着終了後120分以内に測定した20℃における引張り強さの90%以上であり、電着終了後120分以内に測定した20℃における伸び率が3%以上である電解銅箔。
That is, this invention relates to the following electrolytic copper foil and its manufacturing method.
(1) Within 120 minutes after electrodeposition, after heating at 240 ° C. for 10 minutes and measuring the tensile strength and electrical conductivity at 20 ° C., the tensile strength is 650 MPa or more and the electrical conductivity is 80% IACS. The tensile strength at 20 ° C. measured 168 hours after completion of electrodeposition is 90% or more of the tensile strength at 20 ° C. measured within 120 minutes after completion of electrodeposition, and 120 minutes after completion of electrodeposition. The electrolytic copper foil whose elongation at 20 ° C. measured within is 3% or more.

(2)電着終了から168時間後に測定した20℃における引張り強さが700MPa以上である(1)に記載の電解銅箔。   (2) The electrolytic copper foil according to (1), wherein the tensile strength at 20 ° C. measured 168 hours after the completion of electrodeposition is 700 MPa or more.

(3)(A)ジチオカルバミン酸誘導体又はその塩、(B)チオ尿素、(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩、(D)ポリアルキレングリコール及び(E)塩素イオンを添加剤として含有する硫酸酸性銅めっき液を電気分解することを特徴とする(1)又は(2)に記載の電解銅箔の製造方法。   (3) (A) a dithiocarbamic acid derivative or a salt thereof, (B) thiourea, (C) a water-soluble sulfur compound having a mercapto group or a derivative thereof or a salt thereof, (D) a polyalkylene glycol and (E) a chloride ion The method for producing an electrolytic copper foil as described in (1) or (2), wherein the sulfuric acid acidic copper plating solution containing as an additive is electrolyzed.

(4)添加剤(A)であるジチオカルバミン酸誘導体又はその塩が、下記一般式(1)又は下記一般式(2)で表されるものである(3)に記載の電解銅箔の製造方法。

Figure 0005771392
[一般式(1)及び(2)中、R及びRは、各々独立に、炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、Mは水素原子又はアルカリ金属原子を表し、一般式(2)中、Rは炭素数2〜4のアルキレン基又は炭素数6〜10のアリーレン基を表す。] (4) The method for producing an electrolytic copper foil according to (3), wherein the dithiocarbamic acid derivative or salt thereof as the additive (A) is represented by the following general formula (1) or the following general formula (2): .
Figure 0005771392
[In General Formulas (1) and (2), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and M represents a hydrogen atom or an alkali metal. In the general formula (2), R 3 represents an alkylene group having 2 to 4 carbon atoms or an arylene group having 6 to 10 carbon atoms. ]

(5)添加剤(A)であるジチオカルバミン酸誘導体又はその塩が、N,N−ジメチルジチオカルバミン酸、N,N−ジエチルジチオカルバミン酸、N,N−ジプロピルジチオカルバミン酸、N,N−ジブチルジチオカルバミン酸、N,N−ジフェニルジチオカルバミン酸、N,N−ジメチルジチオカルバミルプロパンスルホン酸及びこれらのアルカリ金属塩からなる群から選ばれる少なくとも1種である(3)又は(4)に記載の電解銅箔の製造方法。   (5) Dithiocarbamic acid derivative or salt thereof as additive (A) is N, N-dimethyldithiocarbamic acid, N, N-diethyldithiocarbamic acid, N, N-dipropyldithiocarbamic acid, N, N-dibutyldithiocarbamic acid The electrolytic copper foil according to (3) or (4), which is at least one selected from the group consisting of N, N-diphenyldithiocarbamic acid, N, N-dimethyldithiocarbamylpropanesulfonic acid and alkali metal salts thereof Manufacturing method.

(6)添加剤(C)であるメルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩が、下記一般式(3)又は下記一般式(4)で表されるものである(3)〜(5)いずれかに記載の電解銅箔の製造方法。

Figure 0005771392
[一般式(3)及び(4)中、R、R及びRは、各々独立に、炭素数2〜4のアルキレン基を表し、Mは水素原子又はアルカリ金属原子を表す。] (6) The water-soluble sulfur compound having a mercapto group as an additive (C) or a derivative thereof or a salt thereof is represented by the following general formula (3) or the following general formula (4) (3) -(5) The manufacturing method of the electrolytic copper foil in any one.
Figure 0005771392
[In General Formulas (3) and (4), R 4 , R 5 and R 6 each independently represents an alkylene group having 2 to 4 carbon atoms, and M represents a hydrogen atom or an alkali metal atom. ]

(7)添加剤(C)であるメルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩が、3−メルカプト−1−プロパンスルホン酸、3,3′−ジチオビス(1−プロパンスルホン酸)及びそれらのアルカリ金属塩からなる群から選ばれる少なくとも1種である(3)〜(6)いずれかに記載の電解銅箔の製造方法。   (7) A water-soluble sulfur compound having a mercapto group as an additive (C) or a derivative thereof or a salt thereof is 3-mercapto-1-propanesulfonic acid, 3,3′-dithiobis (1-propanesulfonic acid) And the manufacturing method of the electrolytic copper foil in any one of (3)-(6) which is at least 1 sort (s) chosen from the group which consists of those alkali metal salts.

(8)添加剤(D)であるポリアルキレングリコールの重量平均分子量が500〜100,000である(3)〜(7)いずれかに記載の電解銅箔の製造方法。   (8) The manufacturing method of the electrolytic copper foil in any one of (3)-(7) whose weight average molecular weights of the polyalkylene glycol which is an additive (D) are 500-100,000.

(9)硫酸酸性銅めっき液中の添加剤(A)〜(E)の濃度が、
(A)ジチオカルバミン酸誘導体又はその塩の濃度が10〜60mg/l、
(B)チオ尿素の濃度が7.5〜25mg/l、
(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩の濃度が40〜300mg/l、
(D)ポリアルキレングリコールの濃度が40〜400mg/l、
(E)塩素イオンの濃度が30〜100mg/l
である(3)〜(8)いずれかに記載の電解銅箔の製造方法。
(9) The concentration of the additives (A) to (E) in the sulfuric acid copper plating solution is
(A) The concentration of the dithiocarbamic acid derivative or salt thereof is 10 to 60 mg / l,
(B) the concentration of thiourea is 7.5-25 mg / l,
(C) The concentration of the water-soluble sulfur compound having a mercapto group or a derivative thereof or a salt thereof is 40 to 300 mg / l,
(D) The concentration of polyalkylene glycol is 40 to 400 mg / l,
(E) Chlorine ion concentration is 30-100 mg / l
The method for producing an electrolytic copper foil according to any one of (3) to (8).

(10)硫酸酸性銅めっき液が、銅の濃度が硫酸銅五水和物換算で160〜350g/lで、遊離硫酸の濃度が50〜100g/lである硫酸−硫酸銅水溶液に、添加剤(A)〜(E)を添加して調製されたものである(3)〜(9)いずれかに記載の電解銅箔の製造方法。   (10) Additive to sulfuric acid-copper sulfate aqueous solution in which the sulfuric acid copper plating solution has a copper concentration of 160 to 350 g / l in terms of copper sulfate pentahydrate and a free sulfuric acid concentration of 50 to 100 g / l. (A)-(E) is added and the manufacturing method of the electrolytic copper foil in any one of (3)-(9).

本発明の電解銅箔は、高強度で高導電率であることから、HDDの磁気ヘッドなどの高強度を必要とされる用途や小型化・薄肉化が進むその他の電子部品、さらにはリチウムイオン電池用負極の集電体などに好適に利用することができる。   Since the electrolytic copper foil of the present invention has high strength and high electrical conductivity, applications such as HDD magnetic heads that require high strength, other electronic components that are becoming smaller and thinner, and lithium ions It can utilize suitably for the collector of the negative electrode for batteries, etc.

電解銅箔の常温放置時間と引張り強さの関係を示すグラフ。The graph which shows the normal temperature leaving time of electrolytic copper foil, and the relationship between tensile strength.

本発明において、電解銅箔とは、銅イオンを含有する銅めっき液を電気分解することにより電極面に銅を析出させて(電着)得られる銅箔を意味する。電解銅箔の厚みには特に制限はないが、通常、3〜175μmであることが好ましく、6〜70μmであることがより好ましい。   In the present invention, the electrolytic copper foil means a copper foil obtained by electrolyzing a copper plating solution containing copper ions to deposit copper on the electrode surface (electrodeposition). Although there is no restriction | limiting in particular in the thickness of electrolytic copper foil, Usually, it is preferable that it is 3-175 micrometers, and it is more preferable that it is 6-70 micrometers.

本発明の電解銅箔は、電着終了後120分以内に、240℃で10分間加熱後、20℃において引張り強さ(以下、加熱後引張り強さと呼ぶことがある。)及び電気伝導性(以下、加熱後電気伝導性と呼ぶことがある。)を測定したとき、加熱後引張り強さが650MPa以上で、加熱後電気伝導性が80%IACS以上であり、電着終了から168時間後に測定した20℃における引張り強さ(以下、放置後引張り強さと呼ぶことがある。)が、電着終了後120分以内に測定した20℃における引張り強さ(以下、初期引張り強さと呼ぶことがある。)の90%以上であり、電着終了後120分以内に測定した20℃における伸び率が3%以上であることを特徴とする。   The electrolytic copper foil of the present invention is heated at 240 ° C. for 10 minutes within 120 minutes after completion of electrodeposition, and then has tensile strength at 20 ° C. (hereinafter, sometimes referred to as post-heating tensile strength) and electrical conductivity ( Hereinafter, the electrical conductivity after heating is sometimes measured.) When measured, the tensile strength after heating is 650 MPa or more, the electrical conductivity after heating is 80% IACS or more, and measured 168 hours after the end of electrodeposition. The tensile strength at 20 ° C. (hereinafter sometimes referred to as tensile strength after standing) was measured within 120 minutes after completion of electrodeposition (hereinafter sometimes referred to as initial tensile strength). )), And the elongation at 20 ° C. measured within 120 minutes after electrodeposition is 3% or more.

上記の加熱後引張り強さの測定においては、電解銅箔の240℃−10分間の加熱と、20℃における引張り強さの測定の両方を、電着終了後120分以内に行う。また、上記の加熱後電気伝導性の測定においても、電解銅箔の240℃−10分間の加熱と、20℃における電気伝導性の測定の両方を、電着終了後120分以内に行う。本発明における電気伝導性とは、IACS: International Annealed Copper Standard (国際焼きなまし銅線標準)という名の"標準焼きなまし銅線" の電気伝導率(0.5800×10S/m)を100%とした場合の、それに対する電解銅箔の電気伝導率の%値としての比較値を意味し、%IACSで表記する。 In the measurement of the tensile strength after heating, both heating of the electrolytic copper foil at 240 ° C. for 10 minutes and measurement of the tensile strength at 20 ° C. are performed within 120 minutes after the electrodeposition is completed. Also in the measurement of the electrical conductivity after heating, both the heating of the electrolytic copper foil at 240 ° C. for 10 minutes and the measurement of the electrical conductivity at 20 ° C. are performed within 120 minutes after the completion of electrodeposition. The electrical conductivity in the present invention is 100% of the electrical conductivity (0.5800 × 10 8 S / m) of a “standard annealed copper wire” named IACS: International Annealed Copper Standard. It means a comparison value as a% value of the electrical conductivity of the electrolytic copper foil with respect to it, and is expressed in% IACS.

上記の放置後引張り強さは、得られた電解銅箔を常温(15〜30℃、以下同様。)で放置し、電着終了から168時間後に20℃において測定する。また、上記の初期引張り強さは、電着終了後120分以内に、常温環境保管していた電解銅箔を20℃において測定する。   The tensile strength after standing is measured at 20 ° C. 168 hours after completion of electrodeposition by leaving the obtained electrolytic copper foil at room temperature (15 to 30 ° C., the same applies hereinafter). The initial tensile strength is measured at 20 ° C. for an electrolytic copper foil stored at room temperature within 120 minutes after completion of electrodeposition.

本発明の電解銅箔の上記の放置後引張り強さは、上記初期引張り強さの90%以上であるが、92.5%以上であることが好ましい。
本発明の電解銅箔の上記加熱後電気伝導性は、80%IACS以上であるが、81%IACS以上であることが好ましい。
The above-mentioned tensile strength after standing of the electrolytic copper foil of the present invention is 90% or more of the initial tensile strength, but is preferably 92.5% or more.
The electric conductivity after heating of the electrolytic copper foil of the present invention is 80% IACS or more, preferably 81% IACS or more.

なお、本発明の電解銅箔の上記放置後引張り強さは、700MPa以上であることが好ましく、710MPa以上であることがより好ましい。また、本発明の電解銅箔の上記初期引張り強さは、700MPa以上であることが好ましく、730MPa以上であることがより好ましい。   The tensile strength after standing of the electrolytic copper foil of the present invention is preferably 700 MPa or more, and more preferably 710 MPa or more. Moreover, the initial tensile strength of the electrolytic copper foil of the present invention is preferably 700 MPa or more, and more preferably 730 MPa or more.

本発明の電解銅箔は、電着終了後120分以内に測定した20℃における伸び率が、3%以上である。この伸び率が3%未満であると、電解銅箔が破れやすく、取り扱いが困難である。なお、測定前の電解銅箔は、常温環境で保管されたものである。   In the electrolytic copper foil of the present invention, the elongation at 20 ° C. measured within 120 minutes after completion of electrodeposition is 3% or more. When this elongation is less than 3%, the electrolytic copper foil is easily broken and is difficult to handle. In addition, the electrolytic copper foil before the measurement is stored in a normal temperature environment.

本発明の電解銅箔は、その製造方法に特に制限はないが、例えば、下記に示す製造方法により好適に製造することができる。
本発明の電解銅箔の製造方法は、(A)ジチオカルバミン酸誘導体又はその塩、(B)チオ尿素、(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩、(D)ポリアルキレングリコール及び(E)塩素イオンの五つの添加剤を含有する硫酸酸性銅めっき液を電気分解することを特徴とする。
なお、本発明において、「硫酸酸性銅めっき液が添加剤(A)〜(E)を含有する」とは、硫酸酸性銅めっき液に添加剤(A)〜(E)が添加されていることを意味し、「硫酸酸性銅メッキ液中の添加剤(A)〜(E)の濃度」とは、硫酸酸性銅めっき液1リットルあたりの、添加された添加剤(A)〜(E)各々の重量(mg)を意味する。
Although there is no restriction | limiting in particular in the manufacturing method, the electrolytic copper foil of this invention can be suitably manufactured with the manufacturing method shown below, for example.
The method for producing an electrolytic copper foil of the present invention comprises (A) a dithiocarbamic acid derivative or a salt thereof, (B) thiourea, (C) a water-soluble sulfur compound having a mercapto group or a derivative thereof or a salt thereof, (D) poly It is characterized by electrolyzing an acidic copper plating solution containing five additives of alkylene glycol and (E) chloride ion.
In the present invention, “the sulfuric acid copper plating solution contains additives (A) to (E)” means that the additives (A) to (E) are added to the sulfuric acid copper plating solution. "The concentration of the additives (A) to (E) in the sulfuric acid copper plating solution" means each of the added additives (A) to (E) per liter of the sulfuric acid copper plating solution. Means the weight (mg).

本発明の製造方法に用いられる硫酸酸性銅めっき液は、例えば、通常の電解銅箔の製造に用いられる硫酸−硫酸銅水溶液(添加剤を含まない硫酸−硫酸銅水溶液)に、添加剤(A)〜(E)を添加することにより調製することができる。硫酸−硫酸銅水溶液の銅濃度及び硫酸濃度は、通常の電解銅箔の製造に用いられる濃度範囲と同様であればよく、特に制限はない。好ましくは、銅濃度が硫酸銅五水和物として160〜350g/l、より好ましくは240〜310g/l、遊離硫酸濃度が50〜100g/l、より好ましくは70〜90g/lである。硫酸−硫酸銅水溶液は、試薬硫酸銅と硫酸とを所定の割合で純水に溶解するか、又は、銅線くず、銅紛などの金属銅を硫酸水溶液に溶解して調製することができる。この硫酸−硫酸銅水溶液に所定の添加剤(A)〜(E)を添加することにより、硫酸酸性銅めっき液を調製する。銅の電解析出によって硫酸酸性銅めっき液中の銅濃度が減少した場合には、例えば、硫酸酸性銅めっき液に酸素の存在下で金属銅を溶解させることで、硫酸酸性銅めっき液を再生することができる。   The sulfuric acid copper plating solution used in the production method of the present invention includes, for example, an additive (A ) To (E) can be added. The copper concentration and sulfuric acid concentration of the sulfuric acid-copper sulfate aqueous solution are not particularly limited as long as they are the same as the concentration range used for the production of a normal electrolytic copper foil. Preferably, the copper concentration is 160 to 350 g / l as copper sulfate pentahydrate, more preferably 240 to 310 g / l, and the free sulfuric acid concentration is 50 to 100 g / l, more preferably 70 to 90 g / l. The sulfuric acid-copper sulfate aqueous solution can be prepared by dissolving the reagent copper sulfate and sulfuric acid in pure water at a predetermined ratio, or by dissolving metallic copper such as copper wire scraps and copper powder in the sulfuric acid aqueous solution. A sulfuric acid copper plating solution is prepared by adding predetermined additives (A) to (E) to the sulfuric acid-copper sulfate aqueous solution. When the copper concentration in the sulfuric acid copper plating solution decreases due to the electrolytic deposition of copper, for example, the sulfuric acid copper plating solution is regenerated by dissolving metallic copper in the presence of oxygen in the sulfuric acid copper plating solution. can do.

本発明に用いる添加剤(A)は、ジチオカルバミン酸誘導体又はその塩であり、例えば下記一般式(1)及び下記一般式(2)で表されるものが挙げられ、1種類を単独で用いてもよいし、2種以上を併用してもよい。   The additive (A) used in the present invention is a dithiocarbamic acid derivative or a salt thereof, and examples thereof include those represented by the following general formula (1) and the following general formula (2), and one kind is used alone. Alternatively, two or more kinds may be used in combination.

ジチオカルバミン酸誘導体又はその塩の一般式(1)

Figure 0005771392
[一般式(1)中、R及びRは、各々独立に、炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、Mは水素原子又はアルカリ金属原子を表す。] General formula (1) of a dithiocarbamic acid derivative or a salt thereof
Figure 0005771392
[In General Formula (1), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and M represents a hydrogen atom or an alkali metal atom. ]

ジチオカルバミン酸誘導体又はその塩の一般式(2)

Figure 0005771392
[一般式(2)中、R及びRは、各々独立に、炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、Rは炭素数2〜4のアルキレン基又は炭素数6〜10のアリーレン基を表し、Mは水素原子又はアルカリ金属原子を表す。] General formula (2) of dithiocarbamic acid derivatives or salts thereof
Figure 0005771392
[In General Formula (2), R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 3 represents an alkylene group having 2 to 4 carbon atoms. Alternatively, it represents an arylene group having 6 to 10 carbon atoms, and M represents a hydrogen atom or an alkali metal atom. ]

一般式(1)及び(2)で表される化合物としては、例えば、N,N−ジメチルジチオカルバミン酸、N,N−ジエチルジチオカルバミン酸、N,N−ジプロピルジチオカルバミン酸、N,N−ジブチルジチオカルバミン酸、N,N−ジフェニルジチオカルバミン酸、N,N−ジメチルジチオカルバミルプロパンスルホン酸及びこれらのアルカリ金属塩などがあるが、これらに限られるものではない。   Examples of the compounds represented by the general formulas (1) and (2) include N, N-dimethyldithiocarbamic acid, N, N-diethyldithiocarbamic acid, N, N-dipropyldithiocarbamic acid, and N, N-dibutyldithiocarbamine. Examples include, but are not limited to, acid, N, N-diphenyldithiocarbamic acid, N, N-dimethyldithiocarbamylpropanesulfonic acid, and alkali metal salts thereof.

N,N−ジメチルジチオカルバミン酸又はその塩

Figure 0005771392
[式中、Mは水素原子又はアルカリ金属原子を表す。] N, N-dimethyldithiocarbamic acid or a salt thereof
Figure 0005771392
[Wherein, M represents a hydrogen atom or an alkali metal atom. ]

N,N−ジエチルジチオカルバミン酸又はその塩

Figure 0005771392
[式中、Mは水素原子又はアルカリ金属原子を表す。] N, N-diethyldithiocarbamic acid or a salt thereof
Figure 0005771392
[Wherein, M represents a hydrogen atom or an alkali metal atom. ]

N,N−ジフェニルジチオカルバミン酸又はその塩

Figure 0005771392
[式中、Mは水素原子又はアルカリ金属原子を表す。] N, N-diphenyldithiocarbamic acid or a salt thereof
Figure 0005771392
[Wherein, M represents a hydrogen atom or an alkali metal atom. ]

N,N−ジメチルジチオカルバミルプロパンスルホン酸又はその塩

Figure 0005771392
[式中、Mは水素原子又はアルカリ金属原子を表す。]
アルカリ金属原子としては、通常、ナトリウム又はカリウムが好ましい。 N, N-dimethyldithiocarbamylpropanesulfonic acid or salt thereof
Figure 0005771392
[Wherein, M represents a hydrogen atom or an alkali metal atom. ]
As the alkali metal atom, sodium or potassium is usually preferable.

添加剤(A)であるジチオカルバミン酸誘導体又はその塩の添加量は、硫酸酸性銅めっき液中の添加剤(A)の濃度が10〜60mg/lとなる量であることが好ましい。添加剤(A)の濃度が10mg/l未満であると、本発明の電解銅箔に必要とされる所定の特性が得られず、60mg/lを超えると、ポーラスなめっきとなり、やはり所定の特性が得られない。   The amount of the dithiocarbamic acid derivative or salt thereof as the additive (A) is preferably such that the concentration of the additive (A) in the sulfuric acid copper plating solution is 10 to 60 mg / l. If the concentration of the additive (A) is less than 10 mg / l, the predetermined characteristics required for the electrolytic copper foil of the present invention cannot be obtained, and if it exceeds 60 mg / l, porous plating results. Characteristics are not obtained.

添加剤(B)は、チオ尿素である。添加剤(B)の添加量は、硫酸酸性銅めっき液中の添加剤(B)の濃度が7.5〜25mg/lとなる量であることが好ましい。添加剤(B)の濃度が7.5mg/l未満であると、本発明の電解銅箔に必要とされる所定の特性が得られず、25mg/lを超えると、ポーラスなめっきとなり、やはり所定の特性が得られない。   The additive (B) is thiourea. The amount of additive (B) added is preferably such that the concentration of additive (B) in the sulfuric acid copper plating solution is 7.5 to 25 mg / l. When the concentration of the additive (B) is less than 7.5 mg / l, the predetermined characteristics required for the electrolytic copper foil of the present invention cannot be obtained, and when it exceeds 25 mg / l, porous plating is obtained. Predetermined characteristics cannot be obtained.

添加剤(C)は、メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩であり、例えば、下記一般式(3)及び(4)で表される化合物が挙げられ、1種類単独で用いてもよいし、2種以上を併用してもよい。

Figure 0005771392
[一般式(3)及び(4)中、R、R及びRは、各々独立に、炭素数2〜4のアルキレン基を表し、Mは水素原子又はアルカリ金属原子を表す。] The additive (C) is a water-soluble sulfur compound having a mercapto group or a derivative thereof or a salt thereof, and examples thereof include compounds represented by the following general formulas (3) and (4). You may use, and may use 2 or more types together.
Figure 0005771392
[In General Formulas (3) and (4), R 4 , R 5 and R 6 each independently represents an alkylene group having 2 to 4 carbon atoms, and M represents a hydrogen atom or an alkali metal atom. ]

上記一般式(3)及び(4)で表される化合物としては、例えば、下記一般式で表される3−メルカプト−1−プロパンスルホン酸、3,3′−ジチオビス(1−プロパンスルホン酸)及びそれらのアルカリ金属塩などが挙げられるが、これらに限定されるものではない。   Examples of the compounds represented by the general formulas (3) and (4) include 3-mercapto-1-propanesulfonic acid and 3,3′-dithiobis (1-propanesulfonic acid) represented by the following general formula: And alkali metal salts thereof, but are not limited thereto.

3−メルカプト−1−プロパンスルホン酸又はその塩

Figure 0005771392
[式中、Mは水素原子又はアルカリ金属原子を表す。] 3-mercapto-1-propanesulfonic acid or a salt thereof
Figure 0005771392
[Wherein, M represents a hydrogen atom or an alkali metal atom. ]

3,3′−ジチオビス(1−プロパンスルホン酸)又はその塩

Figure 0005771392
[式中、Mは水素原子又はアルカリ金属原子を表す。]
アルカリ金属原子としては、ナトリウム又はカリウムが好ましい。 3,3'-dithiobis (1-propanesulfonic acid) or a salt thereof
Figure 0005771392
[Wherein, M represents a hydrogen atom or an alkali metal atom. ]
As an alkali metal atom, sodium or potassium is preferable.

添加剤(C)であるメルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩の添加量は、硫酸酸性銅めっき液中の添加剤(C)の濃度が40〜300mg/lとなる量であることが好ましい。添加剤(C)の濃度が40mg/l未満であると、ポーラスなめっきとなり、均一なメッキ被膜とならず、300mg/lを超えると、本発明の電解銅箔に必要とされる所定の特性が得られない。   The addition amount of the water-soluble sulfur compound having a mercapto group as an additive (C) or a derivative thereof or a salt thereof is such that the concentration of the additive (C) in the sulfuric acid copper plating solution is 40 to 300 mg / l. It is preferable that When the concentration of the additive (C) is less than 40 mg / l, porous plating is obtained and a uniform plating film is not formed. When the concentration exceeds 300 mg / l, predetermined characteristics required for the electrolytic copper foil of the present invention are obtained. Cannot be obtained.

本発明に用いられる添加剤(D)はポリアルキレングリコールであり、例えば、ポリ(C〜C−アルキレングリコール)が挙げられ、1種類を単独で用いてもよいし、2種以上を併用してもよい。ポリアルキレングリコールとしては、例えば、ポリエチレングリコールやポリプロピレングリコール、エチレングリコールとプロピレングリコールとの共重合体のいずれも好適に用いることができる。ポリアルキレングリコールの分子量は、重量平均分子量(ポリスチレンを基準としたゲルパーミエーションクロマトグラフィーにて測定した換算置)で500〜100000であることが好ましく、1000〜10000であることがより好ましい。分子量が大き過ぎると、めっき表面にピットを生じやすく、分子量が小さすぎると、所望の特性が得られない。 The additive (D) used in the present invention is a polyalkylene glycol, and examples thereof include poly (C 1 -C 4 -alkylene glycol). One type may be used alone, or two or more types may be used in combination. May be. As the polyalkylene glycol, for example, any of polyethylene glycol, polypropylene glycol, and a copolymer of ethylene glycol and propylene glycol can be suitably used. The molecular weight of the polyalkylene glycol is preferably from 500 to 100,000, more preferably from 1,000 to 10,000, in terms of weight average molecular weight (converted by a gel permeation chromatography based on polystyrene). If the molecular weight is too large, pits are likely to be formed on the plating surface, and if the molecular weight is too small, desired characteristics cannot be obtained.

添加剤(D)であるポリアルキレングリコールの添加量は、硫酸酸性銅めっき液中の添加剤(D)の濃度が40〜400mg/lとなる量であることが好ましい。添加剤(D)の濃度が40mg/l未満である場合、及び、400mg/lを超える場合には、本発明の電解銅箔に必要とされる所定の特性が得られない。   The addition amount of the polyalkylene glycol as the additive (D) is preferably such an amount that the concentration of the additive (D) in the acidic sulfuric acid copper plating solution is 40 to 400 mg / l. When the concentration of the additive (D) is less than 40 mg / l or more than 400 mg / l, the predetermined characteristics required for the electrolytic copper foil of the present invention cannot be obtained.

添加剤(E)は、塩素イオンである。塩素イオン供給源としては、例えば、塩酸、塩化ナトリウム等を用いることができる。添加剤(E)である塩素イオンの添加量は、硫酸酸性銅めっき液中の添加剤(E)の濃度が、塩素イオン濃度として30〜100mg/lとなる量であることが好ましい。添加剤(E)の濃度が30mg/l未満であると、ポーラスなめっきとなり、100mg/lを超えると、電解銅箔の加熱後引張り強さ及び放置後引張り強さが本発明の電解銅箔に必要とされる所定の値より低くなる。   Additive (E) is a chloride ion. As a chloride ion supply source, for example, hydrochloric acid, sodium chloride, or the like can be used. It is preferable that the addition amount of the chlorine ion that is the additive (E) is such that the concentration of the additive (E) in the sulfuric acid copper plating solution is 30 to 100 mg / l as the chlorine ion concentration. When the concentration of the additive (E) is less than 30 mg / l, porous plating is obtained, and when it exceeds 100 mg / l, the electrolytic copper foil has a tensile strength after heating and a tensile strength after standing as follows. It will be lower than the predetermined value required for.

次に、本発明の電解銅箔の製造方法に用いられる製造装置及びめっき条件について説明する。本発明では、通常の電解銅箔の製造に用いる製造装置を使用することができる。一例をあげれば、半円筒状に湾曲した酸化イリジウムコーティングを施したチタン板からなる陽極と、チタン製回転陰極とを、硫酸酸性銅めっき液に浸漬し、両極間に直流電流を通電し、回転陰極上に析出した電解銅箔を連続的に巻き取る方法がある。酸性硫酸銅めっき液の液温は40℃〜60℃が好ましい。液温が40℃より低いと、得られる電解銅箔の加熱後引張り強さが所定の値とならなくなる傾向があり、60℃より高いと、製造装置の樹脂部材が損傷を受けやすい。また、電流密度は30A/dm2〜50A/dmとすることが好ましい。電流密度が50A/dmより高いと、得られる電解銅箔の加熱後引張り強さが所定の値とならなくなる傾向があり、30A/dmより低いと生産性が悪く、実用的でない。 Next, the manufacturing apparatus and plating conditions used in the method for manufacturing an electrolytic copper foil of the present invention will be described. In this invention, the manufacturing apparatus used for manufacture of a normal electrolytic copper foil can be used. As an example, an anode made of a titanium plate coated with a semi-cylindrical iridium oxide coating and a titanium rotating cathode are immersed in a sulfuric acid copper plating solution, and a direct current is passed between both electrodes to rotate the anode. There is a method of continuously winding the electrolytic copper foil deposited on the cathode. The liquid temperature of the acidic copper sulfate plating solution is preferably 40 ° C to 60 ° C. When the liquid temperature is lower than 40 ° C., the tensile strength after heating of the obtained electrolytic copper foil tends not to be a predetermined value. When the liquid temperature is higher than 60 ° C., the resin member of the manufacturing apparatus is easily damaged. The current density is preferably set to 30A / dm 2~ 50A / dm 2 . When the current density is higher than 50 A / dm 2, the tensile strength after heating of the obtained electrolytic copper foil tends not to be a predetermined value, and when it is lower than 30 A / dm 2 , the productivity is poor and is not practical.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1〜13、比較例1〜18、及び、参考例1〜3]
実施例1〜13及び比較例1〜18においては、硫酸銅五水和物濃度280g/l、遊離硫酸濃度90g/lに調整した基本溶液(硫酸−硫酸銅水溶液)に、添加剤を添加し、得られた溶液を硫酸酸性銅めっき液として用いた。参考例1及び2は、特許文献1に記載された方法に従って電解銅箔を作製した例であり、参考例3は、特許文献2に記載された方法に従って電解銅箔を作製した例である。参考例1及び2(特許文献1)については、基本溶液中の硫酸銅五水和物濃度を280g/l、遊離硫酸濃度を100g/lとし、参考例3(特許文献2)については、基本溶液中の銅濃度を80g/l、遊離硫酸濃度を140g/lとした。また、添加剤の種類と添加量について、実施例及び比較例は表1に、参考例は表2に示した。
[Examples 1 to 13, Comparative Examples 1 to 18, and Reference Examples 1 to 3]
In Examples 1 to 13 and Comparative Examples 1 to 18, an additive was added to a basic solution (sulfuric acid-copper sulfate aqueous solution) adjusted to a copper sulfate pentahydrate concentration of 280 g / l and a free sulfuric acid concentration of 90 g / l. The obtained solution was used as a sulfuric acid copper plating solution. Reference Examples 1 and 2 are examples in which an electrolytic copper foil was produced according to the method described in Patent Document 1, and Reference Example 3 was an example in which an electrolytic copper foil was produced according to the method described in Patent Document 2. For Reference Examples 1 and 2 (Patent Document 1), the copper sulfate pentahydrate concentration in the basic solution was 280 g / l, the free sulfuric acid concentration was 100 g / l, and for Reference Example 3 (Patent Document 2), the basic The copper concentration in the solution was 80 g / l and the free sulfuric acid concentration was 140 g / l. Moreover, about the kind and addition amount of an additive, the Example and the comparative example were shown in Table 1, and the reference example was shown in Table 2.

チタン製回転陰極(直径:48mm、実効面積:1.0dm)の表面を#2000研磨紙で研磨した。陽極には酸化イリジウムコーティングしたチタン製の円筒状不溶性陽極(φ140mm、実効面積4.0dm)を用いた。めっき液の液温を50℃とし、電流密度40A/dm、回転数300rpmでめっきし、厚さ15μmの電解銅箔を製造した。実施例及び比較例では、電解処理を連続して行い、めっき2枚目の電解銅箔を評価サンプルとし、参考例は特許文献1及び2の記載に準じた。すなわち、特に記載がない参考例1及び参考例2はめっき1枚目、参考例3はめっき3枚目を電解銅箔の評価サンプルとして、その機械特性及び電気特性を評価し、結果を表3に示した。
また、実施例1、比較例1及び比較例18で得られた電解銅箔を長時間常温で放置した時の20℃における引張り強さの経時変化を測定し、図1に示した。
The surface of a titanium rotating cathode (diameter: 48 mm, effective area: 1.0 dm 2 ) was polished with # 2000 polishing paper. A cylindrical insoluble anode made of iridium oxide-coated titanium (φ140 mm, effective area 4.0 dm 2 ) was used as the anode. The temperature of the plating solution was 50 ° C., plating was performed at a current density of 40 A / dm 2 and a rotation speed of 300 rpm, and an electrolytic copper foil having a thickness of 15 μm was produced. In Examples and Comparative Examples, electrolytic treatment was continuously performed, and the electrolytic copper foil of the second plating was used as an evaluation sample. Reference examples were in accordance with those described in Patent Documents 1 and 2. In other words, Reference Example 1 and Reference Example 2, which are not particularly described, were used for the first copper plating, and in Reference Example 3, the third plating was used as an evaluation sample of electrolytic copper foil, and its mechanical characteristics and electrical characteristics were evaluated. It was shown to.
Moreover, the time-dependent change of the tensile strength in 20 degreeC when the electrolytic copper foil obtained in Example 1, the comparative example 1, and the comparative example 18 was left at normal temperature for a long time was measured, and it showed in FIG.

[評価方法]
初期引張り強さ: 常温環境におかれていた電解銅箔を、電着終了から120分以内に20℃における引張り強さ測定に供した。
放置後引張り強さ: 電解銅箔を常温環境で保管し、電着終了から168時間後に、20℃における引張り強さ測定に供した。
加熱後引張り強さ: 常温環境におかれていた電解銅箔を、電着終了から120分以内に、240℃で10分間加熱し、20℃における引張り強さ測定に供した。
加熱後電気伝導性: 常温環境におかれていた電解銅箔を、電着終了から120分以内に、240℃で10分間加熱し、20℃における電気伝導率測定に供し、%IACS値を求めた。
伸び率: 常温環境におかれていた電解銅箔を、電着終了から120分以内に、20℃における伸び率測定に供した。
[Evaluation method]
Initial tensile strength: The electrolytic copper foil placed in a room temperature environment was subjected to tensile strength measurement at 20 ° C. within 120 minutes from the end of electrodeposition.
Tensile strength after standing: The electrolytic copper foil was stored in a room temperature environment, and subjected to tensile strength measurement at 20 ° C. after 168 hours from the end of electrodeposition.
Tensile strength after heating: The electrolytic copper foil placed in a room temperature environment was heated at 240 ° C. for 10 minutes within 120 minutes from the end of electrodeposition, and subjected to tensile strength measurement at 20 ° C.
Electrical conductivity after heating: The electrolytic copper foil placed in a room temperature environment was heated at 240 ° C. for 10 minutes within 120 minutes from the end of electrodeposition, and subjected to electrical conductivity measurement at 20 ° C. to obtain the% IACS value. It was.
Elongation rate: The electrolytic copper foil placed in a room temperature environment was subjected to the elongation rate measurement at 20 ° C. within 120 minutes from the end of electrodeposition.

上記の評価において、引張り強さと伸び率の測定は、JIS C6515に準じて万能引張り試験器を用いて行った。電気伝導性は、JIS C6515及びIEC60249−1に準じて、デジタルマルチメータを用いた四端子法で測定した。   In the above evaluation, the tensile strength and elongation were measured using a universal tensile tester according to JIS C6515. The electrical conductivity was measured by a four-terminal method using a digital multimeter according to JIS C6515 and IEC60249-1.

Figure 0005771392
A1:N,N−ジメチルジチオカルバミン酸ナトリウム
A2:N,N−ジメチルジチオカルバミルプロパンスルホン酸ナトリウム
添加剤(B):チオ尿素
C1:3−メルカプト−1−プロパンスルホン酸ナトリウム
C2:3,3′−ジチオビス(1−プロパンスルホン酸)二ナトリウム
添加剤(D):ポリエチレングリコール 重量平均分子量1000
Figure 0005771392
A1: Sodium N, N-dimethyldithiocarbamate A2: Sodium N, N-dimethyldithiocarbamylpropanesulfonate (B): Thiourea C1: Sodium 3-mercapto-1-propanesulfonate C2: 3, 3 ′ -Dithiobis (1-propanesulfonic acid) disodium additive (D): polyethylene glycol Weight average molecular weight 1000

Figure 0005771392
1) アセチレングリコール(エアープロダクツ社製、商品名:サーフィノール465)
2) 2−メルカプト−5−ベンズイミダゾールスルホン酸ナトリウム
C1:3−メルカプト−1−プロパンスルホン酸ナトリウム
C2:3,3′−ジチオビス(1−プロパンスルホン酸)二ナトリウム
P1:ヒドロキシエチルセルロース(ダイセル化学工業製、商品名:HECダイセル SP600)
P2:ヒドロキシエチルセルロース(ダイセル化学工業製、商品名:HECダイセル SP400)
P3:ポリエチレンイミン(日本触媒製エポミン P−1000)
P4:ジアリルジメチルアンモニウムクロライド重合体(センカ製,商品名:ユニセンス FPA100L)
Figure 0005771392
1) Acetylene glycol (product name: Surfynol 465, manufactured by Air Products)
2) Sodium 2-mercapto-5-benzimidazolesulfonate C1: Sodium 3-mercapto-1-propanesulfonate C2: 3,3′-dithiobis (1-propanesulfonic acid) disodium P1: Hydroxyethyl cellulose (Daicel Chemical Industries) (Product name: HEC Daicel SP600)
P2: Hydroxyethyl cellulose (manufactured by Daicel Chemical Industries, trade name: HEC Daicel SP400)
P3: Polyethyleneimine (Nippon Shokubai Epomin P-1000)
P4: diallyldimethylammonium chloride polymer (manufactured by Senka, trade name: Unisense FPA100L)

Figure 0005771392
Figure 0005771392

実施例の電解銅箔は、加熱後引張り強さが650MPa〜730MPaであり、加熱後電気伝導性は81%IACS〜88%IACSであった。一方、比較例の電解銅箔は、ポーラスなめっきが多く、ほとんどがめっき皮膜として剥離できないため、測定不可能であった。測定可能なサンプルに関しては、加熱後引張り強さが320MPa〜650MPaであり、電気伝導性は81%IACS〜98%IACSであった。   The electrolytic copper foil of the example had a tensile strength after heating of 650 MPa to 730 MPa, and an electrical conductivity after heating of 81% IACS to 88% IACS. On the other hand, since the electrolytic copper foil of the comparative example had many porous plating and most could not be peeled off as a plating film, it was impossible to measure. For the measurable sample, the tensile strength after heating was 320 MPa to 650 MPa, and the electrical conductivity was 81% IACS to 98% IACS.

また、実施例の電解銅箔は、初期、すなわち電着終了から60分以内に測定した伸び率が3.0%〜3.8%であり、電着終了から168時間後の引張り強さは710MPa〜770MPaであり、初期引張り強さに対する放置後引張り強さの維持率も92.6%〜102.7%と高いものであった。   Moreover, the electrolytic copper foil of an Example is 3.0%-3.8% of the elongation measured in the initial stage, ie, 60 minutes after completion | finish of electrodeposition, and the tensile strength of 168 hours after the completion | finish of electrodeposition is It was 710 MPa to 770 MPa, and the retention rate of the tensile strength after standing relative to the initial tensile strength was also as high as 92.6% to 102.7%.

上記のようにして得られた電解銅箔は、高い引張り強さと耐熱性、さらには高い電気伝導性を併せ持ち、銅以外の金属成分を含まない。従って、プリント配線板用銅箔やリチウムイオン電池用負極の集電体として好適に用いることができる。   The electrolytic copper foil obtained as described above has both high tensile strength, heat resistance, and high electrical conductivity, and does not contain metal components other than copper. Therefore, it can be suitably used as a current collector for copper foils for printed wiring boards and negative electrodes for lithium ion batteries.

Claims (11)

(A)ジチオカルバミン酸誘導体又はその塩、(B)チオ尿素、(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩、(D)ポリアルキレングリコール及び(E)塩素イオンを添加剤として含有する硫酸酸性銅めっき液を電気分解することによって製造され、
電着終了後120分以内に、240℃で10分間加熱後、20℃において引張り強さ及び電気伝導性を測定したとき、引張り強さが650MPa以上で、電気伝導性が80%IACS以上であり、電着終了から168時間後に測定した20℃における引張り強さが、電着終了後120分以内に測定した20℃における引張り強さの90%以上であり、電着終了後120分以内に測定した20℃における伸び率が3%以上である電解銅箔。
(A) Dithiocarbamic acid derivative or salt thereof, (B) thiourea, (C) water-soluble sulfur compound having mercapto group or derivative or salt thereof, (D) polyalkylene glycol and (E) chloride ion as additives Is produced by electrolyzing the sulfuric acid copper plating solution contained as
Within 120 minutes after electrodeposition, after heating at 240 ° C. for 10 minutes and measuring the tensile strength and electrical conductivity at 20 ° C., the tensile strength is 650 MPa or more and the electrical conductivity is 80% IACS or more. The tensile strength at 20 ° C. measured 168 hours after completion of electrodeposition is 90% or more of the tensile strength at 20 ° C. measured within 120 minutes after completion of electrodeposition, and measured within 120 minutes after completion of electrodeposition. The electrolytic copper foil whose elongation rate in 20 degreeC was 3% or more.
電着終了から168時間後に測定した20℃における引張り強さが700MPa以上である請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the tensile strength at 20 ° C. measured after 168 hours from the end of electrodeposition is 700 MPa or more. (A)ジチオカルバミン酸誘導体又はその塩、(B)チオ尿素、(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩、(D)ポリアルキレングリコール及び(E)塩素イオンを添加剤として含有する硫酸酸性銅めっき液を電気分解し、
電着終了後120分以内に、240℃で10分間加熱後、20℃において引張り強さ及び電気伝導性を測定したとき、引張り強さが650MPa以上で、電気伝導性が80%IACS以上であり、電着終了から168時間後に測定した20℃における引張り強さが、電着終了後120分以内に測定した20℃における引張り強さの90%以上であり、電着終了後120分以内に測定した20℃における伸び率が3%以上である電解銅箔を製造することを特徴とする電解銅箔の製造方法。
(A) Dithiocarbamic acid derivative or salt thereof, (B) thiourea, (C) water-soluble sulfur compound having mercapto group or derivative or salt thereof, (D) polyalkylene glycol and (E) chloride ion as additives electrolyzing the sulfate acid copper plating solution containing as,
Within 120 minutes after electrodeposition, after heating at 240 ° C. for 10 minutes and measuring the tensile strength and electrical conductivity at 20 ° C., the tensile strength is 650 MPa or more and the electrical conductivity is 80% IACS or more. The tensile strength at 20 ° C. measured 168 hours after completion of electrodeposition is 90% or more of the tensile strength at 20 ° C. measured within 120 minutes after completion of electrodeposition, and measured within 120 minutes after completion of electrodeposition. The manufacturing method of the electrolytic copper foil characterized by manufacturing the electrolytic copper foil whose elongation rate in 20 degreeC was 3% or more .
上記製造される電解銅箔の電着終了から168時間後に測定した20℃における引張り強さが700MPa以上である請求項3に記載の電解銅箔の製造方法。The method for producing an electrolytic copper foil according to claim 3, wherein the tensile strength at 20 ° C measured at 168 hours after the electrodeposition of the produced electrolytic copper foil is 700 MPa or more. 添加剤(A)であるジチオカルバミン酸誘導体又はその塩が、下記一般式(1)又は下記一般式(2)で表されるものである請求項3又は4に記載の電解銅箔の製造方法。
Figure 0005771392

[一般式(1)及び(2)中、R及びRは、各々独立に、炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、Mは水素原子又はアルカリ金属原子を表し、一般式(2)中、Rは炭素数2〜4のアルキレン基又は炭素数6〜10のアリーレン基を表す。]
The method for producing an electrolytic copper foil according to claim 3 or 4 , wherein the dithiocarbamic acid derivative or salt thereof as the additive (A) is represented by the following general formula (1) or the following general formula (2).
Figure 0005771392

[In General Formulas (1) and (2), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and M represents a hydrogen atom or an alkali metal. In the general formula (2), R 3 represents an alkylene group having 2 to 4 carbon atoms or an arylene group having 6 to 10 carbon atoms. ]
添加剤(A)であるジチオカルバミン酸誘導体又はその塩が、N,N−ジメチルジチオカルバミン酸、N,N−ジエチルジチオカルバミン酸、N,N−ジプロピルジチオカルバミン酸、N,N−ジブチルジチオカルバミン酸、N,N−ジフェニルジチオカルバミン酸、N,N−ジメチルジチオカルバミルプロパンスルホン酸及びこれらのアルカリ金属塩からなる群から選ばれる少なくとも1種である請求項3〜5のいずれかに記載の電解銅箔の製造方法。 The dithiocarbamic acid derivative or salt thereof as additive (A) is N, N-dimethyldithiocarbamic acid, N, N-diethyldithiocarbamic acid, N, N-dipropyldithiocarbamic acid, N, N-dibutyldithiocarbamic acid, N, The production of an electrolytic copper foil according to any one of claims 3 to 5, which is at least one selected from the group consisting of N-diphenyldithiocarbamic acid, N, N-dimethyldithiocarbamylpropanesulfonic acid and alkali metal salts thereof. Method. 添加剤(C)であるメルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩が、下記一般式(3)又は下記一般式(4)で表されるものである請求項4〜6のいずれかに記載の電解銅箔の製造方法。
Figure 0005771392

[一般式(3)及び(4)中、R、R及びRは、各々独立に、炭素数2〜4のアルキレン基を表し、Mは水素原子又はアルカリ金属原子を表す。]
The water-soluble sulfur compound having a mercapto group as an additive (C) or a derivative thereof or a salt thereof is represented by the following general formula (3) or the following general formula (4) . The manufacturing method of the electrolytic copper foil in any one.
Figure 0005771392

[In General Formulas (3) and (4), R 4 , R 5 and R 6 each independently represents an alkylene group having 2 to 4 carbon atoms, and M represents a hydrogen atom or an alkali metal atom. ]
添加剤(C)であるメルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩が、3−メルカプト−1−プロパンスルホン酸、3,3′−ジチオビス(1−プロパンスルホン酸)及びそれらのアルカリ金属塩からなる群から選ばれる少なくとも1種である請求項4〜7のいずれかに記載の電解銅箔の製造方法。 Additive (C), a water-soluble sulfur compound having a mercapto group, or a derivative thereof or a salt thereof is 3-mercapto-1-propanesulfonic acid, 3,3′-dithiobis (1-propanesulfonic acid), and their The method for producing an electrolytic copper foil according to any one of claims 4 to 7, which is at least one selected from the group consisting of alkali metal salts. 添加剤(D)であるポリアルキレングリコールの重量平均分子量が500〜100,000である請求項4〜8のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 4 to 8 , wherein the polyalkylene glycol as the additive (D) has a weight average molecular weight of 500 to 100,000. 硫酸酸性銅めっき液中の添加剤(A)〜(E)の濃度が、
(A)ジチオカルバミン酸誘導体又はその塩の濃度が10〜60mg/l、
(B)チオ尿素の濃度が7.5〜25mg/l、
(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩の濃度が40〜300mg/l、
(D)ポリアルキレングリコールの濃度が40〜400mg/l、
(E)塩素イオンの濃度が30〜100mg/l
である請求項4〜9のいずれかに記載の電解銅箔の製造方法。
The concentration of the additives (A) to (E) in the sulfuric acid copper plating solution is
(A) The concentration of the dithiocarbamic acid derivative or salt thereof is 10 to 60 mg / l,
(B) the concentration of thiourea is 7.5-25 mg / l,
(C) The concentration of the water-soluble sulfur compound having a mercapto group or a derivative thereof or a salt thereof is 40 to 300 mg / l,
(D) The concentration of polyalkylene glycol is 40 to 400 mg / l,
(E) Chlorine ion concentration is 30-100 mg / l
The method for producing an electrolytic copper foil according to any one of claims 4 to 9 .
硫酸酸性銅めっき液が、銅の濃度が硫酸銅五水和物換算で160〜350g/lで、遊離硫酸の濃度が50〜100g/lである硫酸−硫酸銅水溶液に、添加剤(A)〜(E)を添加して調製されたものである請求項4〜10のいずれかに記載の電解銅箔の製造方法。 Additive (A) to the sulfuric acid-copper sulfate aqueous solution in which the sulfuric acid copper plating solution has a copper concentration of 160 to 350 g / l in terms of copper sulfate pentahydrate and a free sulfuric acid concentration of 50 to 100 g / l. The method for producing an electrolytic copper foil according to any one of claims 4 to 10, which is prepared by adding ~ (E).
JP2010292686A 2010-12-28 2010-12-28 Electrolytic copper foil and method for producing the same Active JP5771392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010292686A JP5771392B2 (en) 2010-12-28 2010-12-28 Electrolytic copper foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010292686A JP5771392B2 (en) 2010-12-28 2010-12-28 Electrolytic copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012140660A JP2012140660A (en) 2012-07-26
JP5771392B2 true JP5771392B2 (en) 2015-08-26

Family

ID=46677220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292686A Active JP5771392B2 (en) 2010-12-28 2010-12-28 Electrolytic copper foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP5771392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003451A (en) 2016-06-14 2019-01-09 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board
EP3569741A1 (en) 2018-05-16 2019-11-20 Iljin Materials Co., Ltd. Electrolytic copper foil and secondary battery using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518210B (en) 2013-01-31 2016-01-21 三井金屬鑛業股份有限公司 Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
JP5889443B2 (en) * 2013-08-01 2016-03-22 古河電気工業株式会社 Copper foil for printed circuit boards
JP5810249B1 (en) * 2014-01-07 2015-11-11 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
KR101500565B1 (en) * 2014-03-20 2015-03-12 일진머티리얼즈 주식회사 Electrolytic copper foil, current collector, anode and lithium battery comprising foil
KR101500566B1 (en) * 2014-03-20 2015-03-12 일진머티리얼즈 주식회사 Electrolytic copper foil, current collector, anode and lithium battery comprising foil
CN107151806B (en) * 2017-05-09 2019-05-14 东莞华威铜箔科技有限公司 Preparation method, product and its application of high-end flexible, porous additive for electrolytic copper foil
KR102483089B1 (en) 2018-01-31 2022-12-29 에스케이넥실리스 주식회사 Copper Film With Enhanced Handling Properties At Subsequent Process, And Manufacturing Methods Thereof
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil
CN112030199B (en) * 2020-08-27 2021-11-12 江苏艾森半导体材料股份有限公司 High-speed electro-coppering additive for advanced packaging and electroplating solution
CN113622000A (en) * 2021-08-30 2021-11-09 九江德福科技股份有限公司 Manufacturing method for improving elongation of copper foil of lithium ion battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389061B1 (en) * 2002-11-14 2003-06-25 일진소재산업주식회사 Electrolytic copper foil and process producing the same
JP5255229B2 (en) * 2006-04-28 2013-08-07 三井金属鉱業株式会社 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003451A (en) 2016-06-14 2019-01-09 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board
EP3569741A1 (en) 2018-05-16 2019-11-20 Iljin Materials Co., Ltd. Electrolytic copper foil and secondary battery using the same

Also Published As

Publication number Publication date
JP2012140660A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5771392B2 (en) Electrolytic copper foil and method for producing the same
CN1046557C (en) Electrodeposited copper foil and process for makin gasame using electrolyte solutions having controlled additions of chloride ions and organic additives
US8445116B2 (en) Coated articles and methods
TWI518210B (en) Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
KR102379291B1 (en) anti-corrosion coating
JP4709575B2 (en) Copper foil roughening treatment method and roughening treatment liquid
JP5809351B2 (en) Surface treatment agent for autodeposition type copper and method for producing copper-containing substrate with resin film
JPS58161785A (en) Electrode clad with lead or lead alloy and manufacture
EP2545194A1 (en) Coated articles and methods
WO2006057231A1 (en) Molten salt bath, precipitate, and process for producing metal precipitate
WO2014045798A1 (en) Method for producing aluminum film
JP2002530810A (en) Battery sleeve made of shaped cold rolled sheet metal and method of manufacturing battery sleeve
JP2004263289A (en) Low rough surface electrolytic copper foil, and production method therefor
JP6975783B2 (en) Manufacturing method of electrolytic copper foil for secondary batteries
JP6143005B2 (en) Aluminum plating solution and method for producing aluminum film
KR101262721B1 (en) Electrolyte for manufacturing electrolytic copper foil of secondary battery and method for manufacturing electrolytic copper foil therewith
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP5229563B2 (en) Corrosion-resistant conductive film, corrosion-resistant conductive material, polymer electrolyte fuel cell and separator thereof, and method for producing corrosion-resistant conductive material
KR20220158161A (en) Electrolytic copper solution composition comprising fullerene
JP6544792B2 (en) Method of selecting a stabilizer for electroless platinum plating solution and electroless platinum plating solution
JP4532385B2 (en) Electroless plating method
JP5943370B2 (en) Method for producing glossy aluminum material
JP2017137517A (en) Aluminum plating solution, production method of aluminum plating film, and aluminum porous body
ROSLEY et al. Effect of pH in Production of Cu-Sn-Zn via Electroplating Using Less Hazardous Electrolyte
Suzuki et al. Copper Foil Smooth on Both Sides for Lithium-Ion Battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5771392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250