JP2017043834A - Additive for high purity electrolytic copper refinery and high purity copper manufacturing method - Google Patents

Additive for high purity electrolytic copper refinery and high purity copper manufacturing method Download PDF

Info

Publication number
JP2017043834A
JP2017043834A JP2016106862A JP2016106862A JP2017043834A JP 2017043834 A JP2017043834 A JP 2017043834A JP 2016106862 A JP2016106862 A JP 2016106862A JP 2016106862 A JP2016106862 A JP 2016106862A JP 2017043834 A JP2017043834 A JP 2017043834A
Authority
JP
Japan
Prior art keywords
copper
electrolytic
additive
group
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016106862A
Other languages
Japanese (ja)
Other versions
JP6733313B2 (en
Inventor
賢治 久保田
Kenji Kubota
賢治 久保田
圭栄 樽谷
Yoshie Tarutani
圭栄 樽谷
中矢 清隆
Kiyotaka Nakaya
清隆 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to US15/248,038 priority Critical patent/US10793956B2/en
Priority to TW105127506A priority patent/TWI691618B/en
Priority to CN201610751052.1A priority patent/CN106480475B/en
Publication of JP2017043834A publication Critical patent/JP2017043834A/en
Application granted granted Critical
Publication of JP6733313B2 publication Critical patent/JP6733313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide an additive to prevent generation of slime and to manufacture high purity copper which sulfur concentration and silver concentration are drastically reduced, and a manufacturing method using the additive.SOLUTION: An additive for high purity electrolytic copper refinery added in copper electrolytic solution of electrolytic refining manufacturing high purity copper contains: a main agent consisting of nonionic surfactant having hydrophobic group including aromatic rings and hydrophilic group including polyoxyalkylene group; and a stress relaxant consisting of polyvinyl alcohol or the derivative. A manufacturing method of high purity copper uses the additive.SELECTED DRAWING: None

Description

本発明は、硫黄や銀濃度などの不純物を大幅に低減した高純度銅を製造する高純度銅電解精錬用の添加剤と該添加剤を用いた製造方法に関する。   The present invention relates to an additive for high-purity copper electrolytic refining for producing high-purity copper with greatly reduced impurities such as sulfur and silver concentration, and a production method using the additive.

高純度銅の製造方法として、特許文献1に記載されているように、硫酸銅水溶液を電解し、陰極に析出した銅を陽極にしてさらに硝酸銅水溶液中において100A/m以下の低電流密度で再電解する二段階の電解を行う方法が知られている。 As described in Patent Document 1, as a method for producing high-purity copper, a copper sulfate aqueous solution is electrolyzed, copper deposited on the cathode is used as an anode, and further, a low current density of 100 A / m 2 or less in the copper nitrate aqueous solution. There is known a method of performing two-stage electrolysis with re-electrolysis.

また、特許文献2に記載されているように、塩素イオン、ニカワ等、および活性硫黄成分を含む硫酸銅電解液にPEG(ポリエチレングリコール)等のポリオキシエチレン系界面活性剤を併用することによって機械的特性とカソード密着性を高めた電解銅箔の製造方法が知られている。さらに、特許文献3に記載されているように、PVA(ポリビニルアルコール)等の平滑化剤とPEGなどのスライム促進剤を併用することによって銅表面が平滑で、不純物である銀や硫黄の含有量が少ない高純度電気銅を製造する方法が知られている。   In addition, as described in Patent Document 2, a mechanical effect is obtained by using a polyoxyethylene-based surfactant such as PEG (polyethylene glycol) in combination with a copper sulfate electrolyte containing chlorine ions, glue, and the like, and an active sulfur component. There is known a method for producing an electrolytic copper foil with improved mechanical properties and cathode adhesion. Furthermore, as described in Patent Document 3, by using a smoothing agent such as PVA (polyvinyl alcohol) and a slime accelerator such as PEG, the copper surface is smooth and the content of silver or sulfur as impurities A method for producing high-purity electrolytic copper with a low content is known.

特公平08−990号公報Japanese Patent Publication No. 08-990 特開平2001−123289号公報Japanese Patent Laid-Open No. 2001-123289 特開2005−307343号公報JP 2005-307343 A

特許文献1の製造方法のように、硫酸銅浴の電解と硝酸銅浴の電解を行う二段階の製造方法では電解に手間がかかる問題がある。また、硝酸の使用は環境負荷が高く、排水処理が煩雑になる問題がある。   As in the manufacturing method of Patent Document 1, the two-stage manufacturing method in which the electrolysis of the copper sulfate bath and the copper nitrate bath has a problem that the electrolysis takes time. In addition, the use of nitric acid has a problem that the environmental load is high and the wastewater treatment becomes complicated.

従来の添加剤(PVA,PEG等)を用いると電流密度を上げることが難しく、電流密度を上げるために液撹拌を行うとスライムが舞い上がり、これがカソードに付着して電気銅の純度が低下する。しかも、添加剤がアノードの溶解を強く抑制するため、アノード溶解過電圧が上昇してアノード溶解の際にスライムが大量に発生し、カソードの歩留まりが低下すると共にカソードに付着するスライム量が多くなる。また、従来の添加剤はカソードの析出反応を抑制するため、電解液が硫酸根を含んでいると電着銅の硫黄濃度が上昇して純度が低下する問題があった。
また、従来の添加剤(PEG等)は、アノードと同様にカソードにも強く作用するため、電析時にカソード内で応力が生じることでカソードが反り、電解精錬時にカソードがSUS母板から脱落してしまう問題があった。
When conventional additives (PVA, PEG, etc.) are used, it is difficult to increase the current density, and when liquid agitation is performed to increase the current density, slime rises, which adheres to the cathode and lowers the purity of electrolytic copper. In addition, since the additive strongly suppresses dissolution of the anode, the anode dissolution overvoltage is increased, so that a large amount of slime is generated during anode dissolution, the yield of the cathode is reduced, and the amount of slime attached to the cathode is increased. Further, since the conventional additive suppresses the deposition reaction of the cathode, there is a problem that the purity of the electrodeposited copper is increased and the purity is lowered when the electrolytic solution contains a sulfate group.
In addition, conventional additives (such as PEG) act strongly on the cathode as well as the anode. Therefore, stress is generated in the cathode during electrodeposition and the cathode warps, and the cathode falls off the SUS base plate during electrolytic refining. There was a problem.

また、PEGやPVA等の水溶性高分子の添加剤は親水性が極めて高く、さらに紫外線吸収性が乏しく、高速液体クロマトグラフィー(HPLC)による定量分析が困難であり、また分解速度が速いことから、正確な濃度管理が難しい。さらに、PEGを用いると電気銅表面の樹枝状突起が生じやすいと云う問題があり、これを解決するためにPVAを用いると電気銅の表面は平滑になるが不純物の銀が十分に低減されない。また、さらに、特許文献2に記載されているPEG等の界面活性剤を用いる製造方法は電気銅の硫黄含有量等が高く、高純度の電気銅を得ることが難しい。   Also, water-soluble polymer additives such as PEG and PVA are extremely hydrophilic, have poor UV absorption, are difficult to perform quantitative analysis by high performance liquid chromatography (HPLC), and have a high decomposition rate. Accurate concentration management is difficult. Furthermore, when PEG is used, there is a problem that dendrites on the surface of the electrolytic copper are likely to occur. When PVA is used to solve this problem, the surface of the electrolytic copper becomes smooth but the impurity silver is not sufficiently reduced. Furthermore, the production method using a surfactant such as PEG described in Patent Document 2 has a high sulfur content of electrolytic copper and it is difficult to obtain high-purity electrolytic copper.

本発明は、高純度銅の製造について、従来の製造方法における上記問題を解消したものであり、特定の疎水基と親水基を有する界面活性剤からなる主剤と応力緩和剤を含む添加剤を用いることによって、スライムの発生を抑制して銀や硫黄等の不純物を大幅に低減した高純度銅を製造できるようにしたものであって、上記添加剤と該添加剤を用いた製造方法を提供する。   The present invention solves the above-mentioned problems in conventional production methods for the production of high-purity copper, and uses an additive containing a main agent composed of a surfactant having a specific hydrophobic group and a hydrophilic group and a stress relaxation agent. In this way, it is possible to produce high-purity copper in which generation of slime is suppressed and impurities such as silver and sulfur are greatly reduced, and a manufacturing method using the additive and the additive is provided. .

本発明は、以下の構成を有する高純度銅電解精錬用添加剤と高純度銅の製造方法に関する。
〔1〕高純度銅を製造する電解精錬の銅電解液に添加される添加剤であって、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基を有する非イオン性界面活性剤からなる主剤と、ポリビニルアルコールまたはその誘導体からなる応力緩和剤とを含むことを特徴とする高純度銅電解製造用添加剤。
〔2〕主剤の親水基がポリオキシエチレン基、ポリオキシプロピレン基、またはポリオキシエチレン基とポリオキシプロピレン基を含み、主剤の疎水基がフェニル基またはナフチル基を含む上記[1]に記載する高純度銅電解精錬用添加剤。
〔3〕主剤の親水基のポリオキシアルキレン基の付加モル数が2〜20である上記[1]または上記[2]に記載する高純度銅電解精錬用添加剤。
〔4〕応力緩和剤が、ケン化率70〜99mol%であって平均重合度200〜2500のポリビニルアルコールまたはその誘導体である上記[1]〜上記[3]の何れかに記載する高純度銅電解製造用添加剤。
〔5〕ポリビニルアルコール誘導体が、カルボキシ変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、またはポリオキシエチレン変性ポリビニルアルコールである上記[4]に記載する高純度銅電解製造用添加剤。
〔6〕銅電解液に、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基を有する非イオン性界面活性剤からなる主剤と、ポリビニルアルコールまたはその誘導体からなる応力緩和剤とを添加して銅電解を行う高純度銅の製造方法。
〔7〕銅電解液中の上記主剤の濃度が2〜500mg/Lであって、上記主剤(X)と上記応力緩和剤(Y)の濃度比(Y/X)が0.01〜1.0の範囲であるように銅電解を行う上記[6]に記載する高純度銅の製造方法。
〔8〕銅電解液が硫酸銅溶液、硝酸銅溶液、または塩化銅溶液である上記[6]または上記[7]に記載する高純度銅の製造方法。
〔9〕銅濃度5〜90g/Lであって、硫酸濃度10〜300g/Lの硫酸銅溶液、または硝酸濃度0.1〜100g/Lの硝酸銅溶液、または塩酸濃度10〜300g/Lの塩化銅溶液を電解液に使用する上記[6]〜上記[8]の何れかに記載する高純度銅の製造方法。
〔10〕硫黄濃度、銀濃度が何れも1ppm以下であって、電気銅表面の光沢度が1以上である高純度銅を製造する上記[6]〜上記[9]の何れかに記載する高純度銅の製造方法。
The present invention relates to an additive for high-purity copper electrolytic refining having the following configuration and a method for producing high-purity copper.
[1] An additive added to a copper electrolyte for electrolytic refining for producing high-purity copper, comprising a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group And a stress relieving agent comprising polyvinyl alcohol or a derivative thereof.
[2] Described in the above [1], wherein the hydrophilic group of the main agent contains a polyoxyethylene group, a polyoxypropylene group, or a polyoxyethylene group and a polyoxypropylene group, and the hydrophobic group of the main agent contains a phenyl group or a naphthyl group Additive for high purity copper electrolytic refining.
[3] The additive for high-purity copper electrolytic refining as described in [1] or [2] above, wherein the number of added moles of the polyoxyalkylene group in the hydrophilic group of the main agent is 2 to 20.
[4] The high-purity copper according to any one of [1] to [3] above, wherein the stress relaxation agent is polyvinyl alcohol or a derivative thereof having a saponification rate of 70 to 99 mol% and an average degree of polymerization of 200 to 2500. Additive for electrolytic production.
[5] The additive for high-purity copper electrolysis production as described in [4] above, wherein the polyvinyl alcohol derivative is carboxy-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, or polyoxyethylene-modified polyvinyl alcohol.
[6] A main agent composed of a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group and a stress relaxation agent consisting of polyvinyl alcohol or a derivative thereof are added to the copper electrolyte. A method for producing high-purity copper that performs copper electrolysis.
[7] The concentration of the main agent in the copper electrolyte is 2 to 500 mg / L, and the concentration ratio (Y / X) of the main agent (X) to the stress relaxation agent (Y) is 0.01 to 1. The method for producing high-purity copper according to the above [6], wherein the copper electrolysis is performed so that the range is 0.
[8] The method for producing high-purity copper as described in [6] or [7] above, wherein the copper electrolyte is a copper sulfate solution, a copper nitrate solution, or a copper chloride solution.
[9] A copper sulfate solution having a copper concentration of 5 to 90 g / L, a sulfuric acid concentration of 10 to 300 g / L, a nitric acid concentration of 0.1 to 100 g / L, or a hydrochloric acid concentration of 10 to 300 g / L The method for producing high-purity copper according to any one of [6] to [8] above, wherein a copper chloride solution is used as an electrolytic solution.
[10] The high concentration according to any one of [6] to [9] above, which produces high-purity copper in which both the sulfur concentration and the silver concentration are 1 ppm or less and the glossiness of the electrolytic copper surface is 1 or more. A method for producing pure copper.

〔具体的な説明〕
以下、本発明を具体的に説明する。
本発明の添加剤は、高純度銅を製造する電解精錬の銅電解液に添加される添加剤であって、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基を有する非イオン性界面活性剤からなる主剤と、ポリビニルアルコールまたはその誘導体からなる応力緩和剤とを含むことを特徴とする高純度銅電解製造用添加剤であり、また、本発明の製造方法は上記添加剤を用いた高純度銅の製造方法である。
[Specific description]
Hereinafter, the present invention will be specifically described.
The additive of the present invention is an additive added to a copper electrolyte solution for electrolytic refining for producing high-purity copper, and has a nonionic property having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group A high-purity copper electrolytic production additive comprising a main agent comprising a surfactant and a stress relaxation agent comprising polyvinyl alcohol or a derivative thereof, and the production method of the present invention uses the additive. This is a method for producing high purity copper.

本発明の添加剤は、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基を有する非イオン性界面活性剤からなる主剤を含む。該主剤の疎水基の芳香族環は、例えば、フェニル基またはナフチル基などであり、モノフェニル、ナフチル、クミル、アルキルフェニル、スチレン化フェニルモノフェニル、ナフチル、クミル、アルキルフェニル、スチレン化フェニル、ジスチレン化フェニル、トリスチレン化フェニル、トリベンジルフェニルなどなどが挙げられる。該主剤の親水基のポリオキシアルキレン基は、例えば、ポリオキシエチレン基、ポリオキシプロピレン基などであり、ポリオキシエチレン基とポリオキシプロピレン基の両方を含むものでも良い。   The additive of the present invention includes a main agent composed of a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group. The aromatic ring of the hydrophobic group of the main agent is, for example, a phenyl group or a naphthyl group, and monophenyl, naphthyl, cumyl, alkylphenyl, styrenated phenylmonophenyl, naphthyl, cumyl, alkylphenyl, styrenated phenyl, distyrene And phenyl, tristyrenated phenyl, tribenzylphenyl and the like. The hydrophilic polyoxyalkylene group of the main agent is, for example, a polyoxyethylene group, a polyoxypropylene group, or the like, and may include both a polyoxyethylene group and a polyoxypropylene group.

本発明の添加剤に含まれる主剤の具体的な化合物は、例えば、ポリオキシエチレンモノフェニルエーテル、ポリオキシエチレンメチルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリスチレン化フェニルエーテル、ポリオキシエチレンクミルフェニルエーテル、ポリオキシプロピレンモノフェニルエーテル、ポリオキシプロピレンメチルフェニルエーテル、ポリオキシプロピレンオクチルフェニルエーテル、ポリオキシプロピレンドデシルフェニルエーテル、ポリオキシプロピレンナフチルエーテル、ポリオキシプロピレンスチレン化フェニルエーテル、ポリオキシプロピレンジスチレン化フェニルエーテル、ポリオキシプロピレントリスチレン化フェニルエーテル、ポリオキシプロピレンクミルフェニルエーテルなどである。   Specific compounds of the main agent contained in the additive of the present invention include, for example, polyoxyethylene monophenyl ether, polyoxyethylene methyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene naphthyl Ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tristyrenated phenyl ether, polyoxyethylene cumyl phenyl ether, polyoxypropylene monophenyl ether, polyoxypropylene methyl phenyl ether, Polyoxypropylene octyl phenyl ether, polyoxypropylene dodecyl phenyl ether, polyoxypropylene naphthyl ether, poly Polyoxypropylene styrenated phenyl ether, polyoxypropylene di-styrenated phenyl ether, polyoxypropylene tristyrenated phenyl ether, polyoxypropylene cumylphenyl ether, and the like.

本発明の添加剤は銅電解精錬の電解液に添加して使用される。該銅電解精錬において、本発明の添加剤に含まれる主剤は、芳香族環の疎水基とポリオキシアルキレン基の親水基を有するので電解液中の銀イオンおよび硫黄イオンがカソードに析出するのを抑制し、電気銅の銀濃度および硫黄濃度を大幅に低減する。さらに、本発明の添加剤はPEG等を用いたときよりもアノードスライムが少ない。具体的には、本発明の添加剤は主剤が疎水基とポリオキシアルキレン基の親水基とを含み、カソード表面に過剰に付着しないので、銅アノードの溶解を過剰に抑制しない。このため銅アノードが適度に溶解し、アノードスライムがPEG等を用いたときよりも少ないので、カソードに析出する電気銅の表面に付着するアノードスライム量が少なくなり、高純度の電気銅を得ることができる。   The additive of the present invention is used by being added to an electrolytic solution for copper electrolytic refining. In the copper electrolytic refining, the main agent contained in the additive of the present invention has a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group, so that silver ions and sulfur ions in the electrolytic solution are deposited on the cathode. Inhibits and significantly reduces the silver and sulfur concentrations of electrolytic copper. Furthermore, the additive of the present invention has less anode slime than when PEG or the like is used. Specifically, the additive of the present invention contains a hydrophobic group and a hydrophilic group of a polyoxyalkylene group, and does not excessively adhere to the cathode surface, so that the dissolution of the copper anode is not excessively suppressed. For this reason, the copper anode dissolves moderately, and the anode slime is less than when PEG or the like is used, so the amount of anode slime adhering to the surface of the electrolytic copper deposited on the cathode is reduced, and high purity electrolytic copper is obtained. Can do.

さらに、本発明の添加剤に含まれる主剤によってカソード表面に析出する電着銅が緻密になるので電気銅表面の平滑性が向上する。このため、電解液中の硫黄やアノードスライムが電気銅表面に付着残留し難くなり、電気銅にこれらが取り込まれ難いので、不純物の少ない高純度の電気銅を得ることができる。   Furthermore, since the electrodeposited copper deposited on the cathode surface becomes dense by the main agent contained in the additive of the present invention, the smoothness of the surface of the electrolytic copper is improved. For this reason, sulfur and anode slime in the electrolytic solution hardly adhere to and remain on the surface of the electrolytic copper, and it is difficult for them to be taken into the electrolytic copper, so that high-purity electrolytic copper with few impurities can be obtained.

銅電解液に用いられている従来の界面活性剤、例えばPEGは、芳香族環を疎水基に含まないのでこのような効果が無い。むしろ、従来のPEG等は銅アノード表面に強く付着するので銅アノードの溶解が過剰に妨げられる。このためアノードスライムの発生が多く、これがカソードの電気銅表面に取り込まれて銅品位が低下する不都合がある。具体的には、PEGなどを添加して電解精錬した電気銅の硫黄含有量は本発明の添加剤を用いた場合よりも格段に多い。一方、本発明の添加剤は、従来のPEG等よりも電気銅の硫黄含有量を格段に低減することができる。   Conventional surfactants used in copper electrolytes, such as PEG, do not have this effect because they do not contain an aromatic ring in the hydrophobic group. Rather, conventional PEG or the like strongly adheres to the surface of the copper anode, so that dissolution of the copper anode is hindered excessively. For this reason, there is much generation of anode slime, which has the disadvantage of being taken into the surface of the copper electrode of the cathode and lowering the copper quality. Specifically, the sulfur content of electrolytic copper electrorefined by adding PEG or the like is much higher than when the additive of the present invention is used. On the other hand, the additive of the present invention can significantly reduce the sulfur content of electrolytic copper compared to conventional PEG and the like.

上記主剤の疎水基の芳香族環はモノフェニル基またはナフチル基が好ましい。また、上記主剤の親水基のポリオキシアルキレン基は、例えば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシエチレン基とポリオキシプロピレン基との混合などがあるが、特にポリオキシエチレン基が好ましい。本発明の添加剤に含まれる主剤は、好ましくは、付加モル数が2〜20のポリオキシアルキレンモノフェニルエーテル、または付加モル数が2〜20のポリオキシアルキレンナフチルエーテルなどである。   The aromatic ring of the hydrophobic group of the main agent is preferably a monophenyl group or a naphthyl group. The hydrophilic polyoxyalkylene group of the main agent includes, for example, a polyoxyethylene group, a polyoxypropylene group, a mixture of a polyoxyethylene group and a polyoxypropylene group, and a polyoxyethylene group is particularly preferable. . The main agent contained in the additive of the present invention is preferably polyoxyalkylene monophenyl ether having 2 to 20 addition moles or polyoxyalkylene naphthyl ether having 2 to 20 addition moles.

上記主剤について、好ましい具体例を以下に示す。式1はポリオキシエチレンモノフェニルエーテル、式2はポリオキシエチレンナフチルエーテルである。式1、式2のnはポリオキシエチレン基の付加モル数である。   About the said main ingredient, a preferable specific example is shown below. Formula 1 is polyoxyethylene monophenyl ether, and Formula 2 is polyoxyethylene naphthyl ether. N in Formula 1 and Formula 2 is the number of added moles of the polyoxyethylene group.

Figure 2017043834
Figure 2017043834

Figure 2017043834
Figure 2017043834

上記主剤において、親水基のポリオキシアルキレン基は付加モル数が2〜20のものが好ましく、さらに該付加モル数が2〜15であるものがより好ましい。この付加モル数が2を下回ると上記主剤は電解液に溶解しない。この付加モル数が20を上回ると、該添加剤のアノード表面への付着が過密になってアノードの溶解反応が過剰に抑制されるために、アノードスライムが多く発生し、電気銅の収率が低下する。さらに、上記付加モル数が20を上回ると、カソードに析出する電気銅表面にデントライトが発生し易くなり、平滑性が低下する。このためアノードスライムや電解液中の硫黄が電気銅表面に付着して残留し易くなるので、電気銅の純度が低下する。上記主剤のポリオキシアルキレン基の付加モル数が2〜20であればアノードの溶解が適度に進行するのでPEG等を用いたときよりもアノードスライムが少なくなり、高純度の電気銅を得ることができる。さらに、上記付加モル数が2〜15のポリオキシアルキレン基を有する添加剤は電気銅の硫黄含有量を大幅に低減することができる。   In the above main agent, the polyoxyalkylene group of the hydrophilic group preferably has 2 to 20 addition moles, and more preferably has 2 to 15 addition moles. When the added mole number is less than 2, the main agent is not dissolved in the electrolytic solution. When the added mole number exceeds 20, the adhesion of the additive to the anode surface becomes excessive and the dissolution reaction of the anode is excessively suppressed, so that a large amount of anode slime is generated and the yield of electrolytic copper is increased. descend. Furthermore, when the number of added moles exceeds 20, dentrite is likely to be generated on the surface of the electrolytic copper deposited on the cathode, and the smoothness is lowered. For this reason, since the anode slime and sulfur in the electrolytic solution easily adhere to the surface of the electrolytic copper and remain, the purity of the electrolytic copper is lowered. If the added mole number of the polyoxyalkylene group of the main agent is 2 to 20, dissolution of the anode proceeds appropriately, so that anode slime is less than when PEG or the like is used, and high purity electrolytic copper can be obtained. it can. Furthermore, the additive having a polyoxyalkylene group having 2 to 15 added moles can greatly reduce the sulfur content of electrolytic copper.

なお、電解液の浴温によって電析反応が影響を受けるので、上記ポリオキシエチレン基の付加モル数の好ましい範囲は浴温によって異なり、例えば浴温が20〜55℃のときの付加モル数は2〜15が好ましく、電解液の浴温が55℃以上〜75℃のときの付加モル数は9〜20が好ましい。   In addition, since the electrodeposition reaction is affected by the bath temperature of the electrolytic solution, the preferred range of the added mole number of the polyoxyethylene group varies depending on the bath temperature. For example, the added mole number when the bath temperature is 20 to 55 ° C. is 2-15 are preferable, and when the bath temperature of electrolyte solution is 55 degreeC or more-75 degreeC, 9-20 are preferable.

フェニル基またはナフチル基を有さず、親水基であるポリオキシエチレン基等のみを有している化合物はカソードの電析を抑制する効果が乏しい。例えば、付加モル数8のポリオキシエチレングリコールは、同じくポリオキシエチレン基の付加モル数8のポリオキシエチレンモノフェニルエーテルを添加剤に使用した場合と比較すると、例えば電流密度200A/mでは電気銅の表面、特に端部が粗くなる。 A compound having no phenyl group or naphthyl group and having only a polyoxyethylene group or the like which is a hydrophilic group has a poor effect of suppressing electrodeposition on the cathode. For example, polyoxyethylene glycol having an addition mole number of 8 is compared with the case where polyoxyethylene monophenyl ether having an addition mole number of polyoxyethylene group of 8 is used as an additive, for example, at an electric current density of 200 A / m 2. The copper surface, particularly the edges, become rough.

本発明の添加剤に含まれる応力緩和剤は、ポリビニルアルコールまたはその誘導体からなる。該応力緩和剤は、カソードに析出する電気銅の電着応力を緩和して該電気銅がカソードから落下するのを防止する。電着応力が緩和されることによって電気銅がカソードに長時間安定に保持されるので、緻密に析出した表面が平滑な電気銅が得られる。一方、電着応力が緩和されずに蓄積すると電気銅に反りが生じてカソードから剥離して落下するようになる。   The stress relaxation agent contained in the additive of the present invention comprises polyvinyl alcohol or a derivative thereof. The stress relieving agent relaxes the electrodeposition stress of the electrolytic copper deposited on the cathode and prevents the electrolytic copper from dropping from the cathode. By reducing the electrodeposition stress, the electrolytic copper is stably held on the cathode for a long time, so that an electrolytic copper with a smooth surface can be obtained. On the other hand, if the electrodeposition stress is accumulated without being relaxed, the copper is warped and peels off from the cathode and falls.

上記応力緩和剤のポリビニルアルコールまたはその誘導体は、例えば、カルボキシ変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、またはポリオキシエチレン変性ポリビニルアルコールである。   The polyvinyl alcohol or derivative thereof as the stress relaxation agent is, for example, carboxy-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, or polyoxyethylene-modified polyvinyl alcohol.

上記ポリビニルアルコールまたはその誘導体はケン化率70〜99mol%が好ましい。ケン化率が70mol%未満であると、電着応力を緩和する効果が乏しくなる。一方、完全にケン化したもの(ケン化率100mol%)は溶解性が著しく低下し、電解液に溶かし込めなくなる。   The polyvinyl alcohol or derivative thereof preferably has a saponification rate of 70 to 99 mol%. When the saponification rate is less than 70 mol%, the effect of relaxing the electrodeposition stress becomes poor. On the other hand, a completely saponified product (saponification rate 100 mol%) has a markedly reduced solubility and cannot be dissolved in the electrolyte.

上記応力緩和剤のポリビニルアルコールまたはその誘導体は平均重合度200〜2500が好ましい。ポリビニルアルコールおよびその誘導体の基本構造は水酸基の完全ケン化型と酢酸基を有する部分ケン化型から成り立っており、ポリビニルアルコールおよびその誘導体の重合度はその両者の総数であり、平均重合度は重合度の平均値である。平均重合度はJISK6726のポリビニルアルコール試験方法に基づいて測定することができる。   The stress relaxation agent polyvinyl alcohol or a derivative thereof preferably has an average degree of polymerization of 200 to 2500. The basic structure of polyvinyl alcohol and its derivatives consists of a fully saponified type of hydroxyl group and a partially saponified type having an acetic acid group. The degree of polymerization of polyvinyl alcohol and its derivatives is the total number of both, and the average degree of polymerization is polymerization The average value of degrees. The average degree of polymerization can be measured based on the polyvinyl alcohol test method of JISK6726.

ポリビニルアルコールまたはその誘導体の平均重合度が200未満であると、電着応力を緩和する効果が乏しくなる。また、ポリビニルアルコールまたはその誘導体の平均重合度が200未満のものは、製造上困難なものもあり、かつ一般的に使用されていないため、入手が難しい。また、上記平均重合度が2500を超えた場合にも電着応力を緩和する効果が次第に無くなり、カソードに析出した電気銅に反りが発生するようになる。さらに、上記平均重合度が2500を超えると電着抑制効果が生じて電気銅の収率が低下する傾向がある。   When the average degree of polymerization of polyvinyl alcohol or a derivative thereof is less than 200, the effect of relaxing the electrodeposition stress becomes poor. In addition, polyvinyl alcohol or derivatives thereof having an average degree of polymerization of less than 200 are difficult to obtain because some of them are difficult to produce and are not generally used. Even when the average degree of polymerization exceeds 2500, the effect of relaxing the electrodeposition stress gradually disappears, and warpage occurs in the electrolytic copper deposited on the cathode. Furthermore, when the average degree of polymerization exceeds 2500, an electrodeposition suppressing effect is produced, and the yield of electrolytic copper tends to decrease.

主剤と応力緩和剤は、所定濃度になるように予め混合して電解液に添加しても良く、あるいは銅電解液中で所定濃度になるように個々に添加しても良い。   The main agent and the stress relieving agent may be mixed in advance to a predetermined concentration and added to the electrolytic solution, or may be added individually to a predetermined concentration in the copper electrolytic solution.

本発明の添加剤は銅電解液に添加して使用される。銅電解液において、上記主剤の濃度は2〜500mg/Lの範囲が好ましく、10〜300mg/Lの範囲がより好ましい。該主剤の濃度が2mg/Lを下回ると、添加効果が乏しいため電気銅表面の平滑性が低下し、電気銅表面に電解液中の硫黄が付着して取り込まれ易くなるので、電気銅中の硫黄濃度が上昇する。一方、該主剤の濃度が500mg/Lを上回ると、アノード表面の付着が強すぎてスライムの発生量が増え、これが余剰な量の添加剤と共にカソードの電気銅に取り込まれるので、電気銅中の硫黄濃度および銀濃度が高くなる。   The additive of the present invention is used by being added to a copper electrolyte. In the copper electrolyte, the concentration of the main agent is preferably in the range of 2 to 500 mg / L, and more preferably in the range of 10 to 300 mg / L. When the concentration of the main agent is less than 2 mg / L, the effect of addition is poor, so the smoothness of the surface of the electrolytic copper is lowered, and the sulfur in the electrolytic solution adheres to the electrolytic copper surface and is easily taken in. Increases sulfur concentration. On the other hand, if the concentration of the main agent exceeds 500 mg / L, the adhesion of the anode surface is too strong and the amount of slime generated increases, and this is taken into the cathode copper with an excessive amount of additive. Sulfur concentration and silver concentration increase.

応力緩和剤の濃度は、上記主剤(X)に対して該応力緩和剤(Y)の濃度比(Y/X)が0.01〜1.0になる範囲が好ましい。応力緩和剤の濃度が主剤の濃度より高く、Y/X比が1.0を上回るとむしろ電気銅がやや反りを生じるようになる。一方、応力緩和剤の濃度が低く、Y/X比が0.01を下回ると応力緩和剤の効果が乏しくなる。   The concentration of the stress relaxation agent is preferably in a range where the concentration ratio (Y / X) of the stress relaxation agent (Y) to the main agent (X) is 0.01 to 1.0. When the concentration of the stress relaxation agent is higher than the concentration of the main agent and the Y / X ratio exceeds 1.0, rather, the electrolytic copper is slightly warped. On the other hand, when the concentration of the stress relaxation agent is low and the Y / X ratio is less than 0.01, the effect of the stress relaxation agent becomes poor.

本発明の添加剤が使用される銅電解液は、硫酸銅溶液、硝酸銅溶液、または塩化銅溶液などの鉱酸の銅化合物溶液である。電解液として硫酸銅溶液を使用する場合、硫酸濃度は10〜300g/Lが好ましい。硫酸濃度が10g/L未満では電気銅中に水酸化銅が発生して析出状態が劣化する。一方、硫酸濃度が300g/Lを上回ると電気銅中の硫酸取り込み量が増え、硫黄濃度が上昇する。電解液が硝酸銅溶液である場合には硝酸濃度は0.1〜100g/Lが好ましい。電解液が塩化銅溶液である場合には塩酸濃度は10〜300g/Lが好ましい。   The copper electrolyte in which the additive of the present invention is used is a copper compound solution of a mineral acid such as a copper sulfate solution, a copper nitrate solution, or a copper chloride solution. When a copper sulfate solution is used as the electrolytic solution, the sulfuric acid concentration is preferably 10 to 300 g / L. If the sulfuric acid concentration is less than 10 g / L, copper hydroxide is generated in the electrolytic copper and the precipitation state deteriorates. On the other hand, when the sulfuric acid concentration exceeds 300 g / L, the amount of sulfuric acid taken up in electrolytic copper increases, and the sulfur concentration rises. When the electrolytic solution is a copper nitrate solution, the nitric acid concentration is preferably 0.1 to 100 g / L. When the electrolytic solution is a copper chloride solution, the hydrochloric acid concentration is preferably 10 to 300 g / L.

電解液が硫酸銅溶液、硝酸銅溶液、または塩化銅溶液の何れにおいて、電解液の銅濃度は5〜90g/Lが好ましい(硫酸銅5水和物濃度では20〜350g/L、硝酸銅3水和物濃度では19〜342g/L、塩化銅2水和物濃度13〜241g/L)。銅濃度が5g/L未満では電気銅が粉状に析出するようになるため純度が低下する。一方、銅濃度が90g/Lを上回ると電気銅中に電解液が取り込まれやすくなるので純度が低下する。   When the electrolytic solution is a copper sulfate solution, a copper nitrate solution, or a copper chloride solution, the copper concentration of the electrolytic solution is preferably 5 to 90 g / L (20 to 350 g / L at a copper sulfate pentahydrate concentration, copper nitrate 3 The hydrate concentration is 19 to 342 g / L, and the copper chloride dihydrate concentration is 13 to 241 g / L). When the copper concentration is less than 5 g / L, electrolytic copper is precipitated in a powder form, so that the purity is lowered. On the other hand, when the copper concentration exceeds 90 g / L, the electrolytic solution is easily taken into the electrolytic copper, so that the purity is lowered.

電解液が硫酸銅、または硝酸銅の場合の電解液は塩化物イオン濃度が200mg/L以下が好ましい。塩化物イオン濃度が200mg/Lを上回ると、電気銅に塩化物が取り込まれやすくなり、電気銅の純度が低下する。   When the electrolytic solution is copper sulfate or copper nitrate, the electrolytic solution preferably has a chloride ion concentration of 200 mg / L or less. When the chloride ion concentration exceeds 200 mg / L, chloride is easily taken into electrolytic copper, and the purity of electrolytic copper is lowered.

本発明の添加剤は、ポリオキシエチレン基などの親水基とフェニル基またはナフチル基などの疎水基を有している非イオン性界面活性剤からなる主剤を含み、該主剤は強い紫外線吸収性と疎水性を持つため、高速液体クロマトグラフィー(HPLC)による定量分析が可能である。そこで、HPLCによって該主剤の濃度を測定し、該主剤の濃度が2〜500mg/Lの範囲、より好ましくは10〜300mg/Lの範囲を維持するように該主剤の減少分を補給して銅電解精錬を行うと良い。   The additive of the present invention includes a main agent composed of a nonionic surfactant having a hydrophilic group such as a polyoxyethylene group and a hydrophobic group such as a phenyl group or a naphthyl group, and the main agent has a strong UV-absorbing property. Since it has hydrophobicity, it can be quantitatively analyzed by high performance liquid chromatography (HPLC). Therefore, the concentration of the main agent is measured by HPLC, and the decrease in the main agent is replenished so as to maintain the concentration of the main agent in the range of 2 to 500 mg / L, more preferably in the range of 10 to 300 mg / L. Electrolytic refining is recommended.

高純度銅の電解精錬において、本発明の添加剤を用いることによって、電気銅の銀濃度および硫黄濃度が大幅に低減する。また、電気銅表面が平滑になるので電気銅表面にアノードスライムや電解液が残留し難くなり、不純物の少ない高純度の電気銅を得ることができる。例えば、電解液として硫酸銅液を用いた銅電解において、硫黄濃度が格段に少ない電解銅を得ることができる。例えば、硫黄濃度、銀濃度が何れも1ppm以下であって、電気銅表面の光沢度が1以上である高純度銅を得ることができる。好ましくは硫黄濃度および銀濃度が何れも0.5ppm以下であって電気銅表面の光沢度が2以上の高純度電気銅を製造することができる。   In the electrolytic refining of high purity copper, the silver concentration and sulfur concentration of electrolytic copper are greatly reduced by using the additive of the present invention. Further, since the surface of the electrolytic copper becomes smooth, it is difficult for the anode slime and the electrolytic solution to remain on the electrolytic copper surface, and high-purity electrolytic copper with few impurities can be obtained. For example, in copper electrolysis using a copper sulfate solution as an electrolytic solution, electrolytic copper having a remarkably low sulfur concentration can be obtained. For example, it is possible to obtain high-purity copper in which both the sulfur concentration and the silver concentration are 1 ppm or less and the glossiness of the electrolytic copper surface is 1 or more. Preferably, high-purity electrolytic copper having a sulfur concentration and a silver concentration of 0.5 ppm or less and a glossiness of 2 or more on the surface of the electrolytic copper can be produced.

本発明の添加剤は、銅アノード表面に過剰に付着しないので、銅アノードが適度に溶解し、PEG等を用いたときよりもアノードスライムが少なく、電気銅の歩留まりが向上する。具体的には、電気銅の歩留まりは70%以上である。また、アノードスライムがPEG等を用いたときよりも少ないため、液撹拌を行いながら高速電解することができる。さらに、式1のポリオキシエチレンモノフェニルエーテル、式2のポリオキシエチレンナフチルエーテルなどは分子骨格に硫黄を含有しないため、これらの化合物からなる本発明の添加剤を用いると、硫黄含有量が極めて低い電気銅を得ることができる。また、ポリオキシエチレン基等の付加モル数が2〜20の添加剤はニカワと比較すると分子鎖が短いため安定性に優れており、浴の管理が容易である。   Since the additive of the present invention does not excessively adhere to the surface of the copper anode, the copper anode is appropriately dissolved, and there is less anode slime than when PEG or the like is used, and the yield of electrolytic copper is improved. Specifically, the yield of electrolytic copper is 70% or more. Further, since the anode slime is smaller than when PEG or the like is used, high-speed electrolysis can be performed while the liquid is stirred. Furthermore, since polyoxyethylene monophenyl ether of formula 1 and polyoxyethylene naphthyl ether of formula 2 do not contain sulfur in the molecular skeleton, when the additive of the present invention comprising these compounds is used, the sulfur content is extremely high. Low electrical copper can be obtained. In addition, an additive having 2 to 20 added moles such as a polyoxyethylene group is superior in stability because of its short molecular chain as compared with Nikakawa, and bath management is easy.

本発明の添加剤に含まれる応力緩和剤によってカソードに析出する電気銅の電着応力が緩和され、電気銅に反りが生じないので、電気銅がカソードに長時間安定に保持され、緻密に析出した表面が平滑な電気銅が得られる。   The stress relaxation agent contained in the additive of the present invention relaxes the electrodeposition stress of the electrolytic copper deposited on the cathode and does not warp the electrolytic copper, so that the electrolytic copper is stably held on the cathode for a long time and densely deposited. An electrolytic copper with a smooth surface is obtained.

本発明の実施例を比較例と共に以下に示す。
電気銅の硫黄濃度および銀濃度はGD−MS(グロー放電質量分析法)によって測定した。また電気銅の中央部を測定した。銅表面の光沢度は日本電色社製品(HANDY GLOSSMETER PG-1M)を用いて角度60°の条件で測定した。光沢度が1より低いと電気銅表面に付着した電解液を十分に水洗洗浄し難いために電気銅表面に残留し易くなり、電気銅の純度が低下する。電気銅の反りを目視観察によって判断した。反りのないものを○印、僅かに反りがあるものを△印、反りが大きく明らかな剥離が見られるものを×印で示した。
スライム発生率は次式によって求めた。
スライム発生率(%)=100−(析出した電気銅の重量)/(アノードの溶解量)×100
Examples of the present invention are shown below together with comparative examples.
The sulfur concentration and silver concentration of electrolytic copper were measured by GD-MS (glow discharge mass spectrometry). Moreover, the center part of electrolytic copper was measured. The glossiness of the copper surface was measured using a Nippon Denshoku product (HANDY GLOSSMETER PG-1M) at an angle of 60 °. When the glossiness is lower than 1, the electrolytic solution adhering to the surface of the electrolytic copper is not sufficiently washed with water and washed, so that it tends to remain on the surface of the electrolytic copper and the purity of the electrolytic copper is lowered. The warpage of electrolytic copper was judged by visual observation. A mark without a warp is indicated by a mark, a mark with a slight warp is indicated by a mark, and a mark having a large warp and clear peeling is indicated by a mark.
The slime generation rate was obtained by the following equation.
Slime generation rate (%) = 100− (weight of deposited copper) / (dissolution amount of anode) × 100

〔実施例1〕
硫酸銅溶液、硝酸銅溶液、塩化銅溶液を電解液として用いた。該電解液の酸濃度50g/L、銅濃度50g/Lであり、塩化銅浴以外は塩化物イオン濃度100mg/Lである。該電解液に主剤(A〜B)を30mg/L加え、応力緩和剤(D〜G)を応力緩和剤/主剤の濃度比が表1に示す値になる量を上記電解液に添加した。アノードには硫黄濃度5ppmおよび銀濃度8ppmの電気銅を用い、電流密度を200A/m、浴温30℃にて電解を行ない、12時間ごとにODSカラムを用いたHPLCによって主剤および応力緩和剤の濃度を測定し、主剤の濃度が30mg/Lを維持し、応力緩和剤の濃度が表1の濃度比を維持するように減少分を補給して電気銅を製造した。この結果を表1に示した(No.1〜No.14)。
[Example 1]
A copper sulfate solution, a copper nitrate solution, and a copper chloride solution were used as the electrolyte. The electrolytic solution has an acid concentration of 50 g / L, a copper concentration of 50 g / L, and, except for the copper chloride bath, has a chloride ion concentration of 100 mg / L. 30 mg / L of the main agent (A to B) was added to the electrolytic solution, and the stress relieving agent (D to G) was added to the electrolytic solution in an amount such that the concentration ratio of the stress relieving agent / main agent was the value shown in Table 1. The anode uses electrolytic copper with a sulfur concentration of 5 ppm and a silver concentration of 8 ppm, electrolysis is performed at a current density of 200 A / m 2 and a bath temperature of 30 ° C., and the main agent and stress relieving agent by HPLC using an ODS column every 12 hours. Then, the concentration of the main component was maintained at 30 mg / L, and the decrease was supplemented so that the concentration ratio of the stress relieving agent was maintained at the concentration ratio shown in Table 1, thereby producing electrolytic copper. The results are shown in Table 1 (No. 1 to No. 14).

〔比較例1〕
実施例1と同様の硫酸銅溶液を電解液として用い、該電解液に主剤(A〜C)を30mg/L加え、No.15〜No.17は応力緩和剤を添加せず、No.18は応力緩和剤Dを加え、それ以外は実施例1と同様にして電解精錬を行って電気銅を製造した。この結果を表1に示した(No.15〜No.18)。また、実施例1と同様の硫酸銅溶液を電解液として用い、主剤および応力緩和剤を何れも添加せず(No.19)、あるいはポリエチレングリコール(PEG)を添加し(No.20)、それ以外は実施例1と同様にして電解精錬を行って電気銅を製造した。この結果を表1に示した。
[Comparative Example 1]
The same copper sulfate solution as in Example 1 was used as an electrolyte solution, and 30 mg / L of the main agent (A to C) was added to the electrolyte solution. No. 15 to No. 17 were added with no stress relaxation agent. Added the stress relaxation agent D, and performed electrolytic refining in the same manner as in Example 1 to produce electrolytic copper. The results are shown in Table 1 (No. 15 to No. 18). Also, the same copper sulfate solution as in Example 1 was used as the electrolyte, and neither the main agent nor the stress relaxation agent was added (No. 19), or polyethylene glycol (PEG) was added (No. 20), Except for the above, electrolytic refining was performed in the same manner as in Example 1 to produce electrolytic copper. The results are shown in Table 1.

表1に示すように、本発明のNo.1〜No.14は、電気銅の硫黄含有量が格段に少なく、銀含有量も少ない。また、スライム発生率は29%以下であり、電気銅表面の光沢度は2以上である。
一方、応力緩和剤を使用しない比較試料No.15〜No.17は何れも電気銅の反りが大きく、電気銅表面の光沢度も低い。また、主剤Cと共に応力緩和剤Dを用いた比較試料No.18は電気銅の硫黄と銀の含有量が多く、スライム発生率も高く、電気銅表面の光沢度も大幅に低い。主剤Cは本発明の主剤A、Bと異なり、芳香族環の疎水基を有しないので、スライム発生を抑制する効果が無い。しかも、この主剤Cと応力緩和剤Dを併用すると電気銅の硫黄と銀の含有量、およびスライム発生率が著しく高くなり、主剤Cと応力緩和剤の併用は好ましくないことが分かる。
As shown in Table 1, No. 1 to No. 14 of the present invention have a remarkably low sulfur content in electrolytic copper and a low silver content. Moreover, the slime generation rate is 29% or less, and the glossiness of the electrolytic copper surface is 2 or more.
On the other hand, all of the comparative samples No. 15 to No. 17 which do not use a stress relaxation agent have a large warp of electrolytic copper and a low glossiness of the electrolytic copper surface. Further, Comparative Sample No. 18 using the stress relieving agent D together with the main agent C has a large content of sulfur and silver in electrolytic copper, a high slime generation rate, and a glossiness on the surface of electrolytic copper is significantly low. Unlike the main agents A and B of the present invention, the main agent C does not have a hydrophobic group of an aromatic ring, and therefore has no effect of suppressing slime generation. In addition, it can be seen that when the main agent C and the stress relaxation agent D are used in combination, the content of sulfur and silver in the electrolytic copper and the slime generation rate are remarkably increased, and the combined use of the main agent C and the stress relaxation agent is not preferable.

本発明のNo.1〜No.14に示すように、応力緩和剤と併用する主剤は、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基を有する非イオン性界面活性剤からなるものが好ましく、この主剤と、ポリビニルアルコールまたはその誘導体からなる応力緩和剤とを併用することによって、電気銅の硫黄と銀の含有量が少なく、スライム発生率が低く、反りが無く光沢度の高い電気銅を得ることができる。   As shown in No. 1 to No. 14 of the present invention, the main agent used in combination with the stress relaxation agent comprises a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group. It is preferable to use this main ingredient together with a stress relaxation agent comprising polyvinyl alcohol or a derivative thereof, so that the content of sulfur and silver in electrolytic copper is low, the slime generation rate is low, there is no warp, and the glossiness is high. Electro copper can be obtained.

主剤および応力緩和剤の何れも使用しない比較試料No.19は、添加剤によるアノード溶解抑制がないためにスライム発生量は低いが、電気銅の硫黄と銀の含有量が高く、また電気銅表面がかなり粗雑になる。このため光沢度計によって光沢度を測定できない。従来のPEGを使用したNo.20は、スライム発生率が高く、電気銅の硫黄と銀の含有量も本発明のNo.1〜No.14より多い。さらに電気銅表面に樹枝突起が生じ易いので光沢度を測定できない。また、No.19およびNo.20は何れも電気銅に反りが見られる。   Comparative sample No. 19, which uses neither the main agent nor the stress relieving agent, has a low amount of slime because there is no anodic dissolution suppression by the additive, but the content of sulfur and silver in electrolytic copper is high, and the surface of electrolytic copper Becomes quite rough. For this reason, glossiness cannot be measured with a gloss meter. No. 20 using conventional PEG has a high slime generation rate, and the content of sulfur and silver in electrolytic copper is higher than No. 1 to No. 14 of the present invention. In addition, since the dendrite is likely to occur on the surface of the electrolytic copper, the glossiness cannot be measured. Further, in both No. 19 and No. 20, warpage is observed in the electrolytic copper.

Figure 2017043834
Figure 2017043834

〔実施例2〕
電解液として硫酸銅溶液(硫酸濃度100g/L、銅濃度40g/L)または硝酸銅溶液(、硝酸濃度10g/L、銅濃度40g/L)を用い、実施例1の主剤A(付加モル数5)および応力緩和剤D(ケン化率88mol%、平均重合度200)からなる添加剤を用い、あるいは実施例1の主剤B(付加モル数7)および応力緩和剤E(ケン化率78%、平均重合度620)からなる添加剤を用い、これらの添加剤をその濃度が表2に示す範囲になる量を電解液に添加し、それ以外は実施例1と同様にして電解精錬によって電気銅を製造した。この結果を表2に示した。表2に示すように、何れの場合にも主剤の濃度は2〜500mg/Lの範囲が好ましい。
[Example 2]
Using the copper sulfate solution (sulfuric acid concentration 100 g / L, copper concentration 40 g / L) or the copper nitrate solution (, nitric acid concentration 10 g / L, copper concentration 40 g / L) as the electrolyte, the main agent A (addition moles) of Example 1 5) and an additive consisting of a stress relaxation agent D (saponification rate 88 mol%, average polymerization degree 200), or main agent B (addition mole number 7) and stress relaxation agent E (saponification rate 78%) of Example 1 , Average polymerization degree 620), and the amount of these additives in the range shown in Table 2 was added to the electrolytic solution. Copper was produced. The results are shown in Table 2. As shown in Table 2, the concentration of the main agent is preferably in the range of 2 to 500 mg / L in any case.

Figure 2017043834
Figure 2017043834

〔実施例3〕
電解液として硫酸銅溶液または硝酸銅溶液を用い、酸濃度および銅濃度を表2に示すように調整した。実施例1において用いた主剤A(付加モル数15)と応力緩和剤D(ケン化率88mol%、平均重合度200)を含む本発明の添加剤を添加し、あるいは、主剤B(付加モル数7)と応力緩和剤G(ケン化率98mol%、平均重合度700)を含む本発明の添加剤を添加し、その他は実施例1と同様にして電解精錬を行い、電気銅を製造した。この結果を表3に示した。表3に示すように、電解液として用いる硫酸銅溶液は硫酸濃度10〜300g/Lおよび銅濃度5〜90g/Lの範囲が好ましく、硝酸銅溶液は硝酸濃度0.1〜100g/Lおよび銅濃度5〜90g/Lの範囲が好ましい。
Example 3
A copper sulfate solution or a copper nitrate solution was used as the electrolytic solution, and the acid concentration and the copper concentration were adjusted as shown in Table 2. The additive of the present invention containing the main agent A (addition mole number 15) and the stress relaxation agent D (saponification rate 88 mol%, average polymerization degree 200) used in Example 1 was added, or the main agent B (addition mole number) 7) and the stress relaxation agent G (saponification rate 98 mol%, average polymerization degree 700) were added according to the present invention, and the others were electrolytically refined in the same manner as in Example 1 to produce electrolytic copper. The results are shown in Table 3. As shown in Table 3, the copper sulfate solution used as the electrolyte preferably has a sulfuric acid concentration of 10 to 300 g / L and a copper concentration of 5 to 90 g / L, and the copper nitrate solution has a nitric acid concentration of 0.1 to 100 g / L and copper. A concentration range of 5 to 90 g / L is preferred.

Figure 2017043834
Figure 2017043834

Claims (10)

高純度銅を製造する電解精錬の銅電解液に添加される添加剤であって、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基を有する非イオン性界面活性剤からなる主剤と、ポリビニルアルコールまたはその誘導体からなる応力緩和剤とを含むことを特徴とする高純度銅電解製造用添加剤。 An additive added to a copper electrolyte for electrolytic refining for producing high-purity copper, comprising a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group; And a stress relieving agent comprising polyvinyl alcohol or a derivative thereof. 主剤の親水基がポリオキシエチレン基、ポリオキシプロピレン基、またはポリオキシエチレン基とポリオキシプロピレン基を含み、主剤の疎水基がフェニル基またはナフチル基を含む請求項1に記載する高純度銅電解精錬用添加剤。 The high purity copper electrolysis according to claim 1, wherein the hydrophilic group of the main agent contains a polyoxyethylene group, a polyoxypropylene group, or a polyoxyethylene group and a polyoxypropylene group, and the hydrophobic group of the main agent contains a phenyl group or a naphthyl group. Refining additive. 主剤の親水基のポリオキシアルキレン基の付加モル数が2〜20である請求項1または請求項2に記載する高純度銅電解精錬用添加剤。 The additive for high-purity copper electrolytic refining according to claim 1 or 2, wherein the number of added moles of the polyoxyalkylene group in the hydrophilic group of the main agent is 2 to 20. 応力緩和剤が、ケン化率70〜99mol%であって平均重合度200〜2500のポリビニルアルコールまたはその誘導体である請求項1〜請求項3の何れかに記載する高純度銅電解製造用添加剤。 The additive for high-purity copper electrolysis production according to any one of claims 1 to 3, wherein the stress relaxation agent is polyvinyl alcohol or a derivative thereof having a saponification rate of 70 to 99 mol% and an average degree of polymerization of 200 to 2500. . ポリビニルアルコール誘導体が、カルボキシ変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、またはポリオキシエチレン変性ポリビニルアルコールである請求項4に記載する高純度銅電解製造用添加剤。 The additive for high-purity copper electrolytic production according to claim 4, wherein the polyvinyl alcohol derivative is carboxy-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, or polyoxyethylene-modified polyvinyl alcohol. 銅電解液に、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基を有する非イオン性界面活性剤からなる主剤と、ポリビニルアルコールまたはその誘導体からなる応力緩和剤とを添加して銅電解を行う高純度銅の製造方法。 A copper electrolyte is added with a main agent made of a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group, and a stress relaxation agent made of polyvinyl alcohol or a derivative thereof. A method for producing high purity copper for electrolysis. 銅電解液中の上記主剤の濃度が2〜500mg/Lであって、上記主剤(X)と上記応力緩和剤(Y)の濃度比(Y/X)が0.01〜1.0の範囲であるように銅電解を行う請求項6に記載する高純度銅の製造方法。 The concentration of the main agent in the copper electrolyte is 2 to 500 mg / L, and the concentration ratio (Y / X) of the main agent (X) to the stress relaxation agent (Y) is in the range of 0.01 to 1.0. The method for producing high-purity copper according to claim 6, wherein copper electrolysis is performed so that 銅電解液が硫酸銅溶液、硝酸銅溶液、または塩化銅溶液である請求項6または請求項7に記載する高純度銅の製造方法。 The method for producing high-purity copper according to claim 6 or 7, wherein the copper electrolyte is a copper sulfate solution, a copper nitrate solution, or a copper chloride solution. 銅濃度5〜90g/Lであって、硫酸濃度10〜300g/Lの硫酸銅溶液、または硝酸濃度0.1〜100g/Lの硝酸銅溶液、または塩酸濃度10〜300 g/Lの塩化銅溶液を電解液に使用する請求項6〜請求項8の何れかに記載する高純度銅の製造方法。 Copper sulfate solution having a copper concentration of 5 to 90 g / L, a sulfuric acid concentration of 10 to 300 g / L, a nitric acid concentration of 0.1 to 100 g / L, or a hydrochloric acid concentration of 10 to 300 g / L The method for producing high-purity copper according to any one of claims 6 to 8, wherein the solution is used as an electrolytic solution. 硫黄濃度、銀濃度が何れも1ppm以下であって、電気銅表面の光沢度が1以上である高純度銅を製造する請求項6〜請求項9の何れかに記載する高純度銅の製造方法。
The method for producing high-purity copper according to any one of claims 6 to 9, wherein high-purity copper having both a sulfur concentration and a silver concentration of 1 ppm or less and a glossiness of an electrolytic copper surface of 1 or more is produced. .
JP2016106862A 2015-08-29 2016-05-28 High-purity copper electrolytic refining additive and high-purity copper manufacturing method Active JP6733313B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/248,038 US10793956B2 (en) 2015-08-29 2016-08-26 Additive for high-purity copper electrolytic refining and method of producing high-purity copper
TW105127506A TWI691618B (en) 2015-08-29 2016-08-26 Additive for high-purity copper electrolytic refining and method of producing high-purity copper
CN201610751052.1A CN106480475B (en) 2015-08-29 2016-08-29 Additive for electrolytic refining of high-purity copper and method for producing high-purity copper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169881 2015-08-29
JP2015169881 2015-08-29

Publications (2)

Publication Number Publication Date
JP2017043834A true JP2017043834A (en) 2017-03-02
JP6733313B2 JP6733313B2 (en) 2020-07-29

Family

ID=58209190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106862A Active JP6733313B2 (en) 2015-08-29 2016-05-28 High-purity copper electrolytic refining additive and high-purity copper manufacturing method

Country Status (3)

Country Link
JP (1) JP6733313B2 (en)
CN (1) CN106480475B (en)
TW (1) TWI691618B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221734A1 (en) 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
JP2018204102A (en) * 2017-06-02 2018-12-27 三菱マテリアル株式会社 Method of producing high-purity electrolytic copper
EP3636803A4 (en) * 2017-06-01 2021-02-24 Mitsubishi Materials Corporation Method for producing high-purity electrolytic copper
CN114457390A (en) * 2022-02-24 2022-05-10 阳谷祥光铜业有限公司 Preparation method of ultra-pure copper foil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304694A (en) * 2019-11-13 2020-06-19 铜陵有色金属集团股份有限公司 Method for directly electrolyzing scrap copper
CN111501065A (en) * 2020-04-27 2020-08-07 阳谷祥光铜业有限公司 Method for purifying copper electrolyte

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2171842A (en) * 1936-07-13 1939-09-05 Du Pont Electroplating
JPS4914456B1 (en) * 1969-11-08 1974-04-08
JP2003183875A (en) * 2001-10-02 2003-07-03 Shipley Co Llc Plating bath and method for depositing metal layer on substrate
WO2005056884A1 (en) * 2003-12-09 2005-06-23 Kansai Paint Co., Ltd. Electroplating solution composition for organic polymer-zinc alloy composite plating and plated metal material using such composition
JP2008530367A (en) * 2005-02-15 2008-08-07 ビーエーエスエフ ソシエタス・ヨーロピア Use of nonionic surfactants in obtaining metals by electrolysis
JP2008261050A (en) * 2007-04-03 2008-10-30 Rohm & Haas Electronic Materials Llc Metal plating composition
JP2014015677A (en) * 2012-06-14 2014-01-30 Mitsubishi Materials Corp High purity electrolytic copper and electrolytic refining method therefor
JP2015017318A (en) * 2013-06-14 2015-01-29 三菱マテリアル株式会社 Method for copper electroextraction from oil-containing electrolytic solution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769775A (en) * 1953-12-01 1956-11-06 Canadian Copper Refiners Ltd Electrolyte for copper refining, including polyvinyl alcohol
US6491806B1 (en) * 2000-04-27 2002-12-10 Intel Corporation Electroplating bath composition
CN1914358A (en) * 2003-12-09 2007-02-14 关西涂料株式会社 Electroplating solution composition for organic polymer-zinc alloy composite plating and plated metal material using such composition
JP4518262B2 (en) * 2004-03-23 2010-08-04 三菱マテリアル株式会社 High purity electrolytic copper and its manufacturing method
US7713859B2 (en) * 2005-08-15 2010-05-11 Enthone Inc. Tin-silver solder bumping in electronics manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2171842A (en) * 1936-07-13 1939-09-05 Du Pont Electroplating
JPS4914456B1 (en) * 1969-11-08 1974-04-08
JP2003183875A (en) * 2001-10-02 2003-07-03 Shipley Co Llc Plating bath and method for depositing metal layer on substrate
WO2005056884A1 (en) * 2003-12-09 2005-06-23 Kansai Paint Co., Ltd. Electroplating solution composition for organic polymer-zinc alloy composite plating and plated metal material using such composition
JP2008530367A (en) * 2005-02-15 2008-08-07 ビーエーエスエフ ソシエタス・ヨーロピア Use of nonionic surfactants in obtaining metals by electrolysis
JP2008261050A (en) * 2007-04-03 2008-10-30 Rohm & Haas Electronic Materials Llc Metal plating composition
JP2014015677A (en) * 2012-06-14 2014-01-30 Mitsubishi Materials Corp High purity electrolytic copper and electrolytic refining method therefor
JP2015017318A (en) * 2013-06-14 2015-01-29 三菱マテリアル株式会社 Method for copper electroextraction from oil-containing electrolytic solution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221734A1 (en) 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
EP3636803A4 (en) * 2017-06-01 2021-02-24 Mitsubishi Materials Corporation Method for producing high-purity electrolytic copper
US11453953B2 (en) 2017-06-01 2022-09-27 Mitsubishi Materials Corporation High-purity electrolytic copper
US11753733B2 (en) 2017-06-01 2023-09-12 Mitsubishi Materials Corporation Method for producing high-purity electrolytic copper
JP2018204102A (en) * 2017-06-02 2018-12-27 三菱マテリアル株式会社 Method of producing high-purity electrolytic copper
JP7172131B2 (en) 2017-06-02 2022-11-16 三菱マテリアル株式会社 Manufacturing method of high-purity electrolytic copper
CN114457390A (en) * 2022-02-24 2022-05-10 阳谷祥光铜业有限公司 Preparation method of ultra-pure copper foil

Also Published As

Publication number Publication date
CN106480475A (en) 2017-03-08
TWI691618B (en) 2020-04-21
JP6733313B2 (en) 2020-07-29
TW201726979A (en) 2017-08-01
CN106480475B (en) 2021-01-15

Similar Documents

Publication Publication Date Title
JP6733313B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
TW200923138A (en) A copper plating bath formulation
JP2005307343A (en) High-purity electrolytic copper and its production method
CN106555208B (en) Additive for electrolytic refining of high-purity copper, method for producing high-purity copper, and high-purity electrolytic copper
JP6733314B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP6548019B2 (en) Additive for high purity copper electrolytic refining and high purity copper production method
JP6548020B2 (en) Additive for high purity copper electrolytic refining and high purity copper production method
WO2018221734A1 (en) Method for producing high-purity electrolytic copper
JP6740801B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
WO2016052727A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
US10793956B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
JP4607165B2 (en) Electro copper plating method
JP2006283169A (en) Acidic solution for electrolytic copper plating, and electrolytic copper-plating method with little consumption of sulfur-containing organic compound due to electrolysis
WO2016052725A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
JP2017179506A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP2017179504A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP2017179505A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP5234844B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP5179549B2 (en) Electro copper plating method
JPH05311483A (en) Tin or solder plating bath
JP2018204102A (en) Method of producing high-purity electrolytic copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150