JP7172131B2 - Manufacturing method of high-purity electrolytic copper - Google Patents

Manufacturing method of high-purity electrolytic copper Download PDF

Info

Publication number
JP7172131B2
JP7172131B2 JP2018097318A JP2018097318A JP7172131B2 JP 7172131 B2 JP7172131 B2 JP 7172131B2 JP 2018097318 A JP2018097318 A JP 2018097318A JP 2018097318 A JP2018097318 A JP 2018097318A JP 7172131 B2 JP7172131 B2 JP 7172131B2
Authority
JP
Japan
Prior art keywords
less
additive
concentration
electrolytic copper
mass ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018097318A
Other languages
Japanese (ja)
Other versions
JP2018204102A (en
Inventor
圭栄 樽谷
賢治 久保田
清隆 中矢
公 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to TW107118841A priority Critical patent/TWI788361B/en
Priority to TW107118988A priority patent/TWI787275B/en
Priority to US16/617,574 priority patent/US11753733B2/en
Priority to CN201880015294.1A priority patent/CN110382743B/en
Priority to EP18809582.2A priority patent/EP3636803A4/en
Priority to PCT/JP2018/021178 priority patent/WO2018221724A1/en
Priority to PCT/JP2018/021228 priority patent/WO2018221734A1/en
Priority to US16/613,209 priority patent/US11453953B2/en
Priority to CN201880035087.2A priority patent/CN110678582B/en
Priority to EP18810769.2A priority patent/EP3633072A4/en
Publication of JP2018204102A publication Critical patent/JP2018204102A/en
Application granted granted Critical
Publication of JP7172131B2 publication Critical patent/JP7172131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、結晶格子の乱れが少なく、結晶格子間の不純物が少ない高純度電気銅の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing high-purity electrolytic copper with less crystal lattice disturbance and less impurities between crystal lattices.

電気銅に含まれる主な不純物は、ガス成分(O,H,S,C,Cl等)以外は、Ag、Fe、Ni、Alなどであり、その中でも量の多い不純物はAgである。これは銅の電析機構において、銅より貴な金属であるAgが銅と共に共析することによる。このAgの共析を防ぐため、電解液に塩化物イオンを添加して電解液中のAgイオンを塩化銀粒子として除去する方法が行われていたが、電解液中のAgイオンは塩化物イオンでは完全に除去できないため、より高純度銅な銅を得るために二段階の電解を行う方法が知られている。例えば、特許文献1には、硫酸銅水溶液の電解によって析出した銅を回収し、これを陽極にしてさらに硝酸銅水溶液中において100A/m以下の低電流密度で再電解して精製する二段階の電解を行う方法が記載されている。しかし、硫酸銅浴の電解と硝酸銅浴の電解を二段階に行う製造方法はコストと手間がかかる問題がある。 Main impurities contained in electrolytic copper are Ag, Fe, Ni, Al, etc., except for gas components (O, H, S, C, Cl, etc.). This is due to the co-deposition of Ag, which is a metal nobler than copper, together with copper in the electrodeposition mechanism of copper. In order to prevent the codeposition of Ag, a method of adding chloride ions to the electrolyte and removing the Ag ions in the electrolyte as silver chloride particles has been used. In order to obtain copper of higher purity, a method of carrying out electrolysis in two stages is known. For example, Patent Document 1 discloses a two-step process in which copper deposited by electrolysis of an aqueous solution of copper sulfate is recovered, and this copper is used as an anode and further electrolyzed at a low current density of 100 A/m 2 or less in an aqueous solution of copper nitrate for purification. is described. However, the manufacturing method in which the electrolysis of the copper sulfate bath and the electrolysis of the copper nitrate bath are performed in two stages has the problem of being costly and troublesome.

そこで、特定の添加剤を用いることによって不純物を低減する方法が知られている。例えば、特許文献2には、塩化物イオン、ニカワ等、および活性硫黄成分を含む硫酸銅電解液にPEG(ポリエチレングリコール)等のポリオキシエチレン系界面活性剤を添加することによって機械的特性とカソード密着性を高めた電解銅箔の製造方法が記載されている。また、特許文献3には、PVA(ポリビニルアルコール)等の平滑化剤とPEGなどのスライム促進剤を添加することによって銅表面が平滑で、不純物であるAgやSの含有量が少ない高純度電気銅を製造する方法が記載されている。しかし、PEGやPVAを電解液に添加するだけではカソードに析出する電気銅のAgの含有量を十分に低減することができない。 Therefore, a method of reducing impurities by using a specific additive is known. For example, in Patent Document 2, mechanical properties and cathode properties are improved by adding a polyoxyethylene-based surfactant such as PEG (polyethylene glycol) to a copper sulfate electrolyte containing chloride ions, glue, and active sulfur components. A method for producing an electrolytic copper foil with improved adhesion is described. In addition, in Patent Document 3, by adding a smoothing agent such as PVA (polyvinyl alcohol) and a slime accelerator such as PEG, the copper surface is smooth and the content of impurities Ag and S is low. A method for producing copper is described. However, the content of Ag in the electrolytic copper deposited on the cathode cannot be sufficiently reduced only by adding PEG or PVA to the electrolyte.

この問題を解決するため、芳香族環の疎水基とポリオキシアルキレン基の親水基を含む主剤と、PVAまたはその誘導体からなる応力緩和剤を含む添加剤を銅電解液に添加することによって、Ag濃度およびS濃度が格段に少ない高純度電気銅を製造する技術(特許文献4)、あるいは有機概念図のIOB値が1~2で平均分子量が150~2万のエチレンオキシド付加物からなる主剤とIOB値が2.0~9.5で平均分子量が6千~15万のPVA等の応力緩和剤を用いることによって、Ag濃度およびS濃度が格段に少ない高純度電気銅を製造する技術(特許文献5)が本出願人によって提案されている。 In order to solve this problem, Ag A technology for producing high-purity electrolytic copper with remarkably low concentration and S concentration (Patent Document 4), or a main agent and IOB consisting of an ethylene oxide adduct having an IOB value of 1 to 2 in the organic conceptual diagram and an average molecular weight of 1,500 to 20,000. Technology for producing high-purity electrolytic copper with remarkably low Ag concentration and S concentration by using a stress relaxation agent such as PVA having a value of 2.0 to 9.5 and an average molecular weight of 6,000 to 150,000 (Patent Document 5) has been proposed by the applicant.

特公平08-000990号公報Japanese Patent Publication No. 08-000990 特開2001-123289号公報JP-A-2001-123289 特開2005-307343号公報Japanese Patent Application Laid-Open No. 2005-307343 特開2017-043834号公報JP 2017-043834 A 特開2017-066514号公報JP 2017-066514 A

特許文献4、5に記載されている技術によれば、Ag濃度およびS濃度が格段に少ない(例えば1質量ppm以下)高純度の電気銅を製造することができる。一方、電気銅の製造においては、電気銅に含まれるAgやSなどの不純物濃度を低減すると共に、電析欠陥を低減することも重要である。電析欠陥は電気銅中の空隙であり、電析欠陥が発生するとその空隙中に電解液が混入し、電気銅を溶解・鋳造した際に、この空隙の電解液成分が電気銅全体に混入して、溶解・鋳造後の純度が低下すると云う問題を引き起こす。また、電気銅は反りの無いことが好ましく、電気銅の製造においては反りの無い電気銅が求められる。 According to the techniques described in Patent Documents 4 and 5, high-purity electrolytic copper with remarkably low Ag concentration and S concentration (for example, 1 mass ppm or less) can be produced. On the other hand, in the production of electrolytic copper, it is important to reduce the concentration of impurities such as Ag and S contained in electrolytic copper and to reduce electrodeposition defects. Electrodeposition defects are voids in electrolytic copper, and when electrodeposition defects occur, the electrolyte is mixed in the voids, and when the electrolytic copper is melted and cast, the electrolyte components in these voids are mixed into the entire electrolytic copper. As a result, there is a problem that the purity after melting and casting is lowered. Moreover, it is preferable that the electrolytic copper does not warp, and in the production of electrolytic copper, electrolytic copper without warping is required.

本発明において、結晶粒内平均方位差(GOS値と云う)を指標として電気銅の反りの発生を判断できることが見出された。従来、電気銅の反りは目視観察に依存しているので観察誤差が避けられないが、GOS値に基づく基準を指標とすることによって、客観的な判断が可能になる。また、GOS値は電気銅の不純物濃度にも関係する。一方、特許文献4、5の製造方法では、電気銅について結晶粒内の方位を整えること(結晶粒内の方位差を小さくすること)は認識されていない。電気銅の製造方法において、結晶粒内の方位差小さくすることによって電気銅の反りが発生せず、またAgやSなどの不純物量を低減した電気銅を製造することができる。 In the present invention, it was found that occurrence of warping of electrolytic copper can be determined by using the average orientation difference in crystal grains (referred to as the GOS value) as an index. Conventionally, the warpage of electrolytic copper depends on visual observation, so that observation errors are unavoidable. The GOS value is also related to the impurity concentration of electrolytic copper. On the other hand, in the manufacturing methods of Patent Documents 4 and 5, it is not recognized that the crystal grain orientation of electrolytic copper should be adjusted (the misorientation within the crystal grain should be reduced). In the method for producing electrolytic copper, by reducing the orientation difference in the crystal grains, electrolytic copper does not warp, and electrolytic copper with reduced amounts of impurities such as Ag and S can be produced.

本発明は、電気銅の製造において、従来は結晶粒の方位差の制御が認識されていないと云う課題を解決したものであり、結晶粒の方位差が小さく、さらにAgやSなどの全不純物濃度が格段に少ない高純度の電気銅を製造する方法を提供する。 In the production of electrolytic copper, the present invention has solved the problem that the control of the misorientation of crystal grains has not been recognized conventionally. To provide a method for producing high-purity electrolytic copper with remarkably low concentration.

本発明は、以下の構成によって上記課題を解決した高純度電気銅の製造方法に関する。
〔1〕疎水基の芳香族環と親水基のポリオキシアルキレン基を含有する第1添加剤(A)、ポリビニルアルコール類からなる第2添加剤(B)、およびテトラゾール類からなる第3添加剤(C)を銅電解液に添加し、第1添加剤(A)の濃度を10mg/L以上~500mg/L以下、第2添加剤(B)の濃度を1mg/L以上~100mg/L以下、第3添加剤(C)の濃度を0.01mg/L以上~30mg/L以下、かつ第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.1以上~0.8以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0超過~0.7以下にし、電流密度を150A/m 以上190A/m 以下とし、浴温を制御して銅電解を行うことによって、Ag濃度0.2質量ppm未満、S濃度0.1質量ppm未満、および全不純物濃度が0.2質量ppm未満であって、結晶粒内平均方位差(GOS値と云う)が2.5°を超える結晶粒が面積比率で10%以下である電気銅を製造することを特徴とする高純度電気銅の製造方法。
〔2〕浴温を30℃以上~35℃以下にして、Ag濃度0.15質量ppm未満、S濃度0.07質量ppm未満、および全不純物濃度が0.2質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で10%以下である電気銅を製造する上記〔1〕に記載する高純度電気銅の製造方法。
〔3〕前記第1添加剤(A)の濃度を40mg/L以上~200mg/L以下、前記第2添加剤(B)の濃度を10mg/L以上~50mg/L以下、前記第3添加剤(C)の濃度を0.1mg/L以上~25mg/L以下、かつ第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.1以上~0.65以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0.001以上~0.5以下にし、Ag濃度0.1質量ppm未満、S濃度0.02質量ppm未満、および全不純物濃度が0.1質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で8%以下である電気銅を製造する上記〔1〕又は上記〔2〕に記載する高純度電気銅の製造方法。
〔4〕前記第2添加剤(B)の濃度を10mg/L以上~50mg/L以下、前記第3添加剤(C)の濃度を1mg/L以上~5mg/L以下、かつ前記第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.13以上~0.4以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0.005以上~0.10以下にして、Ag濃度0.08質量ppm未満、S濃度0.01質量ppm未満、および全不純物濃度が0.1質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で5%以下である電気銅を製造する上記〔1〕又は上記〔2〕に記載する高純度電気銅の製造方法。
The present invention relates to a method for producing high-purity electrolytic copper, which solves the above problems by the following constitution.
[1] A first additive (A) containing an aromatic ring as a hydrophobic group and a polyoxyalkylene group as a hydrophilic group, a second additive (B) comprising polyvinyl alcohols, and a third additive comprising tetrazoles (C) is added to the copper electrolyte, the concentration of the first additive (A) is 10 mg/L or more and 500 mg/L or less, and the concentration of the second additive (B) is 1 mg/L or more and 100 mg/L or less. , the concentration of the third additive (C) is 0.01 mg/L or more to 30 mg/L or less, and the concentration ratio (B/A) of the second additive (B) to the first additive (A) is 0.01 mg/L or more and 30 mg/L or less. 1 or more to 0.8 or less, and the concentration ratio (C/A) of the third additive (C) to the first additive (A) is more than 0 to 0.7 or less, and the current density is 150 A/m 2 or more . By controlling the bath temperature and performing copper electrolysis at 190 A / m 2 or less , the Ag concentration is less than 0.2 mass ppm, the S concentration is less than 0.1 mass ppm, and the total impurity concentration is less than 0.2 mass ppm. A method for producing high-purity electrolytic copper, characterized by producing electrolytic copper having an area ratio of 10% or less of crystal grains having an average misorientation in crystal grains (referred to as a GOS value) exceeding 2.5°. .
[2] At a bath temperature of 30° C. or higher to 35° C. or lower, the Ag concentration is less than 0.15 mass ppm, the S concentration is less than 0.07 mass ppm, and the total impurity concentration is less than 0.2 mass ppm, and the crystal The method for producing high-purity electrolytic copper according to the above [1], wherein the area ratio of crystal grains having an intragranular average misorientation (GOS value) exceeding 2.5° is 10% or less.
[3] The concentration of the first additive (A) is 40 mg/L or more and 200 mg/L or less, the concentration of the second additive (B) is 10 mg/L or more and 50 mg/L or less, and the third additive. The concentration of (C) is 0.1 mg/L or more and 25 mg/L or less, and the concentration ratio (B/A) of the second additive (B) to the first additive (A) is 0.1 or more and 0.1 mg/L or more. 65 or less, the concentration ratio (C/A) of the third additive (C) to the first additive (A) is 0.001 or more to 0.5 or less, the Ag concentration is less than 0.1 mass ppm, the S concentration Less than 0.02 ppm by mass, a total impurity concentration of less than 0.1 ppm by mass, and an area ratio of crystal grains having an average misorientation (GOS value) exceeding 2.5° is 8% or less. The method for producing high-purity electrolytic copper according to the above [1] or [2] for producing electrolytic copper.
[4] The concentration of the second additive (B) is 10 mg/L or more and 50 mg/L or less, the concentration of the third additive (C) is 1 mg/L or more and 5 mg/L or less, and the first addition The concentration ratio (B/A) of the second additive (B) to the agent (A) is 0.13 or more and 0.4 or less, and the concentration ratio of the third additive (C) to the first additive (A) (C / A) is 0.005 or more to 0.10 or less, Ag concentration is less than 0.08 mass ppm, S concentration is less than 0.01 mass ppm, and total impurity concentration is less than 0.1 mass ppm , The high-purity electrolytic copper described in [1] or [2] above, which produces electrolytic copper in which the area ratio of crystal grains having an average orientation difference (GOS value) in the crystal grains exceeding 2.5 ° is 5% or less. manufacturing method.

本発明によれば、結晶粒の方位差が小さく、さらにAgやSなどの全不純物濃度が格段に少ない高純度な電気銅の製造方法を提供することが可能になる。 According to the present invention, it is possible to provide a method for producing high-purity electrolytic copper with a small orientation difference in crystal grains and a remarkably low concentration of total impurities such as Ag and S.

以下、本発明を具体的に説明する。
本発明の製造方法は、疎水基の芳香族環と親水基のポリオキシアルキレン基を含有する第1添加剤(A)、ポリビニルアルコール類からなる第2添加剤(B)、およびテトラゾール類からなる第3添加剤(C)を銅電解液に添加し、第1添加剤(A)の濃度を10mg/L以上~500mg/L以下、第2添加剤(B)の濃度を1mg/L以上~100mg/L以下、第3添加剤(C)の濃度を0.01mg/L以上~30mg/L以下、かつ第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.1以上~0.8以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0超過~0.7以下にし、電流密度と浴温を制御して銅電解を行うことによって、Ag濃度0.2質量ppm未満、S濃度0.1質量ppm未満、および全不純物濃度が0.2質量ppm未満であって、結晶粒内平均方位差(GOS値と云う)が2.5°を超える結晶粒が面積比率で10%以下である電気銅を製造することを特徴とする高純度電気銅の製造方法である。
The present invention will be specifically described below.
The production method of the present invention comprises a first additive (A) containing a hydrophobic aromatic ring and a hydrophilic polyoxyalkylene group, a second additive (B) comprising polyvinyl alcohols, and a tetrazole. The third additive (C) is added to the copper electrolyte, the concentration of the first additive (A) is 10 mg / L or more to 500 mg / L or less, and the concentration of the second additive (B) is 1 mg / L or more. 100 mg / L or less, the concentration of the third additive (C) is 0.01 mg / L or more to 30 mg / L or less, and the concentration ratio (B / A ) is from 0.1 to 0.8, and the concentration ratio (C/A) of the third additive (C) to the first additive (A) is from more than 0 to 0.7 or less, and the current density and the bath By controlling the temperature and performing copper electrolysis, the Ag concentration is less than 0.2 mass ppm, the S concentration is less than 0.1 mass ppm, and the total impurity concentration is less than 0.2 mass ppm. A method for producing high-purity electrolytic copper characterized by producing electrolytic copper having an area ratio of 10% or less of crystal grains having a difference (referred to as a GOS value) exceeding 2.5°.

結晶粒内平均方位差とは、1つの結晶粒において、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、その値を平均化して得られる値であり、その値を結晶粒のGOS(Grain Orientation Spread)値と云う。GOS値については、例えば「日本機械学会論文集(A編) 71巻712号(2005-12) 論文No.05-0367(1722~1728)」に説明が記載されている。なお、測定する結晶粒は、電子後方散乱回折法による結晶方位解析において、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とする。 The average misorientation within a grain is obtained by averaging the misorientation values within a grain between a pixel within the grain and all other pixels within the same grain. This value is called the GOS (Grain Orientation Spread) value of the crystal grain. The GOS value is described, for example, in "Proceedings of the Japan Society of Mechanical Engineers (Edition A) Vol. 71 No. 712 (2005-12) Paper No. 05-0367 (1722-1728)". In the crystal orientation analysis by the electron backscatter diffraction method, when the crystal grains to be measured have an orientation difference of 5 degrees or more between adjacent pixels, they are regarded as grain boundaries, and the area surrounded by the grain boundaries is one. Make it a crystal grain.

本発明において、結晶粒内平均方位差とは、このGOS値を云う。GOS値を数式で表す場合、同一結晶粒内のピクセル数をn、同一結晶粒内の異なるピクセルにおのおの付けた番号をiおよびj(1≦i、j≦n)、ピクセルiでの結晶方位とピクセルjでの結晶方位から求められる結晶方位差をαij(i≠j)とすると、GOS値は次式[1]で表わすことができる。 In the present invention, the average misorientation in crystal grains refers to this GOS value. When the GOS value is expressed by a formula, n is the number of pixels in the same crystal grain, i and j are the numbers assigned to different pixels in the same crystal grain (1≤i, j≤n), and the crystal orientation at pixel i and the crystal orientation difference obtained from the crystal orientation at pixel j is αij (i≠j), the GOS value can be expressed by the following equation [1].

Figure 0007172131000001
Figure 0007172131000001

本発明の製造方法は、上記GOS値が2.5°を超える結晶粒が面積比率で10%以下、好ましくは8%以下、さらに好ましくは5%以下の電気銅を製造する。GOS値が2.5°を超える結晶粒が面積比率で10%を超える原因として、不純物の存在が挙げられる。電析時の不純物は結晶粒界及び結晶粒内に取り込まれ、結晶粒内に方位差を生じさせ、結晶粒のGOS値を増大させる。GOS値が2.5°以内の結晶粒が面積比率で90%以上であれば、結晶粒内の方位差が少ない均質な電気銅であり、結晶粒界及び結晶粒内に取り込まれた不純物が少ない電気銅であることを示している。 The production method of the present invention produces electrolytic copper in which the area ratio of crystal grains having a GOS value exceeding 2.5° is 10% or less, preferably 8% or less, and more preferably 5% or less. The presence of impurities can be given as a reason why the area ratio of crystal grains having a GOS value exceeding 2.5° exceeds 10%. Impurities during electrodeposition are taken into grain boundaries and grains, causing misorientation within the grains and increasing the GOS value of the grains. If the area ratio of crystal grains with a GOS value of 2.5° or less is 90% or more, it is homogeneous electrolytic copper with little misorientation in the crystal grains, and there are no impurities taken into the crystal grain boundaries and crystal grains. This indicates that there is little electrolytic copper.

また、GOS値が2.5°を超える結晶粒の面積比率は、電気銅の反りの発生の指標として利用することができる。具体的には、この面積比率が20%以上のときには、電解中に反りが発生し、あるいは電気銅をカソード板から引き剥がしたときには反りが見られないが12時間後には反りが発生している。一方、この面積比率が10%以下のときには、電解中にも電気銅に反りが発生せず、電解後12時間経過後にも電気銅に反りが発生しない。 Also, the area ratio of crystal grains with a GOS value exceeding 2.5° can be used as an indicator of the occurrence of warpage in electrolytic copper. Specifically, when this area ratio is 20% or more, warping occurs during electrolysis, or when the electrolytic copper is peeled off from the cathode plate, no warping is observed, but warping occurs after 12 hours. . On the other hand, when the area ratio is 10% or less, the electrolytic copper does not warp during electrolysis, and the electrolytic copper does not warp even 12 hours after the electrolysis.

本発明の製造方法は、GOS値が2.5°を超える結晶粒が面積比率で10%以下であると共に、Ag濃度0.2質量ppm未満、S濃度0.07質量ppm未満、および全不純物濃度が0.2質量ppm未満、好ましくは、0.01質量ppm未満の電気銅を製造する。なお、全不純物濃度はガス成分(O、F、S、C、Cl)を除いた不純物の総量である。 In the production method of the present invention, the area ratio of crystal grains with a GOS value exceeding 2.5 ° is 10% or less, and the Ag concentration is less than 0.2 mass ppm, the S concentration is less than 0.07 mass ppm, and all impurities Electrolytic copper is produced with a concentration of less than 0.2 mass ppm, preferably less than 0.01 mass ppm. The total impurity concentration is the total amount of impurities excluding gas components (O, F, S, C, Cl).

電気銅のGOS値は、疎水基の芳香族環と親水基のポリオキシアルキレン基を含有する第1添加剤、ポリビニルアルコール類からなる第2添加剤、およびテトラゾール類からなる第3添加剤とを銅電解液に添加し、第1添加剤、第2添加剤、および第3添加剤の各濃度を所定範囲に調整し、さらに銅電解中の電流密度および浴温を所定の範囲に調整して銅電解を行うことによって制御することができる。銅電解液は硫酸銅または硝酸銅を用いることができる。 The GOS value of electrolytic copper is determined by adding a first additive containing an aromatic ring as a hydrophobic group and a polyoxyalkylene group as a hydrophilic group, a second additive comprising polyvinyl alcohols, and a third additive comprising tetrazoles. It is added to the copper electrolytic solution, each concentration of the first additive, the second additive, and the third additive is adjusted to a predetermined range, and the current density and bath temperature during copper electrolysis are adjusted to a predetermined range. It can be controlled by performing copper electrolysis. Copper electrolyte can be copper sulfate or copper nitrate.

第1添加剤の疎水基の芳香族環は、例えば、フェニル基またはナフチル基などであり、モノフェニル、ナフチル、クミル、アルキルフェニル、スチレン化フェニル、ジスチレン化フェニル、トリスチレン化フェニル、トリベンジルフェニルなどなどが挙げられる。第1添加剤の親水基のポリオキシアルキレン基は、例えば、ポリオキシエチレン基、ポリオキシプロピレン基などであり、ポリオキシエチレン基とポリオキシプロピレン基の両方を含むものでも良い。 The aromatic ring of the hydrophobic group of the first additive is, for example, a phenyl group or a naphthyl group, such as monophenyl, naphthyl, cumyl, alkylphenyl, styrenated phenyl, distyrenated phenyl, tristyrenated phenyl, and tribenzylphenyl. And so on. The polyoxyalkylene group of the hydrophilic group of the first additive is, for example, a polyoxyethylene group, a polyoxypropylene group, or the like, and may contain both a polyoxyethylene group and a polyoxypropylene group.

芳香族環はモノフェニル基またはナフチル基が好ましい。また、親水基のポリオキシアルキレン基は、例えば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシエチレン基とポリオキシプロピレン基との混合などがあるが、特にポリオキシエチレン基が好ましい。 The aromatic ring is preferably a monophenyl group or a naphthyl group. The polyoxyalkylene group of the hydrophilic group includes, for example, a polyoxyethylene group, a polyoxypropylene group, and a mixture of a polyoxyethylene group and a polyoxypropylene group, and the polyoxyethylene group is particularly preferred.

第1添加剤の具体的な化合物は、例えば、ポリオキシエチレンモノフェニルエーテル、ポリオキシエチレンメチルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリスチレン化フェニルエーテル、ポリオキシエチレンクミルフェニルエーテル、ポリオキシプロピレンモノフェニルエーテル、ポリオキシプロピレンメチルフェニルエーテル、ポリオキシプロピレンオクチルフェニルエーテル、ポリオキシプロピレンドデシルフェニルエーテル、ポリオキシプロピレンナフチルエーテル、ポリオキシプロピレンスチレン化フェニルエーテル、ポリオキシプロピレンジスチレン化フェニルエーテル、ポリオキシプロピレントリスチレン化フェニルエーテル、ポリオキシプロピレンクミルフェニルエーテルなどである。 Specific compounds of the first additive include, for example, polyoxyethylene monophenyl ether, polyoxyethylene methylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene dodecylphenyl ether, polyoxyethylene naphthyl ether, polyoxyethylene Styrenated phenyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tristyrenated phenyl ether, polyoxyethylene cumyl phenyl ether, polyoxypropylene monophenyl ether, polyoxypropylene methyl phenyl ether, polyoxypropylene octylphenyl ether, polyoxypropylene dodecyl phenyl ether, polyoxypropylene naphthyl ether, polyoxypropylene styrenated phenyl ether, polyoxypropylene distyrenated phenyl ether, polyoxypropylene tristyrenated phenyl ether, polyoxypropylene cumyl phenyl ether, etc. be.

第1添加剤は、親水基のポリオキシアルキレン基は付加モル数が2~20のものが好ましく、さらに該付加モル数が2~15であるものがより好ましい。この付加モル数が2以上であれば、該添加剤が電解液に溶解しやすくなる。この付加モル数が20以下であると、該添加剤のアノード表面への付着が過密にならず、アノードの溶解反応が過剰に抑制されることを防ぐことができ、アノードスライムの発生を抑制し、電気銅の収率をさらに向上させることができる。さらに、上記付加モル数が20以下であると、カソードに析出する電気銅表面にデントライトが発生し難くなり、平滑性が向上する。このためアノードスライムや電解液中のSが電気銅表面に付着して残留し難くなるので、電気銅の純度がさらに向上する。該添加剤のポリオキシアルキレン基の付加モル数が2~20であればアノードの溶解が適度に進行するのでPEG等を用いたときよりもアノードスライムが少なくなり、高純度の電気銅を得ることができる。さらに、上記付加モル数が2~15のポリオキシアルキレン基を有する添加剤は電気銅のS含有量を大幅に低減することができる。 The first additive preferably has a hydrophilic polyoxyalkylene group with a molar number of addition of 2 to 20, more preferably a number of moles of addition of 2 to 15. If the number of added moles is 2 or more, the additive is easily dissolved in the electrolytic solution. When the number of added moles is 20 or less, the additive does not adhere to the surface of the anode excessively, preventing the dissolution reaction of the anode from being excessively suppressed, thereby suppressing the generation of anode slime. , the yield of electrolytic copper can be further improved. Furthermore, when the number of added moles is 20 or less, dentrites are less likely to occur on the surface of the electrolytic copper deposited on the cathode, and the smoothness is improved. As a result, anode slime and S in the electrolytic solution are less likely to adhere to and remain on the surface of the electrolytic copper, thereby further improving the purity of the electrolytic copper. When the added mole number of the polyoxyalkylene group of the additive is 2 to 20, the dissolution of the anode proceeds moderately, so that the anode slime is less than when PEG or the like is used, and high-purity electrolytic copper can be obtained. can be done. Furthermore, the additive having a polyoxyalkylene group with 2 to 15 added moles can significantly reduce the S content of electrolytic copper.

従って、第1添加剤は、付加モル数が2~20のポリオキシアルキレンモノフェニルエーテル、または付加モル数が2~20のポリオキシアルキレンナフチルエーテルなどが好ましい。 Therefore, the first additive is preferably polyoxyalkylene monophenyl ether with 2 to 20 added moles, polyoxyalkylene naphthyl ether with 2 to 20 added moles, or the like.

第2添加剤のポリビニルアルコール類はケン化率70~99mol%が好ましい。ケン化率が70mol%以上であると電析中のカソードの内部歪を緩和する効果が十分であり、電析中のカソードや電析後の電気銅に反りが生じることを確実に抑制できる。一方、ケン化率が99mol%以下であれば、溶解性が確保され、電解液に溶解しやすくなる。 The second additive polyvinyl alcohol preferably has a saponification rate of 70 to 99 mol %. When the saponification rate is 70 mol % or more, the effect of alleviating the internal strain of the cathode during electrodeposition is sufficient, and warping of the cathode during electrodeposition and the electrolytic copper after electrodeposition can be reliably suppressed. On the other hand, when the saponification rate is 99 mol % or less, the solubility is ensured, and it becomes easy to dissolve in the electrolytic solution.

さらに、第2添加剤は重量平均重合度(以下、平均重合度と云う)200~2500が好ましい。ポリビニルアルコールおよびその誘導体の基本構造は水酸基の完全ケン化型と酢酸基を有する部分ケン化型から成り立っており、重合度はその両者の総数であり、平均重合度は重合度の平均値である。平均重合度はJIS K 6726のポリビニルアルコール試験方法に基づいて測定することができる。 Further, the second additive preferably has a weight average degree of polymerization (hereinafter referred to as "average degree of polymerization") of 200-2500. The basic structure of polyvinyl alcohol and its derivatives consists of a completely saponified type with hydroxyl groups and a partially saponified type with acetic acid groups. . The average degree of polymerization can be measured based on the JIS K 6726 polyvinyl alcohol test method.

第2添加剤の平均重合度が200以上のものは、製造が比較的容易で、かつ一般的に使用されているため、入手が容易である。また、上記平均重合度が2500以下であると電析中のカソードの内部歪を緩和する効果が十分であり、電析中のカソードや電析後の電気銅に反りが発生することを確実に抑制できる。さらに、上記平均重合度が2500以下であると電着抑制効果が生じにくく電気銅の収率が低下することを抑制できる。従って、第2添加剤の平均重合度は200~2000がより好ましい。 A second additive having an average degree of polymerization of 200 or more is relatively easy to produce and is commonly used, so it is easy to obtain. Further, when the average degree of polymerization is 2500 or less, the effect of alleviating the internal strain of the cathode during electrodeposition is sufficient, and the cathode during electrodeposition and the electrolytic copper after electrodeposition are reliably prevented from warping. can be suppressed. Furthermore, when the average degree of polymerization is 2500 or less, the effect of suppressing electrodeposition is less likely to occur, and a decrease in the yield of electrolytic copper can be suppressed. Therefore, the average degree of polymerization of the second additive is more preferably 200-2000.

第3添加剤のテトラゾール類はテトラゾールおよびテトラゾール誘導体である。テトラゾール誘導体は、例えば、テトラゾールのアルキル誘導体、またはアミノ誘導体、またはフェニル誘導体を用いることができる。具体的には、銀塩素低減剤として、1H-テトラゾール、5-アミノ-1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾールなどを用いることができる。 The tetrazoles of the third additive are tetrazoles and tetrazole derivatives. A tetrazole derivative can be used, for example, an alkyl derivative, an amino derivative, or a phenyl derivative of tetrazole. Specifically, 1H-tetrazole, 5-amino-1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole and the like can be used as the silver chlorine reducing agent.

第1添加剤の添加量は10mg/L以上~500mg/L以下の濃度になる量が好ましく、40mg/L以上~200mg/L以下の濃度になる量がさらに好ましい。第1添加剤の添加量が10mg/L未満では、GOS値が2.5を超える結晶粒の面積比率を10%以下に制御するのが難しくなり、500mg/Lを超えても効果はあまり変わらない。またそれ以外にも第一添加剤の添加量が10mg/L未満では、電気銅表面が粗雑になり、純度が低下する。500mg/Lを超えると、添加剤の添加剤の効果が大きくなりすぎで、アノードからのスライム発生量が多くなり、さらに電気銅が反りやすくなる。またデントライトが発生し、純度が低下する。 The amount of the first additive to be added is preferably such that the concentration is 10 mg/L or more and 500 mg/L or less, and more preferably 40 mg/L or more and 200 mg/L or less. If the amount of the first additive added is less than 10 mg/L, it becomes difficult to control the area ratio of crystal grains with a GOS value exceeding 2.5 to 10% or less, and even if the amount exceeds 500 mg/L, the effect does not change much. do not have. In addition, if the amount of the first additive added is less than 10 mg/L, the electrolytic copper surface becomes rough and the purity is lowered. If it exceeds 500 mg/L, the effect of the additive becomes too large, the amount of slime generated from the anode increases, and the electrolytic copper tends to warp. In addition, dentrites are generated and the purity is lowered.

第2添加剤の添加量は、1mg/L以上~100mg/L以下の濃度になる量が好ましく、10mg/L以上~50mg/L以下の濃度になる量がさらに好ましい。第2添加剤の添加量が1mg/L未満ではGOS値が2.5を超える結晶粒の面積比率を10%以下に制御するのが難しくなり、100mg/Lを超えるとGOS値が2.5を超える結晶粒の面積比率が10%を超える傾向がある。
またそれ以外にも第2添加剤の添加量が1mg/L未満では電気銅が反りやすくなる。100mg/Lを超えると、電気銅にデントライトが発生しやすくなり、純度が低下する。
The amount of the second additive added is preferably an amount that provides a concentration of 1 mg/L or more and 100 mg/L or less, and more preferably an amount that provides a concentration of 10 mg/L or more and 50 mg/L or less. If the amount of the second additive added is less than 1 mg/L, it becomes difficult to control the area ratio of crystal grains with a GOS value exceeding 2.5 to 10% or less. There is a tendency for the area ratio of crystal grains exceeding 10% to exceed 10%.
In addition, if the amount of the second additive added is less than 1 mg/L, the electrolytic copper tends to warp. If it exceeds 100 mg/L, dentrites are likely to occur in the electrolytic copper, resulting in a decrease in purity.

第3添加剤の添加量は、0.01mg/L以上~30mg/L以下の濃度になる量が好ましく、1mg/L以上~25mg/L以下の濃度になる量がさらに好ましい。第3添加剤の添加量が0.01mg/L未満ではGOS値が2.5を超える結晶粒の面積比率を10%以下に制御するのが難しくなり、30mg/Lを超えても効果はあまり変わらない。
またそれ以外にも第3添加剤の添加量が0.01mg/L未満では電気銅中のAg濃度を低減する効果が乏しく、添加量が30mg/Lを超えると、電気銅にデントライトが発生しやすくなり、純度が低下する。
The amount of the third additive to be added is preferably an amount that provides a concentration of 0.01 mg/L or more to 30 mg/L or less, and more preferably an amount that provides a concentration of 1 mg/L or more to 25 mg/L or less. If the amount of the third additive added is less than 0.01 mg/L, it becomes difficult to control the area ratio of crystal grains with a GOS value exceeding 2.5 to 10% or less. does not change.
In addition, if the amount of the third additive added is less than 0.01 mg/L, the effect of reducing the Ag concentration in the electrolytic copper is poor, and if the amount added exceeds 30 mg/L, dendrites are generated in the electrolytic copper. becomes easier and less pure.

第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)は0.1以上~0.8以下が好ましく、0.13以上~0.65以下がさらに好ましい。この濃度比が0.1未満ではGOS値が2.5を超える結晶粒の面積比率を10%以下に制御するのが難しくなり、この濃度比が0.8を超えても効果はあまり変わらない。 The concentration ratio (B/A) of the second additive (B) to the first additive (A) is preferably from 0.1 to 0.8, more preferably from 0.13 to 0.65. If this concentration ratio is less than 0.1, it becomes difficult to control the area ratio of crystal grains with a GOS value exceeding 2.5 to 10% or less, and even if this concentration ratio exceeds 0.8, the effect does not change much. .

第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)は0を超え~0.7以下が好ましく、0.001以上~0.5以下がさらに好ましい。この濃度比が0.0001未満ではGOS値が2.5を超える結晶粒の面積比率を10%以下に制御するのが難しくなり、この濃度比が0.7を超えても効果はあまり変わらない。 The concentration ratio (C/A) of the third additive (C) to the first additive (A) is preferably more than 0 and 0.7 or less, more preferably 0.001 or more and 0.5 or less. If this concentration ratio is less than 0.0001, it becomes difficult to control the area ratio of crystal grains with a GOS value exceeding 2.5 to 10% or less, and even if this concentration ratio exceeds 0.7, the effect does not change much. .

疎水基の芳香族環と親水基のポリオキシアルキレン基を含有する第1添加剤(A)、ポリビニルアルコール類からなる第2添加剤(B)、およびテトラゾール類からなる第3添加剤(C)を銅電解液に添加し、第1添加剤(A)の濃度を10mg/L以上~500mg/L以下、第2添加剤(B)の濃度を1mg/L以上~100mg/L以下、第3添加剤(C)の濃度を0.01mg/L以上~30mg/L以下、かつ第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.1以上~0.8以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0超過~0.7以下にし、電流密度と浴温を制御して銅電解を行うことによって、Ag濃度0.2質量ppm未満、S濃度0.1質量ppm未満、および全不純物濃度が0.2質量ppm未満であって、結晶粒内平均方位差(GOS値と云う)が2.5°を超える結晶粒が面積比率で10%以下である電気銅を製造することができる。 A first additive (A) containing a hydrophobic aromatic ring and a hydrophilic polyoxyalkylene group, a second additive (B) comprising polyvinyl alcohols, and a third additive (C) comprising tetrazoles. is added to the copper electrolyte, the concentration of the first additive (A) is 10 mg / L or more to 500 mg / L or less, the concentration of the second additive (B) is 1 mg / L or more to 100 mg / L or less, and the third The concentration of the additive (C) is 0.01 mg / L or more to 30 mg / L or less, and the concentration ratio (B / A) of the second additive (B) to the first additive (A) is 0.1 or more 0.8 or less, and the concentration ratio (C/A) of the third additive (C) to the first additive (A) is set to more than 0 to 0.7 or less, and the current density and bath temperature are controlled to perform copper electrolysis. By performing, the Ag concentration is less than 0.2 mass ppm, the S concentration is less than 0.1 mass ppm, and the total impurity concentration is less than 0.2 mass ppm, and the average orientation difference in the crystal grain (referred to as the GOS value) It is possible to produce electrolytic copper having an area ratio of 10% or less of crystal grains having a angle of more than 2.5°.

また、電流密度を150A/m以上~190A/m以下、浴温を30℃以上~35℃以下にして、Ag濃度0.15質量ppm未満、S濃度0.07質量ppm未満、および全不純物濃度が0.2質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で10%以下である電気銅を製造することができる。 In addition, the current density is 150 A/m 2 or more to 190 A/m 2 or less, the bath temperature is 30° C. or more to 35° C. or less, the Ag concentration is less than 0.15 mass ppm, the S concentration is less than 0.07 mass ppm, and the total It is possible to produce electrolytic copper in which the impurity concentration is less than 0.2 ppm by mass and the area ratio of crystal grains having an average misorientation (GOS value) in crystal grains exceeding 2.5° is 10% or less.

さらに、前記第1添加剤(A)の濃度を40mg/L以上~200mg/L以下、前記第2添加剤(B)の濃度を10mg/L以上~50mg/L以下、前記第3添加剤(C)の濃度を0.1mg/L以上~25mg/L以下、かつ第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.1以上~0.65以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0.001~0.5以下にし、Ag濃度0.1質量ppm未満、S濃度0.02質量ppm未満、および全不純物濃度が0.1質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で8%以下である電気銅を製造することができる。 Further, the concentration of the first additive (A) is 40 mg/L or more and 200 mg/L or less, the concentration of the second additive (B) is 10 mg/L or more and 50 mg/L or less, and the third additive ( The concentration of C) is 0.1 mg/L or more and 25 mg/L or less, and the concentration ratio (B/A) of the second additive (B) to the first additive (A) is 0.1 or more and 0.65. below, and the concentration ratio (C/A) of the third additive (C) to the first additive (A) is set to 0.001 to 0.5 or less, the Ag concentration is less than 0.1 ppm by mass, and the S concentration is 0.1 mass ppm. Electrolytic copper having a total impurity concentration of less than 0.02 mass ppm, a total impurity concentration of less than 0.1 mass ppm, and an area ratio of crystal grains having an average orientation difference (GOS value) exceeding 2.5° in the crystal grains of 8% or less can be manufactured.

さらに、前記第2添加剤(B)の濃度を10mg/L以上~50mg/L以下、前記第3添加剤(C)の濃度を1mg/L以上~5mg/L以下、かつ前記第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.13以上~0.4以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0.005以上~0.10以下にして、Ag濃度0.08質量ppm未満、S濃度0.01質量ppm未満、および全不純物濃度が0.1質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で5%以下である電気銅を製造することができる。 Further, the concentration of the second additive (B) is 10 mg/L or more and 50 mg/L or less, the concentration of the third additive (C) is 1 mg/L or more and 5 mg/L or less, and the first additive The concentration ratio (B/A) of the second additive (B) to (A) is 0.13 or more and 0.4 or less, and the concentration ratio (B/A) of the third additive (C) to the first additive (A) C/A) is 0.005 or more to 0.10 or less, the Ag concentration is less than 0.08 mass ppm, the S concentration is less than 0.01 mass ppm, and the total impurity concentration is less than 0.1 mass ppm, It is possible to produce electrolytic copper in which the area ratio of crystal grains having an average orientation difference (GOS value) in crystal grains exceeding 2.5° is 5% or less.

本発明の製造方法において、電流密度は150A/m以上~190A/m以下、浴温は30℃以上~35℃以下が好ましい。浴温が40℃になると電気銅に含まれるAg濃度および全不純物濃度が高くなる傾向がある。
電流密度が高過ぎる場合、あるいは浴温が低過ぎる場合には、電解と電析のバランスが偏り、アノード表面に不働態が生じることによって極間電圧が増加し、通電できずに電気銅が製造できなくなる。例えば、硫酸銅電解液の場合では、アノード表面に硫酸銅の結晶が生じてアノード全面を覆い、極間電圧が増加する。また、電流密度が低過ぎる場合には、電析速度が遅くなるためAgの共析量が多くなり、浴温が高過ぎる場合には、電解液中のAgイオンの飽和溶解度が高くなるためAgの共析量が多くなる。
In the production method of the present invention, the current density is preferably 150 A/m 2 or more and 190 A/m 2 or less, and the bath temperature is preferably 30° C. or more and 35° C. or less. When the bath temperature reaches 40° C., the concentration of Ag and the concentration of total impurities in the electrolytic copper tend to increase.
If the current density is too high or the bath temperature is too low, the balance between electrolysis and electrodeposition will be unbalanced, and passivation will occur on the anode surface, increasing the inter-electrode voltage. become unable. For example, in the case of a copper sulfate electrolyte, copper sulfate crystals form on the surface of the anode and cover the entire surface of the anode, increasing the inter-electrode voltage. On the other hand, if the current density is too low, the rate of electrodeposition slows down, resulting in a large amount of Ag eutectoid. The amount of co-deposited increases.

本発明の製造方法では、具体的には、電流密度が140A/m程度の低い場合には、電気銅のGOS値が2.5°を超える結晶粒の面積比率15%以上になり、電流密度が200A/m程度の高いときには電解不能になる。また、浴温が20℃程度の低いときにも電解不能になる。 Specifically, in the production method of the present invention, when the current density is as low as about 140 A/m 2 , the area ratio of crystal grains with a GOS value exceeding 2.5° in electrolytic copper becomes 15% or more, and the current Electrolysis becomes impossible when the density is as high as 200 A/m 2 . Electrolysis also becomes impossible when the bath temperature is as low as about 20°C.

本発明の製造方法で製造した電気銅は、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で10%以下であり、好ましくは該結晶粒の面積比率が8%以下、さらに好ましくは5%以下であるので、反りの無い電気銅である。また、結晶粒界及び結晶粒内に取り込まれた不純物が少なく、高純度な電気銅である。 In the electrolytic copper produced by the production method of the present invention, the area ratio of crystal grains having an average orientation difference (GOS value) in the crystal grains exceeding 2.5° is 10% or less, and preferably the area ratio of the crystal grains is Since it is 8% or less, more preferably 5% or less, it is an electrolytic copper with no warpage. In addition, it is a high-purity electrolytic copper with few impurities taken into the crystal grain boundaries and crystal grains.

さらに、本発明の製造方法による電気銅は、Ag濃度0.2質量ppm未満、S濃度0.07質量ppm未満、および全不純物濃度が0.2質量ppm未満であり、好ましくは、Ag濃度0.17質量ppm以下、S濃度0.051質量ppm以下、および全不純物濃度が0.194質量ppm以下の高純度電気銅であるので、半導体用材料として好適であり、99.9999質量%(6N)以上の純度を必要とする分野に広く用いることができる。 Furthermore, the electrolytic copper produced by the production method of the present invention has an Ag concentration of less than 0.2 mass ppm, an S concentration of less than 0.07 mass ppm, and a total impurity concentration of less than 0.2 mass ppm, preferably an Ag concentration of 0 0.17 mass ppm or less, an S concentration of 0.051 mass ppm or less, and a total impurity concentration of 0.194 mass ppm or less. ) can be widely used in fields that require a purity of at least

本発明の製造方法によれば、疎水基の芳香族環と親水基のポリオキシアルキレン基を含有する第1添加剤(A)、ポリビニルアルコール類からなる第2添加剤(B)、およびテトラゾール類からなる第3添加剤(C)を銅電解液に添加し、第1添加剤(A)、第2添加剤(B)、および第3添加剤(C)の濃度、および電流密度と浴温を制御して銅電解を行うことによって、GOS値が2.5°を超える結晶粒が面積比率で10%以下である反りの無い電気銅を製造することができ、第1添加剤(A)、第2添加剤(B)、および第3添加剤(C)の各濃度を調整すればよく、設備の大掛かりな変更を必要としないので容易に実施することができる。 According to the production method of the present invention, the first additive (A) containing the aromatic ring of the hydrophobic group and the polyoxyalkylene group of the hydrophilic group, the second additive (B) made of polyvinyl alcohol, and the tetrazoles A third additive (C) consisting of By controlling the copper electrolysis, it is possible to produce a warp-free electrolytic copper in which the area ratio of crystal grains with a GOS value exceeding 2.5 ° is 10% or less, and the first additive (A) , the second additive (B), and the third additive (C) can be adjusted, and the process can be easily carried out without requiring a large-scale change of equipment.

本発明の製造方法では、電析のバランスが最適化されるので、アノード溶解抑制も過剰とならず、アノードのスライム発生率が低下し、好ましくはスライム発生率が25%以下となり、歩留まりを上げることができる。 In the production method of the present invention, the balance of electrodeposition is optimized, so that the anode dissolution is not excessively suppressed, the slime generation rate of the anode is reduced, preferably the slime generation rate is 25% or less, and the yield is increased. be able to.

以下、本発明の実施例を比較例と共に示す。
実施例および比較例においてGOS値は以下のように測定した。
電析させた銅をカソード基板から剥離させて、中央3cm四方を切り出し、この銅片をイオンミリング法により断面加工し、EBSD(Electron Back Scatter Diffraction Patterns;EDAX/TSL社製 OIM Data Collection)装置付きFE-SEM(日本電子製JSM-7001FA)を用いて、測定ステップ3μmでTD方向から測定を行い、この測定データと解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2、上記式[1]に基づいてGOS値を算出する解析ソフト)を用いてGOS値の解析を行った。隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなして、結晶粒内にあるピクセルとほかの粒内の全てもピクセル間で方位差を計算し、方位差を平均化してGOS(Grain Orientation Spread)値を算出した。
また、3cm四方内の全ての結晶粒のGOS値を算出し、GOS値が2.5°を超える結晶粒の面積比率を求め表1に「GOS値基準の面積率[%]」として示した。
なお、表1において「×」の評価は、電解試験中に電気銅が反ってカソード基板から落下し、電解試験を継続できなかったことを表している。
Examples of the present invention are shown below together with comparative examples.
GOS values were measured as follows in Examples and Comparative Examples.
The electrodeposited copper was peeled off from the cathode substrate, the central 3 cm square was cut out, the cross section of this copper piece was processed by an ion milling method, and an EBSD (Electron Back Scatter Diffraction Patterns; OIM Data Collection manufactured by EDAX/TSL) device was attached. Using FE-SEM (JSM-7001FA manufactured by JEOL Ltd.), measurement is performed from the TD direction at a measurement step of 3 μm, and this measurement data and analysis software (EDAX / TSL OIM Data Analysis ver.5.2, the above formula [ The GOS value was analyzed using analysis software for calculating the GOS value based on [1]. A boundary with an orientation difference of 5° or more between adjacent pixels is regarded as a crystal grain boundary, and the orientation difference between pixels in the crystal grain and all pixels in other grains is calculated and the orientation difference is averaged. A GOS (Grain Orientation Spread) value was calculated using the
In addition, the GOS value of all crystal grains within a 3 cm square was calculated, and the area ratio of crystal grains with a GOS value exceeding 2.5° was obtained and shown in Table 1 as "area ratio [%] based on GOS value". .
In Table 1, the evaluation of "x" indicates that the electrolytic copper warped and dropped from the cathode substrate during the electrolytic test, and the electrolytic test could not be continued.

電気銅のS濃度、Ag濃度、およびガス成分を除く全不純物濃度は、製造した電気銅の中心部分から測定試料を採取し、GD-MS装置(VG MICROTRACE社製 VG-9000)を用いて、Ag,Al,As,Au,B,Ba,Be,Bi,C,Ca,Cd,Cl,Co,Cr,F,Fe,Ga,Ge,Hg,In,K,Li,Mg,Mn,Mo,Na,Nb,Ni,O,P,Pb,Pd,Pt,S,Sb,Se,Si,Sn,Te,Th,Ti,U,V,W,Zn,Zrの含有量を測定した。これらのなかでガス成分(O、F、S、C、Cl)を除いた全ての成分を合算して不純物総量とした。 The S concentration, Ag concentration, and total impurity concentration excluding gas components of electrolytic copper were obtained by collecting a measurement sample from the central portion of the produced electrolytic copper and using a GD-MS device (VG-9000 manufactured by VG MICROTRACE). Ag, Al, As, Au, B, Ba, Be, Bi, C, Ca, Cd, Cl, Co, Cr, F, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Mo, Contents of Na, Nb, Ni, O, P, Pb, Pd, Pt, S, Sb, Se, Si, Sn, Te, Th, Ti, U, V, W, Zn and Zr were measured. Among these, all the components excluding gas components (O, F, S, C, Cl) were totaled to obtain the total amount of impurities.

アノードのスライム発生率(%)は次式[2]によって求めた。
スライム発生率(%)=[{(アノード電析前重量-アノード電析後重量)-カソード電析重量}÷(アノード電析前重量-アノード電析後重量)]×100 ・・・[2]
Anode slime generation rate (%) was determined by the following formula [2].
Slime generation rate (%) = [{(weight before anode deposition - weight after anode deposition) - weight of cathode deposition} / (weight before anode deposition - weight after anode deposition)] x 100 ... [2 ]

各実施例、比較例で求められるスライム発生率を表1に示した。
なお、表1において「×」の評価は、電解試験中に電気銅が反ってカソード基板から落下し、電解試験を継続できなかったことを表している。
Table 1 shows the slime generation rate obtained in each example and comparative example.
In Table 1, the evaluation of "x" indicates that the electrolytic copper warped and dropped from the cathode substrate during the electrolytic test, and the electrolytic test could not be continued.

電気銅の反りについては、目視観察にて判断した。電解の途中で電気銅が反ってカソード基板から脱落したもの、電解試験終了後にカソードを引き上げ、その時点でカソード基板と電気銅が全面に密着せずに一部剥がれているものを「C」と判定した。
表1の試験No.1~3については、電解終了後に引き上げたカソードを目視観察すると、カソード基板と電気銅が一部剥がれており、「C」と評価し、試験No.25~26については電解試験中に電気銅が反ってカソード基板から落下したため「C」と判定した。
カソード基板と電気銅が全面に密着していたものについては、電気銅をカソード基板から引きはがして、引きはがし面を下にして電気銅を机に静置した。静置直後の電気銅は平らである。そこから12時間以内に電気銅が平らな状態から反った形状に変化したものを「B」とし、変化がなかったものを「A」とした。
Warpage of the electrolytic copper was determined by visual observation. "C" indicates that the electrolytic copper warped during the electrolysis and fell off the cathode substrate, or that the cathode substrate and the electrolytic copper did not adhere to the entire surface and were partially peeled off when the cathode was pulled up after the electrolysis test was completed. Judged.
Test No. in Table 1. Regarding 1 to 3, when the cathode pulled up after the completion of the electrolysis was visually observed, the cathode substrate and the electrolytic copper were partially peeled off. For Nos. 25 and 26, the electrolytic copper was warped and dropped from the cathode substrate during the electrolytic test, so it was judged as "C".
In the case where the cathode substrate and the electrolytic copper were in close contact with each other over the entire surface, the electrolytic copper was peeled off from the cathode substrate and placed on a table with the peeled surface facing downward. Electrolytic copper immediately after standing is flat. Within 12 hours after that, the electrolytic copper changed from a flat state to a warped shape was rated as "B", and when there was no change, it was rated as "A".

銅電解液として、硫酸濃度50g/L、硫酸銅5水和物濃度197g/L、塩化物イオン濃度50mg/Lの硫酸銅液を用いた。第1添加剤(添加剤A)、第2添加剤(添加剤B)、第3添加剤(添加剤C)として以下の化合物を用い、おのおの表1に示す濃度になる量を銅電解液に添加した。
<第1添加剤A>
A-1:エチレンオキサイドの付加モル数が5のポリオキシエチレンモノフェニルエーテル(日本乳化剤製、PgG-55)
A-2:エチレンオキサイドの付加モル数が10のポリオキシエチレンナフチルエーテル(第一工業製薬製、ノイゲンEN-10)
A-3:平均分子量1500のポリエチレングリコール(関東化学製)
<第2添加剤B>
B-1:ケン化率98.5mol%および平均重合度500のポリビニルアルコール(日本合成化学製、ゴーセノールNL-05)
B-2:ケン化率99mol%および平均重合度1200のポリビニルアルコール(日本合成化学製、ゴーセノールNL-11)
B-3:ケン化率が85mol%および平均重合度250のカルボキシ変性ポリビニルアルコール(クラレ製SD-1000)
B-4:ケン化率が94.5mol%および平均重合度3300のポリビニルアルコール(日本酢ビ・ポバール株式会社製JM-33)
<第3添加剤C>
C-1:1H-テトラゾール(東京化成工業株式会社製)
C-2:5-アミノ-1H-テトラゾール(東京化成工業株式会社)
C-3:5-メチル-1H-テトラゾール(東京化成工業株式会社)
As a copper electrolyte, a copper sulfate solution having a sulfuric acid concentration of 50 g/L, a copper sulfate pentahydrate concentration of 197 g/L, and a chloride ion concentration of 50 mg/L was used. The following compounds were used as the first additive (additive A), the second additive (additive B), and the third additive (additive C). added.
<First additive A>
A-1: Polyoxyethylene monophenyl ether with 5 additional moles of ethylene oxide (manufactured by Nippon Nyukazai Co., Ltd., PgG-55)
A-2: Polyoxyethylene naphthyl ether with 10 moles of ethylene oxide added (Daiichi Kogyo Seiyaku Co., Ltd., Noigen EN-10)
A-3: Polyethylene glycol with an average molecular weight of 1500 (manufactured by Kanto Kagaku)
<Second additive B>
B-1: Polyvinyl alcohol with a saponification rate of 98.5 mol% and an average degree of polymerization of 500 (manufactured by Nippon Synthetic Chemical Industry, Gosenol NL-05)
B-2: Polyvinyl alcohol with a saponification rate of 99 mol% and an average degree of polymerization of 1200 (manufactured by Nippon Synthetic Chemical Industry, Gosenol NL-11)
B-3: Carboxy-modified polyvinyl alcohol with a saponification rate of 85 mol% and an average degree of polymerization of 250 (SD-1000 manufactured by Kuraray Co., Ltd.)
B-4: Polyvinyl alcohol with a saponification rate of 94.5 mol% and an average degree of polymerization of 3300 (JM-33 manufactured by Japan Vinyl Acetate & Poval Co., Ltd.)
<Third Additive C>
C-1: 1H-tetrazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-2: 5-amino-1H-tetrazole (Tokyo Chemical Industry Co., Ltd.)
C-3: 5-methyl-1H-tetrazole (Tokyo Chemical Industry Co., Ltd.)

アノードには99.99質量%(4N)の電気銅を用い、さらにアノードバックを用いて、アノードから発生したスライムがカソードに取り込まれないようにした。カソードにはSUS316の板を用い、さらに端部に電流集中するのを防ぐため、エッジマスキング(マテリアルエコリファイン株式会社、SnapjawsTM)を用い均一に電析させた。また、事前に予察試験を行い、各添加剤の消費速度を算出して、添加剤補給液を作製し、添加剤補給液を常時チューブポンプで送液しながら、電流密度を140~200A/m、浴温20~40℃にて、常時ろ過精度0.5μmのフィルターで粒子等を電解液から除去しながら7日間銅電解を行なった。48時間ごとに添加剤A、B、Cの測定を行った。添加剤AおよびBはODSカラムを用いてHPLCの紫外検出器で濃度測定し、添加剤CはGPCカラムを用いてHPLCのコロナ荷電検出器によって濃度を測定し、初期の濃度から20%以上変動しないように添加剤濃度を補正した。銅電解の結果を表1、表2に示した。 Electrolytic copper of 99.99% by mass (4N) was used for the anode, and an anode bag was used to prevent the slime generated from the anode from being taken into the cathode. A SUS316 plate was used as the cathode, and edge masking (Snapjaws™, manufactured by Material Eco-Refining Co., Ltd.) was used to prevent current from concentrating on the edge of the electrode. In addition, a preliminary test was performed in advance, the consumption rate of each additive was calculated, an additive replenishing solution was prepared, and the current density was set to 140 to 200 A / m 2. Copper electrolysis was carried out for 7 days at a bath temperature of 20 to 40° C. while constantly removing particles and the like from the electrolytic solution with a filter having a filtration accuracy of 0.5 μm. Additives A, B, and C were measured every 48 hours. Additives A and B were measured using an ODS column with a UV detector on HPLC, and Additive C was measured using a GPC column with a corona charge detector on HPLC and varied more than 20% from the initial concentration. The additive concentration was corrected so that Tables 1 and 2 show the results of copper electrolysis.

表1、表2に示すように、第2添加剤(B)ないし第3添加剤(C)を用いない試料No.1~4は何れもGOS値が2.5°を超える結晶粒の面積比率が20%以上であるので電解中から電気銅の反りが生じており結晶の均質性が低い。また、第1添加剤(A)がポリエチレングリコールである試料No.7も上記面積比率が20%以上であるので電気銅の反りが発生し結晶の均質性が低く、何れもS濃度は0.07質量ppmを上回り、大部分は全不純物濃度が0.2質量ppmを上回る。
第2添加剤(B)が平均重合度3300のポリビニルアルコールである試料No.8では、平均重合度が高いために内部応力歪を緩和する効果が低く、上記面積比率が10%を超えるので電気銅の反りが発生し結晶の均質性が低い。
また、第2添加剤(B)の添加量が少ない試料No.9、および第2添加剤(B)の添加量が多すぎる試料No.10は、何れも上記面積比率が10%を超えるので電気銅の反りが発生し結晶の均質性が低く、S濃度は0.07質量ppmを上回り、全不純物濃度は0.2質量ppmを上回る。
試料No.5、6は、第3添加剤(C)を含まないので、GOS値が2.5°を超える結晶粒の面積比率は10%以下であるが、基準値の10%に近く、しかもS濃度が0.07質量ppmを上回り、全不純物濃度が0.2質量ppmを上回っている。
As shown in Tables 1 and 2, all of the samples Nos. 1 to 4 that do not use the second additive (B) to the third additive (C) have a GOS value exceeding 2.5°. Since the ratio is 20% or more, the electrolytic copper warps during the electrolysis, and the crystal homogeneity is low. Also, in sample No. 7, in which the first additive (A) is polyethylene glycol, since the area ratio is 20% or more, the electrolytic copper warps and the crystal homogeneity is low. 07 ppm by weight and most have a total impurity concentration above 0.2 ppm by weight.
Sample No. 2 in which the second additive (B) is polyvinyl alcohol having an average degree of polymerization of 3300. In No. 8, since the average degree of polymerization is high, the effect of relieving internal stress strain is low, and since the area ratio exceeds 10%, the electrolytic copper warps and the crystal homogeneity is low.
In addition, sample No. 9 with a small amount of the second additive (B) and sample No. 10 with an excessively large amount of the second additive (B) both have the area ratio exceeding 10%. Warping of the electrolytic copper occurs, the crystal homogeneity is low, the S concentration exceeds 0.07 mass ppm, and the total impurity concentration exceeds 0.2 mass ppm.
Samples No. 5 and 6 do not contain the third additive (C), so the area ratio of crystal grains with a GOS value exceeding 2.5° is 10% or less, but close to the reference value of 10%. Moreover, the S concentration exceeds 0.07 mass ppm, and the total impurity concentration exceeds 0.2 mass ppm.

試料No.11~23,27(本発明の実施例)は何れも上記面積比率が10%以下であり、電解中でも電気銅には反りが無く結晶の均質性が高い。さらに、Ag濃度は0.17質量ppm以下、S濃度0.051質量ppm以下、および全不純物濃度が0.194質量ppm以下の高純度電気銅である。また、スライム発生率は何れも30%以下であり、試料No.21~23,27は20%以下である。
なお、試料No.27は電解液の浴温が40℃と比較的高いため、Agが0.15質量ppmを上回っている。
Samples Nos. 11 to 23 and 27 (Examples of the present invention) all have the above area ratios of 10% or less, and the electrolytic copper does not warp even during electrolysis and has high crystal homogeneity. Furthermore, it is high-purity electrolytic copper having an Ag concentration of 0.17 mass ppm or less, an S concentration of 0.051 mass ppm or less, and a total impurity concentration of 0.194 mass ppm or less. Further, the slime generation rate was 30% or less for all samples, and sample Nos. 21 to 23 and 27 were 20% or less.
In addition, sample no. In No. 27, the bath temperature of the electrolytic solution is relatively high at 40° C., so the Ag content exceeds 0.15 ppm by mass.

一方、試料No.24は電流密度が低すぎ(140A/m)るので、GOS値が2.5°を超える結晶粒の面積比率が15%を上回り、試料No.25は電流密度が高すぎる(200A/m)ため、電解試験中に電気銅が反ってカソード基板から落下し、電解試験を継続できなかった。また、試料No.26は電解液の浴温が低すぎる(20℃)ので、電解試験中に電気銅が反ってカソード基板から落下し、電解試験を継続できなかった。 On the other hand, sample No. 24 has a too low current density (140 A/m 2 ), so the area ratio of crystal grains with a GOS value exceeding 2.5° exceeds 15%, and sample No. 25 has a high current density. (200 A/m 2 ), the electrolytic copper warped and dropped from the cathode substrate during the electrolytic test, and the electrolytic test could not be continued. Also, in sample No. 26, the bath temperature of the electrolytic solution was too low (20° C.), so the electrolytic copper warped and dropped from the cathode substrate during the electrolytic test, and the electrolytic test could not be continued.

Figure 0007172131000002
Figure 0007172131000002

Figure 0007172131000003
Figure 0007172131000003

Claims (4)

疎水基の芳香族環と親水基のポリオキシアルキレン基を含有する第1添加剤(A)、ポリビニルアルコール類からなる第2添加剤(B)、およびテトラゾール類からなる第3添加剤(C)を銅電解液に添加し、第1添加剤(A)の濃度を10mg/L以上~500mg/L以下、第2添加剤(B)の濃度を1mg/L以上~100mg/L以下、第3添加剤(C)の濃度を0.01mg/L以上~30mg/L以下、かつ第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.1以上~0.8以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0超過~0.7以下にし、電流密度を150A/m 以上190A/m 以下とし、浴温を制御して銅電解を行うことによって、Ag濃度0.2質量ppm未満、S濃度0.1質量ppm未満、および全不純物濃度が0.2質量ppm未満であって、結晶粒内平均方位差(GOS値と云う)が2.5°を超える結晶粒が面積比率で10%以下である電気銅を製造することを特徴とする高純度電気銅の製造方法。 A first additive (A) containing a hydrophobic aromatic ring and a hydrophilic polyoxyalkylene group, a second additive (B) comprising polyvinyl alcohols, and a third additive (C) comprising tetrazoles. is added to the copper electrolyte, the concentration of the first additive (A) is 10 mg / L or more to 500 mg / L or less, the concentration of the second additive (B) is 1 mg / L or more to 100 mg / L or less, and the third The concentration of the additive (C) is 0.01 mg / L or more to 30 mg / L or less, and the concentration ratio (B / A) of the second additive (B) to the first additive (A) is 0.1 or more 0.8 or less, and the concentration ratio (C/A) of the third additive (C) to the first additive (A) is more than 0 to 0.7 or less, and the current density is 150 A / m 2 or more and 190 A / m 2 or less, and by performing copper electrolysis while controlling the bath temperature, the Ag concentration is less than 0.2 mass ppm, the S concentration is less than 0.1 mass ppm, and the total impurity concentration is less than 0.2 mass ppm, What is claimed is: 1. A method for producing high-purity electrolytic copper, wherein the area ratio of crystal grains having an average misorientation in crystal grains (referred to as a GOS value) exceeding 2.5° is 10% or less. 浴温を30℃以上~35℃以下にして、Ag濃度0.15質量ppm未満、S濃度0.07質量ppm未満、および全不純物濃度が0.2質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で10%以下である電気銅を製造する請求項1に記載する高純度電気銅の製造方法。 The bath temperature is set to 30 ° C. or higher and 35 ° C. or lower, the Ag concentration is less than 0.15 mass ppm, the S concentration is less than 0.07 mass ppm, and the total impurity concentration is less than 0.2 mass ppm, and the grain average 2. The method for producing high-purity electrolytic copper according to claim 1, wherein the area ratio of crystal grains having a misorientation (GOS value) exceeding 2.5° is 10% or less. 前記第1添加剤(A)の濃度を40mg/L以上~200mg/L以下、前記第2添加剤(B)の濃度を10mg/L以上~50mg/L以下、前記第3添加剤(C)の濃度を0.1mg/L以上~25mg/L以下、かつ第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.1以上~0.65以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0.001~0.5以下にし、Ag濃度0.1質量ppm未満、S濃度0.02質量ppm未満、および全不純物濃度が0.1質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で8%以下である電気銅を製造する請求項1又は請求項2に記載する高純度電気銅の製造方法。 The concentration of the first additive (A) is 40 mg/L or more and 200 mg/L or less, the concentration of the second additive (B) is 10 mg/L or more and 50 mg/L or less, and the third additive (C). concentration of 0.1 mg / L or more to 25 mg / L or less, and the concentration ratio (B / A) of the second additive (B) to the first additive (A) is 0.1 or more to 0.65 or less, And the concentration ratio (C/A) of the third additive (C) to the first additive (A) is 0.001 to 0.5 or less, the Ag concentration is less than 0.1 ppm by mass, and the S concentration is 0.02 mass ppm, the total impurity concentration is less than 0.1 ppm by mass, and the crystal grains having an average orientation difference (GOS value) in the crystal grains exceeding 2.5° are 8% or less in terms of area ratio. The method for producing high-purity electrolytic copper according to claim 1 or 2. 前記第2添加剤(B)の濃度を10mg/L以上~50mg/L以下、前記第3添加剤(C)の濃度を1mg/L以上~5mg/L以下、かつ前記第1添加剤(A)に対する第2添加剤(B)の濃度比(B/A)を0.13以上~0.4以下、および第1添加剤(A)に対する第3添加剤(C)の濃度比(C/A)を0.005以上~0.10以下にして、Ag濃度0.08質量ppm未満、S濃度0.01質量ppm未満、および全不純物濃度が0.1質量ppm未満であって、結晶粒内平均方位差(GOS値)が2.5°を超える結晶粒が面積比率で5%以下である電気銅を製造する請求項1又は請求項2に記載する高純度電気銅の製造方法。 The concentration of the second additive (B) is 10 mg / L or more to 50 mg / L or less, the concentration of the third additive (C) is 1 mg / L or more to 5 mg / L or less, and the first additive (A ) of the second additive (B) to 0.13 or more and 0.4 or less, and the concentration ratio of the third additive (C) to the first additive (A) (C/ A) is 0.005 or more to 0.10 or less, the Ag concentration is less than 0.08 mass ppm, the S concentration is less than 0.01 mass ppm, and the total impurity concentration is less than 0.1 mass ppm, and the crystal grain 3. The method for producing high-purity electrolytic copper according to claim 1 or 2, wherein the area ratio of crystal grains having an internal mean misorientation (GOS value) exceeding 2.5° is 5% or less.
JP2018097318A 2017-06-01 2018-05-21 Manufacturing method of high-purity electrolytic copper Active JP7172131B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2018/021228 WO2018221734A1 (en) 2017-06-01 2018-06-01 Method for producing high-purity electrolytic copper
US16/617,574 US11753733B2 (en) 2017-06-01 2018-06-01 Method for producing high-purity electrolytic copper
CN201880015294.1A CN110382743B (en) 2017-06-01 2018-06-01 High purity electrolytic copper
EP18809582.2A EP3636803A4 (en) 2017-06-01 2018-06-01 Method for producing high-purity electrolytic copper
PCT/JP2018/021178 WO2018221724A1 (en) 2017-06-01 2018-06-01 High-purity electrolytic copper
CN201880035087.2A CN110678582B (en) 2017-06-01 2018-06-01 Method for producing high-purity electrolytic copper
TW107118841A TWI788361B (en) 2017-06-01 2018-06-01 High-purity electrolytic copper
TW107118988A TWI787275B (en) 2017-06-01 2018-06-01 Method for producing high purity electrolytic copper
EP18810769.2A EP3633072A4 (en) 2017-06-01 2018-06-01 High-purity electrolytic copper
US16/613,209 US11453953B2 (en) 2017-06-01 2018-06-01 High-purity electrolytic copper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017110418 2017-06-02
JP2017110418 2017-06-02

Publications (2)

Publication Number Publication Date
JP2018204102A JP2018204102A (en) 2018-12-27
JP7172131B2 true JP7172131B2 (en) 2022-11-16

Family

ID=64956530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097318A Active JP7172131B2 (en) 2017-06-01 2018-05-21 Manufacturing method of high-purity electrolytic copper

Country Status (1)

Country Link
JP (1) JP7172131B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123289A (en) 1999-10-27 2001-05-08 Dowa Mining Co Ltd Electrolytic copper foil and method for manufacturing the same
JP2017043834A (en) 2015-08-29 2017-03-02 三菱マテリアル株式会社 Additive for high purity electrolytic copper refinery and high purity copper manufacturing method
US20170088963A1 (en) 2015-09-30 2017-03-30 Mitsubishi Materials Corporation Additive for high-purity copper electrolytic refining, method of producing high-purity copper, and high-purity electrolytic copper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08990B2 (en) * 1989-01-11 1996-01-10 同和鉱業株式会社 Ultra high purity copper manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123289A (en) 1999-10-27 2001-05-08 Dowa Mining Co Ltd Electrolytic copper foil and method for manufacturing the same
JP2017043834A (en) 2015-08-29 2017-03-02 三菱マテリアル株式会社 Additive for high purity electrolytic copper refinery and high purity copper manufacturing method
US20170088963A1 (en) 2015-09-30 2017-03-30 Mitsubishi Materials Corporation Additive for high-purity copper electrolytic refining, method of producing high-purity copper, and high-purity electrolytic copper

Also Published As

Publication number Publication date
JP2018204102A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR101058765B1 (en) Manufacturing method of high purity copper by high purity copper and electrolysis
JP4680325B2 (en) High purity copper or high purity copper alloy sputtering target, method for producing the same, and high purity copper or high purity copper alloy sputtered film
CN106480475B (en) Additive for electrolytic refining of high-purity copper and method for producing high-purity copper
WO2018221734A1 (en) Method for producing high-purity electrolytic copper
US20150308009A1 (en) Phosphorous-containing copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method
JP7454329B2 (en) High purity electrical copper plate
CN106555208B (en) Additive for electrolytic refining of high-purity copper, method for producing high-purity copper, and high-purity electrolytic copper
JP7172131B2 (en) Manufacturing method of high-purity electrolytic copper
TWI787275B (en) Method for producing high purity electrolytic copper
US10407785B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
JP6740801B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP2023029573A (en) High-purity electrolytic copper
JP5626582B2 (en) Phosphorus copper anode for electrolytic copper plating and electrolytic copper plating method using the same
JP6960363B2 (en) Co-anode, electric Co-plating method using Co-anode and evaluation method of Co-anode
TWI838979B (en) Brittle Electrodeposited Copper
JP5590328B2 (en) Phosphorus-containing copper anode for electrolytic copper plating and electrolytic copper plating method using the same
US10793956B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150