JP6740801B2 - High-purity copper electrolytic refining additive and high-purity copper manufacturing method - Google Patents

High-purity copper electrolytic refining additive and high-purity copper manufacturing method Download PDF

Info

Publication number
JP6740801B2
JP6740801B2 JP2016161591A JP2016161591A JP6740801B2 JP 6740801 B2 JP6740801 B2 JP 6740801B2 JP 2016161591 A JP2016161591 A JP 2016161591A JP 2016161591 A JP2016161591 A JP 2016161591A JP 6740801 B2 JP6740801 B2 JP 6740801B2
Authority
JP
Japan
Prior art keywords
copper
electrolytic
additive
derivative
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016161591A
Other languages
Japanese (ja)
Other versions
JP2017214641A (en
Inventor
圭栄 樽谷
圭栄 樽谷
賢治 久保田
賢治 久保田
中矢 清隆
清隆 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to TW105131089A priority Critical patent/TWI705159B/en
Priority to US15/277,508 priority patent/US10428434B2/en
Priority to CN201610862243.5A priority patent/CN106555208B/en
Publication of JP2017214641A publication Critical patent/JP2017214641A/en
Application granted granted Critical
Publication of JP6740801B2 publication Critical patent/JP6740801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、塩素および銀の少ない高純度の銅を製造する銅電解精錬用の添加剤とその高純度銅製造方法に関する。 The present invention relates to an additive for copper electrolytic refining for producing high-purity copper containing little chlorine and silver, and a method for producing the high-purity copper.

高純度銅の製造方法として、特許文献1に記載されているように、硫酸銅水溶液を電解し、陰極に析出した銅を陽極にしてさらに硝酸銅水溶液中において100A/m以下の低電流密度で再電解する二段階の電解を行う方法が知られている。 As a method for producing high-purity copper, as described in Patent Document 1, a copper sulfate aqueous solution is electrolyzed, copper deposited on a cathode is used as an anode, and a low current density of 100 A/m 2 or less in a copper nitrate aqueous solution is further used. There is known a method of performing two-stage electrolysis in which re-electrolysis is carried out.

また、特許文献2に記載されているように、塩化物イオン、ニカワ等、および活性硫黄成分を含む硫酸銅電解液にPEG(ポリエチレングリコール)等のポリオキシエチレン系界面活性剤を添加することによって機械的特性とカソード密着性を高めた電解銅箔の製造方法が知られている。さらに、特許文献3に記載されているように、PVA(ポリビニルアルコール)等の平滑化剤とPEGなどのスライム促進剤を添加することによって銅表面が平滑で、不純物である銀や硫黄の含有量が少ない高純度電気銅を製造する方法が知られている。 Further, as described in Patent Document 2, by adding a polyoxyethylene-based surfactant such as PEG (polyethylene glycol) to a copper sulfate electrolytic solution containing chloride ions, glue, etc., and an active sulfur component. A method of manufacturing an electrolytic copper foil having improved mechanical properties and cathode adhesion is known. Furthermore, as described in Patent Document 3, by adding a smoothing agent such as PVA (polyvinyl alcohol) and a slime accelerator such as PEG, the copper surface is smooth and the content of impurities such as silver or sulfur is increased. There is known a method for producing high-purity electrolytic copper with less waste.

特公平08−990号公報Japanese Patent Publication No. 08-990 特開平2001−123289号公報JP, 2001-123289, A 特開2005−307343号公報JP 2005-307343 A

従来の銅電解精錬では、電解液に塩化物イオンが添加されており、その効果として、カソードに析出する電気銅の形態を改善すること及び、電解液中の銀イオンを塩化銀粒子として沈殿させることで、電解液中から銀イオンを析出させて、カソードへの銀の共析を防ぐことが挙げられる。しかし、塩化物イオンだけでは電解液中の銀イオンをすべて析出させることができず、さらに添加された塩化物イオンがカソードに移行し、電気銅の純度が低下するという問題があった。よって、従来の銅電解精錬では銀と塩素の含有量を低減することが難しい。 In conventional copper electrolytic refining, chloride ions are added to the electrolytic solution, and the effect is to improve the morphology of electrolytic copper deposited on the cathode and to precipitate silver ions in the electrolytic solution as silver chloride particles. Thus, silver ions can be deposited from the electrolytic solution to prevent co-deposition of silver on the cathode. However, there is a problem in that chloride ions alone cannot precipitate all the silver ions in the electrolytic solution, and the added chloride ions migrate to the cathode, resulting in a decrease in the purity of electrolytic copper. Therefore, it is difficult to reduce the contents of silver and chlorine by conventional copper electrolytic refining.

例えば、特許文献1の製造方法のように、硫酸銅浴の電解と硝酸銅浴の電解を行う二段階の製造方法では電解に手間がかかる問題がある。また、特許文献2〜3のように、PEGやPVAだけではカソードに析出する電気銅の塩素および銀の含有量を十分に低減することができない。 For example, as in the manufacturing method of Patent Document 1, the two-step manufacturing method of electrolyzing a copper sulfate bath and electrolyzing a copper nitrate bath has a problem in that electrolysis takes time. Further, as in Patent Documents 2 and 3, PEG and PVA alone cannot sufficiently reduce the chlorine and silver contents of electrolytic copper deposited on the cathode.

本発明は、従来の上記問題を解決したものであり、塩素および銀の少ない高純度の銅を容易に製造する銅電解精錬用の添加剤と該添加剤を用いた高純度銅の製造方法を提供する。 The present invention is to solve the above-mentioned conventional problems, an additive for copper electrolytic refining that easily produces high-purity copper with less chlorine and silver, and a method for producing high-purity copper using the additive. provide.

本発明は、上記課題を解決する以下の高純度銅電解精錬用添加剤に関する。
〔1〕銅電解精錬の電解液に添加される添加剤であって、電気銅の銀および塩素を低減するテトラゾールまたはテトラゾール誘導体(テトラゾール類と云う)を含み、さらに電気銅の応力を緩和する平均重合度200〜700のポリビニルアルコールまたはその誘導体を含むことを特徴とする高純度銅電解精錬用添加剤。
〔2〕上記テトラゾール誘導体が、テトラゾールのアルキル誘導体またはアミノ誘導体またはフェニル誘導体である上記[1]に記載する高純度銅電解精錬用添加剤。
〔3〕上記ポリビニルアルコールまたはその誘導体のケン化率が70〜99mol%である上記[1]または上記[2]に記載する高純度銅電解精錬用添加剤。
〔4〕上記ポリビニルアルコールの誘導体が、カルボキシ変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、またはポリオキシエチレン変性ポリビニルアルコールである上記[1]〜上記[3]の何れかに記載する高純度銅電解精錬用添加剤。
〔5〕上記添加剤が、上記テトラゾール類および平均重合度200〜700のポリビニルアルコールまたはその誘導体と共に、電気銅の不純物を低減するポリエチレングリコール、または芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤を含む上記[1]〜上記[4]の何れかに記載する高純度銅電解精錬用添加剤。
〔6〕上記芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤が、ポリオキシエチレンモノフェニルエーテル、またはポリオキシエチレンナフチルエーテルである上記[5]に記載する高純度銅電解精錬用添加剤。
The present invention relates to the following additive for high-purity copper electrolytic refining that solves the above problems.
[1] An additive that is added to an electrolytic solution of copper electrolytic refining, which contains tetrazole or a tetrazole derivative (referred to as tetrazole) that reduces silver and chlorine of electrolytic copper, and an average that relaxes the stress of electrolytic copper. An additive for high-purity electrolytic copper refining, which comprises polyvinyl alcohol having a degree of polymerization of 200 to 700 or a derivative thereof .
[2] The additive for high-purity copper electrolytic refining according to the above [1], wherein the tetrazole derivative is an alkyl derivative, an amino derivative or a phenyl derivative of tetrazole.
[3] The additive for high-purity copper electrolytic refining according to the above [1] or [2], wherein the saponification ratio of the polyvinyl alcohol or its derivative is 70 to 99 mol % .
[4] The high-purity copper electrolytic refining according to any one of [1] to [3 ] above, wherein the polyvinyl alcohol derivative is carboxy-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, or polyoxyethylene-modified polyvinyl alcohol . Additive.
[5] The above-mentioned additive, together with the above tetrazole and polyvinyl alcohol having an average degree of polymerization of 200 to 700 or a derivative thereof, polyethylene glycol that reduces impurities of electrolytic copper, or hydrophilicity of a hydrophobic group of an aromatic ring and a polyoxyalkylene group. An additive for high-purity electrolytic copper refining according to any one of the above [1] to [4], which contains a nonionic surfactant having a base .
[6] The nonionic surfactant having a hydrophobic group of the aromatic ring and a hydrophilic group of the polyoxyalkylene group is polyoxyethylene monophenyl ether or polyoxyethylene naphthyl ether. Additive for high purity copper electrolytic refining.

本発明は、また上記高純度銅電解精錬用添加剤を用いた以下の高純度銅の製造方法に関する。
〔7〕上記[1]〜上記[6]の何れかに記載する添加剤を電解液に添加して銅電解精錬を行う高純度銅の製造方法。
〔8〕上記[7]の製造方法において、上記添加剤に含まれるテトラゾール類の添加濃度が0.1〜30mg/Lである高純度銅の製造方法。
〔9〕上記[7]または上記[8]の製造方法において、上記添加剤に含まれる上記ポリビニルアルコールまたはその誘導体の添加濃度が0.1〜100mg/Lである高純度銅の製造方法。
〔10〕上記[5]または上記[6]に記載する上記添加剤を用いた上記[7]の製造方法において、上記添加剤に含まれる上記ポリエチレングリコール、または上記非イオン性界面活性剤の添加濃度が2〜500mg/Lである高純度銅の製造方法。
〔11〕塩素含有量50質量ppm以下および銀含有量1質量ppm以下の高純度電気銅を製造する上記[7]〜上記[10]の何れかに記載する製造方法。
The present invention also relates to the following method for producing high-purity copper using the above-mentioned additive for high-purity copper electrolytic refining.
[7] A method for producing high-purity copper, in which the additive according to any one of [1] to [6] above is added to an electrolytic solution to perform copper electrolytic refining .
[8] The method for producing high-purity copper according to the above-mentioned [7], wherein the addition concentration of the tetrazole contained in the additive is 0.1 to 30 mg/L.
[9] The method for producing high-purity copper according to the above-mentioned [7] or [8], wherein the addition concentration of the polyvinyl alcohol or its derivative contained in the additive is 0.1 to 100 mg/L.
[10] In the production method of the above-mentioned [7] using the above-mentioned additive described in the above-mentioned [5] or the above-mentioned [6], addition of the above-mentioned polyethylene glycol contained in the above-mentioned additive or the above-mentioned nonionic surfactant. A method for producing high-purity copper having a concentration of 2-500 mg/L.
[11] The production method according to any one of [7] to [10] above, which produces high-purity electrolytic copper having a chlorine content of 50 mass ppm or less and a silver content of 1 mass ppm or less.

〔具体的な説明〕
以下、本発明を具体的に説明する。
本発明は、銅電解精錬の電解液に添加される添加剤であって、電気銅の銀および塩素を低減するテトラゾールまたはテトラゾール誘導体(テトラゾール類と云う)を含み、さらに電気銅の応力を緩和する平均重合度200〜700のポリビニルアルコールまたはその誘導体を含むことを特徴とする高純度銅電解精錬用添加剤に関する。上記テトラゾール類を銀塩素低減剤と云い、上記平均重合度200〜700のポリビニルアルコールまたはその誘導体を応力緩和剤と云う。
また、本発明の上記添加剤は、上記テトラゾール類および上記平均重合度200〜700のポリビニルアルコールまたはその誘導体と共に、電気銅の不純物を低減するポリエチレングリコール、または芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤を含むことができる。上記ポリエチレングリコール、または芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤を不純物低減剤と云う。
さらに、本発明は、上記添加剤を電解液に添加して銅電解精錬を行う高純度銅の製造方法に関する。
[Specific explanation]
Hereinafter, the present invention will be specifically described.
The present invention is an additive to be added to an electrolytic solution for copper electrolytic refining, which contains tetrazole or a tetrazole derivative (referred to as tetrazole) that reduces silver and chlorine of electrolytic copper, and further relaxes the stress of electrolytic copper. The present invention relates to a high-purity copper electrolytic refining additive containing polyvinyl alcohol having an average degree of polymerization of 200 to 700 or a derivative thereof . The tetrazole is referred to as a silver chlorine reducing agent, and the polyvinyl alcohol having an average degree of polymerization of 200 to 700 or a derivative thereof is referred to as a stress relaxation agent.
In addition, the additive of the present invention, together with the tetrazole and the polyvinyl alcohol having an average degree of polymerization of 200 to 700 or a derivative thereof, polyethylene glycol that reduces impurities of electrolytic copper, or a hydrophobic group of an aromatic ring and polyoxyalkylene. A nonionic surfactant having a hydrophilic group can be included. The above-mentioned polyethylene glycol or a nonionic surfactant having a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group is called an impurity reducing agent.
Furthermore, the present invention relates to a method for producing high-purity copper in which the above-mentioned additive is added to an electrolytic solution to carry out copper electrolytic refining.

本発明はテトラゾール類を高純度銅電解精錬の銀塩素低減剤として用いる。テトラゾール類はテトラゾールまたはテトラゾール誘導体である。テトラゾール誘導体は、例えば、テトラゾールのアルキル誘導体、またはアミノ誘導体、またはフェニル誘導体を用いることができる。具体的には、銀塩素低減剤として、1H−テトラゾール、5−アミノ−1H−テトラゾール、5−メチル−1H−テトラゾール、5−フェニル−1H−テトラゾールなどを用いることができる。 The present invention uses tetrazoles as a silver chlorine reducing agent for high purity copper electrolytic refining. Tetrazoles are tetrazoles or tetrazole derivatives. As the tetrazole derivative, for example, an alkyl derivative of tetrazole, an amino derivative, or a phenyl derivative can be used. Specifically, 1H-tetrazole, 5-amino-1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole and the like can be used as the silver chlorine reducing agent.

本発明のテトラゾール類からなる銀塩素低減剤は、銅電解精錬において電解液に添加して使用され、電気銅の塩素および銀の含有量を低減する。銀塩素低減剤として用いるテトラゾール類は、電解液中の銀イオンと難溶性の塩を形成し、電解液中の銀イオンが減少することでカソードに銀を析出し難くし、また上記テトラゾール類は電解液中の塩化物イオンとも作用して塩化物がカソードに析出するのを防止する。一方、電解液中の銅イオンは電解液中でテトラゾール類と難溶性の塩を形成せず、銀イオンと塩化物イオンのみがテトラゾール類に選択的に作用されるので、銅イオンの電析はテトラゾール類に妨害されることなく、塩素含有量および銀含有量が大幅に少ない電気銅を得ることができる。具体的には、例えば、本発明の銀塩素低減剤を用いると、カソードに析出する電気銅の塩素濃度および銀濃度を、これを用いないときの各々約1/4〜約2/3に低減することができる。 The silver chloride reducing agent comprising tetrazole of the present invention is used by adding it to an electrolytic solution in copper electrolytic refining, and reduces the chlorine and silver contents of electrolytic copper. The tetrazole used as a silver chlorine reducing agent forms a sparingly soluble salt with silver ions in the electrolytic solution and makes it difficult to deposit silver on the cathode due to the decrease of silver ions in the electrolytic solution. It also acts on chloride ions in the electrolyte to prevent chloride from depositing on the cathode. On the other hand, the copper ion in the electrolytic solution does not form a sparingly soluble salt with the tetrazole in the electrolytic solution, and only the silver ion and the chloride ion are selectively acted on the tetrazole. It is possible to obtain electrolytic copper having a significantly low chlorine content and silver content without being disturbed by tetrazoles. Specifically, for example, when the silver chlorine reducing agent of the present invention is used, the chlorine concentration and silver concentration of electrolytic copper deposited on the cathode are reduced to about 1/4 to about 2/3 respectively when not using this. can do.

一方、従来のように塩化物イオンを電解液に添加して液中の銀イオンと反応させ、塩化銀を沈殿させる方法では、塩化物イオンだけで液中の銀イオンを全て塩化銀として沈殿させることは難しいため、カソードに銀が析出し、電気銅の銀含有量が高くなる。このため本発明のような銀含有量の少ない電気銅を得ることができない。 On the other hand, in the conventional method in which chloride ions are added to the electrolytic solution and reacted with silver ions in the solution to precipitate silver chloride, the chloride ions alone precipitate all silver ions in the solution as silver chloride. However, silver is deposited on the cathode and the silver content of electrolytic copper is high. Therefore, it is impossible to obtain electrolytic copper having a low silver content as in the present invention.

銀塩素低減剤の添加濃度(電解液中の濃度)は0.1〜30mg/Lが好ましく、0.5〜10mg/Lがより好ましい。銀塩素低減剤の添加濃度が0.1mg/Lよりも少ないと、十分な効果がなく、30mg/Lより多いとカソードの電析状態が悪化し、粗大なデンドライト(以下、カソードに析出する樹枝状の析出物をデンドライトとする)が発生する。発生するデントライトは電解条件によっては、長さ2cm以上になる場合もある。 The addition concentration (concentration in the electrolytic solution) of the silver chlorine reducing agent is preferably 0.1 to 30 mg/L, more preferably 0.5 to 10 mg/L. If the added concentration of the silver chlorine reducing agent is less than 0.1 mg/L, there is no sufficient effect, and if it is more than 30 mg/L, the electrodeposition state of the cathode deteriorates, and coarse dendrites (hereinafter, the trees that deposit on the cathode are -Like precipitates are used as dendrites). The generated dendrite may have a length of 2 cm or more depending on the electrolytic conditions.

本発明の銀塩素低減剤と共に、ポリエチレングリコール、または芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤からなる不純物低減剤を用いることによって、電気銅の硫黄含有量を低減することができ、また銀含有量をさらに低減することができる。具体的には、例えば、ポリエチレングリコールもしくは芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤からなる不純物低減剤を電解液に添加することによって、電気銅の表面が平滑になり、電解液中の銀イオンおよび硫酸イオンが電気銅表面に付着し難くなるので、電気銅の銀濃度および硫黄濃度を大幅に低減することができる。 By using an impurity reducing agent comprising a nonionic surfactant having a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group together with the silver chlorine reducing agent of the present invention, sulfur of electrolytic copper can be obtained. The content can be reduced and the silver content can be further reduced. Specifically, for example, by adding an impurity reducing agent composed of a nonionic surfactant having a hydrophobic group of polyethylene glycol or an aromatic ring and a hydrophilic group of a polyoxyalkylene group to the electrolytic solution, The surface becomes smooth, and silver ions and sulfate ions in the electrolytic solution hardly adhere to the electrolytic copper surface, so that the silver concentration and sulfur concentration of electrolytic copper can be significantly reduced.

不純物低減剤は、ポリエチレングリコール、または芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤からなる。芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤は、例えば、疎水基はフェニル基またはナフチル基などであり、モノフェニル、ナフチル、クミル、アルキルフェニル、スチレン化フェニルモノフェニル、ナフチル、クミル、アルキルフェニル、スチレン化フェニル、ジスチレン化フェニル、トリスチレン化フェニル、トリベンジルフェニルなどなどが挙げられる。親水基のポリオキシアルキレン基は、例えば、ポリオキシエチレン基、ポリオキシプロピレン基などであり、ポリオキシエチレン基とポリオキシプロピレン基の両方を含むものでも良い。また、親水基のポリオキシアルキレン基の付加モル数は2〜20が好ましい。該付加モル数が2を下回ると不純物低減剤は電解液に溶解しない。また、該付加モル数が20を上回ると電気銅の収率が低下する傾向がある。親水基のポリオキシアルキレン基の付加モル数は2〜15であることがより好ましい。 The impurity reducing agent is composed of polyethylene glycol or a nonionic surfactant having a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group. The nonionic surfactant having a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group, for example, the hydrophobic group is a phenyl group or a naphthyl group, monophenyl, naphthyl, cumyl, alkylphenyl, styrene. Phenyl monophenyl, naphthyl, cumyl, alkylphenyl, styrenated phenyl, distyrenated phenyl, tristyrenated phenyl, tribenzylphenyl and the like. The hydrophilic polyoxyalkylene group is, for example, a polyoxyethylene group, a polyoxypropylene group, or the like, and may contain both a polyoxyethylene group and a polyoxypropylene group. Further, the number of moles of the polyoxyalkylene group of the hydrophilic group added is preferably 2 to 20. When the number of added moles is less than 2, the impurity reducing agent is not dissolved in the electrolytic solution. If the number of added moles exceeds 20, the yield of electrolytic copper tends to decrease. The number of moles of the polyoxyalkylene group added to the hydrophilic group is more preferably 2 to 15.

不純物低減剤の具体的な化合物は、例えば、ポリエチレングリコール、ポリオキシエチレンモノフェニルエーテル、ポリオキシエチレンメチルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリスチレン化フェニルエーテル、ポリオキシエチレンクミルフェニルエーテル、ポリオキシプロピレンモノフェニルエーテル、ポリオキシプロピレンメチルフェニルエーテル、ポリオキシプロピレンオクチルフェニルエーテル、ポリオキシプロピレンドデシルフェニルエーテル、ポリオキシプロピレンナフチルエーテル、ポリオキシプロピレンスチレン化フェニルエーテル、ポリオキシプロピレンジスチレン化フェニルエーテル、ポリオキシプロピレントリスチレン化フェニルエーテル、ポリオキシプロピレンクミルフェニルエーテルなどである。 Specific compounds of the impurity reducing agent include, for example, polyethylene glycol, polyoxyethylene monophenyl ether, polyoxyethylene methyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene naphthyl ether, and polyoxyethylene naphthyl ether. Oxyethylene styrenated phenyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tristyrenated phenyl ether, polyoxyethylene cumyl phenyl ether, polyoxypropylene monophenyl ether, polyoxypropylene methyl phenyl ether, polyoxypropylene Octyl phenyl ether, polyoxypropylene dodecyl phenyl ether, polyoxypropylene naphthyl ether, polyoxypropylene styrenated phenyl ether, polyoxypropylene distyrenated phenyl ether, polyoxypropylene tristyrenated phenyl ether, polyoxypropylene cumyl phenyl ether And so on.

不純物低減剤の添加濃度(電解液中の濃度)は2〜500mg/Lの範囲が好ましく、10〜300mg/Lの範囲がより好ましい。不純物低減剤の濃度が2mg/Lを下回り、また500mg/Lより多くても電気銅の硫黄含有量を低減する効果は不十分である。 The added concentration of the impurity reducing agent (concentration in the electrolytic solution) is preferably in the range of 2 to 500 mg/L, more preferably in the range of 10 to 300 mg/L. If the concentration of the impurity reducing agent is less than 2 mg/L, and if it is more than 500 mg/L, the effect of reducing the sulfur content of electrolytic copper is insufficient.

本発明の添加剤は、電気銅の銀および塩素を低減するテトラゾール類と共に、電気銅の応力を緩和する平均重合度200〜700のポリビニルアルコールまたはその誘導体(応力緩和剤)を含むことによって、カソードに析出する電気銅の反りが殆どなく、かつ硫黄含有量がより少ない電気銅を得ることができる。
The additive of the present invention contains a polyvinyl alcohol having an average degree of polymerization of 200 to 700 or a derivative thereof (stress relaxation agent) that relaxes the stress of electrolytic copper together with tetrazoles that reduce silver and chlorine of electrolytic copper, thereby providing a cathode. It is possible to obtain electrolytic copper that has almost no warpage of electrolytic copper that is deposited on the steel and has a lower sulfur content.

上記応力緩和剤は、カソードに析出する電気銅の電着応力を緩和して該電気銅がカソードから落下するのを防止する。また、電着応力が緩和されることによって電気銅がカソードに長時間安定に保持されるので、緻密に析出した表面が平滑な電気銅が得られる。 The stress relaxation agent relaxes the electrodeposition stress of the electrolytic copper deposited on the cathode and prevents the electrolytic copper from falling from the cathode. In addition, since the electrolytic copper is held on the cathode stably for a long time by relaxing the electrodeposition stress, electrolytic copper having a finely deposited surface and smooth surface can be obtained.

応力緩和剤として用いるポリビニルアルコール誘導体は、例えば、カルボキシ変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、またはポリオキシエチレン変性ポリビニルアルコールである。 The polyvinyl alcohol derivative used as the stress relaxation agent is, for example, carboxy-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, or polyoxyethylene-modified polyvinyl alcohol.

上記ポリビニルアルコールまたはその誘導体はケン化率70〜99mol%が好ましく、ポリビニルアルコールまたはその誘導体のケン化率を70〜90mol%とすることがより好ましい。ケン化率が70mol%未満であると、電着応力を緩和する効果が乏しくなる。一方、完全にケン化したもの(ケン化率100mol%)は溶解性が著しく低下し、ポリビニルアルコールまたはその誘導体を電解液に溶かし込めなくなる。 The saponification rate of the polyvinyl alcohol or its derivative is preferably 70 to 99 mol %, and more preferably the saponification rate of the polyvinyl alcohol or its derivative is 70 to 90 mol %. If the saponification rate is less than 70 mol %, the effect of relaxing the electrodeposition stress becomes poor. On the other hand, a completely saponified product (saponification rate: 100 mol %) has a markedly reduced solubility, and polyvinyl alcohol or its derivative cannot be dissolved in the electrolytic solution.

上記応力緩和剤のポリビニルアルコールまたはその誘導体は平均重合度200〜700が好ましい。ポリビニルアルコールおよびその誘導体の基本構造は水酸基の完全ケン化型と酢酸基を有する部分ケン化型から成り立っており、ポリビニルアルコールおよびその誘導体の重合度はその両者の総数であり、平均重合度は重合度の平均値である。平均重合度はJISK6726のポリビニルアルコール試験方法に基づいて測定することができる。
The average degree of polymerization of polyvinyl alcohol or its derivative as the stress relaxation agent is preferably 200 to 700 . The basic structure of polyvinyl alcohol and its derivatives consists of the completely saponified type of hydroxyl groups and the partially saponified type having an acetic acid group.The degree of polymerization of polyvinyl alcohol and its derivatives is the total number of both, and the average degree of polymerization is It is the average of degrees. The average degree of polymerization can be measured based on the polyvinyl alcohol test method of JIS K6726.

ポリビニルアルコールまたはその誘導体の平均重合度が200未満であると、電着応力を緩和する効果が乏しくなる。また、ポリビニルアルコールまたはその誘導体の平均重合度が200未満のものは、製造上困難なものもあり、かつ一般的に使用されていないため入手が難しい。一方、上記平均重合度が700を大幅に超えると、電着応力を緩和する効果が乏しくなるのでカソードに析出した電気銅に反りが発生するようになり、さらに電着抑制効果が生じて電気銅の収率が低下する傾向がある。従って、ポリビニルアルコールまたはその誘導体の平均重合度は200〜700が好ましい。
If the average degree of polymerization of polyvinyl alcohol or its derivative is less than 200, the effect of relaxing the electrodeposition stress becomes poor. In addition, polyvinyl alcohol or a derivative thereof having an average degree of polymerization of less than 200 is difficult to obtain in some cases because it is difficult to manufacture and is not generally used. On the other hand, when the average degree of polymerization is significantly higher than 700, the effect of relaxing the electrodeposition stress becomes poor, so that the electric copper deposited on the cathode is warped , and the effect of suppressing the electrodeposition is further produced. Yield tends to decrease. Therefore, the average degree of polymerization of polyvinyl alcohol or its derivative is preferably 200 to 700 .

上記応力緩和剤の添加濃度(電解液中の濃度)は0.1〜100mg/Lの範囲が好ましく、1〜50mg/Lの範囲がより好ましい。応力緩和剤の添加濃度が0.1mg/Lより少ないと電気銅の反りを抑制する効果が不十分であり、また100mg/Lより多いと、電気銅の反りを抑制する効果が見られず、粗大なデンドライトが発生する。 The added concentration (concentration in the electrolytic solution) of the stress relaxation agent is preferably in the range of 0.1 to 100 mg/L, more preferably in the range of 1 to 50 mg/L. If the added concentration of the stress relaxation agent is less than 0.1 mg/L, the effect of suppressing the warp of electrolytic copper is insufficient, and if it is more than 100 mg/L, the effect of suppressing the warp of electrolytic copper is not seen, Coarse dendrites are generated.

本発明の銀塩素低減剤は、硫酸銅水溶液、硝酸銅水溶液、またはピロリン酸銅水溶液の何れの銅電解液についても使用することができる。本発明の銀塩素低減剤と共に上記不純物低減剤または応力緩和剤、あるいはこれらの両方を用いる場合にも上記何れの電解液について使用することができる。銅電解は一般の銅電解条件下で行うことができる。通常、電解液の銅濃度は5〜90g/Lが好ましく、20〜70g/Lがより好ましい。 The silver chlorine reducing agent of the present invention can be used in any copper electrolytic solution of a copper sulfate aqueous solution, a copper nitrate aqueous solution, or a copper pyrophosphate aqueous solution. When the above-mentioned impurity reducing agent or stress relieving agent or both of them are used together with the silver chlorine reducing agent of the present invention, it can be used for any of the above electrolytic solutions. Copper electrolysis can be performed under general copper electrolysis conditions. Usually, the copper concentration of the electrolytic solution is preferably 5 to 90 g/L, more preferably 20 to 70 g/L.

なお、本発明の銀塩素低減剤、あるいは該銀塩素低減剤と共に不純物低減剤や応力緩和を使用する場合、塩化銅浴以外の電解液については、電解液の塩化物イオン濃度は200mg/L以下が好ましい。塩化物イオン濃度が200mg/Lを上回ると、銀塩素低減剤の塩素低減効果が低下して電気銅に塩化物が取り込まれやすくなり、電気銅の純度が低下するので好ましくない。なお、塩化物イオン濃度の下限値を5mg/Lとすることが好ましく、塩化物イオン濃度を5〜150mg/Lとすることがより好ましい When using the silver chlorine reducing agent of the present invention, or an impurity reducing agent or stress relaxation together with the silver chlorine reducing agent, the chloride ion concentration of the electrolytic solution is 200 mg/L or less for electrolytic solutions other than the copper chloride bath. Is preferred. If the chloride ion concentration exceeds 200 mg/L, the chlorine-reducing effect of the silver chlorine-reducing agent is reduced, chloride is easily incorporated into electrolytic copper, and the purity of electrolytic copper is reduced, which is not preferable. The lower limit of the chloride ion concentration is preferably 5 mg/L, more preferably the chloride ion concentration is 5 to 150 mg/L.

本実施形態の添加剤が上記銀塩素低減剤と上記不純物低減剤とを含む場合、該添加剤を電解液(銅電解液)に添加したときの電解液中における濃度比が(1:0.2〜2000)(銀塩素低減剤濃度:不純物低減剤濃度)となるように上記銀塩素低減剤と上記不純物低減剤とが混合されていることが好ましい。また、本実施形態の添加剤が上記不純物低減剤と上記応力緩和剤とを含む場合、該添加剤を電解液(銅電解液)に添加したときの電解液中における濃度比が(1:0.01〜1)(不純物低減剤濃度:応力緩和剤濃度)となるように上記不純物低減剤と上記応力緩和剤とが混合されていることが好ましい。 When the additive of the present embodiment contains the silver chlorine reducing agent and the impurity reducing agent, the concentration ratio in the electrolytic solution when the additive is added to the electrolytic solution (copper electrolytic solution) is (1:0. 2-2000) (silver chlorine reducing agent concentration: impurity reducing agent concentration) is preferably mixed with the silver chlorine reducing agent and the impurity reducing agent. Further, when the additive of the present embodiment contains the impurity reducing agent and the stress relaxing agent, the concentration ratio in the electrolytic solution when the additive is added to the electrolytic solution (copper electrolytic solution) is (1:0). 0.01-1) (impurity reducing agent concentration: stress relaxation agent concentration) is preferably mixed with the impurity reducing agent and the stress relaxation agent.

銅電解精錬において、本発明の銀塩素低減剤を用いることによって、銀含有量および塩素含有量ない高純度の電気銅を得ることができる。具体的には、塩素含有量50質量ppm以下および銀含有量1質量ppm以下の高純度電気銅を得ることができる。 By using the silver chlorine reducing agent of the present invention in copper electrolytic refining, high-purity electrolytic copper having no silver content and no chlorine content can be obtained. Specifically, high-purity electrolytic copper having a chlorine content of 50 mass ppm or less and a silver content of 1 mass ppm or less can be obtained.

銅電解精錬において、本発明の銀塩素低減剤と共に不純物低減剤や応力緩和剤を用いることによって、さらに銀含有量が少なく、また硫黄含有量が少なく、カソードからの反りや剥離の無い高純度の電気銅を得ることができる。 In the copper electrolytic refining, by using the impurity reducing agent and the stress relieving agent together with the silver chlorine reducing agent of the present invention, the silver content is further reduced, the sulfur content is also low, and there is no warp or peeling from the cathode. It is possible to obtain electrolytic copper.

以下に本発明の実施例を比較例と共に示す。
実施例および比較例において、(イ)電気銅の硫黄濃度、塩素濃度および銀濃度はGD−MS(グロー放電質量分析法)によって電気銅の中央部を測定した。(ロ)電気銅表面の光沢度は、JIS Z 8741:1997(ISO 2813:1994、ISO 7668:1986に対応)に基づき、光沢度計(日本電色社製品、HANDY GLOSSMETER PG-1M)を用いて入射角60°の条件で電気銅の中央部を測定した。光沢度が低いと電気銅表面に付着した電解液を十分に水洗洗浄し難いために電気銅表面に電解液が残留し易くなり、電気銅の純度が低下する。また電気銅に粗大なデンドライトが発生したものは、光沢度計が電気銅の上に置けず、光沢度が測定できないため、×とした。(ハ)電気銅の反りを目視観察によって判断した。反りが見られないものを○印、反りが小さいものを△、反りが大きく剥離が見られるものを×印で示した。(ニ)電気銅に粗大なデンドライトが見られるものをあり、見られないものをなしとした。
Hereinafter, examples of the present invention will be shown together with comparative examples.
In the examples and comparative examples, (a) the sulfur concentration, chlorine concentration and silver concentration of electrolytic copper were measured in the central portion of electrolytic copper by GD-MS (glow discharge mass spectrometry). (B) The glossiness of electrolytic copper surface is based on JIS Z 8741:1997 (corresponding to ISO 2813:1994, ISO 7668:1986) using a gloss meter (product of Nippon Denshoku Co., Ltd., HANDY GLOSSMETER PG-1M). The central part of the electrolytic copper was measured under the condition of an incident angle of 60°. When the glossiness is low, it is difficult to sufficiently wash and wash the electrolytic solution adhering to the surface of the electrolytic copper, so that the electrolytic solution tends to remain on the surface of the electrolytic copper, and the purity of the electrolytic copper decreases. In addition, for those in which coarse dendrites were generated on the electrolytic copper, the gloss meter could not be placed on the electrolytic copper, and the glossiness could not be measured. (C) The warp of electrolytic copper was judged by visual observation. The one with no warp is indicated by a circle, the one with a small warp is indicated by a triangle, and the one with a large warp and peeling is indicated by a cross. (D) Some electrolytic copper showed coarse dendrites, and none was observed.

〔試験例1〕
本発明の添加剤に含まれる銀塩素低減剤(A、B、C)について、酸濃度50g/L、銅濃度50g/L、塩化物イオン濃度100mg/Lに調整した硫酸銅水溶液、硝酸銅水溶液、またはピロリン酸銅水溶液を銅電解液として用い、該銅電解液に、上記銀塩素低減剤を表1に示す濃度になるように加えた。また、アノードには硫黄濃度5質量ppmおよび銀濃度8質量ppmの電気銅を用い、カソードにはSUS316の板を用いた。電流密度を200A/m、浴温30℃にて5日間銅電解を行ない、12時間ごとにODSカラムを用いたHPLCによって銀塩素低減剤濃度を測定し、銀塩素低減剤濃度が初期の濃度を維持するように減少分を補給して電気銅をSUS板上に電析させた。使用した銀塩素低減剤(A、B、C)を以下に示す。結果を表1に示す。
銀塩素低減剤A:1H−テトラゾール
銀塩素低減剤B:5−アミノ−1H−テトラゾール
銀塩素低減剤C:5−メチル−1H−テトラゾール
[Test Example 1]
Regarding the silver chlorine reducing agents (A, B, C) contained in the additive of the present invention, an aqueous solution of copper sulfate and an aqueous solution of copper nitrate adjusted to have an acid concentration of 50 g/L, a copper concentration of 50 g/L and a chloride ion concentration of 100 mg/L. Alternatively, an aqueous solution of copper pyrophosphate was used as a copper electrolytic solution, and the silver chloride reducing agent was added to the copper electrolytic solution so that the concentration was as shown in Table 1. Further, electrolytic copper having a sulfur concentration of 5 mass ppm and a silver concentration of 8 mass ppm was used for the anode, and a SUS316 plate was used for the cathode. Copper electrolysis was carried out at a current density of 200 A/m 2 and a bath temperature of 30° C. for 5 days, and the silver chlorine reducing agent concentration was measured by HPLC using an ODS column every 12 hours. The silver chlorine reducing agent concentration was the initial concentration. The electrolytic copper was electrodeposited on the SUS plate by replenishing the reduced amount so as to maintain The silver chlorine reducing agents (A, B, C) used are shown below. The results are shown in Table 1.
Silver chlorine reducing agent A: 1H-tetrazole Silver chlorine reducing agent B: 5-Amino-1H-tetrazole Silver chlorine reducing agent C: 5-Methyl-1H-tetrazole

表1に示すように、本発明の銀塩素低減剤を添加して製造した電気銅は、何れも反りが小さく、硫黄濃度10質量ppm未満、銀濃度2質量ppm未満、および塩素濃度80質量ppm未満の不純物の少ない高純度の電気銅が得られる。特に、銀塩素低減剤Aを用い、該Aの濃度を0.1〜30mg/Lの範囲に調整して製造した電気銅は、硫黄濃度7.3質量ppm以下、銀濃度1質量ppm以下、および塩素濃度51質量ppm以下であり、硫黄、銀、および塩素の各濃度が大幅に低減され、かつ電気銅表面に粗大なデンドライトが無く、光沢度0.8以上の高品位の電気銅を得ることができる。 As shown in Table 1, all the electrolytic copper produced by adding the silver chlorine reducing agent of the present invention has a small warp, a sulfur concentration of less than 10 mass ppm, a silver concentration of less than 2 mass ppm, and a chlorine concentration of 80 mass ppm. High-purity electrolytic copper with less impurities than is obtained. In particular, electrolytic copper produced by using the silver chlorine reducing agent A and adjusting the concentration of the A in the range of 0.1 to 30 mg/L has a sulfur concentration of 7.3 mass ppm or less, a silver concentration of 1 mass ppm or less, And chlorine concentration is 51 mass ppm or less, each concentration of sulfur, silver, and chlorine is significantly reduced, and there is no coarse dendrite on the surface of electrolytic copper, and high-quality electrolytic copper with a glossiness of 0.8 or more is obtained. be able to.

また、銀塩素低減剤Bを用い、該Bの濃度10mg/Lにて製造した電気銅は、硫酸浴および硝酸浴の何れでも、硫黄濃度5.8質量ppm以下、銀濃度0.52質量ppm以下、塩素濃度42質量ppm以下であって光沢度0.9以上の粗大なデンドライトの無い高品位電気銅である。さらに、銀塩素低減剤Cを用い、該Cの濃度10mg/Lにて製造した電気銅は、硫酸浴およびピロリン酸浴の何れでも、硫黄濃度6.2質量ppm以下、銀濃度0.68質量ppm以下、塩素濃度46質量ppm以下の粗大なデンドライトの無い高品位電気銅であり、ピロリン酸浴を用いた電気銅は光沢度が0.5であるが、硫酸浴を用いた電気銅は光沢度が0.7であって光沢度の高い電気銅を得ることができる。 Further, the electrolytic copper produced using the silver chlorine reducing agent B at a concentration of the B of 10 mg/L has a sulfur concentration of 5.8 mass ppm or less and a silver concentration of 0.52 mass ppm both in the sulfuric acid bath and the nitric acid bath. Hereafter, it is a high-grade electrolytic copper having a chlorine concentration of 42 mass ppm or less and a glossiness of 0.9 or more without coarse dendrites. Furthermore, the electrolytic copper produced using the silver chlorine reducing agent C at a concentration of 10 mg/L of C has a sulfur concentration of 6.2 mass ppm or less and a silver concentration of 0.68 mass in both a sulfuric acid bath and a pyrophosphoric acid bath. It is a high-grade electrolytic copper that does not have coarse dendrites with ppm or less and a chlorine concentration of 46 mass ppm or less. The electrolytic copper using a pyrophosphoric acid bath has a gloss level of 0.5, while the electrolytic copper using a sulfuric acid bath is bright. It is possible to obtain electrolytic copper with a degree of 0.7 and high gloss.

Figure 0006740801
Figure 0006740801

〔実施例1〕
表2に示すように、試験例1の銀塩素低減剤(A、B、C)および他の銀塩素低減剤D(5−フェニル−1H−テトラゾール)と共に、応力緩和剤(L、M、N、O)を含む本発明の添加剤を用いた。また、不純物低減剤(F、G、H、I、J、K)を含む添加剤を用いた。これらの添加剤について、銀塩素低減剤の添加濃度を10mg/L、不純物低減剤の添加濃度を10、100mg/Lにし、応力添加剤の濃度を10mg/Lとした。銅電解液中の酸濃度、銅濃度、塩化物濃度およびその他の電解条件は試験例1と同様の条件で銅電解精錬を行い、電気銅を製造した。使用した不純物低減剤(F〜K)および応力緩和剤(L〜O)を以下に示す。
不純物低減剤F:平均分子量1500のポリエチレングリコール。
不純物低減剤G:平均分子量2500のポリエチレングリコール。
不純物低減剤H:エチレンオキサイドの付加モル数が5のポリオキシエチレンモノフェニルエーテル。
不純物低減剤I:エチレンオキサイドの付加モル数が10のポリオキシエチレンモノフェニルエーテル。
不純物低減剤J:エチレンオキサイドの付加モル数が7のポリオキシエチレンナフチルエーテル。
不純物低減剤K:エチレンオキサイドの付加モル数が15のポリオキシエチレンナフチルエーテル。
応力緩和剤L:ケン化率が88mol%で平均重合度が300のポリビニルアルコール。
応力緩和剤M:ケン化率が88mol%で平均重合度が600のポリビニルアルコール。
応力緩和剤N:ケン化率が98mol%で平均重合度が600のカルボキシ変性ポリビニルアルコール。
応力緩和剤O:ケン化率が98mol%で平均重合度が700のポリオキシエチレン変性ポリビニルアルコール。
結果を表2に示す。なお、表2の試料No.21、No.23〜26、No.28、No.30、No.32、No.34〜36、No.38、No.40、No.42、No.44、No.46、No.48、No.50、No.52が本発明の添加剤を使用した結果であり、その他は参考例である。

[Example 1]
As shown in Table 2, together with the silver chlorine reducing agent (A, B, C) of Test Example 1 and another silver chlorine reducing agent D (5-phenyl-1H-tetrazole), a stress relaxation agent (L, M, N) was used. , O) were used. An additive containing an impurity reducing agent (F, G, H, I, J, K) was used. Regarding these additives, the concentration of silver chloride reducing agent added was 10 mg/L, the concentration of impurity reducing agent added was 10, 100 mg/L, and the concentration of stress additive was 10 mg/L. Copper electrolytic refining was performed under the same conditions as in Test Example 1 for the acid concentration, copper concentration, chloride concentration and other electrolysis conditions in the copper electrolytic solution to produce electrolytic copper. The impurity reducing agents (F to K) and stress relaxation agents (L to O) used are shown below.
Impurity reducing agent F: polyethylene glycol having an average molecular weight of 1500.
Impurity reducing agent G: Polyethylene glycol having an average molecular weight of 2500.
Impurity reducing agent H: Polyoxyethylene monophenyl ether in which the addition mole number of ethylene oxide is 5.
Impurity reducing agent I: Polyoxyethylene monophenyl ether in which the added mole number of ethylene oxide is 10.
Impurity reducing agent J: Polyoxyethylene naphthyl ether in which the added mole number of ethylene oxide is 7.
Impurity reducing agent K: Polyoxyethylene naphthyl ether in which the added mole number of ethylene oxide is 15.
Stress relaxation agent L: polyvinyl alcohol having a saponification rate of 88 mol% and an average degree of polymerization of 300.
Stress relaxation agent M: Polyvinyl alcohol having a saponification rate of 88 mol% and an average degree of polymerization of 600.
Stress relaxation agent N: carboxy-modified polyvinyl alcohol having a saponification rate of 98 mol% and an average degree of polymerization of 600.
Stress relaxation agent O: Polyoxyethylene-modified polyvinyl alcohol having a saponification rate of 98 mol% and an average degree of polymerization of 700.
The results are shown in Table 2. The samples No. 21, No. 23 to 26, No. 28, No. 30, No. 32, No. 34 to 36, No. 38, No. 40, No. 42, No. 44, No. 46, No. 48, No. 50 and No. 52 are the results of using the additive of the present invention, and the others are reference examples.

表2に示すように、本発明の銀塩素低減剤と不純物低減剤を用いて製造した電気銅は、硫黄濃度1.21ppm以下、銀濃度0.5ppm以下、塩素濃度30ppm以下の高純度電気銅であって、光沢度2以上の反りの少ない高品位電気銅である。さらに、応力緩和剤を併用したものは、反りの無い高品位電気銅を得ることができる。
また、表2に示す電気銅は、本発明の銀塩素低減剤と共に不純物低減剤を併用することによって、電気銅の硫黄濃度、銀濃度、および塩素濃度が大幅に低減されており、また光沢度の高い電気銅を得ることができる。
As shown in Table 2, electrolytic copper produced by using the silver chlorine reducing agent and the impurity reducing agent of the present invention is high-purity electrolytic copper having a sulfur concentration of 1.21 ppm or less, a silver concentration of 0.5 ppm or less, and a chlorine concentration of 30 ppm or less. In addition, it is a high-grade electrolytic copper with a degree of gloss of 2 or more and less warpage. Further, the one using the stress relaxation agent together can obtain high-grade electrolytic copper free from warpage.
Further, in the electrolytic copper shown in Table 2, the sulfur concentration, silver concentration, and chlorine concentration of the electrolytic copper were significantly reduced by using the silver chlorine reducing agent of the present invention together with the impurity reducing agent, and the glossiness was improved. High electrolytic copper can be obtained.

Figure 0006740801
Figure 0006740801

〔比較例1〕
本発明の銀塩素低減剤を用いずに、不純物低減剤Fを用い、あるいは不純物低減剤Fと共に応力緩和剤Iを用い、その他は実施例1と同様の条件で銅電解精錬を行い、電気銅を製造した。不純物添加剤Fおよび応力緩和剤Mの添加濃度は何れも10mg/Lである。この結果を表3に示した。表3に示すように、本例の試料(No.30〜No.32)は何れも電気銅の塩素量が格段に多く、実施例1の塩素量の約2倍〜約6倍であり、銀含有量も実施例1の銀含有量の約1.1倍〜約5倍であった。
[Comparative Example 1]
Without using the silver chlorine reducing agent of the present invention, the impurity reducing agent F was used, or the stress reducing agent I was used together with the impurity reducing agent F, and otherwise electrolytic copper refining was performed under the same conditions as in Example 1 to obtain electrolytic copper. Was manufactured. The addition concentrations of the impurity additive F and the stress relaxation agent M are both 10 mg/L. The results are shown in Table 3. As shown in Table 3, in each of the samples (No. 30 to No. 32) of this example, the chlorine content of electrolytic copper was remarkably large, which was about 2 to 6 times the chlorine content of Example 1. The silver content was about 1.1 times to about 5 times the silver content of Example 1.

Figure 0006740801
Figure 0006740801



















































Claims (11)

銅電解精錬の電解液に添加される添加剤であって、電気銅の銀および塩素を低減するテトラゾールまたはテトラゾール誘導体(テトラゾール類と云う)を含み、さらに電気銅の応力を緩和する平均重合度200〜700のポリビニルアルコールまたはその誘導体を含むことを特徴とする高純度銅電解精錬用添加剤。 An additive added to an electrolytic solution for electrolytic copper refining, which contains tetrazole or a tetrazole derivative (referred to as tetrazole) that reduces silver and chlorine of electrolytic copper, and an average degree of polymerization of 200 for relaxing stress of electrolytic copper. -700 polyvinyl alcohol or its derivative is contained , The additive for high purity copper electrolytic refining characterized by the above-mentioned. 上記テトラゾール誘導体が、テトラゾールのアルキル誘導体またはアミノ誘導体またはフェニル誘導体である請求項1に記載する高純度銅電解精錬用添加剤。 The additive for high-purity copper electrolytic refining according to claim 1, wherein the tetrazole derivative is an alkyl derivative, an amino derivative or a phenyl derivative of tetrazole. 上記ポリビニルアルコールまたはその誘導体のケン化率が70〜99mol%である請求項1または請求項2に記載する高純度銅電解精錬用添加剤。 The high purity copper electrolytic refining additive according to claim 1 or 2, wherein the saponification rate of the polyvinyl alcohol or its derivative is 70 to 99 mol% . 上記ポリビニルアルコールの誘導体が、カルボキシ変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、またはポリオキシエチレン変性ポリビニルアルコールである請求項1〜請求項3の何れかに記載する高純度銅電解精錬用添加剤。 The high-purity copper electrolytic refining additive according to any one of claims 1 to 3, wherein the polyvinyl alcohol derivative is carboxy-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, or polyoxyethylene-modified polyvinyl alcohol . 上記添加剤が、上記テトラゾール類および平均重合度200〜700のポリビニルアルコールまたはその誘導体と共に、電気銅の不純物を低減するポリエチレングリコール、または芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤を含む請求項1〜請求項4の何れかに記載する高純度銅電解精錬用添加剤。 The additive, together with the tetrazole and polyvinyl alcohol having an average degree of polymerization of 200 to 700 or a derivative thereof, contains polyethylene glycol that reduces impurities of electrolytic copper, or a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group. The high-purity copper electrolytic refining additive according to any one of claims 1 to 4, further comprising a nonionic surfactant having the same . 上記芳香族環の疎水基とポリオキシアルキレン基の親水基とを有する非イオン性界面活性剤が、ポリオキシエチレンモノフェニルエーテル、またはポリオキシエチレンナフチルエーテルである請求項5に記載する高純度銅電解精錬用添加剤。 The high-purity copper according to claim 5, wherein the nonionic surfactant having a hydrophobic group of the aromatic ring and a hydrophilic group of the polyoxyalkylene group is polyoxyethylene monophenyl ether or polyoxyethylene naphthyl ether. Additive for electrolytic refining. 請求項1〜請求項6の何れかに記載する添加剤を電解液に添加して銅電解精錬を行う高純度銅の製造方法。 The manufacturing method of the high purity copper which adds the additive in any one of Claims 1-6 to an electrolytic solution, and performs copper electrolytic refining . 請求項7の製造方法において、上記添加剤に含まれるテトラゾール類の添加濃度が0.1〜30mg/Lである高純度銅の製造方法。 The method for producing high-purity copper according to claim 7, wherein the addition concentration of the tetrazole contained in the additive is 0.1 to 30 mg/L. 請求項7または請求項8の製造方法において、上記添加剤に含まれる上記ポリビニルアルコールまたはその誘導体の添加濃度が0.1〜100mg/Lである高純度銅の製造方法。 The method for producing high-purity copper according to claim 7 or 8, wherein the addition concentration of the polyvinyl alcohol or its derivative contained in the additive is 0.1 to 100 mg/L. 請求項5または請求項6に記載する上記添加剤を用いた請求項7の製造方法において、上記添加剤に含まれる上記ポリエチレングリコール、または上記非イオン性界面活性剤の添加濃度が2〜500mg/Lである高純度銅の製造方法。 The manufacturing method according to claim 7 using the additive according to claim 5 or 6, wherein the addition concentration of the polyethylene glycol or the nonionic surfactant contained in the additive is 2 to 500 mg/ A method for producing high-purity copper that is L. 塩素含有量50質量ppm以下および銀含有量1質量ppm以下の高純度電気銅を製造する請求項7〜請求項10の何れかに記載する製造方法。The production method according to any one of claims 7 to 10, which produces high-purity electrolytic copper having a chlorine content of 50 mass ppm or less and a silver content of 1 mass ppm or less.
JP2016161591A 2015-09-30 2016-08-20 High-purity copper electrolytic refining additive and high-purity copper manufacturing method Active JP6740801B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW105131089A TWI705159B (en) 2015-09-30 2016-09-26 Additive for high-purity copper electrolytic refining, method of producing high-purity copper, and high-purity electrolytic copper
US15/277,508 US10428434B2 (en) 2015-09-30 2016-09-27 Additive for high-purity copper electrolytic refining, method of producing high-purity copper, and high-purity electrolytic copper
CN201610862243.5A CN106555208B (en) 2015-09-30 2016-09-28 Additive for electrolytic refining of high-purity copper, method for producing high-purity copper, and high-purity electrolytic copper

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015194834 2015-09-30
JP2015194834 2015-09-30
JP2016107269 2016-05-30
JP2016107269 2016-05-30

Publications (2)

Publication Number Publication Date
JP2017214641A JP2017214641A (en) 2017-12-07
JP6740801B2 true JP6740801B2 (en) 2020-08-19

Family

ID=60575378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161591A Active JP6740801B2 (en) 2015-09-30 2016-08-20 High-purity copper electrolytic refining additive and high-purity copper manufacturing method

Country Status (1)

Country Link
JP (1) JP6740801B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183592B2 (en) * 2012-06-14 2017-08-23 三菱マテリアル株式会社 Method for electrolytic refining of high purity electrolytic copper

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163619A (en) * 1974-11-28 1976-06-02 Fuji Photo Film Co Ltd KARAAKAKUSANTENSHAHO
JP2008045215A (en) * 1999-01-25 2008-02-28 Chemical Denshi:Kk Metal surface treatment agent, and surface treatment method for metallic layer
JP2001033906A (en) * 1999-07-21 2001-02-09 Konica Corp Silver halide photographic sensitive material and its processing method
JP4090951B2 (en) * 2003-06-26 2008-05-28 株式会社荏原電産 Mirror finish etchant for copper and copper alloys
JP4518262B2 (en) * 2004-03-23 2010-08-04 三菱マテリアル株式会社 High purity electrolytic copper and its manufacturing method

Also Published As

Publication number Publication date
JP2017214641A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
CN106480475B (en) Additive for electrolytic refining of high-purity copper and method for producing high-purity copper
JP4518262B2 (en) High purity electrolytic copper and its manufacturing method
CN106555208B (en) Additive for electrolytic refining of high-purity copper, method for producing high-purity copper, and high-purity electrolytic copper
JP6740801B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP6733314B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
CN110382743B (en) High purity electrolytic copper
US10407785B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
US10358730B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
US10793956B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
TWI787275B (en) Method for producing high purity electrolytic copper
WO2016052727A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
WO2020175352A1 (en) High-concentration aqueous tin sulfonate solution and method for producing same
WO2016052725A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
JP2017179506A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP2017179504A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP2018204102A (en) Method of producing high-purity electrolytic copper
JP2017179505A (en) High purity copper electrolytic refining additive and high purity copper producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6740801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250